Sample records for affect future generations

  1. From what should we protect future generations: germ-line therapy or genetic screening?

    PubMed

    Mallia, Pierre; ten Have, Henk

    2003-01-01

    This paper discusses the issue of whether we have responsibilities to future generations with respect to genetic screening, including for purposes of selective abortion or discard. Future generations have been discussed at length among scholars. The concept of 'Guardian for Future Generations' is tackled and its main criticisms discussed. Whilst germ-line cures, it is argued, can only affect family trees, genetic screening and testing can have wider implications. If asking how this may affect future generations is a legitimate question and since we indeed make retrospective moral judgements, it would be wise to consider that future generations will make the same retrospective judgements on us. Moreover such technologies affect present embryos to which we indeed can be considered to have an obligation.

  2. How Do Future Life Perspective and Present Action Work in Japanese Youth Development?

    ERIC Educational Resources Information Center

    Kawai, Toru; Moran, Seana

    2017-01-01

    "Future life perspective" and "present action," whose interaction affects how one's current activity affects later life, offer a critical crossroads for young adults in Japan as stable career paths have become more uncertain. Past generations benefited from stable institutional pathways, but recent generations must forge their…

  3. Epigenetics and Future Generations.

    PubMed

    Del Savio, Lorenzo; Loi, Michele; Stupka, Elia

    2015-10-01

    Recent evidence of intergenerational epigenetic programming of disease risk broadens the scope of public health preventive interventions to future generations, i.e. non existing people. Due to the transmission of epigenetic predispositions, lifestyles such as smoking or unhealthy diet might affect the health of populations across several generations. While public policy for the health of future generations can be justified through impersonal considerations, such as maximizing aggregate well-being, in this article we explore whether there are rights-based obligations supervening on intergenerational epigenetic programming despite the non-identity argument, which challenges this rationale in case of policies that affect the number and identity of future people. We propose that rights based obligations grounded in the interests of non-existing people might fall upon existing people when generations overlap. In particular, if environmental exposure in F0 (i.e. existing people) will affect the health of F2 (i.e. non-existing people) through epigenetic programming, then F1 (i.e. existing and overlapping with both F0 and F2) might face increased costs to address F2's condition in the future: this might generate obligations upon F0 from various distributive principles, such as the principle of equal opportunity for well being. © 2015 John Wiley & Sons Ltd.

  4. Generation Expansion Planning With Large Amounts of Wind Power via Decision-Dependent Stochastic Programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Yiduo; Zheng, Qipeng P.; Wang, Jianhui

    Power generation expansion planning needs to deal with future uncertainties carefully, given that the invested generation assets will be in operation for a long time. Many stochastic programming models have been proposed to tackle this challenge. However, most previous works assume predetermined future uncertainties (i.e., fixed random outcomes with given probabilities). In several recent studies of generation assets' planning (e.g., thermal versus renewable), new findings show that the investment decisions could affect the future uncertainties as well. To this end, this paper proposes a multistage decision-dependent stochastic optimization model for long-term large-scale generation expansion planning, where large amounts of windmore » power are involved. In the decision-dependent model, the future uncertainties are not only affecting but also affected by the current decisions. In particular, the probability distribution function is determined by not only input parameters but also decision variables. To deal with the nonlinear constraints in our model, a quasi-exact solution approach is then introduced to reformulate the multistage stochastic investment model to a mixed-integer linear programming model. The wind penetration, investment decisions, and the optimality of the decision-dependent model are evaluated in a series of multistage case studies. The results show that the proposed decision-dependent model provides effective optimization solutions for long-term generation expansion planning.« less

  5. The Future of Organized Camping.

    ERIC Educational Resources Information Center

    Henderson, Karla A.; And Others

    A research study on the future of organized camping investigated future factors which may affect leadership of camping programs in Wisconsin and throughout the country. Objectives were to: identify 50 experts on organized camping who would participate in a 3-round Delphi study on the future of camping; generate consensus among the experts…

  6. Sustainability, the Next Generation Science Standards, and the Education of Future Teachers

    ERIC Educational Resources Information Center

    Egger, Anne E.; Kastens, Kim A.; Turrin, Margaret K.

    2017-01-01

    The Next Generation Science Standards (NGSS) emphasize how human activities affect the Earth and how Earth processes impact humans, placing the concept of sustainability within the Earth and Space Sciences. We ask: how prepared are future teachers to address sustainability and systems thinking as encoded in the NGSS? And how can geoscientists…

  7. Motivated prediction of future feelings: effects of negative mood and mood orientation on affective forecasts.

    PubMed

    Buehler, Roger; McFarland, Cathy; Spyropoulos, Vassili; Lam, Kent C H

    2007-09-01

    This article examines the role of motivational factors in affective forecasting. The primary hypothesis was that people predict positive emotional reactions to future events when they are motivated to enhance their current feelings. Three experiments manipulated participants' moods (negative vs. neutral) and orientation toward their moods (reflective vs. ruminative) and then assessed the positivity of their affective predictions for future events. As hypothesized, when participants adopted a reflective orientation, and thus should have been motivated to engage in mood-regulation processes, they predicted more positive feelings in the negative than in the neutral mood condition. This pattern of mood-incongruent affective prediction was not exhibited when participants adopted a ruminative orientation. Additionally, within the negative mood condition, generating affective forecasts had a more positive emotional impact on reflectors than on ruminators. The findings suggest that affective predictions are sometimes driven by mood-regulatory motives.

  8. The Role of Relevancy and Social Suffering in "Generativity" Among Older Post-Soviet Women Immigrants.

    PubMed

    de Medeiros, Kate; Rubinstein, Robert; Ermoshkina, Polina

    2015-08-01

    This paper examines generativity, social suffering, and culture change in a sample of 16 women aged 65 years or older who emigrated from the former Soviet Union. Key concerns with generativity are identity, which can be strongly rooted in one's original cultural formation, and a stable life course, which is what ideally enables generative impulses to be cultivated in later life. To better understand how early social suffering may affect later life generativity, we conducted two 90-min interviews with each of our participants on their past experiences and current views of generativity. The trauma of World War II, poor quality of life in the Soviet Union, scarcity of shelter and supplies, and fear of arrest emerged as common components in social suffering, which affected their identity. Overall, the theme of broken links to the future--the sense that their current lives were irrelevant to future generations--was strong among informants in their interviews, pointing to the importance of life course stability in relation to certain forms of generativity. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. How Self-Generated Thought Shapes Mood—The Relation between Mind-Wandering and Mood Depends on the Socio-Temporal Content of Thoughts

    PubMed Central

    Ruby, Florence J. M.; Smallwood, Jonathan; Engen, Haakon; Singer, Tania

    2013-01-01

    Recent work has highlighted that the generation of thoughts unrelated to the current environment may be both a cause and a consequence of unhappiness. The current study used lag analysis to examine whether the relationship between self-generated thought and negative affect depends on the content of the thoughts themselves. We found that the emotional content could strongly predict subsequent mood (e.g. negative thoughts were associated with subsequent negative mood). However, this direct relationship was modulated by the socio-temporal content of the thoughts: thoughts that were past- and other-related were associated with subsequent negative mood, even if current thought content was positive. By contrast, future- and self-related thoughts preceded improvements of mood, even when current thought content was negative. These results highlight the important link between self-generated thought and mood and suggest that the socio-temporal content plays an important role in determining whether an individual's future affective state will be happy or sad. PMID:24194889

  10. Easy to retrieve but hard to believe: metacognitive discounting of the unpleasantly possible.

    PubMed

    O'Brien, Ed

    2013-06-01

    People who recall or forecast many pleasant moments should perceive themselves as happier in the past or future than people who generate few such moments; the same principle should apply to generating unpleasant moments and perceiving unhappiness. Five studies suggest that this is not always true. Rather, people's metacognitive experience of ease of thought retrieval ("fluency") can affect perceived well-being over time beyond actual thought content. The easier it is to recall positive past experiences, the happier people think they were at the time; likewise, the easier it is to recall negative past experiences, the unhappier people think they were. But this is not the case for predicting the future. Although people who easily generate positive forecasts predict more future happiness, people who easily generate negative forecasts do not infer future unhappiness. Given pervasive tendencies to underestimate the likelihood of experiencing negative events, people apparently discount hard-to-believe metacognitive feelings (e.g., easily imagined unpleasant futures). Paradoxically, people's well-being may be maximized when they contemplate some bad moments or just a few good moments.

  11. When Future Change Matters: Modeling Future Price and Diffusion in Health Technology Assessments of Medical Devices.

    PubMed

    Grimm, Sabine E; Dixon, Simon; Stevens, John W

    Health technology assessments (HTAs) that take account of future price changes have been examined in the literature, but the important issue of price reductions that are generated by the reimbursement decision has been ignored. To explore the impact of future price reductions caused by increasing uptake on HTAs and decision making for medical devices. We demonstrate the use of a two-stage modeling approach to derive estimates of technology price as a consequence of changes in technology uptake over future periods on the basis of existing theory and supported by empirical studies. We explore the impact on cost-effectiveness and expected value of information analysis in an illustrative example on the basis of a technology in development for preterm birth screening. The application of our approach to the case study technology generates smaller incremental cost-effectiveness ratios compared with the commonly used single cohort approach. The extent of this reduction in the incremental cost-effectiveness ratio depends on the magnitude of the modeled price reduction, the speed of diffusion, and the length of the assumed technology life horizon. Results of value of information analysis are affected through changes in the expected net benefit calculation, the addition of uncertain parameters, and the diffusion-adjusted estimate of the affected patient population. Because modeling future changes in price and uptake has the potential to affect HTA outcomes, modeling techniques that can address such changes should be considered for medical devices that may otherwise be rejected. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  12. Children and the Environment. The State of the Environment, 1990.

    ERIC Educational Resources Information Center

    United Nations Children's Fund, New York, NY.

    This report summarizes the ways in which children in developing nations have been adversely affected by their environment and what changes could be made to mitigate these circumstances. Chapter 1 discusses the environment, children, and future generations, pointing out the special needs children have now and will have in the future, the role of…

  13. Weighing the Costs and Benefits of Climate Change to Our Children

    ERIC Educational Resources Information Center

    Dietz, Simon; Groom, Ben; Pizer, William A.

    2016-01-01

    Our efforts to put the brakes on climate change or adapt to a warming climate present a fundamental tradeoff between costs borne today and benefits that accrue to the children and grandchildren of the current generation. In making investments today that affect future generations' prospects, we need to think carefully about how we value their…

  14. Responses of an Insect Folivore and Its Parastoids to Multiyear Experimental Defoliation of Aspen

    Treesearch

    Dylan Parry; Daniel A. Herms; William J. Mattson

    2003-01-01

    Foliage quality may decline in deciduous trees following defoliation, thus affecting the insect generation responsible for the herbivory (rapid induced resistance, RIR), or future generations (delayed induced resistance, DIR). During outbreaks, trees often suffer partial or complete defoliation for two or more successive years, yet most studies have examined induced...

  15. 12th Man in Space Symposium: The Future of Humans in Space. Abstract Volume

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The National Aeronautics and Space Administration (NASA) is pleased to host the 12th IAA Man in Space Symposium. A truly international forum, this symposium brings together scientists, engineers, and managers interested in all aspects of human space flight to share the most recent research results and space agency planning related to the future of humans in space. As we look out at the universe from our own uniquely human perspective, we see a world that we affect at the same time that it affects us. Our tomorrows are highlighted by the possibilities generated by our knowledge, our drive, and our dreams. This symposium will examine our future in space from the springboard of our achievements.

  16. Volcano hazards in the Mount Hood region, Oregon

    USGS Publications Warehouse

    Scott, W.E.; Pierson, T.C.; Schilling, S.P.; Costa, J.E.; Gardner, C.A.; Vallance, J.W.; Major, J.J.

    1997-01-01

    Mount Hood is a potentially active volcano close to rapidly growing communities and recreation areas. The most likely widespread and hazardous consequence of a future eruption will be for lahars (rapidly moving mudflows) to sweep down the entire length of the Sandy (including the Zigzag) and White River valleys. Lahars can be generated by hot volcanic flows that melt snow and ice or by landslides from the steep upper flanks of the volcano. Structures close to river channels are at greatest risk of being destroyed. The degree of hazard decreases as height above a channel increases, but large lahars can affect areas more than 30 vertical meters (100 vertical feet) above river beds. The probability of eruption-generated lahars affecting the Sandy and White River valleys is 1-in-15 to l-in-30 during the next 30 years, whereas the probability of extensive areas in the Hood River Valley being affected by lahars is about ten times less. The accompanying volcano-hazard-zonation map outlines areas potentially at risk and shows that some areas may be too close for a reasonable chance of escape or survival during an eruption. Future eruptions of Mount Hood could seriously disrupt transportation (air, river, and highway), some municipal water supplies, and hydroelectric power generation and transmission in northwest Oregon and southwest Washington.

  17. The egoism and altruism of intergenerational behavior.

    PubMed

    Wade-Benzoni, Kimberly A; Tost, Leigh Plunkett

    2009-08-01

    Some of the most important issues in society today affect more than one generation of people. In this article, the authors offer a conceptual overview and integration of the research on intergenerational dilemmas-decisions that entail a tradeoff between one's own self-interest in the present and the interests of other people in the future. Intergenerational decisions are characterized by a combination of intertemporal (i.e., behaviors that affect the future) and interpersonal (i.e., behaviors that affect other people) components. Research on intergenerational dilemmas identifies factors that emerge from these dimensions and how they interact with each other to influence intergenerational beneficence. Critically, phenomena that result from the intersection of these two dimensions-such as immortality striving through legacy creation-are especially important in distinguishing intergenerational decisions from other related decision contexts.

  18. Intergenerational considerations affecting the future of nuclear power: equity as a framework for assessing fuel cycles.

    PubMed

    Taebi, Behnam; Kadak, Andrew C

    2010-09-01

    Alternative fuel cycles are being considered in an effort to prolong uranium fuel supplies for thousands of years to come and to manage nuclear waste. These strategies bring with them different benefits and burdens for the present generation and for future generations. In this article, we present a method that provides insight into future fuel cycle alternatives and into the conflicts arising between generations within the framework of intergenerational equity. A set of intersubjective values is drawn from the notion of sustainable development. By operationalizing these values and mapping out their impacts, value criteria are introduced for the assessment of fuel cycles, which are based on the distribution of burdens and benefits between generations. The once-through fuel cycle currently deployed in the United States and three future fuel cycles are subsequently assessed according to these criteria. The four alternatives are then compared in an integrated analysis in which we shed light on the implicit tradeoffs made by decisionmakers when they choose a certain fuel cycle. When choosing a fuel cycle, what are the societal costs and burdens accepted for each generation and how can these factors be justified? This article presents an integrated decision-making method, which considers intergenerational aspects of such decisions; this method could also be applied to other technologies. © 2010 Society for Risk Analysis.

  19. Application of a CROPWAT Model to Analyze Crop Yields in Nicaragua

    NASA Astrophysics Data System (ADS)

    Doria, R.; Byrne, J. M.

    2013-12-01

    ABSTRACT Changes in climate are likely to influence crop yields due to varying evapotranspiration and precipitation over agricultural regions. In Nicaragua, agriculture is extensive, with new areas of land brought into production as the population increases. Nicaraguan staple food items (maize and beans) are produced mostly by small scale farmers with less than 10 hectares, but they are critical for income generation and food security for rural communities. Given that the majority of these farmers are dependent on rain for crop irrigation, and that maize and beans are sensitive to variations in temperature and rainfall patterns, the present study was undertaken to assess the impact of climate change on these crop yields. Climate data were generated per municipio representing the three major climatic zones of the country: the wet Pacific lowland, the cooler Central highland, and the Caribbean lowland. Historical normal climate data from 1970-2000 (baseline period) were used as input to CROPWAT model to analyze the potential and actual evapotranspiration (ETo and ETa, respectively) that affects crop yields. Further, generated local climatic data of future years (2030-2099) under various scenarios were inputted to the CROPWAT to determine changes in ETo and ETa from the baseline period. Spatial variability maps of both ETo and ETa as well as crop yields were created. Results indicated significant variation in seasonal rainfall depth during the baseline period and predicted decreasing trend in the future years that eventually affects yields. These maps enable us to generate appropriate adaptation measures and best management practices for small scale farmers under future climate change scenarios. KEY WORDS: Climate change, evapotranspiration, CROPWAT, yield, Nicaragua

  20. Assessment of windows on noise intrusion, energy efficiency, and indoor air quality for residential buildings near airports.

    DOT National Transportation Integrated Search

    2012-06-01

    The continuing increase in air traffic has implications for the preservation of our common : resources and causes global and micro-environmental pollution. This pollution affects public : health and causes damage to the prospects of future generation...

  1. Transnational Terrorism’s Affect on the U.S. Economy

    DTIC Science & Technology

    2004-03-19

    economic stability is still visible; however the research in this paper indicates the U.S. economy is very resilient and that it would take a great deal of domestic and external pressure to generate a long-term and lasting economic affect. This paper analyzes the impact terrorism has had on the U.S. economy and seeks to determine how well the U.S. economy will stand to future terrorist attacks on U.S. soil that match magnitude of economic affect caused by the attacks of September 11 2001. To the

  2. Climate change impact on soil erosion in the Mandakini River Basin, North India

    NASA Astrophysics Data System (ADS)

    Khare, Deepak; Mondal, Arun; Kundu, Sananda; Mishra, Prabhash Kumar

    2017-09-01

    Correct estimation of soil loss at catchment level helps the land and water resources planners to identify priority areas for soil conservation measures. Soil erosion is one of the major hazards affected by the climate change, particularly the increasing intensity of rainfall resulted in increasing erosion, apart from other factors like landuse change. Changes in climate have an adverse effect with increasing rainfall. It has caused increasing concern for modeling the future rainfall and projecting future soil erosion. In the present study, future rainfall has been generated with the downscaling of GCM (Global Circulation Model) data of Mandakini river basin, a hilly catchment in the state of Uttarakhand, India, to obtain future impact on soil erosion within the basin. The USLE is an erosion prediction model designed to predict the long-term average annual soil loss from specific field slopes in specified landuse and management systems (i.e., crops, rangeland, and recreational areas) using remote sensing and GIS technologies. Future soil erosion has shown increasing trend due to increasing rainfall which has been generated from the statistical-based downscaling method.

  3. Climate change, tropospheric ozone and particulate matter, and health impacts.

    PubMed

    Ebi, Kristie L; McGregor, Glenn

    2008-11-01

    Because the state of the atmosphere determines the development, transport, dispersion, and deposition of air pollutants, there is concern that climate change could affect morbidity and mortality associated with elevated concentrations of these gases and fine particles. We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health. We review studies projecting the impacts of climate change on air quality and studies projecting the impacts of these changes on morbidity and mortality. Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty include the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given these uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, which would increase morbidity and mortality. Few projections are available for low- and middle-income countries. The evidence is less robust for PM, primarily because few studies have been conducted. Additional research is needed to better understand the possible impacts of climate change on air pollution-related health impacts. If improved models continue to project higher ozone concentrations with climate change, then reducing greenhouse gas emissions would enhance the health of current and future generations.

  4. Evolution of Human Rights in the Age of Biotechnology.

    ERIC Educational Resources Information Center

    Hron, Benjamin

    1998-01-01

    Considers how biotechnology affects human-rights issues; in particular, the need for reexamining concerns about reproductive technology, the rights of indigenous peoples, and the rights of future generations. Maintains that the new areas for human-rights discussions, such as germ-line manipulation and genetic screening, are unprecedented concerns…

  5. The Role of Relevancy and Social Suffering in “Generativity” Among Older Post-Soviet Women Immigrants

    PubMed Central

    de Medeiros, Kate; Rubinstein, Robert; Ermoshkina, Polina

    2015-01-01

    Purpose of the Study: This paper examines generativity, social suffering, and culture change in a sample of 16 women aged 65 years or older who emigrated from the former Soviet Union. Key concerns with generativity are identity, which can be strongly rooted in one’s original cultural formation, and a stable life course, which is what ideally enables generative impulses to be cultivated in later life. Design and Methods: To better understand how early social suffering may affect later life generativity, we conducted two 90-min interviews with each of our participants on their past experiences and current views of generativity. Results: The trauma of World War II, poor quality of life in the Soviet Union, scarcity of shelter and supplies, and fear of arrest emerged as common components in social suffering, which affected their identity. Implications: Overall, the theme of broken links to the future—the sense that their current lives were irrelevant to future generations—was strong among informants in their interviews, pointing to the importance of life course stability in relation to certain forms of generativity. PMID:24184859

  6. Millennials and Their Parents: Implications of the New Young Adulthood for Midlife Adults

    PubMed Central

    Fingerman, Karen L

    2017-01-01

    Abstract The period of young adulthood has transformed dramatically over the past few decades. Today, scholars refer to “emerging adulthood” and “transitions to adulthood” to describe adults in their 20s. Prolonged youth has brought concomitant prolonged parenthood. This article addresses 3 areas of change in parent/child ties, increased (a) contact between generations, (b) support from parents to grown children as well as coresidence and (c) affection between the generations. We apply the Multidimensional Intergenerational Support Model (MISM) to explain these changes, considering societal (e.g., economic, technological), cultural, family demographic (e.g., fertility, stepparenting), relationship, and psychological (normative beliefs, affection) factors. Several theoretical perspectives (e.g., life course theory, family systems theory) suggest that these changes may have implications for the midlife parents’ well-being. For example, parents may incur deleterious effects from (a) grown children’s problems or (b) their own normative beliefs that offspring should be independent. Parents may benefit via opportunities for generativity with young adult offspring. Furthermore, current patterns may affect future parental aging. As parents incur declines of late life, they may be able to turn to caregivers with whom they have intimate bonds. Alternately, parents may be less able to obtain such care due to demographic changes involving grown children raising their own children later or who have never fully launched. It is important to consider shifts in the nature of young adulthood to prepare for midlife parents’ future aging. PMID:29795793

  7. ECOLOGICAL AND WATER QUALITY CONSEQUENCES OF NUTRIENT ADDITION FOR SALMON RESTORATION IN THE PACIFIC NORTHWEST OF NORTH AMERICA

    EPA Science Inventory

    Salmon runs have declined over the past two centuries in the Pacific Northwest region of North America. Reduced inputs of salmon-derived organic matter and nutrients (SDN) may limit freshwater production and thus establish a negative feedback loop affecting future generations of...

  8. Daddy issues: paternal effects on phenotype

    PubMed Central

    Rando, Oliver J.

    2012-01-01

    The once-popular, then heretical, idea that ancestral environment can affect the phenotype of future generations is coming back into vogue, due to advances in the field of epigenetic inheritance. How paternal environmental conditions influence the phenotype of progeny is now a tractable question, and researchers are exploring potential mechanisms underlying such effects. PMID:23141533

  9. Examining coping style and the relationship between stress and subjective well-being in Australia's 'sandwich generation'.

    PubMed

    Gillett, Jade E; Crisp, Dimity A

    2017-09-01

    The sandwich generation represents adults, often in midlife, who care for both children and ageing parents/relatives. While the stress they experience has received some attention, little research has investigated the subjective well-being (SWB) of this population. This study examined the relationship between perceived stress and SWB and the moderating effect of coping style. Ninety-three participants (80 women), aged 23-63 years, completed an online survey measuring perceived stress, coping strategies, life satisfaction and positive and negative affect. Stress was negatively associated with SWB. While emotion- and problem-focused coping were directly associated with SWB outcomes, the only moderating effect found was for avoidance-focused coping (AFC). Specifically, AFC was associated with higher positive affect for those reporting lower stress. This study highlights the need to recognise the distinct circumstances that exist for the sandwich generation. Limitations and suggestions for future research are discussed. © 2017 AJA Inc.

  10. Climate Change, Tropospheric Ozone and Particulate Matter, and Health Impacts

    PubMed Central

    Ebi, Kristie L.; McGregor, Glenn

    2008-01-01

    Objective Because the state of the atmosphere determines the development, transport, dispersion, and deposition of air pollutants, there is concern that climate change could affect morbidity and mortality associated with elevated concentrations of these gases and fine particles. We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health. Data sources We review studies projecting the impacts of climate change on air quality and studies projecting the impacts of these changes on morbidity and mortality. Data synthesis Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty include the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given these uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, which would increase morbidity and mortality. Few projections are available for low- and middle-income countries. The evidence is less robust for PM, primarily because few studies have been conducted. Conclusions Additional research is needed to better understand the possible impacts of climate change on air pollution–related health impacts. If improved models continue to project higher ozone concentrations with climate change, then reducing greenhouse gas emissions would enhance the health of current and future generations. PMID:19057695

  11. Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mignone, Bryan K.; Showalter, Sharon; Wood, Frances

    One option for reducing carbon emissions in the power sector is replacement of coal-fired generation with less carbon-intensive natural gas combined cycle (NGCC) generation. In the United States, where there is abundant, low-cost natural gas supply, increased NGCC deployment could be a cost-effective emissions abatement opportunity at relatively modest carbon prices. However, under scenarios in which carbon prices rise and deeper emissions reductions are achieved, other technologies may be more cost-effective than NGCC in the future. In this analysis, using a US energy system model with foresight (a version of the National Energy Modeling System or 'NEMS' model), we findmore » that varying expectations about carbon prices after 2030 does not materially affect NGCC deployment prior to 2030, all else equal. An important implication of this result is that, under the set of natural gas and carbon price trajectories explored here, myopic behavior or other imperfect expectations about potential future carbon policy do not change the natural gas deployment path or lead to stranded natural gas generation infrastructure. We explain these results in terms of the underlying economic competition between available generation technologies and discuss the broader relevance to US climate change mitigation policy.« less

  12. Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mignone, Bryan K.; Showalter, Sharon; Wood, Frances

    One option for reducing carbon emissions in the power sector is replacement of coal-fired generation with less carbon-intensive natural gas combined cycle (NGCC) generation. In the United States, where there is abundant, low-cost natural gas supply, increased NGCC deployment could be a cost-effective emissions abatement opportunity at relatively modest carbon prices. However, under scenarios in which carbon prices rise and deeper emissions reductions are achieved, other technologies may be more cost-effective than NGCC in the future. In this analysis, using a US energy system model with foresight (a version of the National Energy Modeling System or “NEMS” model), we findmore » that varying expectations about carbon prices after 2030 does not materially affect NGCC deployment prior to 2030, all else equal. An important implication of this result is that, under the set of natural gas and carbon price trajectories explored here, myopic behavior or other imperfect expectations about potential future carbon policy do not change the natural gas deployment path or lead to stranded natural gas generation infrastructure. Lastly, we explain these results in terms of the underlying economic competition between available generation technologies and discuss the broader relevance to US climate change mitigation policy.« less

  13. Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations

    DOE PAGES

    Mignone, Bryan K.; Showalter, Sharon; Wood, Frances; ...

    2017-11-01

    One option for reducing carbon emissions in the power sector is replacement of coal-fired generation with less carbon-intensive natural gas combined cycle (NGCC) generation. In the United States, where there is abundant, low-cost natural gas supply, increased NGCC deployment could be a cost-effective emissions abatement opportunity at relatively modest carbon prices. However, under scenarios in which carbon prices rise and deeper emissions reductions are achieved, other technologies may be more cost-effective than NGCC in the future. In this analysis, using a US energy system model with foresight (a version of the National Energy Modeling System or 'NEMS' model), we findmore » that varying expectations about carbon prices after 2030 does not materially affect NGCC deployment prior to 2030, all else equal. An important implication of this result is that, under the set of natural gas and carbon price trajectories explored here, myopic behavior or other imperfect expectations about potential future carbon policy do not change the natural gas deployment path or lead to stranded natural gas generation infrastructure. We explain these results in terms of the underlying economic competition between available generation technologies and discuss the broader relevance to US climate change mitigation policy.« less

  14. Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations

    DOE PAGES

    Mignone, Bryan K.; Showalter, Sharon; Wood, Frances; ...

    2017-09-07

    One option for reducing carbon emissions in the power sector is replacement of coal-fired generation with less carbon-intensive natural gas combined cycle (NGCC) generation. In the United States, where there is abundant, low-cost natural gas supply, increased NGCC deployment could be a cost-effective emissions abatement opportunity at relatively modest carbon prices. However, under scenarios in which carbon prices rise and deeper emissions reductions are achieved, other technologies may be more cost-effective than NGCC in the future. In this analysis, using a US energy system model with foresight (a version of the National Energy Modeling System or “NEMS” model), we findmore » that varying expectations about carbon prices after 2030 does not materially affect NGCC deployment prior to 2030, all else equal. An important implication of this result is that, under the set of natural gas and carbon price trajectories explored here, myopic behavior or other imperfect expectations about potential future carbon policy do not change the natural gas deployment path or lead to stranded natural gas generation infrastructure. Lastly, we explain these results in terms of the underlying economic competition between available generation technologies and discuss the broader relevance to US climate change mitigation policy.« less

  15. Age-Related Positivity Effects and Autobiographical Memory Detail: Evidence from a Past/Future Source Memory Task

    PubMed Central

    Gallo, David A.; Korthauer, Laura E.; McDonough, Ian M.; Teshale, Salom; Johnson, Elizabeth L.

    2013-01-01

    This study investigated whether the age-related positivity effect strengthens specific event details in autobiographical memory. Participants retrieved past events or imagined future events in response to neutral or emotional cue words. Older adults rated each kind of event more positively than younger adults, demonstrating an age-related positivity effect. We next administered a source memory test. Participants were given the same cue words and tried to retrieve the previously generated event and its source (past or future). Accuracy on this source test should depend on the recollection of specific details about the earlier generated events, providing a more objective measure of those details than subjective ratings. We found that source accuracy was greater for positive than negative future events in both age groups, suggesting that positive future events were more detailed. In contrast, valence did not affect source accuracy for past events in either age group, suggesting that positive and negative past events were equally detailed. Although aging can bias people to focus on positive aspects of experience, this bias does not appear to strengthen the availability of details for positive relative to negative past events. PMID:21919591

  16. A taxonomy of prospection: introducing an organizational framework for future-oriented cognition.

    PubMed

    Szpunar, Karl K; Spreng, R Nathan; Schacter, Daniel L

    2014-12-30

    Prospection--the ability to represent what might happen in the future--is a broad concept that has been used to characterize a wide variety of future-oriented cognitions, including affective forecasting, prospective memory, temporal discounting, episodic simulation, and autobiographical planning. In this article, we propose a taxonomy of prospection to initiate the important and necessary process of teasing apart the various forms of future thinking that constitute the landscape of prospective cognition. The organizational framework that we propose delineates episodic and semantic forms of four modes of future thinking: simulation, prediction, intention, and planning. We show how this framework can be used to draw attention to the ways in which various modes of future thinking interact with one another, generate new questions about prospective cognition, and illuminate our understanding of disorders of future thinking. We conclude by considering basic cognitive processes that give rise to prospective cognitions, cognitive operations and emotional/motivational states relevant to future-oriented cognition, and the possible role of procedural or motor systems in future-oriented behavior.

  17. Short and long-term carbon balance of bioenergy electricity production fueled by forest treatments.

    PubMed

    Kelsey, Katharine C; Barnes, Kallie L; Ryan, Michael G; Neff, Jason C

    2014-01-01

    Forests store large amounts of carbon in forest biomass, and this carbon can be released to the atmosphere following forest disturbance or management. In the western US, forest fuel reduction treatments designed to reduce the risk of high severity wildfire can change forest carbon balance by removing carbon in the form of biomass, and by altering future potential wildfire behavior in the treated stand. Forest treatment carbon balance is further affected by the fate of this biomass removed from the forest, and the occurrence and intensity of a future wildfire in this stand. In this study we investigate the carbon balance of a forest treatment with varying fates of harvested biomass, including use for bioenergy electricity production, and under varying scenarios of future disturbance and regeneration. Bioenergy is a carbon intensive energy source; in our study we find that carbon emissions from bioenergy electricity production are nearly twice that of coal for the same amount of electricity. However, some emissions from bioenergy electricity production are offset by avoided fossil fuel electricity emissions. The carbon benefit achieved by using harvested biomass for bioenergy electricity production may be increased through avoided pyrogenic emissions if the forest treatment can effectively reduce severity. Forest treatments with the use of harvested biomass for electricity generation can reduce carbon emissions to the atmosphere by offsetting fossil fuel electricity generation emissions, and potentially by avoided pyrogenic emissions due to reduced intensity and severity of a future wildfire in the treated stand. However, changes in future wildfire and regeneration regimes may affect forest carbon balance and these climate-induced changes may influence forest carbon balance as much, or more, than bioenergy production.

  18. Young adults in conflict: confident but struggling, networked but disconnected.

    PubMed

    McLeigh, Jill D; Boberiene, Liepa V

    2014-11-01

    This article discusses the conflict the cohort of adults known as the Millennials has been affected by. More specifically this article takes a look at how changes in the economy and society have influenced Millennials and what can be done to promote their well-being and that of future generations. (c) 2014 APA, all rights reserved.

  19. A Fundamental Study on Spectrum Center Estimation of Solar Spectral Irradiation by the Statistical Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Iijima, Aya; Suzuki, Kazumi; Wakao, Shinji; Kawasaki, Norihiro; Usami, Akira

    With a background of environmental problems and energy issues, it is expected that PV systems will be introduced rapidly and connected with power grids on a large scale in the future. For this reason, the concern to which PV power generation will affect supply and demand adjustment in electric power in the future arises and the technique of correctly grasping the PV power generation becomes increasingly important. The PV power generation depends on solar irradiance, temperature of a module and solar spectral irradiance. Solar spectral irradiance is distribution of the strength of the light for every wavelength. As the spectrum sensitivity of solar cell depends on kind of solar cell, it becomes important for exact grasp of PV power generation. Especially the preparation of solar spectral irradiance is, however, not easy because the observational instrument of solar spectral irradiance is expensive. With this background, in this paper, we propose a new method based on statistical pattern recognition for estimating the spectrum center which is representative index of solar spectral irradiance. Some numerical examples obtained by the proposed method are also presented.

  20. NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Rich; Madavan, Nateri

    2014-01-01

    Commercial aviation relies almost entirely on subsonic fixed wing aircraft to constantly move people and goods from one place to another across the globe. While air travel is an effective means of transportation providing an unmatched combination of speed and range, future subsonic aircraft must improve substantially to meet efficiency and environmental targets.The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The paper will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe

  1. Advancing the Strategic Messages Affecting Robot Trust Effect: The Dynamic of User- and Robot-Generated Content on Human-Robot Trust and Interaction Outcomes.

    PubMed

    Liang, Yuhua Jake; Lee, Seungcheol Austin

    2016-09-01

    Human-robot interaction (HRI) will soon transform and shift the communication landscape such that people exchange messages with robots. However, successful HRI requires people to trust robots, and, in turn, the trust affects the interaction. Although prior research has examined the determinants of human-robot trust (HRT) during HRI, no research has examined the messages that people received before interacting with robots and their effect on HRT. We conceptualize these messages as SMART (Strategic Messages Affecting Robot Trust). Moreover, we posit that SMART can ultimately affect actual HRI outcomes (i.e., robot evaluations, robot credibility, participant mood) by affording the persuasive influences from user-generated content (UGC) on participatory Web sites. In Study 1, participants were assigned to one of two conditions (UGC/control) in an original experiment of HRT. Compared with the control (descriptive information only), results showed that UGC moderated the correlation between HRT and interaction outcomes in a positive direction (average Δr = +0.39) for robots as media and robots as tools. In Study 2, we explored the effect of robot-generated content but did not find similar moderation effects. These findings point to an important empirical potential to employ SMART in future robot deployment.

  2. The Andalusian Bipolar Family (ABiF) Study: Protocol and sample description.

    PubMed

    Guzman-Parra, Jose; Rivas, Fabio; Strohmaier, Jana; Forstner, Andreas; Streit, Fabian; Auburger, Georg; Propping, Peter; Orozco-Diaz, Guillermo; González, Maria José; Gil-Flores, Susana; Cabaleiro-Fabeiro, Francisco Javier; Del Río-Noriega, Francisco; Perez-Perez, Fermin; Haro-González, Jesus; de Diego-Otero, Yolanda; Romero-Sanchiz, Pablo; Moreno-Küstner, Berta; Cichon, Sven; Nöthen, Markus M; Rietschel, Marcella; Mayoral, Fermin

    2017-06-12

    Here, we present the first description of the Andalusian Bipolar Family (ABiF) Study. This longitudinal investigation of families from Andalusia, Spain commenced in 1997 with the aim of elucidating the molecular genetic causes of bipolar affective disorder. The cohort has since contributed to a number of key genetic findings, as reported in international journals. However, insight into the genetic underpinnings of the disorder in these families remains limited. In the initial 1997-2003 study phase, 100 multiplex bipolar disorder and other mood disorder families were recruited. The ongoing second phase of the project commenced in 2013, and involves follow-up of a subgroup of the originally recruited families. The aim of the follow-up investigation is to generate: i) longitudinal clinical data; ii) results from detailed neuropsychological assessments; and iii) a more extensive collection of biomaterials for future molecular biological studies. The ABiF Study will thus generate a valuable resource for future investigations into the aetiology of bipolar affective disorder; in particular the causes of high disease loading within multiply affected families. We discuss the value of this approach in terms of new technologies for the identification of high-penetrance genetic factors. These new technologies include exome and whole genome sequencing, and the use of induced pluripotent stem cells or model organisms to determine functional consequences. Copyright © 2017 SEP y SEPB. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Intergenerational equity and long-term stewardship plans.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hocking, E. K.

    2002-02-05

    For an untold number of contaminated sites throughout the world, stewardship will be inevitable. For many such sites, stewardship will be a reasonable approach because of the uncertainties associated with present and future site conditions and site contaminants, the limited performance of available technologies, the nonavailability of technologies, and the risk and cost associated with complete cleanup. Regardless of whether stewardship is a realistic approach to site situations or simply a convenient default, it could be required at most contaminated sites for multiple generations. Because the stewardship plan is required to protect the release of hazardous contaminants to the environment,more » some use restrictions will be put in place to provide that protection. These use restrictions will limit access to resources for as long as the protection is required. The intergenerational quality of long-term stewardship plans and their inherent limitations on resource use require that they be designed to achieve equity among the affected generations. Intergenerational equity, defined here as the fairness of access to resources across generations, could be achieved through a well-developed stewardship plan that provides future generations with the information they need to make wise decisions about resource use. Developing and implementing such a plan would take into account the failure mechanisms of the plan's components, feature short stewardship time blocks that would allow for periodic reassessments of the site and of the stewardship program's performance, and provide present and future generations with necessary site information.« less

  4. Prediction of energy balance and utilization for solar electric cars

    NASA Astrophysics Data System (ADS)

    Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.

    2017-11-01

    Solar irradiation and ambient temperature are characterized by region, season and time-domain, which directly affects the performance of solar energy based car system. In this paper, the model of solar electric cars used was based in Xi’an. Firstly, the meteorological data are modelled to simulate the change of solar irradiation and ambient temperature, and then the temperature change of solar cell is calculated using the thermal equilibrium relation. The above work is based on the driving resistance and solar cell power generation model, which is simulated under the varying radiation conditions in a day. The daily power generation and solar electric car cruise mileage can be predicted by calculating solar cell efficiency and power. The above theoretical approach and research results can be used in the future for solar electric car program design and optimization for the future developments.

  5. Electricity generation and transmission planning in deregulated power markets

    NASA Astrophysics Data System (ADS)

    He, Yang

    This dissertation addresses the long-term planning of power generation and transmission facilities in a deregulated power market. Three models with increasing complexities are developed, primarily for investment decisions in generation and transmission capacity. The models are presented in a two-stage decision context where generation and transmission capacity expansion decisions are made in the first stage, while power generation and transmission service fees are decided in the second stage. Uncertainties that exist in the second stage affect the capacity expansion decisions in the first stage. The first model assumes that the electric power market is not constrained by transmission capacity limit. The second model, which includes transmission constraints, considers the interactions between generation firms and the transmission network operator. The third model assumes that the generation and transmission sectors make capacity investment decisions separately. These models result in Nash-Cournot equilibrium among the unregulated generation firms, while the regulated transmission network operator supports the competition among generation firms. Several issues in the deregulated electric power market can be studied with these models such as market powers of generation firms and transmission network operator, uncertainties of the future market, and interactions between the generation and transmission sectors. Results deduced from the developed models include (a) regulated transmission network operator will not reserve transmission capacity to gain extra profits; instead, it will make capacity expansion decisions to support the competition in the generation sector; (b) generation firms will provide more power supplies when there is more demand; (c) in the presence of future uncertainties, the generation firms will add more generation capacity if the demand in the future power market is expected to be higher; and (d) the transmission capacity invested by the transmission network operator depends on the characteristic of the power market and the topology of the transmission network. Also, the second model, which considers interactions between generation and transmission sectors, yields higher social welfare in the electric power market, than the third model where generation firms and transmission network operator make investment decisions separately.

  6. Wood River recovery project -- speed and cooperation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franczak, D.F.; Santschi, M.F.; Sander, S.

    1998-12-31

    A unit trip is a situation avoided by power generators because it affects their bottom line. The ability to recover from the trip quickly, and restore MW generation is the desired goal. However, what do you do if you lose your unit to a disastrous fire? How do you recover from this situation? This will be the subject of this paper describing such an event which affected the Illinois Power Company`s (IPC) operation. IPC`s Wood River Power Station suffered a disastrous fire which knocked out the Station`s only two operable units--4 and 5. The fire was the result of amore » coal mill explosion and damaged beyond repair, the units control systems and operating capabilities. A total of 488 MW in generating capacity was lost at a time when the IPC system required all available generation now, and in the foreseeable future. This paper will describe the event, the immediate mobilization efforts, and the challenges of recovering both units in the most expedient time frame possible. The keys to the success of the recovery project will be described in detail.« less

  7. Daddy issues: paternal effects on phenotype.

    PubMed

    Rando, Oliver J

    2012-11-09

    The once popular and then heretical idea that ancestral environment can affect the phenotype of future generations is coming back into vogue due to advances in the field of epigenetic inheritance. How paternal environmental conditions influence the phenotype of progeny is now a tractable question, and researchers are exploring potential mechanisms underlying such effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Yielding to desire: the durability of affective preferences.

    PubMed

    Rapp, David N; Jacovina, Matthew E; Slaten, Daniel G; Krause, Elise

    2014-09-01

    People's expectations about the future are guided not just by the contingencies of situations but also by what they hope or wish will happen next. These preferences can inform predictions that run counter to what should or must occur based on the logic of unfolding events. Effects of this type have been regularly identified in studies of judgment and decision making, with individuals' choices often reflecting emotional rather than rational influences. Encouraging individuals to rely less on their emotional considerations has proven a challenge as affective responses are generated quickly and are seemingly informative for decisions. In 6 experiments we examined whether individuals could be encouraged to rely less on their affective preferences when making judgments about future events. Participants read stories in which contexts informed the likelihood of events in ways that might run counter to their preferential investments in particular outcomes. While being less than relevant given the logic of events, participants' affective considerations remained influential despite time allotted for predictive reflection. In contrast, instructional warnings helped attenuate the influence of affective considerations, even under conditions previously shown to encourage preferential biases. The findings are discussed with respect to factors that mediate preference effects, and highlight challenges for overcoming people's reliance on affective contributors to everyday judgments and comprehension.

  9. Simulation of salinity effects on past, present, and future soil organic carbon stocks.

    PubMed

    Setia, Raj; Smith, Pete; Marschner, Petra; Gottschalk, Pia; Baldock, Jeff; Verma, Vipan; Setia, Deepika; Smith, Jo

    2012-02-07

    Soil organic carbon (SOC) models are used to predict changes in SOC stocks and carbon dioxide (CO(2)) emissions from soils, and have been successfully validated for non-saline soils. However, SOC models have not been developed to simulate SOC turnover in saline soils. Due to the large extent of salt-affected areas in the world, it is important to correctly predict SOC dynamics in salt-affected soils. To close this knowledge gap, we modified the Rothamsted Carbon Model (RothC) to simulate SOC turnover in salt-affected soils, using data from non-salt-affected and salt-affected soils in two agricultural regions in India (120 soils) and in Australia (160 soils). Recently we developed a decomposition rate modifier based on an incubation study of a subset of these soils. In the present study, we introduce a new method to estimate the past losses of SOC due to salinity and show how salinity affects future SOC stocks on a regional scale. Because salinity decreases decomposition rates, simulations using the decomposition rate modifier for salinity suggest an accumulation of SOC. However, if the plant inputs are also adjusted to reflect reduced plant growth under saline conditions, the simulations show a significant loss of soil carbon in the past due to salinization, with a higher average loss of SOC in Australian soils (55 t C ha(-1)) than in Indian soils (31 t C ha(-1)). There was a significant negative correlation (p < 0.05) between SOC loss and osmotic potential. Simulations of future SOC stocks with the decomposition rate modifier and the plant input modifier indicate a greater decrease in SOC in saline than in non-saline soils under future climate. The simulations of past losses of SOC due to salinity were repeated using either measured charcoal-C or the inert organic matter predicted by the Falloon et al. equation to determine how much deviation from the Falloon et al. equation affects the amount of plant inputs generated by the model for the soils used in this study. Both sets of results suggest that saline soils have lost carbon and will continue to lose carbon under future climate. This demonstrates the importance of both reduced decomposition and reduced plant input in simulations of future changes in SOC stocks in saline soils.

  10. Intergenerational Efforts to Develop a Healthy Environment for Everyone: Sustainability as a Human Rights Issue.

    PubMed

    Kruger, Tina M; Savage, Caroline E; Newsham, Patrick

    2014-12-01

    As climate change proceeds at an unprecedented rate, concern for the natural environment has increased. The world's population aging also continues to rise at an unprecedented rate, giving greater attention to the implications of an older population. The two trends are linked through the fact that changes to the environment affect older adults, and older adults affect the environment. Sustainability is, therefore, an intergenerational phenomenon, and protecting resources today leaves a positive legacy and enhances quality of life for future generations. Older adults have much to share with younger generations about behaviors that promote sustainable living, yet few sustainability efforts are intergenerational in nature. As large numbers of people currently subsist without secure access to basic needs, ensuring equitable resource consumption for all generations is urgent and aligns with the Universal Declaration of Human Rights. Through exploring linkages between aging and sustainability, we identify intergenerational strategies to protect the environment and promote human rights and quality of life for older adults. © The Author(s) 2015.

  11. Future impacts of distributed power generation on ambient ozone and particulate matter concentrations in the San Joaquin Valley of California.

    PubMed

    Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald

    2011-12-01

    Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region.

  12. Future Impacts of Distributed Power Generation on Ambient Ozone and Particulate Matter Concentrations in the San Joaquin Valley of California.

    PubMed

    Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald

    2011-12-01

    Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region. [Box: see text].

  13. Renewable generation technology choice and policies in a competitive electricity supply industry

    NASA Astrophysics Data System (ADS)

    Sarkar, Ashok

    Renewable energy generation technologies have lower externality costs but higher private costs than fossil fuel-based generation. As a result, the choice of renewables in the future generation mix could be affected by the industry's future market-oriented structure because market objectives based on private value judgments may conflict with social policy objectives toward better environmental quality. This research assesses how renewable energy generation choices would be affected in a restructured electricity generation market. A multi-period linear programming-based model (Resource Planning Model) is used to characterize today's electricity supply market in the United States. The model simulates long-range (2000-2020) generation capacity planning and operation decisions under alternative market paradigms. Price-sensitive demand is used to simulate customer preferences in the market. Dynamically changing costs for renewables and a two-step load duration curve are used. A Reference Case represents the benchmark for a socially-optimal diffusion of renewables and a basis for comparing outcomes under alternative market structures. It internalizes externality costs associated with emissions of sulfur dioxide (SOsb2), nitrous oxides (NOsbx), and carbon dioxide (COsb2). A Competitive Case represents a market with many generation suppliers and decision-making based on private costs. Finally, a Market Power Case models the extreme case of market power: monopoly. The results suggest that the share of renewables would decrease (and emissions would increase) considerably in both the Competitive and the Market Power Cases with respect to the Reference Case. The reduction is greater in the Market Power Case due to pricing decisions under existing supply capability. The research evaluates the following environmental policy options that could overcome market failures in achieving an appropriate level of renewable generation: COsb2 emissions tax, SOsb2 emissions cap, renewable portfolio standards (RPS), and enhanced research and development (R&D). RPS would best ensure an appropriate share of renewables, whereas SOsb2 emissions caps would not support a shift to renewables in an era of inexpensive natural gas. The effectiveness of the policies are dependent on the market structure. If market power exists, the analyses indicate that generally higher levels of intervention would be necessary to achieve a shift to renewables.

  14. Future efficiency of run of the river hydropower schemes based on climate change scenarios: case study in UK catchments

    NASA Astrophysics Data System (ADS)

    Pasten Zapata, Ernesto; Moggridge, Helen; Jones, Julie; Widmann, Martin

    2017-04-01

    Run-of-the-River (ROR) hydropower schemes are expected to be importantly affected by climate change as they rely in the availability of river flow to generate energy. As temperature and precipitation are expected to vary in the future, the hydrological cycle will also undergo changes. Therefore, climate models based on complex physical atmospheric interactions have been developed to simulate future climate scenarios considering the atmosphere's greenhouse gas concentrations. These scenarios are classified according to the Representative Concentration Pathways (RCP) that are generated according to the concentration of greenhouse gases. This study evaluates possible scenarios for selected ROR hydropower schemes within the UK, considering three different RCPs: 2.6, 4.5 and 8.5 W/m2 for 2100 relative to pre-industrial values. The study sites cover different climate, land cover, topographic and hydropower scheme characteristics representative of the UK's heterogeneity. Precipitation and temperature outputs from state-of-the-art Regional Climate Models (RCMs) from the Euro-CORDEX project are used as input for a HEC-HMS hydrological model to simulate the future river flow available. Both uncorrected and bias-corrected RCM simulations are analyzed. The results of this project provide an insight of the possible effects of climate change towards the generation of power from the ROR hydropower schemes according to the different RCP scenarios and contrasts the results obtained from uncorrected and bias-corrected RCMs. This analysis can aid on the adaptation to climate change as well as the planning of future ROR schemes in the region.

  15. Shuttle Flight Operations Contract Generator Maintenance Facility Land Use Control Implementation Plan (LUCIP)

    NASA Technical Reports Server (NTRS)

    Applegate, Joseph L.

    2014-01-01

    This Land Use Control Implementation Plan (LUCIP) has been prepared to inform current and potential future users of the Kennedy Space Center (KSC) Shuttle Flight Operations Contract Generator Maintenance Facility (SFOC; SWMU 081; "the Site") of institutional controls that have been implemented at the Site1. Although there are no current unacceptable risks to human health or the environment associated with the SFOC, an institutional land use control (LUC) is necessary to prevent human health exposure to antimony-affected groundwater at the Site. Controls will include periodic inspection, condition certification, and agency notification.

  16. Signals from flavor changing scalar currents at the future colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atwood, D.; Reina, L.; Soni, A.

    1996-11-22

    We present a general phenomenological analysis of a class of Two Higgs Doublet Models with Flavor Changing Neutral Currents arising at the tree level. The existing constraints mainly affect the couplings of the first two generations of quarks, leaving the possibility for non negligible Flavor Changing couplings of the top quark open. The next generation of lepton and hadron colliders will offer the right environment to study the physics of the top quark and to unravel the presence of new physics beyond the Standard Model. In this context we discuss some interesting signals from Flavor Changing Scalar Neutral Currents.

  17. Securing the Future: Investing in Children from Birth to College. The Ford Foundation Series on Asset Building.

    ERIC Educational Resources Information Center

    Danziger, Sheldon, Ed.; Waldfogel, Jane, Ed.

    Noting that the human capital of a nation is a primary determinant of its strength, this book reviews what is known about the processes that affect child development and how public and private investments in children might be increased to promote their well-being and to enhance the economic productivity of the next generation in America. Based on…

  18. Teaching Sustainability through System Dynamics: Exploring Stocks and Flows Embedded in Dynamic Computer Models of an Agricultural Land Management System

    ERIC Educational Resources Information Center

    Pallant, Amy; Lee, Hee-Sun

    2017-01-01

    During the past several decades, there has been a growing awareness of the ways humans affect Earth systems. As global problems emerge, educating the next generation of citizens to be able to make informed choices related to future outcomes is increasingly important. The challenge for educators is figuring out how to prepare students to think…

  19. Durability Challenges for Next Generation of Gas Turbine Engine Materials

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    2012-01-01

    Aggressive fuel burn and carbon dioxide emission reduction goals for future gas turbine engines will require higher overall pressure ratio, and a significant increase in turbine inlet temperature. These goals can be achieved by increasing temperature capability of turbine engine hot section materials and decreasing weight of fan section of the engine. NASA is currently developing several advanced hot section materials for increasing temperature capability of future gas turbine engines. The materials of interest include ceramic matrix composites with 1482 - 1648 C temperature capability, advanced disk alloys with 815 C capability, and low conductivity thermal barrier coatings with erosion resistance. The presentation will provide an overview of durability challenges with emphasis on the environmental factors affecting durability for the next generation of gas turbine engine materials. The environmental factors include gaseous atmosphere in gas turbine engines, molten salt and glass deposits from airborne contaminants, impact from foreign object damage, and erosion from ingestion of small particles.

  20. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  1. Defending climate science

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-01-01

    The National Center for Science Education (NCSE), which has long been in the lead in defending the teaching of evolution in public schools, has expanded its core mission to include defending climate science, the organization announced in January. “We consider climate change a critical issue in our own mission to protect the integrity of science education,” said NSCE executive director Eugenie Scott. “Climate affects everyone, and the decisions we make today will affect generations to come. We need to teach kids now about the realities of global warming and climate change so that they're prepared to make informed, intelligent decisions in the future.”

  2. Phenomenal characteristics associated with projecting oneself back into the past and forward into the future: influence of valence and temporal distance.

    PubMed

    D'Argembeau, Arnaud; Van der Linden, Martial

    2004-12-01

    As humans, we frequently engage in mental time travel, reliving past experiences and imagining possible future events. This study examined whether similar factors affect the subjective experience associated with remembering the past and imagining the future. Participants mentally "re-experienced" or "pre-experienced" positive and negative events that differed in their temporal distance from the present (close versus distant), and then rated the phenomenal characteristics (i.e., sensorial, contextual, and emotional details) associated with their representations. For both past and future, representations of positive events were associated with a greater feeling of re-experiencing (or pre-experiencing) than representations of negative events. In addition, representations of temporally close events (both past and future) contained more sensorial and contextual details, and generated a stronger feeling of re-experiencing (or pre-experiencing) than representations of temporally distant events. It is suggested that the way we both remember our past and imagine our future is constrained by our current goals.

  3. Investigation of Unsteady Flow Interaction Between an Ultra-Compact Inlet and a Transonic Fan

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Rabe, Douglas; Scribben, Angie

    2015-01-01

    In the present study, unsteady flow interaction between an ultra-compact inlet and a transonic fan stage is investigated. Future combat aircraft require ultra-compact inlet ducts as part of an integrated, advanced propulsion system to improve air vehicle capability and effectiveness to meet future mission needs. The main purpose of the study is to advance the current understanding of the flow interaction between two different ultra-compact inlets and a transonic fan for future design applications. Both URANS and LES approaches are used to calculate the unsteady flow field and are compared with the available measured data. The present study indicates that stall inception is mildly affected by the distortion pattern generated by the inlet with the current test set-up. The numerical study indicates that the inlet distortion pattern decays significantly before it reaches the fan face for the current configuration. Numerical results with a shorter distance between the inlet and fan show that counter-rotating vortices near the rotor tip due to the serpentine diffuser affects fan characteristics significantly.

  4. A taxonomy of prospection: Introducing an organizational framework for future-oriented cognition

    PubMed Central

    Szpunar, Karl K.; Spreng, R. Nathan; Schacter, Daniel L.

    2014-01-01

    Prospection—the ability to represent what might happen in the future—is a broad concept that has been used to characterize a wide variety of future-oriented cognitions, including affective forecasting, prospective memory, temporal discounting, episodic simulation, and autobiographical planning. In this article, we propose a taxonomy of prospection to initiate the important and necessary process of teasing apart the various forms of future thinking that constitute the landscape of prospective cognition. The organizational framework that we propose delineates episodic and semantic forms of four modes of future thinking: simulation, prediction, intention, and planning. We show how this framework can be used to draw attention to the ways in which various modes of future thinking interact with one another, generate new questions about prospective cognition, and illuminate our understanding of disorders of future thinking. We conclude by considering basic cognitive processes that give rise to prospective cognitions, cognitive operations and emotional/motivational states relevant to future-oriented cognition, and the possible role of procedural or motor systems in future-oriented behavior. PMID:25416592

  5. Potential Follow on Experiments for the Zero Boil Off Tank Experiment

    NASA Technical Reports Server (NTRS)

    Chato, David; Kassemi, Mohammad

    2014-01-01

    Cryogenic Storage &Transfer are enabling propulsion technologies in the direct path of nearly all future human or robotic missions; It is identified by NASA as an area with greatest potential for cost saving; This proposal aims at resolving fundamental scientific issues behind the engineering development of the storage tanks; We propose to use the ISS lab to generate & collect archival scientific data:, raise our current state-of-the-art understanding of transport and phase change issues affecting the storage tank cryogenic fluid management (CFM), develop and validate state-of-the-art CFD models to innovate, optimize, and advance the future engineering designs

  6. Translating Uncertain Sea Level Projections Into Infrastructure Impacts Using a Bayesian Framework

    NASA Astrophysics Data System (ADS)

    Moftakhari, Hamed; AghaKouchak, Amir; Sanders, Brett F.; Matthew, Richard A.; Mazdiyasni, Omid

    2017-12-01

    Climate change may affect ocean-driven coastal flooding regimes by both raising the mean sea level (msl) and altering ocean-atmosphere interactions. For reliable projections of coastal flood risk, information provided by different climate models must be considered in addition to associated uncertainties. In this paper, we propose a framework to project future coastal water levels and quantify the resulting flooding hazard to infrastructure. We use Bayesian Model Averaging to generate a weighted ensemble of storm surge predictions from eight climate models for two coastal counties in California. The resulting ensembles combined with msl projections, and predicted astronomical tides are then used to quantify changes in the likelihood of road flooding under representative concentration pathways 4.5 and 8.5 in the near-future (1998-2063) and mid-future (2018-2083). The results show that road flooding rates will be significantly higher in the near-future and mid-future compared to the recent past (1950-2015) if adaptation measures are not implemented.

  7. Robustness of the Process of Nucleoid Exclusion of Protein Aggregates in Escherichia coli

    PubMed Central

    Neeli-Venkata, Ramakanth; Martikainen, Antti; Gupta, Abhishekh; Gonçalves, Nadia; Fonseca, Jose

    2016-01-01

    ABSTRACT Escherichia coli segregates protein aggregates to the poles by nucleoid exclusion. Combined with cell divisions, this generates heterogeneous aggregate distributions in subsequent cell generations. We studied the robustness of this process with differing medium richness and antibiotics stress, which affect nucleoid size, using multimodal, time-lapse microscopy of live cells expressing both a fluorescently tagged chaperone (IbpA), which identifies in vivo the location of aggregates, and HupA-mCherry, a fluorescent variant of a nucleoid-associated protein. We find that the relative sizes of the nucleoid's major and minor axes change widely, in a positively correlated fashion, with medium richness and antibiotic stress. The aggregate's distribution along the major cell axis also changes between conditions and in agreement with the nucleoid exclusion phenomenon. Consequently, the fraction of aggregates at the midcell region prior to cell division differs between conditions, which will affect the degree of asymmetries in the partitioning of aggregates between cells of future generations. Finally, from the location of the peak of anisotropy in the aggregate displacement distribution, the nucleoid relative size, and the spatiotemporal aggregate distribution, we find that the exclusion of detectable aggregates from midcell is most pronounced in cells with mid-sized nucleoids, which are most common under optimal conditions. We conclude that the aggregate management mechanisms of E. coli are significantly robust but are not immune to stresses due to the tangible effect that these have on nucleoid size. IMPORTANCE Escherichia coli segregates protein aggregates to the poles by nucleoid exclusion. From live single-cell microscopy studies of the robustness of this process to various stresses known to affect nucleoid size, we find that nucleoid size and aggregate preferential locations change concordantly between conditions. Also, the degree of influence of the nucleoid on aggregate positioning differs between conditions, causing aggregate numbers at midcell to differ in cell division events, which will affect the degree of asymmetries in the partitioning of aggregates between cells of future generations. Finally, we find that aggregate segregation to the cell poles is most pronounced in cells with mid-sized nucleoids. We conclude that the energy-free process of the midcell exclusion of aggregates partially loses effectiveness under stressful conditions. PMID:26728194

  8. Impacts of Different Anthropogenic Aerosol Emission Scenarios on Hydrology in the Mekong Basins and their Effects on Irrigation and Hydropower

    NASA Astrophysics Data System (ADS)

    Yeo, L. K.; Wang, C.

    2016-12-01

    Water distribution is closely linked to food and energy security. Aerosol emissions affect cloud properties, as well as atmospheric stability, changing the distribution of precipitation. These changes in precipitation causes changes in water availability, affecting food production and energy generation. These impacts are especially important in Southeast Asia, which uses up to 90% of their water supply for irrigation. In addition, the Mekong river, the largest inland fishery in the world, has 30,000MW of hydropower potential in its lower reaches alone. Modelling the impacts of these anthropogenic emission scenarios will allow us to better understand their downstream effects on hydrology, and any potential feedbacks it may have on future aerosol emissions. In the first step, we run the WRF model using FNL reanlaysis data from 2014 and 2015 to generate the WRF-hydro model forcing inputs. We then run the WRF-hydro model and compare the output with current measurements of soil moisture, river flow, and precipitation. Secondly, we run the WRF-Chem model with various anthropogenic emission scenarios and put the results through the WRF-hydro model to determine the impact of these emission scenarios on soil moisture and river flow. The scenarios include enhanced anthropogenic emissions in Asia, anologous to widespread adoption of coal burning as an energy source in Asia. Anthropogenic emissions have the potential to affect energy policy in countries affected by these emissions. When hydropower generation is affected by changes in precipitation, the affected countries will have to switch to alternative sources of fuel to meet their energy needs. These sources typically result in changes in anthropogenic aerosol emisssions, especially if coal is used as an alternative source of energy.

  9. Spatial stabilization and intensification of moistening and drying rate patterns under future climate change

    NASA Astrophysics Data System (ADS)

    Chavaillaz, Yann; Joussaume, Sylvie; Bony, Sandrine; Braconnot, Pascale

    2016-08-01

    Precipitation projections are usually presented as the change in precipitation between a fixed current baseline and a particular time in the future. However, upcoming generations will be affected in a way probably more related to the moving trend in precipitation patterns, i.e. to the rate and the persistence of regional precipitation changes from one generation to the next, than to changes relative to a fixed current baseline. In this perspective, we propose an alternative characterization of the future precipitation changes predicted by general circulation models, focusing on the precipitation difference between two subsequent 20-year periods. We show that in a business-as-usual emission pathway, the moistening and drying rates increase by 30-40 %, both over land and ocean. As we move further over the twenty-first century, more regions exhibit a significant rate of precipitation change, while the patterns become geographically stationary and the trends persistent. The stabilization of the geographical rate patterns that occurs despite the acceleration of global warming can be physically explained: it results from the increasing contribution of thermodynamic processes compared to dynamic processes in the control of precipitation change. We show that such an evolution is already noticeable over the last decades, and that it could be reversed if strong mitigation policies were quickly implemented. The combination of intensification and increasing persistence of precipitation rate patterns may affect the way human societies and natural ecosystems adapt to climate change, especially in the Mediterranean basin, in Central America, in South Asia and in the Arctic.

  10. Interactions Between Land Use, Climate and Hydropower in Scotland

    NASA Astrophysics Data System (ADS)

    Sample, J.

    2014-12-01

    To promote the transition towards a low carbon economy, the Scottish Government has adopted ambitious energy targets, including generating all electricity from renewable sources by 2020. To achieve this, continued investment will be required across a range of sustainable technologies. Hydropower has a long history in Scotland and the present-day operational capacity of ~1.5 GW makes a substantial contribution to the national energy budget. In addition, there remains potential for ~500 MW of further development, mostly in the form of small to medium size run-of-river schemes. Climate change is expected to lead to an intensification of the global hydrological cycle, leading to changes in both the magnitude and seasonality of river flows. There may also be indirect effects, such as changing land use, enhanced evapotranspiration rates and an increased demand for irrigation, all of which could affect the water available for energy generation. Preliminary assessments of hydropower commonly use flow duration curves (FDCs) to estimate the power generation potential at proposed new sites. In this study, we use spatially distributed modelling to generate daily and monthly FDCs for a range of Scottish catchments using a variety of future land use and climate change scenarios. These are then used to assess Scotland's future hydropower potential under different flow regimes. The results are spatially variable and include large uncertainties, but some consistent patterns emerge. Many locations are predicted to experience enhanced seasonality, with lower power generation potential in the summer months and greater potential during the autumn and winter. Some sites may require infrastructural changes in order to continue operating at optimum efficiency. We discuss the implications and limitations of our results, and highlight design and adaptation options for maximising the resilience of hydropower installations under changing future flow patterns.

  11. The air quality and regional climate effects of widespread solar power generation under a changing regulatory environment

    NASA Astrophysics Data System (ADS)

    Millstein, D.; Zhai, P.; Menon, S.

    2011-12-01

    Over the past decade significant reductions of NOx and SOx emissions from coal burning power plants in the U.S. have been achieved due to regulatory action and substitution of new generation towards natural gas and wind power. Low natural gas prices, ever decreasing solar generation costs, and proposed regulatory changes, such as to the Cross State Air Pollution Rule, promise further long-run coal power plant emission reductions. Reduced power plant emissions have the potential to affect ozone and particulate air quality and influence regional climate through aerosol cloud interactions and visibility effects. Here we investigate, on a national scale, the effects on future (~2030) air quality and regional climate of power plant emission regulations in contrast to and combination with policies designed to aggressively promote solar electricity generation. A sophisticated, economic and engineering based, hourly power generation dispatch model is developed to explore the integration of significant solar generation resources (>10% on an energy basis) at various regions across the county, providing detailed estimates of substitution of solar generation for fossil fuel generation resources. Future air pollutant emissions from all sectors of the economy are scaled based on the U.S. Environmental Protection Agency's National Emission Inventory to account for activity changes based on population and economic projections derived from county level U.S. Census data and the Energy Information Administration's Annual Energy Outlook. Further adjustments are made for technological and regulatory changes applicable within various sectors, for example, emission intensity adjustments to on-road diesel trucking due to exhaust treatment and improved engine design. The future year 2030 is selected for the emissions scenarios to allow for the development of significant solar generation resources. A regional climate and air quality model (Weather Research and Forecasting, WRF model) is used to investigate the effects of the various solar generation scenarios given emissions projections that account for changing regulatory environment, economic and population growth, and technological change. The results will help to quantify the potential air quality benefits of promotion of solar electricity generation in regions containing high penetration of coal-fired power generation. Note current national solar incentives that are based only on solar generation capacity. Further investigation of changes to regional climate due to emission reductions of aerosols and relevant precursors will provide insight into the environmental effects that may occur if solar power generation becomes widespread.

  12. Gender and generational influences on the pediatric workforce and practice.

    PubMed

    Spector, Nancy D; Cull, William; Daniels, Stephen R; Gilhooly, Joseph; Hall, Judith; Horn, Ivor; Marshall, Susan G; Schumacher, Daniel J; Sectish, Theodore C; Stanton, Bonita F

    2014-06-01

    In response to demographic and other trends that may affect the future of the field of pediatrics, the Federation of Pediatric Organizations formed 4 working groups to participate in a year's worth of research and discussion preliminary to a Visioning Summit focusing on pediatric practice, research, and training over the next 2 decades. This article, prepared by members of the Gender and Generations Working Group, summarizes findings relevant to the 2 broad categories of demographic trends represented in the name of the group and explores the interface of these trends with advances in technology and social media and the impact this is likely to have on the field of pediatrics. Available data suggest that the trends in the proportions of men and women entering pediatrics are similar to those over the past few decades and that changes in the overall ratio of men and women will not substantially affect pediatric practice. However, although women may be as likely to succeed in academic medicine and research, fewer women than men enter research, thereby potentially decreasing the number of pediatric researchers as the proportion of women increases. Complex generational differences affect both the workforce and interactions in the workplace. Differences between the 4 generational groups comprising the pediatric workforce are likely to result in an evolution of the role of the pediatrician, particularly as it relates to aspects of work-life balance and the use of technology and social media. Copyright © 2014 by the American Academy of Pediatrics.

  13. Evaluation on the Efficiency of Biomass Power Generation Industry in China

    PubMed Central

    Sun, Dong; Guo, Sen

    2014-01-01

    As a developing country with large population, China is facing the problems of energy resource shortage and growing environmental pollution arising from the coal-dominated energy structure. Biomass energy, as a kind of renewable energy with the characteristics of being easy to store and friendly to environment, has become the focus of China's energy development in the future. Affected by the advanced power generation technology and diversified geography environment, the biomass power generation projects show new features in recent years. Hence, it is necessary to evaluate the efficiency of biomass power generation industry by employing proper method with the consideration of new features. In this paper, the regional difference as a new feature of biomass power generation industry is taken into consideration, and the AR model is employed to modify the zero-weight issue when using data envelopment analysis (DEA) method to evaluate the efficiency of biomass power generation industry. 30 biomass power generation enterprises in China are selected as the sample, and the efficiency evaluation is performed. The result can provide some insights into the sustainable development of biomass power generation industry in China. PMID:25093209

  14. Do future thoughts reflect personal goals? Current concerns and mental time travel into the past and future.

    PubMed

    Cole, Scott N; Berntsen, Dorthe

    2016-01-01

    Our overriding hypothesis was that future thinking would be linked with goals to a greater extent than memories; conceptualizing goals as current concerns (i.e., uncompleted personal goals). We also hypothesized that current-concern-related events would differ from non-current-concern-related events on a set of phenomenological characteristics. We report novel data from a study examining involuntary and voluntary mental time travel using an adapted laboratory paradigm. Specifically, after autobiographical memories or future thoughts were elicited (between participants) in an involuntary and voluntary retrieval mode (within participants), participants self-generated five current concerns and decided whether each event was relevant or not to their current concerns. Consistent with our hypothesis, compared with memories, a larger percentage of involuntary and voluntary future thoughts reflected current concerns. Furthermore, events related to current concerns differed from non-concern-related events on a range of cognitive, representational, and affective phenomenological measures. These effects were consistent across temporal direction. In general, our results agree with the proposition that involuntary and voluntary future thinking is important for goal-directed cognition and behaviour.

  15. Hypothetical Scenario Generator for Fault-Tolerant Diagnosis

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    The Hypothetical Scenario Generator for Fault-tolerant Diagnostics (HSG) is an algorithm being developed in conjunction with other components of artificial- intelligence systems for automated diagnosis and prognosis of faults in spacecraft, aircraft, and other complex engineering systems. By incorporating prognostic capabilities along with advanced diagnostic capabilities, these developments hold promise to increase the safety and affordability of the affected engineering systems by making it possible to obtain timely and accurate information on the statuses of the systems and predicting impending failures well in advance. The HSG is a specific instance of a hypothetical- scenario generator that implements an innovative approach for performing diagnostic reasoning when data are missing. The special purpose served by the HSG is to (1) look for all possible ways in which the present state of the engineering system can be mapped with respect to a given model and (2) generate a prioritized set of future possible states and the scenarios of which they are parts.

  16. Impacts of nuclear plant shutdown on coal-fired power generation and infant health in the Tennessee Valley in the 1980s

    NASA Astrophysics Data System (ADS)

    Severnini, Edson

    2017-04-01

    The Fukushima nuclear accident in March 2011 generated deep public anxiety and uncertainty about the future of nuclear energy. However, differently to fossil fuel plants, nuclear plants produce virtually no greenhouse gas emissions or air pollutants during power generation. Here we show the effect on air pollution and infant health in the context of the temporary closure of nuclear plants by the Tennessee Valley Authority (TVA) in the 1980s. After the Three Mile Island accident in 1979, the US Nuclear Regulatory Commission intensified inspections throughout the nation, leading to the shutdown of two large nuclear power plants in the TVA area. In response to that shutdown, electricity generation shifted one to one to coal-fired power plants within TVA, increasing particle pollution in counties where they were located. Consequently, infant health may have deteriorated in the most affected places, indicating deleterious effects to public health.

  17. Transparent Conducting Oxides: Status and Opportunities in Basic Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coutts, T. J.; Perkins, J. D.; Ginley, D.S.

    1999-08-01

    In this paper, we begin by discussing the historical background of transparent conducting oxides and then make some general remarks about their typical properties. This is followed by a short discussion of the desired properties for future applications (particularly photovoltaic devices). These are ambitious objectives but they provide targets for future basic research and development. Although it may be possible to obtain these properties in the laboratory, it is vital to ensure that account is taken of industrial perceptions to the development of the next generation of materials. Hence, we spend some time discussing industrial criteria. Next, we discuss keymore » physical properties that determine the macroscopic physical properties that, in turn, affect the performance of devices. Finally, we select several key topics that ought to be included in future basic research programs.« less

  18. Medical service plans in academic medical centers.

    PubMed

    Siegel, B

    1978-10-01

    Medical service plans are of major importance to academic medical centers and are becoming increasingly so each year as evidenced by growing dependence of medical schools on resulting funds. How these funds are generated and used varies among schools. The procedures may affect the governance of the institution, modifying the authority of the central administration or the clinical departments. Recent developments in federal legislation, such as health maintenance organizations and amendments (Section 227) to the Social Security Act, and the future development of national health insurance will certainly have an effect on how academic medical centers organize their clinical activities. How successfully various medical schools deal with the dynamic problem may well determine their future survival.

  19. Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape

    NASA Astrophysics Data System (ADS)

    Ala-aho, P.; Soulsby, C.; Pokrovsky, O. S.; Kirpotin, S. N.; Karlsson, J.; Serikova, S.; Vorobyev, S. N.; Manasypov, R. M.; Loiko, S.; Tetzlaff, D.

    2018-01-01

    Climate change is expected to alter hydrological and biogeochemical processes in high-latitude inland waters. A critical question for understanding contemporary and future responses to environmental change is how the spatio-temporal dynamics of runoff generation processes will be affected. We sampled stable water isotopes in soils, lakes and rivers on an unprecedented spatio-temporal scale along a 1700 km transect over three years in the Western Siberia Lowlands. Our findings suggest that snowmelt mixes with, and displaces, large volumes of water stored in the organic soils and lakes to generate runoff during the thaw season. Furthermore, we saw a persistent hydrological connection between water bodies and the landscape across permafrost regions. Our findings help to bridge the understanding between small and large scale hydrological studies in high-latitude systems. These isotope data provide a means to conceptualise hydrological connectivity in permafrost and wetland influenced regions, which is needed for an improved understanding of future biogeochemical changes.

  20. The emotive nature of conflict monitoring in the medial prefrontal cortex.

    PubMed

    Saunders, Blair; Lin, Hause; Milyavskaya, Marina; Inzlicht, Michael

    2017-09-01

    The detection of conflict between incompatible impulses, thoughts, and actions is a ubiquitous source of motivation across theories of goal-directed action. In this overview, we explore the hypothesis that conflict is emotive, integrating perspectives from affective science and cognitive neuroscience. Initially, we review evidence suggesting that the mental and biological processes that monitor for information processing conflict-particularly those generated by the anterior midcingulate cortex-track the affective significance of conflict and use this signal to motivate increased control. In this sense, variation in control resembles a form of affect regulation in which control implementation counteracts the aversive experience of conflict. We also highlight emerging evidence proposing that states and dispositions associated with acceptance facilitate control by tuning individuals to the emotive nature of conflict, before proposing avenues for future research, including investigating the role of affect in reinforcement learning and decision making. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The Bright, Artificial Intelligence-Augmented Future of Neuroimaging Reading.

    PubMed

    Hainc, Nicolin; Federau, Christian; Stieltjes, Bram; Blatow, Maria; Bink, Andrea; Stippich, Christoph

    2017-01-01

    Radiologists are among the first physicians to be directly affected by advances in computer technology. Computers are already capable of analyzing medical imaging data, and with decades worth of digital information available for training, will an artificial intelligence (AI) one day signal the end of the human radiologist? With the ever increasing work load combined with the looming doctor shortage, radiologists will be pushed far beyond their current estimated 3 s allotted time-of-analysis per image; an AI with super-human capabilities might seem like a logical replacement. We feel, however, that AI will lead to an augmentation rather than a replacement of the radiologist. The AI will be relied upon to handle the tedious, time-consuming tasks of detecting and segmenting outliers while possibly generating new, unanticipated results that can then be used as sources of medical discovery. This will affect not only radiologists but all physicians and also researchers dealing with medical imaging. Therefore, we must embrace future technology and collaborate interdisciplinary to spearhead the next revolution in medicine.

  2. Environmental analysis of a construction and demolition waste recycling plant in Portugal--Part II: Environmental sensitivity analysis.

    PubMed

    Coelho, André; de Brito, Jorge

    2013-01-01

    Part I of this study deals with the primary energy consumption and CO(2)eq emissions of a 350 tonnes/h construction and demolition waste (CDW) recycling facility, taking into account incorporated, operation and transportation impacts. It concludes that the generated impacts are mostly concentrated in operation and transportation, and that the impacts prevented through material recycling can be up to one order of magnitude greater than those generated. However, the conditions considered for the plant's operation and related transportation system may, and very likely will, vary in the near future, which will affect its environmental performance. This performance is particularly affected by the plant's installed capacity, transportation fuel and input CDW mass. In spite of the variations in overall primary energy and CO(2)eq balances, the prevented impacts are always higher than the generated impacts, at least by a factor of three and maybe even as high as 16 times in particular conditions. The analysis indicates environmental performance for variations in single parameters, except for the plant's capacity, which was considered to vary simultaneously with all the others. Extreme best and worst scenarios were also generated to fit the results into extreme limits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. How valid are future generations' arguments for preserving wilderness?

    Treesearch

    Thomas A. More; James R. Averill; Thomas H. Stevens

    2000-01-01

    We are often urged to preserve wilderness for the sake of future generations. Future generations consist of potential persons who are mute stakeholders in the decisions of today. Many claims about the rights of future generations or our present obligations to them have been vigorously advanced and just as vigorously denied. Recent theorists, however, have argued for a...

  4. The anticipated transition to adulthood: effects of culture and individual experience on Polish and Finnish adolescents' future orientations.

    PubMed

    Trempala, J; Malmberg, L E

    1998-05-01

    The purpose of this study was to describe the effect of a set of individual resources and cultural factors on adolescents' probability estimations of the occurrence of positive future events in three life domains: education, occupation, and family. The hypothesis was that the effects of culture and individual resources are interwoven in the formation process of future orientation. The sample consisted of 352 17-year-old Polish and Finnish girls and boys from vocational and upper secondary schools. The 78-item questionnaire developed by the authors was used to measure different aspects of future orientation (probability, valence, and extension of future events in three life domains) and individual resources (self-esteem, control beliefs, and social knowledge about normatively and the generation gap). Data analysis showed that culture separately affected individual resources and adolescents' expectations. However, the results broadly confirmed the thesis that the culture has a limited effect on adolescents' expectations of the occurrence of future events. Moreover, these data suggested that the influence of sociocultural differences on adolescents' probability estimations is indirect. In the context of the presented data, the authors discuss their model of future orientation.

  5. Building intelligence in third-generation training and battle simulations

    NASA Astrophysics Data System (ADS)

    Jacobi, Dennis; Anderson, Don; von Borries, Vance; Elmaghraby, Adel; Kantardzic, Mehmed; Ragade, Rammohan

    2003-09-01

    Current war games and simulations are primarily attrition based, and are centered on the concept of force on force. They constitute what can be defined as "second generation" war games. So-called "first generation" war games were focused on strategy with the primary concept of mind on mind. We envision "third generation" war games and battle simulations as concentrating on effects with the primary concept being system on system. Thus the third generation systems will incorporate each successive generation and take into account strategy, attrition and effects. This paper will describe the principal advantages and features that need to be implemented to create a true "third generation" battle simulation and the architectural issues faced when designing and building such a system. Areas of primary concern are doctrine, command and control, allied and coalition warfare, and cascading effects. Effectively addressing the interactive effects of these issues is of critical importance. In order to provide an adaptable and modular system that will accept future modifications and additions with relative ease, we are researching the use of a distributed Multi-Agent System (MAS) that incorporates various artificial intelligence methods. The agent architecture can mirror the military command structure from both vertical and horizontal perspectives while providing the ability to make modifications to doctrine, command structures, inter-command communications, as well as model the results of various effects upon one another, and upon the components of the simulation. This is commonly referred to as "cascading effects," in which A affects B, B affects C and so on. Agents can be used to simulate units or parts of units that interact to form the whole. Even individuals can eventually be simulated to take into account the affect to key individuals such as commanders, heroes, and aces. Each agent will have a learning component built in to provide "individual intelligence" based on experience.

  6. Executive roundtable on coal-fired generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2009-09-15

    Power Engineering magazine invited six industry executives from the coal-fired sector to discuss issues affecting current and future prospects of coal-fired generation. The executives are Tim Curran, head of Alstom Power for the USA and Senior Vice President and General Manager of Boilers North America; Ray Kowalik, President and General Manager of Burns and McDonnell Energy Group; Jeff Holmstead, head of Environmental Strategies for the Bracewell Giuliani law firm; Jim Mackey, Vice President, Fluor Power Group's Solid Fuel business line; Tom Shelby, President Kiewit Power Inc., and David Wilks, President of Energy Supply for Excel Energy Group. Steve Blankinship, themore » magazine's Associate Editor, was the moderator. 6 photos.« less

  7. Unlocking the effects of gender faultlines on team creativity: is activation the key?

    PubMed

    Pearsall, Matthew J; Ellis, Aleksander P J; Evans, Joel M

    2008-01-01

    The purpose of this study was to use faultline theory to examine the effects of gender diversity on team creativity. Results from 80 teams working on an idea generation task indicated that the activation of gender faultlines negatively affected the number and overall creativity of ideas. However, gender faultlines that were not activated had no effect. Results also indicated that the relationship between activated gender faultlines and team creativity was partially mediated by the level of conflict within the team. Specifically, emotional conflict partially mediated the effects of activated gender faultlines on the number of ideas generated. Implications are discussed, as well as possible limitations and directions for future research. 2008 APA

  8. The economics of mitigation and remediation measures - preliminary results

    NASA Astrophysics Data System (ADS)

    Wiedemann, Carsten; Flegel, Sven Kevin; Vörsmann, Peter; Gelhaus, Johannes; Moeckel, Marek; Braun, Vitali; Kebschull, Christopher; Metz, Manuel

    2012-07-01

    Today there exists a high spatial density of orbital debris objects at about 800 km altitude. The control of the debris population in this region is important for the long-term evolution of the debris environment. The future debris population is investigated by simulations using the software tool LUCA (Long-Term Orbit Utilization Collision Analysis). It is likely that in the future there will occur more catastrophic collisions. Debris objects generated during such events may again trigger further catastrophic collisions. Current simulations have revealed that the number of debris objects will increase in the future. In a long-term perspective, catastrophic collisions may become the dominating mechanism in generating orbital debris. In this study it is investigated, when the situation will become unstable. To prevent this instability it is necessary to implement mitigation and maybe even remediation measures. It is investigated how these measures affect the future debris environment. It is simulated if the growth of the number of debris objects can be interrupted and how much this may cost. Different mitigation scenarios are considered. Furthermore also one remediation measure, the active removal of high-risk objects, is simulated. Cost drivers for the different measures are identified. It is investigated how selected measures are associated with costs. The goal is to find out which economic benefits may result from mitigation or remediation. First results of a cost benefit analyses are presented.

  9. Numerical study of liquid-hydrogen droplet generation from a vibrating orifice

    NASA Astrophysics Data System (ADS)

    Xu, J.; Celik, D.; Hussaini, M. Y.; Van Sciver, S. W.

    2005-08-01

    Atomic hydrogen propellant feed systems for far-future spacecraft may utilize solid-hydrogen particle carriers for atomic species that undergo recombination to create hot rocket exhaust. Such technology will require the development of particle generation techniques. One such technique could involve the production of hydrogen droplets from a vibrating orifice that would then freeze in cryogenic helium vapor. Among other quantities, the shape and size of the droplet are of particular interest. The present paper addresses this problem within the framework of the incompressible Navier-Stokes equations for multiphase flows, in order to unravel the basic mechanisms of droplet formation with a view to control them. Surface tension, one of the most important mechanisms to determine droplet shape, is modeled as the source term in the momentum equation. Droplet shape is tracked using a volume-of-fluid approach. A dynamic meshing technique is employed to accommodate the vibration of the generator orifice. Numerically predicted droplet shapes show satisfactory agreement with photographs of droplets generated in experiments. A parametric study is carried out to understand the influence of injection velocity, nozzle vibrational frequency, and amplitude on the droplet shape and size. The computational model provides a definitive qualitative picture of the evolution of droplet shape as a function of the operating parameters. It is observed that, primarily, the orifice vibrational frequency affects the shape, the vibrational amplitude affects the time until droplet detachment from the orifice, and the injection velocity affects the size. However, it does not mean that, for example, there is no secondary effect of amplitude on shape or size.

  10. Ethanol Consumption by Wistar Rat Dams Affects Selenium Bioavailability and Antioxidant Balance in Their Progeny

    PubMed Central

    Ojeda, María Luisa; Vázquez, Beatriz; Nogales, Fátima; Murillo, María Luisa; Carreras, Olimpia

    2009-01-01

    Ethanol consumption affects maternal nutrition, the mothers’ antioxidant balance and the future health of their progeny. Selenium (Se) is a trace element cofactor of the enzyme glutathione peroxidase (GPx). We will study the effect of ethanol on Se bioavailability in dams and in their progeny. We have used three experimental groups of dams: control, chronic ethanol and pair-fed; and three groups of pups. Se levels were measured by graphite-furnace atomic absorption spectrometry. Serum and hepatic GPx activity was determined by spectrometry. We have concluded that ethanol decreased Se retention in dams, affecting their tissue Se deposits and those of their offspring, while also compromising their progeny’s weight and oxidation balance. These effects of ethanol are caused by a reduction in Se intake and a direct alcohol-generated oxidation action. PMID:19742151

  11. Assessing risk based on uncertain avalanche activity patterns

    NASA Astrophysics Data System (ADS)

    Zeidler, Antonia; Fromm, Reinhard

    2015-04-01

    Avalanches may affect critical infrastructure and may cause great economic losses. The planning horizon of infrastructures, e.g. hydropower generation facilities, reaches well into the future. Based on the results of previous studies on the effect of changing meteorological parameters (precipitation, temperature) and the effect on avalanche activity we assume that there will be a change of the risk pattern in future. The decision makers need to understand what the future might bring to best formulate their mitigation strategies. Therefore, we explore a commercial risk software to calculate risk for the coming years that might help in decision processes. The software @risk, is known to many larger companies, and therefore we explore its capabilities to include avalanche risk simulations in order to guarantee a comparability of different risks. In a first step, we develop a model for a hydropower generation facility that reflects the problem of changing avalanche activity patterns in future by selecting relevant input parameters and assigning likely probability distributions. The uncertain input variables include the probability of avalanches affecting an object, the vulnerability of an object, the expected costs for repairing the object and the expected cost due to interruption. The crux is to find the distribution that best represents the input variables under changing meteorological conditions. Our focus is on including the uncertain probability of avalanches based on the analysis of past avalanche data and expert knowledge. In order to explore different likely outcomes we base the analysis on three different climate scenarios (likely, worst case, baseline). For some variables, it is possible to fit a distribution to historical data, whereas in cases where the past dataset is insufficient or not available the software allows to select from over 30 different distribution types. The Monte Carlo simulation uses the probability distribution of uncertain variables using all valid combinations of the values of input variables to simulate all possible outcomes. In our case the output is the expected risk (Euro/year) for each object (e.g. water intake) considered and the entire hydropower generation system. The output is again a distribution that is interpreted by the decision makers as the final strategy depends on the needs and requirements of the end-user, which may be driven by personal preferences. In this presentation, we will show a way on how we used the uncertain information on avalanche activity in future to subsequently use it in a commercial risk software and therefore bringing the knowledge of natural hazard experts to decision makers.

  12. Controllable bioeffects of laser-generated intracellular microbubbles

    NASA Astrophysics Data System (ADS)

    Zohdy, Marwa Joy

    Laser-induced optical breakdown (LIOB) is a nonlinear energy absorption process that can generate precise damage in biological tissues. With femtosecond laser pulses, disruption is highly localized with minimal thermal and mechanical effects to the surrounding region. Cavitation bubbles are produced as a result of LIOB, and these bubbles can be detected and monitored with high-frequency ultrasound. In this work, the controllable viability effects of LIOB bubbles in single cells were characterized. Using a high-frequency acoustic transducer synchronized with a 793 nm, 100 fs laser pulsed at 250 kHz, thermal effects in the vicinity of an LIOB event were directly assessed. Temperaturedependent pulse-echo displacements were calculated using phase-sensitive correlation tracking and fit to a finite-element heat transfer model to estimate thermal distribution. Results indicate a minimal temperature increase (<1 degree C) within 100 microns of a bubble created with multiple laser pulses, confirming that LIOB can be controlled to be thermally noninvasive in the bubble vicinity. Acoustically detectable microbubbles were generated in individual cells with femtosecond LIOB. By adjusting laser fluence, exposure time, and focal location, LIOB could be controlled to produce distinctly different cellular effects. Small (1-2 micron) bubbles with short lifetimes (10100 ms) could be generated in cells without affecting their viability; and, alternatively, large (510 micron) bubbles with long lifetimes (1-5 s) could be generated for selective cell killing without affecting immediately neighboring cells. Experiments were performed in Chinese hamster ovary (CHO) cells in vitro, and LIOB was detected with both optical and acoustic microscopy. A long-term proliferation assay was also performed using green-fluorescent MCA207 mouse sarcoma cells targeted for LIOB. This assay confirmed that nondestructive bubbles did not affect target cell proliferation over several generations, and that destructive bubbles could indeed eliminate target cells and prevent further proliferation with no effect on immediately neighboring cells. These studies help to outline future applications for site-activated, acoustically monitored intracellular microbubbles. Nondestructive bubbles can potentially be used for functional cell measurements without introducing exogenous agents or affecting subsequent cell proliferation, and destructive bubbles can be used for highly precise biologically-targeted cancer cell therapy with real-time acoustic validation.

  13. Preconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions.

    PubMed

    Putnam, Hollie M; Gates, Ruth D

    2015-08-01

    Coral reefs are globally threatened by climate change-related ocean warming and ocean acidification (OA). To date, slow-response mechanisms such as genetic adaptation have been considered the major determinant of coral reef persistence, with little consideration of rapid-response acclimatization mechanisms. These rapid mechanisms such as parental effects that can contribute to trans-generational acclimatization (e.g. epigenetics) have, however, been identified as important contributors to offspring response in other systems. We present the first evidence of parental effects in a cross-generational exposure to temperature and OA in reef-building corals. Here, we exposed adults to high (28.9°C, 805 µatm P(CO2)) or ambient (26.5°C, 417 µatm P(CO2)) temperature and OA treatments during the larval brooding period. Exposure to high treatment negatively affected adult performance, but their larvae exhibited size differences and metabolic acclimation when subsequently re-exposed, unlike larvae from parents exposed to ambient conditions. Understanding the innate capacity corals possess to respond to current and future climatic conditions is essential to reef protection and maintenance. Our results identify that parental effects may have an important role through (1) ameliorating the effects of stress through preconditioning and adaptive plasticity, and/or (2) amplifying the negative parental response through latent effects on future life stages. Whether the consequences of parental effects and the potential for trans-generational acclimatization are beneficial or maladaptive, our work identifies a critical need to expand currently proposed climate change outcomes for corals to further assess rapid response mechanisms that include non-genetic inheritance through parental contributions and classical epigenetic mechanisms. © 2015. Published by The Company of Biologists Ltd.

  14. Fighting the scourge of metal theft.

    PubMed

    Baillie, Jonathan

    2012-03-01

    Last December one acute hospital in south Wales, the University Hospital Llandough near Cardiff, was forced to cancel eight operations, with 81 patients affected in total, after thieves stole copper cabling from a back-up generator. HEJ editor, Jonathan Baillie, reports on the growing theft of cabling, pipework, and other vital supply infrastructure, from the healthcare estate, and asks senior estates personnel what lessons have been learned that might be useful in combating this lucrative, opportunistic, and also potentially highly dangerous, practice, in the future.

  15. Proceedings Papers of the AFSC (Air Force Systems Command) Avionics Standardization Conference (2nd) Held at Dayton, Ohio on 30 November-2 December 1982. Volume 2

    DTIC Science & Technology

    1982-11-01

    groups. The Air Force is concerned with such issues such as resource allocation to foster and prcomotc standards, transitioning from current to future...perform automatic resource allocation , generate MATE Intermediate code, and provide formatted output listings. d. MATE Test Executive (MTE). The MTE...AFFECTED BY THESE STANDARDS TO KNOW JUST WHAT IS AVAILABLE TO SUPPORT THEM: THE HARDWARE; THE COMPLIANCE TESTING ; THE TOOLS NECESSARY TO FACILITATE DESIGN

  16. Brain Organization and Psychodynamics

    PubMed Central

    Peled, Avi; Geva, Amir B.

    1999-01-01

    Any attempt to link brain neural activity and psychodynamic concepts requires a tremendous conceptual leap. Such a leap may be facilitated if a common language between brain and mind can be devised. System theory proposes formulations that may aid in reconceptualizing psychodynamic descriptions in terms of neural organizations in the brain. Once adopted, these formulations can help to generate testable predictions about brain–psychodynamic relations and thus significantly affect the future of psychotherapy. (The Journal of Psychotherapy Practice and Research 1999; 8:24–39) PMID:9888105

  17. Complex Issues Affecting Student Pharmacist Debt

    PubMed Central

    Campbell, Tom; Congdon, Heather Brennan; Hancock, Kim; Kaun, Megan; Lockman, Paul R.; Evans, R. Lee

    2014-01-01

    It is time for colleges and schools of pharmacy to examine and confront the rising costs of pharmacy education and the increasing student loan debt borne by graduates. These phenomena likely result from a variety of complex factors. The academy should begin addressing these issues before pharmacy education becomes cost-prohibitive for future generations. This paper discusses some of the more salient drivers of cost and student debt load and offers suggestions that may help alleviate some of the financial pressures. PMID:25258436

  18. Intergenerational equity and conservation

    NASA Technical Reports Server (NTRS)

    Otoole, R. P.; Walton, A. L.

    1980-01-01

    The issue of integenerational equity in the use of natural resources is discussed in the context of coal mining conversion. An attempt to determine if there is a clear-cut benefit to future generations in setting minimum coal extraction efficiency standards in mining is made. It is demonstrated that preserving fossil fuels beyond the economically efficient level is not necessarily beneficial to future generations even in terms of their own preferences. Setting fossil fuel conservation targets for intermediate products (i.e. energy) may increase the quantities of fossil fuels available to future generations and hence lower the costs, but there may be serious disadvantages to future generations as well. The use of relatively inexpensive fossil fuels in this generation may result in more infrastructure development and more knowledge production available to future generations. The value of fossil fuels versus these other endowments in the future depends on many factors which cannot possibly be evaluated at present. Since there is no idea of whether future generations are being helped or harmed, it is recommended that integenerational equity not be used as a factor in setting coal mine extraction efficiency standards, or in establishing requirements.

  19. The influence of climate change on Tanzania's hydropower sustainability

    NASA Astrophysics Data System (ADS)

    Sperna Weiland, Frederiek; Boehlert, Brent; Meijer, Karen; Schellekens, Jaap; Magnell, Jan-Petter; Helbrink, Jakob; Kassana, Leonard; Liden, Rikard

    2015-04-01

    Economic costs induced by current climate variability are large for Tanzania and may further increase due to future climate change. The Tanzanian National Climate Change Strategy addressed the need for stabilization of hydropower generation and strengthening of water resources management. Increased hydropower generation can contribute to sustainable use of energy resources and stabilization of the national electricity grid. To support Tanzania the World Bank financed this study in which the impact of climate change on the water resources and related hydropower generation capacity of Tanzania is assessed. To this end an ensemble of 78 GCM projections from both the CMIP3 and CMIP5 datasets was bias-corrected and down-scaled to 0.5 degrees resolution following the BCSD technique using the Princeton Global Meteorological Forcing Dataset as a reference. To quantify the hydrological impacts of climate change by 2035 the global hydrological model PCR-GLOBWB was set-up for Tanzania at a resolution of 3 minutes and run with all 78 GCM datasets. From the full set of projections a probable (median) and worst case scenario (95th percentile) were selected based upon (1) the country average Climate Moisture Index and (2) discharge statistics of relevance to hydropower generation. Although precipitation from the Princeton dataset shows deviations from local station measurements and the global hydrological model does not perfectly reproduce local scale hydrographs, the main discharge characteristics and precipitation patterns are represented well. The modeled natural river flows were adjusted for water demand and irrigation within the water resources model RIBASIM (both historical values and future scenarios). Potential hydropower capacity was assessed with the power market simulation model PoMo-C that considers both reservoir inflows obtained from RIBASIM and overall electricity generation costs. Results of the study show that climate change is unlikely to negatively affect the average potential of future hydropower production; it will likely make hydropower more profitable. Yet, the uncertainty in climate change projections remains large and risks are significant, adaptation strategies should ideally consider a worst case scenario to ensure robust power generation. Overall a diversified power generation portfolio, anchored in hydropower and supported by other renewables and fossil fuel-based energy sources, is the best solution for Tanzania

  20. Disease emergence from global climate and land use change.

    PubMed

    Patz, Jonathan A; Olson, Sarah H; Uejio, Christopher K; Gibbs, Holly K

    2008-11-01

    Climate change and land use change can affect multiple infectious diseases of humans, acting either independently or synergistically. Expanded efforts in empiric and future scenario-based risk assessment are required to anticipate problems. Moreover, the many health impacts of climate and land use change must be examined in the context of the myriad other environmental and behavioral determinants of disease. To optimize prevention capabilities, upstream environmental approaches must be part of any intervention, rather than assaults on single agents of disease. Clinicians must develop stronger ties, not only to public health officials and scientists, but also to earth and environmental scientists and policy makers. Without such efforts, we will inevitably benefit our current generation at the cost of generations to come.

  1. The Pediatric Cancer Genome Project

    PubMed Central

    Downing, James R; Wilson, Richard K; Zhang, Jinghui; Mardis, Elaine R; Pui, Ching-Hon; Ding, Li; Ley, Timothy J; Evans, William E

    2013-01-01

    The St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project (PCGP) is participating in the international effort to identify somatic mutations that drive cancer. These cancer genome sequencing efforts will not only yield an unparalleled view of the altered signaling pathways in cancer but should also identify new targets against which novel therapeutics can be developed. Although these projects are still deep in the phase of generating primary DNA sequence data, important results are emerging and valuable community resources are being generated that should catalyze future cancer research. We describe here the rationale for conducting the PCGP, present some of the early results of this project and discuss the major lessons learned and how these will affect the application of genomic sequencing in the clinic. PMID:22641210

  2. 70 years of radiation genetics: Fruit flies, mice and humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrahamson, S.

    1997-03-01

    Radiation protection`s function is to protect society from the potential hazards that might occur through the human use of radiation, whether it be from energy production, medical uses or other sources of exposure. To do so, various scientific bodies are called upon to develop risk estimates which will provide society with adequate protection to the adverse effects of radiation, as best we can understand those adverse affects. Geneticists have the added burden, in that they must attempt to provide protection not only to the offspring of the present generation but also for all subsequent generations. While most of us havemore » difficulty in thinking of effects that might be manifest only one or two generations into the future, some have projected potential risks for 50 to 100 generations. Here the author reviews work on fruit flies and mice, and studies of human exposures, which has provided much of the foundational information upon which geneticists can derive conclusions with regard to radiation protection questions.« less

  3. Transgenerational plasticity and climate change experiments: Where do we go from here?

    PubMed

    Donelson, Jennifer M; Salinas, Santiago; Munday, Philip L; Shama, Lisa N S

    2018-01-01

    Phenotypic plasticity, both within and across generations, is an important mechanism that organisms use to cope with rapid climate change. While an increasing number of studies show that plasticity across generations (transgenerational plasticity or TGP) may occur, we have limited understanding of key aspects of TGP, such as the environmental conditions that may promote it, its relationship to within-generation plasticity (WGP) and its role in evolutionary potential. In this review, we consider how the detection of TGP in climate change experiments is affected by the predictability of environmental variation, as well as the timing and magnitude of environmental change cues applied. We also discuss the need to design experiments that are able to distinguish TGP from selection and TGP from WGP in multigenerational experiments. We conclude by suggesting future research directions that build on the knowledge to date and admit the limitations that exist, which will depend on the way environmental change is simulated and the type of experimental design used. Such an approach will open up this burgeoning area of research to a wider variety of organisms and allow better predictive capacity of the role of TGP in the response of organisms to future climate change. © 2017 John Wiley & Sons Ltd.

  4. Numerical simulation of turbulent flow affected by vortex generators in straight channel

    NASA Astrophysics Data System (ADS)

    Souckova, Natalie; Simurda, David; Uruba, Vaclav

    2012-04-01

    The presented work is the next step after several experimental examinations of the vortex generator (VG) influence on flow separation occurring on a model of the NACA 63A421 airfoil with a deflected simple flap. The other purpose of this simulation is to obtain beneficial information that can be utilized for the preparation of the experimental investigation of the same configuration using Particle image Velocimetry method (PIV) in the future. The numerical simulation was performed for one single pair and two pairs of low-profile VGs of the same size, whose heights were smaller than the boundary layer thickness. The rectangular vane type VGs in such configuration, which generates counter-rotating vortices, was examined. The behaviour of vortices produced by VG pair or pairs in several positions downstream the VGs is investigated and will be used as a background of the measurement.

  5. The effects of climate downscaling technique and observational data set on modeled ecological responses.

    PubMed

    Pourmokhtarian, Afshin; Driscoll, Charles T; Campbell, John L; Hayhoe, Katharine; Stoner, Anne M K

    2016-07-01

    Assessments of future climate change impacts on ecosystems typically rely on multiple climate model projections, but often utilize only one downscaling approach trained on one set of observations. Here, we explore the extent to which modeled biogeochemical responses to changing climate are affected by the selection of the climate downscaling method and training observations used at the montane landscape of the Hubbard Brook Experimental Forest, New Hampshire, USA. We evaluated three downscaling methods: the delta method (or the change factor method), monthly quantile mapping (Bias Correction-Spatial Disaggregation, or BCSD), and daily quantile regression (Asynchronous Regional Regression Model, or ARRM). Additionally, we trained outputs from four atmosphere-ocean general circulation models (AOGCMs) (CCSM3, HadCM3, PCM, and GFDL-CM2.1) driven by higher (A1fi) and lower (B1) future emissions scenarios on two sets of observations (1/8º resolution grid vs. individual weather station) to generate the high-resolution climate input for the forest biogeochemical model PnET-BGC (eight ensembles of six runs).The choice of downscaling approach and spatial resolution of the observations used to train the downscaling model impacted modeled soil moisture and streamflow, which in turn affected forest growth, net N mineralization, net soil nitrification, and stream chemistry. All three downscaling methods were highly sensitive to the observations used, resulting in projections that were significantly different between station-based and grid-based observations. The choice of downscaling method also slightly affected the results, however not as much as the choice of observations. Using spatially smoothed gridded observations and/or methods that do not resolve sub-monthly shifts in the distribution of temperature and/or precipitation can produce biased results in model applications run at greater temporal and/or spatial resolutions. These results underscore the importance of carefully considering field observations used for training, as well as the downscaling method used to generate climate change projections, for smaller-scale modeling studies. Different sources of variability including selection of AOGCM, emissions scenario, downscaling technique, and data used for training downscaling models, result in a wide range of projected forest ecosystem responses to future climate change. © 2016 by the Ecological Society of America.

  6. Novel genes and mutations in patients affected by recurrent pregnancy loss.

    PubMed

    Quintero-Ronderos, Paula; Mercier, Eric; Fukuda, Michiko; González, Ronald; Suárez, Carlos Fernando; Patarroyo, Manuel Alfonso; Vaiman, Daniel; Gris, Jean-Christophe; Laissue, Paul

    2017-01-01

    Recurrent pregnancy loss is a frequently occurring human infertility-related disease affecting ~1% of women. It has been estimated that the cause remains unexplained in >50% cases which strongly suggests that genetic factors may contribute towards the phenotype. Concerning its molecular aetiology numerous studies have had limited success in identifying the disease's genetic causes. This might have been due to the fact that hundreds of genes are involved in each physiological step necessary for guaranteeing reproductive success in mammals. In such scenario, next generation sequencing provides a potentially interesting tool for research into recurrent pregnancy loss causative mutations. The present study involved whole-exome sequencing and an innovative bioinformatics analysis, for the first time, in 49 unrelated women affected by recurrent pregnancy loss. We identified 27 coding variants (22 genes) potentially related to the phenotype (41% of patients). The affected genes, which were enriched by potentially deleterious sequence variants, belonged to distinct molecular cascades playing key roles in implantation/pregnancy biology. Using a quantum chemical approach method we established that mutations in MMP-10 and FGA proteins led to substantial energetic modifications suggesting an impact on their functions and/or stability. The next generation sequencing and bioinformatics approaches presented here represent an efficient way to find mutations, having potentially moderate/strong functional effects, associated with recurrent pregnancy loss aetiology. We consider that some of these variants (and genes) represent probable future biomarkers for recurrent pregnancy loss.

  7. Specifying the Concept of Future Generations for Addressing Issues Related to High-Level Radioactive Waste.

    PubMed

    Kermisch, Celine

    2016-12-01

    The nuclear community frequently refers to the concept of "future generations" when discussing the management of high-level radioactive waste. However, this notion is generally not defined. In this context, we have to assume a wide definition of the concept of future generations, conceived as people who will live after the contemporary people are dead. This definition embraces thus each generation following ours, without any restriction in time. The aim of this paper is to show that, in the debate about nuclear waste, this broad notion should be further specified and to clarify the related implications for nuclear waste management policies. Therefore, we provide an ethical analysis of different management strategies for high-level waste in the light of two principles, protection of future generations-based on safety and security-and respect for their choice. This analysis shows that high-level waste management options have different ethical impacts across future generations, depending on whether the memory of the waste and its location is lost, or not. We suggest taking this distinction into account by introducing the notions of "close future generations" and "remote future generations", which has important implications on nuclear waste management policies insofar as it stresses that a retrievable disposal has fewer benefits than usually assumed.

  8. Space Weather affects on Air Transportation

    NASA Astrophysics Data System (ADS)

    Jones, J. B. L.; Bentley, R. D.; Dyer, C.; Shaw, A.

    In Europe, legislation requires the airline industry to monitor the occupational exposure of aircrew to cosmic radiation. However, there are other significant impacts of space weather phenomena on the technological systems used for day-to-day operations which need to be considered by the airlines. These were highlighted by the disruption caused to the industry by the period of significant solar activity in late October and early November 2003. Next generation aircraft will utilize increasingly complex avionics as well as expanding the performance envelopes. These and future generation platforms will require the development of a new air-space management infrastructure with improved position accuracy (for route navigation and landing in bad weather) and reduced separation minima in order to cope with the expected growth in air travel. Similarly, greater reliance will be placed upon satellites for command, control, communication and information (C3I) of the operation. However, to maximize effectiveness of this globally interoperable C3I and ensure seamless fusion of all components for a safe operation will require a greater understanding of the space weather affects, their risks with increasing technology, and the inclusion of space weather information into the operation. This paper will review space weather effects on air transport and the increasing risks for future operations cause by them. We will examine how well the effects can be predicted, some of the tools that can be used and the practicalities of using such predictions in an operational scenario. Initial results from the SOARS ESA Space Weather Pilot Project will also be discussed,

  9. The Bright, Artificial Intelligence-Augmented Future of Neuroimaging Reading

    PubMed Central

    Hainc, Nicolin; Federau, Christian; Stieltjes, Bram; Blatow, Maria; Bink, Andrea; Stippich, Christoph

    2017-01-01

    Radiologists are among the first physicians to be directly affected by advances in computer technology. Computers are already capable of analyzing medical imaging data, and with decades worth of digital information available for training, will an artificial intelligence (AI) one day signal the end of the human radiologist? With the ever increasing work load combined with the looming doctor shortage, radiologists will be pushed far beyond their current estimated 3 s allotted time-of-analysis per image; an AI with super-human capabilities might seem like a logical replacement. We feel, however, that AI will lead to an augmentation rather than a replacement of the radiologist. The AI will be relied upon to handle the tedious, time-consuming tasks of detecting and segmenting outliers while possibly generating new, unanticipated results that can then be used as sources of medical discovery. This will affect not only radiologists but all physicians and also researchers dealing with medical imaging. Therefore, we must embrace future technology and collaborate interdisciplinary to spearhead the next revolution in medicine. PMID:28983278

  10. Affective science perspectives on cancer control: Strategically crafting a mutually beneficial research agenda

    PubMed Central

    Ferrer, Rebecca A.; McDonald, Paige Green; Barrett, Lisa Feldman

    2015-01-01

    Cancer control research involves the conduct of basic and applied behavioral and social sciences to reduce cancer incidence, morbidity, and mortality, and improve quality of life. Given the importance of behavior in cancer control, fundamental research is necessary to identify psychological mechanisms underlying cancer risk, prevention, and management behaviors. Cancer prevention, diagnosis, and treatment are often emotionally-laden. As such, affective science research to elucidate questions related to basic phenomenological nature of emotion, stress, and mood is necessary to understand how cancer control can be hindered or facilitated by emotional experiences. To date, the intersection of basic affective science research and cancer control remains largely unexplored. The goal of this paper is to outline key questions in the cancer control research domain that provide an ecologically valid context for new affective science discoveries. We also provide examples of ways in which basic affective discoveries could inform future cancer prevention and control research. These examples are not meant to be exhaustive or prescriptive, but instead are offered to generate creative thought about the promise of a cancer research context for answering basic affective science questions. Together, these examples provide a compelling argument for fostering collaborations between affective and cancer control scientists. PMID:25987511

  11. The Millennial Generation: Developing Leaders for the Future Security Environment

    DTIC Science & Technology

    2011-02-15

    Dumbest Generation (Penguin Group, New York, New York: 2009) p 8, 10. 19 National Academy of Sciences, “Generation Y : The Millennials …Ready or Not, Here...St ra te gy R es ea rc h Pr oj ec t THE MILLENNIAL GENERATION: DEVELOPING LEADERS FOR THE FUTURE SECURITY ENVIRONMENT BY COLONEL LANCE...Strategy Research Project 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE The Millennial Generation: Developing Leaders for the Future

  12. Impact of climate change on irrigation management for olive orchards at southern Spain

    NASA Astrophysics Data System (ADS)

    Lorite, Ignacio; Gabaldón-Leal, Clara; Santos, Cristina; Belaj, Angjelina; de la Rosa, Raul; Leon, Lorenzo; Ruiz-Ramos, Margarita

    2017-04-01

    The irrigation management for olive orchards under future weather conditions requires the development of advanced tools for considering specific physiological and phenological components affected by the foreseen changes in climate and atmospheric [CO2]. In this study a new simulation model named AdaptaOlive has been considered to develop controlled deficit irrigation and full irrigation scheduling for the traditional olive orchards located in Andalusia region (southern Spain) under the projected climate generated by an ensemble of 11 climate models from the ENSEMBLES European project corresponding to the SRES A1B scenario. Irrigation requirements, irrigation water productivity (IWP) and net margin (NM) were evaluated for three periods (baseline, near future and far future) and three irrigation strategies (rainfed, RF, controlled deficit irrigation, CDI, and full irrigation, FI). For irrigation requirements, a very limited average increase for far future compared with baseline period was found (2.6 and 1.3%, for CDI and FI, respectively). Equally, when IWP was analyzed, significant increases were identified for both irrigation strategies (77.4 and 72.2%, for CDI and FI, respectively) due to the high simulated increase in yield. Finally, when net margin was analyzed, the irrigation water cost had a key significance. For low water costs FI provided higher net margin values than for CDI. However, for high water costs (expected in the future due to the foreseen reduction in rainfall and the increase of the competence for the available water resources), net margin is reduced significantly, generating a very elevated number of years with negative net margin. All the described results are affected by a high level of uncertainty as the projections from the ensemble of 11 climate models show large spread. Thus, for a representative location within Andalusia region as Baeza, a reduction of irrigation requirements under full irrigation strategy was found for the ensemble mean (equal to 0.5%). However, when the individual projections from the 11 climate models were considered the variation of irrigation requirements for far future compared with baseline period ranged from increases of 8.5% to reductions of 10.7%. This fact demonstrates the necessity to consider ensembles of climate models for identifying averaged impacts and the range of variability of these impacts, quantifying the uncertainty in the estimates related with water management in the future. The study concludes that the promotion of controlled deficit irrigation strategies is an excellent adaptation strategy. However, this strategy must be supported with the enhance of farmers' training by the implementation of local or regional irrigation advisory services.

  13. Can We Communicate with Other Generations?

    ERIC Educational Resources Information Center

    Mellert, Robert B.

    Communicating with future generations is not merely a question of "how" to communicate, but also of "what." Our major moral responsibilities to future generations concern the size of future populations, conservation of nonrenewable resources, diversity of the gene pool, and quality of the environment. To determine our…

  14. Community-level climate change vulnerability research: trends, progress, and future directions

    NASA Astrophysics Data System (ADS)

    McDowell, Graham; Ford, James; Jones, Julie

    2016-03-01

    This study systematically identifies, characterizes, and critically evaluates community-level climate change vulnerability assessments published over the last 25 years (n = 274). We find that while the field has advanced considerably in terms of conceptual framing and methodological approaches, key shortcomings remain in how vulnerability is being studied at the community-level. We argue that vulnerability research needs to more critically engage with the following: methods for evaluating future vulnerability, the relevance of vulnerability research for decision-making, interdependencies between social and ecological systems, attention to researcher / subject power dynamics, critical interpretation of key terms, and consideration of the potentially positive opportunities presented by a changing climate. Addressing these research needs is necessary for generating knowledge that supports climate-affected communities in navigating the challenges and opportunities ahead.

  15. Establishment of sustainable health science for future generations: from a hundred years ago to a hundred years in the future.

    PubMed

    Mori, Chisato; Todaka, Emiko

    2009-01-01

    Recently, we have investigated the relationship between environment and health from a scientific perspective and developed a new academic field, "Sustainable Health Science" that will contribute to creating a healthy environment for future generations. There are three key points in Sustainable Heath Science. The first key point is "focusing on future generations"-society should improve the environment and prevent possible adverse health effects on future generations (Environmental Preventive Medicine). The second key point is the "precautious principle". The third key point is "transdisciplinary science", which means that not only medical science but also other scientific fields, such as architectural and engineering science, should be involved. Here, we introduce our recent challenging project "Chemiless Town Project", in which a model town is under construction with fewer chemicals. In the project, a trial of an education program and a health-examination system of chemical exposure is going to be conducted. In the future, we are aiming to establish health examination of exposure to chemicals of women of reproductive age so that the risk of adverse health effects to future generations will decrease and they can enjoy a better quality of life. We hope that society will accept the importance of forming a sustainable society for future generations not only with regard to chemicals but also to the whole surrounding environment. As the proverb of American native people tells us, we should live considering the effects on seven generations in the future.

  16. Model and Scenario Variations in Predicted Number of Generations of Spodoptera litura Fab. on Peanut during Future Climate Change Scenario

    PubMed Central

    Srinivasa Rao, Mathukumalli; Swathi, Pettem; Rama Rao, Chitiprolu Anantha; Rao, K. V.; Raju, B. M. K.; Srinivas, Karlapudi; Manimanjari, Dammu; Maheswari, Mandapaka

    2015-01-01

    The present study features the estimation of number of generations of tobacco caterpillar, Spodoptera litura. Fab. on peanut crop at six locations in India using MarkSim, which provides General Circulation Model (GCM) of future data on daily maximum (T.max), minimum (T.min) air temperatures from six models viz., BCCR-BCM2.0, CNRM-CM3, CSIRO-Mk3.5, ECHams5, INCM-CM3.0 and MIROC3.2 along with an ensemble of the six from three emission scenarios (A2, A1B and B1). This data was used to predict the future pest scenarios following the growing degree days approach in four different climate periods viz., Baseline-1975, Near future (NF) -2020, Distant future (DF)-2050 and Very Distant future (VDF)—2080. It is predicted that more generations would occur during the three future climate periods with significant variation among scenarios and models. Among the seven models, 1–2 additional generations were predicted during DF and VDF due to higher future temperatures in CNRM-CM3, ECHams5 & CSIRO-Mk3.5 models. The temperature projections of these models indicated that the generation time would decrease by 18–22% over baseline. Analysis of variance (ANOVA) was used to partition the variation in the predicted number of generations and generation time of S. litura on peanut during crop season. Geographical location explained 34% of the total variation in number of generations, followed by time period (26%), model (1.74%) and scenario (0.74%). The remaining 14% of the variation was explained by interactions. Increased number of generations and reduction of generation time across the six peanut growing locations of India suggest that the incidence of S. litura may increase due to projected increase in temperatures in future climate change periods. PMID:25671564

  17. The fiscal outcome of artificial conception in Brazil--creating citizens in developing countries.

    PubMed

    Kröger, G B; Ejzenberg, D

    2012-01-01

    Infertility is an important health issue, but only a small fraction of the affected population receives treatment in Brazil, because it is not covered by the government or private health insurance plans. We developed a generational accounting-based mathematical model to assess the direct economic result of creating a citizen through IVF in different economic scenarios, and the potential economic benefit generated by the individual and his/her future offspring. A mathematical model analyzes the revenues and expenses of an IVF-conceived individual over his lifetime. We calculated the net present value (NPV) of an IVF-conceived citizen, and this value corresponds to the fiscal contribution to the government by an individual, from birth through his predicted life expectancy. The calculation used discount rates of 4.0 and 7.0% to depreciate the money value by time. A 4.0% discount rate represents the most favorable economic scenario in Brazil, and it results in an NPV of US$ 61 428. A 7.0% discount rate represents a less favorable economic reality, and it results in a debit of U$ 563, but this debt may be compensated by his/her future offspring. The fiscal contribution generated by each IVF-conceived citizen can justify an initial government investment in infertility treatment. Poor economic times in Brazil can sometimes result in a fiscal debt from each new IVF-conceived child, but this initial expenditure may be compensated by the fiscal contribution in the next generation.

  18. Mentoring. Perceptions of the process and its significance.

    PubMed

    Murray, Ruth Beckmann

    2002-04-01

    My recommendations are to learn about the mentoring process, prepare for the role, and take advantage of the opportunity to mentor someone, or many people, throughout your professional lifetime. In the process, you will learn about your cognitive, affective, and behavioral competencies and gifts. Share them. Join me and other mentors in knowing that you have opened doors and contributed in more than the usual ways to both well and ill people, to both present and future leaders in nursing or other disciplines, in whatever role, and to society in general. Deepen your generativity.

  19. The infant microbiome development: mom matters

    PubMed Central

    Mueller, Noel T.; Bakacs, Elizabeth; Combellick, Joan; Grigoryan, Zoya; Dominguez-Bello, Maria G.

    2015-01-01

    The infant microbiome plays an essential role in human health and its assembly is determined by maternal– offspring exchanges of microbiota. This process is affected by several practices, including Cesarean section (C-section), perinatal antibiotics, and formula feeding, that have been linked to increased risks of metabolic and immune diseases. Here we review recent knowledge about the impacts on infant microbiome assembly, discuss preventive and restorative strategies to ameliorate the effects of these impacts, and highlight where research is needed to advance this field and improve the health of future generations. PMID:25578246

  20. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    NASA Astrophysics Data System (ADS)

    Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M. W.; Fischer, A. M.; Duffy, B.; Samietz, J.

    2012-02-01

    As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously non-affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology, depending on actual weather conditions, and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980-2009 and 2045-2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045-2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1% on average today to over 60% in the future for the median climate change signal of the multi-model projections), the actual risk will critically depend on the pace of the adaptation of the codling moth with respect to the critical photoperiod. To control this additional generation, an intensification and prolongation of control measures (e.g. insecticides) will be required, implying an increasing risk of pesticide resistances. For fire blight, the projected changes in infection days are less certain due to uncertainties in the leaf wetness approximation and the simulation of the blooming period. Two compensating effects are projected, warmer temperatures favoring infections are balanced by a temperature-induced advancement of the blooming period, leading to no significant change in the number of infection days under future climate conditions for most stations.

  1. Downscaling climate change scenarios for apple pest and disease modeling in Switzerland

    NASA Astrophysics Data System (ADS)

    Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M. W.; Fischer, A. M.; Duffy, B.; Samietz, J.

    2011-08-01

    As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously not affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology depending on actual weather conditions and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980-2009 and 2045-2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045-2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1 % on average today to over 60 % in the future for the median climate change signal of the multi-model projections), the actual risk will critically depend on the pace of the adaptation of the codling moth with respect to the critical photoperiod. To control this additional generation, an intensification and prolongation of control measures (e.g., insecticides) will be required, implying an increasing risk of pesticide resistances. For fire blight, the projected changes in infection days are less certain due to uncertainties in the leaf wetness approximation and the simulation of the blooming period. Two compensating effects are projected, warmer temperatures favoring infections are balanced by a temperature-induced advancement of the blooming period, leading to no significant change in the number of infection days under future climate conditions for most stations.

  2. EVENT PREDICTION AND AFFECTIVE FORECASTING IN DEPRESSIVE COGNITION: USING EMOTION AS INFORMATION ABOUT THE FUTURE

    PubMed Central

    MARROQUÍN, BRETT; NOLEN-HOEKSEMA, SUSAN

    2015-01-01

    Depression is characterized by a bleak view of the future, but the mechanisms through which depressed mood is integrated into basic processes of future-oriented cognition are unclear. We hypothesized that dysphoric individuals’ predictions of what will happen in the future (likelihood estimation) and how the future will feel (affective forecasting) are attributable to individual differences in incorporating present emotion as judgment-relevant information. Dysphoric individuals (n = 77) made pessimistic likelihood estimates and blunted positive affective forecasts relative to controls (n = 84). These differences were mediated by dysphoric individuals’ tendencies to rely on negative emotion as information more than controls—and on positive emotion less—independent of anhedonia. These findings suggest that (1) blunted positive affective forecasting is a distinctive component of depressive future-oriented cognition, and (2) future-oriented cognitive processes are linked not just to current emotional state, but also to individual variation in using that emotion as information. This role of individual differences elucidates basic mechanisms in future-oriented cognition, and suggests routes for intervention on interrelated cognitive and affective processes in depression. PMID:26146452

  3. EVENT PREDICTION AND AFFECTIVE FORECASTING IN DEPRESSIVE COGNITION: USING EMOTION AS INFORMATION ABOUT THE FUTURE.

    PubMed

    Marroquín, Brett; Nolen-Hoeksema, Susan

    2015-02-01

    Depression is characterized by a bleak view of the future, but the mechanisms through which depressed mood is integrated into basic processes of future-oriented cognition are unclear. We hypothesized that dysphoric individuals' predictions of what will happen in the future ( likelihood estimation ) and how the future will feel ( affective forecasting ) are attributable to individual differences in incorporating present emotion as judgment-relevant information. Dysphoric individuals ( n = 77) made pessimistic likelihood estimates and blunted positive affective forecasts relative to controls ( n = 84). These differences were mediated by dysphoric individuals' tendencies to rely on negative emotion as information more than controls-and on positive emotion less-independent of anhedonia. These findings suggest that (1) blunted positive affective forecasting is a distinctive component of depressive future-oriented cognition, and (2) future-oriented cognitive processes are linked not just to current emotional state, but also to individual variation in using that emotion as information. This role of individual differences elucidates basic mechanisms in future-oriented cognition, and suggests routes for intervention on interrelated cognitive and affective processes in depression.

  4. Popular Imagination and Identity Politics: Reading the Future in "Star Trek: The Next Generation."

    ERIC Educational Resources Information Center

    Ott, Brian L.; Aoki, Eric

    2001-01-01

    Analyzes the television series "Star Trek: The Next Generation." Theorizes the relationship between collective visions of the future and the identity politics of the present. Argues that "The Next Generation" invites audiences to participate in a shared sense of the future that constrains human agency and (re)produces the…

  5. Climate and land-use change in wetlands: A dedication

    USGS Publications Warehouse

    Middleton, Beth A.

    2017-01-01

    Future climate and land-use change may wreak havoc on wetlands, with the potential to erode their values as harbors for biota and providers of human services. Wetlands are important to protect, particularly because these provide a variety of ecosystem services including wildlife habitat, water purification, flood storage, and storm protection (Mitsch, Bernal, and Hernandez 2015). Without healthy wetlands, future generations may become increasingly less in harmony with the sustainability of the Earth. To this end, the thematic feature on climate and land-use change in wetlands explores the critical role of wetlands in the overall health and well-being of humans and our planet. Our special feature contributes to the understanding of the idea that the health of natural ecosystems and humans are linked and potentially stressed by climate change and land-use change (Horton and Lo 2015; McDonald 2015). In particular, this special issue considers the important role of wetlands in the environment, and how land-use and environmental change might affect them in the future.

  6. Future generations, environmental ethics, and global environmental change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonn, B.E.

    1994-12-31

    The elements of a methodology to be employed by the global community to investigate the consequences of global environmental change upon future generations and global ecosystems are outlined in this paper. The methodology is comprised of two major components: A possible future worlds model; and a formal, citizen-oriented process to judge whether the possible future worlds potentially inheritable by future generations meet obligational standards. A broad array of descriptors of future worlds can be encompassed within this framework, including survival of ecosystems and other species and satisfaction of human concerns. The methodology expresses fundamental psychological motivations and human myths journey,more » renewal, mother earth, and being-in-nature-and incorporates several viewpoints on obligations to future generations-maintaining options, fairness, humility, and the cause of humanity. The methodology overcomes several severe drawbacks of the economic-based methods most commonly used for global environmental policy analysis.« less

  7. The increasing importance of a continence nurse specialist to improve outcomes and save costs of urinary incontinence care: an analysis of future policy scenarios.

    PubMed

    Franken, Margreet G; Corro Ramos, Isaac; Los, Jeanine; Al, Maiwenn J

    2018-02-17

    In an ageing population, it is inevitable to improve the management of care for community-dwelling elderly with incontinence. A previous study showed that implementation of the Optimum Continence Service Specification (OCSS) for urinary incontinence in community-dwelling elderly with four or more chronic diseases results in a reduction of urinary incontinence, an improved quality of life, and lower healthcare and lower societal costs. The aim of this study was to explore future consequences of the OCSS strategy of various healthcare policy scenarios in an ageing population. We adapted a previously developed decision analytical model in which the OCSS new care strategy was operationalised as the appointment of a continence nurse specialist located within the general practice in The Netherlands. We used a societal perspective including healthcare costs (healthcare providers, treatment costs, insured containment products, insured home care), and societal costs (informal caregiving, containment products paid out-of-pocket, travelling expenses, home care paid out-of-pocket). All outcomes were computed over a three-year time period using two different base years (2014 and 2030). Settings for future policy scenarios were based on desk-research and expert opinion. Our results show that implementation of the OSCC new care strategy for urinary incontinence would yield large health gains in community dwelling elderly (2030: 2592-2618 QALYs gained) and large cost-savings in The Netherlands (2030: health care perspective: €32.4 Million - €72.5 Million; societal perspective: €182.0 Million - €250.6 Million). Savings can be generated in different categories which depends on healthcare policy. The uncertainty analyses and extreme case scenarios showed the robustness of the results. Implementation of the OCSS new care strategy for urinary incontinence results in an improvement in the quality of life of community-dwelling elderly, a reduction of the costs for payers and affected elderly, and a reduction in time invested by carers. Various realistic policy scenarios even forecast larger health gains and cost-savings in the future. More importantly, the longer the implementation is postponed the larger the savings foregone. The future organisation of healthcare affects the category in which the greatest savings will be generated.

  8. Using Emotion as Information in Future-Oriented Cognition: Individual Differences in the Context of State Negative Affect

    PubMed Central

    Marroquín, Brett; Boyle, Chloe C.; Nolen-Hoeksema, Susan; Stanton, Annette L.

    2016-01-01

    Predictions about the future are susceptible to mood-congruent influences of emotional state. However, recent work suggests individuals also differ in the degree to which they incorporate emotion into cognition. This study examined the role of such individual differences in the context of state negative emotion. We examined whether trait tendencies to use negative or positive emotion as information affect individuals' predictions of what will happen in the future (likelihood estimation) and how events will feel (affective forecasting), and whether trait influences depend on emotional state. Participants (N=119) reported on tendencies to use emotion as information (“following feelings”), underwent an emotion induction (negative versus neutral), and made likelihood estimates and affective forecasts for future events. Views of the future were predicted by both emotional state and individual differences in following feelings. Whereas following negative feelings affected most future-oriented cognition across emotional states, following positive feelings specifically buffered individuals' views of the future in the negative emotion condition, and specifically for positive future events, a category of future-event prediction especially important in psychological health. Individual differences may confer predisposition toward optimistic or pessimistic expectations of the future in the context of acute negative emotion, with implications for adaptive and maladaptive functioning. PMID:27041783

  9. Grandmaternal stress during pregnancy and DNA methylation of the third generation: an epigenome-wide association study

    PubMed Central

    Serpeloni, F; Radtke, K; de Assis, S G; Henning, F; Nätt, D; Elbert, T

    2017-01-01

    Stress during pregnancy may impact subsequent generations, which is demonstrated by an increased susceptibility to childhood and adulthood health problems in the children and grandchildren. Although the importance of the prenatal environment is well reported with regards to future physical and emotional outcomes, little is known about the molecular mechanisms that mediate the long-term consequences of early stress across generations. Recent studies have identified DNA methylation as a possible mediator of the impact of prenatal stress in the offspring. Whether psychosocial stress during pregnancy also affects DNA methylation of the grandchildren is still not known. In the present study we examined the multigenerational hypothesis, that is, grandmaternal exposure to psychosocial stress during pregnancy affecting DNA methylation of the grandchildren. We determined the genome-wide DNA methylation profile in 121 children (65 females and 56 males) and tested for associations with exposure to grandmaternal interpersonal violence during pregnancy. We observed methylation variations of five CpG sites significantly (FDR<0.05) associated with the grandmother’s report of exposure to violence while pregnant with the mothers of the children. The results revealed differential methylation of genes previously shown to be involved in circulatory system processes (FDR<0.05). This study provides support for DNA methylation as a biological mechanism involved in the transmission of stress across generations and motivates further investigations to examine prenatal-dependent DNA methylation as a potential biomarker for health problems. PMID:28809857

  10. Grandmaternal stress during pregnancy and DNA methylation of the third generation: an epigenome-wide association study.

    PubMed

    Serpeloni, F; Radtke, K; de Assis, S G; Henning, F; Nätt, D; Elbert, T

    2017-08-15

    Stress during pregnancy may impact subsequent generations, which is demonstrated by an increased susceptibility to childhood and adulthood health problems in the children and grandchildren. Although the importance of the prenatal environment is well reported with regards to future physical and emotional outcomes, little is known about the molecular mechanisms that mediate the long-term consequences of early stress across generations. Recent studies have identified DNA methylation as a possible mediator of the impact of prenatal stress in the offspring. Whether psychosocial stress during pregnancy also affects DNA methylation of the grandchildren is still not known. In the present study we examined the multigenerational hypothesis, that is, grandmaternal exposure to psychosocial stress during pregnancy affecting DNA methylation of the grandchildren. We determined the genome-wide DNA methylation profile in 121 children (65 females and 56 males) and tested for associations with exposure to grandmaternal interpersonal violence during pregnancy. We observed methylation variations of five CpG sites significantly (FDR<0.05) associated with the grandmother's report of exposure to violence while pregnant with the mothers of the children. The results revealed differential methylation of genes previously shown to be involved in circulatory system processes (FDR<0.05). This study provides support for DNA methylation as a biological mechanism involved in the transmission of stress across generations and motivates further investigations to examine prenatal-dependent DNA methylation as a potential biomarker for health problems.

  11. Automatic Optimism: The Affective Basis of Judgments about the Likelihood of Future Events

    ERIC Educational Resources Information Center

    Lench, Heather C.

    2009-01-01

    People generally judge that the future will be consistent with their desires, but the reason for this desirability bias is unclear. This investigation examined whether affective reactions associated with future events are the mechanism through which desires influence likelihood judgments. In 4 studies, affective reactions were manipulated for…

  12. 25 CFR 1000.335 - How will retrocession affect the Tribe's/Consortium's existing and future AFAs?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... existing and future AFAs? 1000.335 Section 1000.335 Indians OFFICE OF THE ASSISTANT SECRETARY, INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ANNUAL FUNDING AGREEMENTS UNDER THE TRIBAL SELF-GOVERNMENT ACT... affect the Tribe's/Consortium's existing and future AFAs? Retrocession does not affect other parts of the...

  13. 25 CFR 1000.335 - How will retrocession affect the Tribe's/Consortium's existing and future AFAs?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... existing and future AFAs? 1000.335 Section 1000.335 Indians OFFICE OF THE ASSISTANT SECRETARY, INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ANNUAL FUNDING AGREEMENTS UNDER THE TRIBAL SELF-GOVERNMENT ACT... affect the Tribe's/Consortium's existing and future AFAs? Retrocession does not affect other parts of the...

  14. 25 CFR 1000.335 - How will retrocession affect the Tribe's/Consortium's existing and future AFAs?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... existing and future AFAs? 1000.335 Section 1000.335 Indians OFFICE OF THE ASSISTANT SECRETARY, INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ANNUAL FUNDING AGREEMENTS UNDER THE TRIBAL SELF-GOVERNMENT ACT... affect the Tribe's/Consortium's existing and future AFAs? Retrocession does not affect other parts of the...

  15. 25 CFR 1000.335 - How will retrocession affect the Tribe's/Consortium's existing and future AFAs?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... existing and future AFAs? 1000.335 Section 1000.335 Indians OFFICE OF THE ASSISTANT SECRETARY, INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ANNUAL FUNDING AGREEMENTS UNDER THE TRIBAL SELF-GOVERNMENT ACT... affect the Tribe's/Consortium's existing and future AFAs? Retrocession does not affect other parts of the...

  16. 25 CFR 1000.335 - How will retrocession affect the Tribe's/Consortium's existing and future AFAs?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... existing and future AFAs? 1000.335 Section 1000.335 Indians OFFICE OF THE ASSISTANT SECRETARY, INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ANNUAL FUNDING AGREEMENTS UNDER THE TRIBAL SELF-GOVERNMENT ACT... affect the Tribe's/Consortium's existing and future AFAs? Retrocession does not affect other parts of the...

  17. Genetic variation assessed with microsatellites in mass selection lines of the Pacific oyster ( Crassostrea gigas) in China

    NASA Astrophysics Data System (ADS)

    Wang, Xubo; Li, Qi; Yu, Hong; Kong, Lingfeng

    2016-12-01

    Four successive mass selection lines of the Pacific oyster, Crassostrea gigas, selected for faster growth in breeding programs in China were examined at ten polymorphic microsatellite loci to assess the level of allelic diversity and estimate the effective population size. These data were compared with those of their base population. The results showed that the genetic variation of the four generations were maintained at high levels with an average allelic richness of 18.8-20.6, and a mean expected heterozygosity of 0.902-0.921. They were not reduced compared with those of their base population. Estimated effective population sizes based on temporal variances in microsatellite frequencies were smaller to that of sex ratio-corrected broodstock count estimates. Using a relatively large number of broodstock and keeping an equal sex ratio in the broodstock each generation may have contributed to retaining the original genetic diversity and maintaining relatively large effective population size. The results obtained in this study showed that the genetic variation was not affected greatly by mass selection progress and high genetic variation still existed in the mass selection lines, suggesting that there is still potential for increasing the gains in future generations of C. gigas. The present study provided important information for future genetic improvement by selective breeding, and for the design of suitable management guidelines for genetic breeding of C. gigas.

  18. Opt-outs and upgrades. Ethics and law in the United Kingdom.

    PubMed

    Stammers, Trevor; James, Matt

    2014-07-01

    We report on two areas in which UK law and ethics seem out of step with each other. 2013 saw the passing of the Human Transplantation (Wales) Bill, which will introduce an opt-out system of organ donation in Wales from 2015. In the first section, we discuss the convoluted evolution of the Bill and some potential problems that we consider may prevent it from achieving its intended goal of increasing the number of organs transplanted. The prospect of being able to enhance human cognition through cognitive-enhancing drugs ("smart drugs") also presents a nexus of questions associated with future ambitions, hopes, and concerns as a society. How these drugs might affect the future of work and employment is beginning to generate wide public engagement in the UK and forms the focus of the second section.

  19. Characteristics of a future aeronautical satellite communications system

    NASA Technical Reports Server (NTRS)

    Sohn, Philip Y.; Stern, Alan; Schmidt, Fred

    1991-01-01

    A possible operational system scenario for providing satellite communications services to the future aviation community was analyzed. The system concept relies on a Ka-band (20/30 GHz) satellite that utilizes Multibeam Antenna (MBA) technology. The aircraft terminal uses an extremely small aperture antenna as a result of using this higher spectrum at Ka-band. The satellite functions as a relay between the aircraft and the ground stations. The ground stations function as interfaces to the existing terrestrial networks such as the Public Service Telephone Network (PSTN). Various system tradeoffs are first examined to ensure optimized system parameters. High level performance specifications and design approaches are generated for the space, ground, and aeronautical elements in the system. Both technical and economical issues affecting the feasibility of the studied concept are addressed with the 1995 timeframe in mind.

  20. Experience of Time by People on the Go: A Theory of the Locomotion-Temporality Interface.

    PubMed

    Kruglanski, Arie W; Pierro, Antonio; Higgins, E Tory

    2016-05-01

    We explore the psychological interface of time and motion.Locomotion, the proclivity toward movement and change, constitutes a significant determinant of persons' orientation toward time, both as a valuable resource and as a flow advancing from past to future. High locomotors act quickly, multitask and refrain from procrastination, thus conserving time as are source Their preoccupation with movement, moreover, affects their relation to the flow of time High locomotors are future oriented and eschew preoccupation with the past. They are optimistic, experience little regret, generate few counterfactuals, feel little guilt about past wrongdoings, and leave behind past friends. Evidence accumulates that locomotors' "fast forward" orientation pervades diverse aspects of their behavior and has significant consequences for individuals and societies. © 2015 by the Society for Personality and Social Psychology, Inc.

  1. Characteristics of a future aeronautical satellite communications system

    NASA Technical Reports Server (NTRS)

    Sohn, Philip Y.; Stern, Alan; Schmidt, Fred

    1991-01-01

    A possible operational system scenario for providing satellite communications services to the future aviation community was analyzed. The system concept relies on a Ka-band (20/30 GHz) satellite that utilizes multibeam antenna (MBA) technology. The aircraft terminal uses an extremely small aperture antenna as a result of using this higher spectrum at Ka-band. The satellite functions as a relay between the aircraft and the ground stations. The ground stations function as interfaces to the existing terrestrial networks such as the Public Service Telephone Network (PSTN). Various system tradeoffs are first examined to ensure optimized system parameters. High level performance specifications and design approaches are generated for the space, ground, and aeronautical elements in the system. Both technical and economical issues affecting the feasibility of the studied concept are addressed with the 1995 timeframe in mind.

  2. Biological characteristics of Anticarsia gemmatalis (Lepidoptera: Noctuidae) for three consecutive generations under different temperatures: understanding the possible impact of global warming on a soybean pest.

    PubMed

    da Silva, D M; Hoffmann-Campo, C B; de Freitas Bueno, A; de Freitas Bueno, R C O; de Oliveira, M C N; Moscardi, F

    2012-06-01

    Climate changes can affect the distribution and intensity of insect infestations through direct effects on their life cycles. Experiments were carried out during three consecutive generations to evaluate the effect of different temperatures (25°C, 28°C, 31°C, 34°C and 37±1°C) on biological traits of the velvetbean caterpillar Anticarsia gemmatalis Hübner, 1818 (Lepidoptera: Noctuidae). The insects were fed on artificial diet and reared in environmental chambers set at 14 h photophase. The developmental cycle slowed with the increase in the temperature, within the 25°C to 34°C range. Male and female longevities were reduced with an increase in temperature from 25°C to 28°C. Egg viability was highest at 25°C, and the sex ratio was not influenced by temperature, in the three generations. There was no interactive effect between development time and temperature on pupal weight. The results suggested that the increase in the temperature negatively impacted A. gemmatalis development inside the studied temperature range, indicating a possible future reduction of its occurrence on soybean crops, as a consequence of global warming, mainly considering its impact on tropical countries where this plant is cropped. A. gemmatalis was not able to adapt to higher temperatures in a three-generation interval for the studied temperature range. However, a gradual increase and a longer adaptation period may favor insect selection and consequently adaptation, and must be considered in future studies in this area. Moreover, it is important to consider that global warming might turn cold areas more suitable to A. gemmatalis outbreaks. Therefore, more than a future reduction of A. gemmatalis occurrence due to global warming, we might expect changes regarding its area of occurrence on a global perspective.

  3. Women and kidney disease: reflections on World Kidney Day 2018: Kidney Health and Women's Health: a case for optimizing outcomes for present and future generations.

    PubMed

    Piccoli, Giorgina B; Alrukhaimi, Mona; Liu, Zhi-Hong; Zakharova, Elena; Levin, Adeera

    2018-02-01

    Chronic kidney disease (CKD) affects ∼10% of the world's adult population: it is one of the top 20 causes of death worldwide and its impact on patients and their families can be devastating. World Kidney Day and International Women's Day coincide in 2018, thus offering an opportunity to reflect on the importance of women's health, and specifically their kidney health, on the community and the next generations, as well as to strive to be more curious about the unique aspects of kidney disease in women so that we may apply these learnings more broadly. Girls and women, who make up ∼50% of the world's population, are important contributors to society and their families. Gender differences continue to exist around the world in access to education, medical care and participation in clinical studies. Pregnancy is a unique state for women, offering an opportunity for the diagnosis of kidney disease, and also a state where acute and chronic kidney diseases may manifest and that may impact future generations with respect to kidney health. There are various autoimmune and other conditions that are more likely to impact women with profound consequences for childbearing and on the fetus. Women have different complications on dialysis than men and are more likely to be donors than recipients of kidney transplants. In this editorial we focus on what we do and do not know about women, kidney health and kidney disease and what we might learn in the future to improve outcomes worldwide. © The Author(s) 2018. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  4. Trust and Dialogue in the Army Profession

    DTIC Science & Technology

    2008-05-22

    to solve this gap must also account for the future generations as well. This future is the Millennials . This generation, also known as Generation Y ...generations were the Generation X and Generation Next or Millennials . A characterization of these generations is warranted to understand the...nearly ever major and revered institution from the Presidency to organized religion to corporate America has been entangled in some type of crime or

  5. Affective science perspectives on cancer control: strategically crafting a mutually beneficial research agenda.

    PubMed

    Ferrer, Rebecca A; Green, Paige A; Barrett, Lisa Feldman

    2015-05-01

    Cancer control research involves the conduct of basic and applied behavioral and social sciences to reduce cancer incidence, morbidity, and mortality and improve quality of life. Given the importance of behavior in cancer control, fundamental research is necessary to identify psychological mechanisms underlying cancer risk, prevention, and management behaviors. Cancer prevention, diagnosis, and treatment are often emotionally laden. As such, affective science research to elucidate questions related to the basic phenomenological nature of emotion, stress, and mood is necessary to understand how cancer control can be hindered or facilitated by emotional experiences. To date, the intersection of basic affective science research and cancer control remains largely unexplored. The goal of this article is to outline key questions in the cancer control research domain that provide an ecologically valid context for new affective science discoveries. We also provide examples of ways in which basic affective discoveries could inform future cancer prevention and control research. These examples are not meant to be exhaustive or prescriptive but instead are offered to generate creative thought about the promise of a cancer research context for answering basic affective science questions. Together, these examples provide a compelling argument for fostering collaborations between affective and cancer control scientists. © The Author(s) 2015.

  6. Perfect match? Generation Y as change agents for information communication technology implementation in healthcare.

    PubMed

    Yee, Kwang Chien; Miils, Erin; Airey, Caroline

    2008-01-01

    The current healthcare delivery model will not meet future healthcare demands. The only sustainable healthcare future is one that best leverages advances in technology to improve productivity and efficiency. Information communication technology (ICT) has, therefore, been touted as the panacea of future healthcare challenges. Many ICT projects in healthcare, however, fail to deliver on their promises to transform the healthcare system. From a technologist's perspective, this is often due to the lack of socio-technical consideration. From a socio-cultural perspective, however, there is often strong inertia to change. While the utilisation of user-centred design principles will generate a new wave of enthusiasm among technologists, this has to be matched with socio-cultural changes within the healthcare system. Generation Y healthcare workers might be the socio-cultural factor required, in combination with new technology, to transform the healthcare system. Generation Y has generated significant technology-driven changes in many other industries. The socio-cultural understanding of generation Y healthcare workers is essential to guide the design and implementation of ICT solutions for a sustainable healthcare future. This paper presents the initial analysis of our qualitative study which aims to generate in-depth conceptual insights of generation Y healthcare workers and their view of ICT in healthcare. Our results show that generation Y healthcare workers might assist future ICT implementation in healthcare. This paper, however, argues that significant changes to the current healthcare organisation will be required in order to unleash the full potential of generation Y workers and ICT implementation. Finally, this paper presents some strategies to empower generation Y workers as change agents for a sustainable future healthcare system.

  7. Historic Frontier Processes active in Future Space-Based Mineral Extraction

    NASA Astrophysics Data System (ADS)

    Gray, D. M.

    2000-01-01

    The forces that shaped historic mining frontiers are in many cases not bound by geographic or temporal limits. The forces that helped define historic frontiers are active in today's physical and virtual frontiers, and will be present in future space-based frontiers. While frontiers derived from position and technology are primarily economic in nature, non-economic conditions affect the success or failure of individual frontier endeavors, local "mining camps" and even entire frontiers. Frontiers can be defined as the line of activity that divides the established markets and infrastructure of civilization from the unclaimed resources and potential wealth of a wilderness. At the frontier line, ownership of resources is established. The resource can then be developed using capital, energy and information. In a mining setting, the resource is concentrated for economic shipment to the markets of civilization. Profits from the sale of the resource are then used to fund further development of the resource and/or pay investors. Both positional and technical frontiers develop as a series of generations. The profits from each generation of development provides the capital and/or investment incentive for the next round of development. Without profit, the self-replicating process of frontiers stops.

  8. The Role of Proteomics in the Diagnosis and Treatment of Women's Cancers: Current Trends in Technology and Future Opportunities

    PubMed Central

    Breuer, Eun-Kyoung Yim; Murph, Mandi M.

    2011-01-01

    Technological and scientific innovations over the last decade have greatly contributed to improved diagnostics, predictive models, and prognosis among cancers affecting women. In fact, an explosion of information in these areas has almost assured future generations that outcomes in cancer will continue to improve. Herein we discuss the current status of breast, cervical, and ovarian cancers as it relates to screening, disease diagnosis, and treatment options. Among the differences in these cancers, it is striking that breast cancer has multiple predictive tests based upon tumor biomarkers and sophisticated, individualized options for prescription therapeutics while ovarian cancer lacks these tools. In addition, cervical cancer leads the way in innovative, cancer-preventative vaccines and multiple screening options to prevent disease progression. For each of these malignancies, emerging proteomic technologies based upon mass spectrometry, stable isotope labeling with amino acids, high-throughput ELISA, tissue or protein microarray techniques, and click chemistry in the pursuit of activity-based profiling can pioneer the next generation of discovery. We will discuss six of the latest techniques to understand proteomics in cancer and highlight research utilizing these techniques with the goal of improvement in the management of women's cancers. PMID:21886869

  9. Power System Simulation for Policymaking and Making Policymakers

    NASA Astrophysics Data System (ADS)

    Cohen, Michael Ari

    Power system simulation is a vital tool for anticipating, planning for and ultimately addressing future conditions on the power grid, especially in light of contemporary shifts in power generation, transmission and use that are being driven by a desire to utilize more environmentally responsible energy sources. This dissertation leverages power system simulation and engineering-economic analysis to provide initial answers to one open question about future power systems: how will high penetrations of distributed (rooftop) solar power affect the physical and economic operation of distribution feeders? We find that the overall impacts of distributed solar power (both positive and negative) on the feeders we modeled are minor compared to the overall cost of energy, but that there is on average a small net benefit provided by distributed generation. We then describe an effort to make similar analyses more accessible to a non-engineering (high school) audience by developing an educational video game called "Griddle" that is based on the same power system simulation techniques used in the first study. We describe the design and evaluation of Griddle and find that it demonstrates potential to provide students with insights about key power system learning objectives.

  10. Eco-hydrological Modeling in the Framework of Climate Change

    NASA Astrophysics Data System (ADS)

    Fatichi, Simone; Ivanov, Valeriy Y.; Caporali, Enrica

    2010-05-01

    A blueprint methodology for studying climate change impacts, as inferred from climate models, on eco-hydrological dynamics at the plot and small catchment scale is presented. Input hydro-meteorological variables for hydrological and eco-hydrological models for present and future climates are reproduced using a stochastic downscaling technique and a weather generator, "AWE-GEN". The generated time series of meteorological variables for the present climate and an ensemble of possible future climates serve as input to a newly developed physically-based eco-hydrological model "Tethys-Chloris". An application of the proposed methodology is realized reproducing the current (1961-2000) and multiple future (2081-2100) climates for the location of Tucson (Arizona). A general reduction of precipitation and a significant increase of air temperature are inferred. The eco-hydrological model is successively applied to detect changes in water recharge and vegetation dynamics for a desert shrub ecosystem, typical of the semi-arid climate of south Arizona. Results for the future climate account for uncertainties in the downscaling and are produced in terms of probability density functions. A comparison of control and future scenarios is discussed in terms of changes in the hydrological balance components, energy fluxes, and indices of vegetation productivity. An appreciable effect of climate change can be observed in metrics of vegetation performance. The negative impact on vegetation due to amplification of water stress in a warmer and dryer climate is offset by a positive effect of carbon dioxide augment. This implies a positive shift in plant capabilities to exploit water. Consequently, the plant water use efficiency and rain use efficiency are expected to increase. Interesting differences in the long-term vegetation productivity are also observed for the ensemble of future climates. The reduction of precipitation and the substantial maintenance of vegetation cover ultimately leads to the depletion of soil moisture and recharge to deeper layers. Such an outcome can affect the long-tem water availability in semi-arid systems and expose plants to more severe and frequent periods of stress.

  11. Positive future orientation as a mediator between traumatic events and mental health among children affected by HIV/AIDS in rural China.

    PubMed

    Zhang, Jintao; Zhao, Guoxiang; Li, Xiaoming; Hong, Yan; Fang, Xiaoyi; Barnett, Douglas; Lin, Xiuyun; Zhao, Junfeng; Zhang, Liying

    2009-12-01

    The current study was designed to explore the effect of future orientation in mediating the relationship between traumatic events and mental health in children affected by HIV/AIDS in rural China. Cross-sectional data were collected from 1221 children affected by HIV/AIDS (755 AIDS orphans and 466 vulnerable children). Future orientation among children was measured using three indicators (future expectation, hopefulness toward the future, and perceived control over the future). Measures of mental health consisted of depression, loneliness, and self-esteem. Children's experience of any traumatic events was measured using a modified version of the Life Incidence of Traumatic Events-Student Form. Mediation analysis was conducted using structural equation modeling (SEM) methods. Among the children surveyed, most of the traumatic indicators were negatively associated with future expectation, hopefulness, perceived control, and self-esteem, and positively associated with depression and loneliness. The SEM of mediation analysis demonstrated an adequate fit. Future orientation fully mediated the relationship between traumatic events and mental health and accounted for 67.9% of the total effect of traumatic events on mental health. Results of this study support the positive effect of future expectation in mediating the relationship between traumatic events and mental health among children affected by HIV/AIDS in China. Future mental health promotion and intervention efforts targeting children affected by HIV/AIDS should include components that can mitigate the negative impact of traumatic events on their lives. These components may aim to develop children's positive future expectations, increase their hopefulness toward the future, and improve their perceived control over the future.

  12. Social ecological factors associated with future orientation of children affected by parental HIV infection and AIDS.

    PubMed

    Lin, Xiuyun; Fang, Xiaoyi; Chi, Peilian; Heath, Melissa Allen; Li, Xiaoming; Chen, Wenrui

    2016-07-01

    From a social ecological perspective, this study examined the effects of stigma (societal level), trusting relationships with current caregivers (familial level), and self-esteem (individual level) on future orientation of children affected by HIV infection and AIDS. Comparing self-report data from 1221 children affected by parental HIV infection and AIDS and 404 unaffected children, affected children reported greater stigma and lower future orientation, trusting relationships, and self-esteem. Based on structural equation modeling, stigma experiences, trusting relationships, and self-esteem had direct effects on future orientation, with self-esteem and trusting relationships partially mediating the effect of stigma experiences on children's future orientation. Implications are discussed. © The Author(s) 2014.

  13. Large Field of View PIV Measurements of Air Entrainment by SLS SMAT Water Sound Suppression System

    NASA Astrophysics Data System (ADS)

    Stegmeir, Matthew; Pothos, Stamatios; Bissell, Dan

    2015-11-01

    Water-based sound suppressions systems have been used to reduce the acoustic impact of space vehicle launches. Water flows at a high rate during launch in order to suppress Engine Generated Acoustics and other potentially damaging sources of noise. For the Space Shuttle, peak flow rates exceeded 900,000 gallons per minute. Such large water flow rates have the potential to induce substantial entrainment of the surrounding air, affecting the launch conditions and generating airflow around the launch vehicle. Validation testing is necessary to quantify this impact for future space launch systems. In this study, PIV measurements were performed to map the flow field above the SMAT sub-scale launch vehicle scaled launch stand. Air entrainment effects generated by a water-based sound suppression system were studied. Mean and fluctuating fluid velocities were mapped up to 1m above the test stand deck and compared to simulation results. Measurements performed with NASA MSFC.

  14. Advanced microgrid design and analysis for forward operating bases

    NASA Astrophysics Data System (ADS)

    Reasoner, Jonathan

    This thesis takes a holistic approach in creating an improved electric power generation system for a forward operating base (FOB) in the future through the design of an isolated microgrid. After an extensive literature search, this thesis found a need for drastic improvement of the FOB power system. A thorough design process analyzed FOB demand, researched demand side management improvements, evaluated various generation sources and energy storage options, and performed a HOMERRTM discrete optimization to determine the best microgrid design. Further sensitivity analysis was performed to see how changing parameters would affect the outcome. Lastly, this research also looks at some of the challenges which are associated with incorporating a design which relies heavily on inverter-based generation sources, and gives possible solutions to help make a renewable energy powered microgrid a reality. While this thesis uses a FOB as the case study, the process and discussion can be adapted to aide in the design of an off-grid small-scale power grid which utilizes high-penetration levels of renewable energy.

  15. Twistact techno-economic analysis for wind turbine applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naughton, Brian Thomas; Koplow, Jeffrey P.; Vanness, Justin William

    This report is the final deliverable for a techno-economic analysis of the Sandia National Laboratories-developed Twistact rotary electrical conductor. The U.S. Department of Energy Wind Energy Technologies Office supported a team of researchers at Sandia National Laboratories and the National Renewable Energy Laboratory to evaluate the potential of the Twistact technology to serve as a viable replacement to rare-earth materials used in permanent-magnet direct-drive wind turbine generators. This report compares three detailed generator models, two as baseline technologies and a third incorporating the Twistact technology. These models are then used to calculate the levelized cost of energy (LCOE) for threemore » comparable offshore wind plants using the three generator topologies. The National Renewable Energy Laboratorys techno-economic analysis indicates that Twistact technology can be used to design low-maintenance, brush-free, and wire-wound (instead of rare-earth-element (REE) permanent-magnet), direct-drive wind turbine generators without a significant change in LCOE and generation efficiency. Twistact technology acts as a hedge against sources of uncertain costs for direct-drive generators. On the one hand, for permanent-magnet direct-drive (PMDD) generators, the long-term price of REEs may increase due to increases in future demand, from electric vehicles and other technologies, whereas the supply remains limited and geographically concentrated. The potential higher prices in the future adversely affect the cost competitiveness of PMDD generators and may thwart industry investment in the development of the technology for wind turbine applications. Twistact technology can eliminate industry risk around the uncertainty of REE price and availability. Traditional wire-wound direct-drive generators experience reliability issues and higher maintenance costs because of the wear on the contact brushes necessary for field excitation. The brushes experience significant wear and require regular replacement over the lifetime of operation (on the order of a year or potentially less time). For offshore wind applications, the focus of this study, maintenance costs are higher than typical land-based systems due to the added time it often requires to access the site for repairs. Thus, eliminating the need for regular brush replacements reduces the uncertain costs and energy production losses associated with maintenance and replacement of contact brushes. Further, Twistact has a relatively negligible impact on LCOE but hedges risks associated with the current dominant designs for direct-drive generators for PMDD REE price volatility and wire-wound generator contact brush reliability. A final section looks at the overall supply chain of REEs considering the supply-side and demand-side drivers that encourage the risk of depending on these materials to support future deployment of not only wind energy but other industries as well.« less

  16. Future health-related behavioral intention formation: the role of affect and cognition.

    PubMed

    Richardson, Jessica G; Trafimow, David; Madson, Laura

    2012-01-01

    This study investigated the differential contribution of affect and cognition to behavioral intention formation during pursuit of future health-related goals. Cognitive evaluations, affective evaluations and behavioral intentions were measured for each of 32 health-related behaviors. The timeframes of the cognitive/affective measures and the behavioral intention measure were varied between current and future timeframes creating four different conditions. Within-participants correlations between affect and intentions and cognition and intentions were calculated to determine the contribution of each factor to behavioral intention formation in the different timeframes. Results did not support the hypothesis that a shift from a reliance on affect to a reliance on cognition would occur as temporal distance increased. Within-participants analyses revealed a decrease in the contribution of cognition to behavioral intention formation when forming attitudes in the future condition.

  17. A Pilot Study of Women’s Affective Responses to Common and Uncommon Forms of Aerobic Exercise

    PubMed Central

    Stevens, Courtney J.; Smith, Jane Ellen; Bryan, Angela D.

    2015-01-01

    Objective To test the extent to which participants exposed to an uncommon versus common exercise stimulus would result in more favourable affect at post task. Design Experimental design. Participants, (N = 120) American women aged 18–45 years, were randomly assigned to complete 30-minutes of either the uncommon (HOOP; n = 58) or common (WALK; n = 62) exercise stimulus. Main Outcome Measures Self-reported affect and intentions for future exercise were measured before and after the 30-minute exercise bout. Results Analyses of covariance (ANCOVA) were run to compare post-task affect across the HOOP and WALK conditions. At post-task, participants assigned to HOOP reported more positively valenced affect, higher ratings of positive activated affect, lower ratings of negative deactivated affect, and stronger intentions for future aerobic exercise compared to participants assigned to WALK. Conclusions Participants who completed an uncommon bout of aerobic exercise (HOOP) reported more favourable affect post-exercise, as well as stronger intentions for future exercise, compared to participants who completed a common bout of aerobic exercise (WALK). Future work using a longitudinal design is needed to understand the relationships between familiarity with an exercise stimulus, affective responses to exercise, motivation for future exercise behaviour, and exercise maintenance over time. PMID:26394246

  18. Formaldehyde Concentration Dynamics of the International Space Station Cabin Atmosphere

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    2005-01-01

    Formaldehyde presents a significant challenge to maintaining cabin air quality on board crewed spacecraft. Generation sources include offgassing from a variety of non-metallic materials as well as human metabolism. Because generation sources are pervasive and human health can be affected by continual exposure to low concentrations, toxicology and air quality control engineering experts jointly identified formaldehyde as a key compound to be monitored as part the International Space Station's (ISS) environmental health monitoring and maintenance program. Data acquired from in-flight air quality monitoring methods are the basis for assessing the cabin environment's suitability for long-term habitation and monitoring the performance of passive and active controls that are in place to minimize crew exposure. Formaldehyde concentration trends and dynamics served in the ISS cabin atmosphere are reviewed implications to present and future flight operations discussed.

  19. Impact of climate change on future concentrated solar power (CSP) production

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Folini, Doris; Henschel, Florian

    2017-02-01

    Traditionally, for the planning and assessment of solar power plants, the amount of solar radiation incident on the Earth's surface is assumed to be invariable over the years. However, with changing climate and air pollution levels, solar resources may no longer be stable over time and undergo substantial decadal changes. Observational records covering several decades indeed confirm long-term changes in this quantity. In a previous study (Wild et al. 2015, Solar Energy)1 we examined how the latest generation of climate models (CMIP5) projects potential changes in surface solar radiation over the coming decades, and how this may affect, in combination with the expected greenhouse warming, future power output from photovoltaic (PV) systems. In the present complementary study, we use the CMIP5 model projections to estimate possible future changes in power output from Concentrated Solar Power (CSP) systems due to changing climate and air pollution levels up to the mid-21th century. The results indicate a potential for future increases in CSP production in many parts of the globe, with few exceptions such as the North of India and the irrelevant polar areas. Compared to the changes in PV production, the estimated future production changes by CSP are larger by a factor of 4.

  20. Interleukins and interleukin receptors in rheumatoid arthritis: Research, diagnostics and clinical implications

    PubMed Central

    Magyari, Lili; Varszegi, Dalma; Kovesdi, Erzsebet; Sarlos, Patricia; Farago, Bernadett; Javorhazy, Andras; Sumegi, Katalin; Banfai, Zsolt; Melegh, Bela

    2014-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease, resulting in a chronic, systemic inflammatory disorder. It may affect many tissues and organs, but it primarily affects the flexible joints. In clinical practice patient care generates many questions about diagnosis, prognosis, and treatment. It is challenging for health care specialists to keep up to date with the medical literature. This review summarizes the pathogenesis, the polymorphisms of interleukin and interleukin genes and the standard available and possible future immunologic targets for RA treatment. The identification of disease-associated interleukin and interleukin receptor genes can provide precious insight into the genetic variations prior to disease onset in order to identify the pathways important for RA pathogenesis. The knowledge of the complex genetic background may prove useful for developing novel therapies and making personalized medicine based on the individual’s genetics. PMID:25232528

  1. Moving beyond the current state of the internet

    NASA Astrophysics Data System (ADS)

    Chen, Edward S.; Davison, Daniel B.

    1997-06-01

    Whereas the Internet has been greatly publicized in the past few years, its effects on education are still largely unexplored. Here, we discuss the future of the Internet itself and the effect on education. Expanding educational and commercial requirements will result in improved bandwidth and connectivity. Larger address spaces will be required, and the next generation of Internet Protocols will provide the addressability required. The real question—how will all of these changes affect education—is explored here. We believe that Internet resources will be a superb supplement to education, but not replace either tutored learning or written texts.

  2. Child health in Syria: recognising the lasting effects of warfare on health.

    PubMed

    Devakumar, Delan; Birch, Marion; Rubenstein, Leonard S; Osrin, David; Sondorp, Egbert; Wells, Jonathan C K

    2015-01-01

    The war in Syria, now in its fourth year, is one of the bloodiest in recent times. The legacy of war includes damage to the health of children that can last for decades and affect future generations. In this article we discuss the effects of the war on Syria's children, highlighting the less documented longer-term effects. In addition to their present suffering, these children, and their own children, are likely to face further challenges as a result of the current conflict. This is essential to understand both for effective interventions and for ethical reasons.

  3. System monitoring feedback in cinemas and harvesting energy of the air conditioning condenser

    NASA Astrophysics Data System (ADS)

    Pop, P. P.; Pop-Vadean, A.; Barz, C.; Latinovic, T.; Chiver, O.

    2017-05-01

    Our article monitors the degree of emotional involvement of the audience in the action film in theaters by measuring the concentration of CO2. The software performs data processing obtained dispersion sensors and displays data during the film. The software will also trigger the start of the air conditioning condenser where we can get harvesting energy by installing a piezoelectric device. Useful energy can be recovered from various waste produced in cinema. The time lag between actions and changes in environmental systems determines that decisions made now will affect subsequent generations and the future of our environment.

  4. Perspectives on the future of the electric utility industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonn, B.; Schaffhauser, A.

    1994-04-01

    This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patternsmore » of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.« less

  5. Next generation sequencing in women affected by nonsyndromic premature ovarian failure displays new potential causative genes and mutations.

    PubMed

    Fonseca, Dora Janeth; Patiño, Liliana Catherine; Suárez, Yohjana Carolina; de Jesús Rodríguez, Asid; Mateus, Heidi Eliana; Jiménez, Karen Marcela; Ortega-Recalde, Oscar; Díaz-Yamal, Ivonne; Laissue, Paul

    2015-07-01

    To identify new molecular actors involved in nonsyndromic premature ovarian failure (POF) etiology. This is a retrospective case-control cohort study. University research group and IVF medical center. Twelve women affected by nonsyndromic POF. The control group included 176 women whose menopause had occurred after age 50 and had no antecedents regarding gynecological disease. A further 345 women from the same ethnic origin (general population group) were also recruited to assess allele frequency for potentially deleterious sequence variants. Next generation sequencing (NGS), Sanger sequencing, and bioinformatics analysis. The complete coding regions of 70 candidate genes were massively sequenced, via NGS, in POF patients. Bioinformatics and genetics were used to confirm NGS results and to identify potential sequence variants related to the disease pathogenesis. We have identified mutations in two novel genes, ADAMTS19 and BMPR2, that are potentially related to POF origin. LHCGR mutations, which might have contributed to the phenotype, were also detected. We thus recommend NGS as a powerful tool for identifying new molecular actors in POF and for future diagnostic/prognostic purposes. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. Blue water scarcity and the economic impacts of future agricultural trade and demand

    NASA Astrophysics Data System (ADS)

    Schmitz, Christoph; Lotze-Campen, Hermann; Gerten, Dieter; Dietrich, Jan Philipp; Bodirsky, Benjamin; Biewald, Anne; Popp, Alexander

    2013-06-01

    An increasing demand for agricultural goods affects the pressure on global water resources over the coming decades. In order to quantify these effects, we have developed a new agroeconomic water scarcity indicator, considering explicitly economic processes in the agricultural system. The indicator is based on the water shadow price generated by an economic land use model linked to a global vegetation-hydrology model. Irrigation efficiency is implemented as a dynamic input depending on the level of economic development. We are able to simulate the heterogeneous distribution of water supply and agricultural water demand for irrigation through the spatially explicit representation of agricultural production. This allows in identifying regional hot spots of blue water scarcity and explicit shadow prices for water. We generate scenarios based on moderate policies regarding future trade liberalization and the control of livestock-based consumption, dependent on different population and gross domestic product (GDP) projections. Results indicate increased water scarcity in the future, especially in South Asia, the Middle East, and north Africa. In general, water shadow prices decrease with increasing liberalization, foremost in South Asia, Southeast Asia, and the Middle East. Policies to reduce livestock consumption in developed countries not only lower the domestic pressure on water but also alleviate water scarcity to a large extent in developing countries. It is shown that one of the two policy options would be insufficient for most regions to retain water scarcity in 2045 on levels comparable to 2005.

  7. 2025 California Demand Response Potential Study - Charting California’s Demand Response Future. Final Report on Phase 2 Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alstone, Peter; Potter, Jennifer; Piette, Mary Ann

    California’s legislative and regulatory goals for renewable energy are changing the power grid’s dynamics. Increased variable generation resource penetration connected to the bulk power system, as well as, distributed energy resources (DERs) connected to the distribution system affect the grid’s reliable operation over many different time scales (e.g., days to hours to minutes to seconds). As the state continues this transition, it will require careful planning to ensure resources with the right characteristics are available to meet changing grid management needs. Demand response (DR) has the potential to provide important resources for keeping the electricity grid stable and efficient, tomore » defer upgrades to generation, transmission and distribution systems, and to deliver customer economic benefits. This study estimates the potential size and cost of future DR resources for California’s three investor-owned utilities (IOUs): Pacific Gas and Electric Company (PG&E), Southern California Edison Company (SCE), and San Diego Gas & Electric Company (SDG&E). Our goal is to provide data-driven insights as the California Public Utilities Commission (CPUC) evaluates how to enhance DR’s role in meeting California’s resource planning needs and operational requirements. We address two fundamental questions: 1. What cost-competitive DR service types will meet California’s future grid needs as it moves towards clean energy and advanced infrastructure? 2. What is the size and cost of the expected resource base for the DR service types?« less

  8. The effect of interstellar absorption on measurements of the baryon acoustic peak in the Lyman α forest

    DOE PAGES

    Vadai, Yishay; Poznanski, Dovi; Baron, Dalya; ...

    2017-08-14

    In recent years, the autocorrelation of the hydrogen Lyman α forest has been used to observe the baryon acoustic peak at redshift 2 < z < 3.5 using tens of thousands of QSO spectra from the BOSS survey. However, the interstellar medium of the Milky Way introduces absorption lines into the spectrum of any extragalactic source. These lines, while weak and undetectable in a single BOSS spectrum, could potentially bias the cosmological signal. In order to examine this, we generate absorption line maps by stacking over a million spectra of galaxies and QSOs. Here, we find that the systematics introducedmore » are too small to affect the current accuracy of the baryon acoustic peak, but might be relevant to future surveys such as the Dark Energy Spectroscopic Instrument (DESI). We outline a method to account for this with future data sets.« less

  9. The effect of interstellar absorption on measurements of the baryon acoustic peak in the Lyman α forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vadai, Yishay; Poznanski, Dovi; Baron, Dalya

    In recent years, the autocorrelation of the hydrogen Lyman α forest has been used to observe the baryon acoustic peak at redshift 2 < z < 3.5 using tens of thousands of QSO spectra from the BOSS survey. However, the interstellar medium of the Milky Way introduces absorption lines into the spectrum of any extragalactic source. These lines, while weak and undetectable in a single BOSS spectrum, could potentially bias the cosmological signal. In order to examine this, we generate absorption line maps by stacking over a million spectra of galaxies and QSOs. Here, we find that the systematics introducedmore » are too small to affect the current accuracy of the baryon acoustic peak, but might be relevant to future surveys such as the Dark Energy Spectroscopic Instrument (DESI). We outline a method to account for this with future data sets.« less

  10. Wind farm and solar park effects on plant–soil carbon cycling: uncertain impacts of changes in ground-level microclimate

    PubMed Central

    Armstrong, Alona; Waldron, Susan; Whitaker, Jeanette; Ostle, Nicholas J

    2014-01-01

    Global energy demand is increasing as greenhouse gas driven climate change progresses, making renewable energy sources critical to future sustainable power provision. Land-based wind and solar electricity generation technologies are rapidly expanding, yet our understanding of their operational effects on biological carbon cycling in hosting ecosystems is limited. Wind turbines and photovoltaic panels can significantly change local ground-level climate by a magnitude that could affect the fundamental plant–soil processes that govern carbon dynamics. We believe that understanding the possible effects of changes in ground-level microclimates on these phenomena is crucial to reducing uncertainty of the true renewable energy carbon cost and to maximize beneficial effects. In this Opinions article, we examine the potential for the microclimatic effects of these land-based renewable energy sources to alter plant–soil carbon cycling, hypothesize likely effects and identify critical knowledge gaps for future carbon research. PMID:24132939

  11. Future potential distribution of the emerging amphibian chytrid fungus under anthropogenic climate change.

    PubMed

    Rödder, Dennis; Kielgast, Jos; Lötters, Stefan

    2010-11-01

    Anthropogenic climate change poses a major threat to global biodiversity with a potential to alter biological interactions at all spatial scales. Amphibians are the most threatened vertebrates and have been subject to increasing conservation attention over the past decade. A particular concern is the pandemic emergence of the parasitic chytrid fungus Batrachochytrium dendrobatidis, which has been identified as the cause of extremely rapid large-scale declines and species extinctions. Experimental and observational studies have demonstrated that the host-pathogen system is strongly influenced by climatic parameters and thereby potentially affected by climate change. Herein we project a species distribution model of the pathogen onto future climatic scenarios generated by the IPCC to examine their potential implications on the pandemic. Results suggest that predicted anthropogenic climate change may reduce the geographic range of B. dendrobatidis and its potential influence on amphibian biodiversity.

  12. Sensitivities and Tipping Points of Power System Operations to Fluctuations Caused by Water Availability and Fuel Prices

    NASA Astrophysics Data System (ADS)

    O'Connell, M.; Macknick, J.; Voisin, N.; Fu, T.

    2017-12-01

    The western US electric grid is highly dependent upon water resources for reliable operation. Hydropower and water-cooled thermoelectric technologies represent 67% of generating capacity in the western region of the US. While water resources provide a significant amount of generation and reliability for the grid, these same resources can represent vulnerabilities during times of drought or low flow conditions. A lack of water affects water-dependent technologies and can result in more expensive generators needing to run in order to meet electric grid demand, resulting in higher electricity prices and a higher cost to operate the grid. A companion study assesses the impact of changes in water availability and air temperatures on power operations by directly derating hydro and thermo-electric generators. In this study we assess the sensitivities and tipping points of water availability compared with higher fuel prices in electricity sector operations. We evaluate the impacts of varying electricity prices by modifying fuel prices for coal and natural gas. We then analyze the difference in simulation results between changes in fuel prices in combination with water availability and air temperature variability. We simulate three fuel price scenarios for a 2010 baseline scenario along with 100 historical and future hydro-climate conditions. We use the PLEXOS electricity production cost model to optimize power system dispatch and cost decisions under each combination of fuel price and water constraint. Some of the metrics evaluated are total production cost, generation type mix, emissions, transmission congestion, and reserve procurement. These metrics give insight to how strained the system is, how much flexibility it still has, and to what extent water resource availability or fuel prices drive changes in the electricity sector operations. This work will provide insights into current electricity operations as well as future cases of increased penetration of variable renewable generation technologies such as wind and solar.

  13. Village Level Tsunami Threat Maps for Tamil Nadu, SE Coast of India: Numerical Modeling Technique

    NASA Astrophysics Data System (ADS)

    MP, J.; Kulangara Madham Subrahmanian, D.; V, R. M.

    2014-12-01

    The Indian Ocean tsunami (IOT) devastated several countries of North Indian Ocean. India is one of the worst affected countries after Indonesia and Sri Lanka. In India, Tamil Nadu suffered maximum with fatalities exceeding 8,000 people. Historical records show that tsunami has invaded the shores of Tamil Nadu in the past and has made people realize that the tsunami threat looms over Tamil Nadu and it is necessary to evolve strategies for tsunami threat management. The IOT has brought to light that tsunami inundation and runup varied within short distances and for the disaster management for tsunami, large scale maps showing areas that are likely to be affected by future tsunami are identified. Therefore threat assessment for six villages including Mamallapuram (also called Mahabalipuram) which is famous for its rock-cut temples, from the northern part of Tamil Nadu state of India has been carried out and threat maps categorizing the coast into areas of different degree of threat are prepared. The threat was assessed by numerical modeling using TUNAMI N2 code considering different tsunamigenic sources along the Andaman - Sumatra trench. While GEBCO and C-Map data was used for bathymetry and for land elevation data was generated by RTK - GPS survey for a distance of 1 km from shore and SRTM for the inland areas. The model results show that in addition to the Sumatra source which generated the IOT in 2004, earthquakes originating in Car Nicobar and North Andaman can inflict more damage. The North Andaman source can generate a massive tsunami and an earthquake of magnitude more than Mw 9 can not only affect Tamil Nadu but also entire south east coast of India. The runup water level is used to demarcate the tsunami threat zones in the villages using GIS.

  14. Assessing future expectations and the two-dimensional model of affect in an Italian population.

    PubMed

    Corno, Giulia; Molinari, Guadalupe; Baños, Rosa Maria

    2017-03-01

    Future-directed thinking has been described as part of two underlying systems that integrate dimensions of affect, motivational systems, orientation to the future, and future expectations, which are initiated at the cognitive, affective, biological, behavioral, and motivational levels. The main aim of the present study is to test the two underlying frameworks model and explore future expectations in a general Italian-speaking population (N=345). Therefore, the second aim of the present paper is to confirm the factorial structure of the Subjective Probability Task (SPT; MacLeod et al., 1996), a questionnaire designed to assess specific positive and negative orientations towards the future. Results showed that the SPT has good psychometric properties and it is a reliable instrument to assess future-directed thinking. Moreover, our findings confirmed the role of future expectancies as cognitive correlates of depression and anxiety. Differently from previous studies (Clark and Watson, 1991; MacLeod et al., 1996), our results did not confirm that depression was characterized by low positive affect. We believe this paper contributes to the understanding of future expectancies and their relation with anxiety and depression, and will help to expand the availability of an instrument to assess future directed thinking. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  15. Structural changes in socio-affective networks: Multi-modal MRI findings in long-term meditation practitioners.

    PubMed

    Engen, Haakon G; Bernhardt, Boris C; Skottnik, Leon; Ricard, Matthieu; Singer, Tania

    2017-08-31

    Our goal was to assess the effects of long-term mental training in socio-affective skills on structural brain networks. We studied a group of long-term meditation practitioners (LTMs) who have focused on cultivating socio-affective skills using loving-kindness and compassion meditation for an average of 40k h, comparing these to meditation-naïve controls. To maximize homogeneity of prior practice, LTMs were included only if they had undergone extensive full-time meditation retreats in the same center. MRI-based cortical thickness analysis revealed increased thickness in the LTM cohort relative to meditation-native controls in fronto-insular cortices. To identify functional networks relevant for the generation of socio-affective states, structural imaging analysis were complemented by fMRI analysis in LTMs, showing amplitude increases during a loving-kindness meditation session relative to non-meditative rest in multiple prefrontal and insular regions bilaterally. Importantly, functional findings partially overlapped with regions of cortical thickness increases in the left ventrolateral prefrontal cortex and anterior insula, suggesting that these regions may play a central role in the generation of emotional states relevant for the meditative practice. Our multi-modal MRI approach revealed structural changes in LTMs who have cultivated loving-kindness and compassion for a significant period of their life in functional networks activated by these practices. These preliminary cross-sectional findings motivate future longitudinal work studying brain plasticity following the regular practice of skills aiming at enhancing human altruism and prosocial motivation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Associations of Affective Responses During Free-Living Physical Activity and Future Physical Activity Levels: an Ecological Momentary Assessment Study.

    PubMed

    Liao, Yue; Chou, Chih-Ping; Huh, Jimi; Leventhal, Adam; Dunton, Genevieve

    2017-08-01

    Affective response during physical activity may influence motivation to perform future physical activity behavior. However, affective response during physical activity is often assessed under controlled laboratory conditions. The current study used ecological momentary assessment (EMA) to capture affective responses during free-living physical activity performed by adults, and determined whether these affective responses predict future moderate-to-vigorous physical activity (MVPA) levels after 6 and 12 months. At baseline, electronic EMA surveys were randomly prompted across 4 days asking about current activities and affective states (e.g., happy, stressed, energetic, tired). Affective response during physical activity was operationalized as the level of positive or negative affect reported when concurrent physical activity (e.g., exercise or sports) was also reported. Data were available for 82 adults. Future levels of moderate-to-vigorous physical activity (MVPA) were measured using accelerometers, worn for seven consecutive days at 6 and 12 months after the baseline assessment. Feeling more energetic during physical activity was associated with performing more minutes of daily MVPA after both 6 and 12 months. Feeling less negative affect during physical activity was associated with engaging in more daily MVPA minutes after 12 months only. This study demonstrated how EMA can be used to capture affective responses during free-living physical activity. Results found that feelings more energetic and less negative during physical activity were associated with more future physical activity, suggesting that positive emotional benefits may reinforce behavior.

  17. Impact of future warming on winter chilling in Australia.

    PubMed

    Darbyshire, Rebecca; Webb, Leanne; Goodwin, Ian; Barlow, E W R

    2013-05-01

    Increases in temperature as a result of anthropogenically generated greenhouse gas (GHG) emissions are likely to impact key aspects of horticultural production. The potential effect of higher temperatures on fruit and nut trees' ability to break winter dormancy, which requires exposure to winter chilling temperatures, was considered. Three chill models (the 0-7.2°C, Modified Utah, and Dynamic models) were used to investigate changes in chill accumulation at 13 sites across Australia according to localised temperature change related to 1, 2 and 3°C increases in global average temperatures. This methodology avoids reliance on outcomes of future GHG emission pathways, which vary and are likely to change. Regional impacts and rates of decline in chilling differ among the chill models, with the 0-7.2°C model indicating the greatest reduction and the Dynamic model the slowest rate of decline. Elevated and high latitude eastern Australian sites were the least affected while the three more maritime, less elevated Western Australian locations were shown to bear the greatest impact from future warming.

  18. Contribution of the infrasound technology to characterize large scale atmospheric disturbances and impact on infrasound monitoring

    NASA Astrophysics Data System (ADS)

    Blanc, Elisabeth; Le Pichon, Alexis; Ceranna, Lars; Pilger, Christoph; Charlton Perez, Andrew; Smets, Pieter

    2016-04-01

    The International Monitoring System (IMS) developed for the verification of the Comprehensive nuclear-Test-Ban Treaty (CTBT) provides a unique global description of atmospheric disturbances generating infrasound such as extreme events (e.g. meteors, volcanoes, earthquakes, and severe weather) or human activity (e.g. explosions and supersonic airplanes). The analysis of the detected signals, recorded at global scales and over near 15 years at some stations, demonstrates that large-scale atmospheric disturbances strongly affect infrasound propagation. Their time scales vary from several tens of minutes to hours and days. Their effects are in average well resolved by the current model predictions; however, accurate spatial and temporal description is lacking in both weather and climate models. This study reviews recent results using the infrasound technology to characterize these large scale disturbances, including (i) wind fluctuations induced by gravity waves generating infrasound partial reflections and modifications of the infrasound waveguide, (ii) convection from thunderstorms and mountain waves generating gravity waves, (iii) stratospheric warming events which yield wind inversions in the stratosphere, (iv)planetary waves which control the global atmospheric circulation. Improved knowledge of these disturbances and assimilation in future models is an important objective of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project. This is essential in the context of the future verification of the CTBT as enhanced atmospheric models are necessary to assess the IMS network performance in higher resolution, reduce source location errors, and improve characterization methods.

  19. Quantifying the Opportunity Space for Future Electricity Generation: An Application to Offshore Wind Energy in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcy, Cara; Beiter, Philipp

    2016-09-01

    This report provides a high-level indicator of the future electricity demand for additional electric power generation that is not met by existing generation sources between 2015 and 2050. The indicator is applied to coastal regions, including the Great Lakes, to assess the regional opportunity space for offshore wind. An assessment of opportunity space can be a first step in determining the prospects and the system value of a technology. The metric provides the maximal amount of additional generation that is likely required to satisfy load in future years.

  20. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, M.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

  1. The High Plains Aquifer, USA: Groundwater development and sustainability

    USGS Publications Warehouse

    Dennehy, K.F.; Litke, D.W.; McMahon, P.B.

    2002-01-01

    The High Plains Aquifer, located in the United States, is one of the largest freshwater aquifers in the world and is threatened by continued decline in water levels and deteriorating water quality. Understanding the physical and cultural features of this area is essential to assessing the factors that affect this groundwater resource. About 27% of the irrigated land in the United States overlies this aquifer, which yields about 30% of the nation's groundwater used for irrigation of crops including wheat, corn, sorghum, cotton and alfalfa. In addition, the aquifer provides drinking water to 82% of the 2.3 million people who live within the aquifer boundary. The High Plains Aquifer has been significantly impacted by human activities. Groundwater withdrawals from the aquifer exceed recharge in many areas, resulting in substantial declines in groundwater level. Residents once believed that the aquifer was an unlimited resource of high-quality water, but they now face the prospect that much of the water may be gone in the near future. Also, agricultural chemicals are affecting the groundwater quality. Increasing concentrations of nitrate and salinity can first impair the use of the water for public supply and then affect its suitability for irrigation. A variety of technical and institutional measures are currently being planned and implemented across the aquifer area in an attempt to sustain this groundwater resource for future generations. However, because groundwater withdrawals remain high and water quality impairments are becoming more commonplace, the sustainability of the High Plains Aquifer is uncertain.

  2. Effect of temperature shock and inventory surprises on natural gas and heating oil futures returns.

    PubMed

    Hu, John Wei-Shan; Hu, Yi-Chung; Lin, Chien-Yu

    2014-01-01

    The aim of this paper is to examine the impact of temperature shock on both near-month and far-month natural gas and heating oil futures returns by extending the weather and storage models of the previous study. Several notable findings from the empirical studies are presented. First, the expected temperature shock significantly and positively affects both the near-month and far-month natural gas and heating oil futures returns. Next, significant temperature shock has effect on both the conditional mean and volatility of natural gas and heating oil prices. The results indicate that expected inventory surprises significantly and negatively affects the far-month natural gas futures returns. Moreover, volatility of natural gas futures returns is higher on Thursdays and that of near-month heating oil futures returns is higher on Wednesdays than other days. Finally, it is found that storage announcement for natural gas significantly affects near-month and far-month natural gas futures returns. Furthermore, both natural gas and heating oil futures returns are affected more by the weighted average temperature reported by multiple weather reporting stations than that reported by a single weather reporting station.

  3. Effect of Temperature Shock and Inventory Surprises on Natural Gas and Heating Oil Futures Returns

    PubMed Central

    Hu, John Wei-Shan; Lin, Chien-Yu

    2014-01-01

    The aim of this paper is to examine the impact of temperature shock on both near-month and far-month natural gas and heating oil futures returns by extending the weather and storage models of the previous study. Several notable findings from the empirical studies are presented. First, the expected temperature shock significantly and positively affects both the near-month and far-month natural gas and heating oil futures returns. Next, significant temperature shock has effect on both the conditional mean and volatility of natural gas and heating oil prices. The results indicate that expected inventory surprises significantly and negatively affects the far-month natural gas futures returns. Moreover, volatility of natural gas futures returns is higher on Thursdays and that of near-month heating oil futures returns is higher on Wednesdays than other days. Finally, it is found that storage announcement for natural gas significantly affects near-month and far-month natural gas futures returns. Furthermore, both natural gas and heating oil futures returns are affected more by the weighted average temperature reported by multiple weather reporting stations than that reported by a single weather reporting station. PMID:25133233

  4. Buildings of the Future Scoping Study: A Framework for Vision Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Goins, John D.

    2015-02-01

    The Buildings of the Future Scoping Study, funded by the U.S. Department of Energy (DOE) Building Technologies Office, seeks to develop a vision for what U.S. mainstream commercial and residential buildings could become in 100 years. This effort is not intended to predict the future or develop a specific building design solution. Rather, it will explore future building attributes and offer possible pathways of future development. Whether we achieve a more sustainable built environment depends not just on technologies themselves, but on how effectively we envision the future and integrate these technologies in a balanced way that generates economic, social,more » and environmental value. A clear, compelling vision of future buildings will attract the right strategies, inspire innovation, and motivate action. This project will create a cross-disciplinary forum of thought leaders to share their views. The collective views will be integrated into a future building vision and published in September 2015. This report presents a research framework for the vision development effort based on a literature survey and gap analysis. This document has four objectives. First, it defines the project scope. Next, it identifies gaps in the existing visions and goals for buildings and discusses the possible reasons why some visions did not work out as hoped. Third, it proposes a framework to address those gaps in the vision development. Finally, it presents a plan for a series of panel discussions and interviews to explore a vision that mitigates problems with past building paradigms while addressing key areas that will affect buildings going forward.« less

  5. Simulation of Smart Home Activity Datasets

    PubMed Central

    Synnott, Jonathan; Nugent, Chris; Jeffers, Paul

    2015-01-01

    A globally ageing population is resulting in an increased prevalence of chronic conditions which affect older adults. Such conditions require long-term care and management to maximize quality of life, placing an increasing strain on healthcare resources. Intelligent environments such as smart homes facilitate long-term monitoring of activities in the home through the use of sensor technology. Access to sensor datasets is necessary for the development of novel activity monitoring and recognition approaches. Access to such datasets is limited due to issues such as sensor cost, availability and deployment time. The use of simulated environments and sensors may address these issues and facilitate the generation of comprehensive datasets. This paper provides a review of existing approaches for the generation of simulated smart home activity datasets, including model-based approaches and interactive approaches which implement virtual sensors, environments and avatars. The paper also provides recommendation for future work in intelligent environment simulation. PMID:26087371

  6. Simulation of Smart Home Activity Datasets.

    PubMed

    Synnott, Jonathan; Nugent, Chris; Jeffers, Paul

    2015-06-16

    A globally ageing population is resulting in an increased prevalence of chronic conditions which affect older adults. Such conditions require long-term care and management to maximize quality of life, placing an increasing strain on healthcare resources. Intelligent environments such as smart homes facilitate long-term monitoring of activities in the home through the use of sensor technology. Access to sensor datasets is necessary for the development of novel activity monitoring and recognition approaches. Access to such datasets is limited due to issues such as sensor cost, availability and deployment time. The use of simulated environments and sensors may address these issues and facilitate the generation of comprehensive datasets. This paper provides a review of existing approaches for the generation of simulated smart home activity datasets, including model-based approaches and interactive approaches which implement virtual sensors, environments and avatars. The paper also provides recommendation for future work in intelligent environment simulation.

  7. "Culture" and the intergenerational transmission of poverty: the prevention paradox.

    PubMed

    Ludwig, Jens; Mayer, Susan

    2006-01-01

    Many U.S. policymakers support changing the "culture" of poor parents to encourage marriage, work, and religion as a means to end the intergenerational transmission of poverty. In this article Jens Ludwig and Susan Mayer review and evaluate research on how parental work, marriage, and religion affect children's socioeconomic status as adults, as well as on the likelihood that changing these indicators of parental behavior will reduce poverty in the next generation. They conclude that even if policymakers were able to ensure that all children had married, working, and religious parents, the result would be a far smaller reduction in poverty among the children's generation than many people believe. The explanation for this "poverty-prevention paradox," say Ludwig and Mayer, is that the poverty rate in the children's generation depends not only on how many poor children grow up to be poor adults, but also on how many nonpoor children grow up to be poor adults. Reducing the chances that poor children become poor adults will dramatically lower future poverty rates only if most poor adults begin life as poor children. But most poor adults grow up as nonpoor children in the type of "pro-social" households that policymakers are pushing to attain. Moreover, little good evidence supports the idea that such parental behaviors as marriage, work, and religious adherence have strong causal effects on children's long-term economic success. The authors argue that encouraging positive social behaviors in the parents of poor children is a worthwhile goal in its own right. But they stress that policymakers should recognize the limits of this strategy for reducing poverty among future generations. There may be no substitute for a system of social insurance and income transfers for those children who do wind up poor as adults.

  8. Climate change impacts on thermoelectric-power generation in the United States

    NASA Astrophysics Data System (ADS)

    Liu, L.

    2015-12-01

    Thermoelectric-power generation accounts for more than 70% of the total electricity generation in the United States, which requires large amounts of water for cooling purposes. Water withdrawals for thermoelectric-power generation accounted for 45% of total water use in the United States in 2010. Across the country, water demand from power plants is increasing due to pressures from growing populations and other needs, and is straining existing water resources. Moreover, temperature exceedance in receiving waters has increasingly caused power plants shut downs across parts of the country. Thermoelectric power is vulnerable to climate change owing to the combined effects of lower summer river flows and higher receiving water temperatures. In addition, the efficiency of production is reduced as air temperature rises, which propagates to more unfulfilled power demand during peak seasons. Therefore, a holistic modeling framework of water-energy-climate for the contiguous U.S. is presented here to quantify thermal output from power plants and estimate water use and energy production fluctuations due to ambient climate as well as environmental regulations. The model is calibrated on a plant-by-plant basis for year 2010 and 2011 using the available power plant inventory from the Energy Information Administration (EIA). Simulations were carried out for years 2012 and 2013, and results show moderate improvements in capturing thermal output variabilities after calibration. Future power plant operations under scenarios featuring different climate and regulatory settings were investigated. Results demonstrate the interplay among water, energy and climate, and that future changes in climate and socioeconomics significantly affect power plant operations, which may provide insights to climate change mitigation considerations and energy decisions.

  9. The clinical content of preconception care: genetics and genomics.

    PubMed

    Solomon, Benjamin D; Jack, Brian W; Feero, W Gregory

    2008-12-01

    The prevalence of paternal and maternal genetic conditions that affect pregnancy varies according to many factors that include parental age, medical history, and family history. Although some genetic conditions that affect pregnancy are identified easily early in life, other conditions are not and may require additional diagnostic testing. A complete 3-generation family medical history that includes ethnicity information about both sides of the family is arguably the single best genetic "test" that is applicable to preconception care. Assessment of genetic risk by an experienced professional has been shown to improve the detection rate of identifiable risk factors. Learning about possible genetic issues in the preconception period is ideal, because knowledge permits patients to make informed reproductive decisions. Options that are available to couples before conception include adoption, surrogacy, use of donor sperm, in vitro fertilization after preimplantation genetic diagnosis, and avoidance of pregnancy. Future technologic advances will increase the choices that are available to couples.

  10. The Clinical Content of Preconception Care: Genetics and Genomics

    PubMed Central

    SOLOMON, Benjamin D.; JACK, Brian; FEERO, W. Gregory

    2008-01-01

    The prevalence of paternal and maternal genetic conditions that affect pregnancy varies according to many factors, including parental age, medical history, and family history. While some genetic conditions that affect pregnancy are easily identified early in life, others are not and may require additional diagnostic testing. A complete three-generation family medical history that includes ethnicity information about both sides of the family is arguably the single best genetic “test” applicable to preconception care. Assessment of genetic risk by an experienced professional has been shown to improve the detection rate of identifiable risk factors. Learning about possible genetic issues in the pre-conception period is ideal, as knowledge permits patients to make informed reproductive decisions. Options available to couples before conception include adoption, surrogacy, use of donor sperm, in vitro fertilization after pre-implantation genetic diagnosis, and avoidance of pregnancy. Future technological advances will increase the choices available to couples. PMID:19081428

  11. The evolutionary and ecological consequences of animal social networks: emerging issues.

    PubMed

    Kurvers, Ralf H J M; Krause, Jens; Croft, Darren P; Wilson, Alexander D M; Wolf, Max

    2014-06-01

    The first generation of research on animal social networks was primarily aimed at introducing the concept of social networks to the fields of animal behaviour and behavioural ecology. More recently, a diverse body of evidence has shown that social fine structure matters on a broader scale than initially expected, affecting many key ecological and evolutionary processes. Here, we review this development. We discuss the effects of social network structure on evolutionary dynamics (genetic drift, fixation probabilities, and frequency-dependent selection) and social evolution (cooperation and between-individual behavioural differences). We discuss how social network structure can affect important coevolutionary processes (host-pathogen interactions and mutualisms) and population stability. We also discuss the potentially important, but poorly studied, role of social network structure on dispersal and invasion. Throughout, we highlight important areas for future research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Effect of morphological fin curl on the swimming performance and station-holding ability of juvenile shovelnose sturgeon

    USGS Publications Warehouse

    Deslauriers, David; Johnston, Ryan; Chipps, Steven R.

    2016-01-01

    We assessed the effect of fin-curl on the swimming and station-holding ability of juvenile shovelnose sturgeon Scaphirhynchus platorynchus (mean fork length = 17 cm; mean weight = 16 g; n = 21) using a critical swimming speed test performed in a small swim chamber (90 L) at 20°C. We quantified fin-curl severity using the pectoral fin index. Results showed a positive relationship between pectoral fin index and critical swimming speed indicative of reduced swimming performance displayed by fish afflicted with a pectoral fin index < 8%. Fin-curl severity, however, did not affect the station-holding ability of individual fish. Rather, fish affected with severe fin-curl were likely unable to use their pectoral fins to position their body adequately in the water column, which led to the early onset of fatigue. Results generated from this study should serve as an important consideration for future stocking practices.

  13. Poverty and inequity in adolescent health care.

    PubMed

    Girard, Gustavo A

    2009-12-01

    Although poverty is not a new phenomenon, currently it has peculiar characteristics: globalization, inequity, new features in education, exclusion, gender inequalities, marginalization of native peoples and migrations, difficulties found by different sectors to have access to technology, and unemployment. These characteristics are seen not only in countries considered to be developing nations, but affect the whole world. The present international financial crisis, this time originating in industrialized countries, represents an aggravating factor, the consequences of which are still difficult to estimate. It has a particular impact on adolescents and young people in terms of health as a whole, mortality rates, violence, nutrition, reproductive health, HIV/AIDS, substance abuse, mental health, and disabilities, all being aggravated by the difficulties of access to ap propriate health services. Social capital is seriously affected, and this entails a strong and deleterious impact not only on present generations but also on future ones. It is a challenge that cannot be ignored.

  14. Automatic optimism: the affective basis of judgments about the likelihood of future events.

    PubMed

    Lench, Heather C

    2009-05-01

    People generally judge that the future will be consistent with their desires, but the reason for this desirability bias is unclear. This investigation examined whether affective reactions associated with future events are the mechanism through which desires influence likelihood judgments. In 4 studies, affective reactions were manipulated for initially neutral events. Compared with a neutral condition, events associated with positive reactions were judged as likely to occur, and events associated with negative reactions were judged as unlikely to occur. Desirability biases were reduced when participants could misattribute affective reactions to a source other than future events, and the relationship between affective reactions and judgments was influenced when approach and avoidance motivations were independently manipulated. Together, these findings demonstrate that positive and negative affective reactions to potential events cause the desirability bias in likelihood judgments and suggest that this effect occurs because of a tendency to approach positive possibilities and avoid negative possibilities. (c) 2009 APA, all rights reserved.

  15. OpenSHS: Open Smart Home Simulator.

    PubMed

    Alshammari, Nasser; Alshammari, Talal; Sedky, Mohamed; Champion, Justin; Bauer, Carolin

    2017-05-02

    This paper develops a new hybrid, open-source, cross-platform 3D smart home simulator, OpenSHS, for dataset generation. OpenSHS offers an opportunity for researchers in the field of the Internet of Things (IoT) and machine learning to test and evaluate their models. Following a hybrid approach, OpenSHS combines advantages from both interactive and model-based approaches. This approach reduces the time and efforts required to generate simulated smart home datasets. We have designed a replication algorithm for extending and expanding a dataset. A small sample dataset produced, by OpenSHS, can be extended without affecting the logical order of the events. The replication provides a solution for generating large representative smart home datasets. We have built an extensible library of smart devices that facilitates the simulation of current and future smart home environments. Our tool divides the dataset generation process into three distinct phases: first design: the researcher designs the initial virtual environment by building the home, importing smart devices and creating contexts; second, simulation: the participant simulates his/her context-specific events; and third, aggregation: the researcher applies the replication algorithm to generate the final dataset. We conducted a study to assess the ease of use of our tool on the System Usability Scale (SUS).

  16. OpenSHS: Open Smart Home Simulator

    PubMed Central

    Alshammari, Nasser; Alshammari, Talal; Sedky, Mohamed; Champion, Justin; Bauer, Carolin

    2017-01-01

    This paper develops a new hybrid, open-source, cross-platform 3D smart home simulator, OpenSHS, for dataset generation. OpenSHS offers an opportunity for researchers in the field of the Internet of Things (IoT) and machine learning to test and evaluate their models. Following a hybrid approach, OpenSHS combines advantages from both interactive and model-based approaches. This approach reduces the time and efforts required to generate simulated smart home datasets. We have designed a replication algorithm for extending and expanding a dataset. A small sample dataset produced, by OpenSHS, can be extended without affecting the logical order of the events. The replication provides a solution for generating large representative smart home datasets. We have built an extensible library of smart devices that facilitates the simulation of current and future smart home environments. Our tool divides the dataset generation process into three distinct phases: first design: the researcher designs the initial virtual environment by building the home, importing smart devices and creating contexts; second, simulation: the participant simulates his/her context-specific events; and third, aggregation: the researcher applies the replication algorithm to generate the final dataset. We conducted a study to assess the ease of use of our tool on the System Usability Scale (SUS). PMID:28468330

  17. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, C.; Bain, R.; Chapman, J.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less

  18. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, Chad; Bain, Richard; Chapman, Jamie

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/« less

  19. Donor Conception and "Passing," or; Why Australian Parents of Donor-Conceived Children Want Donors Who Look Like Them.

    PubMed

    Wong, Karen-Anne

    2017-03-01

    This article explores the processes through which Australian recipients select unknown donors for use in assisted reproductive technologies and speculates on how those processes may affect the future life of the donor-conceived person. I will suggest that trust is an integral part of the exchange between donors, recipients, and gamete agencies in donor conception and heavily informs concepts of relatedness, race, ethnicity, kinship, class, and visibility. The decision to be transparent (or not) about a child's genetic parentage affects recipient parents' choices of donor, about who is allowed to "know" children's genetic backgrounds, and how important it is to be able to "pass" as an unassisted conception. In this way, recipients must trust the process, institutions, and individuals involved in their treatment, as well as place trust in the future they imagine for their child. The current market for donor gametes reproduces normative conceptions of the nuclear family, kinship, and relatedness by facilitating "matching" donors to recipients by phenotype and cultural affinities. Recipient parents who choose not to prioritize "matching," and actively disclose the process of children's conceptions, may embark on a project of queering heteronormative family structures and place great trust in both their own children and changing social attitudes to reduce stigma and generate acceptance for non-traditional families.

  20. Constraints and consequences of reducing small scale structure via large dark matter-neutrino interactions

    DOE PAGES

    Bertoni, Bridget; Ipek, Seyda; McKeen, David; ...

    2015-04-30

    Here, cold dark matter explains a wide range of data on cosmological scales. However, there has been a steady accumulation of evidence for discrepancies between simulations and observations at scales smaller than galaxy clusters. One promising way to affect structure formation on small scales is a relatively strong coupling of dark matter to neutrinos. We construct an experimentally viable, simple, renormalizable model with new interactions between neutrinos and dark matter and provide the first discussion of how these new dark matter-neutrino interactions affect neutrino phenomenology. We show that addressing the small scale structure problems requires asymmetric dark matter with amore » mass that is tens of MeV. Generating a sufficiently large dark matter-neutrino coupling requires a new heavy neutrino with a mass around 100 MeV. The heavy neutrino is mostly sterile but has a substantial τ neutrino component, while the three nearly massless neutrinos are partly sterile. This model can be tested by future astrophysical, particle physics, and neutrino oscillation data. Promising signatures of this model include alterations to the neutrino energy spectrum and flavor content observed from a future nearby supernova, anomalous matter effects in neutrino oscillations, and a component of the τ neutrino with mass around 100 MeV.« less

  1. Effect of prenatal programming on heifer development.

    PubMed

    Funston, Richard N; Summers, Adam F

    2013-11-01

    In beef cattle, the main factors influencing nutrient partitioning between the dam and fetus include age of the dam, number of fetuses, production demand, and environmental stress. These factors play a critical role in programming the fetus for its future environment and available resources. Fetal programming reportedly affects neonatal mortality and morbidity, postnatal growth rate, body composition, health, and reproduction. Two main mechanisms responsible for fetal programming include DNA methylation and histone modifications. Alterations in the genome can be passed through multiple generations. Maternal environment (nutrition, age, physiologic status) can program progeny heifer growth and reproductive performance. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. A sunny future: expert elicitation of China's solar photovoltaic technologies

    NASA Astrophysics Data System (ADS)

    Lam, Long T.; Branstetter, Lee; Azevedo, Inês L.

    2018-03-01

    China has emerged as the global manufacturing center for solar photovoltaic (PV) products. Chinese firms have entered all stages of the supply chain, producing most of the installed solar modules around the world. Meanwhile, production costs are at record lows. The decisions that Chinese solar producers make today will influence the path for the solar industry and its role towards de-carbonization of global energy systems in the years to come. However, to date, there have been no assessments of the future costs and efficiency of solar PV systems produced by the Chinese PV industry. We perform an expert elicitation to assess the technological and non-technological factors that led to the success of China’s silicon PV industry as well as likely future costs and performance. Experts evaluated key metrics such as efficiency, costs, and commercial viability of 17 silicon and non-silicon solar PV technologies by 2030. Silicon-based technologies will continue to be the mainstream product for large-scale electricity generation application in the near future, with module efficiency reaching as high as 23% and production cost as low as 0.24/W. The levelized cost of electricity for solar will be around 34/MWh, allowing solar PV to be competitive with traditional energy resources like coal. The industry’s future developments may be affected by overinvestment, overcapacity, and singular short-term focus.

  3. The impact of future climate on historic interiors.

    PubMed

    Lankester, Paul; Brimblecombe, Peter

    2012-02-15

    The socio-economic significance of climate change is widely recognised. However, its potential to affect our cultural heritage has not been discussed in detail (i.e. not explicit in IPCC 4) even though the cultural impacts of future outdoor climate have been the focus of some European Commission projects (e.g. NOAH'S ARK) and World Heritage Centre reports. Recently there have been a few projects that have examined the changing environmental threats to tangible heritage indoors (e.g. Preparing Historic Collections for Climate Change and Climate for Culture). Here we predict future indoor temperature and humidity, and damage arising from changes to climate in historic rooms in Southern England with little climate control, using simple building simulations coupled with high resolution (~5 km) climate predictions. The calculations suggest an increase in indoor temperature over the next century that is slightly less than that outdoors. Annual relative humidity shows little change, but the seasonal cycles suggest drier summers and slightly damper winters indoors. Damage from mould growth and pests is likely to increase in the future, while humidity driven dimensional change to materials (e.g. wood) should decrease somewhat. The results allow collection managers to prepare for the impact of long-term climate change, putting strategic measures in place to prevent increased damage, and thus preserve our heritage for future generations. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Blueprint for Action: Visioning Summit on the Future of the Workforce in Pediatrics.

    PubMed

    Sectish, Theodore C; Hay, William W; Mahan, John D; Mendoza, Fernando S; Spector, Nancy D; Stanton, Bonita; Szilagyi, Peter G; Turner, Teri L; Walker, Leslie R; Slaw, Kenneth

    2015-07-01

    The Federation of Pediatric Organizations engaged members of the pediatric community in an 18-month process to envision the future of the workforce in pediatrics, culminating in a Visioning Summit on the Future of the Workforce in Pediatrics. This article documents the planning process and methods used. Four working groups were based on the 4 domains that are likely to affect the future workforce: Child Health Research and Training, Diversity and Inclusion, Gender and Generations, and Pediatric Training Along the Continuum. These groups identified the issues and trends and prioritized their recommendations. Before the summit, 5 key megatrends cutting across all domains were identified:1. Aligning Education to the Emerging Health Needs of Children and Families 2. Promoting Future Support for Research Training and for Child Health Research 3. Striving Toward Mastery Within the Profession 4. Aligning and Optimizing Pediatric Practice in a Changing Health Care Delivery System 5. Taking Advantage of the Changing Demographics and Expertise of the Pediatric Workforce At the Visioning Summit, we assembled members of each of the working groups, the Federation of Pediatric Organizations Board of Directors, and several invited guests to discuss the 5 megatrends and develop the vision, solutions, and actions for each megatrend. Based on this discussion, we offer 10 recommendations for the field of pediatrics and its leading organizations to consider taking action. Copyright © 2015 by the American Academy of Pediatrics.

  5. A happier and less sinister past, a more hedonistic and less fatalistic present and a more structured future: time perspective and well-being.

    PubMed

    Sailer, Uta; Rosenberg, Patricia; Nima, Ali Al; Gamble, Amelie; Gärling, Tommy; Archer, Trevor; Garcia, Danilo

    2014-01-01

    Background. Previous studies have established a link between how people relate to their past, present, and future (i.e., time perspective) and subjective well-being (i.e., life satisfaction, positive and negative affect). Time perspective comprises five dimensions: Past Positive, Past Negative, Present Hedonistic, Present Fatalistic, and Future. Life satisfaction can also be evaluated in relation to different time frames. Moreover, approach related positive affect is associated to a different concept of well-being labeled psychological well-being. In the present study we extend previous findings by investigating the effect of time perspective on the time frame of evaluations of life satisfaction (past, present, future) and by investigating the relationship between time perspective and psychological well-being. Method. Questionnaires on time perspective (Zimbardo's Time Perspective Inventory), temporal life satisfaction (Temporal Satisfaction with Life Scale), affect (Positive Affect and Negative Affect Schedule), and psychological well-being (Scales of Psychological Well-Being-short version) were answered by 453 individuals. Two different structural equation models were tested, one of the relationship between time perspective and temporal life satisfaction, and the other of the relationship between time perspective, affect and psychological well-being. Results. Time perspective affected life satisfaction depending on the time scale on which it was evaluated-memory of a negative past influenced life satisfaction in all time frames, and a positive view of the past influenced both past and future life satisfaction. Moreover, less rumination about past negative events (i.e., low score on Past Negative), the tendency to take risks in the present to achieve happy feelings and/or avoid boredom (i.e., high scores on Present Hedonistic), and a less hopeless and pessimistic view about the present (low scores on Present Fatalistic) were associated with higher levels of psychological well-being and positive affect. These same time perspective dimensions were associated with lower levels of negative affect. The Future time perspective dimension (i.e., approaching life with self-control, punctuality, and planning for the future) was associated with both psychological well-being and positive affect. Conclusions. High levels of both subjective and psychological well-being are related to a happier and a less sinister past, a more hedonistic and less fatalistic present, as well as to a more structured future.

  6. A happier and less sinister past, a more hedonistic and less fatalistic present and a more structured future: time perspective and well-being

    PubMed Central

    Sailer, Uta; Rosenberg, Patricia; Nima, Ali Al; Gamble, Amelie; Gärling, Tommy; Archer, Trevor

    2014-01-01

    Background. Previous studies have established a link between how people relate to their past, present, and future (i.e., time perspective) and subjective well-being (i.e., life satisfaction, positive and negative affect). Time perspective comprises five dimensions: Past Positive, Past Negative, Present Hedonistic, Present Fatalistic, and Future. Life satisfaction can also be evaluated in relation to different time frames. Moreover, approach related positive affect is associated to a different concept of well-being labeled psychological well-being. In the present study we extend previous findings by investigating the effect of time perspective on the time frame of evaluations of life satisfaction (past, present, future) and by investigating the relationship between time perspective and psychological well-being. Method. Questionnaires on time perspective (Zimbardo’s Time Perspective Inventory), temporal life satisfaction (Temporal Satisfaction with Life Scale), affect (Positive Affect and Negative Affect Schedule), and psychological well-being (Scales of Psychological Well-Being—short version) were answered by 453 individuals. Two different structural equation models were tested, one of the relationship between time perspective and temporal life satisfaction, and the other of the relationship between time perspective, affect and psychological well-being. Results. Time perspective affected life satisfaction depending on the time scale on which it was evaluated—memory of a negative past influenced life satisfaction in all time frames, and a positive view of the past influenced both past and future life satisfaction. Moreover, less rumination about past negative events (i.e., low score on Past Negative), the tendency to take risks in the present to achieve happy feelings and/or avoid boredom (i.e., high scores on Present Hedonistic), and a less hopeless and pessimistic view about the present (low scores on Present Fatalistic) were associated with higher levels of psychological well-being and positive affect. These same time perspective dimensions were associated with lower levels of negative affect. The Future time perspective dimension (i.e., approaching life with self-control, punctuality, and planning for the future) was associated with both psychological well-being and positive affect. Conclusions. High levels of both subjective and psychological well-being are related to a happier and a less sinister past, a more hedonistic and less fatalistic present, as well as to a more structured future. PMID:24688878

  7. Preparing for what might happen: An episodic specificity induction impacts the generation of alternative future events.

    PubMed

    Jing, Helen G; Madore, Kevin P; Schacter, Daniel L

    2017-12-01

    A critical adaptive feature of future thinking involves the ability to generate alternative versions of possible future events. However, little is known about the nature of the processes that support this ability. Here we examined whether an episodic specificity induction - brief training in recollecting details of a recent experience that selectively impacts tasks that draw on episodic retrieval - (1) boosts alternative event generation and (2) changes one's initial perceptions of negative future events. In Experiment 1, an episodic specificity induction significantly increased the number of alternative positive outcomes that participants generated to a series of standardized negative events, compared with a control induction not focused on episodic specificity. We also observed larger decreases in the perceived plausibility and negativity of the original events in the specificity condition, where participants generated more alternative outcomes, relative to the control condition. In Experiment 2, we replicated and extended these findings using a series of personalized negative events. Our findings support the idea that episodic memory processes are involved in generating alternative outcomes to anticipated future events, and that boosting the number of alternative outcomes is related to subsequent changes in the perceived plausibility and valence of the original events, which may have implications for psychological well-being. Published by Elsevier B.V.

  8. Navigating Into the Future or Driven by the Past.

    PubMed

    Seligman, Martin E P; Railton, Peter; Baumeister, Roy F; Sripada, Chandra

    2013-03-01

    Prospection (Gilbert & Wilson, 2007), the representation of possible futures, is a ubiquitous feature of the human mind. Much psychological theory and practice, in contrast, has understood human action as determined by the past and viewed any such teleology (selection of action in light of goals) as a violation of natural law because the future cannot act on the present. Prospection involves no backward causation; rather, it is guidance not by the future itself but by present, evaluative representations of possible future states. These representations can be understood minimally as "If X, then Y" conditionals, and the process of prospection can be understood as the generation and evaluation of these conditionals. We review the history of the attempt to cast teleology out of science, culminating in the failures of behaviorism and psychoanalysis to account adequately for action without teleology. A wide range of evidence suggests that prospection is a central organizing feature of perception, cognition, affect, memory, motivation, and action. The authors speculate that prospection casts new light on why subjectivity is part of consciousness, what is "free" and "willing" in "free will," and on mental disorders and their treatment. Viewing behavior as driven by the past was a powerful framework that helped create scientific psychology, but accumulating evidence in a wide range of areas of research suggests a shift in framework, in which navigation into the future is seen as a core organizing principle of animal and human behavior. © The Author(s) 2013.

  9. Heritage, Image and Identity: The Evolution of USAF Leadership

    DTIC Science & Technology

    2011-02-16

    up-in-coming “ Generation Z ” (also known as the “Net or Digital Generation”), which is the most connected and high-tech generation ever seen. 40...for future RPA warrior leaders. 43 The USAF has already set the ground work to position “ Generation Z ” RPA pilots for future senior leadership

  10. 76 FR 23198 - Segregation of Lands-Renewable Energy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ... could be used to carry the power generated from a specific wind or solar energy ROW project, and the... included in a pending or future wind or solar energy generation right- of-way (ROW) application, or public lands identified by the BLM for a potential future wind or solar energy generation ROW authorization...

  11. Affective neuroscience of self-generated thought.

    PubMed

    Fox, Kieran C R; Andrews-Hanna, Jessica R; Mills, Caitlin; Dixon, Matthew L; Markovic, Jelena; Thompson, Evan; Christoff, Kalina

    2018-05-12

    Despite increasing scientific interest in self-generated thought-mental content largely independent of the immediate environment-there has yet to be any comprehensive synthesis of the subjective experience and neural correlates of affect in these forms of thinking. Here, we aim to develop an integrated affective neuroscience encompassing many forms of self-generated thought-normal and pathological, moderate and excessive, in waking and in sleep. In synthesizing existing literature on this topic, we reveal consistent findings pertaining to the prevalence, valence, and variability of emotion in self-generated thought, and highlight how these factors might interact with self-generated thought to influence general well-being. We integrate these psychological findings with recent neuroimaging research, bringing attention to the neural correlates of affect in self-generated thought. We show that affect in self-generated thought is prevalent, positively biased, highly variable (both within and across individuals), and consistently recruits many brain areas implicated in emotional processing, including the orbitofrontal cortex, amygdala, insula, and medial prefrontal cortex. Many factors modulate these typical psychological and neural patterns, however; the emerging affective neuroscience of self-generated thought must endeavor to link brain function and subjective experience in both everyday self-generated thought as well as its dysfunctions in mental illness. © 2018 New York Academy of Sciences.

  12. Looking forward: the effects of photographs on the qualities of future thinking.

    PubMed

    Bays, Rebecca B; Wellen, Brianna C M; Greenberg, Katherine S

    2018-04-01

    Future episodic thinking relies on the reconstruction of remembered experiences. Photographs provide one means of remembering, acting as a "cognitive springboard" for generating related memory qualities. We wondered whether photographs would also invite embellishment of future thought qualities, particularly in the presence (or absence) of associated memories. In two studies participants generated future events in familiar (associated memories) and novel (no associated memories) locations. Half of the participants viewed scene location photographs during event generation. All participants then imagined the events for one minute and completed a self-report measure of content qualities. Results of the current set of studies suggested that for novel locations, no differences in qualities emerged; however, for familiar locations, photographs did not enhance qualities and, in some cases, actually constrained perceptual (Experiments 1 and 2) and sensory (Experiment 1) detail ratings of future thoughts. Thus, photographs did not invite embellishment of future thought details.

  13. Episodic Future Thinking in Generalized Anxiety Disorder

    PubMed Central

    Wu, Jade Q.; Szpunar, Karl K.; Godovich, Sheina A.; Schacter, Daniel L.; Hofmann, Stefan G.

    2015-01-01

    Research on future-oriented cognition in generalized anxiety disorder (GAD) has primarily focused on worry, while less is known about the role of episodic future thinking (EFT), an imagery-based cognitive process. To characterize EFT in this disorder, we used the experimental recombination procedure, in which 21 GAD and 19 healthy participants simulated positive, neutral and negative novel future events either once or repeatedly, and rated their phenomenological experience of EFT. Results showed that healthy controls spontaneously generated more detailed EFT over repeated simulations. Both groups found EFT easier to generate after repeated simulations, except when GAD participants simulated positive events. They also perceived higher plausibility of negative—not positive or neutral—future events than did controls. These results demonstrate a negativity bias in GAD individuals’ episodic future cognition, and suggest their relative deficit in generating vivid EFT. We discuss implications for the theory and treatment of GAD. PMID:26398003

  14. Projecting pest population dynamics under global warming: the combined effect of inter- and intra-annual variations.

    PubMed

    Zidon, Royi; Tsueda, Hirotsugu; Morin, Efrat; Morin, Shai

    2016-06-01

    The typical short generation length of insects makes their population dynamics highly sensitive not only to mean annual temperatures but also to their intra-annual variations. To consider the combined effect of both thermal factors under global warming, we propose a modeling framework that links general circulation models (GCMs) with a stochastic weather generator and population dynamics models to predict species population responses to inter- and intra-annual temperature changes. This framework was utilized to explore future changes in populations of Bemisia tabaci, an invasive insect pest-species that affects multiple agricultural systems in the Mediterranean region. We considered three locations representing different pest status and climatic conditions: Montpellier (France), Seville (Spain), and Beit-Jamal (Israel). We produced ensembles of local daily temperature realizations representing current and future (mid-21st century) climatic conditions under two emission scenarios for the three locations. Our simulations predicted a significant increase in the average number of annual generations and in population size, and a significant lengthening of the growing season in all three locations. A negative effect was found only in Seville for the summer season, where future temperatures lead to a reduction in population size. High variability in population size was observed between years with similar annual mean temperatures, suggesting a strong effect of intra-annual temperature variation. Critical periods were from late spring to late summer in Montpellier and from late winter to early summer in Seville and Beit-Jamal. Although our analysis suggested that earlier seasonal activity does not necessarily lead to increased populations load unless an additional generation is produced, it is highly likely that the insect will become a significant pest of open-fields at Mediterranean latitudes above 40° during the next 50 years. Our simulations also implied that current predictions based on mean temperature anomalies are relatively conservative and it is better to apply stochastic tools to resolve complex responses to climate change while taking natural variability into account. In summary, we propose a modeling framework capable of determining distinct intra-annual temperature patterns leading to large or small population sizes, for pest risk assessment and management planning of both natural and agricultural ecosystems.

  15. Metabolism as a key to histone deacetylase inhibition

    PubMed Central

    Rajendran, Praveen; Williams, David E.; Ho, Emily; Dashwood, Roderick H.

    2012-01-01

    There is growing interest in the epigenetic mechanisms that are dysregulated in cancer and other human pathologies. Under this broad umbrella, modulators of histone deacetylase (HDAC) activity have gained interest as both cancer chemopreventive and therapeutic agents. Of the first generation, FDA-approved HDAC inhibitors to have progressed to clinical trials, vorinostat represents a “direct acting” compound with structural features suitable for docking into the HDAC pocket, whereas romidepsin can be considered a prodrug that undergoes reductive metabolism to generate the active intermediate (a zinc-binding thiol). It is now evident that other agents, including those in the human diet, can be converted by metabolism to intermediates that affect HDAC activity. Examples are cited of short-chain fatty acids, seleno-α-keto acids, small molecule thiols, mercapturic acid metabolites, indoles, and polyphenols. The findings are discussed in the context of putative endogenous HDAC inhibitors generated by intermediary metabolism (e.g. pyruvate), the yin–yang of HDAC inhibition versus HDAC activation, and the screening assays that might be most appropriate for discovery of novel HDAC inhibitors in the future. PMID:21599534

  16. Oil prices and long-run risk

    NASA Astrophysics Data System (ADS)

    Ready, Robert Clayton

    I show that relative levels of aggregate consumption and personal oil consumption provide an excellent proxy for oil prices, and that high oil prices predict low future aggregate consumption growth. Motivated by these facts, I add an oil consumption good to the long-run risk model of Bansal and Yaron [2004] to study the asset pricing implications of observed changes in the dynamic interaction of consumption and oil prices. Empirically I observe that, compared to the first half of my 1987--2010 sample, oil consumption growth in the last 10 years is unresponsive to levels of oil prices, creating an decrease in the mean-reversion of oil prices, and an increase in the persistence of oil price shocks. The model implies that the change in the dynamics of oil consumption generates increased systematic risk from oil price shocks due to their increased persistence. However, persistent oil prices also act as a counterweight for shocks to expected consumption growth, with high expected growth creating high expectations of future oil prices which in turn slow down growth. The combined effect is to reduce overall consumption risk and lower the equity premium. The model also predicts that these changes affect the riskiness of of oil futures contracts, and combine to create a hump shaped term structure of oil futures, consistent with recent data.

  17. New Development of Power Distribution System Resulting from Dispersed Generations and Current Interruption

    NASA Astrophysics Data System (ADS)

    Yokomizu, Yasunobu

    Dispersed generation systems, such as micro gas-turbines and fuel cells, have been installed on some of commercial facilities. Smaller dispersed generators like solar photovoltaics have been also located on the several of individual homes. The trends in the introduction of the these generation systems seem to continue in the future and to cause the power system to have the enormous number of the dispersed generation systems. The present report discusses the near-future power distribution systems.

  18. Technology assessment of future intercity passenger transporation systems. Volume 2: Identification of issues affecting intercity transportation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Papers on major issues and trends that affect the future of intercity transportation are presented. Specific areas covered include: political, social, technological, institutional, and economic mechanisms, the workings of which determine how future intercity transporation technologies will evolve and be put into service; the major issues of intercity transportation from the point of view of reform, including candidate transporation technologies; and technical analysis of trends affecting the evolution of intercity transportation technologies.

  19. How will melting of ice affect volcanic hazards in the twenty-first century?

    PubMed

    Tuffen, Hugh

    2010-05-28

    Glaciers and ice sheets on many active volcanoes are rapidly receding. There is compelling evidence that melting of ice during the last deglaciation triggered a dramatic acceleration in volcanic activity. Will melting of ice this century, which is associated with climate change, similarly affect volcanic activity and associated hazards? This paper provides a critical overview of the evidence that current melting of ice will increase the frequency or size of hazardous volcanic eruptions. Many aspects of the link between ice recession and accelerated volcanic activity remain poorly understood. Key questions include how rapidly volcanic systems react to melting of ice, whether volcanoes are sensitive to small changes in ice thickness and how recession of ice affects the generation, storage and eruption of magma at stratovolcanoes. A greater frequency of collapse events at glaciated stratovolcanoes can be expected in the near future, and there is strong potential for positive feedbacks between melting of ice and enhanced volcanism. Nonetheless, much further research is required to remove current uncertainties about the implications of climate change for volcanic hazards in the twenty-first century.

  20. Into the future with little past: exploring mental time travel in a patient with damage to the mammillary bodies/fornix.

    PubMed

    Tedder, Jacqui; Miller, Laurie; Tu, Sicong; Hornberger, Michael; Lah, Suncica

    2016-02-01

    Remembering the past and imaging the future are both manifestations of 'mental time travel'. These processes have been found to be impaired in patients with bilateral hippocampal lesions. Here, we examined the question of whether future thinking is affected by other Papez circuit lesions, namely: damage to the mammillary bodies/fornix. Case (SL) was a 43-year-old woman who developed dense anterograde and retrograde amnesia suddenly, as a result of Wernicke-Korsakoff's syndrome. A region of interest volumetric Magnetic resonance imaging (MRI) analysis was performed. We assessed past and future thinking in SL and 11 control subjects of similar age and education with the adapted Autobiographical Interview (AI). Participants also completed a battery of neuropsychological tests. Volumetric MRI analyses revealed severely reduced fornix and mammillary body volumes, but intact hippocampi. SL showed substantial, albeit temporally graded retrograde memory deficits on the adapted AI. Strikingly, whilst SL could not provide any specific details of events from the past two weeks or past two years and had impaired recall of events from her late 30s, her descriptions of potential future events were normal in number of event details and plausibility. This dissociation of past and future events' performance after mammillary body and fornix damage is at odds with the findings of the majority of patients with adult onset hippocampal amnesia. It suggests that these non-hippocampal regions of the Papez circuit are only critical for past event retrieval and not for the generation of possible future events.

  1. Mind the Noise When Identifying Computational Models of Cognition from Brain Activity.

    PubMed

    Kolossa, Antonio; Kopp, Bruno

    2016-01-01

    The aim of this study was to analyze how measurement error affects the validity of modeling studies in computational neuroscience. A synthetic validity test was created using simulated P300 event-related potentials as an example. The model space comprised four computational models of single-trial P300 amplitude fluctuations which differed in terms of complexity and dependency. The single-trial fluctuation of simulated P300 amplitudes was computed on the basis of one of the models, at various levels of measurement error and at various numbers of data points. Bayesian model selection was performed based on exceedance probabilities. At very low numbers of data points, the least complex model generally outperformed the data-generating model. Invalid model identification also occurred at low levels of data quality and under low numbers of data points if the winning model's predictors were closely correlated with the predictors from the data-generating model. Given sufficient data quality and numbers of data points, the data-generating model could be correctly identified, even against models which were very similar to the data-generating model. Thus, a number of variables affects the validity of computational modeling studies, and data quality and numbers of data points are among the main factors relevant to the issue. Further, the nature of the model space (i.e., model complexity, model dependency) should not be neglected. This study provided quantitative results which show the importance of ensuring the validity of computational modeling via adequately prepared studies. The accomplishment of synthetic validity tests is recommended for future applications. Beyond that, we propose to render the demonstration of sufficient validity via adequate simulations mandatory to computational modeling studies.

  2. Mechanical and electrochemical response of a LiCoO 2 cathode using reconstructed microstructures

    DOE PAGES

    Mendoza, Hector; Roberts, Scott Alan; Brunini, Victor; ...

    2016-01-01

    As LiCoO 2 cathodes are charged, delithiation of the LiCoO 2 active material leads to an increase in the lattice spacing, causing swelling of the particles. When these particles are packed into a bicontinuous, percolated network, as is the case in a battery electrode, this swelling leads to the generation of significant mechanical stress. In this study we performed coupled electrochemical-mechanical simulations of the charging of a LiCoO 2 cathode in order to elucidate the mechanisms of stress generation and the effect of charge rate and microstructure on these stresses. Energy dispersive spectroscopy combined with scanning electron microscopy imaging wasmore » used to create 3D reconstructions of a LiCoO 2 cathode, and the Conformal Decomposition Finite Element Method is used to automatically generate computational meshes on this reconstructed microstructure. Replacement of the ideal solution Fickian diffusion model, typically used in battery simulations, with a more general non-ideal solution model shows substantially smaller gradients of lithium within particles than is typically observed in the literature. Using this more general model, lithium gradients only appear at states of charge where the open-circuit voltage is relatively constant. While lithium gradients do affect the mechanical stress state in the particles, the maximum stresses are always found in the fully-charged state and are strongly affected by the local details of the microstructure and particle-to-particle contacts. These coupled electrochemical-mechanical simulations begin to yield insight into the partitioning of volume change between reducing pore space and macroscopically swelling the electrode. Lastly, preliminary studies that include the presence of the polymeric binder suggest that it can greatly impact stress generation and that it is an important area for future research.« less

  3. Evaluating hydrological response of future land cover change scenarios in the San Pedro River (U.S./Mexico) with the automated geospatial watershed assessment (AGWA) tool

    Treesearch

    William G. Kepner; I. Shea Burns; David C Goodrich; D. Phillip Guertin; Gabriel S. Sidman; Lainie R. Levick; Wison W.S. Yee; Melissa M.A. Scianni; Clifton S. Meek; Jared B. Vollmer

    2016-01-01

    Long-term land-use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology was developed to characterize potential hydrologic impacts from future urban growth through time. Future growth is represented by housing density maps generated in decadal...

  4. A role for affect in the link between episodic simulation and prosociality.

    PubMed

    Gaesser, Brendan; DiBiase, Haley D; Kensinger, Elizabeth A

    2017-09-01

    Prospection and prosociality are hallmarks of our species. Little is known, however, about how our ability to imagine or simulate specific future events contributes to our capacity for prosociality. Here, we investigated this relationship, revealing how the affective response that arises from a simulated prosocial event motivates a willingness to help a person in need. Across two experiments, people reported being more willing to help in specific situations after simulating future helping events that elicited positive (versus negative or neutral) affect. Positive affect increased engagement of theory of mind for the person in need, which in turn informed prosocial responses. Moreover, the subjective experience of scene imagery and theory of mind systematically couple together depending on the affective valence of future simulations, providing new insight into how affective valence guides a prosocial function of episodic simulation.

  5. Local short-duration precipitation extremes in Sweden: observations, forecasts and projections

    NASA Astrophysics Data System (ADS)

    Olsson, Jonas; Berg, Peter; Simonsson, Lennart

    2015-04-01

    Local short-duration precipitation extremes (LSPEs) are a key driver of hydrological hazards, notably in steep catchments with thin soils and in urban environments. The triggered floodings, landslides, etc., have large consequences for society in terms of both economy and health. Accurate estimations of LSPEs on both climatological time-scales (past, present, future) and in real-time is thus of great importance for improved hydrological predictions as well as design of constructions and infrastructure affected by hydrological fluxes. Analysis of LSPEs is, however, associated with various limitations and uncertainties. These are to a large degree associated with the small-scale nature of the meteorological processes behind LSPEs and the associated requirements on observation sensors as well as model descriptions. Some examples of causes for the limitations involved are given in the following. - Observations: High-resolution data sets available for LSPE analyses are often limited to either relatively long series from one or a few stations or relatively short series from larger station networks. Radar data have excellent resolutions in both time and space but the estimated local precipitation intensity is still highly uncertain. New and promising techniques (e.g. microwave links) are still in their infancy. - Weather forecasts (short-range): Although forecasts with the required spatial resolution for potential generation of LSPEs (around 2-4 km) are becoming operationally available, the actual forecast precision of LSPEs is largely unknown. Forecasted LSPEs may be displaced in time or, more critically, in space which strongly affects the possibility to assess hydrological risk. - Climate projections: The spatial resolution of the current RCM generation (around 25 km) is not sufficient for proper description of LSPEs. Statistical post-processing (i.e. downscaling) is required which adds substantial uncertainty to the final result. Ensemble generation of sufficiently high-resolution RCM projections is not yet computationally feasible. In this presentation, examples of recent research in Sweden related to these aspects will be given with some main findings shown and discussed. Finally, some ongoing and future research directions will be outlined (the former hopefully accompanied by some brand-new results).

  6. Large-scale educational telecommunications systems for the US: An analysis of educational needs and technological opportunities

    NASA Technical Reports Server (NTRS)

    Morgan, R. P.; Singh, J. P.; Rothenberg, D.; Robinson, B. E.

    1975-01-01

    The needs to be served, the subsectors in which the system might be used, the technology employed, and the prospects for future utilization of an educational telecommunications delivery system are described and analyzed. Educational subsectors are analyzed with emphasis on the current status and trends within each subsector. Issues which affect future development, and prospects for future use of media, technology, and large-scale electronic delivery within each subsector are included. Information on technology utilization is presented. Educational telecommunications services are identified and grouped into categories: public television and radio, instructional television, computer aided instruction, computer resource sharing, and information resource sharing. Technology based services, their current utilization, and factors which affect future development are stressed. The role of communications satellites in providing these services is discussed. Efforts to analyze and estimate future utilization of large-scale educational telecommunications are summarized. Factors which affect future utilization are identified. Conclusions are presented.

  7. Closed-Loop Neuromorphic Benchmarks

    PubMed Central

    Stewart, Terrence C.; DeWolf, Travis; Kleinhans, Ashley; Eliasmith, Chris

    2015-01-01

    Evaluating the effectiveness and performance of neuromorphic hardware is difficult. It is even more difficult when the task of interest is a closed-loop task; that is, a task where the output from the neuromorphic hardware affects some environment, which then in turn affects the hardware's future input. However, closed-loop situations are one of the primary potential uses of neuromorphic hardware. To address this, we present a methodology for generating closed-loop benchmarks that makes use of a hybrid of real physical embodiment and a type of “minimal” simulation. Minimal simulation has been shown to lead to robust real-world performance, while still maintaining the practical advantages of simulation, such as making it easy for the same benchmark to be used by many researchers. This method is flexible enough to allow researchers to explicitly modify the benchmarks to identify specific task domains where particular hardware excels. To demonstrate the method, we present a set of novel benchmarks that focus on motor control for an arbitrary system with unknown external forces. Using these benchmarks, we show that an error-driven learning rule can consistently improve motor control performance across a randomly generated family of closed-loop simulations, even when there are up to 15 interacting joints to be controlled. PMID:26696820

  8. Does affective touch influence the virtual reality full body illusion?

    PubMed

    de Jong, Jutta R; Keizer, Anouk; Engel, Manja M; Dijkerman, H Chris

    2017-06-01

    The sense of how we experience our physical body as our own represents a fundamental component of human self-awareness. Body ownership can be studied with bodily illusions which are generated by inducing a visuo-tactile conflict where individuals experience illusionary ownership over a fake body or body part, such as a rubber hand. Previous studies showed that different types of touch modulate the strength of experienced ownership over a rubber hand. Specifically, participants experienced more ownership after the rubber hand illusion was induced through affective touch vs non-affective touch. It is, however, unclear whether this effect would also occur for an entire fake body. The aim of this study was, therefore, to investigate whether affective touch modulates the strength of ownership in a virtual reality full body illusion. To elicit this illusion, we used slow (3 cm/s; affective touch) and fast (30 cm/s; non-affective touch) stroking velocities on the participants' abdomen. Both stroking velocities were performed either synchronous or asynchronous (control condition), while participants viewed a virtual body from a first-person-perspective. In our first study, we found that participants experienced more subjective ownership over a virtual body in the affective touch condition, compared to the non-affective touch condition. In our second study, we found higher levels of subjective ownership for synchronous stimulation, compared to asynchronous, for both touch conditions, but failed to replicate the findings from study 1 that show a difference between affective and non-affective touch. We, therefore, cannot conclude unequivocally that affective touch enhances the full-body illusion. Future research is required to study the effects of affective touch on body ownership.

  9. High flexible Hydropower Generation concepts for future grids

    NASA Astrophysics Data System (ADS)

    Hell, Johann

    2017-04-01

    The ongoing changes in electric power generation are resulting in new requirements for the classical generating units. In consequence a paradigm change in operation of power systems is necessary and a new approach in finding solutions is needed. The presented paper is dealing with the new requirements on current and future energy systems with the focus on hydro power generation. A power generation landscape for some European regions is shown and generation and operational flexibility is explained. Based on the requirements from the Transmission System Operator in UK, the transient performance of a Pumped Storage installation is discussed.

  10. Future perspective and healthy lifestyle choices in adulthood.

    PubMed

    Tasdemir-Ozdes, Aylin; Strickland-Hughes, Carla M; Bluck, Susan; Ebner, Natalie C

    2016-09-01

    Regardless of age, making healthy lifestyle choices is prudent. Despite that, individuals of all ages sometimes have difficulty choosing the healthy option. We argue that individuals' view of the future and position in the life span affects their current lifestyle choices. We capture the multidimensionality of future thinking by assessing 3 types of future perspective. Younger and older men and women (N = 127) reported global future time perspective, future health perspective, and perceived importance of future health-related events. They also rated their likelihood of making healthy lifestyle choices. As predicted, older participants indicated greater intention to make healthy choices in their current life than did younger participants. Compared to younger participants, older participants reported shorter global future time perspective and anticipated worse future health but perceived future health-related events as more important. Having a positive view of one's future health and seeing future health-related events as important were related to greater intention to make healthy lifestyle choices, but greater global future time perspective was not directly related to healthy choices. However, follow-up analyses suggested that greater global future time perspective indirectly affected healthy choices via a more positive view of future health. None of these relations were moderated by age. Individuals' perspective on the future is shown to be an important multidimensional construct affecting everyday healthy lifestyle choices for both younger and older adults. Implications for encouraging healthy choices across the adult life span are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Financing Education for Children Affected by Conflict: Lessons from Save the Children's Rewrite the Future Campaign

    ERIC Educational Resources Information Center

    Dolan, Janice; Ndaruhutse, Susy

    2011-01-01

    In recent years, Save the Children, a non-governmental organization, prioritized education for children affected by conflict through its Rewrite the Future Campaign. By significantly scaling up the resources allocated to programmes in conflict-affected countries, the organization has grown its education programmes in these contexts. Thus it has…

  12. A Bayesian-Based EDA Tool for Nano-circuits Reliability Calculations

    NASA Astrophysics Data System (ADS)

    Ibrahim, Walid; Beiu, Valeriu

    As the sizes of (nano-)devices are aggressively scaled deep into the nanometer range, the design and manufacturing of future (nano-)circuits will become extremely complex and inevitably will introduce more defects while their functioning will be adversely affected by transient faults. Therefore, accurately calculating the reliability of future designs will become a very important aspect for (nano-)circuit designers as they investigate several design alternatives to optimize the trade-offs between the conflicting metrics of area-power-energy-delay versus reliability. This paper introduces a novel generic technique for the accurate calculation of the reliability of future nano-circuits. Our aim is to provide both educational and research institutions (as well as the semiconductor industry at a later stage) with an accurate and easy to use tool for closely comparing the reliability of different design alternatives, and for being able to easily select the design that best fits a set of given (design) constraints. Moreover, the reliability model generated by the tool should empower designers with the unique opportunity of understanding the influence individual gates play on the design’s overall reliability, and identifying those (few) gates which impact the design’s reliability most significantly.

  13. A simulation of dementia epidemiology and resource use in Australia.

    PubMed

    Standfield, Lachlan B; Comans, Tracy; Scuffham, Paul

    2018-06-01

    The number of people in the developed world who have dementia is predicted to rise markedly. This study presents a validated predictive model to assist decision-makers to determine this population's future resource requirements and target scarce health and welfare resources appropriately. A novel individual patient discrete event simulation was developed to estimate the future prevalence of dementia and related health and welfare resource use in Australia. When compared to other published results, the simulation generated valid estimates of dementia prevalence and resource use. The analysis predicted 298,000, 387,000 and 928,000 persons in Australia will have dementia in 2011, 2020 and 2050, respectively. Health and welfare resource use increased markedly over the simulated time-horizon and was affected by capacity constraints. This simulation provides useful estimates of future demands on dementia-related services allowing the exploration of the effects of capacity constraints. Implications for public health: The model demonstrates that under-resourcing of residential aged care may lead to inappropriate and inefficient use of hospital resources. To avoid these capacity constraints it is predicted that the number of aged care beds for persons with dementia will need to increase more than threefold from 2011 to 2050. © 2017 The Authors.

  14. The Influence of Temporal Orientation and Affective Frame on use of Ethical Decision-Making Strategies

    PubMed Central

    Martin, Laura E.; Stenmark, Cheryl K.; Thiel, Chase E.; Antes, Alison L.; Mumford, Michael D.; Connelly, Shane; Devenport, Lynn D.

    2011-01-01

    This study examined the role of temporal orientation and affective frame in the execution of ethical decision-making strategies. In reflecting on a past experience or imagining a future experience, participants thought about experiences that they considered either positive or negative. The participants recorded their thinking about that experience by responding to several questions, and their responses were content-analyzed for the use of ethical decision-making strategies. The findings indicated that a future temporal orientation was associated with greater strategy use. Likewise, a positive affective frame was associated with greater strategy use. Future orientation may permit better strategy execution than a past orientation because it facilitates more objective, balanced contemplation of the reflected-upon situation, and minimizes potential self-threat associated with past behavior. A positive affective frame likely improves strategy execution because it facilitates active analysis of the experience. Future directions and implications of these findings are discussed. PMID:21572582

  15. Exploring the experience of episodic past, future, and counterfactual thinking in younger and older adults: A study of a Colombian sample.

    PubMed

    De Brigard, Felipe; Rodriguez, Diana Carolina; Montañés, Patricia

    2017-05-01

    Although extant evidence suggests that many neural and cognitive mechanisms underlying episodic past, future, and counterfactual thinking overlap, recent results have uncovered differences among these three processes. However, the extent to which there may be age-related differences in the phenomenological characteristics associated with episodic past, future and counterfactual thinking remains unclear. This study used adapted versions of the Memory Characteristics Questionnaire and the Autobiographical Interview in younger and older adults to investigate the subjective experience of episodic past, future and counterfactual thinking. The results suggest that, across all conditions, younger adults generated more internal details than older adults. However, older adults generated more external details for episodic future and counterfactual thinking than younger adults. Additionally, younger and older adults generated more internal details, and gave higher sensory and contextual ratings, for memories rather than future and counterfactual thoughts. Methodological and theoretical consequences for extant theories of mental simulation are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Wind farm and solar park effects on plant-soil carbon cycling: uncertain impacts of changes in ground-level microclimate.

    PubMed

    Armstrong, Alona; Waldron, Susan; Whitaker, Jeanette; Ostle, Nicholas J

    2014-06-01

    Global energy demand is increasing as greenhouse gas driven climate change progresses, making renewable energy sources critical to future sustainable power provision. Land-based wind and solar electricity generation technologies are rapidly expanding, yet our understanding of their operational effects on biological carbon cycling in hosting ecosystems is limited. Wind turbines and photovoltaic panels can significantly change local ground-level climate by a magnitude that could affect the fundamental plant-soil processes that govern carbon dynamics. We believe that understanding the possible effects of changes in ground-level microclimates on these phenomena is crucial to reducing uncertainty of the true renewable energy carbon cost and to maximize beneficial effects. In this Opinions article, we examine the potential for the microclimatic effects of these land-based renewable energy sources to alter plant-soil carbon cycling, hypothesize likely effects and identify critical knowledge gaps for future carbon research. © 2013 John Wiley & Sons Ltd.

  17. Schottky Barrier Height of Pd/MoS2 Contact by Large Area Photoemission Spectroscopy.

    PubMed

    Dong, Hong; Gong, Cheng; Addou, Rafik; McDonnell, Stephen; Azcatl, Angelica; Qin, Xiaoye; Wang, Weichao; Wang, Weihua; Hinkle, Christopher L; Wallace, Robert M

    2017-11-08

    MoS 2 , as a model transition metal dichalcogenide, is viewed as a potential channel material in future nanoelectronic and optoelectronic devices. Minimizing the contact resistance of the metal/MoS 2 junction is critical to realizing the potential of MoS 2 -based devices. In this work, the Schottky barrier height (SBH) and the band structure of high work function Pd metal on MoS 2 have been studied by in situ X-ray photoelectron spectroscopy (XPS). The analytical spot diameter of the XPS spectrometer is about 400 μm, and the XPS signal is proportional to the detection area, so the influence of defect-mediated parallel conduction paths on the SBH does not affect the measurement. The charge redistribution by Pd on MoS 2 is detected by XPS characterization, which gives insight into metal contact physics to MoS 2 and suggests that interface engineering is necessary to lower the contact resistance for the future generation electronic applications.

  18. Micro-sized microbial fuel cell: a mini-review.

    PubMed

    Wang, Hsiang-Yu; Bernarda, Angela; Huang, Chih-Yung; Lee, Duu-Jong; Chang, Jo-Shu

    2011-01-01

    This review presents the development of micro-sized microbial fuel cells (including mL-scale and μL-scale setups), with summarization of their advantageous characteristics, fabrication methods, performances, potential applications and possible future directions. The performance of microbial fuel cells (MFCs) is affected by issues such as mass transport, reaction kinetics and ohmic resistance. These factors are manipulated in micro-sized MFCs using specially allocated electrodes constructed with specified materials having physically or chemically modified surfaces. Both two-chamber and air-breathing cathodes are promising configurations for mL-scale MFCs. However, most of the existing μL-scale MFCs generate significantly lower volumetric power density compared with their mL-counterparts because of the high internal resistance. Although μL-scale MFCs have not yet to provide sufficient power for operating conventional equipment, they show great potential in rapid screening of electrochemically microbes and electrode performance. Additional possible applications and future directions are also provided for the development of micro-sized MFCs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. The MJO-SSW Teleconnection: Interaction Between MJO-Forced Waves and the Midlatitude Jet

    NASA Astrophysics Data System (ADS)

    Kang, Wanying; Tziperman, Eli

    2018-05-01

    The Madden-Julian Oscillation (MJO) was shown to affect both present-day sudden stratospheric warming (SSW) events in the Arctic and their future frequency under global warming scenarios, with implications to the Arctic Oscillation and midlatitude extreme weather. This work uses a dry dynamic core model to understand the dependence of SSW frequency on the amplitude and longitudinal range of the MJO, motivated by the prediction that the MJO will strengthen and broaden its longitudinal range in a warmer climate. We focus on the response of the midlatitude jets and the corresponding generated stationary waves, which are shown to dominate the response of SSW events to MJO forcing. Momentum budget analysis of a large ensemble of spinup simulations suggests that the climatological jet response is driven by the MJO-forced meridional eddy momentum transport. The results suggest that the trends in both MJO amplitude and longitudinal range are important for the prediction of the midlatitude jet response and for the prediction of SSWs in a future climate.

  20. Effects of Climate Change and Deforestation on the Amazon's Hydrological Cycle Will Require Interventions to Hydropower Planning in Brazil

    NASA Astrophysics Data System (ADS)

    Arias, M. E.; Farinosi, F.; Lee, E.; Livino, A.; Moorcroft, P. R.

    2016-12-01

    Brazil is the 2nd largest hydropower producer in the world, and this energy source will continue to be a priority in the country for the foreseeable decades. Yet, climate change is expected to alter the country's hydrological regime, in particular in the Amazon where most new hydropower development is occurring. In order to better assess the potential of hydropower projects in decades to come, it is important to evaluate how future hydrological regimes will affect their performance and suitability. This study quantifies the impacts of climate change and land use conversion on hydropower generation, and identifies mechanisms that could help energy planners to account for future changes. Using the largest network of dams in Brazil's national portfolio within a single watershed, the Tapaj's River, this study connects global and regional future environmental projections to daily river flows and operations of 37 dams with an overall potential capacity of 29.4 GW. We found that climate change could decrease hydropower potential by 477-665 MW (-6 to -8% from historical conditions) during the dry season, a critical loss since dams are expected to operate at only one third of capacity during this perioddue to the limited reservoir volume of most projects in the Amazon lowlands. Furthermore, deforestation is expected to increase the inter-annual variability in hydropower potential from 2,798 for baseline conditions to 3,764-3,899 (+967-1102) MW under future scenarios for the 2040s. Consideration of future hydrological conditions on individual dams showed that the magnitude and uncertainty of losses could be greater than 30 MW -equivalent to the total potential of some dams in the inventory- in 11 of the projects studied. Future hydrological conditions could also delay the period when maximum daily generation occurs by 22-29 days, which could have important implications to energy planning in Brazil because these run-of-river dams would no longer be able to meet the country's seasonal peak demand. This information on future changes to individual dams' performance could feed directly into the project selection process in order to adapt designs and operations to ensure the greatest benefits and least impacts from hydropower in the long term.

  1. Episodic simulation of future events is impaired in mild Alzheimer's disease

    PubMed Central

    Addis, Donna Rose; Sacchetti, Daniel C.; Ally, Brandon A.; Budson, Andrew E.; Schacter, Daniel L.

    2009-01-01

    Recent neuroimaging studies have demonstrated that both remembering the past and simulating the future activate a core neural network including the medial temporal lobes. Regions of this network, in particular the medial temporal lobes, are prime sites for amyloid deposition and are structurally and functionally compromised in Alzheimer's disease (AD). While we know some functions of this core network, specifically episodic autobiographical memory, are impaired in AD, no study has examined whether future episodic simulation is similarly impaired. We tested the ability of sixteen AD patients and sixteen age-matched controls to generate past and future autobiographical events using an adapted version of the Autobiographical Interview. Participants also generated five remote autobiographical memories from across the lifespan. Event transcriptions were segmented into distinct details, classified as either internal (episodic) or external (non-episodic). AD patients exhibited deficits in both remembering past events and simulating future events, generating fewer internal and external episodic details than healthy older controls. The internal and external detail scores were strongly correlated across past and future events, providing further evidence of the close linkages between the mental representations of past and future. PMID:19497331

  2. Future trends in computer waste generation in India.

    PubMed

    Dwivedy, Maheshwar; Mittal, R K

    2010-11-01

    The objective of this paper is to estimate the future projection of computer waste in India and to subsequently analyze their flow at the end of their useful phase. For this purpose, the study utilizes the logistic model-based approach proposed by Yang and Williams to forecast future trends in computer waste. The model estimates future projection of computer penetration rate utilizing their first lifespan distribution and historical sales data. A bounding analysis on the future carrying capacity was simulated using the three parameter logistic curve. The observed obsolete generation quantities from the extrapolated penetration rates are then used to model the disposal phase. The results of the bounding analysis indicate that in the year 2020, around 41-152 million units of computers will become obsolete. The obsolete computer generation quantities are then used to estimate the End-of-Life outflows by utilizing a time-series multiple lifespan model. Even a conservative estimate of the future recycling capacity of PCs will reach upwards of 30 million units during 2025. Apparently, more than 150 million units could be potentially recycled in the upper bound case. However, considering significant future investment in the e-waste recycling sector from all stakeholders in India, we propose a logistic growth in the recycling rate and estimate the requirement of recycling capacity between 60 and 400 million units for the lower and upper bound case during 2025. Finally, we compare the future obsolete PC generation amount of the US and India. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Renewable Electricity Futures Study Executive Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Trieu; Sandor, Debra; Wiser, Ryan

    2012-12-01

    The Renewable Electricity Futures Study (RE Futures) provides an analysis of the grid integration opportunities, challenges, and implications of high levels of renewable electricity generation for the U.S. electric system. The study is not a market or policy assessment. Rather, RE Futures examines renewable energy resources and many technical issues related to the operability of the U.S. electricity grid, and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. RE Futures results indicate that a future U.S. electricity system that is largely powered by renewable sources is possible andmore » that further work is warranted to investigate this clean generation pathway.« less

  4. Tailored motivational message generation: A model and practical framework for real-time physical activity coaching.

    PubMed

    Op den Akker, Harm; Cabrita, Miriam; Op den Akker, Rieks; Jones, Valerie M; Hermens, Hermie J

    2015-06-01

    This paper presents a comprehensive and practical framework for automatic generation of real-time tailored messages in behavior change applications. Basic aspects of motivational messages are time, intention, content and presentation. Tailoring of messages to the individual user may involve all aspects of communication. A linear modular system is presented for generating such messages. It is explained how properties of user and context are taken into account in each of the modules of the system and how they affect the linguistic presentation of the generated messages. The model of motivational messages presented is based on an analysis of existing literature as well as the analysis of a corpus of motivational messages used in previous studies. The model extends existing 'ontology-based' approaches to message generation for real-time coaching systems found in the literature. Practical examples are given on how simple tailoring rules can be implemented throughout the various stages of the framework. Such examples can guide further research by clarifying what it means to use e.g. user targeting to tailor a message. As primary example we look at the issue of promoting daily physical activity. Future work is pointed out in applying the present model and framework, defining efficient ways of evaluating individual tailoring components, and improving effectiveness through the creation of accurate and complete user- and context models. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Electrochemical sensing using comparison of voltage-current time differential values during waveform generation and detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay

    2018-01-02

    A device for signal processing. The device includes a signal generator, a signal detector, and a processor. The signal generator generates an original waveform. The signal detector detects an affected waveform. The processor is coupled to the signal detector. The processor receives the affected waveform from the signal detector. The processor also compares at least one portion of the affected waveform with the original waveform. The processor also determines a difference between the affected waveform and the original waveform. The processor also determines a value corresponding to a unique portion of the determined difference between the original and affected waveforms.more » The processor also outputs the determined value.« less

  6. Data Position Statement to Be Updated

    NASA Astrophysics Data System (ADS)

    Von Holle, Kate

    2008-04-01

    AGU members have an opportunity to provide comments to a panel preparing to update a position statement for Council consideration in May 2008 concerning the archiving and availability of scientific data. There is currently a risk of losing important data that have been collected over the years, and these data need to be preserved and made publicly available where possible to help future generations understand the various Earth systems. The panel is being asked to address a broad range of data issues that affect Earth and space scientists globally. The current statement can be found at http://www.agu.org/sci_soc/policy/sci_pol.html#positions under the heading ``The importance of archiving and availability of geophysical data.''

  7. [Tomorrow's family doctor].

    PubMed

    Bischoff, T; Herzig, L; Aubert, J; Sommer, J; Haller, D M

    2012-05-16

    The profession of family doctor will undergo profound changes in the coming decade due to external, political, demographic and societal developments. Changes will also occur from within the profession affecting its content and its functioning. Other influences, in addition to generational developments (reduced working hours, feminisation, revaluation of the work-life balance), will come from collaboration with new professions, news structures as well as technical and human progress. In this transitional period it is important to uphold core values of family medicine, in particular coordination, continuity of care and the global approach to patients. In training future family doctors we must both prepare them for new skills and roles, and continue to share the core values with them.

  8. Quantifying the Beauty of Words: A Neurocognitive Poetics Perspective

    PubMed Central

    Jacobs, Arthur M.

    2017-01-01

    In this paper I would like to pave the ground for future studies in Computational Stylistics and (Neuro-)Cognitive Poetics by describing procedures for predicting the subjective beauty of words. A set of eight tentative word features is computed via Quantitative Narrative Analysis (QNA) and a novel metric for quantifying word beauty, the aesthetic potential is proposed. Application of machine learning algorithms fed with this QNA data shows that a classifier of the decision tree family excellently learns to split words into beautiful vs. ugly ones. The results shed light on surface and semantic features theoretically relevant for affective-aesthetic processes in literary reading and generate quantitative predictions for neuroaesthetic studies of verbal materials. PMID:29311877

  9. Quantifying the Beauty of Words: A Neurocognitive Poetics Perspective.

    PubMed

    Jacobs, Arthur M

    2017-01-01

    In this paper I would like to pave the ground for future studies in Computational Stylistics and (Neuro-)Cognitive Poetics by describing procedures for predicting the subjective beauty of words. A set of eight tentative word features is computed via Quantitative Narrative Analysis (QNA) and a novel metric for quantifying word beauty, the aesthetic potential is proposed. Application of machine learning algorithms fed with this QNA data shows that a classifier of the decision tree family excellently learns to split words into beautiful vs. ugly ones. The results shed light on surface and semantic features theoretically relevant for affective-aesthetic processes in literary reading and generate quantitative predictions for neuroaesthetic studies of verbal materials.

  10. Spatial stabilization and intensification of moistening and drying rate patterns under future climate change

    NASA Astrophysics Data System (ADS)

    Chavaillaz, Y.; Joussaume, S.; Bony, S.; Braconnot, P.

    2015-12-01

    Most climate studies characterize the future climate change by considering the evolution between a fixed current baseline and the future. It emphasizes an increase of future precipitation changes with global warming. Here we use an alternative approach that considers rate of change indicators related to precipitation using projections of an ensemble of General Circulation Models. The rate is defined by the difference between two subsequent 20-year periods. This approach can be relevant to impacts affecting upcoming generations, and to their continuous adaptation towards a changing target. Under the strongest emission pathway (RCP8.5), moistening and drying rates strongly increase at the global scale. As we move further over the twenty-first century, more and more regions exhibit substantial rates. These regions are modified over time due to spatial variability of precipitation. However, we show that they tend to become more geographically stationary through the century, leading to persisting trends at several places over the globe. Whilst global warming is accelerating, this spatial stabilization is due to the decreasing relative influence of global circulation in precipitation changes compared to thermodynamic processes. In specific regions, the combination of intensification and persistence of such substantial rates should be considered in the framework of future impact studies (i.e. the Mediterranean Sea, Central America, South Asia and the Arctic). These trends are already visible in the current period, but could almost disappear if strong mitigation policies (RCP2.6) were quickly implemented.

  11. Ventromedial prefrontal cortex supports affective future simulation by integrating distributed knowledge

    PubMed Central

    Benoit, Roland G.; Szpunar, Karl K.; Schacter, Daniel L.

    2014-01-01

    Although the future often seems intangible, we can make it more concrete by imagining prospective events. Here, using functional MRI, we demonstrate a mechanism by which the ventromedial prefrontal cortex supports such episodic simulations, and thereby contributes to affective foresight: This region supports processes that (i) integrate knowledge related to the elements that constitute an episode and (ii) represent the episode’s emergent affective quality. The ventromedial prefrontal cortex achieves such integration via interactions with distributed cortical regions that process the individual elements. Its activation then signals the affective quality of the ensuing episode, which goes beyond the combined affective quality of its constituting elements. The integrative process further augments long-term retention of the episode, making it available at later time points. This mechanism thus renders the future tangible, providing a basis for farsighted behavior. PMID:25368170

  12. Ventromedial prefrontal cortex supports affective future simulation by integrating distributed knowledge.

    PubMed

    Benoit, Roland G; Szpunar, Karl K; Schacter, Daniel L

    2014-11-18

    Although the future often seems intangible, we can make it more concrete by imagining prospective events. Here, using functional MRI, we demonstrate a mechanism by which the ventromedial prefrontal cortex supports such episodic simulations, and thereby contributes to affective foresight: This region supports processes that (i) integrate knowledge related to the elements that constitute an episode and (ii) represent the episode's emergent affective quality. The ventromedial prefrontal cortex achieves such integration via interactions with distributed cortical regions that process the individual elements. Its activation then signals the affective quality of the ensuing episode, which goes beyond the combined affective quality of its constituting elements. The integrative process further augments long-term retention of the episode, making it available at later time points. This mechanism thus renders the future tangible, providing a basis for farsighted behavior.

  13. Prevalence and determinants of direct and generative modes of production of episodic future thoughts in the word cueing paradigm.

    PubMed

    Jeunehomme, Olivier; D'Argembeau, Arnaud

    2016-01-01

    Recent research suggests that episodic future thoughts can be formed through the same dual mechanisms, direct and generative, as autobiographical memories. However, the prevalence and determinants of the direct production of future event representations remain unclear. Here, we addressed this issue by collecting self-reports of production modes, response times (RTs), and verbal protocols for the production past and future events in the word cueing paradigm. Across three experiments, we found that both past and future events were frequently reported to come directly to mind in response to the cue, and RTs confirmed that events were produced faster for direct than for generative responses. When looking at the determinants of direct responses, we found that most past and future events that were directly produced had already been thought of on a previous occasion, and the frequency of previous thoughts predicted the occurrence of direct access. The direct production of autobiographical thoughts was also more frequent for past and future events that were judged important and emotionally intense. Collectively, these findings provide novel evidence that the direct production of episodic future thoughts is frequent in the word cueing paradigm and often involves the activation of personally significant "memories of the future."

  14. Within- and Trans-Generational Effects of Variation in Dietary Macronutrient Content on Life-History Traits in the Moth Plodia interpunctella.

    PubMed

    Littlefair, Joanne E; Knell, Robert J

    2016-01-01

    It is increasingly clear that parental environment can play an important role in determining offspring phenotype. These "transgenerational effects" have been linked to many different components of the environment, including toxin exposure, infection with pathogens and parasites, temperature and food quality. In this study, we focus on the latter, asking how variation in the quantity and quality of nutrition affects future generations. Previous studies have shown that artificial diets are a useful tool to examine the within-generation effects of variation in macronutrient content on life history traits, and could therefore be applied to investigations of the transgenerational effects of parental diet. Synthetic diets varying in total macronutrient content and protein: carbohydrate ratios were used to examine both within- and trans-generational effects on life history traits in a generalist stored product pest, the Indian meal moth Plodia interpunctella. The macronutrient composition of the diet was important for shaping within-generation life history traits, including pupal weight, adult weight, and phenoloxidase activity, and had indirect effects via maternal weight on fecundity. Despite these clear within-generation effects on the biology of P. interpunctella, diet composition had no transgenerational effects on the life history traits of offspring. P. interpunctella mothers were able to maintain their offspring quality, possibly at the expense of their own somatic condition, despite high variation in dietary macronutrient composition. This has important implications for the plastic biology of this successful generalist pest.

  15. Within- and Trans-Generational Effects of Variation in Dietary Macronutrient Content on Life-History Traits in the Moth Plodia interpunctella

    PubMed Central

    Knell, Robert J.

    2016-01-01

    It is increasingly clear that parental environment can play an important role in determining offspring phenotype. These “transgenerational effects” have been linked to many different components of the environment, including toxin exposure, infection with pathogens and parasites, temperature and food quality. In this study, we focus on the latter, asking how variation in the quantity and quality of nutrition affects future generations. Previous studies have shown that artificial diets are a useful tool to examine the within-generation effects of variation in macronutrient content on life history traits, and could therefore be applied to investigations of the transgenerational effects of parental diet. Synthetic diets varying in total macronutrient content and protein: carbohydrate ratios were used to examine both within- and trans-generational effects on life history traits in a generalist stored product pest, the Indian meal moth Plodia interpunctella. The macronutrient composition of the diet was important for shaping within-generation life history traits, including pupal weight, adult weight, and phenoloxidase activity, and had indirect effects via maternal weight on fecundity. Despite these clear within-generation effects on the biology of P. interpunctella, diet composition had no transgenerational effects on the life history traits of offspring. P. interpunctella mothers were able to maintain their offspring quality, possibly at the expense of their own somatic condition, despite high variation in dietary macronutrient composition. This has important implications for the plastic biology of this successful generalist pest. PMID:28033396

  16. Sensorimotor Modulation of Mood and Depression: In Search of an Optimal Mode of Stimulation

    PubMed Central

    Canbeyli, Resit

    2013-01-01

    Depression involves a dysfunction in an affective fronto-limbic circuitry including the prefrontal cortices, several limbic structures including the cingulate cortex, the amygdala, and the hippocampus as well as the basal ganglia. A major emphasis of research on the etiology and treatment of mood disorders has been to assess the impact of centrally generated (top-down) processes impacting the affective fronto-limbic circuitry. The present review shows that peripheral (bottom-up) unipolar stimulation via the visual and the auditory modalities as well as by physical exercise modulates mood and depressive symptoms in humans and animals and activates the same central affective neurocircuitry involved in depression. It is proposed that the amygdala serves as a gateway by articulating the mood regulatory sensorimotor stimulation with the central affective circuitry by emotionally labeling and mediating the storage of such emotional events in long-term memory. Since both amelioration and aggravation of mood is shown to be possible by unipolar stimulation, the review suggests that a psychophysical assessment of mood modulation by multimodal stimulation may uncover mood ameliorative synergisms and serve as adjunctive treatment for depression. Thus, the integrative review not only emphasizes the relevance of investigating the optimal levels of mood regulatory sensorimotor stimulation, but also provides a conceptual springboard for related future research. PMID:23908624

  17. Interactive effects of global climate change and pollution on marine microbes: the way ahead.

    PubMed

    Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Angela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M

    2013-06-01

    Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future.

  18. Interactive effects of global climate change and pollution on marine microbes: the way ahead

    PubMed Central

    Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Ângela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M

    2013-01-01

    Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future. PMID:23789087

  19. The impact of H2S emissions on future geothermal power generation - The Geysers region, California

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.

    1977-01-01

    The future potential for geothermal power generation in the Geysers region of California is as much as 10 times the current 502 MW(e) capacity. However, environmental factors such as H2S emissions and institutional considerations may play the primary role in determining the rate and ultimate level of development. In this paper a scenario of future geothermal generation capacity and H2S emissions in the Geysers region is presented. Problem areas associated with H2S emissions, H2S abatement processes, plant operations, and government agency resources are described. The impact of H2S emissions on future development and the views of effected organizations are discussed. Potential actions needed to remove these constraints are summarized.

  20. Using future thinking to reduce temporal discounting: Under what circumstances are the medial temporal lobes critical?

    PubMed

    Palombo, D J; Keane, M M; Verfaellie, M

    2016-08-01

    The capacity to envision the future plays an important role in many aspects of cognition, including our ability to make optimal, adaptive choices. Past work has shown that the medial temporal lobe (MTL) is necessary for decisions that draw on episodic future thinking. By contrast, little is known about the role of the MTL in decisions that draw on semantic future thinking. Accordingly, the present study investigated whether the MTL contributes to one form of decision making, namely intertemporal choice, when such decisions depend on semantic consideration of the future. In an intertemporal choice task, participants must select either a smaller amount of money that is available in the present or a larger amount of money that would be available at a future date. Amnesic individuals with MTL damage and healthy control participants performed such a task in which, prior to making a choice, they engaged in a semantic generation exercise, wherein they generated items that they would purchase with the future reward. In experiment 1, we found that, relative to a baseline condition involving standard intertemporal choice, healthy individuals were more inclined to select a larger, later reward over a smaller, present reward after engaging in semantic future thinking. By contrast, amnesic participants were paradoxically less inclined to wait for a future reward following semantic future thinking. This finding suggests that amnesics may have had difficulty "tagging" the generated item(s) as belonging to the future. Critically, experiment 2 showed that when the generated items were presented alongside the intertemporal choices, both controls and amnesic participants shifted to more patient choices. These findings suggest that the MTL is not needed for making optimal decisions that draw on semantic future thinking as long as scaffolding is provided to support accurate time tagging. Together, these findings stand to better clarify the role of the MTL in decision making. Published by Elsevier Ltd.

  1. Characterizing the emission implications of future natural gas production and use in the U.S. and Rocky Mountain region: A scenario-based energy system modeling approach

    NASA Astrophysics Data System (ADS)

    McLeod, Jeffrey

    The recent increase in U.S. natural gas production made possible through advancements in extraction techniques including hydraulic fracturing has transformed the U.S. energy supply landscape while raising questions regarding the balance of environmental impacts associated with natural gas production and use. Impact areas at issue include emissions of methane and criteria pollutants from natural gas production, alongside changes in emissions from increased use of natural gas in place of coal for electricity generation. In the Rocky Mountain region, these impact areas have been subject to additional scrutiny due to the high level of regional oil and gas production activity and concerns over its links to air quality. Here, the MARKAL (MArket ALlocation) least-cost energy system optimization model in conjunction with the EPA-MARKAL nine-region database has been used to characterize future regional and national emissions of CO 2, CH4, VOC, and NOx attributed to natural gas production and use in several sectors of the economy. The analysis is informed by comparing and contrasting a base case, business-as-usual scenario with scenarios featuring variations in future natural gas supply characteristics, constraints affecting the electricity generation mix, carbon emission reduction strategies and increased demand for natural gas in the transportation sector. Emission trends and their associated sensitivities are identified and contrasted between the Rocky Mountain region and the U.S. as a whole. The modeling results of this study illustrate the resilience of the short term greenhouse gas emission benefits associated with fuel switching from coal to gas in the electric sector, but also call attention to the long term implications of increasing natural gas production and use for emissions of methane and VOCs, especially in the Rocky Mountain region. This analysis can help to inform the broader discussion of the potential environmental impacts of future natural gas production and use by illustrating links between relevant economic and environmental variables.

  2. Climate change impacts on flood risk and asset damages within mapped 100-year floodplains of the contiguous United States

    NASA Astrophysics Data System (ADS)

    Wobus, Cameron; Gutmann, Ethan; Jones, Russell; Rissing, Matthew; Mizukami, Naoki; Lorie, Mark; Mahoney, Hardee; Wood, Andrew W.; Mills, David; Martinich, Jeremy

    2017-12-01

    A growing body of work suggests that the extreme weather events that drive inland flooding are likely to increase in frequency and magnitude in a warming climate, thus potentially increasing flood damages in the future. We use hydrologic projections based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) to estimate changes in the frequency of modeled 1 % annual exceedance probability (1 % AEP, or 100-year) flood events at 57 116 stream reaches across the contiguous United States (CONUS). We link these flood projections to a database of assets within mapped flood hazard zones to model changes in inland flooding damages throughout the CONUS over the remainder of the 21st century. Our model generates early 21st century flood damages that reasonably approximate the range of historical observations and trajectories of future damages that vary substantially depending on the greenhouse gas (GHG) emissions pathway. The difference in modeled flood damages between higher and lower emissions pathways approaches USD 4 billion per year by 2100 (in undiscounted 2014 dollars), suggesting that aggressive GHG emissions reductions could generate significant monetary benefits over the long term in terms of reduced flood damages. Although the downscaled hydrologic data we used have been applied to flood impacts studies elsewhere, this research expands on earlier work to quantify changes in flood risk by linking future flood exposure to assets and damages on a national scale. Our approach relies on a series of simplifications that could ultimately affect damage estimates (e.g., use of statistical downscaling, reliance on a nationwide hydrologic model, and linking damage estimates only to 1 % AEP floods). Although future work is needed to test the sensitivity of our results to these methodological choices, our results indicate that monetary damages from inland flooding could be significantly reduced through substantial GHG mitigation.

  3. Modeled changes in 100 year Flood Risk and Asset Damages within Mapped Floodplains of the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Wobus, C. W.; Gutmann, E. D.; Jones, R.; Rissing, M.; Mizukami, N.; Lorie, M.; Mahoney, H.; Wood, A.; Mills, D.; Martinich, J.

    2017-12-01

    A growing body of recent work suggests that the extreme weather events that drive inland flooding are likely to increase in frequency and magnitude in a warming climate, thus increasing monetary damages from flooding in the future. We use hydrologic projections based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) to estimate changes in the frequency of modeled 1% annual exceedance probability flood events at 57,116 locations across the contiguous United States (CONUS). We link these flood projections to a database of assets within mapped flood hazard zones to model changes in inland flooding damages throughout the CONUS over the remainder of the 21st century, under two greenhouse gas (GHG) emissions scenarios. Our model generates early 21st century flood damages that reasonably approximate the range of historical observations, and trajectories of future damages that vary substantially depending on the GHG emissions pathway. The difference in modeled flood damages between higher and lower emissions pathways approaches $4 billion per year by 2100 (in undiscounted 2014 dollars), suggesting that aggressive GHG emissions reductions could generate significant monetary benefits over the long-term in terms of reduced flood risk. Although the downscaled hydrologic data we used have been applied to flood impacts studies elsewhere, this research expands on earlier work to quantify changes in flood risk by linking future flood exposure to assets and damages at a national scale. Our approach relies on a series of simplifications that could ultimately affect damage estimates (e.g., use of statistical downscaling, reliance on a nationwide hydrologic model, and linking damage estimates only to 1% AEP floods). Although future work is needed to test the sensitivity of our results to these methodological choices, our results suggest that monetary damages from inland flooding could be substantially reduced through more aggressive GHG mitigation policies.

  4. Scientific millenarianism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberg, A.M.

    Today, for the first time, scientific concerns are seriously being addressed that span future times--hundreds, even thousands, or more years in the future. One is witnessing what the author calls scientific millenarianism. Are such concerns for the distant future exercises in futility, or are they real issues that, to the everlasting gratitude of future generations, this generation has identified, warned about and even suggested how to cope with in the distant future? Can the four potential catastrophes--bolide impact, CO{sub 2} warming, radioactive wastes and thermonuclear war--be avoided by technical fixes, institutional responses, religion, or by doing nothing? These are themore » questions addressed in this paper.« less

  5. Sensitivity of Regional Hydropower Generation to the Projected Changes in Future Watershed Hydrology

    NASA Astrophysics Data System (ADS)

    Kao, S. C.; Naz, B. S.; Gangrade, S.

    2015-12-01

    Hydropower is a key contributor to the renewable energy portfolio due to its established development history and the diverse benefits it provides to the electric power systems. With the projected change in the future watershed hydrology, including shift of snowmelt timing, increasing occurrence of extreme precipitation, and change in drought frequencies, there is a need to investigate how the regional hydropower generation may change correspondingly. To evaluate the sensitivity of watershed storage and hydropower generation to future climate change, a lumped Watershed Runoff-Energy Storage (WRES) model is developed to simulate the annual and seasonal hydropower generation at various hydropower areas in the United States. For each hydropower study area, the WRES model use the monthly precipitation and naturalized (unregulated) runoff as inputs to perform a runoff mass balance calculation for the total monthly runoff storage in all reservoirs and retention facilities in the watershed, and simulate the monthly regulated runoff release and hydropower generation through the system. The WRES model is developed and calibrated using the historic (1980-2009) monthly precipitation, runoff, and generation data, and then driven by a large set of dynamically- and statistically-downscaled Coupled Model Intercomparison Project Phase 5 climate projections to simulate the change of watershed storage and hydropower generation under different future climate scenarios. The results among different hydropower regions, storage capacities, emission scenarios, and timescales are compared and discussed in this study.

  6. Mentalizing about emotion and its relationship to empathy.

    PubMed

    Hooker, Christine I; Verosky, Sara C; Germine, Laura T; Knight, Robert T; D'Esposito, Mark

    2008-09-01

    Mentalizing involves the ability to predict someone else's behavior based on their belief state. More advanced mentalizing skills involve integrating knowledge about beliefs with knowledge about the emotional impact of those beliefs. Recent research indicates that advanced mentalizing skills may be related to the capacity to empathize with others. However, it is not clear what aspect of mentalizing is most related to empathy. In this study, we used a novel, advanced mentalizing task to identify neural mechanisms involved in predicting a future emotional response based on a belief state. Subjects viewed social scenes in which one character had a False Belief and one character had a True Belief. In the primary condition, subjects were asked to predict what emotion the False Belief Character would feel if they had a full understanding about the situation. We found that neural regions related to both mentalizing and emotion were involved when predicting a future emotional response, including the superior temporal sulcus, medial prefrontal cortex, temporal poles, somatosensory related cortices (SRC), inferior frontal gyrus and thalamus. In addition, greater neural activity in primarily emotion-related regions, including right SRC and bilateral thalamus, when predicting emotional response was significantly correlated with more self-reported empathy. The findings suggest that predicting emotional response involves generating and using internal affective representations and that greater use of these affective representations when trying to understand the emotional experience of others is related to more empathy.

  7. Preserving Our Legacy for Future Generations of Educators

    ERIC Educational Resources Information Center

    Hearn, Colleen Porter; Crabtree, Kacy E.

    2008-01-01

    Preserving dance history for future generations includes documenting and maintaining the life and work of dance pioneers who today's dance educators can learn from and imitate. This article offers basic guidelines for conducting interviews; preserving valuable documentation, including photographs and recordings; and unearthing forgotten stories…

  8. Simulating soil organic carbon stock as affected by land cover change and climate change, Hyrcanian forests (northern Iran).

    PubMed

    Soleimani, Azam; Hosseini, Seyed Mohsen; Massah Bavani, Ali Reza; Jafari, Mostafa; Francaviglia, Rosa

    2017-12-01

    Soil organic carbon (SOC) contains a considerable portion of the world's terrestrial carbon stock, and is affected by changes in land cover and climate. SOC modeling is a useful approach to assess the impact of land use, land use change and climate change on carbon (C) sequestration. This study aimed to: (i) test the performance of RothC model using data measured from different land covers in Hyrcanian forests (northern Iran); and (ii) predict changes in SOC under different climate change scenarios that may occur in the future. The following land covers were considered: Quercus castaneifolia (QC), Acer velutinum (AV), Alnus subcordata (AS), Cupressus sempervirens (CS) plantations and a natural forest (NF). For assessment of future climate change projections the Fifth Assessment IPCC report was used. These projections were generated with nine Global Climate Models (GCMs), for two Representative Concentration Pathways (RCPs) leading to very low and high greenhouse gases concentration levels (RCP 2.6 and RCP 8.5 respectively), and for four 20year-periods up to 2099 (2030s, 2050s, 2070s and 2090s). Simulated values of SOC correlated well with measured data (R 2 =0.64 to 0.91) indicating a good efficiency of the RothC model. Our results showed an overall decrease in SOC stocks by 2099 under all land covers and climate change scenarios, but the extent of the decrease varied with the climate models, the emissions scenarios, time periods and land covers. Acer velutinum plantation was the most sensitive land cover to future climate change (range of decrease 8.34-21.83tCha -1 ). Results suggest that modeling techniques can be effectively applied for evaluating SOC stocks, allowing the identification of current patterns in the soil and the prediction of future conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts.

    PubMed

    Tanner, Evan P; Papeş, Monica; Elmore, R Dwayne; Fuhlendorf, Samuel D; Davis, Craig A

    2017-01-01

    Ecological niche models (ENMs) have increasingly been used to estimate the potential effects of climate change on species' distributions worldwide. Recently, predictions of species abundance have also been obtained with such models, though knowledge about the climatic variables affecting species abundance is often lacking. To address this, we used a well-studied guild (temperate North American quail) and the Maxent modeling algorithm to compare model performance of three variable selection approaches: correlation/variable contribution (CVC), biological (i.e., variables known to affect species abundance), and random. We then applied the best approach to forecast potential distributions, under future climatic conditions, and analyze future potential distributions in light of available abundance data and presence-only occurrence data. To estimate species' distributional shifts we generated ensemble forecasts using four global circulation models, four representative concentration pathways, and two time periods (2050 and 2070). Furthermore, we present distributional shifts where 75%, 90%, and 100% of our ensemble models agreed. The CVC variable selection approach outperformed our biological approach for four of the six species. Model projections indicated species-specific effects of climate change on future distributions of temperate North American quail. The Gambel's quail (Callipepla gambelii) was the only species predicted to gain area in climatic suitability across all three scenarios of ensemble model agreement. Conversely, the scaled quail (Callipepla squamata) was the only species predicted to lose area in climatic suitability across all three scenarios of ensemble model agreement. Our models projected future loss of areas for the northern bobwhite (Colinus virginianus) and scaled quail in portions of their distributions which are currently areas of high abundance. Climatic variables that influence local abundance may not always scale up to influence species' distributions. Special attention should be given to selecting variables for ENMs, and tests of model performance should be used to validate the choice of variables.

  10. Literature Review: Factors Affecting the Development of Generation X and Millennials. Societal Factors Affecting Education.

    ERIC Educational Resources Information Center

    Denham, Thomas J.; adbow, Nancy

    Generation X, or "Xers," refers to those born in the United States between 1960 and 1980 and Generation Y, also known as "Millennials," refers to those born between 1980 and 2000. An examination of these two generations is important to educators as the new generation of Millennials begins to access higher education. A large and…

  11. The impact of climate change on photovoltaic power generation in Europe

    PubMed Central

    Jerez, Sonia; Tobin, Isabelle; Vautard, Robert; Montávez, Juan Pedro; López-Romero, Jose María; Thais, Françoise; Bartok, Blanka; Christensen, Ole Bøssing; Colette, Augustin; Déqué, Michel; Nikulin, Grigory; Kotlarski, Sven; van Meijgaard, Erik; Teichmann, Claas; Wild, Martin

    2015-01-01

    Ambitious climate change mitigation plans call for a significant increase in the use of renewables, which could, however, make the supply system more vulnerable to climate variability and changes. Here we evaluate climate change impacts on solar photovoltaic (PV) power in Europe using the recent EURO-CORDEX ensemble of high-resolution climate projections together with a PV power production model and assuming a well-developed European PV power fleet. Results indicate that the alteration of solar PV supply by the end of this century compared with the estimations made under current climate conditions should be in the range (−14%;+2%), with the largest decreases in Northern countries. Temporal stability of power generation does not appear as strongly affected in future climate scenarios either, even showing a slight positive trend in Southern countries. Therefore, despite small decreases in production expected in some parts of Europe, climate change is unlikely to threaten the European PV sector. PMID:26658608

  12. Optimistic and defensive-pessimist students: differences in their academic motivation and learning strategies.

    PubMed

    Suárez Riveiro, José Manuel

    2014-01-01

    In addition to cognitive and behavioral strategies, students can also use affective-motivational strategies to facilitate their learning process. In this way, the strategies of defensive-pessimism and generation of positive expectations have been widely related to conceptual models of pessimism-optimism. The aim of this study was to describe the use of these strategies in 1753 secondary school students, and to study the motivational and strategic characteristics which differentiated between the student typologies identified as a result of their use. The results indicated a higher use of the generation of positive expectations strategy (optimism) (M = 3.40, SD = .78) than the use of the defensive pessimism strategy (M = 3.00, SD = .78); a positive and significant correlation between the two strategies (r = .372, p = .001); their relationship with adequate academic motivation and with the use of learning strategies. Furthermore, four student typologies were identified based on the use of both strategies. Lastly, we propose a new approach for future work in this line of research.

  13. Bioflotation of sulfide minerals with Acidithiobacillus ferrooxidans in relation to copper activation and surface oxidation.

    PubMed

    Pecina-Treviño, E T; Ramos-Escobedo, G T; Gallegos-Acevedo, P M; López-Saucedo, F J; Orrantia-Borunda, E

    2012-09-01

    Surface oxidation of sulfides and copper (Cu) activation are 2 of the main processes that determine the efficiency of flotation. The present study was developed with the intention to ascertain the role of the phenomena in the biomodification of sulfides by Acidithiobacillus ferrooxidans culture (cells and growth media) and their impact in bioflotation. Surface characteristics of chalcopyrite, sphalerite, and pyrrhotite, alone and in mixtures, after interaction with A. ferrooxidans were evaluated. Chalcopyrite floatability was increased substantially by biomodification, while bacteria depressed pyrrhotite floatability, favoring separation. The results showed that elemental sulfur concentration increased because of the oxidation generated by bacterial cells, the effect is intensified by the Fe(III) left in the culture and by galvanic contact. Acidithiobacillus ferrooxidans culture affects the Cu activation of sphalerite. The implications of elemental sulfur concentration and Cu activation of sphalerite are key factors that must be considered for the future development of sulfide bioflotation processes, since the depressive effect of cells could be counteracted by elemental sulfur generation.

  14. Numerical simulations of block-and-ash flows using the Titan2D flow model: examples from the 2006 eruption of Merapi Volcano, Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Charbonnier, S. J.; Gertisser, R.

    2009-10-01

    We present Titan2D simulations of two well-characterized block-and-ash flow (BAF) events of the 2006 eruption of Merapi (Java, Indonesia) that affected the Gendol valley on the volcano’s southern flank and adjacent, densely populated interfluve (non-valley) areas: (1) a single dome-collapse event to the south that generated one of the smaller, post-June 14 flows and (2) a sustained, multiple dome-collapse event, also directed to the south, that produced the largest flows of the 2006 eruption emplaced in the afternoon of June 14. Using spatially varying bed friction angles, Titan2D is capable of reproducing the paths, velocities, runout distance, areas covered and deposited volumes of these flows over highly complex topography. The model results provide the basis for estimating the areas and levels of hazards associated with BAFs generated during relatively short as well as prolonged dome-collapse periods and guidance during future eruptive crises at Merapi.

  15. Topical Microbicides and HIV Prevention in the Female Genital Tract

    PubMed Central

    Cottrell, Mackenzie L; Kashuba, Angela D. M.

    2014-01-01

    Worldwide, HIV disproportionately affects women who are often unable to negotiate traditional HIV preventive strategies such as condoms. In the absence of an effective vaccine or cure, chemoprophylaxis may be a valuable self-initiated alternative. Topical microbicides have been investigated as one such option. The first generation topical microbicides were non-specific, broad-spectrum antimicrobial agents, including surfactants, polyanions, and acid buffering gels, that generally exhibited contraceptive properties. After extensive clinical study, none prevented HIV infection, and their development was abandoned. Second generation topical microbicides include agents with selective mechanisms of antiviral activity. Most are currently being used for, or have previously been explored as, drugs for treatment of HIV. The most advanced of these is tenofovir 1% gel: the first topical agent shown to significantly reduce HIV infection by 39% compared to placebo. This review summarizes the evolution of topical microbicides for HIV chemoprophylaxis, highlights important concepts learned, and offers current and future considerations for this area of research. PMID:24664786

  16. On the Mathematical Consequences of Binning Spike Trains.

    PubMed

    Cessac, Bruno; Le Ny, Arnaud; Löcherbach, Eva

    2017-01-01

    We initiate a mathematical analysis of hidden effects induced by binning spike trains of neurons. Assuming that the original spike train has been generated by a discrete Markov process, we show that binning generates a stochastic process that is no longer Markov but is instead a variable-length Markov chain (VLMC) with unbounded memory. We also show that the law of the binned raster is a Gibbs measure in the DLR (Dobrushin-Lanford-Ruelle) sense coined in mathematical statistical mechanics. This allows the derivation of several important consequences on statistical properties of binned spike trains. In particular, we introduce the DLR framework as a natural setting to mathematically formalize anticipation, that is, to tell "how good" our nervous system is at making predictions. In a probabilistic sense, this corresponds to condition a process by its future, and we discuss how binning may affect our conclusions on this ability. We finally comment on the possible consequences of binning in the detection of spurious phase transitions or in the detection of incorrect evidence of criticality.

  17. Systems analysis of arrestin pathway functions.

    PubMed

    Maudsley, Stuart; Siddiqui, Sana; Martin, Bronwen

    2013-01-01

    To fully appreciate the diversity and specificity of complex cellular signaling events, such as arrestin-mediated signaling from G protein-coupled receptor activation, a complex systems-level investigation currently appears to be the best option. A rational combination of transcriptomics, proteomics, and interactomics, all coherently integrated with applied next-generation bioinformatics, is vital for the future understanding of the development, translation, and expression of GPCR-mediated arrestin signaling events in physiological contexts. Through a more nuanced, systems-level appreciation of arrestin-mediated signaling, the creation of arrestin-specific molecular response "signatures" should be made simple and ultimately amenable to drug discovery processes. Arrestin-based signaling paradigms possess important aspects, such as its specific temporal kinetics and ability to strongly affect transcriptional activity, that make it an ideal test bed for next-generation of drug discovery bioinformatic approaches such as multi-parallel dose-response analysis, data texturization, and latent semantic indexing-based natural language data processing and feature extraction. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. New activity pattern in human interactive dynamics

    NASA Astrophysics Data System (ADS)

    Formentin, Marco; Lovison, Alberto; Maritan, Amos; Zanzotto, Giovanni

    2015-09-01

    We investigate the response function of human agents as demonstrated by written correspondence, uncovering a new pattern for how the reactive dynamics of individuals is distributed across the set of each agent’s contacts. In long-term empirical data on email, we find that the set of response times considered separately for the messages to each different correspondent of a given writer, generate a family of heavy-tailed distributions, which have largely the same features for all agents, and whose characteristic times grow exponentially with the rank of each correspondent. We furthermore show that this new behavioral pattern emerges robustly by considering weighted moving averages of the priority-conditioned response-time probabilities generated by a basic prioritization model. Our findings clarify how the range of priorities in the inputs from one’s environment underpin and shape the dynamics of agents embedded in a net of reactive relations. These newly revealed activity patterns might be universal, being present in other general interactive environments, and constrain future models of communication and interaction networks, affecting their architecture and evolution.

  19. Impacts of Model Bias on the Climate Change Signal and Effects of Weighted Ensembles of Regional Climate Model Simulations: A Case Study over Southern Québec, Canada

    DOE PAGES

    Eum, Hyung-Il; Gachon, Philippe; Laprise, René

    2016-01-01

    This study examined the impact of model biases on climate change signals for daily precipitation and for minimum and maximum temperatures. Through the use of multiple climate scenarios from 12 regional climate model simulations, the ensemble mean, and three synthetic simulations generated by a weighting procedure, we investigated intermodel seasonal climate change signals between current and future periods, for both median and extreme precipitation/temperature values. A significant dependence of seasonal climate change signals on the model biases over southern Québec in Canada was detected for temperatures, but not for precipitation. This suggests that the regional temperature change signal is affectedmore » by local processes. Seasonally, model bias affects future mean and extreme values in winter and summer. In addition, potentially large increases in future extremes of temperature and precipitation values were projected. For three synthetic scenarios, systematically less bias and a narrow range of mean change for all variables were projected compared to those of climate model simulations. In addition, synthetic scenarios were found to better capture the spatial variability of extreme cold temperatures than the ensemble mean scenario. Finally, these results indicate that the synthetic scenarios have greater potential to reduce the uncertainty of future climate projections and capture the spatial variability of extreme climate events.« less

  20. Impacts of Model Bias on the Climate Change Signal and Effects of Weighted Ensembles of Regional Climate Model Simulations: A Case Study over Southern Québec, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eum, Hyung-Il; Gachon, Philippe; Laprise, René

    This study examined the impact of model biases on climate change signals for daily precipitation and for minimum and maximum temperatures. Through the use of multiple climate scenarios from 12 regional climate model simulations, the ensemble mean, and three synthetic simulations generated by a weighting procedure, we investigated intermodel seasonal climate change signals between current and future periods, for both median and extreme precipitation/temperature values. A significant dependence of seasonal climate change signals on the model biases over southern Québec in Canada was detected for temperatures, but not for precipitation. This suggests that the regional temperature change signal is affectedmore » by local processes. Seasonally, model bias affects future mean and extreme values in winter and summer. In addition, potentially large increases in future extremes of temperature and precipitation values were projected. For three synthetic scenarios, systematically less bias and a narrow range of mean change for all variables were projected compared to those of climate model simulations. In addition, synthetic scenarios were found to better capture the spatial variability of extreme cold temperatures than the ensemble mean scenario. Finally, these results indicate that the synthetic scenarios have greater potential to reduce the uncertainty of future climate projections and capture the spatial variability of extreme climate events.« less

  1. Analyzing the responses of species assemblages to climate change across the Great Basin, USA.

    NASA Astrophysics Data System (ADS)

    Henareh Khalyani, A.; Falkowski, M. J.; Crookston, N.; Yousef, F.

    2016-12-01

    The potential impacts of climate change on the future distribution of tree species in not well understood. Climate driven changes in tree species distribution could cause significant changes in realized species niches, potentially resulting in the loss of ecotonal species as well as the formation on novel assemblages of overlapping tree species. In an effort to gain a better understating of how the geographic distribution of tree species may respond to climate change, we model the potential future distribution of 50 different tree species across 70 million ha in the Great Basin, USA. This is achieved by leveraging a species realized niche model based on non-parametric analysis of species occurrences across climatic, topographic, and edaphic variables. Spatially explicit, high spatial resolution (30 m) climate variables (e.g., precipitation, and minimum, maximum, and mean temperature) and associated climate indices were generated on an annual basis between 1981-2010 by integrating climate station data with digital elevation data (Shuttle Radar Topographic Mission (SRTM) data) in a thin plate spline interpolation algorithm (ANUSPLIN). Bioclimate models of species niches in in the cotemporary period and three following 30 year periods were then generated by integrating the climate variables, soil data, and CMIP 5 general circulation model projections. Our results suggest that local scale contemporary variations in species realized niches across space are influenced by edaphic and topographic variables as well as climatic variables. The local variability in soil properties and topographic variability across space also affect the species responses to climate change through time and potential formation of species assemblages in future. The results presented here in will aid in the development of adaptive forest management techniques aimed at mitigating negative impacts of climate change on forest composition, structure, and function.

  2. A Comprehensive, Ethnically Diverse Library of Sickle Cell Disease-Specific Induced Pluripotent Stem Cells.

    PubMed

    Park, Seonmi; Gianotti-Sommer, Andreia; Molina-Estevez, Francisco Javier; Vanuytsel, Kim; Skvir, Nick; Leung, Amy; Rozelle, Sarah S; Shaikho, Elmutaz Mohammed; Weir, Isabelle; Jiang, Zhihua; Luo, Hong-Yuan; Chui, David H K; Figueiredo, Maria Stella; Alsultan, Abdulraham; Al-Ali, Amein; Sebastiani, Paola; Steinberg, Martin H; Mostoslavsky, Gustavo; Murphy, George J

    2017-04-11

    Sickle cell anemia affects millions of people worldwide and is an emerging global health burden. As part of a large NIH-funded NextGen Consortium, we generated a diverse, comprehensive, and fully characterized library of sickle-cell-disease-specific induced pluripotent stem cells (iPSCs) from patients of different ethnicities, β-globin gene (HBB) haplotypes, and fetal hemoglobin (HbF) levels. iPSCs stand to revolutionize the way we study human development, model disease, and perhaps eventually, treat patients. Here, we describe this unique resource for the study of sickle cell disease, including novel haplotype-specific polymorphisms that affect disease severity, as well as for the development of patient-specific therapeutics for this phenotypically diverse disorder. As a complement to this library, and as proof of principle for future cell- and gene-based therapies, we also designed and employed CRISPR/Cas gene editing tools to correct the sickle hemoglobin (HbS) mutation. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Factors affecting the quality of fish caught by Native Americans in the Zone 6 fishery 1991 through 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abernethy, C.S.

    1994-09-01

    A program to monitor the salmon and steelhead (Oncorhynchus spp.) fishery in the lower Columbia River (Zone 6 fishery) was initiated in 1991 to respond to questions and comments frequently made by Native Americans at public meetings. Native Americans were concerned that the quality of the Columbia River had deteriorated and that the poor environmental conditions had affected the health and quality of fish they relied on for subsistence, ceremonial, religious, and commercial purposes. They also feared that eating contaminated fish might endanger the health of their children and future generations. Operations at the Hanford Site were listed as onemore » of many causes of the deteriorating environment. Fisheries pathologists concluded that most of the external symptoms on fish were related to bacterial infection of gill net abrasions and pre-spawning trauma, and were not caused by pollution or contamination of the Columbia River. The pathologists also stated that consumption of the fish posed no threat to human consumers.« less

  4. Altered Reward Function in Adolescent Depression: What, When, and How?

    PubMed Central

    Forbes, Erika E.; Dahl, Ronald E.

    2011-01-01

    Background Conceptual models and recent evidence indicate that neural response to reward is altered in depression. Taking a developmental approach to investigating reward function in adolescent depression can elucidate the etiology, pathophysiology, and course of depression, a disorder that typically begins during adolescence and has high rates of recurrence. Methods This conceptual review describes the what, when, and how of altered reward function in adolescent depression. With the goal of generating new, testable hypotheses within a developmental affective neuroscience framework, we critically review findings and suggest future directions. Peer-reviewed empirical papers for inclusion in this critical review were obtained by searching PubMed, PsycInfo, and ScienceDirect for the years 1990–2010. Results A pattern of low striatal response and high medial prefrontal response to reward is evident in adolescents and adults with depression. Given the salience of social stimuli for positive affect and depression, reward function might be especially disrupted in response to social rewards. Because of changes in the dopamine system and reward function with aging, altered reward function in depression might be more evident during adolescence than later in life; however, low reward function may also be a stable characteristic of people who experience depression. Mechanisms of altered reward function in depression could include disrupted balance of corticostriatal circuit function, with disruption occurring as aberrant adolescent brain development. Conclusions Future studies should examine responses to social rewards; employ longitudinal and prospective designs; and investigate patterns of functional connectivity in reward circuits. Understanding altered reward function in depression has potential implications for treatment development. A more rigorous approach to investigating anhedonia, threat-reward interactions, and comorbid anxiety will be valuable to future progress in describing the role of reward function in the pathophysiology of depression. PMID:22117893

  5. Assessment of a stochastic downscaling methodology in generating an ensemble of hourly future climate time series

    NASA Astrophysics Data System (ADS)

    Fatichi, S.; Ivanov, V. Y.; Caporali, E.

    2013-04-01

    This study extends a stochastic downscaling methodology to generation of an ensemble of hourly time series of meteorological variables that express possible future climate conditions at a point-scale. The stochastic downscaling uses general circulation model (GCM) realizations and an hourly weather generator, the Advanced WEather GENerator (AWE-GEN). Marginal distributions of factors of change are computed for several climate statistics using a Bayesian methodology that can weight GCM realizations based on the model relative performance with respect to a historical climate and a degree of disagreement in projecting future conditions. A Monte Carlo technique is used to sample the factors of change from their respective marginal distributions. As a comparison with traditional approaches, factors of change are also estimated by averaging GCM realizations. With either approach, the derived factors of change are applied to the climate statistics inferred from historical observations to re-evaluate parameters of the weather generator. The re-parameterized generator yields hourly time series of meteorological variables that can be considered to be representative of future climate conditions. In this study, the time series are generated in an ensemble mode to fully reflect the uncertainty of GCM projections, climate stochasticity, as well as uncertainties of the downscaling procedure. Applications of the methodology in reproducing future climate conditions for the periods of 2000-2009, 2046-2065 and 2081-2100, using the period of 1962-1992 as the historical baseline are discussed for the location of Firenze (Italy). The inferences of the methodology for the period of 2000-2009 are tested against observations to assess reliability of the stochastic downscaling procedure in reproducing statistics of meteorological variables at different time scales.

  6. A Five Generation Family with a Novel Mutation in FOXC2 and Lymphedema Worsening to Hydrops in the Youngest Generation

    PubMed Central

    Sargent, Carole; Bauer, Julien; Khalil, Muhamed; Filmore, Parker; Bernas, Michael; Witte, Marlys; Pearson, M. Peggy; Erickson, Robert P

    2014-01-01

    We describe a five generation family with dominantly inherited lymphedema, but no distichiasis, in which 3/3 affected offspring in the fifth generation have died of fetal hydrops and related birth defects. Mutational analysis disclosed a novel mutation in FOXC2 (R121C) in affected members. We searched for possible genetic influences on the greater severity of lymphedema (hydrops) in the fifth generation. Karyotypes disclosed an extra band in Xp in one affected fetus but this was also found in the mother. Copy number variation (CNV) studies on four members of the pedigree (mother of the three severely affected fetuses/infants; one severely affected; a full, and a half, unaffected sibs) did not detect the source of the Xp band or a possible influence on the severe phenotype. However, use of SNP arrays did allow identification of the portion of the maternal proximal Xp shared by a hydrops-affected daughter and son which was not shared by an unaffected daughter from the same sibship. PMID:25252123

  7. Future integrated aquifer vulnerability assessment considering land use / land cover and climate change using DRASTIC and SWAT

    NASA Astrophysics Data System (ADS)

    Jang, W.; Engel, B.; Chaubey, I.

    2015-12-01

    Climate change causes significant changes to temperature regimes and precipitation patterns across the world. Such alterations in climate pose serious risks for not only inland freshwater ecosystems but also groundwater systems, and may adversely affect numerous critical services they provide to humans. All groundwater results from precipitation, and precipitation is affected by climate change. Climate change is also influenced by land use / land cover (LULC) change and vice versa. According to Intergovernmental Panel on Climate Change (IPCC) reports, climate change is caused by global warming which is generated by the increase of greenhouse gas (GHG) emissions in the atmosphere. LULC change is a major driving factor causing an increase in GHG emissions. LULC change data (years 2006-2100) will be produced by the Land Transformation Model (LTM) which simulates spatial patterns of LULC change over time. MIROC5 (years 2006-2100) will be obtained considering GCMs and ensemble characteristics such as resolution and trend of temperature and precipitation which is a consistency check with observed data from local weather stations and historical data from GCMs output data. Thus, MIROC5 will be used to account for future climate change scenarios and relationship between future climate change and alteration of groundwater quality in this study. For efficient groundwater resources management, integrated aquifer vulnerability assessments (= intrinsic vulnerability + hazard potential assessment) are required. DRASTIC will be used to evaluate intrinsic vulnerability, and aquifer hazard potential will be evaluated by Soil and Water Assessment Tool (SWAT) which can simulate pollution potential from surface and transport properties of contaminants. Thus, for effective integrated aquifer vulnerability assessment for LULC and climate change in the Midwestern United States, future projected LULC and climate data from the LTM and GCMs will be incorporated with DRASTIC and SWAT. It is hypothesized that: 1) long-term future hydrology and water quality in surface and subsurface drainage areas will be influenced by LULC and climate change, and 2) this approach will be useful to identify specific areas contributing the most pollutants to aquifers due to LULC and climate change.

  8. Recruiting women to vascular surgery and other surgical specialties.

    PubMed

    Dageforde, Leigh Anne; Kibbe, Melina; Jackson, Gretchen Purcell

    2013-01-01

    Vascular surgery is a subspecialty that attracts future surgeons with challenging technical procedures and complex decision making. Despite its appeal, continued promotion of the field is necessary to recruit and retain the best and brightest candidates. Recruitment of medical students and residents may be limited by the lifestyle inherent to vascular surgery and the length of residency training. The young adults of the current applicant and resident pool differ from prior generations in their desire for hands-on mentoring, aspirations to affect change daily, a penchant for technology, and strong emphasis on work-life balance. Furthermore, the percentage of women pursuing careers in vascular surgery is not representative of the eligible workforce. Women are now the majority of graduates in all of higher education, and thus, vascular surgery may need to make a concerted effort to appeal to women in order to attract the most talented young professionals to the field. Recruiting strategies for both men and women of Generation Y should target a diverse group of potential candidates with an awareness of the unique characteristics and needs of this generation of rising surgeons. Copyright © 2013 Society for Vascular Surgery. All rights reserved.

  9. Imagining the Future in Children with Severe Traumatic Brain Injury.

    PubMed

    Lah, Suncica; Gott, Chloe; Epps, Adrienne; Parry, Louise

    2018-06-12

    Imagining future events is thought to rely on recombination and integration of past episodic memory traces into future events. Future and past events contain episodic and nonepisodic details. Children with severe traumatic brain injury (TBI) were found to have impaired recall of past episodic (but not semantic) event details. Here, we examined whether severe TBI impairs construction of future events. Children with severe TBI (n = 15) and healthy controls (NC; n = 33) 1) completed tests of anterograde (narrative and relational) memory and executive skills, 2) recalled past events and generated future events, and 3) rated events' phenomenological qualities. Events were scored for episodic (internal) and semantic (external) details. The groups did not differ in generating details of future events, although children with TBI recalled significantly fewer past internal (but not external) events' details relative to NCs. Moreover, the number of past internal details relative to future internal details was significantly higher in the NC group, but not in the TBI groups. Significant correlations between past and future were found for 1) internal details in both groups and 2) external details in the NC group. The TBI group rated their events as being less significant than did the NC group. The groups did not differ on ratings of visual intensity and rehearsal. Our study has shown that children who have sustained severe TBI had impoverished recall of past, but not generation of future, events. This unexpected dissociation between past and future event construction requires further research.

  10. Evaluation of urban flood damages in climate and land use changes: Case Studies from Southeast Asia

    NASA Astrophysics Data System (ADS)

    Kefi, M.; Binaya, M. K.; Kumar, P.; Fukushi, K.

    2017-12-01

    Urbanization, changes in land use and global warming increase the threat of natural disasters such as flooding. In recent decades, it was observed a rise of intensity and frequency of flood events. The exposure both of people and the national economy to flood hazards is amplified and can induce serious economic and social damages. For this reason, local governments adopted several strategies to cope with flood risk in urban areas in particular, but a better comprehension of the flood hazard factors may enhance the efficiency of mitigating measures overall. For this research, a spatial analysis is applied to estimate future direct flood damage for 2030 in three Southeast Asian megacities: Jakarta (Indonesia), Metro-Manila (Philippines) and Hanoi (Vietnam). This comprehensive method combined flood characteristics (flood depth) obtained from flood simulation using FLO-2D, land use generated from supervised classification and remote sensing products, property value of affected buildings and flood damage rate derived from flood depth function. This function is established based on field surveys with local people affected by past flood events. Additionally, two scenarios were analyzed to simulate the future conditions. The first one is related to climate change and it is based on several General Circulation Models (GCMs). However, the second one is establish to point out the effect of adaptation strategies. The findings shows that the climate change combined with the expansion of built-up areas increase the vulnerability of urban areas to flooding and the economic damage. About 16%, 8% and 19% of flood inundation areas are expected to increase respectively in Metro-Manila, Jakarta and Hanoi. However, appropriate flood control measures can be helpful to reduce the impact of natural disaster. Furthermore, flood damage maps are generated at a large scale, which can be helpful to local stakeholders when prioritizing their mitigation strategies on urban disaster resilience.

  11. Essays on equity-efficiency trade offs in energy and climate policies

    NASA Astrophysics Data System (ADS)

    Sesmero, Juan P.

    Economic efficiency and societal equity are two important goals of public policy. Energy and climate policies have the potential to affect both. Efficiency is increased by substituting low-carbon energy for fossil energy (mitigating an externality) while equity is served if such substitution enhances consumption opportunities of unfavored groups (low income households or future generations). However policies that are effective in reducing pollution may not be so effective in redistributing consumption and vice-versa. This dissertation explores potential trade-offs between equity and efficiency arising in energy and climate policies. Chapter 1 yields two important results. First, while effective in reducing pollution, energy efficiency policies may fall short in protecting future generations from resource depletion. Second, deployment of technologies that increase the ease with which capital can substitute for energy may enhance the ability of societies to sustain consumption and achieve intertemporal equity. Results in Chapter 1 imply that technologies more intensive in capital and materials and less intensive in carbon such as corn ethanol may be effective in enhancing intertemporal equity. However the effectiveness of corn ethanol (relative to other technologies) in reducing emissions will depend upon the environmental performance of the industry. Chapter 2 measures environmental efficiency of ethanol plants, identifies ways to enhance performance, and calculates the cost of such improvements based on a survey of ethanol plants in the US. Results show that plants may be able to increase profits and reduce emissions simultaneously rendering the ethanol industry more effective in tackling efficiency. Finally while cap and trade proposals are designed to correcting a market failure by reducing pollution, allocation of emission allowances may affect income distribution and, hence, intra-temporal equity. Chapter 3 proves that under plausible conditions on preferences and technology increasing efficiency requires greater transfers to low income households the higher the effect of these transfers on the price of permits and the lower their effect on the price of consumption goods. This denotes market conditions under which efficiency and equity are complementary goals.

  12. Modeling The Hydrology And Water Allocation Under Climate Change In Rural River Basins: A Case Study From Nam Ngum River Basin, Laos

    NASA Astrophysics Data System (ADS)

    Jayasekera, D. L.; Kaluarachchi, J.; Kim, U.

    2011-12-01

    Rural river basins with sufficient water availability to maintain economic livelihoods can be affected with seasonal fluctuations of precipitation and sometimes by droughts. In addition, climate change impacts can also alter future water availability. General Circulation Models (GCMs) provide credible quantitative estimates of future climate conditions but such estimates are often characterized by bias and coarse scale resolution making it necessary to downscale the outputs for use in regional hydrologic models. This study develops a methodology to downscale and project future monthly precipitation in moderate scale basins where data are limited. A stochastic framework for single-site and multi-site generation of weekly rainfall is developed while preserving the historical temporal and spatial correlation structures. The spatial correlations in the simulated occurrences and the amounts are induced using spatially correlated yet serially independent random numbers. This method is applied to generate weekly precipitation data for a 100-year period in the Nam Ngum River Basin (NNRB) that has a land area of 16,780 km2 located in Lao P.D.R. This method is developed and applied using precipitation data from 1961 to 2000 for 10 selected weather stations that represents the basin rainfall characteristics. Bias-correction method, based on fitted theoretical probability distribution transformations, is applied to improve monthly mean frequency, intensity and the amount of raw GCM precipitation predicted at a given weather station using CGCM3.1 and ECHAM5 for SRES A2 emission scenario. Bias-correction procedure adjusts GCM precipitation to approximate the long-term frequency and the intensity distribution observed at a given weather station. Index of agreement and mean absolute error are determined to assess the overall ability and performance of the bias correction method. The generated precipitation series aggregated at monthly time step was perturbed by the change factors estimated using the corrected GCM and baseline scenarios for future time periods of 2011-2050 and 2051-2090. A network based hydrologic and water resources model, WEAP, was used to simulate the current water allocation and management practices to identify the impacts of climate change in the 20th century. The results of this work are used to identify the multiple challenges faced by stakeholders and planners in water allocation for competing demands in the presence of climate change impacts.

  13. A LORETA study of mental time travel: similar and distinct electrophysiological correlates of re-experiencing past events and pre-experiencing future events.

    PubMed

    Lavallee, Christina F; Persinger, Michael A

    2010-12-01

    Previous studies exploring mental time travel paradigms with functional neuroimaging techniques have uncovered both common and distinct neural correlates of re-experiencing past events or pre-experiencing future events. A gap in the mental time travel literature exists, as paradigms have not explored the affective component of re-experiencing past episodic events; this study explored this sparsely researched area. The present study employed standardized low resolution electromagnetic tomography (sLORETA) to identify electrophysiological correlates of re-experience affect-laden and non-affective past events, as well as pre-experiencing a future anticipated event. Our results confirm previous research and are also novel in that we illustrate common and distinct electrophysiological correlates of re-experiencing affective episodic events. Furthermore, research from this experiment yields results outlining a pattern of activation in the frontal and temporal regions is correlated with the time frame of past or future events subjects imagined. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. The association between early generative concern and caregiving with friends from early to middle adolescence.

    PubMed

    Lawford, Heather L; Doyle, Anna-Beth; Markiewicz, Dorothy

    2013-12-01

    Generativity, defined as concern for future generations, is theorized to become a priority in midlife, preceded by a stage in which intimacy is the central issue. Recent research, however, has found evidence of generativity even in adolescence. This longitudinal study explored the associations between caregiving in friendships, closely related to intimacy, and early generative concern in a young adolescent sample. Given the importance of close friendships in adolescence, it was hypothesized that responsive caregiving in early adolescent friendships would predict later generative concern. Approximately 140 adolescents (56 % female, aged 14 at Time 1) completed questionnaires regarding generative concern and responsive caregiving with friends yearly across 2 years. Structural equation modeling revealed that caregiving predicted generative concern 1 year later but generative concern did not predict later caregiving. These results suggest that caregiving in close friendships plays an important role in the development of adolescents' motivation to contribute to future generations.

  15. Leading into the future: coaching and mentoring Generation X employees.

    PubMed

    Weston, M J

    2001-09-01

    Managers who recognize that Generation X employees are looking for workplaces that allow them to develop their competencies as well as have a balance in their personal and professional lives, are more successful in attracting and retaining employees in this age group. Savvy managers understand that adapting to meet the needs of Generation X employees also assists the manager in transitioning into the Information Age and the workplace of the future.

  16. Building a translational science on children and youth affected by political violence and armed conflict: A commentary.

    PubMed

    Masten, Ann S

    2017-02-01

    Articles in this timely Special Section represent an important milestone in the developmental science on children and youth involved in political violence and armed conflict. With millions of children worldwide affected by past and present wars and conflicts, there is an urgent and growing need for research to inform efforts to understand, prevent, and mitigate the possible harm of such violence to individual children, families, communities, and societies, for present as well as future generations. The four programs of research highlighted in this Special Section illustrate key advances and challenges in contemporary development research on young people growing up in the midst or aftermath of political violence. These studies are longitudinal, methodologically sophisticated, and grounded in socioecological systems models that align well with current models of risk and resilience in developmental psychopathology. These studies collectively mark a critically important shift to process-focused research that holds great promise for translational applications. Nonetheless, given the scope of the international crisis of children and youth affected by political violence and its sequelae, there is an urgent global need for greater mobilization of resources to support translational science and effective evidence-based action.

  17. The neural component-process architecture of endogenously generated emotion

    PubMed Central

    Kanske, Philipp; Singer, Tania

    2017-01-01

    Abstract Despite the ubiquity of endogenous emotions and their role in both resilience and pathology, the processes supporting their generation are largely unknown. We propose a neural component process model of endogenous generation of emotion (EGE) and test it in two functional magnetic resonance imaging (fMRI) experiments (N = 32/293) where participants generated and regulated positive and negative emotions based on internal representations, usin self-chosen generation methods. EGE activated nodes of salience (SN), default mode (DMN) and frontoparietal control (FPCN) networks. Component processes implemented by these networks were established by investigating their functional associations, activation dynamics and integration. SN activation correlated with subjective affect, with midbrain nodes exclusively distinguishing between positive and negative affect intensity, showing dynamics consistent generation of core affect. Dorsomedial DMN, together with ventral anterior insula, formed a pathway supporting multiple generation methods, with activation dynamics suggesting it is involved in the generation of elaborated experiential representations. SN and DMN both coupled to left frontal FPCN which in turn was associated with both subjective affect and representation formation, consistent with FPCN supporting the executive coordination of the generation process. These results provide a foundation for research into endogenous emotion in normal, pathological and optimal function. PMID:27522089

  18. Multigenerational effects of benzo[a]pyrene exposure on survival and developmental deformities in zebrafish larvae

    PubMed Central

    Corrales, Jone; Thornton, Cammi; White, Mallory; Willett, Kristine L.

    2014-01-01

    In the aquatic environment, adverse outcomes from dietary polycyclic aromatic hydrocarbon (PAH) exposure are poorly understood, and multigenerational developmental effects following exposure to PAHs are in need of exploration. Benzo[a]pyrene (BaP), a model PAH, is a recognized carcinogen and endocrine disruptor. Here adult zebrafish (F0) were fed 0, 10, 114, or 1012 μg BaP/g diet at a feed rate of 1% body weight twice/day for 21 days. Eggs were collected and embryos (F1) were raised to assess mortality and time to hatch at 24, 32, 48, 56, 72, 80, and 96 hours post fertilization (hpf) before scoring developmental deformities at 96 hpf. F1 generation fish were raised to produce the F2 generation followed by the F3 and F4 generations. Mortality significantly increased in the higher dose groups of BaP (2.3 and 20 μg BaP/g fish) in the F1 generation while there were no differences in the F2, F3, or F4 generations. In addition, premature hatching was observed among the surviving fish in the higher dose of the F1 generation, but no differences were found in the F2 and F3 generations. While only the adult F0 generation was BaP-treated, this exposure resulted in multigenerational phenotypic impacts on at least two generations (F1 and F2). Body morphology deformities (shape of body, tail, and pectoral fins) were the most severe abnormality observed, and these were most extreme in the F1 generation but still present in the F2 but not F3 generations. Craniofacial structures (length of brain regions, size of optic and otic vesicles, and jaw deformities), although not significantly affected in the F1 generation, emerged as significant deformities in the F2 generation. Future work will attempt to molecularly anchor the persistent multigenerational phenotypic deformities noted in this study caused by BaP exposure. PMID:24440964

  19. Impacts of Variable Renewable Energy on Bulk Power System Assets, Pricing, and Costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ryan H.; Mills, Andrew; Seel, Joachim

    We synthesize available literature, data, and analysis on the degree to which growth in variable renewable energy (VRE) has impacted to date or might in the future impact bulk power system assets, pricing, and costs. We do not analyze impacts on specific power plants, instead focusing on national and regional system-level trends. The issues addressed are highly context dependent—affected by the underlying generation mix of the system, the amount of wind and solar penetration, and the design and structure of the bulk power system in each region. Moreover, analyzing the impacts of VRE on the bulk power system is amore » complex area of research and there is much more to be done to increase understanding of how VRE impacts the dynamics of current and future electricity markets. While more analysis is warranted, including additional location-specific assessments, several high-level findings emerge from this synthesis: -VRE Is Already Impacting the Bulk Power Market -VRE Impacts on Average Wholesale Prices Have Been Modest -VRE Impacts on Power Plant Retirements Have So Far Been Limited -VRE Impacts on the Bulk Power Market will Grow with Penetration -The ’System Value’ of VRE will Decline with Penetration -Power System Flexibility Can Reduce the Rate of VRE Value Decline All generation types are unique in some respect—bringing benefits and challenges to the power system—and wholesale markets, industry investments, and operational procedures have evolved over time to manage the characteristics of a changing generation fleet. With increased VRE penetrations, power system planners, operators, regulators, and policymakers will continue to be challenged to develop methods to smoothly and cost-effectively manage the reliable integration of these new and growing sources of electricity supply.« less

  20. What We Do and Do Not Know About Women and Kidney Diseases; Questions Unanswered and Answers Unquestioned: Reflection on World Kidney Day and International Woman’s Day

    PubMed Central

    Piccoli, Giorgina B.; Alrukhaimi, Mona; Liu, Zhi-Hong; Zakharova, Elena; Levin, Adeera

    2018-01-01

    Background: Chronic kidney disease affects approximately 10% of the world’s adult population: It is within the top 20 causes of death worldwide, and its impact on patients and their families can be devastating. World Kidney Day and International Women’s Day in 2018 coincide, thus giving an occasion to reflect on open questions on the importance of kidney health in women for the present and the future generations. Objectives: In this review, we summarize some aspects that are unique to women’s kidney health, offering an opportunity to reflect on the importance of women’s health and specifically their kidney health, on the community, and the next generations, as well as to strive to be more curious about the unique aspects of kidney disease in women so that we may apply those learnings more broadly. Findings: Girls and women, who make up approximately 50% of the world’s population, are important contributors to society and their families. Gender differences continue to exist around the world in access to education, medical care, and participation in clinical studies. Pregnancy is not only a unique state for women, offering an opportunity for diagnosis of kidney disease, but also a state where acute and chronic kidney diseases may manifest, and which may impact future generations with respect to kidney health. There are various autoimmune and other conditions that are more likely to impact women with profound consequences for childbearing, and on the fetus. Women have different complications on dialysis than men, and are more likely to be donors than recipients of kidney transplants. Conclusion: Improving knowledge on women, kidney health, and kidney disease, may be a way to improve outcomes of kidney diseases worldwide. PMID:29552348

  1. Deciphering the Neural Control of Sympathetic Nerve Activity: Status Report and Directions for Future Research.

    PubMed

    Barman, Susan M; Yates, Bill J

    2017-01-01

    Sympathetic nerve activity (SNA) contributes appreciably to the control of physiological function, such that pathological alterations in SNA can lead to a variety of diseases. The goal of this review is to discuss the characteristics of SNA, briefly review the methodology that has been used to assess SNA and its control, and to describe the essential role of neurophysiological studies in conscious animals to provide additional insights into the regulation of SNA. Studies in both humans and animals have shown that SNA is rhythmic or organized into bursts whose frequency varies depending on experimental conditions and the species. These rhythms are generated by brainstem neurons, and conveyed to sympathetic preganglionic neurons through several pathways, including those emanating from the rostral ventrolateral medulla. Although rhythmic SNA is present in decerebrate animals (indicating that neurons in the brainstem and spinal cord are adequate to generate this activity), there is considerable evidence that a variety of supratentorial structures including the insular and prefrontal cortices, amygdala, and hypothalamic subnuclei provide inputs to the brainstem regions that regulate SNA. It is also known that the characteristics of SNA are altered during stress and particular behaviors such as the defense response and exercise. While it is a certainty that supratentorial structures contribute to changes in SNA during these behaviors, the neural underpinnings of the responses are yet to be established. Understanding how SNA is modified during affective responses and particular behaviors will require neurophysiological studies in awake, behaving animals, including those that entail recording activity from neurons that generate SNA. Recent studies have shown that responses of neurons in the central nervous system to most sensory inputs are context-specific. Future neurophysiological studies in conscious animals should also ascertain whether this general rule also applies to sensory signals that modify SNA.

  2. Characterization of Deuteron-Deuteron Neutron Generators

    NASA Astrophysics Data System (ADS)

    Waltz, Cory Scott

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) was commissioned at the University of California Berkeley. The characterization of the HFNG is presented in the following study. The current generator design produces near mono-energetic 2.45 MeV neutrons at outputs of 108 n/s. Calculations provided show that future conditioning at higher currents and voltages will allow for a production rate over 1010 n/s. Characteristics that effect the operational stability include the suppression of the target-emitted back streaming electrons, target sputtering and cooling, and ion beam optics. Suppression of secondary electrons resulting from the deuterium beam striking the target was achieved via the implementation of an electrostatic shroud with a voltage offset of greater than -400 V relative to the target. Ion beam optics analysis resulted in the creation of a defocussing extraction nozzle, allowing for cooler target temperatures and a more compact design. To calculate the target temperatures, a finite difference method (FDM) solver incorporating the additional heat removal effects of subcooled boiling was developed. Validation of the energy balance results from the finite difference method calculations showed the iterative solver converged to heat removal results within about 3% of the expected value. Testing of the extraction nozzle at 1.43 mA and 100 kV determined that overheating of the target did not occur as the measured neutron flux of the generator was near predicted values. Many factors, including the target stopping power, deuterium atomic species, and target loading ratio, affect the flux distribution of the HFNG neutron generator. A detailed analysis to understand these factors effects is presented. Comparison of the calculated flux of the neutron generator using deuteron depth implantation data, neutron flux distribution data, and deuterium atomic species data matched the experimentally calculated flux determined from indium foil irradiations. An overview of experiments using the HFNG, including medical isotope cross section measurements, geochronology, delayed gamma measurements from uranium fission, and single event upset of cpu's is discussed. Future work should focus on the reduction of beam induced arcing between the shroud and the vacuum chamber. Investigation of insulator charge build-up, as well as electrical ash-over of insulators should be explored. The reduction of beam induced arcing will allow for larger beam currents and acceleration voltages, therefore increasing the neutron flux.

  3. The Southern Ocean ecosystem under multiple climate change stresses--an integrated circumpolar assessment.

    PubMed

    Gutt, Julian; Bertler, Nancy; Bracegirdle, Thomas J; Buschmann, Alexander; Comiso, Josefino; Hosie, Graham; Isla, Enrique; Schloss, Irene R; Smith, Craig R; Tournadre, Jean; Xavier, José C

    2015-04-01

    A quantitative assessment of observed and projected environmental changes in the Southern Ocean (SO) with a potential impact on the marine ecosystem shows: (i) large proportions of the SO are and will be affected by one or more climate change processes; areas projected to be affected in the future are larger than areas that are already under environmental stress, (ii) areas affected by changes in sea-ice in the past and likely in the future are much larger than areas affected by ocean warming. The smallest areas (<1% area of the SO) are affected by glacier retreat and warming in the deeper euphotic layer. In the future, decrease in the sea-ice is expected to be widespread. Changes in iceberg impact resulting from further collapse of ice-shelves can potentially affect large parts of shelf and ephemerally in the off-shore regions. However, aragonite undersaturation (acidification) might become one of the biggest problems for the Antarctic marine ecosystem by affecting almost the entire SO. Direct and indirect impacts of various environmental changes to the three major habitats, sea-ice, pelagic and benthos and their biota are complex. The areas affected by environmental stressors range from 33% of the SO for a single stressor, 11% for two and 2% for three, to <1% for four and five overlapping factors. In the future, areas expected to be affected by 2 and 3 overlapping factors are equally large, including potential iceberg changes, and together cover almost 86% of the SO ecosystem. © 2014 John Wiley & Sons Ltd.

  4. Critical review: Uncharted waters? The future of the electricity-water nexus.

    PubMed

    Sanders, Kelly T

    2015-01-06

    Electricity generation often requires large amounts of water, most notably for cooling thermoelectric power generators and moving hydroelectric turbines. This so-called "electricity-water nexus" has received increasing attention in recent years by governments, nongovernmental organizations, industry, and academics, especially in light of increasing water stress in many regions around the world. Although many analyses have attempted to project the future water requirements of electricity generation, projections vary considerably due to differences in temporal and spatial boundaries, modeling frameworks, and scenario definitions. This manuscript is intended to provide a critical review of recent publications that address the future water requirements of electricity production and define the factors that will moderate the water requirements of the electric grid moving forward to inform future research. The five variables identified include changes in (1) fuel consumption patterns, (2) cooling technology preferences, (3) environmental regulations, (4) ambient climate conditions, and (5) electric grid characteristics. These five factors are analyzed to provide guidance for future research related to the electricity-water nexus.

  5. Software reliability studies

    NASA Technical Reports Server (NTRS)

    Hoppa, Mary Ann; Wilson, Larry W.

    1994-01-01

    There are many software reliability models which try to predict future performance of software based on data generated by the debugging process. Our research has shown that by improving the quality of the data one can greatly improve the predictions. We are working on methodologies which control some of the randomness inherent in the standard data generation processes in order to improve the accuracy of predictions. Our contribution is twofold in that we describe an experimental methodology using a data structure called the debugging graph and apply this methodology to assess the robustness of existing models. The debugging graph is used to analyze the effects of various fault recovery orders on the predictive accuracy of several well-known software reliability algorithms. We found that, along a particular debugging path in the graph, the predictive performance of different models can vary greatly. Similarly, just because a model 'fits' a given path's data well does not guarantee that the model would perform well on a different path. Further we observed bug interactions and noted their potential effects on the predictive process. We saw that not only do different faults fail at different rates, but that those rates can be affected by the particular debugging stage at which the rates are evaluated. Based on our experiment, we conjecture that the accuracy of a reliability prediction is affected by the fault recovery order as well as by fault interaction.

  6. Growing America's Energy Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts produced from a range of abundant, renewable biomass resources. Bioenergy can help ensure a secure, sustainable, and economically sound future by reducing U.S. dependence on foreign oil, developing domestic clean energy sources, and generating domestic green jobs. Bioenergy can also help address growing concerns about climate change by reducing greenhouse gas emissions to create a healthier environment for current and future generations.

  7. An Integrated Assessment Model for Helping the United States Sea Scallop (Placopecten magellanicus) Fishery Plan Ahead for Ocean Acidification and Warming

    PubMed Central

    2015-01-01

    Ocean acidification, the progressive change in ocean chemistry caused by uptake of atmospheric CO2, is likely to affect some marine resources negatively, including shellfish. The Atlantic sea scallop (Placopecten magellanicus) supports one of the most economically important single-species commercial fisheries in the United States. Careful management appears to be the most powerful short-term factor affecting scallop populations, but in the coming decades scallops will be increasingly influenced by global environmental changes such as ocean warming and ocean acidification. In this paper, we describe an integrated assessment model (IAM) that numerically simulates oceanographic, population dynamic, and socioeconomic relationships for the U.S. commercial sea scallop fishery. Our primary goal is to enrich resource management deliberations by offering both short- and long-term insight into the system and generating detailed policy-relevant information about the relative effects of ocean acidification, temperature rise, fishing pressure, and socioeconomic factors on the fishery using a simplified model system. Starting with relationships and data used now for sea scallop fishery management, the model adds socioeconomic decision making based on static economic theory and includes ocean biogeochemical change resulting from CO2 emissions. The model skillfully reproduces scallop population dynamics, market dynamics, and seawater carbonate chemistry since 2000. It indicates sea scallop harvests could decline substantially by 2050 under RCP 8.5 CO2 emissions and current harvest rules, assuming that ocean acidification affects P. magellanicus by decreasing recruitment and slowing growth, and that ocean warming increases growth. Future work will explore different economic and management scenarios and test how potential impacts of ocean acidification on other scallop biological parameters may influence the social-ecological system. Future empirical work on the effect of ocean acidification on sea scallops is also needed. PMID:25945497

  8. An Integrated Assessment Model for Helping the United States Sea Scallop (Placopecten magellanicus) Fishery Plan Ahead for Ocean Acidification and Warming.

    PubMed

    Cooley, Sarah R; Rheuban, Jennie E; Hart, Deborah R; Luu, Victoria; Glover, David M; Hare, Jonathan A; Doney, Scott C

    2015-01-01

    Ocean acidification, the progressive change in ocean chemistry caused by uptake of atmospheric CO2, is likely to affect some marine resources negatively, including shellfish. The Atlantic sea scallop (Placopecten magellanicus) supports one of the most economically important single-species commercial fisheries in the United States. Careful management appears to be the most powerful short-term factor affecting scallop populations, but in the coming decades scallops will be increasingly influenced by global environmental changes such as ocean warming and ocean acidification. In this paper, we describe an integrated assessment model (IAM) that numerically simulates oceanographic, population dynamic, and socioeconomic relationships for the U.S. commercial sea scallop fishery. Our primary goal is to enrich resource management deliberations by offering both short- and long-term insight into the system and generating detailed policy-relevant information about the relative effects of ocean acidification, temperature rise, fishing pressure, and socioeconomic factors on the fishery using a simplified model system. Starting with relationships and data used now for sea scallop fishery management, the model adds socioeconomic decision making based on static economic theory and includes ocean biogeochemical change resulting from CO2 emissions. The model skillfully reproduces scallop population dynamics, market dynamics, and seawater carbonate chemistry since 2000. It indicates sea scallop harvests could decline substantially by 2050 under RCP 8.5 CO2 emissions and current harvest rules, assuming that ocean acidification affects P. magellanicus by decreasing recruitment and slowing growth, and that ocean warming increases growth. Future work will explore different economic and management scenarios and test how potential impacts of ocean acidification on other scallop biological parameters may influence the social-ecological system. Future empirical work on the effect of ocean acidification on sea scallops is also needed.

  9. Storm surge and tidal range energy

    NASA Astrophysics Data System (ADS)

    Lewis, Matthew; Angeloudis, Athanasios; Robins, Peter; Evans, Paul; Neill, Simon

    2017-04-01

    The need to reduce carbon-based energy sources whilst increasing renewable energy forms has led to concerns of intermittency within a national electricity supply strategy. The regular rise and fall of the tide makes prediction almost entirely deterministic compared to other stochastic renewable energy forms; therefore, tidal range energy is often stated as a predictable and firm renewable energy source. Storm surge is the term used for the non-astronomical forcing of tidal elevation, and is synonymous with coastal flooding because positive storm surges can elevate water-levels above the height of coastal flood defences. We hypothesis storm surges will affect the reliability of the tidal range energy resource; with negative surge events reducing the tidal range, and conversely, positive surge events increasing the available resource. Moreover, tide-surge interaction, which results in positive storm surges more likely to occur on a flooding tide, will reduce the annual tidal range energy resource estimate. Water-level data (2000-2012) at nine UK tide gauges, where the mean tidal amplitude is above 2.5m and thus suitable for tidal-range energy development (e.g. Bristol Channel), were used to predict tidal range power with a 0D modelling approach. Storm surge affected the annual resource estimate by between -5% to +3%, due to inter-annual variability. Instantaneous power output were significantly affected (Normalised Root Mean Squared Error: 3%-8%, Scatter Index: 15%-41%) with spatial variability and variability due to operational strategy. We therefore find a storm surge affects the theoretical reliability of tidal range power, such that a prediction system may be required for any future electricity generation scenario that includes large amounts of tidal-range energy; however, annual resource estimation from astronomical tides alone appears sufficient for resource estimation. Future work should investigate water-level uncertainties on the reliability and predictability of tidal range energy with 2D hydrodynamic models.

  10. Investigating the water consumption for electricity generation at Turkish power plants

    NASA Astrophysics Data System (ADS)

    El-Khozondar, Balkess; Aydinalp Koksal, Merih

    2017-11-01

    The water-energy intertwined relationship has recently gained more importance due to the high water consumption in the energy sector and to the limited availability of the water resources. The energy and electricity demand of Turkey is increasing rapidly in the last two decades. More thermal power plants are expected to be built in the near future to supply the rapidly increasing demand in Turkey which will put pressure on water availability. In this study, the water consumption for electricity generation at Turkish power plants is investigated. The main objectives of this study are to identify the amount of water consumed to generate 1 kWh of electricity for each generation technology currently used in Turkey and to investigate ways to reduce the water consumption at power plants expected to be built in the near future to supply the increasing demand. The various electricity generation technology mixture scenarios are analyzed to determine the future total and per generation water consumption, and water savings based on changes of cooling systems used for each technology. The Long-range Energy Alternatives Planning (LEAP) program is used to determine the minimum water consuming electricity generation technology mixtures using optimization approaches between 2017 and 2035.

  11. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system

    PubMed Central

    Jensen, Tue V.; Pinson, Pierre

    2017-01-01

    Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation. PMID:29182600

  12. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system.

    PubMed

    Jensen, Tue V; Pinson, Pierre

    2017-11-28

    Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation.

  13. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system

    NASA Astrophysics Data System (ADS)

    Jensen, Tue V.; Pinson, Pierre

    2017-11-01

    Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation.

  14. Affective bias and current, past and future adolescent depression: a familial high risk study.

    PubMed

    Kilford, Emma J; Foulkes, Lucy; Potter, Robert; Collishaw, Stephan; Thapar, Anita; Rice, Frances

    2015-03-15

    Affective bias is a common feature of depressive disorder. However, a lack of longitudinal studies means that the temporal relationship between affective bias and depression is not well understood. One group where studies of affective bias may be particularly warranted is the adolescent offspring of depressed parents, given observations of high rates of depression and a severe and impairing course of disorder in this group. A two wave panel design was used in which adolescent offspring of parents with recurrent depression completed a behavioural task assessing affective bias (The Affective Go/No Go Task) and a psychiatric interview. The affective processing of adolescents with current, prior and future depressive disorder was compared to that of adolescents free from disorder. Adolescents with current depression and those who developed depression at follow-up made more commission errors for sad than happy targets compared to adolescents free from disorder. There was no effect of prior depression on later affective processing. Small cell sizes meant we were unable to separately compare those with new onset and recurrent depressive disorder. Valence-specific errors in behavioural inhibition index future vulnerability to depression in adolescents already at increased risk and may represent a measure of affective control. Currently depressed adolescents show a similar pattern of affective bias or deficits in affective control. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Affective bias and current, past and future adolescent depression: A familial high risk study

    PubMed Central

    Kilford, Emma J.; Foulkes, Lucy; Potter, Robert; Collishaw, Stephan; Thapar, Anita; Rice, Frances

    2015-01-01

    Background Affective bias is a common feature of depressive disorder. However, a lack of longitudinal studies means that the temporal relationship between affective bias and depression is not well understood. One group where studies of affective bias may be particularly warranted is the adolescent offspring of depressed parents, given observations of high rates of depression and a severe and impairing course of disorder in this group. Methods A two wave panel design was used in which adolescent offspring of parents with recurrent depression completed a behavioural task assessing affective bias (The Affective Go/No Go Task) and a psychiatric interview. The affective processing of adolescents with current, prior and future depressive disorder was compared to that of adolescents free from disorder. Results Adolescents with current depression and those who developed depression at follow-up made more commission errors for sad than happy targets compared to adolescents free from disorder. There was no effect of prior depression on later affective processing. Limitations Small cell sizes meant we were unable to separately compare those with new onset and recurrent depressive disorder. Conclusions Valence-specific errors in behavioural inhibition index future vulnerability to depression in adolescents already at increased risk and may represent a measure of affective control. Currently depressed adolescents show a similar pattern of affective bias or deficits in affective control. PMID:25527997

  16. Climate change impacts on mycotoxin risks in US maize

    USDA-ARS?s Scientific Manuscript database

    To ensure future food security, it is crucial to understand how potential climate change scenarios will affect agriculture. One key area of interest is how climatic factors, both in the near- and the long-term future, could affect fungal infection of crops and mycotoxin production by these fungi. ...

  17. 36 CFR 294.26 - Other activities in Idaho Roadless Areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Motorized travel. Nothing in this subpart shall be construed as affecting existing roads or trails in Idaho Roadless Areas. Decisions concerning the future management of existing roads or trails in Idaho Roadless... subpart shall be construed as affecting existing grazing permits in Idaho Roadless Areas. Future road...

  18. Mobilizing Political Action on Behalf of Future Generations

    ERIC Educational Resources Information Center

    Aldy, Joseph E.

    2016-01-01

    Our failure to mobilize sufficient effort to fight climate change reflects a combination of political and economic forces, on both the national and the global level. To state the problem in its simplest terms, writes Joseph Aldy, future, unborn generations would enjoy the benefits of policies to reduce carbon emissions whereas the current…

  19. 75 FR 10860 - Announcement of a Meeting of the International Telecommunication Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... (ITU) Telecommunication Standardization Sector (ITU-T) Study Group 13 (Future networks including mobile and Next Generation Networks). The ITAC will meet by conference call to prepare advice for the U.S. government for the meeting of ITU-T Study Group 13 (Future networks including mobile and Next Generation...

  20. Faces of the Future: A Portrait of First-Generation Community College Students

    ERIC Educational Resources Information Center

    Nomi, Takako

    2005-01-01

    The Faces of the Future Survey is the first national survey developed to examine the lives and experiences of credit and noncredit community college students. This report summarizes survey findings on the demographic characteristics, goals, and college experiences of the nation's first-generation community college students who are enrolled in…

  1. Theory of choice in bandit, information sampling and foraging tasks.

    PubMed

    Averbeck, Bruno B

    2015-03-01

    Decision making has been studied with a wide array of tasks. Here we examine the theoretical structure of bandit, information sampling and foraging tasks. These tasks move beyond tasks where the choice in the current trial does not affect future expected rewards. We have modeled these tasks using Markov decision processes (MDPs). MDPs provide a general framework for modeling tasks in which decisions affect the information on which future choices will be made. Under the assumption that agents are maximizing expected rewards, MDPs provide normative solutions. We find that all three classes of tasks pose choices among actions which trade-off immediate and future expected rewards. The tasks drive these trade-offs in unique ways, however. For bandit and information sampling tasks, increasing uncertainty or the time horizon shifts value to actions that pay-off in the future. Correspondingly, decreasing uncertainty increases the relative value of actions that pay-off immediately. For foraging tasks the time-horizon plays the dominant role, as choices do not affect future uncertainty in these tasks.

  2. Neuroscience of affect: Brain mechanisms of pleasure and displeasure

    PubMed Central

    Berridge, Kent C.; Kringelbach, Morten L.

    2013-01-01

    Affective neuroscience aims to understand how affect (pleasure or displeasure) is created by brains. Progress is aided by recognizing that affect has both objective and subjective features. Those dual aspects reflect that affective reactions are generated by neural mechanisms, selected in evolution based on their real (objective) consequences for genetic fitness. We review evidence for neural representation of pleasure in the brain (gained largely from neuroimaging studies), and evidence for the causal generation of pleasure (gained largely from brain manipulation studies). We suggest that representation and causation may actually reflect somewhat separable neuropsychological functions. Representation reaches an apex in limbic regions of prefrontal cortex, especially orbitofrontal cortex, influencing decisions and affective regulation. Causation of core pleasure or liking reactions is much more subcortically weighted, and sometimes surprisingly localized. Pleasure liking is especially generated by restricted hedonic hotspot circuits in nucleus accumbens and ventral pallidum. Another example of localized valence generation, beyond hedonic hotspots, is an affective keyboard mechanism in nucleus accumbens for releasing intense motivations such as either positively-valenced desire and/or negatively-valenced dread. PMID:23375169

  3. Clinical issues in caring for former chattel slaves.

    PubMed

    Blumhofer, Rebecca D; Shah, Neha; Grodin, Michael A; Crosby, Sondra S

    2011-04-01

    Over the centuries, slavery has become embedded into the social fabric of Mauritania with generations of abid and bizan (Mauritanian slaves and slave masters, respectively) born and raised knowing nothing but the institution of chattel slavery. Abid fleeing their station in Mauritania come to the USA with unique psychological needs that will affect all of their interactions with the medical community. This paper aims to assist health professionals and others concerned with the welfare of former chattel slaves in competently serving this vulnerable population. Discussion includes an overview of Mauritanian chattel slavery, deduced sequelae of chattel slavery, preliminary recommendations for mental health and medical treatment protocols, and suggestions for future research. A confidential Institutional Review Board (IRB)-approved case report will be used to illustrate these objectives.

  4. A Quick Look at Supernova 1987A

    NASA Image and Video Library

    2017-02-24

    On February 24, 1987, astronomers in the southern hemisphere saw a supernova in the Large Magellanic Cloud. This new object was dubbed “Supernova 1987A” and was the brightest stellar explosion seen in over four centuries. Chandra has observed Supernova 1987A many times and the X-ray data reveal important information about this object. X-rays from Chandra have shown the expanding blast wave from the original explosion slamming into a ring of material expelled by the star before it exploded. The latest Chandra data reveal the blast wave has moved beyond the ring into a region that astronomers do not know much about. These observations can help astronomers learn how supernovas impact their environments and affect future generations of stars and planets.

  5. Protecting single-photon entanglement with practical entanglement source

    NASA Astrophysics Data System (ADS)

    Zhou, Lan; Ou-Yang, Yang; Wang, Lei; Sheng, Yu-Bo

    2017-06-01

    Single-photon entanglement (SPE) is important for quantum communication and quantum information processing. However, SPE is sensitive to photon loss. In this paper, we discuss a linear optical amplification protocol for protecting SPE. Different from the previous protocols, we exploit the practical spontaneous parametric down-conversion (SPDC) source to realize the amplification, for the ideal entanglement source is unavailable in current quantum technology. Moreover, we prove that the amplification using the entanglement generated from SPDC source as auxiliary is better than the amplification assisted with single photons. The reason is that the vacuum state from SPDC source will not affect the amplification, so that it can be eliminated automatically. This protocol may be useful in future long-distance quantum communications.

  6. Epigenetic and genetic diagnosis of Silver-Russell syndrome.

    PubMed

    Eggermann, Thomas; Spengler, Sabrina; Gogiel, Magdalena; Begemann, Matthias; Elbracht, Miriam

    2012-06-01

    Silver-Russell syndrome (SRS) is a congenital imprinting disorder characterized by intrauterine and postnatal growth restriction and further characteristic features. SRS is genetically heterogenous: 7-10% of patients carry a maternal uniparental disomy of chromosome 7; >38% show a hypomethylation in imprinting control region 1 in 11p15; and a further class of mutations are copy number variations affecting different chromosomes, but mainly 11p15 and 7. The diagnostic work-up should thus aim to detect these three molecular subtypes. Numerous techniques are currently applied in genetic SRS testing, but none of them covers all known (epi)mutations, and they should therefore be used synergistically. However, future next-generation sequencing approaches will allow a comprehensive analysis of all types of alterations in SRS.

  7. Intraindividual variation among pregnant adolescents: a pilot study and conceptual discussion.

    PubMed

    Blinn-Pike, L M; Stenberg, L; Thompson, C

    1994-01-01

    There is little empirical research or theory on intraindividual variation (mood changes) during adolescence, and virtually no research on intraindividual variation during adolescent pregnancy. This pilot study illustrates the need for research on pregnant adolescents' moods and their impact on survey reliability and validity. Fourteen adolescents kept diaries for six consecutive weeks during their pregnancies. The diary entries were analyzed for affective tone, emotional lability, and contextuality. A conceptual discussion is presented that questions the psychometric properties of data gathered using one time, self-report measures with pregnant adolescents because of their fluctuating mood states. Hypotheses are generated for future testing in this area and a call is made for a new area of research on intraindividual tension during adolescent pregnancy.

  8. The structure of parasite communities in fish hosts: ecology meets geography and climate.

    PubMed

    Poulin, R

    2007-09-01

    Parasite communities in fish hosts are not uniform in space: their diversity, composition and abundance vary across the geographical range of a host species. Increasingly urgently, we need to understand the geographic component of parasite communities to better predict how they will respond to global climate change. Patterns of geographical variation in the abundance of parasite populations, and in the diversity and composition of parasite communities, are explored here, and the ways in which they may be affected by climate change are discussed. The time has come to transform fish parasite ecology from a mostly descriptive discipline into a predictive science, capable of integrating complex ecological data to generate forecasts about the future state of host-parasite systems.

  9. Energy and public health: the challenge of peak petroleum.

    PubMed

    Frumkin, Howard; Hess, Jeremy; Vindigni, Stephen

    2009-01-01

    Petroleum is a unique and essential energy source, used as the principal fuel for transportation, in producing many chemicals, and for numerous other purposes. Global petroleum production is expected to reach a maximum in the near future and to decline thereafter, a phenomenon known as "peak petroleum." This article reviews petroleum geology and uses, describes the phenomenon of peak petroleum, and reviews the scientific literature on the timing of this transition. It then discusses how peak petroleum may affect public health and health care, by reference to four areas: medical supplies and equipment, transportation, energy generation, and food production. Finally, it suggests strategies for anticipating and preparing for peak petroleum, both general public health preparedness strategies and actions specific to the four expected health system impacts.

  10. Environmental protection: applying the precautionary principle and proactive regulation to biotechnology.

    PubMed

    Richmond, Robert H

    2008-08-01

    Biotechnology is a broad field encompassing diverse disciplines from agriculture to zoology. Advances in research are occurring at a rapid pace, and applications that have broad implications socially, economically, ecologically and politically are emerging. Along with notable benefits, environmental consequences that affect core quality-of-life issues for present and future generations are materializing. The precautionary principle should be applied to biotechnology research, activities and products, and a strengthened, enforceable and proactive regulatory framework is needed. The environmental impacts of agriculture, aquaculture, genetically modified organisms (GMOs) and even pharmaceuticals are raising public concerns and demonstrate the need for guidance from a variety of social, economic and scientific disciplines to insure the benefits of biotechnology are enjoyed without unacceptable and irreversible environmental costs.

  11. Interactions between land use, climate and hydropower in Scotland

    NASA Astrophysics Data System (ADS)

    Sample, James

    2015-04-01

    To promote the transition towards a low carbon economy, the Scottish Government has adopted ambitious energy targets, including generating all electricity from renewable sources by 2020. To achieve this, continued investment will be required across a range of sustainable technologies. Hydropower has a long history in Scotland and the present-day operational capacity of ~1.5 GW makes a substantial contribution to the national energy budget. In addition, there remains potential for ~500 MW of further development, mostly in the form of small to medium size run-of-river schemes. Climate change is expected to lead to an intensification of the global hydrological cycle, leading to changes in both the magnitude and seasonality of river flows. There may also be indirect effects, such as changing land use, enhanced evapotranspiration rates and an increased demand for irrigation, all of which could affect the water available for energy generation. Preliminary assessments of hydropower commonly use flow duration curves (FDCs) to estimate the power generation potential at proposed new sites. In this study, we use spatially distributed modelling to generate daily and monthly FDCs on a 1 km by 1 km grid across Scotland, using a variety of future land use and climate change scenarios. Parameter-related uncertainty in the model has been constrained using Bayesian Markov Chain Monte Carlo (MCMC) techniques to derive posterior probability distributions for key model parameters. Our results give an indication of the sensitivity and vulnerability of Scotland's run-of-river hydropower resources to possible changes in climate and land use. The effects are spatially variable and the range of uncertainty is sometimes large, but consistent patterns do emerge. For example, many locations are predicted to experience enhanced seasonality, with significantly lower power generation potential in the summer months and greater potential during the autumn and winter. Some sites may require infrastructural changes in order to continue operating at optimum efficiency. We discuss the implications and limitations of our results, and highlight design and adaptation options for maximising the resilience of hydropower installations under changing future flow patterns.

  12. Electrochemical sensing using voltage-current time differential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay

    2017-02-28

    A device for signal processing. The device includes a signal generator, a signal detector, and a processor. The signal generator generates an original waveform. The signal detector detects an affected waveform. The processor is coupled to the signal detector. The processor receives the affected waveform from the signal detector. The processor also compares at least one portion of the affected waveform with the original waveform. The processor also determines a difference between the affected waveform and the original waveform. The processor also determines a value corresponding to a unique portion of the determined difference between the original and affected waveforms.more » The processor also outputs the determined value.« less

  13. Water within the Shared Socioeconomic Pathways: Constraints and the Impact on Future Global Change Scenarios

    NASA Astrophysics Data System (ADS)

    Graham, N. T.; Hejazi, M. I.; Davies, E. G.; Calvin, K. V.; Kim, S. H.; Miralles-Wilhelm, F.

    2017-12-01

    The Shared Socioeconomic Pathways (SSPs) represent the next generation of future global change scenarios and their inclusion in the Coupled Model Intercomparison Project Phase 6 (CMIP6) scenarios reinforces the importance of a complete understanding of the SSPs. This study uses the Global Change Assessment Model (GCAM) to investigate the effects of limited water supplies on future withdrawals at regional and water basin scales across all SSPs in combination with various climate mitigation scenarios. Water supply is calculated using a global hydrologic model and water data from five ISI-MIP models across the four RCP scenarios. When water constraints are incorporated, our results show that water withdrawals are reduced by as much as 40% across all SSP scenarios without climate policies. As climate policies are imposed and become more stringent, water withdrawals increase in regions already affected by water stress in order to allow for greater biomass production. The results of this research show the importance of including water resource constraints within the SSP scenarios for establishing water withdrawal scenarios under a wide range of scenarios including different climate policies. The results will also provide data products - such as gridded land use and water demand estimates - of potential interest to the impact, adaptation, and vulnerability community following the SSP scenarios.

  14. Assessment of future impacts of potential climate change scenarios on aquifer recharge in continental Spain

    NASA Astrophysics Data System (ADS)

    Pulido-Velazquez, David; Collados-Lara, Antonio-Juan; Alcalá, Francisco J.

    2017-04-01

    This research proposes and applies a method to assess potential impacts of future climatic scenarios on aquifer rainfall recharge in wide and varied regions. The continental Spain territory was selected to show the application. The method requires to generate future series of climatic variables (precipitation, temperature) in the system to simulate them within a previously calibrated hydrological model for the historical data. In a previous work, Alcalá and Custodio (2014) used the atmospheric chloride mass balance (CMB) method for the spatial evaluation of average aquifer recharge by rainfall over the whole of continental Spain, by assuming long-term steady conditions of the balance variables. The distributed average CMB variables necessary to calculate recharge were estimated from available variable-length data series of variable quality and spatial coverage. The CMB variables were regionalized by ordinary kriging at the same 4976 nodes of a 10 km x 10 km grid. Two main sources of uncertainty affecting recharge estimates (given by the coefficient of variation, CV), induced by the inherent natural variability of the variables and from mapping were segregated. Based on these stationary results we define a simple empirical rainfall-recharge model. We consider that spatiotemporal variability of rainfall and temperature are the most important climatic feature and variables influencing potential aquifer recharge in natural regime. Changes in these variables can be important in the assessment of future potential impacts of climatic scenarios over spatiotemporal renewable groundwater resource. For instance, if temperature increases, actual evapotranspitration (EA) will increases reducing the available water for others groundwater balance components, including the recharge. For this reason, instead of defining an infiltration rate coefficient that relates precipitation (P) and recharge we propose to define a transformation function that allows estimating the spatial distribution of recharge (both average value and its uncertainty) from the difference in P and EA in each area. A complete analysis of potential short-term (2016-2045) future climate scenarios in continental Spain has been performed by considering different sources of uncertainty. It is based on the historical climatic data for the period 1976-2005 and the climatic models simulations (for the control [1976-2005] and future scenarios [2016-2045]) performed in the frame of the CORDEX EU project. The most pessimistic emission scenario (RCP8.5) has been considered. For the RCP8.5 scenario we have analyzed the time series generated by simulating with 5 Regional Climatic models (CCLM4-8-17, RCA4, HIRHAM5, RACMO22E, and WRF331F) nested to 4 different General Circulation Models (GCMs). Two different conceptual approaches (bias correction and delta change techniques) have been applied to generate potential future climate scenarios from these data. Different ensembles of obtained time series have been proposed to obtain more representative scenarios by considering all the simulations or only those providing better approximations to the historical statistics based on a multicriteria analysis. This was a step to analyze future potential impacts on the aquifer recharge by simulating them within a rainfall-recharge model. This research has been supported by the CGL2013-48424-C2-2-R (MINECO) and the PMAFI/06/14 (UCAM) projects.

  15. Climate regulation enhances the value of second generation biofuel technology

    NASA Astrophysics Data System (ADS)

    Hertel, T. W.; Steinbuks, J.; Tyner, W.

    2014-12-01

    Commercial scale implementation of second generation (2G) biofuels has long been 'just over the horizon - perhaps a decade away'. However, with recent innovations, and higher oil prices, we appear to be on the verge of finally seeing commercial scale implementations of cellulosic to liquid fuel conversion technologies. Interest in this technology derives from many quarters. Environmentalists see this as a way of reducing our carbon footprint, however, absent a global market for carbon emissions, private firms will not factor this into their investment decisions. Those interested in poverty and nutrition see this as a channel for lessening the biofuels' impact on food prices. But what is 2G technology worth to society? How valuable are prospective improvements in this technology? And how are these valuations affected by future uncertainties, including climate regulation, climate change impacts, and energy prices? This paper addresses all of these questions. We employ FABLE, a dynamic optimization model for the world's land resources which characterizes the optimal long run path for protected natural lands, managed forests, crop and livestock land use, energy extraction and biofuels over the period 2005-2105. By running this model twice for each future state of the world - once with 2G biofuels technology available and once without - we measure the contribution of the technology to global welfare. Given the uncertainty in how these technologies are likely to evolve, we consider a range cost estimates - from optimistic to pessimistic. In addition to technological uncertainty, there is great uncertainty in the conditions characterizing our baseline for the 21st century. For each of the 2G technology scenarios, we therefore also consider a range of outcomes for key drivers of global land use, including: population, income, oil prices, climate change impacts and climate regulation. We find that the social valuation of 2G technologies depends critically on climate change regulations and future oil prices. In the base case with no climate policy and higher oil prices, the value of second generation biofuels is roughly $8 billion. With stringent climate change regulations in place, 2G biofuels are worth about fifty percent more.

  16. Schizophrenia Spectrum Disorders Show Reduced Specificity and Less Positive Events in Mental Time Travel

    PubMed Central

    Chen, Xing-jie; Liu, Lu-lu; Cui, Ji-fang; Wang, Ya; Chen, An-tao; Li, Feng-hua; Wang, Wei-hong; Zheng, Han-feng; Gan, Ming-yuan; Li, Chun-qiu; Shum, David H. K.; Chan, Raymond C. K.

    2016-01-01

    Mental time travel refers to the ability to recall past events and to imagine possible future events. Schizophrenia (SCZ) patients have problems in remembering specific personal experiences in the past and imagining what will happen in the future. This study aimed to examine episodic past and future thinking in SCZ spectrum disorders including SCZ patients and individuals with schizotypal personality disorder (SPD) proneness who are at risk for developing SCZ. Thirty-two SCZ patients, 30 SPD proneness individuals, and 33 healthy controls participated in the study. The Sentence Completion for Events from the Past Test (SCEPT) and the Sentence Completion for Events in the Future Test were used to measure past and future thinking abilities. Results showed that SCZ patients showed significantly reduced specificity in recalling past and imagining future events, they generated less proportion of specific and extended events compared to healthy controls. SPD proneness individuals only generated less extended events compared to healthy controls. The reduced specificity was mainly manifested in imagining future events. Both SCZ patients and SPD proneness individuals generated less positive events than controls. These results suggest that mental time travel impairments in SCZ spectrum disorders and have implications for understanding their cognitive and emotional deficits. PMID:27507958

  17. Does cross-generational epigenetic inheritance contribute to cultural continuity?

    PubMed Central

    Pembrey, Marcus E

    2018-01-01

    Abstract Human studies of cross-generational epigenetic inheritance have to consider confounding by social patterning down the generations, often referred to as ‘cultural inheritance’. This raises the question to what extent is ‘cultural inheritance’ itself epigenetically mediated rather than just learnt. Human studies of non-genetic inheritance have demonstrated that, beyond foetal life, experiences occurring in mid-childhood before puberty are the most likely to be associated with cross-generational responses in the next generation(s). It is proposed that cultural continuity is played out along the axis, or ‘payoff’, between responsiveness and stability. During the formative years of childhood a stable family and/or home permits small children to explore and thereby learn. To counter disruptions to this family home ideal, cultural institutions such as local schools, religious centres and market places emerged to provide ongoing stability, holding the received wisdom of the past in an accessible state. This cultural support allows the growing child to freely indulge their responsiveness. Some of these prepubertal experiences induce epigenetic responses that also transfer molecular signals to the gametes through which they contribute to the conception of future offspring. In parallel co-evolution with growing cultural support for increasing responsiveness, ‘runaway’ responsiveness is countered by the positive selection of genetic variants that dampen responsiveness. Testing these ideas within longitudinal multigenerational cohorts will need information on ancestors/parents’ own communities and experiences (Exposome scans) linked to ongoing Phenome scans on grandchildren; coupled with epigenome analysis, metastable epialleles and DNA methylation age. Interactions with genetic variants affecting responsiveness should help inform the broad hypothesis. PMID:29732169

  18. Does cross-generational epigenetic inheritance contribute to cultural continuity?

    PubMed

    Pembrey, Marcus E

    2018-04-01

    Human studies of cross-generational epigenetic inheritance have to consider confounding by social patterning down the generations, often referred to as 'cultural inheritance'. This raises the question to what extent is 'cultural inheritance' itself epigenetically mediated rather than just learnt. Human studies of non-genetic inheritance have demonstrated that, beyond foetal life, experiences occurring in mid-childhood before puberty are the most likely to be associated with cross-generational responses in the next generation(s). It is proposed that cultural continuity is played out along the axis, or 'payoff', between responsiveness and stability. During the formative years of childhood a stable family and/or home permits small children to explore and thereby learn. To counter disruptions to this family home ideal, cultural institutions such as local schools, religious centres and market places emerged to provide ongoing stability, holding the received wisdom of the past in an accessible state. This cultural support allows the growing child to freely indulge their responsiveness. Some of these prepubertal experiences induce epigenetic responses that also transfer molecular signals to the gametes through which they contribute to the conception of future offspring. In parallel co-evolution with growing cultural support for increasing responsiveness, 'runaway' responsiveness is countered by the positive selection of genetic variants that dampen responsiveness. Testing these ideas within longitudinal multigenerational cohorts will need information on ancestors/parents' own communities and experiences (Exposome scans) linked to ongoing Phenome scans on grandchildren; coupled with epigenome analysis, metastable epialleles and DNA methylation age. Interactions with genetic variants affecting responsiveness should help inform the broad hypothesis.

  19. Feeling Closer to the Future Self and Doing Better: Temporal Psychological Mechanisms Underlying Academic Performance.

    PubMed

    Adelman, Robert Mark; Herrmann, Sarah D; Bodford, Jessica E; Barbour, Joseph E; Graudejus, Oliver; Okun, Morris A; Kwan, Virginia S Y

    2017-06-01

    This research examined the function of future self-continuity and its potential downstream consequences for academic performance through relations with other temporal psychological factors and self-control. We also addressed the influence of cultural factors by testing whether these relations differed by college generation status. Undergraduate students enrolled at a large public university participated in two studies (Study 1: N = 119, M age  = 20.55, 56.4% women; Study 2: N = 403, M age  = 19.83, 58.3% women) in which they completed measures of temporal psychological factors and psychological resources. In Study 2, we also obtained academic records to link responses to academic performance. Future self-continuity predicted subsequent academic performance and was related positively to future focus, negatively to present focus, and positively to self-control. Additionally, the relation between future focus and self-control was stronger for continuing-generation college students than first-generation college students. Future self-continuity plays a pivotal role in academic contexts. Findings suggest that it may have positive downstream consequences on academic achievement by directing attention away from the present and toward the future, which promotes self-control. Further, the strategy of focusing on the future may be effective in promoting self-control only for certain cultural groups. © 2016 Wiley Periodicals, Inc.

  20. Effect of Marangoni Convection Generated by Voids on Segregation During Low-G and 1-G Solidification

    NASA Technical Reports Server (NTRS)

    Kassemi, M.; Fripp, A.; Rashidnia, N.; deGroh, H.

    1999-01-01

    Solidification experiments, especially microgravity solidification experiments are often hampered by the evolution of unwanted voids or bubbles in the melt. Although these voids and/or bubbles are highly undesirable, there are currently no effective means of preventing their formation or eliminating their adverse effects, particularly, during low-g experiments. Marangoni Convection caused by these voids can drastically change the transport processes in the melt and, therefore, introduce enormous difficulties in interpreting the results of the space investigations. Recent microgravity experiments by Matthiesen, Andrews, and Fripp are all good examples of how the presence of voids and bubbles affect the outcome of costly space experiments and significantly increase the level of difficulty in interpreting their results. In this work we examine mixing caused by Marangoni convection generated by voids and bubbles in the melt during both 1-g and low-g solidification experiments. The objective of the research is to perform a detailed and comprehensive combined numerical-experimental study of Marangoni convection caused by voids during the solidification process and to show how it can affect segregation and growth conditions by modifying the flow, temperature, and species concentration fields in the melt. While Marangoni convection generated by bubbles and voids in the melt can lead to rapid mixing that would negate the benefits of microgravity processing, it could be exploited in some terrestrial processing to ensure effective communication between a melt/solid interface and a gas phase stoichiometry control zone. Thus we hope that this study will not only aid us in interpreting the results of microgravity solidification experiments hampered by voids and bubbles but to guide us in devising possible means of minimizing the adverse effects of Marangoni convection in future space experiments or of exploiting its beneficial mixing features in ground-based solidification.

  1. Climate and Water Vulnerability of the US Electricity Grid Under High Penetrations of Renewable Energy

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Miara, A.; O'Connell, M.; Vorosmarty, C. J.; Newmark, R. L.

    2017-12-01

    The US power sector is highly dependent upon water resources for reliable operations, primarily for thermoelectric cooling and hydropower technologies. Changes in the availability and temperature of water resources can limit electricity generation and cause outages at power plants, which substantially affect grid-level operational decisions. While the effects of water variability and climate changes on individual power plants are well documented, prior studies have not identified the significance of these impacts at the regional systems-level at which the grid operates, including whether there are risks for large-scale blackouts, brownouts, or increases in production costs. Adequately assessing electric grid system-level impacts requires detailed power sector modeling tools that can incorporate electric transmission infrastructure, capacity reserves, and other grid characteristics. Here, we present for the first time, a study of how climate and water variability affect operations of the power sector, considering different electricity sector configurations (low vs. high renewable) and environmental regulations. We use a case study of the US Eastern Interconnection, building off the Eastern Renewable Generation Integration Study (ERGIS) that explored operational challenges of high penetrations of renewable energy on the grid. We evaluate climate-water constraints on individual power plants, using the Thermoelectric Power and Thermal Pollution (TP2M) model coupled with the PLEXOS electricity production cost model, in the context of broader electricity grid operations. Using a five minute time step for future years, we analyze scenarios of 10% to 30% renewable energy penetration along with considerations of river temperature regulations to compare the cost, performance, and reliability tradeoffs of water-dependent thermoelectric generation and variable renewable energy technologies under climate stresses. This work provides novel insights into the resilience and reliability of different configurations of the US electric grid subject to changing climate conditions.

  2. The Economic Impact of Adaptive Responses to Future Scenarios of Socio-Economic and Ecological Change in the Tonle Sap Ecosystem, Cambodia

    NASA Astrophysics Data System (ADS)

    Teh, L.; Bond, N.; KC, K. B.; Fraser, E. D. G.; Seng, R.; Sumaila, R.

    2016-12-01

    The livelihoods of people dependent on the Tonle Sap floodplain ecosystem in Cambodia are expected to be affected by future socio-economic, policy, ecological, and climate change. To investigate the economic impact of these changes on fishing dependent communities, we compare the net income from individuals' current livelihoods to that derived from reallocating their livelihood activities under 4 different scenarios depicting future change. Under current conditions, we find that the group of individuals who do not participate in fishing had the lowest net income. In contrast, individuals who participated in fishing only had comparatively higher average net income than those with multiple livelihoods, suggesting that there may be current gains from livelihood specialisation. When presented with scenarios of future ecological and socio-economic change, the majority of respondents chose to retain their current livelihood strategy under all future scenarios. Of those who did change their livelihood allocation, less than 10% actually experienced a gain in economic benefits. Overall, a loss in net income was expected under all future scenarios, with those engaged in single livelihoods being the most vulnerable because they were likely to experience the largest losses (7 - 29% loss vs. 1 - 17% for multi-livelihoods) across all 4 scenarios while having the least capacity to adapt. Respondents' choices generated the best economic outcome under the scenario depicting the status quo, indicating that they were capable of coping with current conditions, but were unlikely to make appropriate decisions when faced with future scenarios that they were unfamiliar with. By quantifying the consequences of low adaptive capacity in terms of income loss, this study provides an economic argument for addressing the social and economic factors that currently inhibit the capacity of Tonle Sap inhabitants to adapt to future change. It also emphasises the need for sustainable management of fish and water resources upon which inhabitants are currently heavily dependent upon.

  3. Chinese and Australians showed difference in mental time travel in emotion and content but not specificity

    PubMed Central

    Chen, Xing-Jie; Liu, Lu-Lu; Cui, Ji-Fang; Wang, Ya; Shum, David H. K.; Chan, Raymond C. K.

    2015-01-01

    Mental time travel refers to the ability to recall episodic past and imagine future events. The present study aimed to investigate cultural differences in mental time travel between Chinese and Australian university students. A total of 231 students (108 Chinese and 123 Australians) participated in the study. Their mental time travel abilities were measured by the Sentence Completion for Events from the Past Test (SCEPT) and the Sentence Completion for Events in the Future Test (SCEFT). Results showed that there were no cultural differences in the number of specific events generated for the past or future. Significant differences between the Chinese and Australian participants were found mainly in the emotional valence and content of the events generated. Both Chinese and Australian participants generated more specific positive events compared to negative events when thinking about the future and Chinese participants were more positive about their past than Australian participants when recalling specific events. For content, Chinese participants recalled more events about their interpersonal relationships, while Australian participants imagined more about personal future achievements. These findings shed some lights on cultural differences in episodic past and future thinking. PMID:26167154

  4. Railway noise annoyance on the railway track in northwest slovakia.

    PubMed

    Pultznerova, Alzbeta; Eva, Panulinova; Kucharova, Daniela; Argalasova, Lubica

    2018-01-01

    This paper describes an assessment of noise caused by railway traffic in a large high-loaded railway track in Northwest Slovakia. The measurements of noise levels generated by trains passing through residential neighborhoods were taken. Noise maps were also calculated showing noise pollution generated by the train traffic. In addition, the annoyance level and sleep disturbance of residents affected by railway noise were evaluated by a validated questionnaire on a pilot sample of 107 respondents living near the important railway track. The measurements indicated that the noise levels generated by the passage of the train were extremely high especially at night, clearly exceeding the nighttime limits of equivalent sound pressure level established by the Decree of the Slovak Ministry of Health (No.549/2007) (L Aeq  = 55 dB). Measurements at one point during the night exceeded the limit values of up to 17.4 dB. The residents reported feeling affected by the noise generated by passing trains, which caused irritability, headache, poor concentration, and insomnia. In addition, 19.64% of the residents claimed that nocturnal noise pollution was the most distressing. The results of bivariate analysis showed a higher risk of annoyance especially for railway noise [OR MH  = 7.80 (4.02-15.14)] and the noise from industry [OR MH  = 3.08 (1.72-5.50)] in the exposed location. The effects of railway traffic on annoyance/sleep and psychosocial well-being were evaluated in a few studies. In accordance with our results the railway noise mostly disturbs sleep and rest of the respondents. The pilot survey showed the importance of sleep and rest disturbance by railway noise and the possibilities of getting worse health condition in the future. Noise abatement measures and strategies should, therefore, be implemented in an effective and manageable way increasing the environmental advantages of rail transport.

  5. Railway Noise Annoyance on the Railway Track in Northwest Slovakia

    PubMed Central

    Pultznerova, Alzbeta; Eva, Panulinova; Kucharova, Daniela; Argalasova, Lubica

    2018-01-01

    Introduction: This paper describes an assessment of noise caused by railway traffic in a large high-loaded railway track in Northwest Slovakia. Materials and Methods: The measurements of noise levels generated by trains passing through residential neighborhoods were taken. Noise maps were also calculated showing noise pollution generated by the train traffic. In addition, the annoyance level and sleep disturbance of residents affected by railway noise were evaluated by a validated questionnaire on a pilot sample of 107 respondents living near the important railway track. Results: The measurements indicated that the noise levels generated by the passage of the train were extremely high especially at night, clearly exceeding the nighttime limits of equivalent sound pressure level established by the Decree of the Slovak Ministry of Health (No.549/2007) (L Aeq = 55 dB). Measurements at one point during the night exceeded the limit values of up to 17.4 dB. The residents reported feeling affected by the noise generated by passing trains, which caused irritability, headache, poor concentration, and insomnia. In addition, 19.64% of the residents claimed that nocturnal noise pollution was the most distressing. The results of bivariate analysis showed a higher risk of annoyance especially for railway noise [ORMH = 7.80 (4.02–15.14)] and the noise from industry [ORMH = 3.08 (1.72–5.50)] in the exposed location. Discussion: The effects of railway traffic on annoyance/sleep and psychosocial well-being were evaluated in a few studies. In accordance with our results the railway noise mostly disturbs sleep and rest of the respondents. Conclusion: The pilot survey showed the importance of sleep and rest disturbance by railway noise and the possibilities of getting worse health condition in the future. Noise abatement measures and strategies should, therefore, be implemented in an effective and manageable way increasing the environmental advantages of rail transport. PMID:29785974

  6. Third-generation imaging sensor system concepts

    NASA Astrophysics Data System (ADS)

    Reago, Donald A.; Horn, Stuart B.; Campbell, James, Jr.; Vollmerhausen, Richard H.

    1999-07-01

    Second generation forward looking infrared sensors, based on either parallel scanning, long wave (8 - 12 um) time delay and integration HgCdTe detectors or mid wave (3 - 5 um), medium format staring (640 X 480 pixels) InSb detectors, are being fielded. The science and technology community is now turning its attention toward the definition of a future third generation of FLIR sensors, based on emerging research and development efforts. Modeled third generation sensor performance demonstrates a significant improvement in performance over second generation, resulting in enhanced lethality and survivability on the future battlefield. In this paper we present the current thinking on what third generation sensors systems will be and the resulting requirements for third generation focal plane array detectors. Three classes of sensors have been identified. The high performance sensor will contain a megapixel or larger array with at least two colors. Higher operating temperatures will also be the goal here so that power and weight can be reduced. A high performance uncooled sensor is also envisioned that will perform somewhere between first and second generation cooled detectors, but at significantly lower cost, weight, and power. The final third generation sensor is a very low cost micro sensor. This sensor can open up a whole new IR market because of its small size, weight, and cost. Future unattended throwaway sensors, micro UAVs, and helmet mounted IR cameras will be the result of this new class.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsay, I.

    The author limits his remarks to a discussion of the international generator`s marketplace, especially aimed at the developing countries. He discusses future global electricity demand, generating capacity build, its financing issues, and to the commercial generating opportunities which now abound outside the US.

  8. Global warming and climate forcing by recent albedo changes on Mars

    USGS Publications Warehouse

    Fenton, L.K.; Geissler, P.E.; Haberle, R.M.

    2007-01-01

    For hundreds of years, scientists have tracked the changing appearance of Mars, first by hand drawings and later by photographs. Because of this historical record, many classical albedo patterns have long been known to shift in appearance over time. Decadal variations of the martian surface albedo are generally attributed to removal and deposition of small amounts of relatively bright dust on the surface. Large swaths of the surface (up to 56 million km2) have been observed to darken or brighten by 10 per cent or more. It is unknown, however, how these albedo changes affect wind circulation, dust transport and the feedback between these processes and the martian climate. Here we present predictions from a Mars general circulation model, indicating that the observed interannual albedo alterations strongly influence the martian environment. Results indicate enhanced wind stress in recently darkened areas and decreased wind stress in brightened areas, producing a positive feedback system in which the albedo changes strengthen the winds that generate the changes. The simulations also predict a net annual global warming of surface air temperatures by ???0.65 K, enhancing dust lifting by increasing the likelihood of dust devil generation. The increase in global dust lifting by both wind stress and dust devils may affect the mechanisms that trigger large dust storm initiation, a poorly understood phenomenon, unique to Mars. In addition, predicted increases in summertime air temperatures at high southern latitudes would contribute to the rapid and steady scarp retreat that has been observed in the south polar residual ice for the past four Mars years. Our results suggest that documented albedo changes affect recent climate change and large-scale weather patterns on Mars, and thus albedo variations are a necessary component of future atmospheric and climate studies. ??2007 Nature Publishing Group.

  9. Impact of Hurricane Sandy on community pharmacies in severely affected areas of New York City: A qualitative assessment.

    PubMed

    Arya, Vibhuti; Medina, Eric; Scaccia, Allison; Mathew, Cathleen; Starr, David

    2016-01-01

    Hurricane Sandy was one of the most severe natural disasters to hit the Mid-Atlantic States in recent history. Community pharmacies were among the businesses affected, with flooding and power outages significantly reducing services offered by many pharmacies. The objectives of our study were to assess the impact of Hurricane Sandy on community pharmacies, both independently owned and chain, in the severely affected areas of New York City (NYC), including Coney Island, Staten Island, and the Rockaways, using qualitative methods, and propose strategies to mitigate the impact of future storms and disasters. Of the total 52 solicited pharmacies, 35 (67 percent) responded and were included in our analysis. Only 10 (29 percent) of the pharmacies surveyed reported having a generator during Hurricane Sandy; 37 percent reported being equipped with a generator at the time of the survey approximately 1 year later. Our findings suggest that issues other than power outages contributed more toward a pharmacy remaining operational after the storm. Of those surveyed, 26 (74 percent) suffered from structural damage (most commonly in Coney Island). Most pharmacies (71 percent) were able to reopen within 1 month. Despite staffing challenges, most pharmacies (88 percent) had enough pharmacists/staff to resume normal operations. Overall, 91 percent were aware of law changes for emergency medication access, and 81 percent found the information easy to obtain. This survey helped inform our work toward improved community resiliency. Our findings have helped us recognize community pharmacists as important stakeholders and refocus our energy toward developing sustained partnerships with them in NYC as part of our ongoing preparedness strategy.

  10. Modeling Electricity Sector Vulnerabilities and Costs Associated with Water Temperatures Under Scenarios of Climate Change

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Miara, A.; Brinkman, G.; Ibanez, E.; Newmark, R. L.

    2014-12-01

    The reliability of the power sector is highly vulnerable to variability in the availability and temperature of water resources, including those that might result from potential climatic changes or from competition from other users. In the past decade, power plants throughout the United States have had to shut down or curtail generation due to a lack of available water or from elevated water temperatures. These disruptions in power plant performance can have negative impacts on energy security and can be costly to address. Analysis of water-related vulnerabilities requires modeling capabilities with high spatial and temporal resolution. This research provides an innovative approach to energy-water modeling by evaluating the costs and reliability of a power sector region under policy and climate change scenarios that affect water resource availability and temperatures. This work utilizes results from a spatially distributed river water temperature model coupled with a thermoelectric power plant model to provide inputs into an electricity production cost model that operates on a high spatial and temporal resolution. The regional transmission organization ISO-New England, which includes six New England states and over 32 Gigawatts of power capacity, is utilized as a case study. Hydrological data and power plant operations are analyzed over an eleven year period from 2000-2010 under four scenarios that include climate impacts on water resources and air temperatures as well as strict interpretations of regulations that can affect power plant operations due to elevated water temperatures. Results of these model linkages show how the power sector's reliability and economic performance can be affected by changes in water temperatures and water availability. The effective reliability and capacity value of thermal electric generators are quantified and discussed in the context of current as well as potential future water resource characteristics.

  11. River flood seasonality in the Northeast United States and trends in annual timing

    NASA Astrophysics Data System (ADS)

    Collins, M. J.

    2017-12-01

    The New England and Mid-Atlantic regions of the Northeast United States have experienced climate-associated increases in both the magnitude and frequency of floods. However, a detailed understanding of flood seasonality across these regions, and how flood seasonality may have changed over the instrumental record, has not been established. The annual timing of river floods reflects the flood-generating mechanisms operating in a basin and many aquatic and riparian organisms are adapted to flood seasonality, as are human uses of river channels and floodplains. Changes in flood seasonality may indicate changes in flood-generating mechanisms, and their interactions, with important implications for habitats, floodplain infrastructure, and human communities. For example, changes in spring or fall flood timing may negatively or positively affect a vulnerable life stage for a migratory fish (e.g., egg setting) depending on whether floods occur more frequently before or after the life history event. In this study I apply an objective, probabilistic method for identifying flood seasons at a monthly resolution for 90 climate-sensitive watersheds in New England and the Mid-Atlantic (Hydrologic Unit Codes 01 and 02). Historical trends in flood timing during the year are also investigated. The analyses are based on partial duration flood series that are an average of 85 years long. The seasonality of flooding in these regions, and any historical changes, are considered in the context of other ongoing or expected phenological changes in the Northeast U.S. environment that affect flood generation—e.g., the timing of leaf-off/leaf-out for deciduous plants. How these factors interact will affect whether and how flood magnitudes and frequencies change in the future and associated impacts.

  12. Global warming and climate forcing by recent albedo changes on Mars.

    PubMed

    Fenton, Lori K; Geissler, Paul E; Haberle, Robert M

    2007-04-05

    For hundreds of years, scientists have tracked the changing appearance of Mars, first by hand drawings and later by photographs. Because of this historical record, many classical albedo patterns have long been known to shift in appearance over time. Decadal variations of the martian surface albedo are generally attributed to removal and deposition of small amounts of relatively bright dust on the surface. Large swaths of the surface (up to 56 million km2) have been observed to darken or brighten by 10 per cent or more. It is unknown, however, how these albedo changes affect wind circulation, dust transport and the feedback between these processes and the martian climate. Here we present predictions from a Mars general circulation model, indicating that the observed interannual albedo alterations strongly influence the martian environment. Results indicate enhanced wind stress in recently darkened areas and decreased wind stress in brightened areas, producing a positive feedback system in which the albedo changes strengthen the winds that generate the changes. The simulations also predict a net annual global warming of surface air temperatures by approximately 0.65 K, enhancing dust lifting by increasing the likelihood of dust devil generation. The increase in global dust lifting by both wind stress and dust devils may affect the mechanisms that trigger large dust storm initiation, a poorly understood phenomenon, unique to Mars. In addition, predicted increases in summertime air temperatures at high southern latitudes would contribute to the rapid and steady scarp retreat that has been observed in the south polar residual ice for the past four Mars years. Our results suggest that documented albedo changes affect recent climate change and large-scale weather patterns on Mars, and thus albedo variations are a necessary component of future atmospheric and climate studies.

  13. Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, Jaquelin M.; Palchak, Joseph D; McBennett, Brendan

    The higher-spatial-resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.' The Regional Study validates the relative value of mitigation strategies demonstrated in the National Study - namely, coordinatedmore » operations among states reduce production costs, and reducing coal minimum generation levels reduces RE curtailment. Significantly, the Regional Study also highlights a potential barrier to realizing the value of these mitigation strategies: when locations of RE development are planned independently of state-level transmission, intrastate congestion can result in undesirable levels of RE curtailment. Therefore a key objective of this study is to illustrate to state-level power system planners and operators, in particular, how a higher-resolution model, inclusive of intrastate granularity, can be used as a planning tool for two primary purposes: -To better anticipate, understand, and mitigate system constraints that could affect RE integration; and - To provide a modeling framework that can be used as part of future transmission studies and planning efforts. The Regional Study is not intended to predict precisely how RE will affect state-level operations. There is considerable uncertainty regarding the locations of the RE development, as well as how contract terms can affect access to the inherent physical flexibility of the system. But the scenarios analyzed identify the types of issues that can arise under various RE and transmission expansion pathways. The model developed for this study provides a rigorous framework for future work and can be updated with the characteristics of new capacity as more information on the future power system is known.« less

  14. Greening the Grid: Integrating 175 Gigawatts of Renewable Energy into India's Electric Grid - A Detailed Look at the Southern Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, Jaquelin M

    The higher-spatial-resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.' The Regional Study validates the relative value of mitigation strategies demonstrated in the National Study - namely, coordinatedmore » operations among states reduce production costs, and reducing coal minimum generation levels reduces RE curtailment. Significantly, the Regional Study also highlights a potential barrier to realizing the value of these mitigation strategies: when locations of RE development are planned independently of state-level transmission, intrastate congestion can result in undesirable levels of RE curtailment. Therefore a key objective of this study is to illustrate to state-level power system planners and operators, in particular, how a higher-resolution model, inclusive of intrastate granularity, can be used as a planning tool for two primary purposes: to better anticipate, understand, and mitigate system constraints that could affect RE integration; and to provide a modeling framework that can be used as part of future transmission studies and planning efforts. The Regional Study is not intended to predict precisely how RE will affect state-level operations. There is considerable uncertainty regarding the locations of the RE development, as well as how contract terms can affect access to the inherent physical flexibility of the system. But the scenarios analyzed identify the types of issues that can arise under various RE and transmission expansion pathways. The model developed for this study provides a rigorous framework for future work and can be updated with the characteristics of new capacity as more information on the future power system is known.« less

  15. Greening the Grid: Integrating 175 Gigawatts of Renewable Energy into India's Electric Grid - A Detailed Look at the Western Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, Jaquelin

    The higher-spatial-resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.' The Regional Study validates the relative value of mitigation strategies demonstrated in the National Study - namely, coordinatedmore » operations among states reduce production costs, and reducing coal minimum generation levels reduces RE curtailment. Significantly, the Regional Study also highlights a potential barrier to realizing the value of these mitigation strategies: when locations of RE development are planned independently of state-level transmission, intrastate congestion can result in undesirable levels of RE curtailment. Therefore a key objective of this study is to illustrate to state-level power system planners and operators, in particular, how a higher-resolution model, inclusive of intrastate granularity, can be used as a planning tool for two primary purposes: -To better anticipate, understand, and mitigate system constraints that could affect RE integration; and - To provide a modeling framework that can be used as part of future transmission studies and planning efforts. The Regional Study is not intended to predict precisely how RE will affect state-level operations. There is considerable uncertainty regarding the locations of the RE development, as well as how contract terms can affect access to the inherent physical flexibility of the system. But the scenarios analyzed identify the types of issues that can arise under various RE and transmission expansion pathways. The model developed for this study provides a rigorous framework for future work and can be updated with the characteristics of new capacity as more information on the future power system is known.« less

  16. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.

    2012-11-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  17. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, M. M.

    2012-09-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  18. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.

    2013-04-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  19. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  20. Qualitative analysis of student beliefs and attitudes after an objective structured clinical evaluation: implications for affective domain learning in undergraduate nursing education.

    PubMed

    Cazzell, Mary; Rodriguez, Amber

    2011-12-01

    This qualitative study explored the feelings, beliefs, and attitudes of senior-level undergraduate pediatric nursing students upon completion of a medication administration Objective Structured Clinical Evaluation (OSCE). The affective domain is the most neglected domain in higher education, although it is deemed the "gateway to learning." Quantitative assessments of clinical skills performed during OSCEs usually address two of the three domains of learning: cognitive (knowledge) and psychomotor skills. Twenty students volunteered to participate in focus groups (10 per group) and were asked three questions relevant to their feelings, beliefs, and attitudes about their OSCE experiences. Students integrated the attitude of safety first into future practice but felt that anxiety, loss of control, reaction under pressure, and no feedback affected their ability to connect the OSCE performance with future clinical practice. The findings affect future affective domain considerations in the development, modification, and assessment of OSCEs across the undergraduate nursing curriculum.

  1. Notes on Inventive Methodologies and Affirmative Critiques of an Affective Edu-Future

    ERIC Educational Resources Information Center

    Staunaes, Dorthe

    2016-01-01

    What are the possible futures for educational research? The essay concerns two intertwined agendas. The first agenda is empirical and concerns how educational policy and leadership constitute, circulate, transform and modify feelings, moods and affects. Especially, motivation, engagement and the desire for learning are targets for policy and…

  2. The Egyptian Military’s Role in the 25 January Revolution, and the Post-Revolution Impacts on Egypt’s Foreign Relations and Middle East Stability

    DTIC Science & Technology

    2012-12-14

    Political Archetype ........................................................................... 54 Impacts on Egypt’s Foreign Relation and the ME Stability...and the rise of the Islamists affect Egypt’s future? 3 Which political archetype is Egypt likely to follow? Finally, this study must answer the...landscape and the rise of the Islamists affect Egypt’s future? 6. Which political archetype is Egypt likely to follow? 7. What is the future of

  3. For Future Generations: Funding Culturally Embedded Higher Education at Tribal Colleges and Universities

    ERIC Educational Resources Information Center

    Clairmont, Tanksi

    2014-01-01

    From their inception, tribal colleges and universities (TCUs) have played a special cultural as well as educational role in Native communities. These dual roles are integral to the preservation of American Indian language and traditions, as they open the door for future generations to acquire and perpetuate cultural knowledge. The American Indian…

  4. Penny Wise, Pound Foolish?: Don't Sacrifice Our Nation's Future

    ERIC Educational Resources Information Center

    Murguia, Janet; Arroyo, Liany Elba, Ed.; Miranda, Leticia, Ed.

    2011-01-01

    The United States has provided generations of its residents with the prospect of advancing themselves through education and hard work, and U.S. leaders have the opportunity to make sure this continues for generations to come. To do so, they must handle the national deficit in a decisive, thoughtful manner, ensuring a prosperous future for the…

  5. Forces Shaping Future U.S. Coal Production and Use

    USGS Publications Warehouse

    Attanasi, E.D.; Pierce, Brenda S.

    2001-01-01

    More than half of the electricity in the United States is generated by coal-fired powerplants. U.S. coal producers sell almost 90 percent of their product for electricity generation, and so, the future of the U.S. coal industry will be determined by the future of coal-fired electricity-generation plants. The U.S. Geological Survey (USGS) is completing a National Coal Resource Assessment (NCRA) of five major coal-producing regions of the United States (fig. 1): (1) the Appalachian Basin, (2) the Illinois Basin, (3) the Gulf Coast, (4) the Colorado Plateau, and (5) the Northern Rocky Mountains and Great Plains. The Powder River and Williston Basins are the principal producing areas of the Northern Rocky Mountains and Great Plains region.

  6. Light Therapy and Alzheimer’s Disease and Related Dementia: Past, Present, and Future

    PubMed Central

    Hanford, Nicholas; Figueiro, Mariana

    2012-01-01

    Sleep disturbances are common in persons with Alzheimer’s disease or related dementia (ADRD), resulting in a negative impact on the daytime function of the affected person and on the wellbeing of caregivers. The sleep/wake pattern is directly driven by the timing signals generated by a circadian pacemaker, which may or may not be perfectly functioning in those with ADRD. A 24-hour light/dark pattern incident on the retina is the most efficacious stimulus for entraining the circadian system to the solar day. In fact, a carefully orchestrated light/dark pattern has been shown in several controlled studies of older populations, with and without ADRD, to be a powerful non-pharmacological tool to improve sleep efficiency and consolidation. Discussed here are research results from studies looking at the effectiveness of light therapy in improving sleep, depression, and agitation in older adults with ADRD. A 24-hour lighting scheme to increase circadian entrainment, improve visibility, and reduce the risk of falls in those with ADRD is proposed, and future research needs are discussed. PMID:23099814

  7. Light therapy and Alzheimer's disease and related dementia: past, present, and future.

    PubMed

    Hanford, Nicholas; Figueiro, Mariana

    2013-01-01

    Sleep disturbances are common in persons with Alzheimer's disease or related dementia (ADRD), resulting in a negative impact on the daytime function of the affected person and on the wellbeing of caregivers. The sleep/wake pattern is directly driven by the timing signals generated by a circadian pacemaker, which may or may not be perfectly functioning in those with ADRD. A 24-hour light/dark pattern incident on the retina is the most efficacious stimulus for entraining the circadian system to the solar day. In fact, a carefully orchestrated light/dark pattern has been shown in several controlled studies of older populations, with and without ADRD, to be a powerful non-pharmacological tool to improve sleep efficiency and consolidation. Discussed here are research results from studies looking at the effectiveness of light therapy in improving sleep, depression, and agitation in older adults with ADRD. A 24-hour lighting scheme to increase circadian entrainment, improve visibility, and reduce the risk of falls in those with ADRD is proposed, and future research needs are discussed.

  8. Quantification of increased flood risk due to global climate change for urban river management planning.

    PubMed

    Morita, M

    2011-01-01

    Global climate change is expected to affect future rainfall patterns. These changes should be taken into account when assessing future flooding risks. This study presents a method for quantifying the increase in flood risk caused by global climate change for use in urban flood risk management. Flood risk in this context is defined as the product of flood damage potential and the probability of its occurrence. The study uses a geographic information system-based flood damage prediction model to calculate the flood damage caused by design storms with different return periods. Estimation of the monetary damages these storms produce and their return periods are precursors to flood risk calculations. The design storms are developed from modified intensity-duration-frequency relationships generated by simulations of global climate change scenarios (e.g. CGCM2A2). The risk assessment method is applied to the Kanda River basin in Tokyo, Japan. The assessment provides insights not only into the flood risk cost increase due to global warming, and the impact that increase may have on flood control infrastructure planning.

  9. Plasmodium vivax Biology: Insights Provided by Genomics, Transcriptomics and Proteomics

    PubMed Central

    Bourgard, Catarina; Albrecht, Letusa; Kayano, Ana C. A. V.; Sunnerhagen, Per; Costa, Fabio T. M.

    2018-01-01

    During the last decade, the vast omics field has revolutionized biological research, especially the genomics, transcriptomics and proteomics branches, as technological tools become available to the field researcher and allow difficult question-driven studies to be addressed. Parasitology has greatly benefited from next generation sequencing (NGS) projects, which have resulted in a broadened comprehension of basic parasite molecular biology, ecology and epidemiology. Malariology is one example where application of this technology has greatly contributed to a better understanding of Plasmodium spp. biology and host-parasite interactions. Among the several parasite species that cause human malaria, the neglected Plasmodium vivax presents great research challenges, as in vitro culturing is not yet feasible and functional assays are heavily limited. Therefore, there are gaps in our P. vivax biology knowledge that affect decisions for control policies aiming to eradicate vivax malaria in the near future. In this review, we provide a snapshot of key discoveries already achieved in P. vivax sequencing projects, focusing on developments, hurdles, and limitations currently faced by the research community, as well as perspectives on future vivax malaria research. PMID:29473024

  10. Towards Automating Clinical Assessments: A Survey of the Timed Up and Go (TUG)

    PubMed Central

    Sprint, Gina; Cook, Diane; Weeks, Douglas

    2016-01-01

    Older adults often suffer from functional impairments that affect their ability to perform everyday tasks. To detect the onset and changes in abilities, healthcare professionals administer standardized assessments. Recently, technology has been utilized to complement these clinical assessments to gain a more objective and detailed view of functionality. In the clinic and at home, technology is able to provide more information about patient performance and reduce subjectivity in outcome measures. The timed up and go (TUG) test is one such assessment recently instrumented with technology in several studies, yielding promising results towards the future of automating clinical assessments. Potential benefits of technological TUG implementations include additional performance parameters, generated reports, and the ability to be self-administered in the home. In this paper, we provide an overview of the TUG test and technologies utilized for TUG instrumentation. We then critically review the technological advancements and follow up with an evaluation of the benefits and limitations of each approach. Finally, we analyze the gaps in the implementations and discuss challenges for future research towards automated, self-administered assessment in the home. PMID:25594979

  11. Muscle contraction during electro-muscular incapacitation: A comparison between square-wave pulses and the TASER(®) X26 Electronic control device.

    PubMed

    Comeaux, James A; Jauchem, James R; Cox, D Duane; Crane, Carrie C; D'Andrea, John A

    2011-01-01

    Electronic control devices (including the Advanced TASER(®) X26 model produced by TASER International) incapacitate individuals by causing muscle contractions. To provide information relevant to development of future potential devices, effects of monophasic square waves with different parameters were compared with those of the X26 electronic control device, using two animal models (frogs and swine). Pulse power, electrical pulse charge, pulse duration, and pulse repetition frequency affected muscle contraction. There was no difference in the charge required, between the square waveform and the X26 waveform, to cause approximately the same muscle-contraction response (in terms of the strength-duration curve). Thus, on the basis of these initial studies, the detailed shape of a waveform may not be important in terms of generating electro-muscular incapacitation. More detailed studies, however, may be required to thoroughly test all potential waveforms to be considered for future use in ECDs. 2010 American Academy of Forensic Sciences. Published 2010. This article is a U.S. Government work and is in the public domain in the U.S.A.

  12. WE-D-BRD-01: Innovation in Radiation Therapy Delivery: Advanced Digital Linac Features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, L; Wong, J; Li, R

    2014-06-15

    Last few years has witnessed significant advances in linac technology and therapeutic dose delivery method. Digital linacs equipped with high dose rate FFF beams have been clinically implemented in a number of hospitals. Gated VMAT is becoming increasingly popular in treating tumors affected by respiratory motion. This session is devoted to update the audience with these technical advances and to present our experience in clinically implementing the new linacs and dose delivery methods. Topics to be covered include, technical features of new generation of linacs from different vendors, dosimetric characteristics and clinical need for FFF-beam based IMRT and VMAT, respiration-gatedmore » VMAT, the concept and implementation of station parameter optimized radiation therapy (SPORT), beam level imaging and onboard image guidance tools. Emphasis will be on providing fundamental understanding of the new treatment delivery and image guidance strategies, control systems, and the associated dosimetric characteristics. Commissioning and acceptance experience on these new treatment delivery technologies will be reported. Clinical experience and challenges encountered during the process of implementation of the new treatment techniques and future applications of the systems will also be highlighted. Learning Objectives: Present background knowledge of emerging digital linacs and summarize their key geometric and dosimetric features. SPORT as an emerging radiation therapy modality specifically designed to take advantage of digital linacs. Discuss issues related to the acceptance and commissioning of the digital linacs and FFF beams. Describe clinical utility of the new generation of digital linacs and their future applications.« less

  13. Women and kidney disease: reflections on World Kidney Day 2018.

    PubMed

    Piccoli, Giorgina B; Alrukhaimi, Mona; Liu, Zhi-Hong; Zakharova, Elena; Levin, Adeera

    2018-02-01

    Chronic kidney disease affects ∼10% of the world's adult population: it is within the top 20 causes of death worldwide, and its impact on patients and their families can be devastating. World Kidney Day and International Women's Day in 2018 coincide, thus offering an opportunity to reflect on the importance of women's health, and specifically their kidney health, to the community and the next generations, as well as to strive to be more curious about the unique aspects of kidney disease in women, so that we may apply those learnings more broadly. Girls and women, who make up ∼50% of the world's population, are important contributors to society as a whole and to their families. Gender differences continue to exist around the world in access to education, medical care and participation in clinical studies. Pregnancy is a unique state for women, offering an opportunity for diagnosis of kidney disease, and also a state where acute and chronic kidney diseases may manifest, and which may impact future generations with respect to kidney health. There are various autoimmune and other conditions that are more likely to impact women with profound consequences for child bearing, and for the fetus. Women have different complications on dialysis than men, and are more likely to be donors than recipients of kidney transplants. In this editorial, we focus on what we do and do not know about women, kidney health and kidney disease, and what we might learn in the future to improve outcomes worldwide.

  14. Close relationship processes and health: implications of attachment theory for health and disease.

    PubMed

    Pietromonaco, Paula R; Uchino, Bert; Dunkel Schetter, Christine

    2013-05-01

    Health psychology has contributed significantly to understanding the link between psychological factors and health and well-being, but it has not often incorporated advances in relationship science into hypothesis generation and study design. We present one example of a theoretical model, following from a major relationship theory (attachment theory) that integrates relationship constructs and processes with biopsychosocial processes and health outcomes. We briefly describe attachment theory and present a general framework linking it to dyadic relationship processes (relationship behaviors, mediators, and outcomes) and health processes (physiology, affective states, health behavior, and health outcomes). We discuss the utility of the model for research in several health domains (e.g., self-regulation of health behavior, pain, chronic disease) and its implications for interventions and future research. This framework revealed important gaps in knowledge about relationships and health. Future work in this area will benefit from taking into account individual differences in attachment, adopting a more explicit dyadic approach, examining more integrated models that test for mediating processes, and incorporating a broader range of relationship constructs that have implications for health. A theoretical framework for studying health that is based in relationship science can accelerate progress by generating new research directions designed to pinpoint the mechanisms through which close relationships promote or undermine health. Furthermore, this knowledge can be applied to develop more effective interventions to help individuals and their relationship partners with health-related challenges. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  15. Endocannabinoids in Body Weight Control.

    PubMed

    Horn, Henrike; Böhme, Beatrice; Dietrich, Laura; Koch, Marco

    2018-05-30

    Maintenance of body weight is fundamental to maintain one's health and to promote longevity. Nevertheless, it appears that the global obesity epidemic is still constantly increasing. Endocannabinoids (eCBs) are lipid messengers that are involved in overall body weight control by interfering with manifold central and peripheral regulatory circuits that orchestrate energy homeostasis. Initially, blocking of eCB signaling by first generation cannabinoid type 1 receptor (CB1) inverse agonists such as rimonabant revealed body weight-reducing effects in laboratory animals and men. Unfortunately, rimonabant also induced severe psychiatric side effects. At this point, it became clear that future cannabinoid research has to decipher more precisely the underlying central and peripheral mechanisms behind eCB-driven control of feeding behavior and whole body energy metabolism. Here, we will summarize the most recent advances in understanding how central eCBs interfere with circuits in the brain that control food intake and energy expenditure. Next, we will focus on how peripheral eCBs affect food digestion, nutrient transformation and energy expenditure by interfering with signaling cascades in the gastrointestinal tract, liver, pancreas, fat depots and endocrine glands. To finally outline the safe future potential of cannabinoids as medicines, our overall goal is to address the molecular, cellular and pharmacological logic behind central and peripheral eCB-mediated body weight control, and to figure out how these precise mechanistic insights are currently transferred into the development of next generation cannabinoid medicines displaying clearly improved safety profiles, such as significantly reduced side effects.

  16. Psychiatric comorbidity in alcohol use disorders: results from the German S3 guidelines.

    PubMed

    Preuss, U W; Gouzoulis-Mayfrank, E; Havemann-Reinecke, U; Schäfer, I; Beutel, M; Hoch, E; Mann, K F

    2018-04-01

    Alcohol use disorders (AUD) have a high comorbidity with mental disorders. Vice versa, alcohol consumption plays an important role in affective disorders, anxiety disorders, ADHD, schizophrenic psychosis, and other mental disorders. In developing the current interdisciplinary, evidence-based treatment guideline on screening, diagnostics, and treatment of AUD, available research on comorbid mental diseases in AUD has been compiled to generate recommendations for treatment. The guideline was prepared under the responsibility of the German Association for Psychiatry, Psychotherapy, and Psychosomatics (DGPPN) and the German Association for Addiction Research and Therapy (DG-Sucht). To meet the methodological criteria for the highest quality guidelines ("S3-criteria") as defined by the Association of Scientific Medical Societies in Germany (AWMF), the following criteria were employed: (1) a systematic search, selection, and appraisal of the international literature; (2) a structured process to reach consensus; and (3) inclusion of all relevant representatives of future guideline users. After assessing and grading the available literature, the expert groups generated several recommendations for the screening, diagnosis, and treatment of comorbid mental disorders. These recommendations were subdivided into psycho-, pharmaco-, and combination therapies. These are the first guidelines ever to make specific treatment recommendations for comorbid mental diseases in AUD. The recommendations extend to different treatment approaches including diagnostics and settings to present available effective and state-of-the-art treatment approaches to clinicians. Hitherto, many clinical constellations have not been addressed in research. Therefore, recommendations for future research are specified.

  17. Close Relationship Processes and Health: Implications of Attachment Theory for Health and Disease

    PubMed Central

    Pietromonaco, Paula R.; Uchino, Bert; Dunkel Schetter, Christine

    2013-01-01

    Objectives Health psychology has contributed significantly to understanding the link between psychological factors and health and well-being, but it has not often incorporated advances in relationship science into hypothesis generation and study design. We present one example of a theoretical model following from a major relationship theory (attachment theory) that integrates relationship constructs and processes with biopsychosocial processes and health outcomes. Methods We briefly describe attachment theory and present a general framework linking it to dyadic relationship processes (relationship behaviors, mediators and outcomes) and health processes (physiology, affective states, health behavior and health outcomes). We discuss the utility of the model for research in several health domains (e.g., self-regulation of health behavior, pain, chronic disease) and its implications for interventions and future research. Results This framework revealed important gaps in knowledge about relationships and health. Future work in this area will benefit from taking into account individual differences in attachment, adopting a more explicit dyadic approach, examining more integrated models that test for mediating processes, and incorporating a broader range of relationship constructs that have implications for health. Conclusions A theoretical framework for studying health that is based in relationship science can accelerate progress by generating new research directions designed to pinpoint the mechanisms through which close relationships promote or undermine health. Furthermore, this knowledge can be applied to develop more effective interventions to help individuals and their relationship partners with health-related challenges. PMID:23646833

  18. Phototoxic effects of silicon bis (dimetilaminoetanoxi)-phthalocyanine (SiPc) on the viability of Leishmania major and Leishmania braziliensis promastigotes

    NASA Astrophysics Data System (ADS)

    Guerra Pinto, Juliana; Ferreira-Strixino, Juliana; Mittmann, Josane

    2016-06-01

    American cutaneous leishmaniasis (ACL) is an infectious disease caused by protozoans of the genus Leishmania. The treatment may consist of pentavalent antimonials or pentamidine and amphotericin. However, these treatments are extremely aggressive. Photodynamic antimicrobial chemotherapy (PACT) involves the same mechanism of photodynamic therapy which associates a photosensitizer with oxygen and a light source generating a photochemical reaction leading to cell death. The aim of this study was to verify the potential use of silicon bis (dimetilaminoetanoxi)-phthalocyanine (SiPc) compound in photodynamic treatment through evaluation of its phototoxic effect in promastigotes of the genus Leishmania braziliensis and Leishmania major. Treatment with SiPc was able to drastically affect the viability of the parasites as well as affect their growth and morphology, after PACT treatment. The data shown in this study allows us to conclude that SiPc is a promising photosensitizer (PS) since it does not affect parasite growth and viability in the dark. After PACT with this phthalocyanine, over 99% of parasites were killed with the higher concentration and a light dose used. These results suggest that SiPc can be used in future to treat CL, however, further studies are necessary to determine whether the PS are toxic to mononuclear phagocytic cells and epithelial cells which will also be affected by therapy when applied topically.

  19. Tea, talk and technology: patient and public involvement to improve connected health 'wearables' research in dementia.

    PubMed

    Hassan, Lamiece; Swarbrick, Caroline; Sanders, Caroline; Parker, Angela; Machin, Matt; Tully, Mary P; Ainsworth, John

    2017-01-01

    There are a growing number of mobile phones, watches and electronic devices which can be worn on the body to track aspects of health and well-being, such as daily steps, sleep and exercise. Dementia researchers think that these devices could potentially be used as part of future research projects, for example to help spot changes in daily activity that may signal the early symptoms of dementia. We asked a range of older people, including people living with dementia and their carers, to participate in interactive discussions about how future participants might find using these devices as part of research projects. We also invited volunteers to borrow a range of devices to test at home, giving them further insights. Discussions revealed that people were generally supportive of this type of research, provided they gave informed consent and that devices were discreet, comfortable and easy to use. They also valued technical support and regular feedback on study progress to encourage ongoing participation. These findings were used to develop a pool of devices for researchers, with computer software and written guidance to help plan, design and support studies. Our work shows that when given the right opportunities, people who are affected by dementia can provide valuable insights that can enhance the design, delivery and quality of future research. Background Increasingly, researchers are recognising the potential for connected health devices, including smartphones and smartwatches, to generate high resolution data about patterns of daily activity and health outcomes. One aim of the Dementias Platform UK (DPUK) project is to provide researchers with a secure means to collect, collate and link data generated by such devices, thereby accelerating this type of research in the field of dementia. We aimed to involve members of the public in discussions about the acceptability and feasibility of different devices and research designs to inform the development of a device pool, software platform and written guidance to support future studies. Methods Over 30 people attended a series of interactive workshops, drop-in sessions and meetings in Greater Manchester. This included people living with dementia and cognitive impairments, carers and people without memory problems. Discussions were tailored to suit different audiences and focused on the feasibility and acceptability of a range of different wearable devices and research designs. We also invited volunteers to borrow a device to test at home, enabling further insights from hands-on interactions with devices. Results Discussions revealed that people were supportive of connected health dementia research in principle, provided they gave informed consent and that devices were discreet, comfortable and easy to use. Moreover, they recommended technical support and regular feedback on study progress to encourage ongoing participation. Conclusion By using a range of discussion-based and practical activities, we found it was feasible to involve people affected by dementia and use their insights to shape the development of a software platform and device pool to support future connected health dementia research. We recommend that researchers planning such studies in future pay adequate attention to designing suitable participant information, technical support and mechanisms of providing study progress updates to support sustained engagement from participants.

  20. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.; Wiser, R.; Sandor, D.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less

  1. Intergenerational equity and environmental restoration cleanup levels.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hocking, E. K.; Environmental Assessment

    2001-01-01

    The United States Department of Energy environmental restoration program faces difficult decisions about the levels of cleanup to be achieved at its many contaminated sites and has acknowledged the need for considering intergenerational equity in its decision making. Intergenerational equity refers to the fairness of access to resources across generations. Environmental restoration cleanup levels can have unintended and unfair consequences for future generations access to resources. The potentially higher costs associated with using low, non-risk-based cleanup levels for remediation may divert funding from other activities that could have a greater beneficial impact on future generations. Low, non-risk-based cleanup levels couldmore » also result in more damage to the nation's resources than would occur if a higher cleanup level were used. The loss or impairment of these resources could have an inequitable effect on future generations. However, intergenerational inequity could arise if sites are not completely restored and if access to and use of natural and cultural resources are unfairly limited as a result of residual contamination. In addition to concerns about creating possible intergenerational inequities related to selected cleanup levels, the tremendous uncertainties associated with sites and their restoration can lead site planners to rely on stewardship by default. An ill-conceived stewardship program can contribute to intergenerational inequity by limiting access to resources while passing on risks to future generations and not preparing them for those risks. This paper presents a basic model and process for designing stewardship programs that can achieve equity among generations.« less

  2. Geodesy: A look to the future

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The report deals with the current and future uses of contemporary geodetic data and poses some questions and possibilities for the future. It is anticipated that the document will generate interest in present and future geodetic data for the solution of problems in Earth, ocean, and atmospheric sciences.

  3. Future Orientation in Times of Threat and Challenge: How Resilient Adolescents Construct Their Future

    ERIC Educational Resources Information Center

    Seginer, Rachel

    2008-01-01

    Drawing on the importance of future orientation for adolescent development this analysis presents a model describing how future orientation is affected by high challenge (or resilience) in the face of political violence. The analysis consists of three parts. The first two present future orientation conceptualization and the psychological processes…

  4. Renewable Electricity Futures Study. Volume 1. Exploration of High-Penetration Renewable Electricity Futures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, M. M.; Baldwin, S.; DeMeo, E.

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/« less

  5. Manufacturing Magic and Computational Creativity

    PubMed Central

    Williams, Howard; McOwan, Peter W.

    2016-01-01

    This paper describes techniques in computational creativity, blending mathematical modeling and psychological insight, to generate new magic tricks. The details of an explicit computational framework capable of creating new magic tricks are summarized, and evaluated against a range of contemporary theories about what constitutes a creative system. To allow further development of the proposed system we situate this approach to the generation of magic in the wider context of other areas of application in computational creativity in performance arts. We show how approaches in these domains could be incorporated to enhance future magic generation systems, and critically review possible future applications of such magic generating computers. PMID:27375533

  6. Nanoscale inhomogeneity and photoacid generation dynamics in extreme ultraviolet resist materials

    NASA Astrophysics Data System (ADS)

    Wu, Ping-Jui; Wang, Yu-Fu; Chen, Wei-Chi; Wang, Chien-Wei; Cheng, Joy; Chang, Vencent; Chang, Ching-Yu; Lin, John; Cheng, Yuan-Chung

    2018-03-01

    The development of extreme ultraviolet (EUV) lithography towards the 22 nm node and beyond depends critically on the availability of resist materials that meet stringent control requirements in resolution, line edge roughness, and sensitivity. However, the molecular mechanisms that govern the structure-function relationships in current EUV resist systems are not well understood. In particular, the nanoscale structures of the polymer base and the distributions of photoacid generators (PAGs) should play a critical roles in the performance of a resist system, yet currently available models for photochemical reactions in EUV resist systems are exclusively based on homogeneous bulk models that ignore molecular-level details of solid resist films. In this work, we investigate how microscopic molecular organizations in EUV resist affect photoacid generations in a bottom-up approach that describes structure-dependent electron-transfer dynamics in a solid film model. To this end, molecular dynamics simulations and stimulated annealing are used to obtain structures of a large simulation box containing poly(4-hydroxystyrene) (PHS) base polymers and triphenylsulfonium based PAGs. Our calculations reveal that ion-pair interactions govern the microscopic distributions of the polymer base and PAG molecules, resulting in a highly inhomogeneous system with nonuniform nanoscale chemical domains. Furthermore, the theoretical structures were used in combination of quantum chemical calculations and the Marcus theory to evaluate electron transfer rates between molecular sites, and then kinetic Monte Carlo simulations were carried out to model electron transfer dynamics with molecular structure details taken into consideration. As a result, the portion of thermalized electrons that are absorbed by the PAGs and the nanoscale spatial distribution of generated acids can be estimated. Our data reveal that the nanoscale inhomogeneous distributions of base polymers and PAGs strongly affect the electron transfer and the performance of the resist system. The implications to the performances of EUV resists and key engineering requirements for improved resist systems will also be discussed in this work. Our results shed light on the fundamental structure dependence of photoacid generation and the control of the nanoscale structures as well as base polymer-PAG interactions in EVU resist systems, and we expect these knowledge will be useful for the future development of improved EUV resist systems.

  7. Local vs. volume conductance activity of field potentials in the human subthalamic nucleus

    PubMed Central

    Marmor, Odeya; Valsky, Dan; Joshua, Mati; Bick, Atira S; Arkadir, David; Tamir, Idit; Bergman, Hagai; Israel, Zvi

    2017-01-01

    Subthalamic nucleus field potentials have attracted growing research and clinical interest over the last few decades. However, it is unclear whether subthalamic field potentials represent locally generated neuronal subthreshold activity or volume conductance of the organized neuronal activity generated in the cortex. This study aimed at understanding of the physiological origin of subthalamic field potentials and determining the most accurate method for recording them. We compared different methods of recordings in the human subthalamic nucleus: spikes (300–9,000 Hz) and field potentials (3–100 Hz) recorded by monopolar micro- and macroelectrodes, as well as by differential-bipolar macroelectrodes. The recordings were done outside and inside the subthalamic nucleus during electrophysiological navigation for deep brain stimulation procedures (150 electrode trajectories) in 41 Parkinson’s disease patients. We modeled the signal and estimated the contribution of nearby/independent vs. remote/common activity in each recording configuration and area. Monopolar micro- and macroelectrode recordings detect field potentials that are considerably affected by common (probably cortical) activity. However, bipolar macroelectrode recordings inside the subthalamic nucleus can detect locally generated potentials. These results are confirmed by high correspondence between the model predictions and actual correlation of neuronal activity recorded by electrode pairs. Differential bipolar macroelectrode subthalamic field potentials can overcome volume conductance effects and reflect locally generated neuronal activity. Bipolar macroelectrode local field potential recordings might be used as a biological marker of normal and pathological brain functions for future electrophysiological studies and navigation systems as well as for closed-loop deep brain stimulation paradigms. NEW & NOTEWORTHY Our results integrate a new method for human subthalamic recordings with a development of an advanced mathematical model. We found that while monopolar microelectrode and macroelectrode recordings detect field potentials that are considerably affected by common (probably cortical) activity, bipolar macroelectrode recordings inside the subthalamic nucleus (STN) detect locally generated potentials that are significantly different than those recorded outside the STN. Differential bipolar subthalamic field potentials can be used in navigation and closed-loop deep brain stimulation paradigms. PMID:28202569

  8. 40 CFR 60.40 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for Fossil-Fuel-Fired Steam Generators § 60.40 Applicability and designation of affected facility. (a) The affected facilities to which the provisions of this subpart apply are: (1) Each fossil-fuel-fired... per hour (MMBtu/hr)). (2) Each fossil-fuel and wood-residue-fired steam generating unit capable of...

  9. 40 CFR 60.40 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for Fossil-Fuel-Fired Steam Generators § 60.40 Applicability and designation of affected facility. (a) The affected facilities to which the provisions of this subpart apply are: (1) Each fossil-fuel-fired... per hour (MMBtu/hr)). (2) Each fossil-fuel and wood-residue-fired steam generating unit capable of...

  10. 40 CFR 60.40 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for Fossil-Fuel-Fired Steam Generators § 60.40 Applicability and designation of affected facility. (a) The affected facilities to which the provisions of this subpart apply are: (1) Each fossil-fuel-fired... per hour (MMBtu/hr)). (2) Each fossil-fuel and wood-residue-fired steam generating unit capable of...

  11. Flexibility decline contributes to similarity of past and future thinking in Alzheimer's disease.

    PubMed

    El Haj, Mohamad; Antoine, Pascal; Kapogiannis, Dimitrios

    2015-11-01

    A striking similarity has been suggested between past and future thinking in Alzheimer's Disease (AD), a similarity attributable to abnormalities in common modular cognitive functions and neuroanatomical substrates. This study extends this literature by identifying specific executive function deficits underlying past and future thinking in AD. Twenty-four participants with a clinical diagnosis of probable (mild) AD and 26 older controls generated past and future events and underwent tests of binding and the executive functions of flexibility, inhibition, and updating. AD patients showed similar autobiographical performances in past and future event generation, and so did control participants. In each group, the similarity of past and future thinking was predicted by flexibility. Furthermore, AD patients with low flexibility showed higher similarity of past and future thinking than those with high flexibility. These findings are interpreted in terms of involvement of the hippocampus and frontal lobes in future thinking. Deficits in these brain regions in AD are likely to compromise the ability to recombine episodic information into novel and flexible configurations as scenarios for the future. © 2015 Wiley Periodicals, Inc.

  12. Flexibility Decline Contributes to Similarity of Past and Future Thinking in Alzheimer’s Disease

    PubMed Central

    El Haj, Mohamad; Antoine, Pascal; Kapogiannis, Dimitrios

    2017-01-01

    A striking similarity has been suggested between past and future thinking in Alzheimer’s Disease (AD), a similarity attributable to abnormalities in common modular cognitive functions and neuroanatomical substrates. This study extends this literature by identifying specific executive function deficits underlying past and future thinking in AD. Twenty-four participants with a clinical diagnosis of probable (mild) AD and 26 older controls generated past and future events and underwent tests of binding and the executive functions of flexibility, inhibition, and updating. AD patients showed similar autobiographical performances in past and future event generation, and so did control participants. In each group, the similarity of past and future thinking was predicted by flexibility. Furthermore, AD patients with low flexibility showed higher similarity of past and future thinking than those with high flexibility. These findings are interpreted in terms of involvement of the hippocampus and frontal lobes in future thinking. Deficits in these brain regions in AD are likely to compromise the ability to recombine episodic information into novel and flexible configurations as scenarios for the future. PMID:25850800

  13. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligan, M.; Ela, E.; Hein, J.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less

  14. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hostick, D.; Belzer, D.B.; Hadley, S.W.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less

  15. Renewable Electricity Futures Study. Executive Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.; Sandor, D.; Wiser, R.

    2012-12-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less

  16. Factors affecting Iran`s future. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinai, J.

    1993-05-28

    This study examines the factors affecting Iran`s future by focusing on the demographic, economic, and military trends in Iran and their impact on the country`s national security objectives in the next decade. The paper also assesses the implications of an economic embargo on Iran and potential Iranian threats to regional and United States national interests.

  17. The Impact on Future Guidance Programs of Current Developments in Computer Science, Telecommunications, and Biotechnology.

    ERIC Educational Resources Information Center

    Mitchell, Lynda K.; Hardy, Philippe L.

    The purpose of this chapter is to envision how the era of technological revolution will affect the guidance, counseling, and student support programs of the future. Advances in computer science, telecommunications, and biotechnology are discussed. These advances have the potential to affect dramatically the services of guidance programs of the…

  18. Innovations in Practice: An Examination of Technological Impacts in the Field

    ERIC Educational Resources Information Center

    Angus, Jim

    2012-01-01

    Technological innovation is sweeping the world into an unimaginable future. These forces are affecting all aspects of how people live and work. What will be the role of museums and museum educators in this future? This article surveys some of the technologies that have profoundly affected museums and museum education and poses some questions: what…

  19. Cognitive correlates of anxious and depressive symptomatology: an examination of the Helplessness/Hopelessness model.

    PubMed

    Waikar, S V; Craske, M G

    1997-01-01

    Expectancies about future life events were assessed in anxious and depressed patients to test predictions of the Helplessness/Hopelessness model of anxiety and depression (Alloy, Kelly, Mineka, & Clements, 1990). In addition to expectancies for future events, patients from affective and anxiety treatment clinics completed anxiety and depression symptom ratings and positive and negative affects scales. Findings revealed partial support for the model. Negative outcome and helplessness expectancies were related specifically to depression. Cognitions regarding future positive events were interrelated and associated with symptom measures more strongly than were cognitions regarding negative events. Additionally, positive affects was more strongly related to depression than to anxiety symptom ratings. Implications and limitations of these findings are discussed.

  20. Short Sighted: How America's Lack of Attention to International Education Studies Impedes Improvement. Policy Brief

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2009

    2009-01-01

    To future generations, Americans' current educational myopia is likely to appear, at best, a negligent failure to anticipate and meet the needs of the nation and its citizens. And for the sake of those future generations, this brief suggests that the short-sighted practices and parochial policies that have delayed significant improvement in the…

  1. American Indian Millennium: Renewing Our Way of Life for Future Generations. Proceedings (Ithaca, New York, November 29-December 2, 2001).

    ERIC Educational Resources Information Center

    Barreiro, Jose, Ed.; Johnson, Tim, Ed.

    2002-01-01

    In November 2001, elders, youth, educators, culture bearers, and community members came together to speak from within their own experiences about the critical issues and challenges facing Native people in the 21st century and to envision the positive thinking required for future generations. This proceedings documents 34 oral presentations and…

  2. Small Next-Generation Atmospheric Probe (SNAP) Concept

    NASA Technical Reports Server (NTRS)

    Sayanagi, K. M.; Dillman, R. A.; Simon, A. A.; Atkinson, D. H.; Wong, M. H.; Spilker, T. R.; Saikia, S.; Li, J.; Hope, D.

    2017-01-01

    We present the Small Next-Generation Atmospheric Probe (SNAP) as a secondary payload concept for future missions to giant planets. As a case study, we examine the advantages, cost and risk of adding SNAP to the future Uranus Orbiter and Probe flag-ship mission; in combination with the missions main probe, SNAP would perform atmospheric in-situ measurements at a second location.

  3. Reproductive endocrinology and infertility fellowships: is the 'reproductive endocrinology' portion obsolete?

    PubMed

    Omurtag, Kenan; Lebovic, Dan I

    2015-08-01

    To take inventory of the past and present and project the future direction of our field to help train the next generation of providers. Review the history of the subspecialty and factors contributing to its evolution. Reproductive endocrinology and infertility's in-vitro fertilization future is shaping the intellectual priorities and surgical skill requirements of the next generation.

  4. NASA's Radioisotope Power Systems Planning and Potential Future Systems Overview

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.; Woerner, Dave F.; Cairns-Gallimore, Dirk; Johnson, Stephen G.; Qualls, Louis

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Program's budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Program's portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.

  5. NASA's Radioisotope Power Systems Planning and Potential Future Systems Overview

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.; Woerner, Dave F.; Cairns-Gallimore, Dirk; Johnson, Stephen G.; Qualis, Louis

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Programs budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Programs portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.

  6. To Recycle or Not to Recycle? An Intergenerational Approach to Nuclear Fuel Cycles

    PubMed Central

    Kloosterman, Jan Leen

    2007-01-01

    This paper approaches the choice between the open and closed nuclear fuel cycles as a matter of intergenerational justice, by revealing the value conflicts in the production of nuclear energy. The closed fuel cycle improve sustainability in terms of the supply certainty of uranium and involves less long-term radiological risks and proliferation concerns. However, it compromises short-term public health and safety and security, due to the separation of plutonium. The trade-offs in nuclear energy are reducible to a chief trade-off between the present and the future. To what extent should we take care of our produced nuclear waste and to what extent should we accept additional risks to the present generation, in order to diminish the exposure of future generation to those risks? The advocates of the open fuel cycle should explain why they are willing to transfer all the risks for a very long period of time (200,000 years) to future generations. In addition, supporters of the closed fuel cycle should underpin their acceptance of additional risks to the present generation and make the actual reduction of risk to the future plausible. PMID:18075732

  7. To recycle or not to recycle? An intergenerational approach to nuclear fuel cycles.

    PubMed

    Taebi, Behnam; Kloosterman, Jan Leen

    2008-06-01

    This paper approaches the choice between the open and closed nuclear fuel cycles as a matter of intergenerational justice, by revealing the value conflicts in the production of nuclear energy. The closed fuel cycle improve sustainability in terms of the supply certainty of uranium and involves less long-term radiological risks and proliferation concerns. However, it compromises short-term public health and safety and security, due to the separation of plutonium. The trade-offs in nuclear energy are reducible to a chief trade-off between the present and the future. To what extent should we take care of our produced nuclear waste and to what extent should we accept additional risks to the present generation, in order to diminish the exposure of future generation to those risks? The advocates of the open fuel cycle should explain why they are willing to transfer all the risks for a very long period of time (200,000 years) to future generations. In addition, supporters of the closed fuel cycle should underpin their acceptance of additional risks to the present generation and make the actual reduction of risk to the future plausible.

  8. Renewable Electricity Futures Study. Volume 3. End-Use Electricity Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hostick, Donna; Belzer, David B.; Hadley, Stanton W.

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/« less

  9. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems. Operations and Transmission Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligan, Michael; Ela, Erik; Hein, Jeff

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/« less

  10. Sustainability Science Needs Sustainable Data!

    NASA Astrophysics Data System (ADS)

    Downs, R. R.; Chen, R. S.

    2013-12-01

    Sustainability science (SS) is an 'emerging field of research dealing with the interactions between natural and social systems, and with how those interactions affect the challenge of sustainability: meeting the needs of present and future generations while substantially reducing poverty and conserving the planet's life support systems' (Kates, 2011; Clark, 2007). Bettencourt & Kaur (2011) identified more than 20,000 scientific papers published on SS topics since the 1980s with more than 35,000 distinct authors. They estimated that the field is currently growing exponentially, with the number of authors doubling approximately every 8 years. These scholars are undoubtedly using and generating a vast quantity and variety of data and information for both SS research and applications. Unfortunately we know little about what data the SS community is actually using, and whether or not the data that SS scholars generate are being preserved for future use. Moreover, since much SS research is conducted by cross-disciplinary, multi-institutional teams, often scattered around the world, there could well be increased risks of data loss, reduced data quality, inadequate documentation, and poor long-term access and usability. Capabilities and processes therefore need to be established today to support continual, reliable, and efficient preservation of and access to SS data in the future, especially so that they can be reused in conjunction with future data and for new studies not conceived in the original data collection activities. Today's long-term data stewardship challenges include establishing sustainable data governance to facilitate continuing management, selecting data to ensure that limited resources are focused on high priority SS data holdings, securing sufficient rights to allow unforeseen uses, and preparing data to enable use by future communities whose specific research and information needs are not yet known. Adopting sustainable models for archival infrastructures will reduce dependencies on changing priorities and sponsorship that may not continue. Implementing community-based appraisal criteria and selection procedures for data will ensure that limited resources for long-term data management are applied efficiently to data likely to have the most enduring value. Encouraging producers to provide rights for open access to data will support their replication, reuse, integration, and application in a range of SS research and applications in both the near and long term. Identifying modest changes to current data preparation activities to meet preservation goals should reduce expensive post-hoc data and documentation rescue efforts. The NASA Socioeconomic Data and Applications Center (SEDAC), an active archive in the NASA Earth Observing System Data and Information System (EOSDIS), established the SEDAC Long-Term Archive (LTA) in collaboration with the Columbia University Libraries to preserve selected data and information resources for future access and use. A case study of the LTA shows how archives can be organized to foster sustainable data stewardship in a university environment. Lessons learned from the organization planning and the preparation, appraisal, and selection of data for the LTA are described along with enhancements that have been applied to data management by the active archive.

  11. Analysis of future generation solar cells and materials

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masafumi; Zhu, Lin; Akiyama, Hidefumi; Kanemitsu, Yoshihiko; Tampo, Hitoshi; Shibata, Hajime; Lee, Kan-Hua; Araki, Kenji; Kojima, Nobuaki

    2018-04-01

    The efficiency potentials of future generation solar cells such as wide bandgap chalcopyrite, Cu2ZnSnS4 (CZTS), Cu2ZnSn(S,Se)4 (CZTSSe), multi quantum well (MQW) and quantum dot (QD) solar cells are discussed on the basis of external radiative efficiency (ERE), open-circuit voltage loss, fill factor loss, and nonradiative recombination losses. CZTS and CZTSSe solar cells have efficiency potentials of more than 20% owing to the improvement in ERE from about 0.001 to 1%. MQW and QD cells have efficiency potentials of 24.8%, and 25.8% owing to the improvement in ERE from around 0.01 to 0.1%, and 1%, respectively. In this paper, the effects of nonradiative recombination on the properties of future generation solar cells are discussed.

  12. The impact of climate change on photovoltaic power generation in Europe

    NASA Astrophysics Data System (ADS)

    Jerez, Sonia; Tobin, Isabelle; Vautard, Robert; Montávez, Juan Pedro; María López-Romero, Jose; Thais, Françoise; Bartok, Blanka; Bøssing Christensen, Ole; Colette, Augustin; Déqué, Michel; Nikulin, Grigory; Kotlarski, Sven; van Meijgaard, Erik; Teichmann, Claas; Wild, Martin

    2016-04-01

    Ambitious climate change mitigation plans call for a significant increase in use of renewables, which could, however, make the supply system more vulnerable to climate variability and changes. Here we evaluate climate change impacts on solar photovoltaic (PV) power in Europe using the recent EURO-CORDEX ensemble of high-resolution climate projections together with a PV power production model and assuming a well-developed European PV power fleet. Results indicate that the alteration of solar PV supply by the end of this century compared to the estimations made under current climate conditions should be in the range [-14%;+2%], with the largest decreases in Northern countries. Temporal stability of power generation does not appear as strongly affected in future climate scenarios either, even showing a slight positive trend in Southern countries. Therefore, despite small decreases in production expected in some parts of Europe, climate change is unlikely to threaten the European PV sector. Reference: S. Jerez, I. Tobin, R. Vautard, J.P. Montávez, J.M. López-Romero, F. Thais, B. Bartok, O.B. Christensen, A. Colette, M. Déqué, G. Nikulin, S. Kotlarski, E. van Meijgaard, C. Teichmann and M. Wild (2015). The impact of climate change on photovoltaic power generation in Europe. Nature Communications, 6, 10014, doi: 10.1038/ncomms10014.

  13. Wholesale electricity market design with increasing levels of renewable generation: Revenue sufficiency and long-term reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligan, Michael; Frew, Bethany A.; Bloom, Aaron

    This paper discusses challenges that relate to assessing and properly incentivizing the resources necessary to ensure a reliable electricity system with growing penetrations of variable generation (VG). The output of VG (primarily wind and solar generation) varies over time and cannot be predicted precisely. Therefore, the energy from VG is not always guaranteed to be available at times when it is most needed. This means that its contribution towards resource adequacy can be significantly less than the contribution from traditional resources. Variable renewable resources also have near-zero variable costs, and with production-based subsidies they may even have negative offer costs.more » Because variable costs drive the spot price of energy, this can lead to reduced prices, sales, and therefore revenue for all resources within the energy market. The characteristics of VG can also result in increased price volatility as well as the need for more flexibility in the resource fleet in order to maintain system reliability. We explore both traditional and evolving electricity market designs in the United States that aim to ensure resource adequacy and sufficient revenues to recover costs when those resources are needed for longterm reliability. We also investigate how reliability needs may be evolving and discuss how VG may affect future electricity market designs« less

  14. Assessment of source probabilities for potential tsunamis affecting the U.S. Atlantic coast

    USGS Publications Warehouse

    Geist, E.L.; Parsons, T.

    2009-01-01

    Estimating the likelihood of tsunamis occurring along the U.S. Atlantic coast critically depends on knowledge of tsunami source probability. We review available information on both earthquake and landslide probabilities from potential sources that could generate local and transoceanic tsunamis. Estimating source probability includes defining both size and recurrence distributions for earthquakes and landslides. For the former distribution, source sizes are often distributed according to a truncated or tapered power-law relationship. For the latter distribution, sources are often assumed to occur in time according to a Poisson process, simplifying the way tsunami probabilities from individual sources can be aggregated. For the U.S. Atlantic coast, earthquake tsunami sources primarily occur at transoceanic distances along plate boundary faults. Probabilities for these sources are constrained from previous statistical studies of global seismicity for similar plate boundary types. In contrast, there is presently little information constraining landslide probabilities that may generate local tsunamis. Though there is significant uncertainty in tsunami source probabilities for the Atlantic, results from this study yield a comparative analysis of tsunami source recurrence rates that can form the basis for future probabilistic analyses.

  15. 2D nanostructures for water purification: graphene and beyond.

    PubMed

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future.

  16. Distributed Generation Market Demand Model (dGen): Documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigrin, Benjamin; Gleason, Michael; Preus, Robert

    The Distributed Generation Market Demand model (dGen) is a geospatially rich, bottom-up, market-penetration model that simulates the potential adoption of distributed energy resources (DERs) for residential, commercial, and industrial entities in the continental United States through 2050. The National Renewable Energy Laboratory (NREL) developed dGen to analyze the key factors that will affect future market demand for distributed solar, wind, storage, and other DER technologies in the United States. The new model builds off, extends, and replaces NREL's SolarDS model (Denholm et al. 2009a), which simulates the market penetration of distributed PV only. Unlike the SolarDS model, dGen can modelmore » various DER technologies under one platform--it currently can simulate the adoption of distributed solar (the dSolar module) and distributed wind (the dWind module) and link with the ReEDS capacity expansion model (Appendix C). The underlying algorithms and datasets in dGen, which improve the representation of customer decision making as well as the spatial resolution of analyses (Figure ES-1), also are improvements over SolarDS.« less

  17. Modelling and analysis of a direct ascorbic acid fuel cell

    NASA Astrophysics Data System (ADS)

    Zeng, Yingzhi; Fujiwara, Naoko; Yamazaki, Shin-ichi; Tanimoto, Kazumi; Wu, Ping

    L-Ascorbic acid (AA), also known as vitamin C, is an environmentally-benign and biologically-friendly compound that can be used as an alternative fuel for direct oxidation fuel cells. While direct ascorbic acid fuel cells (DAAFCs) have been studied experimentally, modelling and simulation of these devices have been overlooked. In this work, we develop a mathematical model to describe a DAAFC and validate it with experimental data. The model is formulated by integrating the mass and charge balances, and model parameters are estimated by best-fitting to experimental data of current-voltage curves. By comparing the transient voltage curves predicted by dynamic simulation and experiments, the model is further validated. Various parameters that affect the power generation are studied by simulation. The cathodic reaction is found to be the most significant determinant of power generation, followed by fuel feed concentration and the mass-transfer coefficient of ascorbic acid. These studies also reveal that the power density steadily increases with respect to the fuel feed concentration. The results may guide future development and operation of a more efficient DAAFC.

  18. A syngeneic glioma model to assess the impact of neural progenitor target cell age on tumor malignancy

    PubMed Central

    Mikheev, Andrei M; Stoll, Elizabeth A; Mikheeva, Svetlana A; Maxwell, John-Patrick; Jankowski, Pawel P; Ray, Sutapa; Uo, Takuma; Morrison, Richard S; Horner, Philip J; Rostomily, Robert C

    2010-01-01

    Summary Human glioma incidence, malignancy and treatment resistance are directly proportional to patient age. Cell intrinsic factors are reported to contribute to human age-dependent glioma malignancy but suitable animal models to examine the role of aging are lacking. Here we developed an orthotopic syngeneic glioma model to test the hypothesis that the age of neural progenitor cells (NPCs), presumed cells of glioma origin, influences glioma malignancy. Gliomas generated from transformed donor 3-, 12-, and 18-month-old NPCs in same-aged adult hosts all formed highly invasive glial tumors that phenocopied the human disease. Survival analysis indicated increased malignancy of gliomas generated from older 12- and 18-month-old transformed NPCs compared with their 3-month counterparts (median survival of 38.5 and 42.5 vs. 77 days, respectively). This study showed for the first time that age of target cells at the time of transformation can affect malignancy and demonstrated the feasibility of a syngeneic model using transformed NPCs for future examination of the relative impacts of age-related cell intrinsic and cell-extrinsic factors in glioma malignancy. PMID:19489742

  19. Future CO2 emissions and electricity generation from proposed coal-fired power plants in India

    NASA Astrophysics Data System (ADS)

    Fofrich, R.; Shearer, C.; Davis, S. J.

    2017-12-01

    India represents a critical unknown in global projections of future CO2 emissions due to its growing population, industrializing economy, and large coal reserves. In this study, we assess existing and proposed construction of coal-fired power plants in India and evaluate their implications for future energy production and emissions in the country. In 2016, India had 369 coal-fired power plants under development totaling 243 gigawatts (GW) of generating capacity. These coal-fired power plants would increase India's coal-fired generating capacity by 123% and would exceed India's projected electricity demand. Therefore, India's current proposals for new coal-fired power plants would be forced to retire early or operate at very low capacity factors and/or would prevent India from meeting its goal of producing at least 40% of its power from renewable sources by 2030. In addition, future emissions from proposed coal-fired power plants would exceed India's climate commitment to reduce its 2005 emissions intensity 33% - 35% by 2030.

  20. A Review of the Empirical Generations at Work Research: Implications for School Leaders and Future Research

    ERIC Educational Resources Information Center

    Edge, Karen

    2014-01-01

    Most schools currently employ three generations of teachers and leaders: Baby Boomers (1946-65), Generation X (1966-80) and Generation Y (1981-2003). However, the implications for school leaders of multi-generational schools remain relatively unexplored. This paper examines the empirical multi-disciplinary generations at work evidence to identify…

  1. Intraday price dynamics in spot and derivatives markets

    NASA Astrophysics Data System (ADS)

    Kim, Jun Sik; Ryu, Doojin

    2014-01-01

    This study examines intraday relationships among the spot index, index futures, and the implied volatility index based on the VAR(1)-asymmetric BEKK-MGARCH model. Analysis of a high-frequency dataset from the Korean financial market confirms that there is a strong intraday market linkage between the spot index, KOSPI200 futures, and VKOSPI and that asymmetric volatility behaviour is clearly present in the Korean market. The empirical results indicate that the futures return shock affects the spot market more severely than the spot return shock affects the futures market, though there is a bi-directional causal relationship between the spot and futures markets. Our results, based on a high-quality intraday dataset, satisfy both the positive risk-return relationship and asymmetric volatility effect, which are not reconciled in the frameworks of previous studies.

  2. Modelling the Impacts of Changing Land Cover/Land Use and Climate on Flooding in the Elk River Watershed, British Columbia

    NASA Astrophysics Data System (ADS)

    Barnes, C. C.; Byrne, J. M.; Hopkinson, C.; MacDonald, R. J.; Johnson, D. L.

    2015-12-01

    The Elk River is a mountain watershed located along the eastern border of British Columbia, Canada. The Elk River is confined by railway bridges, roads, and urban areas. Flooding has been a concern in the valley for more than a century. The most recent major flood event occurred in 2013 affecting several communities. River modifications such as riprapped dykes, channelization, and dredging have occurred in an attempt to reduce inundation, with limited success. Significant changes in land cover/land use (LCLU) such as natural state to urban, forestry practices, and mining from underground to mountaintop/valley fill have changed terrain and ground surfaces thereby altering water infiltration and runoff processes in the watershed. Future climate change in this region is expected to alter air temperature and precipitation as well as produce an earlier seasonal spring freshet potentially impacting future flood events. The objective of this research is to model historical and future hydrological conditions to identify flood frequency and risk under a range of climate and LCLU change scenarios in the Elk River watershed. Historic remote sensing data, forest management plans, and mining industry production/post-mining reclamation plans will be used to create a predictive past and future LCLU time series. A range of future air temperature and precipitation scenarios will be developed based on accepted Global Climate Modelling (GCM) research to examine how the hydrometeorological conditions may be altered under a range of future climate scenarios. The GENESYS (GENerate Earth SYstems Science input) hydrometeorological model will be used to simulate climate and LCLU to assess historic and potential future flood frequency and magnitude. Results will be used to create innovative flood mitigation, adaptation, and management strategies for the Elk River with the intent of being wildlife friendly and non-destructive to ecosystems and habitats for native species.

  3. Effects of the thermal environment on metabolism of deoxynivalenol and thermoregulatory response of sheep fed on corn silage grown at enriched atmospheric carbon dioxide and drought.

    PubMed

    Lohölter, Malte; Meyer, Ulrich; Döll, Susanne; Manderscheid, Remy; Weigel, Hans-Joachim; Erbs, Martin; Höltershinken, Martin; Flachowsky, Gerhard; Dänicke, Sven

    2012-11-01

    Future livestock production is likely to be affected by both rising ambient temperatures and indirect effects mediated by modified growth conditions of feed plants such as increased atmospheric CO2 concentrations and drought. Corn was grown at elevated CO2 concentrations of 550 ppm and drought stress using free air carbon dioxide enrichment technology. Whole plant silages were generated and fed to sheep kept at three climatic treatments. Differential blood count was performed. Plasma DON and de-epoxy-DON concentration were measured. Warmer environment increased rectal and skin temperatures and respiration rates (p < 0.001 each) but did not affect blood parameters and the almost complete metabolization of DON into de-epoxy-DON. Altered growth conditions of the corn fed did not have single effects on sheep body temperature measures and differential blood count. Though the thermoregulatory activity of sheep was influenced by the thermal environment, the investigated cultivation factors did not indicate considerable impacts on the analysed parameters.

  4. Plausible Effect of Weather on Atlantic Meridional Overturning Circulation with a Coupled General Circulation Model

    NASA Astrophysics Data System (ADS)

    Liu, Zedong; Wan, Xiuquan

    2018-04-01

    The Atlantic meridional overturning circulation (AMOC) is a vital component of the global ocean circulation and the heat engine of the climate system. Through the use of a coupled general circulation model, this study examines the role of synoptic systems on the AMOC and presents evidence that internally generated high-frequency, synoptic-scale weather variability in the atmosphere could play a significant role in maintaining the overall strength and variability of the AMOC, thereby affecting climate variability and change. Results of a novel coupling technique show that the strength and variability of the AMOC are greatly reduced once the synoptic weather variability is suppressed in the coupled model. The strength and variability of the AMOC are closely linked to deep convection events at high latitudes, which could be strongly affected by the weather variability. Our results imply that synoptic weather systems are important in driving the AMOC and its variability. Thus, interactions between atmospheric weather variability and AMOC may be an important feedback mechanism of the global climate system and need to be taken into consideration in future climate change studies.

  5. Does soil compaction increase floods? A review

    NASA Astrophysics Data System (ADS)

    Alaoui, Abdallah; Rogger, Magdalena; Peth, Stephan; Blöschl, Günter

    2018-02-01

    Europe has experienced a series of major floods in the past years which suggests that flood magnitudes may have increased. Land degradation due to soil compaction from crop farming or grazing intensification is one of the potential drivers of this increase. A literature review suggests that most of the experimental evidence was generated at plot and hillslope scales. At larger scales, most studies are based on models. There are three ways in which soil compaction affects floods at the catchment scale: (i) through an increase in the area affected by soil compaction; (ii) by exacerbating the effects of changes in rainfall, especially for highly degraded soils; and (iii) when soil compaction coincides with soils characterized by a fine texture and a low infiltration capacity. We suggest that future research should focus on better synthesising past research on soil compaction and runoff, tailored field experiments to obtain a mechanistic understanding of the coupled mechanical and hydraulic processes, new mapping methods of soil compaction that combine mechanical and remote sensing approaches, and an effort to bridge all disciplines relevant to soil compaction effects on floods.

  6. RAAS inhibitors and cardiovascular protection in large scale trials.

    PubMed

    von Lueder, Thomas G; Krum, Henry

    2013-04-01

    Hypertension, coronary artery disease and heart failure affect over half of the adult population in most Western societies, and are prime causes of CV morbidity and mortality. With the ever-increasing worldwide prevalence of CV disease due to ageing and the "diabetes" pandemic, guideline groups have recognized the importance of achieving cardioprotection in affected individuals as well as in those at risk for future CV events. The renin-angiotensin-aldosterone system (RAAS) is the most important system controlling blood pressure (BP), cardiovascular and renal function in man. As our understanding of the crucial role of RAAS in the pathogenesis of most, if not all, CV disease has expanded over the past decades, so has the development of drugs targeting its individual components. Angiotensin-converting enzyme inhibitors (ACEi), Ang-II receptor blockers (ARB), and mineralcorticoid receptor antagonists (MRA) have been evaluated in large clinical trials for their potential to mediate cardioprotection, singly or in combination. Direct renin inhibitors are currently under scrutiny, as well as novel dual-acting RAAS-blocking agents. Herein, we review the evidence generated from large-scale clinical trials of cardioprotection achieved through RAAS-blockade.

  7. Fine-Scale Ecological and Genetic Population Structure of Two Whitefish (Coregoninae) Species in the Vicinity of Industrial Thermal Emissions.

    PubMed

    Graham, Carly F; Eberts, Rebecca L; Morgan, Thomas D; Boreham, Douglas R; Lance, Stacey L; Manzon, Richard G; Martino, Jessica A; Rogers, Sean M; Wilson, Joanna Y; Somers, Christopher M

    2016-01-01

    Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species (Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ13C and δ15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearby reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (Fst, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Thus, future research should focus on the potential impacts of thermal emissions on development and recruitment.

  8. ARE UNILATERAL AND BILATERAL KNEE OSTEOARTHRITIS PATIENTS UNIQUE SUBSETS OF KNEE OSTEOARTHRITIS? A BIOMECHANICAL PERSPECTIVE

    PubMed Central

    Messier, Stephen P.; Beavers, Daniel P.; Herman, Cassandra; Hunter, David J.; DeVita, Paul

    2016-01-01

    Objective To compare the gait of adults with unilateral and bilateral symptomatic and radiographic knee osteoarthritis (OA) to determine whether these subgroups can be treated similarly in the clinic and when recruiting for randomized clinical trials, and to use these data to generate future hypotheses regarding gait in these subsets of knee OA patients. Methods Cross-sectional investigation of patients with unilateral and bilateral knee OA on gait mechanics using 136 older adults (age ≥ 55 yrs.; 27 kg.m−2 ≥ BMI ≤ 41 kg.m−2; 82% female) with radiographic knee OA. Comparisons were made between the most affected side of the bilateral group (Bi) and the affected side of the unilateral group (Uni), and between symmetry indices of each group. Results There were no significant differences in any temporal, kinematic, or kinetic measures between the Uni and Bi cohorts. Comparison of symmetry indices between groups also revealed no significant differences. Conclusion The similarity in lower extremity mechanics between unilateral and bilateral knee OA patients is sufficiently robust to consider both subsets as a single cohort. We hypothesize that biomechanical adaptations to knee OA are at least partially systemic in origin and not based solely on the physiological characteristics of an affected knee joint. PMID:26706699

  9. Fine-Scale Ecological and Genetic Population Structure of Two Whitefish (Coregoninae) Species in the Vicinity of Industrial Thermal Emissions

    PubMed Central

    Graham, Carly F.; Eberts, Rebecca L.; Morgan, Thomas D.; Boreham, Douglas R.; Lance, Stacey L.; Manzon, Richard G.; Martino, Jessica A.; Rogers, Sean M.; Wilson, Joanna Y.; Somers, Christopher M.

    2016-01-01

    Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species (Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ13C and δ15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearby reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (Fst, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Thus, future research should focus on the potential impacts of thermal emissions on development and recruitment. PMID:26807722

  10. Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise

    PubMed Central

    Shannon, Sarah R.; Payne, Antony J.; Bartholomew, Ian D.; van den Broeke, Michiel R.; Edwards, Tamsin L.; Fettweis, Xavier; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Goelzer, Heiko; Hoffman, Matthew J.; Huybrechts, Philippe; Mair, Douglas W. F.; Nienow, Peter W.; Perego, Mauro; Price, Stephen F.; Smeets, C. J. P. Paul; Sole, Andrew J.; van de Wal, Roderik S. W.; Zwinger, Thomas

    2013-01-01

    We assess the effect of enhanced basal sliding on the flow and mass budget of the Greenland ice sheet, using a newly developed parameterization of the relation between meltwater runoff and ice flow. A wide range of observations suggest that water generated by melt at the surface of the ice sheet reaches its bed by both fracture and drainage through moulins. Once at the bed, this water is likely to affect lubrication, although current observations are insufficient to determine whether changes in subglacial hydraulics will limit the potential for the speedup of flow. An uncertainty analysis based on our best-fit parameterization admits both possibilities: continuously increasing or bounded lubrication. We apply the parameterization to four higher-order ice-sheet models in a series of experiments forced by changes in both lubrication and surface mass budget and determine the additional mass loss brought about by lubrication in comparison with experiments forced only by changes in surface mass balance. We use forcing from a regional climate model, itself forced by output from the European Centre Hamburg Model (ECHAM5) global climate model run under scenario A1B. Although changes in lubrication generate widespread effects on the flow and form of the ice sheet, they do not affect substantial net mass loss; increase in the ice sheet’s contribution to sea-level rise from basal lubrication is projected by all models to be no more than 5% of the contribution from surface mass budget forcing alone. PMID:23940337

  11. Large-scale mapping of mutations affecting zebrafish development.

    PubMed

    Geisler, Robert; Rauch, Gerd-Jörg; Geiger-Rudolph, Silke; Albrecht, Andrea; van Bebber, Frauke; Berger, Andrea; Busch-Nentwich, Elisabeth; Dahm, Ralf; Dekens, Marcus P S; Dooley, Christopher; Elli, Alexandra F; Gehring, Ines; Geiger, Horst; Geisler, Maria; Glaser, Stefanie; Holley, Scott; Huber, Matthias; Kerr, Andy; Kirn, Anette; Knirsch, Martina; Konantz, Martina; Küchler, Axel M; Maderspacher, Florian; Neuhauss, Stephan C; Nicolson, Teresa; Ober, Elke A; Praeg, Elke; Ray, Russell; Rentzsch, Brit; Rick, Jens M; Rief, Eva; Schauerte, Heike E; Schepp, Carsten P; Schönberger, Ulrike; Schonthaler, Helia B; Seiler, Christoph; Sidi, Samuel; Söllner, Christian; Wehner, Anja; Weiler, Christian; Nüsslein-Volhard, Christiane

    2007-01-09

    Large-scale mutagenesis screens in the zebrafish employing the mutagen ENU have isolated several hundred mutant loci that represent putative developmental control genes. In order to realize the potential of such screens, systematic genetic mapping of the mutations is necessary. Here we report on a large-scale effort to map the mutations generated in mutagenesis screening at the Max Planck Institute for Developmental Biology by genome scanning with microsatellite markers. We have selected a set of microsatellite markers and developed methods and scoring criteria suitable for efficient, high-throughput genome scanning. We have used these methods to successfully obtain a rough map position for 319 mutant loci from the Tübingen I mutagenesis screen and subsequent screening of the mutant collection. For 277 of these the corresponding gene is not yet identified. Mapping was successful for 80 % of the tested loci. By comparing 21 mutation and gene positions of cloned mutations we have validated the correctness of our linkage group assignments and estimated the standard error of our map positions to be approximately 6 cM. By obtaining rough map positions for over 300 zebrafish loci with developmental phenotypes, we have generated a dataset that will be useful not only for cloning of the affected genes, but also to suggest allelism of mutations with similar phenotypes that will be identified in future screens. Furthermore this work validates the usefulness of our methodology for rapid, systematic and inexpensive microsatellite mapping of zebrafish mutations.

  12. Abnormal Complex Auditory Pattern Analysis in Schizophrenia Reflected in an Absent Missing Stimulus Mismatch Negativity.

    PubMed

    Salisbury, Dean F; McCathern, Alexis G

    2016-11-01

    The simple mismatch negativity (MMN) to tones deviating physically (in pitch, loudness, duration, etc.) from repeated standard tones is robustly reduced in schizophrenia. Although generally interpreted to reflect memory or cognitive processes, simple MMN likely contains some activity from non-adapted sensory cells, clouding what process is affected in schizophrenia. Research in healthy participants has demonstrated that MMN can be elicited by deviations from abstract auditory patterns and complex rules that do not cause sensory adaptation. Whether persons with schizophrenia show abnormalities in the complex MMN is unknown. Fourteen schizophrenia participants and 16 matched healthy underwent EEG recording while listening to 400 groups of 6 tones 330 ms apart, separated by 800 ms. Occasional deviant groups were missing the 4th or 6th tone (50 groups each). Healthy participants generated a robust response to a missing but expected tone. The schizophrenia group was significantly impaired in activating the missing stimulus MMN, generating no significant activity at all. Schizophrenia affects the ability of "primitive sensory intelligence" and pre-attentive perceptual mechanisms to form implicit groups in the auditory environment. Importantly, this deficit must relate to abnormalities in abstract complex pattern analysis rather than sensory problems in the disorder. The results indicate a deficit in parsing of the complex auditory scene which likely impacts negatively on successful social navigation in schizophrenia. Knowledge of the location and circuit architecture underlying the true novelty-related MMN and its pathophysiology in schizophrenia will help target future interventions.

  13. Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise.

    PubMed

    Shannon, Sarah R; Payne, Antony J; Bartholomew, Ian D; van den Broeke, Michiel R; Edwards, Tamsin L; Fettweis, Xavier; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Goelzer, Heiko; Hoffman, Matthew J; Huybrechts, Philippe; Mair, Douglas W F; Nienow, Peter W; Perego, Mauro; Price, Stephen F; Smeets, C J P Paul; Sole, Andrew J; van de Wal, Roderik S W; Zwinger, Thomas

    2013-08-27

    We assess the effect of enhanced basal sliding on the flow and mass budget of the Greenland ice sheet, using a newly developed parameterization of the relation between meltwater runoff and ice flow. A wide range of observations suggest that water generated by melt at the surface of the ice sheet reaches its bed by both fracture and drainage through moulins. Once at the bed, this water is likely to affect lubrication, although current observations are insufficient to determine whether changes in subglacial hydraulics will limit the potential for the speedup of flow. An uncertainty analysis based on our best-fit parameterization admits both possibilities: continuously increasing or bounded lubrication. We apply the parameterization to four higher-order ice-sheet models in a series of experiments forced by changes in both lubrication and surface mass budget and determine the additional mass loss brought about by lubrication in comparison with experiments forced only by changes in surface mass balance. We use forcing from a regional climate model, itself forced by output from the European Centre Hamburg Model (ECHAM5) global climate model run under scenario A1B. Although changes in lubrication generate widespread effects on the flow and form of the ice sheet, they do not affect substantial net mass loss; increase in the ice sheet's contribution to sea-level rise from basal lubrication is projected by all models to be no more than 5% of the contribution from surface mass budget forcing alone.

  14. Addressing the Future in Ancient and Modern Times.

    ERIC Educational Resources Information Center

    Roshwald, Mordecai

    1982-01-01

    Explores the similarities between ancient prophecy and modern futures prediction. The article suggests that the perceived degree of certainty in predictions of the future affects the patterns of emotional and rational responses in those receiving them. (AM)

  15. Control area trends: Principles and responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, L.R.

    1995-04-01

    Two trends impacting the control of interconnected system operations are on a collision course. Like two strong weather fronts, the combination of these trends can generate tornados or gentle rain. Better system control and improved system security can be the result if there is productive cooperation, commitment, communication, and control. Computers and communication networks are the tools used to turn the momentum of these two trends to the advantage of the industry. But before the first line of software can be written, the cooperation, commitment, and communication of the interested parties must establish the parameters for future system control andmore » operations. This article examines how the control of interconnected system operations is being affected by the consolidation of control areas and the introduction of new control areas.« less

  16. PI3K pathway inhibitors: potential prospects as adjuncts to vaccine immunotherapy for glioblastoma.

    PubMed

    Oh, Taemin; Ivan, Michael E; Sun, Matthew Z; Safaee, Michael; Fakurnejad, Shayan; Clark, Aaron J; Sayegh, Eli T; Bloch, Orin; Parsa, Andrew T

    2014-01-01

    Constitutive activation of the PI3K pathway has been implicated in glioblastoma (GBM) pathogenesis. Pharmacologic inhibition can both inhibit tumor survival and downregulate expression of programmed death ligand-1, a protein highly expressed on glioma cells that strongly contributes to cancer immunosuppression. In that manner, PI3K pathway inhibitors can help optimize GBM vaccine immunotherapy. In this review, we describe and assess the potential integration of various classes of PI3K pathway inhibitors into GBM immunotherapy. While early-generation inhibitors have a wide range of immunosuppressive effects that could negate their antitumor potency, further work should better characterize how contemporary inhibitors affect the immune response. This will help determine if these inhibitors are truly a therapeutic avenue with a strong future in GBM immunotherapy.

  17. The Molecular Genetics of Autism Spectrum Disorders: Genomic Mechanisms, Neuroimmunopathology, and Clinical Implications

    PubMed Central

    Guerra, Daniel J.

    2011-01-01

    Autism spectrum disorders (ASDs) have become increasingly common in recent years. The discovery of single-nucleotide polymorphisms and accompanying copy number variations within the genome has increased our understanding of the architecture of the disease. These genetic and genomic alterations coupled with epigenetic phenomena have pointed to a neuroimmunopathological mechanism for ASD. Model animal studies, developmental biology, and affective neuroscience laid a foundation for dissecting the neural pathways impacted by these disease-generating mechanisms. The goal of current autism research is directed toward a systems biological approach to find the most basic genetic and environmental causes to this severe developmental disease. It is hoped that future genomic and neuroimmunological research will be directed toward finding the road toward prevention, treatment, and cure of ASD. PMID:22937247

  18. Framework for a hydrologic climate-response network in New England

    USGS Publications Warehouse

    Lent, Robert M.; Hodgkins, Glenn A.; Dudley, Robert W.; Schalk, Luther F.

    2015-01-01

    Many climate-related hydrologic variables in New England have changed in the past century, and many are expected to change during the next century. It is important to understand and monitor these changes because they can affect human water supply, hydroelectric power generation, transportation infrastructure, and stream and riparian ecology. This report describes a framework for hydrologic monitoring in New England by means of a climate-response network. The framework identifies specific inland hydrologic variables that are sensitive to climate variation; identifies geographic regions with similar hydrologic responses; proposes a fixed-station monitoring network composed of existing streamflow, groundwater, lake ice, snowpack, and meteorological data-collection stations for evaluation of hydrologic response to climate variation; and identifies streamflow basins for intensive, process-based studies and for estimates of future hydrologic conditions.

  19. Commentary: An Asian Americanist Perspective on Child Development.

    PubMed

    Lee, Richard M; Y J Kim, Adam; Zhou, Xiang

    2016-07-01

    In this commentary, we put forth an Asian Americanist perspective on child development that frames, expands upon, and at times challenges the contextual, conceptual, and methodological ideas put forward by Kiang et al., Mistry et al., and Yoshikawa et al. (this volume). This Asian Americanist perspective draws upon scholarship in Asian American Studies and critical race theory to bridge the historical, conceptual, and methodological contributions of the three articles. We also aim to challenge current and future generations of scholars studying Asian American child development to look at Asian American youth and families as autonomous, self-determining agents who are capable of challenging, resisting, and affecting change in a racialized society. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Qing-Guo; Wang, Ke, E-mail: huangqg@itp.ac.cn, E-mail: wangke@itp.ac.cn

    The early reionization (ERE) is supposed to be a physical process which happens after recombination, but before the instantaneous reionization caused by the first generation of stars. We investigate the effect of the ERE on the temperature and polarization power spectra of cosmic microwave background (CMB), and adopt principal components analysis (PCA) to model-independently reconstruct the ionization history during the ERE. In addition, we also discuss how the ERE affects the cosmological parameter estimates, and find that the ERE does not impose any significant influences on the tensor-to-scalar ratio r and the neutrino mass at the sensitivities of current experiments.more » The better CMB polarization data can be used to give a tighter constraint on the ERE and might be important for more precisely constraining cosmological parameters in the future.« less

  1. Philosophical midwifery and the birthpangs of modern cosmology

    NASA Astrophysics Data System (ADS)

    Gale, George; Urani, John

    1993-01-01

    Philosophical considerations sometimes direct developments in physics. Such influence most frequently operates during the genesis of new fields. The birth of modern cosmology provides clear evidence of the interaction between philosophical issues and the shape and direction of a new physical discipline. Philosophical controversy between E. A. Milne and other astrophysicists, including A. S. Eddington, James Jeans, and H. P. Robertson, directly affected the models, methods, and very nature of cosmological science for future generations. Today's standard space-time metric, for example, resulted from responses by Robertson and A. G. Walker to philosophical challenges presented in Milne's proposals to scrap the very idea of expanding ``space.'' Analysis of published works, unpublished manuscripts and correspondence, and personal interviews illustrates the role philosophical considerations played in development of this new field in physics.

  2. Semianalytic calculation of cosmic microwave background anisotropies from wiggly and superconducting cosmic strings

    NASA Astrophysics Data System (ADS)

    Rybak, I. Yu.; Avgoustidis, A.; Martins, C. J. A. P.

    2017-11-01

    We study how the presence of world-sheet currents affects the evolution of cosmic string networks, and their impact on predictions for the cosmic microwave background (CMB) anisotropies generated by these networks. We provide a general description of string networks with currents and explicitly investigate in detail two physically motivated examples: wiggly and superconducting cosmic string networks. By using a modified version of the CMBact code, we show quantitatively how the relevant network parameters in both of these cases influence the predicted CMB signal. Our analysis suggests that previous studies have overestimated the amplitude of the anisotropies for wiggly strings. For superconducting strings the amplitude of the anisotropies depends on parameters which presently are not well known—but which can be measured in future high-resolution numerical simulations.

  3. Future trends in power generation cost by power resource

    NASA Astrophysics Data System (ADS)

    1992-08-01

    The Japan Energy Economy Research Institute has been evaluating power generation cost by each power resource every year focusing on nuclear power generation. The Institute is surveying the cost evaluations by power resources in France, Britain and the U.S.A., the nuclear generation advanced nations. The OECD is making power generation cost estimation using a hypothesis which uniforms basically the conditions varying in different member countries. In model power generation cost calculations conducted by the Ministry of International Trade and Industry of Japan, nuclear power generation is the most economical system in any fiscal year. According to recent calculations performed by the Japan Energy Economy Research Institute, the situation is such that it is difficult to distinguish the economical one from others among the power generation systems in terms of generation costs except for thermal power generation. Economic evaluations are given on estimated power generation costs based on construction costs for nuclear and thermal power plants, nuclear fuel cycling cost, and fuel cost data on petroleum, LNG and coal. With regard to the future trends, scenario analyses are made on generation costs, that assume fluctuations in fuel prices and construction costs, the important factors to give economic influence on power generation.

  4. Current situation of development of petroleum substituting energies (USA)

    NASA Astrophysics Data System (ADS)

    1993-03-01

    Trends in development of petroleum substituting energies in the U.S.A. are described. Among non-fossil fuel based energies currently available, nuclear power generation (7%), biomass power generation (4%), and hydraulic power generation (3%) account for a large part. The future for the nuclear energy is opaque. Biomasses are anticipated to be the largest regenerative energy source. Solar energy was regarded to be a future energy source, but its cost effect is not still good. While geothermal power generation produces 0.1% of the entire energy, its future is bright. Ocean energies of all types of form such as sea water thermal energy conversion and wave energy were not treated as a substituting energy in the U.S.A. Multi-fuel vehicles using gasoline, methanol, and ethanol are estimated to account for 25% of vehicle operations in the U.S.A. by 2000. Electric vehicles for practical use would be a hybrid type combining electric motors and gasoline engines.

  5. The Role of Violated Caregiver Preferences in Psychological Well-Being when Older Mothers Need Assistance

    ERIC Educational Resources Information Center

    Suitor, J. Jill; Gilligan, Megan; Pillemer, Karl

    2013-01-01

    Purpose: Theory and research suggest that congruence between individuals' preferences for future care and the patterns of care received will affect well-being. In this article, we explore whether older mothers' psychological well-being was affected by the children they preferred as future caregivers and provide assistance at a later point when the…

  6. Tutoring and Mentoring: An A.R.C. Model for Future Teachers: Affective, Reflexive and Cognitive Orientation to Self-Regulated Learning

    ERIC Educational Resources Information Center

    Remy, Philippe

    2015-01-01

    With a specific focus on tutoring among future teachers this article proposes a model of self-regulated learning. The focus on different mechanisms inherent to the tutoring relationship will consider Affective impacts or motivation, Reflexive or metacognitive and Cognitive resolutions. The ARC combination proposes that personal skills will be…

  7. Delineating an Educational Policy Framework for the Developing Nations in Meeting the Emerging Global Challenges by Year 2050

    ERIC Educational Resources Information Center

    Sedere, Upali M.

    2008-01-01

    School based general education aught to be a future oriented subject. However, over the years, due to parental and grand-parental generations setting policies of education for the younger generation, education is always more past oriented than future oriented. This trend did not cause much of a problem when the change over time was moderate. As…

  8. Drought Impacts on Reservoir Storage and Hydro-electricity Production in Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Melo, D. D.; Yin, L.; Wendland, E.

    2015-12-01

    Brazilian hydroelectric plants (HP) generate ~85% of the total electricity in the country (138 GW). More than half of the number largest reservoirs are located in the Southeast/Midwest region, where ~50% of the population (~100 million) lives. The 2014 drought raised several questions about the resilience of the water sources when several urban centers, including Brazilian's largest metropolis (São Paulo, 20 million people), had their water supply threatened. Such drought also affected reservoirs of hydroelectric plants. This study assesses how the storage and, thus the electricity generation, in 14 of the largest reservoirs were affected by drought events within the past 20 years. We computed the Standardized Precipitation Index (SPI) to identify rainfall anomalies throughout the analyzed period. To evaluate the impacts on surface water, we assessed the changes in total (surface+ subsurface) runoff and soil moisture from Global Land Data Assimilation System (GLDAS) and in Total Water Storage (TWS) from Gravity Recovery and Climate Experiment (GRACE) satellite data. We evaluated the anomalies and significance of the changes in reservoir storage (RS) and electricity generation. The results show that severe dry years (-1.5 < SPI <-2.0) reduce reservoir storage (RS) by up to ~60% of its total capacity. Both electricity generation and reservoir storage showed strong negative trends between 2011 and 2014. Our results also indicate that within the past 20 years, two major depletions in reservoir storage occurred: 2001 and 2014. However, due to lower soil moisture in 2013 compared to that in 2000, distinct impacts were observed on the reservoirs with much stronger impacts on reservoir storage in 2014 relative to those in 2001. No meaningful changes in runoff were shown by GLDAS during the 2014 drought. The observed depletion in the RS in 2014 was similar to that in the TWS, as shown by GRACE data. In 2014, the electricity production by the HP declined by ~20%. As a result, the electricity generated by such source decreased to ~70% of the total production, compared to 82% and 93% in 2013 and 2012, respectively. This analysis highlights the vulnerability of surface water resources and electricity generation to extreme droughts and underscores the need to develop coping mechanisms to enhance drought resilience in the future.

  9. Future Operations of HAARP with the UAF's Geophysical Institute

    NASA Astrophysics Data System (ADS)

    McCoy, R. P.

    2015-12-01

    The High frequency Active Aurora Research Program (HAARP) in Gakona Alaska is the world's premier facility for active experimentation in the ionosphere and upper atmosphere. The ionosphere affects communication, navigation, radar and a variety of other systems depending on, or affected by, radio propagation through this region. The primary component of HAARP, the Ionospheric Research Instrument (IRI), is a phased array of 180 HF antennas spread across 33 acres and capable of radiating 3.6 MW into the upper atmosphere and ionosphere. The array is fed by five 2500 kW generators, each driven by a 3600 hp diesel engine (4 + 1 spare). Transmit frequencies are selectable in the range 2.8 to 10 MHz and complex configurations of rapidly slewed single or multiple beams are possible. HAARP was owned by the Air Force Research Laboratory (AFRL/RV) in Albuquerque, NM but recently was transferred to the Geophysical Institute of the University of Alaska Fairbanks (UAF/GI). The transfer of ownership of the facility is being implemented in stages involving a Cooperative Research and Development Agreement (CRADA) and an Educational Partnership Agreement (EPA) which are complete, and future agreements to transfer ownership of the facility land. The UAF/GI plans to operate the facility for continued ionospheric and upper atmospheric experimentation in a pay-per-use model. In their 2013 "Decadal Survey in Solar and Space Physics" the National Research Council (NRC) made the recommendation to "Fully realize the potential of ionospheric modification…" and in their 2013 Workshop Report: "Opportunities for High-Power, High-Frequency Transmitters to Advance Ionospheric/Thermospheric Research" the NRC outlined the broad range of future ionospheric, thermospheric and magnetospheric experiments that could be performed with HAARP. HAARP is contains a variety of RF and optical ionospheric diagnostic instruments to measure the effects of the heater in real time. The UAF/GI encourages the scientific community to plan experiments at HAARP and bring their remote sensing instruments to HAARP for extended or permanent operation. The power and flexibility of HAARP and its unique location in the subarctic will help secure the future of this facility as the foremost laboratory for active experimentation in the ionosphere and upper atmosphere.

  10. Strategies to take into account variations in extreme rainfall events for design storms in urban area: an example over Naples (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Mercogliano, P.; Rianna, G.

    2017-12-01

    Eminent works highlighted how available observations display ongoing increases in extreme rainfall events while climate models assess them for future. Although the constraints in rainfall networks observations and uncertainties in climate modelling currently affect in significant way investigations, the huge impacts potentially induced by climate changes (CC) suggest adopting effective adaptation measures in order to take proper precautions. In this regard, design storms are used by engineers to size hydraulic infrastructures potentially affected by direct (e.g. pluvial/urban flooding) and indirect (e.g. river flooding) effects of extreme rainfall events. Usually they are expressed as IDF curves, mathematical relationships between rainfall Intensity, Duration, and the return period (frequency, F). They are estimated interpreting through Extreme Theories Statistical Theories (ETST) past rainfall records under the assumption of steady conditions resulting then unsuitable under climate change. In this work, a methodology to estimate future variations in IDF curves is presented and carried out for the city of Naples (Southern Italy). In this regard, the Equidistance Quantile Matching Approach proposed by Sivrastav et al. (2014) is adopted. According it, daily-subdaily maximum precipitation observations [a] and the analogous daily data provided by climate projections on current [b] and future time spans [c] are interpreted in IDF terms through Generalized Extreme Value (GEV) approach. After, quantile based mapping approach is used to establish a statistical relationship between cumulative distribution functions resulting by GEV of [a] and [b] (spatial downscaling) and [b] and [c] functions (temporal downscaling). Coupling so-obtained relations permits generating IDF curves under CC assumption. To account for uncertainties in future projections, all climate simulations available for the area in Euro-Cordex multimodel ensemble at 0.11° (about 12 km) are considered under three different concentration scenarios (RCP2.6, RCP4.5 and RCP8.5). The results appear largely influenced by models, RCPs and time horizon of interest; nevertheless, clear indications of increases are detectable although with different magnitude on the different precipitation durations.

  11. Stirling Convertor Performance Mapping Test Results for Future Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Qiu, Songgang; Peterson, Allen A.; Faultersack, Franklyn D.; Redinger, Darin L.; Augenblick, John E.

    2004-02-01

    Long-life radioisotope-fueled generators based on free-piston Stirling convertors are an energy-conversion solution for future space applications. The high efficiency of Stirling machines makes them more attractive than the thermoelectric generators currently used in space. Stirling Technology Company (STC) has been performance-testing its Stirling generators to provide data for potential system integration contractors. This paper describes the most recent test results from the STC RemoteGen™ 55 W-class Stirling generators (RG-55). Comparisons are made between the new data and previous Stirling thermodynamic simulation models. Performance-mapping tests are presented including variations in: internal charge pressure, cold end temperature, hot end temperature, alternator temperature, input power, and variation of control voltage.

  12. Multi-agent simulation of generation expansion in electricity markets.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botterud, A; Mahalik, M. R.; Veselka, T. D.

    2007-06-01

    We present a new multi-agent model of generation expansion in electricity markets. The model simulates generation investment decisions of decentralized generating companies (GenCos) interacting in a complex, multidimensional environment. A probabilistic dispatch algorithm calculates prices and profits for new candidate units in different future states of the system. Uncertainties in future load, hydropower conditions, and competitors actions are represented in a scenario tree, and decision analysis is used to identify the optimal expansion decision for each individual GenCo. We test the model using real data for the Korea power system under different assumptions about market design, market concentration, and GenCo'smore » assumed expectations about their competitors investment decisions.« less

  13. Nuclear electric generation: Political, social, and economic cost and benefit to Indonesia. Master`s thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waliyo

    Indonesia, the largest archipelagic country with a population the fourth biggest in the world, is now in the process of development. It needs a large quantity of energy electricity to meet the industrial and household demands. The currently available generating capacity is not sufficient to meet the electricity demand for the rapidly growing industries and the increasing population. In order to meet the future demand for electricity, new generating capacity is required to be added to the current capacity. Nuclear electricity generation is one possible alternative to supplement Indonesia`s future demand of electricity. This thesis investigates the possibility of developingmore » nuclear electricity generation in Indonesia, considering the political, social, and economic cost and benefit to Indonesia.« less

  14. Impacts of marine renewable energy scheme operation on the eutrophication potential of the Severn Estuary, UK

    NASA Astrophysics Data System (ADS)

    Kadiri, Margaret; Kay, David; Ahmadian, Reza; Bockelmann-Evans, Bettina; Falconer, Roger; Bray, Michaela

    2013-04-01

    In recent years there has being growing global interest in the generation of electricity from renewable resources. Amongst these, marine energy resource is now being considered to form a significant part of the energy mix, with plans for the implementation of several marine renewable energy schemes such as barrages and tidal stream turbines around the UK in the near future. Although marine energy presents a great potential for future electricity generation, there are major concerns over its potential impacts, particularly barrages, on the hydro-environment. Previous studies have shown that a barrage could significantly alter the hydrodynamic regime and tidal flow characteristics of an estuary, with changes to sediment transport (Kadiri et al., 2012). However, changes to nutrients have been overlooked to date. Hence, considerable uncertainty remains as to how a barrage would affect the trophic status of an estuary. This is particularly important because eutrophication can lead to algal toxin production and increased mortality of aquatic invertebrates and fish populations. Therefore, this study examines the impacts of the two different modes of operation of a barrage (i.e. ebb generation and flood-ebb generation) on the eutrophication potential of the Severn Estuary using a simplified model developed by the UK's Comprehensive Studies Task Team (CSTT). The model uses a set of equations and site-specific input data to predict equilibrium dissolved nutrient concentrations, phytoplankton biomass, light-controlled phytoplankton growth rate and primary production which are compared against CSTT set standards for assessing the eutrophic status of estuaries and coastal waters. The estuary volume and tidal flushing time under the two operating modes were estimated using a hydrodynamic model and field surveys were conducted to obtain dissolved nitrate and phosphate concentrations which served as input data. The predicted equilibrium dissolved nitrate and phosphate concentrations were slightly greater under ebb generation compared to flood-ebb generation. However, the concentrations did not exceed the CSTT standard indicating that hypernutrification is not likely to occur. Similarly, the predicted phytoplankton biomass and light-controlled growth rate under both ebb and flood-ebb generation were less than the CSTT standards suggesting no likelihood of eutrophication. The predicted phytoplankton production, however, was significantly greater under ebb generation compared to flood-ebb generation due to restricted tidal flushing decreasing nutrient dispersion and increasing the residence time of nutrient in the region upstream of the barrage. This study also examines the wider positive ecological implications of these findings for the Severn Estuary. Reference Kadiri, M., Ahmadian, R., Bockelmann-Evans, B., Rauen, W., and Falconer, R., 2012. A review of the potential water quality impacts of tidal renewable energy systems. Renewable and Sustainable Energy Reviews, 16: 329- 341.

  15. Life-long protein malnutrition in the rat (Rattus norvegicus) results in altered patterns of craniofacial growth and smaller individuals

    PubMed Central

    Lobe, Shannon L; Bernstein, Marica C; German, Rebecca Z

    2006-01-01

    Dietary protein is a limiting factor in mammalian growth, significantly affecting the non-linear trajectories of skeletal growth. Young females may be particularly vulnerable to protein malnutrition if the restriction is not lifted before they become reproductive. With such early malnutrition, limited amino acids would be partitioned between two physiological objectives, successful reproduction vs. continued growth. Thus, the consequences of protein malnutrition could affect more than one generation. However, few studies have quantified these cross-generational effects. Our objective was to test for differences in skeletal growth in a second generation of malnourished rats compared with rats malnourished only post-weaning, the first generation and with controls. In this longitudinal study we modelled the growth of 22 craniofacial measurements with the logistic Gompertz equation, and tested for differences in the equation's parameters among the diet groups. The female offspring of post-weaning malnourished dams did not catch up in size to the first generation or to controls, although certain aspects of their craniofacial skeleton were less affected than others. The second generation's growth trajectories resembled the longer and slower growth of the first malnourished generation. There was a complex interaction between developmental processes and early nutritional environment, which affected variation of adult size. PMID:16761979

  16. Estimating live fuel status by drought indices: an approach for assessing local impact of climate change on fire danger

    NASA Astrophysics Data System (ADS)

    Pellizzaro, Grazia; Dubrovsky, Martin; Bortolu, Sara; Ventura, Andrea; Arca, Bachisio; Masia, Pierpaolo; Duce, Pierpaolo

    2014-05-01

    Mediterranean shrubs are an important component of both Mediterranean vegetation communities and understorey vegetation. They also constitute the surface fuels primarily responsible for the ignition and the spread of wildland fires in Mediterranean forests. Although fire spread and behaviour are dependent on several factors, the water content of live fuel plays an important role in determining fire occurrence and spread, especially in the Mediterranean shrubland, where live fuel is often the main component of the available fuel which catches fire. According to projections on future climate, an increase in risk of summer droughts is likely to take place in Southern Europe. More prolonged drought seasons induced by climatic changes are likely to influence general flammability characteristics of fuel, affecting load distribution in vegetation strata, floristic composition, and live and dead fuel ratio. In addition, variations in precipitation and mean temperature could directly affect fuel water status, and consequently flammability, and length of critical periods of high ignition danger for Mediterranean ecosystems. The main aim of this work was to propose a methodology for evaluating possible impacts of future climate change on moisture dynamic and length of fire danger period at local scale. Specific objectives were: i) evaluating performances of meteorological drought indices in describing seasonal pattern of live fuel moisture content (LFMC), and ii) simulating the potential impacts of future climate changes on the duration of fire danger period. Measurements of LFMC seasonal pattern of three Mediterranean shrub species were performed in North Western Sardinia (Italy) for 8 years. Seasonal patterns of LFMC were compared with the Drought Code of the Canadian Forest Fire Weather Index and the Keetch-Byram Drought Index. Analysis of frequency distribution and cumulative distribution curves were carried out in order to evaluate performance of codes and to identify threshold values of indices useful to determine the end of the potential fire season due to fuel status. A weather generator linked to climate change scenarios derived from 17 available General Circulation Models (GCMs) was used to produce synthetic weather series, representing present and future climates, for four selected sites located in North Sardinia, Italy. Finally, impacts of future climate change on fire season length at local scale were simulated. Results confirmed that the projected climate scenarios over the Mediterranean area will determine an overall increase of the fire season length.

  17. Influence of COMT genotype and affective distractors on the processing of self-generated thought.

    PubMed

    Kilford, Emma J; Dumontheil, Iroise; Wood, Nicholas W; Blakemore, Sarah-Jayne

    2015-06-01

    The catechol-O-methyltransferase (COMT) enzyme is a major determinant of prefrontal dopamine levels. The Val(158)Met polymorphism affects COMT enzymatic activity and has been associated with variation in executive function and affective processing. This study investigated the effect of COMT genotype on the flexible modulation of the balance between processing self-generated and processing stimulus-oriented information, in the presence or absence of affective distractors. Analyses included 124 healthy adult participants, who were also assessed on standard working memory (WM) tasks. Relative to Val carriers, Met homozygotes made fewer errors when selecting and manipulating self-generated thoughts. This effect was partly accounted for by an association between COMT genotype and visuospatial WM performance. We also observed a complex interaction between the influence of affective distractors, COMT genotype and sex on task accuracy: male, but not female, participants showed a sensitivity to the affective distractors that was dependent on COMT genotype. This was not accounted for by WM performance. This study provides novel evidence of the role of dopaminergic genetic variation on the ability to select and manipulate self-generated thoughts. The results also suggest sexually dimorphic effects of COMT genotype on the influence of affective distractors on executive function. © The Author (2014). Published by Oxford University Press.

  18. Current advances in the generation of human iPS cells: implications in cell-based regenerative medicine.

    PubMed

    Revilla, Ana; González, Clara; Iriondo, Amaia; Fernández, Bárbara; Prieto, Cristina; Marín, Carlos; Liste, Isabel

    2016-11-01

    Over the last few years, the generation of induced pluripotent stem cells (iPSCs) from human somatic cells has proved to be one of the most potentially useful discoveries in regenerative medicine. iPSCs are becoming an invaluable tool to study the pathology of different diseases and for drug screening. However, several limitations still affect the possibility of applying iPS cell-based technology in therapeutic prospects. Most strategies for iPSCs generation are based on gene delivery via retroviral or lentiviral vectors, which integrate into the host's cell genome, causing a remarkable risk of insertional mutagenesis and oncogenic transformation. To avoid such risks, significant advances have been made with non-integrative reprogramming strategies. On the other hand, although many different kinds of somatic cells have been employed to generate iPSCs, there is still no consensus about the ideal type of cell to be reprogrammed. In this review we present the recent advances in the generation of human iPSCs, discussing their advantages and limitations in terms of safety and efficiency. We also present a selection of somatic cell sources, considering their capability to be reprogrammed and tissue accessibility. From a translational medicine perspective, these two topics will provide evidence to elucidate the most suitable combination of reprogramming strategy and cell source to be applied in each human iPSC-based therapy. The wide variety of diseases this technology could treat opens a hopeful future for regenerative medicine. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Conflicting hydropower development and aquatic ecosystem conservation in Bhutan

    NASA Astrophysics Data System (ADS)

    Wi, S.; Yang, Y. C. E.

    2017-12-01

    Hydropower is one of the clean energy sources that many Himalayan countries are eager to develop to solve their domestic energy deficit issue such as India, Nepal and Pakistan. Like other Himalayan countries, Bhutan also has a great potential for hydropower development. However, Bhutan is one of few countries that has a domestic energy surplus and export its hydropower generation to neighboring countries (mainly to India). Exporting hydropower is one of the major economic sources in Bhutan. However, constructions of dams and reservoirs for hydropower development inevitably involve habitat fragmentation, causing a conflict of interest with the pursuit of value in aquatic ecosystem conservation. The objectives of this study is to 1) develop a distributed hydrologic model with snow and glacier module to simulate the hydrologic regimes of seven major watersheds in Bhutan; 2) apply the hydrologic model to compute hydropower generation for all existing and potential dams; 3) evaluate cascade impacts of each individual dam on downstream regions by employing three hydro-ecological indicators: the River Connectivity Index (RCI), Dendritic Connectivity Index (DCI), total affected river stretch (ARS), and 4) analyze the tradeoffs between hydropower generation and river connectivity at the national scale by means of a multiple objective genetic algorithm. Modeling results of three Pareto Fronts between ecological indicators and hydropower generation accompany with future energy export targets from the government can inform dam selections that maximizing hydropower generation while minimizing the impact on the aquatic ecosystem (Figure 1a). The impacts of climate change on these Pareto front are also explored to identify robust dam selection under changing temperature and precipitation (Figure 1b).

  20. Microbes, metagenomes and marine mammals: enabling the next generation of scientist to enter the genomic era

    PubMed Central

    2013-01-01

    Background The revolution in DNA sequencing technology continues unabated, and is affecting all aspects of the biological and medical sciences. The training and recruitment of the next generation of researchers who are able to use and exploit the new technology is severely lacking and potentially negatively influencing research and development efforts to advance genome biology. Here we present a cross-disciplinary course that provides undergraduate students with practical experience in running a next generation sequencing instrument through to the analysis and annotation of the generated DNA sequences. Results Many labs across world are installing next generation sequencing technology and we show that the undergraduate students produce quality sequence data and were excited to participate in cutting edge research. The students conducted the work flow from DNA extraction, library preparation, running the sequencing instrument, to the extraction and analysis of the data. They sequenced microbes, metagenomes, and a marine mammal, the Californian sea lion, Zalophus californianus. The students met sequencing quality controls, had no detectable contamination in the targeted DNA sequences, provided publication quality data, and became part of an international collaboration to investigate carcinomas in carnivores. Conclusions Students learned important skills for their future education and career opportunities, and a perceived increase in students’ ability to conduct independent scientific research was measured. DNA sequencing is rapidly expanding in the life sciences. Teaching undergraduates to use the latest technology to sequence genomic DNA ensures they are ready to meet the challenges of the genomic era and allows them to participate in annotating the tree of life. PMID:24007365

  1. Oxidant Mechanisms in Renal Injury and Disease

    PubMed Central

    Ratliff, Brian B.; Abdulmahdi, Wasan; Pawar, Rahul

    2016-01-01

    Abstract Significance: A common link between all forms of acute and chronic kidney injuries, regardless of species, is enhanced generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during injury/disease progression. While low levels of ROS and RNS are required for prosurvival signaling, cell proliferation and growth, and vasoreactivity regulation, an imbalance of ROS and RNS generation and elimination leads to inflammation, cell death, tissue damage, and disease/injury progression. Recent Advances: Many aspects of renal oxidative stress still require investigation, including clarification of the mechanisms which prompt ROS/RNS generation and subsequent renal damage. However, we currently have a basic understanding of the major features of oxidative stress pathology and its link to kidney injury/disease, which this review summarizes. Critical Issues: The review summarizes the critical sources of oxidative stress in the kidney during injury/disease, including generation of ROS and RNS from mitochondria, NADPH oxidase, and inducible nitric oxide synthase. The review next summarizes the renal antioxidant systems that protect against oxidative stress, including superoxide dismutase and catalase, the glutathione and thioredoxin systems, and others. Next, we describe how oxidative stress affects kidney function and promotes damage in every nephron segment, including the renal vessels, glomeruli, and tubules. Future Directions: Despite the limited success associated with the application of antioxidants for treatment of kidney injury/disease thus far, preventing the generation and accumulation of ROS and RNS provides an ideal target for potential therapeutic treatments. The review discusses the shortcomings of antioxidant treatments previously used and the potential promise of new ones. Antioxid. Redox Signal. 25, 119–146. PMID:26906267

  2. Carbon monoxide poisoning in Florida during the 2004 hurricane season.

    PubMed

    Van Sickle, David; Chertow, Daniel S; Schulte, Joann M; Ferdinands, Jill M; Patel, Prakash S; Johnson, David R; Harduar-Morano, Laurel; Blackmore, Carina; Ourso, Andre C; Cruse, Kelly M; Dunn, Kevin H; Moolenaar, Ronald L

    2007-04-01

    During August-September 2004, four major hurricanes hit Florida, resulting in widespread power outages affecting several million households. Carbon monoxide (CO) poisonings during this period were investigated to identify ways to prevent future poisoning. Medical records from ten hospitals (two with hyperbaric oxygen chambers) were reviewed to identify individuals diagnosed with unintentional CO poisoning between August 13 and October 15, 2004. Multiple attempts were made to interview one person from each nonfatal incident. Medical examiner records and reports of investigations conducted by the U.S. Consumer Product Safety Commission of six fatal poisonings from five additional incidents were also reviewed. A total of 167 people treated for nonfatal CO poisoning were identified, representing 51 incidents. A portable, gasoline-powered generator was implicated in nearly all nonfatal incidents and in all fatal poisonings. Generators were most often located outdoors, followed by inside the garage, and inside the home. Telephone interviews with representatives of 35 (69%) incidents revealed that concerns about theft or exhaust most often influenced the choice of location. Twenty-six (74%) households did not own a generator before the hurricanes, and 86% did not have a CO detector at the time of the poisoning. Twenty-one (67%) households reported reading or hearing CO education messages before the incident. Although exposure to public education messages may have encouraged more appropriate use of generators, a substantial number of people were poisoned even when the devices were operated outdoors. Additional educational efforts and engineering solutions that reduce CO emission from generators should be the focus of public health activities.

  3. How do feelings influence effort? An empirical study of entrepreneurs' affect and venture effort.

    PubMed

    Foo, Maw-Der; Uy, Marilyn A; Baron, Robert A

    2009-07-01

    How do feelings influence the effort of entrepreneurs? To obtain data on this issue, the authors implemented experience sampling methodology in which 46 entrepreneurs used cell phones to provide reports on their affect, future temporal focus, and venture effort twice daily for 24 days. Drawing on the affect-as-information theory, the study found that entrepreneurs' negative affect directly predicts entrepreneurs' effort toward tasks that are required immediately. Results were consistent for within-day and next-day time lags. Extending the theory, the study found that positive affect predicts venture effort beyond what is immediately required and that this relationship is mediated by future temporal focus. The mediating effects were significant only for next-day outcomes. Implications of findings on the nature of the affect-effort relationship for different time lags are discussed.

  4. Characteristics of the internal and external sources of the Mediterranean synoptic cyclones for the period 1956-2013

    NASA Astrophysics Data System (ADS)

    Almazroui, Mansour; Awad, Adel M.; Nazrul Islam, M.

    2017-07-01

    This paper investigates the main sources and features of the Mediterranean synoptic cyclones affecting the basin, using the cyclone tracks. The cyclones' tracks are identified using sea level pressure (SLP) from the NCEP/NCAR reanalysis data for the period 1956-2013. The identified cyclones are classified into two categories: basin affected and basin non-affected. Most of the basin-affected (non-affected) cyclones are internal (external), i.e., generated inside (outside) the Mediterranean basin. This study reveals four (five) main sources of internal (external) cyclones. These four (five) main sources generated about 63.76% (57.25%) of the internal (external) cyclones. Seasonal analysis shows that most of the basin-affected internal (external) cyclones were generated in the winter (spring) season. The lowest number of cyclones were found in the summer. Moreover, the synoptic study of the atmospheric systems accompanied the highest- and lowest-generated years demonstrates that the deepening of the north Europe cyclones and the relative positions of Azores- and Siberian-high systems represent the important factors that influence the number of internal cyclones. Essential factors influencing the external cyclones are the strength of the maximum upper wind, Azores high, Siberian high, and orientations of their ridges.

  5. Questions of time and affect: a person’s affectivity profile, time perspective, and well-being

    PubMed Central

    Sailer, Uta; Nima, Ali Al; Archer, Trevor

    2016-01-01

    Background. A “balanced” time perspective has been suggested to have a positive influence on well-being: a sentimental and positive view of the past (high Past Positive), a less pessimistic attitude toward the past (low Past Negative), the desire of experiencing pleasure with slight concern for future consequences (high Present Hedonistic), a less fatalistic and hopeless view of the future (low Present Fatalistic), and the ability to find reward in achieving specific long-term goals (high Future). We used the affective profiles model (i.e., combinations of individuals’ experience of high/low positive/negative affectivity) to investigate differences between individuals in time perspective dimensions and to investigate if the influence of time perspective dimensions on well-being was moderated by the individual’s type of profile. Method. Participants (N = 720) answered to the Positive Affect Negative Affect Schedule, the Zimbardo Time Perspective Inventory and two measures of well-being: the Temporal Satisfaction with Life Scale and Ryff’s Scales of Psychological Well-Being-short version. A Multivariate Analysis of Variance (MANOVA) was conducted to identify differences in time perspective dimensions and well-being among individuals with distinct affective profiles. Four structural equation models (SEM) were used to investigate which time perspective dimensions predicted well-being for individuals in each profile. Results. Comparisons between individuals at the extreme of the affective profiles model suggested that individuals with a self-fulfilling profile (high positive/low negative affect) were characterized by a “balanced” time perspective and higher well-being compared to individuals with a self-destructive profile (low positive/high negative affect). However, a different pattern emerged when individuals who differed in one affect dimension but matched in the other were compared to each other. For instance, decreases in the past negative time perspective dimension lead to high positive affect when negative affect is high (i.e., self-destructive vs. high affective) but to low negative affect when positive affect was high (i.e., high affective vs. self-fulfilling). The moderation analyses showed, for example, that for individuals with a self-destructive profile, psychological well-being was significantly predicted by the past negative, present fatalistic and future time perspectives. Among individuals with a high affective or a self-fulfilling profile, psychological well-being was significantly predicted by the present fatalistic dimension. Conclusions. The interactions found here go beyond the postulation of a “balanced” time perspective being the only way to promote well-being. Instead, we present a more person-centered approach to achieve higher levels of emotional, cognitive, and psychological well-being. PMID:27019786

  6. Questions of time and affect: a person's affectivity profile, time perspective, and well-being.

    PubMed

    Garcia, Danilo; Sailer, Uta; Nima, Ali Al; Archer, Trevor

    2016-01-01

    Background. A "balanced" time perspective has been suggested to have a positive influence on well-being: a sentimental and positive view of the past (high Past Positive), a less pessimistic attitude toward the past (low Past Negative), the desire of experiencing pleasure with slight concern for future consequences (high Present Hedonistic), a less fatalistic and hopeless view of the future (low Present Fatalistic), and the ability to find reward in achieving specific long-term goals (high Future). We used the affective profiles model (i.e., combinations of individuals' experience of high/low positive/negative affectivity) to investigate differences between individuals in time perspective dimensions and to investigate if the influence of time perspective dimensions on well-being was moderated by the individual's type of profile. Method. Participants (N = 720) answered to the Positive Affect Negative Affect Schedule, the Zimbardo Time Perspective Inventory and two measures of well-being: the Temporal Satisfaction with Life Scale and Ryff's Scales of Psychological Well-Being-short version. A Multivariate Analysis of Variance (MANOVA) was conducted to identify differences in time perspective dimensions and well-being among individuals with distinct affective profiles. Four structural equation models (SEM) were used to investigate which time perspective dimensions predicted well-being for individuals in each profile. Results. Comparisons between individuals at the extreme of the affective profiles model suggested that individuals with a self-fulfilling profile (high positive/low negative affect) were characterized by a "balanced" time perspective and higher well-being compared to individuals with a self-destructive profile (low positive/high negative affect). However, a different pattern emerged when individuals who differed in one affect dimension but matched in the other were compared to each other. For instance, decreases in the past negative time perspective dimension lead to high positive affect when negative affect is high (i.e., self-destructive vs. high affective) but to low negative affect when positive affect was high (i.e., high affective vs. self-fulfilling). The moderation analyses showed, for example, that for individuals with a self-destructive profile, psychological well-being was significantly predicted by the past negative, present fatalistic and future time perspectives. Among individuals with a high affective or a self-fulfilling profile, psychological well-being was significantly predicted by the present fatalistic dimension. Conclusions. The interactions found here go beyond the postulation of a "balanced" time perspective being the only way to promote well-being. Instead, we present a more person-centered approach to achieve higher levels of emotional, cognitive, and psychological well-being.

  7. Environmental pollutants and lifestyle factors induce oxidative stress and poor prenatal development.

    PubMed

    Al-Gubory, Kaïs H

    2014-07-01

    Developmental toxicity caused by exposure to a mixture of environmental pollutants has become a major health concern. Human-made chemicals, including xenoestrogens, pesticides and heavy metals, as well as unhealthy lifestyle behaviours, mainly tobacco smoking, alcohol consumption and medical drug abuse, are major factors that adversely influence prenatal development and increase susceptibility of offspring to diseases. There is evidence to suggest that the developmental toxicological mechanisms of chemicals and lifestyle factors involve the generation of reactive oxygen species (ROS) and cellular oxidative damage. Overproduction of ROS induces oxidative stress, a state where increased ROS generation overwhelms antioxidant protection and subsequently leads to oxidative damage of cellular macromolecules. Data on the involvement of oxidative stress in the mechanism of developmental toxicity following exposure to environmental pollutants are reviewed in an attempt to provide an updated basis for future studies on the toxic effect of such pollutants, particularly the notion of increased risk for developmental toxicity due to combined and cumulative exposure to various environmental pollutants. The aims of such studies are to better understand the mechanisms by which environmental pollutants adversely affect conceptus development and to elucidate the impact of cumulative exposures to multiple pollutants on post-natal development and health outcomes. Developmental toxicity caused by exposure to mixture of environmental pollutants has become a major health concern. Human-made chemicals, including xenoestrogens, pesticides and heavy metals, as well as unhealthy lifestyle behaviors, mainly tobacco smoking, alcohol consumption and medical drug abuse, are major factors that adversely influence prenatal development and increase the susceptibility of offspring to development complications and diseases. There is evidence to suggest that the developmental toxicological mechanisms of human-made chemicals and unhealthy lifestyle factors involve the generation of reactive oxygen species (ROS) and cellular oxidative damage. Overproduction of ROS induces oxidative stress, a state where increased generation of ROS overwhelms antioxidant protection and subsequently leads to oxidative damage of cellular macromolecules. Exposure to various environmental pollutants induces synergic and cumulative dose-additive adverse effects on prenatal development, pregnancy outcomes and neonate health. Data from the literature on the involvement of oxidative stress in the mechanism of developmental toxicity following in vivo exposure to environmental pollutants will be reviewed in an attempt to provide an updated basis for future studies on the toxic effect of such pollutants, particularly the notion of increased risk for developmental toxicity due to combined and cumulative exposure to various environmental pollutants. The aims of such studies are to better understand the mechanisms by which environmental pollutants adversely affect conceptus development and to elucidate the impact of cumulative exposures to multiple pollutants on postnatal development and health outcomes. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  8. How does the Earth system generate and maintain thermodynamic disequilibrium and what does it imply for the future of the planet?

    PubMed

    Kleidon, Axel

    2012-03-13

    The Earth's chemical composition far from chemical equilibrium is unique in our Solar System, and this uniqueness has been attributed to the presence of widespread life on the planet. Here, I show how this notion can be quantified using non-equilibrium thermodynamics. Generating and maintaining disequilibrium in a thermodynamic variable requires the extraction of power from another thermodynamic gradient, and the second law of thermodynamics imposes fundamental limits on how much power can be extracted. With this approach and associated limits, I show that the ability of abiotic processes to generate geochemical free energy that can be used to transform the surface-atmosphere environment is strongly limited to less than 1 TW. Photosynthetic life generates more than 200 TW by performing photochemistry, thereby substantiating the notion that a geochemical composition far from equilibrium can be a sign for strong biotic activity. Present-day free energy consumption by human activity in the form of industrial activity and human appropriated net primary productivity is of the order of 50 TW and therefore constitutes a considerable term in the free energy budget of the planet. When aiming to predict the future of the planet, we first note that since global changes are closely related to this consumption of free energy, and the demands for free energy by human activity are anticipated to increase substantially in the future, the central question in the context of predicting future global change is then how human free energy demands can increase sustainably without negatively impacting the ability of the Earth system to generate free energy. This question could be evaluated with climate models, and the potential deficiencies in these models to adequately represent the thermodynamics of the Earth system are discussed. Then, I illustrate the implications of this thermodynamic perspective by discussing the forms of renewable energy and planetary engineering that would enhance the overall free energy generation and, thereby 'empower' the future of the planet.

  9. The NASA Next Generation Stirling Technology Program Overview

    NASA Astrophysics Data System (ADS)

    Schreiber, J. G.; Shaltens, R. K.; Wong, W. A.

    2005-12-01

    NASAs Science Mission Directorate is developing the next generation Stirling technology for future Radioisotope Power Systems (RPS) for surface and deep space missions. The next generation Stirling convertor is one of two advanced power conversion technologies currently being developed for future NASA missions, and is capable of operating for both planetary atmospheres and deep space environments. The Stirling convertor (free-piston engine integrated with a linear alternator) produces about 90 We(ac) and has a specific power of about 90 We/kg. Operating conditions of Thot at 850 degree C and Trej at 90 degree C results in the Stirling convertor estimated efficiency of about 40 per cent. Using the next generation Stirling convertor in future RPS, the "system" specific power is estimated at 8 We/kg. The design lifetime is three years on the surface of Mars and fourteen years in deep space missions. Electrical power of about 160 We (BOM) is produced by two (2) free-piston Stirling convertors heated by two (2) General Purpose Heat Source (GPHS) modules. This development is being performed by Sunpower, Athens, OH with Pratt & Whitney, Rocketdyne, Canoga Park, CA under contract to Glenn Research Center (GRC), Cleveland, Ohio. GRC is guiding the independent testing and technology development for the next generation Stirling generator.

  10. Beyond the classical theory of heat conduction: a perspective view of future from entropy

    PubMed Central

    Lai, Xiang; Zhu, Pingan

    2016-01-01

    Energy is conserved by the first law of thermodynamics; its quality degrades constantly due to entropy generation, by the second law of thermodynamics. It is thus important to examine the entropy generation regarding the way to reduce its magnitude and the limit of entropy generation as time tends to infinity regarding whether it is bounded or not. This work initiates such an analysis with one-dimensional heat conduction. The work not only offers some fundamental insights of universe and its future, but also builds up the relation between the second law of thermodynamics and mathematical inequalities via developing the latter of either new or classical nature. A concise review of entropy is also included for the interest of performing the analysis in this work and the similar analysis for other processes in the future. PMID:27843400

  11. Climatic Controls on Forest Productivity in Western North America; Variability, Covariability, and Projected Change

    NASA Astrophysics Data System (ADS)

    Hawkins, L. R.; Rupp, D. E.; Li, S.; Mote, P.; Sparrow, S.; Massey, N.

    2016-12-01

    The forests of western North America serve as a carbon sink sequestering carbon and slowing the rise of CO2 in the atmosphere. Though still positive, the rate of net carbon uptake has been in decline over the past two decades. Regional drought has been shown to slow forest productivity and net carbon uptake despite warmer temperatures and longer growing seasons. With drought conditions projected to increase in frequency and severity under climate change there is concern that these forests' capacity as an effective carbon sink will continue to decrease in the future. To investigate how changes in regional hydroclimate may affect future carbon uptake in western US forests we dynamically downscaled global climate simulations using a 25-km resolution regional climate model HadRM3P with the land surface scheme MOSES2. We generated a 100-member ensemble of simulations for an historical period (1985-2015) and mid-21st century period (2030-2060) under Representative Concentration Pathway 8.5. We evaluated the effects of regional changes in atmospheric moisture demand, seasonality of water supply, and water stress on forest productivity and carbon uptake. We investigated how these changes in hydroclimate interact with the relaxing of temperature controls. This work can inform future adaptation efforts through improving our understanding of climatic controls on forest carbon sequestration.

  12. A systematic literature review of engineering identity: definitions, factors, and interventions affecting development, and means of measurement

    NASA Astrophysics Data System (ADS)

    Morelock, John R.

    2017-11-01

    Studies exploring what it means to be an engineer professionally have been conducted for decades, but have boomed in recent years. This systematic literature review aims to organise extant studies on engineering identity by coding around four key variables: (a) definitions of engineering identity, (b) factors affecting engineering identity development, (c) interventions affecting engineering identity development, and (d) means of measuring identity. In doing so, this review provides strategies for future research and educational interventions to advance work related to engineering identity. Publications were selected for inclusion by screening and appraising results obtained from databases and keywords refined through a scoping study. Derived from key findings, suggestions for future research include bridging disparate strands of engineering identity literature and incorporating more varied methodological approaches. Also from key findings, suggestions for future practice involve better connecting existing definitions of engineering identity and factors known to affect identity development with identity-related interventions.

  13. Anticipated affective consequences of physical activity adoption and maintenance.

    PubMed

    Dunton, Genevieve Fridlund; Vaughan, Elaine

    2008-11-01

    The expected emotional consequences of future actions are thought to play an important role in health behavior change. This research examined whether anticipated affective consequences of success and failure vary across stages of physical activity change and differentially predict physical activity adoption as compared to maintenance. Using a prospective design over a 3-month period, a community sample of 329 healthy, middle-aged adults were assessed at 2 time points. Anticipated positive and negative emotions, stage of behavior change (precontemplation [PC], contemplation [C], preparation [P], action [A], maintenance [M]), and level of physical activity. At baseline, anticipated positive emotions were greater in C versus PC, whereas anticipated negative emotions were greater in M versus A and in M versus P. Higher anticipated positive but not negative emotions predicted physical activity adoption and maintenance after 3 months. Although the expected affective consequences of future success and failure differentiated among individuals in the early and later stages of physical activity change, respectively; only the anticipated affective consequences of success predicted future behavior.

  14. Investigation of Unsteady Flow Interaction Between an Ultra-Compact Inlet and a Transonic Fan

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Rabe, Douglas; Scribben, Angie

    2015-01-01

    In the study presented, unsteady flow interaction between an ultra-compact inlet and a transonic fan stage is investigated. Future combat aircraft engines require ultra-compact inlet ducts as part of an integrated, advanced propulsion system to improve air vehicle capability and effectiveness to meet future mission needs. The main purpose of the current study is to advance the understanding of the flow interaction between a modern ultra-compact inlet and a transonic fan for future design applications. Many experimental/ analytical studies have been reported on the aerodynamics of compact inlets in aircraft engines. On the other hand, very few studies have been reported on the effects of flow distortion from these inlets on the performance of the following fan/compressor stages. The primary goal of the study presented is to investigate how flow interaction between an ultra-compact inlet and a transonic compressor influence the operating margin of the compressor. Both Unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) approaches are used to calculate the unsteady flow field, and the numerical results are used to study the flow interaction. The present study indicates that stall inception of the following compressor stage is affected directly based on how the distortion pattern evolves before it interacts with the fan/compressor face. For the present compressor, the stall initiates at the tip section with clean inlet flow and distortion pattern away from the casing itself seems to have limited impacts on the stall inception of the compressor. A counter-rotating swirl, which is generated due to flow separation inside the s-shaped compact duct, generates an increased flow angle near the blade tip. This increased flow angle near the rotor tip due to the secondary flow from the counter-rotating vortices is the primary reason for the reduced compressor stall margin.

  15. The Evolution from Generation to Post-XX

    ERIC Educational Resources Information Center

    Feng, Zhao

    2011-01-01

    Young people represent the future, and youth is an eternal topic. In the 1970s when the American anthropologist Margaret Mead published her famous work "Generation Gap," research on generations gained sudden popularity worldwide, and ever since the 1980s when "Generation Gap" was brought to China, research by scholars in this…

  16. Commercial nuclear power 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Miningmore » and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.« less

  17. Transcriptomic and proteomic analyses of seasonal photoperiodism in the pea aphid

    PubMed Central

    Le Trionnaire, G; Francis, F; Jaubert-Possamai, S; Bonhomme, J; De Pauw, E; Gauthier, J-P; Haubruge, E; Legeai, F; Prunier-Leterme, N; Simon, J-C; Tanguy, S; Tagu, D

    2009-01-01

    Background Aphid adaptation to harsh winter conditions is illustrated by an alternation of their reproductive mode. Aphids detect photoperiod shortening by sensing the length of the night and switch from viviparous parthenogenesis in spring and summer, to oviparous sexual reproduction in autumn. The photoperiodic signal is transduced from the head to the reproductive tract to change the fate of the future oocytes from mitotic diploid embryogenesis to haploid formation of gametes. This process takes place in three consecutive generations due to viviparous parthenogenesis. To understand the molecular basis of the switch in the reproductive mode, transcriptomic and proteomic approaches were used to detect significantly regulated transcripts and polypeptides in the heads of the pea aphid Acyrthosiphon pisum. Results The transcriptomic profiles of the heads of the first generation were slightly affected by photoperiod shortening. This suggests that trans-generation signalling between the grand-mothers and the viviparous embryos they contain is not essential. By analogy, many of the genes and some of the proteins regulated in the heads of the second generation are implicated in visual functions, photoreception and cuticle structure. The modification of the cuticle could be accompanied by a down-regulation of the N-β-alanyldopamine pathway and desclerotization. In Drosophila, modification of the insulin pathway could cause a decrease of juvenile hormones in short-day reared aphids. Conclusion This work led to the construction of hypotheses for photoperiodic regulation of the switch of the reproductive mode in aphids. PMID:19788735

  18. Concept Development for Future Domains: A New Method of Knowledge Elicitation

    DTIC Science & Technology

    2005-06-01

    Procedure: U.S. Army Research Institute for the Behavioral and Social Sciences (ARI) examined methods to generate, refine, test , and validate new...generate, elaborate, refine, describe, test , and validate new Future Force concepts relating to doctrine, tactics, techniques, procedures, unit and team...System (Harvey, 1993), and the Job Element Method (Primoff & Eyde , 1988). Figure 1 provides a more comprehensive list of task analytic methods. Please see

  19. Implementing a Quantitative Analysis Design Tool for Future Generation Interfaces

    DTIC Science & Technology

    2012-03-01

    with Remotely Piloted Aircraft (RPA) has resulted in the need of a platform to evaluate interface design. The Vigilant Spirit Control Station ( VSCS ...Spirit interface. A modified version of the HCI Index was successfully applied to perform a quantitative analysis of the baseline VSCS interface and...time of the original VSCS interface. These results revealed the effectiveness of the tool and demonstrated in the design of future generation

  20. Research Review: altered reward function in adolescent depression: what, when and how?

    PubMed

    Forbes, Erika E; Dahl, Ronald E

    2012-01-01

    Conceptual models and recent evidence indicate that neural response to reward is altered in depression. Taking a developmental approach to investigating reward function in adolescent depression can elucidate the etiology, pathophysiology and course of depression, a disorder that typically begins during adolescence and has high rates of recurrence. This conceptual review describes the what, when and how of altered reward function in adolescent depression. With the goal of generating new, testable hypotheses within a developmental affective neuroscience framework, we critically review findings and suggest future directions. Peer-reviewed empirical papers for inclusion in this critical review were obtained by searching PubMed, PsycInfo and ScienceDirect for the years 1990-2010. A pattern of low striatal response and high medial prefrontal response to reward is evident in adolescents and adults with depression. Given the salience of social stimuli for positive affect and depression, reward function might be especially disrupted in response to social rewards. Because of changes in the dopamine system and reward function with aging, altered reward function in depression might be more evident during adolescence than later in life; however, low reward function may also be a stable characteristic of people who experience depression. Mechanisms of altered reward function in depression could include disrupted balance of corticostriatal circuit function, with disruption occurring as aberrant adolescent brain development. Future studies should examine responses to social rewards; employ longitudinal and prospective designs; and investigate patterns of functional connectivity in reward circuits. Understanding altered reward function in depression has potential implications for treatment development. A more rigorous approach to investigating anhedonia, threat-reward interactions and comorbid anxiety will be valuable to future progress in describing the role of reward function in the pathophysiology of depression. © 2011 The Authors. Journal of Child Psychology and Psychiatry © 2011 Association for Child and Adolescent Mental Health.

  1. A double epidemic model for the SARS propagation

    PubMed Central

    Ng, Tuen Wai; Turinici, Gabriel; Danchin, Antoine

    2003-01-01

    Background An epidemic of a Severe Acute Respiratory Syndrome (SARS) caused by a new coronavirus has spread from the Guangdong province to the rest of China and to the world, with a puzzling contagion behavior. It is important both for predicting the future of the present outbreak and for implementing effective prophylactic measures, to identify the causes of this behavior. Results In this report, we show first that the standard Susceptible-Infected-Removed (SIR) model cannot account for the patterns observed in various regions where the disease spread. We develop a model involving two superimposed epidemics to study the recent spread of the SARS in Hong Kong and in the region. We explore the situation where these epidemics may be caused either by a virus and one or several mutants that changed its tropism, or by two unrelated viruses. This has important consequences for the future: the innocuous epidemic might still be there and generate, from time to time, variants that would have properties similar to those of SARS. Conclusion We find that, in order to reconcile the existing data and the spread of the disease, it is convenient to suggest that a first milder outbreak protected against the SARS. Regions that had not seen the first epidemic, or that were affected simultaneously with the SARS suffered much more, with a very high percentage of persons affected. We also find regions where the data appear to be inconsistent, suggesting that they are incomplete or do not reflect an appropriate identification of SARS patients. Finally, we could, within the framework of the model, fix limits to the future development of the epidemic, allowing us to identify landmarks that may be useful to set up a monitoring system to follow the evolution of the epidemic. The model also suggests that there might exist a SARS precursor in a large reservoir, prompting for implementation of precautionary measures when the weather cools down. PMID:12964944

  2. Impacts of climate change on current methodologies for flood risk analysis: Watershed-scale analyses using the Soil and Water Assessment Tool (SWAT)

    NASA Astrophysics Data System (ADS)

    Spellman, P.; Griffis, V. W.; LaFond, K.

    2013-12-01

    A changing climate brings about new challenges for flood risk analysis and water resources planning and management. Current methods for estimating flood risk in the US involve fitting the Pearson Type III (P3) probability distribution to the logarithms of the annual maximum flood (AMF) series using the method of moments. These methods are employed under the premise of stationarity, which assumes that the fitted distribution is time invariant and variables affecting stream flow such as climate do not fluctuate. However, climate change would bring about shifts in meteorological forcings which can alter the summary statistics (mean, variance, skew) of flood series used for P3 parameter estimation, resulting in erroneous flood risk projections. To ascertain the degree to which future risk may be misrepresented by current techniques, we use climate scenarios generated from global climate models (GCMs) as input to a hydrological model to explore how relative changes to current climate affect flood response for watersheds in the northeastern United States. The watersheds were calibrated and run on a daily time step using the continuous, semi-distributed, process based Soil and Water Assessment Tool (SWAT). Nash Sutcliffe Efficiency (NSE), RMSE to Standard Deviation ratio (RSR) and Percent Bias (PBIAS) were all used to assess model performance. Eight climate scenarios were chosen from GCM output based on relative precipitation and temperature changes from the current climate of the watershed and then further bias-corrected. Four of the scenarios were selected to represent warm-wet, warm-dry, cool-wet and cool-dry future climates, and the other four were chosen to represent more extreme, albeit possible, changes in precipitation and temperature. We quantify changes in response by comparing the differences in total mass balance and summary statistics of the logarithms of the AMF series from historical baseline values. We then compare forecasts of flood quantiles from fitting a P3 distribution to the logs of historical AMF data to that of generated AMF series.

  3. Deterministic chaos in a model of a simple delta network

    NASA Astrophysics Data System (ADS)

    Salter, G.; Voller, V. R.; Paola, C.

    2017-12-01

    An important aspect of delta dynamics is how sediment flux is partitioned to different parts of the delta through time, affecting patterns of land-building/loss, and the formation of stratigraphy. Here, we present results from a model of a simple distributary network consisting of two orders of bifurcations: an upstream channel splits into two branches, each of which splits into two additional branches. The 1D bed elevation profiles of each branch are modeled through time, and a nodal condition accounting for a transverse bed slope just upstream of the bifurcation is used to partition the flow at bifurcations. The model generates surprisingly complex dynamics despite its simplicity. Constrained by the need to distribute sediment evenly between branches in the long-run, the system undergoes repeated full and partial avulsions. We find that the solution to the system is aperiodic, but bounded. We also observe a sensitive dependence on the initial conditions: simulations started with slightly different initial conditions diverge exponentially. These observations are the hallmark of chaos, summarized by Edward Lorenz as "where the present determines the future, but the approximate present does not approximately determine the future." In our model, chaos results from the two-way coupling between upstream and downstream bifurcations. We find that a single bifurcation may be periodic, but it is never chaotic. However, when coupled, avulsions in the upstream channel change the upstream boundary conditions for the downstream bifurcations, and conversely, avulsions in the downstream bifurcations affect the slope of their feeder channel, propagating upstream to the first bifurcation. We explore how the system generates stratigraphy, using the Shields stress at the time of deposition as a proxy. We compare the stratigraphy to the single bifurcation case, which is periodic rather than chaotic. We also examine stratigraphic completeness, and find that hiatuses in the upstream portion of the domain tend to be erosional, whereas hiatuses further downstream tend to represent pauses. Our work suggests that deltas have a limited window of predictability, and indicates that chaotic and cyclic avulsion sequences should be distinguishable in the stratigraphic record.

  4. Linking the M&Rfi Weather Generator with Agrometeorological Models

    NASA Astrophysics Data System (ADS)

    Dubrovsky, Martin; Trnka, Miroslav

    2015-04-01

    Realistic meteorological inputs (representing the present and/or future climates) for the agrometeorological model simulations are often produced by stochastic weather generators (WGs). This contribution presents some methodological issues and results obtained in our recent experiments. We also address selected questions raised in the synopsis of this session. The input meteorological time series for our experiments are produced by the parametric single site weather generator (WG) Marfi, which is calibrated from the available observational data (or interpolated from surrounding stations). To produce meteorological series representing the future climate, the WG parameters are modified by climate change scenarios, which are prepared by the pattern scaling method: the standardised scenarios derived from Global or Regional Climate Models are multiplied by the change in global mean temperature (ΔTG) determined by the simple climate model MAGICC. The presentation will address following questions: (i) The dependence of the quality of the synthetic weather series and impact results on the WG settings. An emphasis will be put on an effect of conditioning the daily WG on monthly WG (presently being one of our hot topics), which aims at improvement of the reproduction of the low-frequency weather variability. Comparison of results obtained with various WG settings is made in terms of climatic and agroclimatic indices (including extreme temperature and precipitation characteristics and drought indices). (ii) Our methodology accounts for the uncertainties coming from various sources. We will show how the climate change impact results are affected by 1. uncertainty in climate modelling, 2. uncertainty in ΔTG, and 3. uncertainty related to the complexity of the climate change scenario (focusing on an effect of inclusion of changes in variability into the climate change scenarios). Acknowledgements: This study was funded by project "Building up a multidisciplinary scientific team focused on drought" No. CZ.1.07/2.3.00/20.0248. The weather generator is being developed within the frame of WG4VALUE project (LD12029), which is supported by Ministry of Education, Youth and Sports and linked to the COST action ES1102 VALUE.

  5. Assessing the impact of climate change on flood types in the Austrian and French Alps using the stochastic weather generator TripleM and rainfall-runoff modeling

    NASA Astrophysics Data System (ADS)

    Breinl, Korbinian; Turkington, Thea

    2017-04-01

    We developed a new methodology for classifying flood types, which appears to be particularly suitable for climate change impact studies. Climate change is not only expected to change the magnitude and frequency of Alpine floods but also the types of floods. The distribution of existing flood types may change and new flood types may develop. A shift away from solely focusing on the magnitude and frequency of floods in flood hazard assessment and disaster risk management towards the causal types of floods is required as the types and therefore also timing and characteristics of floods will have implications on both the local social and ecological systems. The flood types are classified using k-means clustering of temperature and precipitation indicators, capturing differences in rainfall amounts, antecedent rainfall, snow-cover, and the day of the year. In a first step, we used the open-source multi-site weather generator TripleM coupled with the fast conceptual rainfall-runoff model HBV to extrapolate the observed discharge time series and generate a large inventory of different types of observed flood events and flood types. The weather generator was then parameterized based on projections of rainfall and temperature to simulate future flood types and events. We selected four climate projections (mild dry, mild wet, warm dry and warm wet conditions) from a set of 15, which originated from the EURO-CORDEX dataset. We worked in two catchments in the Austrian and French Alps that have been affected by floods in the past: the medium-sized Salzach catchment in Austria, which is dominated by rainfall driven flooding during the summer and autumn period, and the small Ubaye catchment in the Southern French Alps, which is dominated by rain-on-snow floods in the spring period. The analysis of the simulated future flood types shows clear changes in the distribution and characteristics of flood types in both study areas under the different climate projections examined.

  6. Feasible Electricity Infrastructure Pathways in the Context of Climate-Water Change Constraints

    NASA Astrophysics Data System (ADS)

    Miara, A.; Vorosmarty, C. J.; Macknick, J.; Cohen, S. M.; Tidwell, V. C.; Newmark, R. L.; Fekete, B. M.; Corsi, F.; Sun, Y.; Proussevitch, A. A.; Glidden, S.

    2017-12-01

    The carbon and water intensity of US electricity generation has recently decreased due to the natural gas revolution and deployment of renewable technologies. Yet, power plants that require water for cooling still provide 80% of electricity generation and projected climate-water conditions may limit their power output and affect reliability. Understanding the connections and tradeoffs across water, electricity and climate systems is timely, as the nation tries to mitigate and adapt to a changing climate. Electricity expansion models are used to provide insight on power sector pathways given certain policy goals and economic conditions, but do not typically account for productivity limitations due to physical climate-water constraints. Here, we account for such constraints by coupling an electricity expansion model (Regional Energy Deployment System - ReEDS) with the combined Water Balance and Thermoelectric Power and Thermal Pollution Models (WBM-TP2M), which calculate the available capacity at power plants as a function of hydrologic flows, climate conditions, power plant technology and environmental regulations. To fully capture and incorporate climate-water impacts into ReEDS, a specific rule-set was designed for the temporal and spatial downscaling and up-scaling of ReEDS results into WBM-TP2M inputs and visa versa - required to achieve a modeling `loop' that will enable convergence on a feasible solution in the context of economic and geophysical constraints and opportunities. This novel modeling approach is the next phase of research for understanding electricity system vulnerabilities and adaptation measures using energy-water-climate modeling, which to-date has been limited by a focus on individual generators without analyzing power generation as a collective regional system. This study considers four energy policy/economic pathways under future climate-water resource conditions, designed under the National Energy Water System assessment framework. Results highlight the importance of linking Earth-system and economic modeling tools and provide insight on potential electricity infrastructure pathways that are sustainable, in terms lowering both water use and carbon emissions, and reliable in the face of future climate-water resource constraints.

  7. Renewable Electricity Futures: Exploration of Up to 80% Renewable Electricity Penetration in the United States (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, M.; DeMeo, E.; Hostick, D.

    2013-04-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  8. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, M. M.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

  9. Gender and Orientations toward the Future: Links to Motivation

    ERIC Educational Resources Information Center

    Greene, Barbara A.; DeBacker, Teresa K.

    2004-01-01

    Literature on future orientation and motivation was examined for gender differences. Research revealed gender differences from five theoretical orientations: achievement motivation, future time orientation, possible selves, expectancy-value, and social-cognitive. Some of those differences seemed best explained in terms of generational differences…

  10. Evidence for an implicit influence of memory on future thinking.

    PubMed

    Szpunar, Karl K

    2010-07-01

    The capacity to think about specific events that one might encounter in the future--episodic future thought--involves the flexible (re)organization of memory. The present study demonstrates that implicit processes play an important role here. In two experiments (N = 180), participants were asked to generate a personal event that they expected to plausibly occur in the following week. The content of the participants' responses was biased (i.e., primed) by recent thoughts about a specific category of experiences. For instance, participants who had recently been induced to think about social experiences, in the context of an ostensibly unrelated task, were more likely than nonprimed participants to generate similar events occurring in their immediate future. Importantly, the participants were unaware of this unintentional influence of memory. The theoretical and practical implications of these findings for understanding episodic future thought and its relation to memory are discussed.

  11. Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus.

    PubMed

    Kraus, Kari Suzanne; Canlon, Barbara

    2012-06-01

    Acoustic experience such as sound, noise, or absence of sound induces structural or functional changes in the central auditory system but can also affect limbic regions such as the amygdala and hippocampus. The amygdala is particularly sensitive to sound with valence or meaning, such as vocalizations, crying or music. The amygdala plays a central role in auditory fear conditioning, regulation of the acoustic startle response and can modulate auditory cortex plasticity. A stressful acoustic stimulus, such as noise, causes amygdala-mediated release of stress hormones via the HPA-axis, which may have negative effects on health, as well as on the central nervous system. On the contrary, short-term exposure to stress hormones elicits positive effects such as hearing protection. The hippocampus can affect auditory processing by adding a temporal dimension, as well as being able to mediate novelty detection via theta wave phase-locking. Noise exposure affects hippocampal neurogenesis and LTP in a manner that affects structural plasticity, learning and memory. Tinnitus, typically induced by hearing malfunctions, is associated with emotional stress, depression and anatomical changes of the hippocampus. In turn, the limbic system may play a role in the generation as well as the suppression of tinnitus indicating that the limbic system may be essential for tinnitus treatment. A further understanding of auditory-limbic interactions will contribute to future treatment strategies of tinnitus and noise trauma. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Many-objective robust decision making for water allocation under climate change.

    PubMed

    Yan, Dan; Ludwig, Fulco; Huang, He Qing; Werners, Saskia E

    2017-12-31

    Water allocation is facing profound challenges due to climate change uncertainties. To identify adaptive water allocation strategies that are robust to climate change uncertainties, a model framework combining many-objective robust decision making and biophysical modeling is developed for large rivers. The framework was applied to the Pearl River basin (PRB), China where sufficient flow to the delta is required to reduce saltwater intrusion in the dry season. Before identifying and assessing robust water allocation plans for the future, the performance of ten state-of-the-art MOEAs (multi-objective evolutionary algorithms) is evaluated for the water allocation problem in the PRB. The Borg multi-objective evolutionary algorithm (Borg MOEA), which is a self-adaptive optimization algorithm, has the best performance during the historical periods. Therefore it is selected to generate new water allocation plans for the future (2079-2099). This study shows that robust decision making using carefully selected MOEAs can help limit saltwater intrusion in the Pearl River Delta. However, the framework could perform poorly due to larger than expected climate change impacts on water availability. Results also show that subjective design choices from the researchers and/or water managers could potentially affect the ability of the model framework, and cause the most robust water allocation plans to fail under future climate change. Developing robust allocation plans in a river basin suffering from increasing water shortage requires the researchers and water managers to well characterize future climate change of the study regions and vulnerabilities of their tools. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Sensitivity of the Atmospheric Response to Warm Pool El Nino Events to Modeled SSTs and Future Climate Forcings

    NASA Technical Reports Server (NTRS)

    Hurwitz, Margaret M.; Garfinkel, Chaim I.; Newman, Paul A.; Oman, Luke D.

    2013-01-01

    Warm pool El Nino (WPEN) events are characterized by positive sea surface temperature (SST) anomalies in the central equatorial Pacific. Under present-day climate conditions, WPEN events generate poleward propagating wavetrains and enhance midlatitude planetary wave activity, weakening the stratospheric polar vortices. The late 21st century extratropical atmospheric response to WPEN events is investigated using the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM), version 2. GEOSCCM simulations are forced by projected late 21st century concentrations of greenhouse gases (GHGs) and ozone-depleting substances (ODSs) and by SSTs and sea ice concentrations from an existing ocean-atmosphere simulation. Despite known ocean-atmosphere model biases, the prescribed SST fields represent a best estimate of the structure of late 21st century WPEN events. The future Arctic vortex response is qualitatively similar to that observed in recent decades but is weaker in late winter. This response reflects the weaker SST forcing in the Nino 3.4 region and subsequently weaker Northern Hemisphere tropospheric teleconnections. The Antarctic stratosphere does not respond to WPEN events in a future climate, reflecting a change in tropospheric teleconnections: The meridional wavetrain weakens while a more zonal wavetrain originates near Australia. Sensitivity simulations show that a strong poleward wavetrain response to WPEN requires a strengthening and southeastward extension of the South Pacific Convergence Zone; this feature is not captured by the late 21st century modeled SSTs. Expected future increases in GHGs and decreases in ODSs do not affect the polar stratospheric responses to WPEN.

  14. Water Resource Planning Under Future Climate and Socioeconomic Uncertainty in the Cauvery River Basin in Karnataka, India

    PubMed Central

    Conway, Declan; Dessai, Suraje; Stainforth, David A.

    2018-01-01

    Abstract Decision‐Making Under Uncertainty (DMUU) approaches have been less utilized in developing countries than developed countries for water resources contexts. High climate vulnerability and rapid socioeconomic change often characterize developing country contexts, making DMUU approaches relevant. We develop an iterative multi‐method DMUU approach, including scenario generation, coproduction with stakeholders and water resources modeling. We apply this approach to explore the robustness of adaptation options and pathways against future climate and socioeconomic uncertainties in the Cauvery River Basin in Karnataka, India. A water resources model is calibrated and validated satisfactorily using observed streamflow. Plausible future changes in Indian Summer Monsoon (ISM) precipitation and water demand are used to drive simulations of water resources from 2021 to 2055. Two stakeholder‐identified decision‐critical metrics are examined: a basin‐wide metric comprising legal instream flow requirements for the downstream state of Tamil Nadu, and a local metric comprising water supply reliability to Bangalore city. In model simulations, the ability to satisfy these performance metrics without adaptation is reduced under almost all scenarios. Implementing adaptation options can partially offset the negative impacts of change. Sequencing of options according to stakeholder priorities into Adaptation Pathways affects metric satisfaction. Early focus on agricultural demand management improves the robustness of pathways but trade‐offs emerge between intrabasin and basin‐wide water availability. We demonstrate that the fine balance between water availability and demand is vulnerable to future changes and uncertainty. Despite current and long‐term planning challenges, stakeholders in developing countries may engage meaningfully in coproduction approaches for adaptation decision‐making under deep uncertainty. PMID:29706676

  15. Water Resource Planning Under Future Climate and Socioeconomic Uncertainty in the Cauvery River Basin in Karnataka, India.

    PubMed

    Bhave, Ajay Gajanan; Conway, Declan; Dessai, Suraje; Stainforth, David A

    2018-02-01

    Decision-Making Under Uncertainty (DMUU) approaches have been less utilized in developing countries than developed countries for water resources contexts. High climate vulnerability and rapid socioeconomic change often characterize developing country contexts, making DMUU approaches relevant. We develop an iterative multi-method DMUU approach, including scenario generation, coproduction with stakeholders and water resources modeling. We apply this approach to explore the robustness of adaptation options and pathways against future climate and socioeconomic uncertainties in the Cauvery River Basin in Karnataka, India. A water resources model is calibrated and validated satisfactorily using observed streamflow. Plausible future changes in Indian Summer Monsoon (ISM) precipitation and water demand are used to drive simulations of water resources from 2021 to 2055. Two stakeholder-identified decision-critical metrics are examined: a basin-wide metric comprising legal instream flow requirements for the downstream state of Tamil Nadu, and a local metric comprising water supply reliability to Bangalore city. In model simulations, the ability to satisfy these performance metrics without adaptation is reduced under almost all scenarios. Implementing adaptation options can partially offset the negative impacts of change. Sequencing of options according to stakeholder priorities into Adaptation Pathways affects metric satisfaction. Early focus on agricultural demand management improves the robustness of pathways but trade-offs emerge between intrabasin and basin-wide water availability. We demonstrate that the fine balance between water availability and demand is vulnerable to future changes and uncertainty. Despite current and long-term planning challenges, stakeholders in developing countries may engage meaningfully in coproduction approaches for adaptation decision-making under deep uncertainty.

  16. Water Resource Planning Under Future Climate and Socioeconomic Uncertainty in the Cauvery River Basin in Karnataka, India

    NASA Astrophysics Data System (ADS)

    Bhave, Ajay Gajanan; Conway, Declan; Dessai, Suraje; Stainforth, David A.

    2018-02-01

    Decision-Making Under Uncertainty (DMUU) approaches have been less utilized in developing countries than developed countries for water resources contexts. High climate vulnerability and rapid socioeconomic change often characterize developing country contexts, making DMUU approaches relevant. We develop an iterative multi-method DMUU approach, including scenario generation, coproduction with stakeholders and water resources modeling. We apply this approach to explore the robustness of adaptation options and pathways against future climate and socioeconomic uncertainties in the Cauvery River Basin in Karnataka, India. A water resources model is calibrated and validated satisfactorily using observed streamflow. Plausible future changes in Indian Summer Monsoon (ISM) precipitation and water demand are used to drive simulations of water resources from 2021 to 2055. Two stakeholder-identified decision-critical metrics are examined: a basin-wide metric comprising legal instream flow requirements for the downstream state of Tamil Nadu, and a local metric comprising water supply reliability to Bangalore city. In model simulations, the ability to satisfy these performance metrics without adaptation is reduced under almost all scenarios. Implementing adaptation options can partially offset the negative impacts of change. Sequencing of options according to stakeholder priorities into Adaptation Pathways affects metric satisfaction. Early focus on agricultural demand management improves the robustness of pathways but trade-offs emerge between intrabasin and basin-wide water availability. We demonstrate that the fine balance between water availability and demand is vulnerable to future changes and uncertainty. Despite current and long-term planning challenges, stakeholders in developing countries may engage meaningfully in coproduction approaches for adaptation decision-making under deep uncertainty.

  17. Climate change increases deoxynivalenol contamination of wheat in north-western Europe.

    PubMed

    van der Fels-Klerx, H J; Olesen, J E; Madsen, M S; Goedhart, P W

    2012-01-01

    Climate change will affect the development of cereal crops and the occurrence of mycotoxins in these crops, but so far little research has been done on quantifying the expected effects. The aim of this study was to assess climate change impacts on the occurrence of deoxynivalenol in wheat grown in north-western Europe by 2040, considering the combined effects of shifts in wheat phenology and climate. The study used climate model data for the future period of 2031-2050 relative to the baseline period of 1975-1994. A weather generator was used for generating synthetic series of daily weather data for both the baseline and the future periods. Available models for wheat phenology and prediction of deoxynivalenol concentrations in north-western Europe were used. Both models were run for winter wheat and spring wheat, separately. The results showed that both flowering and full maturation of wheat will be earlier in the season because of climate change effects, about 1 to 2 weeks. Deoxynivalenol contamination was found to increase in most of the study region, with an increase of the original concentrations by up to 3 times. The study results may inform governmental and industrial risk managers to underpin decision-making and planning processes in north-western Europe. On the local level, deoxynivalenol contamination should be closely monitored to pick out wheat batches with excess levels at the right time. Using predictive models on a more local scale could be helpful to assist other monitoring measures to safeguard food safety in the wheat supply chain.

  18. Characteristics of the Remote Sensing Data Used in the Proposed Unfccc REDD+ Forest Reference Emission Levels (frels)

    NASA Astrophysics Data System (ADS)

    Johnson, B. A.; Scheyvens, H.; Samejima, H.; Onoda, M.

    2016-06-01

    Developing countries must submit forest reference emission levels (FRELs) to the UNFCCC to receive incentives for REDD+ activities (e.g. reducing emissions from deforestation/forest degradation, sustainable management of forests, forest carbon stock conservation/enhancement). These FRELs are generated based on historical CO2 emissions in the land use, land use change, and forestry sector, and are derived using remote sensing (RS) data and in-situ forest carbon measurements. Since the quality of the historical emissions estimates is affected by the quality and quantity of the RS data used, in this study we calculated five metrics (i-v below) to assess the quality and quantity of the data that has been used thus far. Countries could focus on improving on one or more of these metrics for the submission of future FRELs. Some of our main findings were: (i) the median percentage of each country mapped was 100%, (ii) the median historical timeframe for which RS data was used was 11.5 years, (iii) the median interval of forest map updates was 4.5 years, (iv) the median spatial resolution of the RS data was 30m, and (v) the median number of REDD+ activities that RS data was used for operational monitoring of was 1 (typically deforestation). Many new sources of RS data have become available in recent years, so complementary or alternative RS data sets for generating future FRELs can potentially be identified based on our findings; e.g. alternative RS data sets could be considered if they have similar or higher quality/quantity than the currently-used data sets.

  19. Women and kidney disease: reflections on World Kidney Day 2018

    PubMed Central

    Piccoli, Giorgina B; Alrukhaimi, Mona; Liu, Zhi-Hong; Zakharova, Elena

    2018-01-01

    Abstract Chronic kidney disease affects ∼10% of the world’s adult population: it is within the top 20 causes of death worldwide, and its impact on patients and their families can be devastating. World Kidney Day and International Women’s Day in 2018 coincide, thus offering an opportunity to reflect on the importance of women’s health, and specifically their kidney health, to the community and the next generations, as well as to strive to be more curious about the unique aspects of kidney disease in women, so that we may apply those learnings more broadly. Girls and women, who make up ∼50% of the world’s population, are important contributors to society as a whole and to their families. Gender differences continue to exist around the world in access to education, medical care and participation in clinical studies. Pregnancy is a unique state for women, offering an opportunity for diagnosis of kidney disease, and also a state where acute and chronic kidney diseases may manifest, and which may impact future generations with respect to kidney health. There are various autoimmune and other conditions that are more likely to impact women with profound consequences for child bearing, and for the fetus. Women have different complications on dialysis than men, and are more likely to be donors than recipients of kidney transplants. In this editorial, we focus on what we do and do not know about women, kidney health and kidney disease, and what we might learn in the future to improve outcomes worldwide. PMID:29435267

  20. Downscaling Global Emissions and Its Implications Derived from Climate Model Experiments

    PubMed Central

    Abe, Manabu; Kinoshita, Tsuguki; Hasegawa, Tomoko; Kawase, Hiroaki; Kushida, Kazuhide; Masui, Toshihiko; Oka, Kazutaka; Shiogama, Hideo; Takahashi, Kiyoshi; Tatebe, Hiroaki; Yoshikawa, Minoru

    2017-01-01

    In climate change research, future scenarios of greenhouse gas and air pollutant emissions generated by integrated assessment models (IAMs) are used in climate models (CMs) and earth system models to analyze future interactions and feedback between human activities and climate. However, the spatial resolutions of IAMs and CMs differ. IAMs usually disaggregate the world into 10–30 aggregated regions, whereas CMs require a grid-based spatial resolution. Therefore, downscaling emissions data from IAMs into a finer scale is necessary to input the emissions into CMs. In this study, we examined whether differences in downscaling methods significantly affect climate variables such as temperature and precipitation. We tested two downscaling methods using the same regionally aggregated sulfur emissions scenario obtained from the Asian-Pacific Integrated Model/Computable General Equilibrium (AIM/CGE) model. The downscaled emissions were fed into the Model for Interdisciplinary Research on Climate (MIROC). One of the methods assumed a strong convergence of national emissions intensity (e.g., emissions per gross domestic product), while the other was based on inertia (i.e., the base-year remained unchanged). The emissions intensities in the downscaled spatial emissions generated from the two methods markedly differed, whereas the emissions densities (emissions per area) were similar. We investigated whether the climate change projections of temperature and precipitation would significantly differ between the two methods by applying a field significance test, and found little evidence of a significant difference between the two methods. Moreover, there was no clear evidence of a difference between the climate simulations based on these two downscaling methods. PMID:28076446

Top