Science.gov

Sample records for affect gene flow

  1. Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus).

    PubMed

    Pérez-Espona, S; Pérez-Barbería, F J; McLeod, J E; Jiggins, C D; Gordon, I J; Pemberton, J M

    2008-02-01

    Landscape features have been shown to strongly influence dispersal and, consequently, the genetic population structure of organisms. Studies quantifying the effect of landscape features on gene flow of large mammals with high dispersal capabilities are rare and have mainly been focused at large geographical scales. In this study, we assessed the influence of several natural and human-made landscape features on red deer gene flow in the Scottish Highlands by analysing 695 individuals for 21 microsatellite markers. Despite the relatively small scale of the study area (115 x 87 km), significant population structure was found using F-statistics (F(ST) = 0.019) and the program structure, with major differentiation found between populations sampled on either side of the main geographical barrier (the Great Glen). To assess the effect of landscape features on red deer population structure, the ArcMap GIS was used to create cost-distance matrices for moving between populations, using a range of cost values for each of the landscape features under consideration. Landscape features were shown to significantly affect red deer gene flow as they explained a greater proportion of the genetic variation than the geographical distance between populations. Sea lochs were found to be the most important red deer gene flow barriers in our study area, followed by mountain slopes, roads and forests. Inland lochs and rivers were identified as landscape features that might facilitate gene flow of red deer. Additionally, we explored the effect of choosing arbitrary cell cost values to construct least cost-distance matrices and described a method for improving the selection of cell cost values for a particular landscape feature.

  2. Flow, affect and visual creativity.

    PubMed

    Cseh, Genevieve M; Phillips, Louise H; Pearson, David G

    2015-01-01

    Flow (being in the zone) is purported to have positive consequences in terms of affect and performance; however, there is no empirical evidence about these links in visual creativity. Positive affect often--but inconsistently--facilitates creativity, and both may be linked to experiencing flow. This study aimed to determine relationships between these variables within visual creativity. Participants performed the creative mental synthesis task to simulate the creative process. Affect change (pre- vs. post-task) and flow were measured via questionnaires. The creativity of synthesis drawings was rated objectively and subjectively by judges. Findings empirically demonstrate that flow is related to affect improvement during visual creativity. Affect change was linked to productivity and self-rated creativity, but no other objective or subjective performance measures. Flow was unrelated to all external performance measures but was highly correlated with self-rated creativity; flow may therefore motivate perseverance towards eventual excellence rather than provide direct cognitive enhancement.

  3. Chromosomal rearrangements do not seem to affect the gene flow in hybrid zones between karyotypic races of the common shrew (Sorex araneus).

    PubMed

    Horn, Agnès; Basset, Patrick; Yannic, Glenn; Banaszek, Agata; Borodin, Pavel M; Bulatova, Nina S; Jadwiszczak, Katarzyna; Jones, Ross M; Polyakov, Andrei V; Ratkiewicz, Miroslaw; Searle, Jeremy B; Shchipanov, Nikolai A; Zima, Jan; Hausser, Jacques

    2012-03-01

    Chromosomal rearrangements are proposed to promote genetic differentiation between chromosomally differentiated taxa and therefore promote speciation. Due to their remarkable karyotypic polymorphism, the shrews of the Sorex araneus group were used to investigate the impact of chromosomal rearrangements on gene flow. Five intraspecific chromosomal hybrid zones characterized by different levels of karyotypic complexity were studied using 16 microsatellites markers. We observed low levels of genetic differentiation even in the hybrid zones with the highest karyotypic complexity. No evidence of restricted gene flow between differently rearranged chromosomes was observed. Contrary to what was observed at the interspecific level, the effect of chromosomal rearrangements on gene flow was undetectable within the S. araneus species.

  4. Targeted gene flow for conservation.

    PubMed

    Kelly, Ella; Phillips, Ben L

    2016-04-01

    Anthropogenic threats often impose strong selection on affected populations, causing rapid evolutionary responses. Unfortunately, these adaptive responses are rarely harnessed for conservation. We suggest that conservation managers pay close attention to adaptive processes and geographic variation, with an eye to using them for conservation goals. Translocating pre-adapted individuals into recipient populations is currently considered a potentially important management tool in the face of climate change. Targeted gene flow, which involves moving individuals with favorable traits to areas where these traits would have a conservation benefit, could have a much broader application in conservation. Across a species' range there may be long-standing geographic variation in traits or variation may have rapidly developed in response to a threatening process. Targeted gene flow could be used to promote natural resistance to threats to increase species resilience. We suggest that targeted gene flow is a currently underappreciated strategy in conservation that has applications ranging from the management of invasive species and their impacts to controlling the impact and virulence of pathogens.

  5. Small-scale patterns in snowmelt timing affect gene flow and the distribution of genetic diversity in the alpine dwarf shrub Salix herbacea

    PubMed Central

    Cortés, A J; Waeber, S; Lexer, C; Sedlacek, J; Wheeler, J A; van Kleunen, M; Bossdorf, O; Hoch, G; Rixen, C; Wipf, S; Karrenberg, S

    2014-01-01

    Current threats to biodiversity, such as climate change, are thought to alter the within-species genetic diversity among microhabitats in highly heterogeneous alpine environments. Assessing the spatial organization and dynamics of genetic diversity within species can help to predict the responses of organisms to environmental change. In this study, we evaluated whether small-scale heterogeneity in snowmelt timing restricts gene flow between microhabitats in the common long-lived dwarf shrub Salix herbacea L. We surveyed 273 genets across 12 early- and late-snowmelt sites (that is, ridges and snowbeds) in the Swiss Alps for phenological variation over 2 years and for genetic variation using seven SSR markers. Phenological differentiation triggered by differences in snowmelt timing did not correlate with genetic differentiation between microhabitats. On the contrary, extensive gene flow appeared to occur between microhabitats and slightly less extensively among adjacent mountains. However, ridges exhibited significantly lower levels of genetic diversity than snowbeds, and patterns of effective population size (Ne) and migration (Nem) between microhabitats were strongly asymmetric, with ridges acting as sources and snowbeds as sinks. As no recent genetic bottlenecks were detected in the studied sites, this asymmetry is likely to reflect current meta-population dynamics of the species dominated by gene flow via seeds rather than ancient re-colonization after the last glacial period. Overall, our results suggest that seed dispersal prevents snowmelt-driven genetic isolation, and snowbeds act as sinks of genetic diversity. We discuss the consequences of such small-scale variation in gene flow and diversity levels for population responses to climate change. PMID:24619183

  6. Flow of affective information between communicating brains.

    PubMed

    Anders, Silke; Heinzle, Jakob; Weiskopf, Nikolaus; Ethofer, Thomas; Haynes, John-Dylan

    2011-01-01

    When people interact, affective information is transmitted between their brains. Modern imaging techniques permit to investigate the dynamics of this brain-to-brain transfer of information. Here, we used information-based functional magnetic resonance imaging (fMRI) to investigate the flow of affective information between the brains of senders and perceivers engaged in ongoing facial communication of affect. We found that the level of neural activity within a distributed network of the perceiver's brain can be successfully predicted from the neural activity in the same network in the sender's brain, depending on the affect that is currently being communicated. Furthermore, there was a temporal succession in the flow of affective information from the sender's brain to the perceiver's brain, with information in the perceiver's brain being significantly delayed relative to information in the sender's brain. This delay decreased over time, possibly reflecting some 'tuning in' of the perceiver with the sender. Our data support current theories of intersubjectivity by providing direct evidence that during ongoing facial communication a 'shared space' of affect is successively built up between senders and perceivers of affective facial signals.

  7. Does inbreeding affect gene expression in birds?

    PubMed

    Hansson, Bengt; Naurin, Sara; Hasselquist, Dennis

    2014-09-01

    Inbreeding increases homozygosity, exposes genome-wide recessive deleterious alleles and often reduces fitness. The physiological and reproductive consequences of inbreeding may be manifested already during gene regulation, but the degree to which inbreeding influences gene expression is unknown in most organisms, including in birds. To evaluate the pattern of inbreeding-affected gene expression over the genome and in relation to sex, we performed a transcriptome-wide gene expression (10 695 genes) study of brain tissue of 10-day-old inbred and outbred, male and female zebra finches. We found significantly lower gene expression in females compared with males at Z-linked genes, confirming that dosage compensation is incomplete in female birds. However, inbreeding did not affect gene expression at autosomal or sex-linked genes, neither in males nor in females. Analyses of single genes again found a clear sex-biased expression at Z-linked genes, whereas only a single gene was significantly affected by inbreeding. The weak effect of inbreeding on gene expression in zebra finches contrasts to the situation, for example, in Drosophila where inbreeding has been found to influence gene expression more generally and at stress-related genes in particular.

  8. How Forest Inhomogeneities Affect the Edge Flow

    NASA Astrophysics Data System (ADS)

    Boudreault, Louis-Étienne; Dupont, Sylvain; Bechmann, Andreas; Dellwik, Ebba

    2017-03-01

    Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities ({>}1 m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge, the forest inhomogeneities accentuate the canopy-top turbulence and the skewness of the wind-velocity components while the momentum flux remains unchanged. This leads to a lower efficiency in the turbulent transport of momentum within the canopy. Dispersive fluxes are only significant in the upper canopy. Above the canopy, the mean flow is less affected by the forest inhomogeneities. The inhomogeneities induce an increase in the mean wind speed that was found to be equivalent to a decrease in the aerodynamic height of the canopy. Overall, these results highlight the importance of forest inhomogeneities when looking at canopy-atmosphere exchanges in forest-edge regions.

  9. How Forest Inhomogeneities Affect the Edge Flow

    NASA Astrophysics Data System (ADS)

    Boudreault, Louis-Étienne; Dupont, Sylvain; Bechmann, Andreas; Dellwik, Ebba

    2016-09-01

    Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities ({>}1 m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge, the forest inhomogeneities accentuate the canopy-top turbulence and the skewness of the wind-velocity components while the momentum flux remains unchanged. This leads to a lower efficiency in the turbulent transport of momentum within the canopy. Dispersive fluxes are only significant in the upper canopy. Above the canopy, the mean flow is less affected by the forest inhomogeneities. The inhomogeneities induce an increase in the mean wind speed that was found to be equivalent to a decrease in the aerodynamic height of the canopy. Overall, these results highlight the importance of forest inhomogeneities when looking at canopy-atmosphere exchanges in forest-edge regions.

  10. Genotyping-by-sequencing approach indicates geographic distance as the main factor affecting genetic structure and gene flow in Brazilian populations of Grapholita molesta (Lepidoptera, Tortricidae)

    PubMed Central

    Silva-Brandão, Karina Lucas; Silva, Oscar Arnaldo Batista Neto e; Brandão, Marcelo Mendes; Omoto, Celso; Sperling, Felix A H

    2015-01-01

    The oriental fruit moth Grapholita molesta is one of the major pests of stone and pome fruit species in Brazil. Here, we applied 1226 SNPs obtained by genotyping-by-sequencing to test whether host species associations or other factors such as geographic distance structured populations of this pest. Populations from the main areas of occurrence of G. molesta were sampled principally from peach and apple orchards. Three main clusters were recovered by neighbor-joining analysis, all defined by geographic proximity between sampling localities. Overall genetic structure inferred by a nonhierarchical amova resulted in a significant ΦST value = 0.19109. Here, we demonstrate for the first time that SNPs gathered by genotyping-by-sequencing can be used to infer genetic structure of a pest insect in Brazil; moreover, our results indicate that those markers are very informative even over a restricted geographic scale. We also demonstrate that host plant association has little effect on genetic structure among Brazilian populations of G. molesta; on the other hand, reduced gene flow promoted by geographic isolation has a stronger impact on population differentiation. PMID:26029261

  11. Exploring Online Game Players' Flow Experiences and Positive Affect

    ERIC Educational Resources Information Center

    Chiang, Yu-Tzu; Lin, Sunny S. J.; Cheng, Chao-Yang; Liu, Eric Zhi-Feng

    2011-01-01

    The authors conducted two studies to explore online game players' flow experiences and positive affect. Our findings indicated that online game are capable of evoking flow experiences and positive affect, and games of violent or nonviolent type may not arouse players' aggression. The players could be placed into four flow conditions: flow,…

  12. Gene flow from glyphosate-resistant crops.

    PubMed

    Mallory-Smith, Carol; Zapiola, Maria

    2008-04-01

    Gene flow from transgenic glyphosate-resistant crops can result in the adventitious presence of the transgene, which may negatively impact markets. Gene flow can also produce glyphosate-resistant plants that may interfere with weed management systems. The objective of this article is to review the gene flow literature as it pertains to glyphosate-resistant crops. Gene flow is a natural phenomenon not unique to transgenic crops and can occur via pollen, seed and, in some cases, vegetative propagules. Gene flow via pollen can occur in all crops, even those that are considered to be self-pollinated, because all have low levels of outcrossing. Gene flow via seed or vegetative propagules occurs when they are moved naturally or by humans during crop production and commercialization. There are many factors that influence gene flow; therefore, it is difficult to prevent or predict. Gene flow via pollen and seed from glyphosate-resistant canola and creeping bentgrass fields has been documented. The adventitious presence of the transgene responsible for glyphosate resistance has been found in commercial seed lots of canola, corn and soybeans. In general, the glyphosate-resistant trait is not considered to provide an ecological advantage. However, regulators should consider the examples of gene flow from glyphosate-resistant crops when formulating rules for the release of crops with traits that could negatively impact the environment or human health.

  13. Mating system as a barrier to gene flow.

    PubMed

    Hu, Xin-Sheng

    2015-05-01

    Understanding mating system as one of reproductive isolating barriers remains important although this barrier is classified in a different sense from behavioral, ecological, and mechanical isolating barriers. Selfing enhances incipient speciation while outcrossing facilitates species integrity. Here, I study how mating system affects gene exchanges between genetically diverging species in a hybrid zone. Results show that a predominant selfing species has a greater barrier to selective gene flow than does a predominant outcrossing species. Barrier to neutral gene flow convexly changes with the selfing rate due to linkage disequilibrium, with a maximum at around intermediate selfing rate. Asymmetric transient or steady-state barriers to neutral gene flow occur between two sides of a hybrid zone when the neutral gene is affected by its linked selective gene whose alternative alleles are adaptive to heterogeneous habitats. Selfing interacts with both a physical barrier and a density-dependent ecological regulation (a logarithmic model) to strengthen the barriers to neutral and selective gene flow. This theory helps to interpret incipient speciation driven by selfing or to explain the asymmetric gene flow or unequal genomic mixtures between closely related species caused by their asymmetric mating systems in natural hybrid zones.

  14. Assessment of gene flow from a herbicide-resistant indica rice (Oryza sativa L.) to the Costa Rican weedy rice (Oryza sativa) in Tropical America: factors affecting hybridization rates and characterization of F1 hybrids.

    PubMed

    Olguin, Elena R Sanchez; Arrieta-Espinoza, Griselda; Lobo, Jorge A; Espinoza-Esquivel, Ana M

    2009-08-01

    Herbicide-resistant rice cultivars allow selective weed control. A glufosinate indica rice has been developed locally. However, there is concern about weedy rice becoming herbicide resistant through gene flow. Therefore, assessment of gene flow from indica rice cultivars to weedy rice is crucial in Tropical America. A field trial mimicking crop-weed growing patterns was established to assess the rate of hybridization between a Costa Rican glufosinate-resistant rice line (PPT-R) and 58 weedy rice accessions belonging to six weedy rice morphotypes. The effects of overlapping anthesis, morphotype, weedy accession/PPT-R percentage, and the particular weedy accession on hybridization rates were evaluated. Weedy rice accessions with short overlapping anthesis (4-9 days) had lower average hybridization rates (0.1%) than long anthesis overlapping (10-14 days) accessions (0.3%). Hybridization also varied according to weedy rice morphotype and accession. Sativa-like morphotypes (WM-020, WM-120) hybridized more readily than intermediate (WM-023, WM-073, WM-121) and rufipogon-like (WM-329) morphotypes. No hybrids were identified in 11 of the 58 accessions analyzed, 21 accessions had hybridization rates from 0.01% to 0.09%, 21 had rates from 0.1% to 0.9%, and 5 had frequencies from 1% to 2.3%. Another field trial was established to compare the weedy rice-PPT-R F(1) hybrids with their parental lines under noncompetitive conditions. F(1) hybrids had a greater phenotypic variation. They had positive heterosis for vegetative trait and reproductive potential (number of spikelets and panicle length) traits, but negative heterosis for seed set. This study demonstrated the complexity of factors affecting hybridization rates in Tropical America and suggested that the phenotype of F(1) hybrids facilitate their identification in the rice fields.

  15. The flow of gene expression.

    PubMed

    Misteli, Tom

    2004-03-01

    Gene expression is a highly interconnected multistep process. A recent meeting in Iguazu Falls, Argentina, highlighted the need to uncover both the molecular details of each single step as well as the mechanisms of coordination among processes in order to fully understand the expression of genes.

  16. Marker gene tethering by nucleoporins affects gene expression in plants.

    PubMed

    Smith, Sarah; Galinha, Carla; Desset, Sophie; Tolmie, Frances; Evans, David; Tatout, Christophe; Graumann, Katja

    2015-01-01

    In non-plant systems, chromatin association with the nuclear periphery affects gene expression, where interactions with nuclear envelope proteins can repress and interactions with nucleoporins can enhance transcription. In plants, both hetero- and euchromatin can localize at the nuclear periphery, but the effect of proximity to the nuclear periphery on gene expression remains largely unknown. This study explores the putative function of Seh1 and Nup50a nucleoporins on gene expression by using the Lac Operator / Lac Repressor (LacI-LacO) system adapted to Arabidopsis thaliana. We used LacO fused to the luciferase reporter gene (LacO:Luc) to investigate whether binding of the LacO:Luc transgene to nucleoporin:LacI protein fusions alters luciferase expression. Two separate nucleoporin-LacI-YFP fusions were introduced into single insert, homozygous LacO:Luc Arabidopsis plants. Homozygous plants carrying LacO:Luc and a single insert of either Seh1-LacI-YFP or Nup50a-LacI-YFP were tested for luciferase activity and compared to plants containing LacO:Luc only. Seh1-LacI-YFP increased, while Nup50a-LacI-YFP decreased luciferase activity. Seh1-LacI-YFP accumulated at the nuclear periphery as expected, while Nup50a-LacI-YFP was nucleoplasmic and was not selected for further study. Protein and RNA levels of luciferase were quantified by western blotting and RT-qPCR, respectively. Increased luciferase activity in LacO:Luc+Seh1-LacI-YFP plants was correlated with increased luciferase protein and RNA levels. This change of luciferase expression was abolished by disruption of LacI-LacO binding by treating with IPTG in young seedlings, rosette leaves and inflorescences. This study suggests that association with the nuclear periphery is involved in the regulation of gene expression in plants.

  17. Major genes affecting ovulation rate in sheep

    PubMed Central

    2005-01-01

    Research conducted since 1980 in relation to inheritance patterns and DNA testing of major genes for prolificacy has shown that major genes have the potential to significantly increase the reproductive performance of sheep flocks throughout the world. Mutations that increase ovulation rate have been discovered in the BMPR-1B, BMP15 and GDF9 genes, and others are known to exist from the expressed inheritance patterns although the mutations have not yet been located. In the case of BMP15, four different mutations have been discovered but each produces the same phenotype. The modes of inheritance of the different prolificacy genes include autosomal dominant genes with additive effects on ovulation rate (BMPR-1B; Lacaune), autosomal over-dominant genes with infertility in homozygous females (GDF9), X-linked over-dominant genes with infertility in homozygous females (BMP15), and X-linked maternally imprinted genes (FecX2). The size of the effect of one copy of a mutation on ovulation rate ranges from an extra 0.4 ovulations per oestrus for the FecX2 mutation to an extra 1.5 ovulations per oestrus for the BMPR-1B mutation. A commercial DNA testing service enables some of these mutations to be used in genetic improvement programmes based on marker assisted selection. PMID:15601592

  18. Major genes affecting ovulation rate in sheep.

    PubMed

    Davis, George Henry

    2005-01-01

    Research conducted since 1980 in relation to inheritance patterns and DNA testing of major genes for prolificacy has shown that major genes have the potential to significantly increase the reproductive performance of sheep flocks throughout the world. Mutations that increase ovulation rate have been discovered in the BMPR-1B, BMP15 and GDF9 genes, and others are known to exist from the expressed inheritance patterns although the mutations have not yet been located. In the case of BMP15, four different mutations have been discovered but each produces the same phenotype. The modes of inheritance of the different prolificacy genes include autosomal dominant genes with additive effects on ovulation rate (BMPR-1B; Lacaune), autosomal over-dominant genes with infertility in homozygous females (GDF9), X-linked over-dominant genes with infertility in homozygous females (BMP15), and X-linked maternally imprinted genes (FecX2). The size of the effect of one copy of a mutation on ovulation rate ranges from an extra 0.4 ovulations per oestrus for the FecX2 mutation to an extra 1.5 ovulations per oestrus for the BMPR-1B mutation. A commercial DNA testing service enables some of these mutations to be used in genetic improvement programmes based on marker assisted selection.

  19. Estimating freshwater flows from tidally affected hydrographic data

    NASA Astrophysics Data System (ADS)

    Pagendam, D. E.; Percival, D. B.

    2015-03-01

    Detiding end-of-catchment flow data are an important step in determining the total volumes of freshwater (and associated pollutant loads) entering the ocean. We examine three approaches for separating freshwater and tidal flows from tidally affected data: (i) a simple low-pass Butterworth filter (BWF); (ii) a robust, harmonic analysis with Kalman smoothing (RoHAKS) which is a novel approach introduced in this paper; and (iii) dynamic harmonic regression (DHR). Using hydrographic data collected in the Logan River, Australia, over a period of 452 days, we judge the accuracy of the three methods based on three criteria: consistency of freshwater flows with upstream gauges; consistency of total discharge volumes with the raw data over the event; and minimal upstream flow. A simulation experiment shows that RoHAKS outperforms both BWF and DHR on a number of criteria. In addition, RoHAKS enjoys a computational advantage over DHR in speed and use of freely available software.

  20. Methods of Combinatorial Optimization to Reveal Factors Affecting Gene Length

    PubMed Central

    Bolshoy, Alexander; Tatarinova, Tatiana

    2012-01-01

    In this paper we present a novel method for genome ranking according to gene lengths. The main outcomes described in this paper are the following: the formulation of the genome ranking problem, presentation of relevant approaches to solve it, and the demonstration of preliminary results from prokaryotic genomes ordering. Using a subset of prokaryotic genomes, we attempted to uncover factors affecting gene length. We have demonstrated that hyperthermophilic species have shorter genes as compared with mesophilic organisms, which probably means that environmental factors affect gene length. Moreover, these preliminary results show that environmental factors group together in ranking evolutionary distant species. PMID:23300345

  1. Methods of combinatorial optimization to reveal factors affecting gene length.

    PubMed

    Bolshoy, Alexander; Tatarinova, Tatiana

    2012-01-01

    In this paper we present a novel method for genome ranking according to gene lengths. The main outcomes described in this paper are the following: the formulation of the genome ranking problem, presentation of relevant approaches to solve it, and the demonstration of preliminary results from prokaryotic genomes ordering. Using a subset of prokaryotic genomes, we attempted to uncover factors affecting gene length. We have demonstrated that hyperthermophilic species have shorter genes as compared with mesophilic organisms, which probably means that environmental factors affect gene length. Moreover, these preliminary results show that environmental factors group together in ranking evolutionary distant species.

  2. Lymphangion coordination minimally affects mean flow in lymphatic vessels.

    PubMed

    Venugopal, Arun M; Stewart, Randolph H; Laine, Glen A; Dongaonkar, Ranjeet M; Quick, Christopher M

    2007-08-01

    The lymphatic system returns interstitial fluid to the central venous circulation, in part, by the cyclical contraction of a series of "lymphangion pumps" in a lymphatic vessel. The dynamics of individual lymphangions have been well characterized in vitro; their frequencies and strengths of contraction are sensitive to both preload and afterload. However, lymphangion interaction within a lymphatic vessel has been poorly characterized because it is difficult to experimentally alter properties of individual lymphangions and because the afterload of one lymphangion is coupled to the preload of another. To determine the effects of lymphangion interaction on lymph flow, we adapted an existing mathematical model of a lymphangion (characterizing lymphangion contractility, lymph viscosity, and inertia) to create a new lymphatic vessel model consisting of several lymphangions in series. The lymphatic vessel model was validated with focused experiments on bovine mesenteric lymphatic vessels in vitro. The model was then used to predict changes in lymph flow with different time delays between onset of contraction of adjacent lymphangions (coordinated case) and with different relative lymphangion contraction frequencies (noncoordinated case). Coordination of contraction had little impact on mean flow. Furthermore, orthograde and retrograde propagations of contractile waves had similar effects on flow. Model results explain why neither retrograde propagation of contractile waves nor the lack of electrical continuity between lymphangions adversely impacts flow. Because lymphangion coordination minimally affects mean flow in lymphatic vessels, lymphangions have flexibility to independently adapt to local conditions.

  3. How the Neanderthal in Your Genes Affects Your Health

    MedlinePlus

    ... medlineplus.gov/news/fullstory_163749.html How the Neanderthal in Your Genes Affects Your Health The DNA ... 23, 2017 THURSDAY, Feb. 23, 2017 (HealthDay News) -- Neanderthals were wiped out about 40,000 years ago, ...

  4. Gene Flow and Selection in a Cline

    PubMed Central

    Slatkin, Montgomery

    1973-01-01

    A model of the effect of gene flow and natural selection in a continuously distributed, infinite population is developed. Different patterns of spatial variation in selective pressures are considered, including a step change in the environment, a "pocket" in the environment and a periodically varying environment. Also, the problem of the effect of a geographic barrier to dispersal is analyzed. The results are: (1) there is a characteristic length scale of variation of gene frequencies, (see PDF). The population cannot respond to changes in environmental conditions which occur over a distance less than the characteristic length. The result does not depend either on the pattern of variation in selective pressures or on the exact shape of the dispersal function. (2) The reduction in the fitness of the heterozygote causes a cline in gene frequencies to become steeper. (3) A geographic barrier to dispersal causes a drastic change in the gene frequencies at the barrier only when almost all of the individuals trying to cross the barrier are stopped. PMID:4778791

  5. Living where the flow is right: How flow affects feeding in bryozoans.

    PubMed

    Pratt, Marney C

    2008-12-01

    Bryozoans are suspension feeding colonial animals that remain attached to the substratum or other surfaces. How well a bryozoan can feed in a particular flow regime could help determine the distribution and abundance of that bryozoan. I tested how velocity of flow affects feeding rate in four species of bryozoans in the laboratory and how these species perform in different flow regimes in the field. I found that one species, Membranipora membranacea, had a higher ingestion rate than did the other three species at all velocities of flow tested. Membranipora also had a higher rate of ingestion at intermediate velocities, while velocity did not have as strong an effect on ingestion rate in the other three species. As predicted from the feeding experiments, all four species generally had greater abundance, attained a larger size, grew faster, and survived longer in flow regimes in which feeding is higher. Also as predicted, Membranipora had greater abundance, attained a larger size, grew faster, and survived longer than did the other three species both in slower and faster flow regimes in the field. Understanding how flow affects feeding can help predict the distribution and abundance of bryozoans in the field. Because especially efficient filterers like Membranipora can grow faster and have higher survival under a wide range of conditions of flow, this species may be able to outcompete many other species or take advantage of ephemeral habitats, thereby becoming a potentially effective invasive species as has been seen in the Gulf of Maine.

  6. A continuous method for gene flow.

    PubMed

    Palczewski, Michal; Beerli, Peter

    2013-07-01

    Most modern population genetics inference methods are based on the coalescence framework. Methods that allow estimating parameters of structured populations commonly insert migration events into the genealogies. For these methods the calculation of the coalescence probability density of a genealogy requires a product over all time periods between events. Data sets that contain populations with high rates of gene flow among them require an enormous number of calculations. A new method, transition probability-structured coalescence (TPSC), replaces the discrete migration events with probability statements. Because the speed of calculation is independent of the amount of gene flow, this method allows calculating the coalescence densities efficiently. The current implementation of TPSC uses an approximation simplifying the interaction among lineages. Simulations and coverage comparisons of TPSC vs. MIGRATE show that TPSC allows estimation of high migration rates more precisely, but because of the approximation the estimation of low migration rates is biased. The implementation of TPSC into programs that calculate quantities on phylogenetic tree structures is straightforward, so the TPSC approach will facilitate more general inferences in many computer programs.

  7. A parasitic selfish gene that affects host promiscuity.

    PubMed

    Giraldo-Perez, Paulina; Goddard, Matthew R

    2013-11-07

    Selfish genes demonstrate transmission bias and invade sexual populations despite conferring no benefit to their hosts. While the molecular genetics and evolutionary dynamics of selfish genes are reasonably well characterized, their effects on hosts are not. Homing endonuclease genes (HEGs) are one well-studied family of selfish genes that are assumed to be benign. However, we show that carrying HEGs is costly for Saccharomyces cerevisiae, demonstrating that these genetic elements are not necessarily benign but maybe parasitic. We estimate a selective load of approximately 1-2% in 'natural' niches. The second aspect we examine is the ability of HEGs to affect hosts' sexual behaviour. As all selfish genes critically rely on sex for spread, then any selfish gene correlated with increased host sexuality will enjoy a transmission advantage. While classic parasites are known to manipulate host behaviour, we are not aware of any evidence showing a selfish gene is capable of affecting host promiscuity. The data presented here show a selfish element may increase the propensity of its eukaryote host to undergo sex and along with increased rates of non-Mendelian inheritance, this may counterbalance mitotic selective load and promote spread. Demonstration that selfish genes are correlated with increased promiscuity in eukaryotes connects with ideas suggesting that selfish genes promoted the evolution of sex initially.

  8. Contrasting historical and recent gene flow among African buffalo herds in the Caprivi Strip of Namibia.

    PubMed

    Epps, Clinton W; Castillo, Jessica A; Schmidt-Küntzel, Anne; du Preez, Pierre; Stuart-Hill, Greg; Jago, Mark; Naidoo, Robin

    2013-03-01

    Population genetic structure is often used to infer population connectivity, but genetic structure may largely reflect historical rather than recent processes. We contrasted genetic structure with recent gene-flow estimates among 6 herds of African buffalo (Syncerus caffer) in the Caprivi Strip, Namibia, using 134 individuals genotyped at 10 microsatellite loci. We tested whether historical and recent gene flows were influenced by distance, potential barriers (rivers), or landscape resistance (distance from water). We also tested at what scales individuals were more related than expected by chance. Genetic structure across the Caprivi Strip was weak, indicating that historically, gene flow was strong and was not affected by distance, barriers, or landscape resistance. Our analysis of simulated data suggested that genetic structure would be unlikely to reflect human disturbances in the last 10-20 generations (75-150 years) because of slow predicted rates of genetic drift, but recent gene-flow estimates would be affected. Recent gene-flow estimates were not consistently affected by rivers or distance to water but showed that isolation by distance appears to be developing. Average relatedness estimates among individuals exceeded random expectations only within herds. We conclude that historically, African buffalo moved freely throughout the Caprivi Strip, whereas recent gene flow has been more restricted. Our findings support efforts to maintain the connectivity of buffalo herds across this region and demonstrate the utility of contrasting genetic inferences from different time scales.

  9. Employing a composite gene-flow index to numerically quantify a crop's potential for gene flow: an Irish perspective.

    PubMed

    Flannery, Marie-Louise; Meade, Conor; Mullins, Ewen

    2005-01-01

    Guidelines to ensure the efficient coexistence of genetically modified (GM) and conventional crops are currently being considered across the European Union. The purpose of this strategy is to describe the measures a farmer must adopt to minimize the admixture of GM and non-GM crops. Minimizing pollen/seed-mediated gene flow between GM and non-GM crops is central to successful coexistence. However no system is currently available to permit the numeric quantification of a crop's propensity for pollen/seed-mediated gene flow. The provision of such a system could permit a background level of gene flow, specific for a particular conventional crop, to be calculated. Here we present a gene flow index model implemented using the principal arable crops in Ireland as a model dataset. The objective of this research was to establish a baseline gene flow data set for Ireland's primary conventional crops through the provision of a simple numerical index. This Gene Flow Index (GFI) incorporates four strands of crop-mediated gene flow (crop pollen-to-crop, crop pollen-to-wild, crop seed-to-volunteer and crop seed-to-feral) into a format that permits the calculation of a crop's gene flow potential. Responsive to regional parameters, we have applied the model to sugar beet, oilseed rape, potato, ryegrass, maize, wheat and barley. We propose that the attained indices will highlight those crops that require additional measures in order to minimize gene flow in accordance with anticipated coexistence guidelines.

  10. Arc Conductance and Flow Velocity Affected by Transient Recovery Voltage

    NASA Astrophysics Data System (ADS)

    Fukuoka, Reo; Ishikawa, Yuya; Ono, Seisui; Sato, Ken; Yamamoto, Shinji; Iwao, Toru

    2016-09-01

    Recently, the stable supply of electric power is indispensable. The GCB (Gas Circuit Breaker) can prevent the spread of the fault current. However, it should have the reliability more. Therefore the GCB has been researched for performance improvement of the arc interruption of abnormal fault current without the fail. Therefore, it is important to prevent the breakdown such as the re-ignition and thermal re-ignition of arc after the arc interruption. It is necessary to reduce the arc conductance in order to prevent the re-ignition of arc. The arc conductance is derived from the temperature distribution and the volume of the arc. The temperature distribution of the arc is formed by convection. In this research, the arc conductance and flow velocity affected by transient recovery voltage are elucidated. The flow rate and temperature distribution of the arc is calculated with changing transient recovery voltage. In addition, the arc conductance is calculated in order to know the extinguish arc ability. As a result, when the transient recovery voltage increases, the probability of re-ignition increases. Therefore, the arc temperature and the arc conductance were increased.

  11. Bone mineral density-affecting genes in Africans.

    PubMed Central

    Gong, Gordon; Haynatzki, Gleb; Haynatzka, Vera; Howell, Ryan; Kosoko-Lasaki, Sade; Fu, Yun-Xin; Yu, Fei; Gallagher, John C.; Wilson, M. Roy

    2006-01-01

    BACKGROUND: We have recently reported the role of environmental exposure in the ethnic diversity of bone mineral density (BMD). Potential genetic difference has not been adequately assessed. PURPOSE: To determine allele frequencies of BMD-affecting genes and their association with BMD in Africans. METHODS: Allele frequencies at 18 polymorphic sites in 13 genes that affect BMD in Asians and/or Caucasians were determined in 143 recent immigrants (55 men and 88 women, 18-51 years of age) from sub-Saharan Sudan to the United States. Genetic association studies were performed. RESULTS: Among the 14 single-nucleotide polymorphisms (SNPs), 10 were significantly different in allele frequency between Sudanese and Asians, and 10 between Sudanese and Caucasians. Only the osteocalcin gene was not significantly different in allele frequency among Sudanese, Asians and Caucasians. Allele frequencies in the TGFB, COL1A1 and CSR genes were extremely low (<0.04) in the Sudanese. Frequencies of microsatellite alleles in four genes were significantly different among Sudanese, Asians and Caucasians. SNPs in the VDR and ERalpha genes were associated with BMD and/or BMC (bone mineral content) at several bone sites. CONCLUSIONS: Genetic difference may play a role in the ethnic diversity in BMD and/or BMC. PMID:16895279

  12. Vicariance divergence and gene flow among islet populations of an endemic lizard.

    PubMed

    Runemark, Anna; Hey, Jody; Hansson, Bengt; Svensson, Erik I

    2012-01-01

    Allopatry and allopatric speciation can arise through two different mechanisms: vicariance or colonization through dispersal. Distinguishing between these different allopatric mechanisms is difficult and one of the major challenges in biogeographical research. Here, we address whether allopatric isolation in an endemic island lizard is the result of vicariance or dispersal. We estimated the amount and direction of gene flow during the divergence of isolated islet populations and subspecies of the endemic Skyros wall lizard Podarcis gaigeae, a phenotypically variable species that inhabits a major island and small islets in the Greek archipelago. We applied isolation-with-migration models to estimate population divergence times, population sizes and gene flow between islet-mainland population pairs. Divergence times were significantly correlated with independently estimated geological divergence times. This correlation strongly supports a vicariance scenario where islet populations have sequentially become isolated from the major island. We did not find evidence for significant gene flow within P. g. gaigeae. However, gene-flow estimates from the islet to the mainland populations were positively affected by islet area and negatively by distance between the islet and mainland. We also found evidence for gene flow from one subspecies (P. g. weigandi) into another (P. g. gaigeae), but not in the other direction. Ongoing gene flow between the subspecies suggests that even in this geographically allopatric scenario with the sea posing a strong barrier to dispersal, divergence with some gene flow is still feasible.

  13. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins

    PubMed Central

    Varrella, Stefano; Ruocco, Nadia; Ianora, Adrianna; Bentley, Matt G.; Costantini, Maria

    2016-01-01

    Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs) in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure. PMID:26914213

  14. Considering spatial and temporal scale in landscape-genetic studies of gene flow.

    PubMed

    Anderson, Corey Devin; Epperson, Bryan K; Fortin, Marie-Josée; Holderegger, Rolf; James, Patrick M A; Rosenberg, Michael S; Scribner, Kim T; Spear, Stephen

    2010-09-01

    Landscape features exist at multiple spatial and temporal scales, and these naturally affect spatial genetic structure and our ability to make inferences about gene flow. This article discusses how decisions about sampling of genotypes (including choices about analytical methods and genetic markers) should be driven by the scale of spatial genetic structure, the time frame that landscape features have existed in their current state, and all aspects of a species' life history. Researchers should use caution when making inferences about gene flow, especially when the spatial extent of the study area is limited. The scale of sampling of the landscape introduces different features that may affect gene flow. Sampling grain should be smaller than the average home-range size or dispersal distance of the study organism and, for raster data, existing research suggests that simplifying the thematic resolution into discrete classes may result in low power to detect effects on gene flow. Therefore, the methods used to characterize the landscape between sampling sites may be a primary determinant for the spatial scale at which analytical results are applicable, and the use of only one sampling scale for a particular statistical method may lead researchers to overlook important factors affecting gene flow. The particular analytical technique used to correlate landscape data and genetic data may also influence results; common landscape-genetic methods may not be suitable for all study systems, particularly when the rate of landscape change is faster than can be resolved by common molecular markers.

  15. Quantitative expression of candidate genes affecting eggshell color.

    PubMed

    Zheng, Chuanwei; Li, Zesheng; Yang, Ning; Ning, Zhonghua

    2014-05-01

    There are three pigments that affect the color of an eggshell: protoporphyrin, biliverdin and biliverdin-zinc chelate. Protoporphyrin is the main pigment in brown and light-brown eggshells, whereas very little protoporphyrin is found in white eggshells. Eggshell protoporphyrin is derived from the heme formation in birds. Coproporphyrinogen III oxidase (CPOX) and ferrochelatase (FECH) represent rate-limiting enzymes for the heme-biosynthetic pathway. Breast cancer resistance protein (BCRP), feline leukemia virus receptor (FLVCR), and heme-responsive gene-1 (HRG1) serve as primary transporters for both protoporphyrinogen and heme. Finally, four organic anion transporting polypeptide family members (including solute carrier organic anion transporter family, SLCO1C1, SLCO1A2, SLCO1B3 and LOC418189) may affect pigment transport within eggshells. Here we measured gene expression levels in key tissues of egg-producing hens. We analyzed three different types of hens that generated distinct eggshell colors: white, pink or brown. Our data revealed three ways in which eggshell color was genetically influenced. First, high-level expression of CPOX generated more protoporphyrinogen and a brown eggshell color. In contrast, high expression of FECH likely converted more protoporphyrinogen into heme, reduced protoporphyrinogen levels within the eggshell and generated a light color. Second, heme transporters also affected eggshell color. High-level expression of BCRP, HRG1 and FLVCR were associated with brown, white and generally lighter eggshell colors, respectively. Finally, protoporphyrin precipitation also affected eggshell color, as high expression of both SLCO1A2 and SLCO1C1 were associated with brown eggshell color. As such, we have identified seven genes in which expression levels in different tissues were associated with eggshell color.

  16. Common risk genes for affective and schizophrenic psychoses.

    PubMed

    Maier, Wolfgang

    2008-06-01

    The familial-genetic relationship between affective and schizophrenic disorders is receiving a re-emergence of interest. The reasons are a series of cross-diagnostic molecular-genetic discoveries: specific alleles in the genes for dysbindin (DTNBP1), neuregulin (NRG1) and DAOA (G72/G30) reveal associations for each of both groups of disorders in the same direction in some but not all reported studies. These findings cannot just be false positives because of confirming metaanalyses. Furthermore there is some pathophysiological support: the mentioned genes are involved in biochemical pathways, which are contributing to both disorders partly in a similar and partly in a different manner. The new levels of evidence enrich the classical continuity/discontinuity debate on the relationship between both groups of disorders.

  17. Deletion of PLCB1 gene in schizophrenia-affected patients.

    PubMed

    Lo Vasco, Vincenza Rita; Cardinale, Giuseppina; Polonia, Patrizia

    2012-04-01

    A prevalence of 1% in the general population and approximately 50% concordance rate in monozygotic twins was reported for schizophrenia, suggesting that genetic predisposition affecting neurodevelopmental processes might combine with environmental risk factors. A multitude of pathways seems to be involved in the aetiology and/or pathogenesis of schizophrenia, including dopaminergic, serotoninergic, muscarinic and glutamatergic signalling. The phosphoinositide signal transduction system and related phosphoinositide-specific phospholipase C (PI-PLC) enzymes seem to represent a point of convergence in these networking pathways during the development of selected brain regions. The existence of a susceptibility locus on the short arm of chromosome 20 moved us to analyse PLCB1, the gene codifying for PI-PLC β1 enzyme, which maps on 20p12. By using interphase fluorescent in situ hybridization methodology, we found deletions of PLCB1 in orbito-frontal cortex samples of schizophrenia-affected patients.

  18. Deletion of PLCB1 gene in schizophrenia-affected patients

    PubMed Central

    Vasco, Vincenza Rita Lo; Cardinale, Giuseppina; Polonia, Patrizia

    2012-01-01

    Abstract A prevalence of 1% in the general population and approximately 50% concordance rate in monozygotic twins was reported for schizophrenia, suggesting that genetic predisposition affecting neurodevelopmental processes might combine with environmental risk factors. A multitude of pathways seems to be involved in the aetiology and/or pathogenesis of schizophrenia, including dopaminergic, serotoninergic, muscarinic and glutamatergic signalling. The phosphoinositide signal transduction system and related phosphoinositide-specific phospholipase C (PI-PLC) enzymes seem to represent a point of convergence in these networking pathways during the development of selected brain regions. The existence of a susceptibility locus on the short arm of chromosome 20 moved us to analyse PLCB1, the gene codifying for PI-PLC β1 enzyme, which maps on 20p12. By using interphase fluorescent in situ hybridization methodology, we found deletions of PLCB1 in orbito-frontal cortex samples of schizophrenia-affected patients. PMID:22507702

  19. Estimating and Modeling Gene Flow for a Spatially Distributed Species

    DTIC Science & Technology

    1991-01-01

    AD-A238 221/I1 Estimating and modeling gene flow for a spatially distributed species JUL1 7 1961T. Burr 1 and T. V. Kurien 2 Department of Statistics...modeling gene flow for a spatially distributed species. By T. Burr and T. V. Kurien Departmeii Of Statistics Florida State University Abstract This...chromosome (referred to as a locus) is a meaningful string of several hundred symbols called a gene . Typ- ically there are many loci on a chromosome. The

  20. Speciation with gene flow on Lord Howe Island

    PubMed Central

    Papadopulos, Alexander S. T.; Baker, William J.; Crayn, Darren; Butlin, Roger K.; Kynast, Ralf G.; Hutton, Ian; Savolainen, Vincent

    2011-01-01

    Understanding the processes underlying the origin of species is a fundamental goal of biology. It is widely accepted that speciation requires an interruption of gene flow between populations: ongoing gene exchange is considered a major hindrance to population divergence and, ultimately, to the evolution of new species. Where a geographic barrier to reproductive isolation is lacking, a biological mechanism for speciation is required to counterbalance the homogenizing effect of gene flow. Speciation with initially strong gene flow is thought to be extremely rare, and few convincing empirical examples have been published. However, using phylogenetic, karyological, and ecological data for the flora of a minute oceanic island (Lord Howe Island, LHI), we demonstrate that speciation with gene flow may, in fact, be frequent in some instances and could account for one in five of the endemic plant species of LHI. We present 11 potential instances of species divergence with gene flow, including an in situ radiation of five species of Coprosma (Rubiaceae, the coffee family). These results, together with the speciation of Howea palms on LHI, challenge current views on the origin of species diversity. PMID:21730151

  1. Zebrafish Model for Functional Screening of Flow-Responsive Genes

    PubMed Central

    Serbanovic-Canic, Jovana; de Luca, Amalia; Warboys, Christina; Ferreira, Pedro F.; Luong, Le A.; Hsiao, Sarah; Gauci, Ismael; Mahmoud, Marwa; Feng, Shuang; Souilhol, Celine; Bowden, Neil; Ashton, John-Paul; Walczak, Henning; Firmin, David; Krams, Rob; Mason, Justin C.; Haskard, Dorian O.; Sherwin, Spencer; Ridger, Victoria; Chico, Timothy J.A.

    2017-01-01

    Objective— Atherosclerosis is initiated at branches and bends of arteries exposed to disturbed blood flow that generates low shear stress. This mechanical environment promotes lesions by inducing endothelial cell (EC) apoptosis and dysfunction via mechanisms that are incompletely understood. Although transcriptome-based studies have identified multiple shear-responsive genes, most of them have an unknown function. To address this, we investigated whether zebrafish embryos can be used for functional screening of mechanosensitive genes that regulate EC apoptosis in mammalian arteries. Approach and Results— First, we demonstrated that flow regulates EC apoptosis in developing zebrafish vasculature. Specifically, suppression of blood flow in zebrafish embryos (by targeting cardiac troponin) enhanced that rate of EC apoptosis (≈10%) compared with controls exposed to flow (≈1%). A panel of candidate regulators of apoptosis were identified by transcriptome profiling of ECs from high and low shear stress regions of the porcine aorta. Genes that displayed the greatest differential expression and possessed 1 to 2 zebrafish orthologues were screened for the regulation of apoptosis in zebrafish vasculature exposed to flow or no-flow conditions using a knockdown approach. A phenotypic change was observed in 4 genes; p53-related protein (PERP) and programmed cell death 2–like protein functioned as positive regulators of apoptosis, whereas angiopoietin-like 4 and cadherin 13 were negative regulators. The regulation of perp, cdh13, angptl4, and pdcd2l by shear stress and the effects of perp and cdh13 on EC apoptosis were confirmed by studies of cultured EC exposed to flow. Conclusions— We conclude that a zebrafish model of flow manipulation coupled to gene knockdown can be used for functional screening of mechanosensitive genes in vascular ECs, thus providing potential therapeutic targets to prevent or treat endothelial injury at atheroprone sites. PMID:27834691

  2. How does Low Impact Development affect Urban Base Flow?

    NASA Astrophysics Data System (ADS)

    Bhaskar, A.; Hogan, D. M.; Archfield, S. A.

    2015-12-01

    A novel form of urban development, Low Impact Development (LID), aims to engineer systems that replicate natural hydrologic functioning. LID includes the preservation of near-natural groundwater recharge via infiltration close to impervious surfaces where stormwater is generated. Our study watershed in Clarksburg, Maryland is an instrumented 1.11 km2 watershed developed between 2004 and 2010 with 73 infiltration-focused stormwater facilities, including bioretention facilities, dry wells, and dry swales. We examined changes to annual and monthly streamflow during and after urban development (2004—2014) and compared alterations to nearby forested and urban control watersheds. We show that total flow and base flow increased in the study watershed during development as compared to control watersheds. We also found that the study watershed had slower storm recessions after development and less seasonality in base flow. These changes may be due to a combination of urban processes occurring during development, including reduction in evapotranspiration and the increase in point sources of recharge. Precipitation that may have infiltrated a forested landscape pre-development, been stored in soil moisture, and eventually been transpired by plants may now be recharged to groundwater and become base flow. A transfer of evapotranspiration to base flow is an unintended alteration to the urban water budget, here observed in a watershed using LID.

  3. Selection overrides gene flow to break down maladaptive mimicry.

    PubMed

    Harper, George R; Pfennig, David W

    2008-02-28

    Predators typically avoid dangerous species, and batesian mimicry evolves when a palatable species (the 'mimic') co-opts a warning signal from a dangerous species (the 'model') and thereby deceives its potential predators. Because predators would not be under selection to avoid the model and any of its look-alikes in areas where the model is absent (that is, allopatry), batesian mimics should occur only in sympatry with their model. However, contrary to this expectation, batesian mimics often occur in allopatry. Here we focus on one such example--a coral snake mimic. Using indirect DNA-based methods, we provide evidence suggesting that mimics migrate from sympatry, where mimicry is favoured, to allopatry, where it is disfavoured. Such gene flow is much stronger in nuclear genes than in maternally inherited mitochondrial genes, indicating that dispersal by males may explain the presence of mimetic phenotypes in allopatry. Despite this gene flow, however, individuals from allopatry resemble the model less than do individuals from sympatry. We show that this breakdown of mimicry probably reflects predator-mediated selection acting against individuals expressing the more conspicuous mimetic phenotype in allopatry. Thus, although gene flow may explain why batesian mimics occur in allopatry, natural selection may often override such gene flow and promote the evolution of non-mimetic phenotypes in such areas.

  4. Melatonin differentially affects vascular blood flow in humans.

    PubMed

    Cook, Jonathan S; Sauder, Charity L; Ray, Chester A

    2011-02-01

    Melatonin is synthesized and released into the circulation by the pineal gland in a circadian rhythm. Melatonin has been demonstrated to differentially alter blood flow to assorted vascular beds by the activation of different melatonin receptors in animal models. The purpose of the present study was to determine the effect of melatonin on blood flow to various vascular beds in humans. Renal (Doppler ultrasound), forearm (venous occlusion plethysmography), and cerebral blood flow (transcranial Doppler), arterial blood pressure, and heart rate were measured in 10 healthy subjects (29±1 yr; 5 men and 5 women) in the supine position for 3 min. The protocol began 45 min after the ingestion of either melatonin (3 mg) or placebo (sucrose). Subjects returned at least 2 days later at the same time of day to repeat the trial after ingesting the other substance. Melatonin did not alter heart rate and mean arterial pressure. Renal blood flow velocity (RBFV) and renal vascular conductance (RVC) were lower during the melatonin trial compared with placebo (RBFV, 40.5±2.9 vs. 45.4±1.5 cm/s; and RVC, 0.47±0.02 vs. 0.54±0.01 cm·s(-1)·mmHg(-1), respectively). In contrast, forearm blood flow (FBF) and forearm vascular conductance (FVC) were greater with melatonin compared with placebo (FBF, 2.4±0.2 vs. 1.9±0.1 ml·100 ml(-1)·min(-1); and FVC, 0.029±0.003 vs. 0.023±0.002 arbitrary units, respectively). Melatonin did not alter cerebral blood flow measurements compared with placebo. Additionally, phentolamine (5-mg bolus) after melatonin reversed the decrease in RVC, suggesting that melatonin increases sympathetic outflow to the kidney to mediate renal vasoconstriction. In summary, exogenous melatonin differentially alters vascular blood flow in humans. These data suggest the complex nature of melatonin on the vasculature in humans.

  5. Identifying loci under selection against gene flow in isolation-with-migration models.

    PubMed

    Sousa, Vitor C; Carneiro, Miguel; Ferrand, Nuno; Hey, Jody

    2013-05-01

    When divergence occurs in the presence of gene flow, there can arise an interesting dynamic in which selection against gene flow, at sites associated with population-specific adaptations or genetic incompatibilities, can cause net gene flow to vary across the genome. Loci linked to sites under selection may experience reduced gene flow and may experience genetic bottlenecks by the action of nearby selective sweeps. Data from histories such as these may be poorly fitted by conventional neutral model approaches to demographic inference, which treat all loci as equally subject to forces of genetic drift and gene flow. To allow for demographic inference in the face of such histories, as well as the identification of loci affected by selection, we developed an isolation-with-migration model that explicitly provides for variation among genomic regions in migration rates and/or rates of genetic drift. The method allows for loci to fall into any of multiple groups, each characterized by a different set of parameters, thus relaxing the assumption that all loci share the same demography. By grouping loci, the method can be applied to data with multiple loci and still have tractable dimensionality and statistical power. We studied the performance of the method using simulated data, and we applied the method to study the divergence of two subspecies of European rabbits (Oryctolagus cuniculus).

  6. l-Ornithine affects peripheral clock gene expression in mice

    PubMed Central

    Fukuda, Takafumi; Haraguchi, Atsushi; Kuwahara, Mari; Nakamura, Kaai; Hamaguchi, Yutaro; Ikeda, Yuko; Ishida, Yuko; Wang, Guanying; Shirakawa, Chise; Tanihata, Yoko; Ohara, Kazuaki; Shibata, Shigenobu

    2016-01-01

    The peripheral circadian clock is entrained by factors in the external environment such as scheduled feeding, exercise, and mental and physical stresses. In addition, recent studies in mice demonstrated that some food components have the potential to control the peripheral circadian clock during scheduled feeding, although information about these components remains limited. l-Ornithine is a type of non-protein amino acid that is present in foods and has been reported to have various physiological functions. In human trials, for example, l-ornithine intake improved a subjective index of sleep quality. Here we demonstrate, using an in vivo monitoring system, that repeated oral administration of l-ornithine at an early inactive period in mice induced a phase advance in the rhythm of PER2 expression. By contrast, l-ornithine administration to mouse embryonic fibroblasts did not affect the expression of PER2, indicating that l-ornithine indirectly alters the phase of PER2. l-Ornithine also increased plasma levels of insulin, glucose and glucagon-like peptide-1 alongside mPer2 expression, suggesting that it exerts its effects probably via insulin secretion. Collectively, these findings demonstrate that l-ornithine affects peripheral clock gene expression and may expand the possibilities of L-ornithine as a health food. PMID:27703199

  7. l-Ornithine affects peripheral clock gene expression in mice.

    PubMed

    Fukuda, Takafumi; Haraguchi, Atsushi; Kuwahara, Mari; Nakamura, Kaai; Hamaguchi, Yutaro; Ikeda, Yuko; Ishida, Yuko; Wang, Guanying; Shirakawa, Chise; Tanihata, Yoko; Ohara, Kazuaki; Shibata, Shigenobu

    2016-10-05

    The peripheral circadian clock is entrained by factors in the external environment such as scheduled feeding, exercise, and mental and physical stresses. In addition, recent studies in mice demonstrated that some food components have the potential to control the peripheral circadian clock during scheduled feeding, although information about these components remains limited. l-Ornithine is a type of non-protein amino acid that is present in foods and has been reported to have various physiological functions. In human trials, for example, l-ornithine intake improved a subjective index of sleep quality. Here we demonstrate, using an in vivo monitoring system, that repeated oral administration of l-ornithine at an early inactive period in mice induced a phase advance in the rhythm of PER2 expression. By contrast, l-ornithine administration to mouse embryonic fibroblasts did not affect the expression of PER2, indicating that l-ornithine indirectly alters the phase of PER2. l-Ornithine also increased plasma levels of insulin, glucose and glucagon-like peptide-1 alongside mPer2 expression, suggesting that it exerts its effects probably via insulin secretion. Collectively, these findings demonstrate that l-ornithine affects peripheral clock gene expression and may expand the possibilities of L-ornithine as a health food.

  8. Consequences of recurrent gene flow from crops to wild relatives.

    PubMed Central

    Haygood, Ralph; Ives, Anthony R; Andow, David A

    2003-01-01

    Concern about gene flow from crops to wild relatives has become widespread with the increasing cultivation of transgenic crops. Possible consequences of such gene flow include genetic assimilation, wherein crop genes replace wild ones, and demographic swamping, wherein hybrids are less fertile than their wild parents, and wild populations shrink. Using mathematical models of a wild population recurrently receiving pollen from a genetically fixed crop, we find that the conditions for genetic assimilation are not stringent, and progress towards replacement can be fast, even for disfavoured crop genes. Demographic swamping and genetic drift relax the conditions for genetic assimilation and speed progress towards replacement. Genetic assimilation can involve thresholds and hysteresis, such that a small increase in immigration can lead to fixation of a disfavoured crop gene that had been maintained at a moderate frequency, even if the increase in immigration is cancelled before the gene fixes. Demographic swamping can give rise to 'migrational meltdown', such that a small increase in immigration can lead to not only fixation of a disfavoured crop gene but also drastic shrinkage of the wild population. These findings suggest that the spread of crop genes in wild populations should be monitored more closely. PMID:14561300

  9. Gene flow in Antarctic fishes: the role of oceanography and life history

    NASA Astrophysics Data System (ADS)

    Young, Emma; Rock, Jenny; Carvalho, Gary; Murphy, Eugene; Meredith, Michael; Hutchinson, Bill

    2010-05-01

    Marine organisms with pelagic larvae are generally assumed to experience high gene flow and low levels of population differentiation. However, variability in life history and environmental characteristics, in particular oceanographic flow fields, can significantly influence dispersal, and their relative effects are frequently unclear. Our research examines the influence of oceanographic and life history variability on gene flow in two species of Antarctic fish: Champsocephalus gunnari and Notothenia rossii. These species are broadly sympatric in their distribution, but differ in aspects of life history that are expected to strongly affect their dispersal capabilities. Our research has used two complementary techniques. Genetic analyses, specifically mtDNA and microsatellite markers, have been used to examine historic and contemporary gene flow and thus describe patterns of population differentiation at the circumpolar scale. These analyses have been compared with predicted larval transport from a global oceanographic model (OCCAM) combined with individual based particle tracking models. In using these complementary techniques, the relative influences of early life history and oceanographic variability can be elucidated. Here we present the key findings of our research, including evidence for inter-specific variation in mitochondrial gene flow at the circumpolar level and a limited degree of genetic structuring within the Scotia Sea.

  10. LONG DISTANCE POLLEN-MEDIATED GENE FLOW FROM CREEPING BENTGRASS

    EPA Science Inventory

    Researchers from USEPA WED have measured gene flow from experimental fields of Roundup? herbicide resistant genetically modified (GM) creeping bentgrass a grass used primarily on golf courses, to compatible non-crop relatives. Using a sampling design based on the estimated time ...

  11. Factors that affect the flow of patients through triage

    PubMed Central

    Lyons, Melinda; Brown, Ruth; Wears, Robert

    2007-01-01

    Objective To use observational methods to objectively evaluate the organisation of triage and what issues may affect the effectiveness of the process. Design A two‐phase study comprising observation of 16 h of triage in a London hospital emergency department and interviews with the triage staff to build a qualitative task analysis and study protocol for phase 2; observation and timing in triage for 1870 min including 257 patients and for 16 different members of the triage staff. Results No significant difference was found between grades of staff for the average triage time or the fraction of time absent from triage. In all, 67% of the time spent absent from triage was due to escorting patients into the department. The average time a patient waited in the reception before triage was 13 min 34 s; the average length of time to triage for a patient was 4 min 17 s. A significant increase in triage time was found when patients were triaged to a specialty, expected by a specialty, or were actively “seen and treated” in triage. Protocols to prioritise patients with potentially serious conditions to the front of the queue had a significantly positive effect on their waiting time. Supplementary tasks and distractions had varying effects on the timely assessment and triage of patients. Conclusions The human factors method is applicable to the triage process and can identify key factors that affect the throughput at triage. Referring a patient to a specialty at triage affects significantly the triage workload; hence, alternative methods or management should be suggested. The decision to offer active treatment at triage increases the time taken, and should be based on clinical criteria and the workload determined by staffing levels. The proportion of time absent from triage could be markedly improved by support from porters or other non‐qualified staff, as well as by proceduralised handovers from triage to the main clinical area. Triage productivity could be

  12. Gene flow among populations of two rare co-occurring fern species differing in ploidy level.

    PubMed

    Bucharová, Anna; Münzbergová, Zuzana

    2012-01-01

    Differences in ploidy levels among different fern species have a vast influence on their mating system, their colonization ability and on the gene flow among populations. Differences in the colonization abilities of species with different ploidy levels are well known: tetraploids, in contrast to diploids, are able to undergo intra-gametophytic selfing. Because fertilization is a post-dispersal process in ferns, selfing results in better colonization abilities in tetraploids because of single spore colonization. Considerably less is known about the gene flow among populations of different ploidy levels. The present study examines two rare fern species that differ in ploidy. While it has already been confirmed that tetraploid species are better at colonizing, the present study focuses on the gene flow among existing populations. We analyzed the genetic structure of a set of populations in a 10×10 km study region using isoenzymes. Genetic variation in tetraploid species is distributed mainly among populations; the genetic distance between populations is correlated with the geographical distance, and larger populations host more genetic diversity than smaller populations. In the diploid species, most variability is partitioned within populations; the genetic distance is not related to geographic distance, and the genetic diversity of populations is not related to the population size. This suggests that in tetraploid species, which undergo selfing, gene flow is limited. In contrast, in the diploid species, which experience outcrossing, gene flow is extensive and the whole system behaves as one large population. Our results suggest that in ferns, the ability to colonize new habitats and the gene flow among existing populations are affected by the mating system.

  13. Gene duplication and divergence affecting drug content in Cannabis sativa.

    PubMed

    Weiblen, George D; Wenger, Jonathan P; Craft, Kathleen J; ElSohly, Mahmoud A; Mehmedic, Zlatko; Treiber, Erin L; Marks, M David

    2015-12-01

    Cannabis sativa is an economically important source of durable fibers, nutritious seeds, and psychoactive drugs but few economic plants are so poorly understood genetically. Marijuana and hemp were crossed to evaluate competing models of cannabinoid inheritance and to explain the predominance of tetrahydrocannabinolic acid (THCA) in marijuana compared with cannabidiolic acid (CBDA) in hemp. Individuals in the resulting F2 population were assessed for differential expression of cannabinoid synthase genes and were used in linkage mapping. Genetic markers associated with divergent cannabinoid phenotypes were identified. Although phenotypic segregation and a major quantitative trait locus (QTL) for the THCA/CBDA ratio were consistent with a simple model of codominant alleles at a single locus, the diversity of THCA and CBDA synthase sequences observed in the mapping population, the position of enzyme coding loci on the map, and patterns of expression suggest multiple linked loci. Phylogenetic analysis further suggests a history of duplication and divergence affecting drug content. Marijuana is distinguished from hemp by a nonfunctional CBDA synthase that appears to have been positively selected to enhance psychoactivity. An unlinked QTL for cannabinoid quantity may also have played a role in the recent escalation of drug potency.

  14. An investigation of flow regimes affecting the Mexico City region

    SciTech Connect

    Bossert, J.E.

    1995-05-01

    The Mexico City region is well-known to the meteorological community for its overwhelming air pollution problem. Several factors contribute to this predicament, namely, the 20 million people and vast amount of industry within the city. The unique geographical setting of the basin encompassing Mexico City also plays an important role. This basin covers approximately 5000 km{sup 2} of the Mexican Plateau at an average elevation of 2250 m above sea level (asl) and is surrounded on three sides by mountains averaging over 3500 m asl, with peaks over 5000 m asl. Only to the north is their a significant opening in the mountainous terrain. Mexico City sprawls over 1000 km{sup 2} in the southwestern portion of the basin. In recent years, several major research programs have been undertaken to investigate the air quality problem within Mexico City. One of these, the Mexico City Air Quality Research Initiative (MARI), conducted in 1990--1993, was a cooperative study between researchers at Los Alamos National Laboratory and the Mexican Petroleum Institute. As part of this study, a field campaign was initiated in February 1991 during which numerous surface, upper air, aircraft, and LIDAR measurements were taken. Much of the work to date has focused upon defining and simulating the local meteorological conditions that are important for understanding the complex photochemistry occurring within the confines of the city. It seems reasonable to postulate, however, that flow systems originating outside of the Mexico City basin will influence conditions within the city much of the time.

  15. HIV and chronic methamphetamine dependence affect cerebral blood flow.

    PubMed

    Ances, Beau M; Vaida, Florin; Cherner, Mariana; Yeh, Melinda J; Liang, Christine L; Gardner, Carly; Grant, Igor; Ellis, Ronald J; Buxton, Richard B

    2011-09-01

    Human immunodeficiency virus (HIV) and methamphetamine (METH) dependence are independently associated with neuronal dysfunction. The coupling between cerebral blood flow (CBF) and neuronal activity is the basis of many task-based functional neuroimaging techniques. We examined the interaction between HIV infection and a previous history of METH dependence on CBF within the lenticular nuclei (LN). Twenty-four HIV-/METH-, eight HIV-/METH+, 24 HIV+/METH-, and 15 HIV+/METH+ participants performed a finger tapping paradigm. A multiple regression analysis of covariance assessed associations and two-way interactions between CBF and HIV serostatus and/or previous history of METH dependence. HIV+ individuals had a trend towards a lower baseline CBF (-10%, p = 0.07) and greater CBF changes for the functional task (+32%, p = 0.01) than HIV- subjects. Individuals with a previous history of METH dependence had a lower baseline CBF (-16%, p = 0.007) and greater CBF changes for a functional task (+33%, p = 0.02). However, no interaction existed between HIV serostatus and previous history of METH dependence for either baseline CBF (p = 0.53) or CBF changes for a functional task (p = 0.10). In addition, CBF and volume in the LN were not correlated. A possible additive relationship could exist between HIV infection and a history of METH dependence on CBF with a previous history of METH dependence having a larger contribution. Abnormalities in CBF could serve as a surrogate measure for assessing the chronic effects of HIV and previous METH dependence on brain function.

  16. Gene flow, effective population size and selection at major histocompatibility complex genes: brown trout in the Hardanger Fjord, Norway.

    PubMed

    Hansen, Michael M; Skaala, Oystein; Jensen, Lasse Fast; Bekkevold, Dorte; Mensberg, Karen-Lise D

    2007-04-01

    Brown trout populations in the Hardanger Fjord, Norway, have declined drastically due to increased exposure to salmon lice from salmonid aquaculture. We studied contemporary samples from seven populations and historical samples (1972 and 1983) from the two largest populations, one of which has declined drastically whereas the other remains stable. We analysed 11 microsatellite loci, including one tightly linked to the UBA gene of the major histocompatibility class I complex (MHC) and another locus linked to the TAP2A gene, also associated with MHC. The results revealed asymmetric gene flow from the two largest populations to the other, smaller populations. This has important conservation implications, and we predict that possible future population recoveries will be mediated primarily by the remaining large population. Tests for selection suggested diversifying selection at UBA, whereas evidence was inconclusive for TAP2A. There was no evidence for temporally fluctuating selection. We assessed the distribution of adaptive divergence among populations. The results showed the most pronounced footprints of selection between the two largest populations subject to the least immigration. We suggest that asymmetric gene flow has an important influence on adaptive divergence and constrains local adaptive responses in the smaller populations. Even though UBA alleles may not affect salmon louse resistance, the results bear evidence of adaptive divergence among populations at immune system genes. This suggests that similar genetic differences could exist at salmon louse resistance loci, thus rendering it a realistic scenario that differential population declines could reflect differences in adaptive variation.

  17. [Removal and accumulation of the tetracycline resistance gene in vertical flow constructed wetland].

    PubMed

    Zheng, Jia-Yu; Liu, Lin; Gao, Da-Wen; Liu, Chao-Xiang

    2013-08-01

    This paper investigated the efficiency and accumulation of vertical flow constructed wetland on removing tetracycline resistance (tet) genes (tetM, tetO, and tetW) from swine wastewater. The result indicated that all three tet genes were detected in raw wastewater, average absolute abundances of tetW, tetM, and tetO were 1.07 x 10(10), 4.03 x 10(10) and 4.92 x 10(10) gene copies per litre, respectively. Vertical flow constructed wetland could significantly reduce the content of wastewater antibiotics resistance genes, and average elimination rates were 95.73%, 92.21% and 95.05%, respectively. Compare to the content of antibiotics resistance genes in unpolluted soil, the content of that in soil of the system had an obvious increase at the end stage of this study. Meanwhile, absolute abundances and relative abundances of three tet genes in surface layer of soil were higher than that in basement soil. The control condition and structure of construct wetlands would affect the accumulation of tetracycline resistance genes in the system.

  18. Flow-mediated plasticity in the expression of stickleback nesting glue genes

    PubMed Central

    Seear, Paul J; Head, Megan L; Tilley, Ceinwen A; Rosato, Ezio; Barber, Iain

    2014-01-01

    Nest construction is an essential component of the reproductive behavior of many species, and attributes of nests – including their location and structure – have implications for both their functional capacity as incubators for developing offspring, and their attractiveness to potential mates. To maximize reproductive success, nests must therefore be suited to local environmental conditions. Male three-spined sticklebacks (Gasterosteus aculeatus) build nests from collected materials and use an endogenous, glue-like multimeric protein – “spiggin” – as an adhesive. Spiggin is encoded by a multigene family, and differential expression of spiggin genes potentially allows plasticity in nest construction in response to variable environments. Here, we show that the expression of spiggin genes is affected significantly by both the flow regime experienced by a fish and its nesting status. Further, we show the effects of flow on expression patterns are gene-specific. Nest-building fish exhibited consistently higher expression levels of the three genes under investigation (Spg-a,Spg-1, and Spg-2) than non-nesting controls, irrespective of rearing flow treatment. Fish reared under flowing-water conditions showed significantly increased levels of spiggin gene expression compared to those reared in still water, but this effect was far stronger for Spg-a than for Spg-1 or Spg-2. The strong effect of flowing water on Spg-a expression, even among non-nesters, suggests that the increased production of spiggin – or of spiggin rich in the component contributed by Spg-a – may allow more rapid and/or effective nest construction under challenging high flow conditions. PMID:24834322

  19. Illegal gene flow from transgenic creeping bentgrass: the saga continues.

    PubMed

    Snow, Allison A

    2012-10-01

    Ecologists have paid close attention to environmental effects that fitness-enhancing transgenes might have following crop-to-wild gene flow (e.g. Snow et al. 2003). For some crops, gene flow also can lead to legal problems,especially when government agencies have not approved transgenic events for unrestricted environmental release.Creeping bentgrass (Agrostis stolonifera), a common turf grass used in golf courses, is the focus of both areas of concern. In 2002, prior to expected deregulation (still pending), The Scotts Company planted creeping bentgrass with transgenic resistance to the herbicide glyphosate,also known as RoundUp, on 162 ha in a designated control area in central Oregon (Fig. 1).Despite efforts to restrict gene flow, wind-dispersed pollen carried transgenes to florets of local A. stolonifera and A. gigantea as far as 14 km away, and to sentinel plants placed as far as 21 km away (Watrud et al. 2004).Then, in August 2003, a strong wind event moved transgenic seeds from wind rows of cut bentgrass into nearby areas. The company’s efforts to kill all transgenic survivors in the area failed: feral glyphosate-resistant populations of A. stolonifera were found by Reichman et al.(2006), and 62% of 585 bentgrass plants had the telltale CP4 EPSPS transgene in 2006 (Zapiola et al. 2008; Fig. 2).Now, in this issue, the story gets even more interesting as Zapiola & Mallory-Smith (2012) describe a transgenic,intergeneric hybrid produced on a feral, transgenic creeping bentgrass plant that received pollen from Polypogon monspeliensis (rabbitfoot grass). Their finding raises a host of new questions about the prevalence and fitness of intergeneric hybrids, as well as how to evaluate the full extent of gene flow from transgenic crops.

  20. Genes affecting heading date in cocksfoot (Dactylis glomerata)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several genes cause well known effects on heading date in cool-season forages: Vrn1, Constans, and FloweringTime. Vrn1 is a MADs box transcription factor that is induced upon vernalization and necessary for flowering. Constans genes are induced upon long days in cool-season grasses and induce exp...

  1. Maintenance of Species Boundaries Despite Ongoing Gene Flow in Ragworts

    PubMed Central

    Osborne, Owen G.; Chapman, Mark A.; Nevado, Bruno; Filatov, Dmitry A.

    2016-01-01

    The role of hybridization between diversifying species has been the focus of a huge amount of recent evolutionary research. While gene flow can prevent speciation or initiate species collapse, it can also generate new hybrid species. Similarly, while adaptive divergence can be wiped out by gene flow, new adaptive variation can be introduced via introgression. The relative frequency of these outcomes, and indeed the frequency of hybridization and introgression in general are largely unknown. One group of closely-related species with several documented cases of hybridization is the Mediterranean ragwort (genus: Senecio) species-complex. Examples of both polyploid and homoploid hybrid speciation are known in the clade, although their evolutionary relationships and the general frequency of introgressive hybridization among them remain unknown. Using a whole genome gene–space dataset comprising eight Senecio species we fully resolve the phylogeny of these species for the first time despite phylogenetic incongruence across the genome. Using a D-statistic approach, we demonstrate previously unknown cases of introgressive hybridization between multiple pairs of taxa across the species tree. This is an important step in establishing these species as a study system for diversification with gene flow, and suggests that introgressive hybridization may be a widespread and important process in plant evolution. PMID:26979797

  2. The RNA polymerase flow model of gene transcription.

    PubMed

    Edri, Shlomit; Gazit, Eran; Cohen, Eyal; Tuller, Tamir

    2014-02-01

    Gene expression is a fundamental cellular process by which proteins are synthesized based on the information coded in the genes. The two major steps of this process are the transcription of the DNA segment corresponding to a gene to mRNA molecules and the translation of the mRNA molecules to proteins by the ribosome. Thus, understanding, modeling and engineering the different stages of this process have both important biotechnological applications and contributions to basic life science. In previous studies we have introduced the Homogenous Ribosome Flow Model (HRFM) and demonstrated its advantages in analyses of the translation process. In this study we introduce the RNA Polymerase Flow Model (RPFM), a non trivial extension of the HRFM, which also includes a backward flow and can be used for modeling transcription and maybe other similar processes. We compare the HRFM and the RPFM in the three regimes of the transcription process: rate limiting initiation, rate limiting elongation and rate limiting termination via a simulative and analytical analysis. In addition, based on experimental data, we show that RPFM is a better choice for modeling transcription process.

  3. Extremely reduced dispersal and gene flow in an island bird

    PubMed Central

    Bertrand, J A M; Bourgeois, Y X C; Delahaie, B; Duval, T; García-Jiménez, R; Cornuault, J; Heeb, P; Milá, B; Pujol, B; Thébaud, C

    2014-01-01

    The Réunion grey white-eye, Zosterops borbonicus, a passerine bird endemic to Réunion Island in the Mascarene archipelago, represents an extreme case of microgeographical plumage colour variation in birds, with four distinct colour forms occupying different parts of this small island (2512 km2). To understand whether such population differentiation may reflect low levels of dispersal and gene flow at a very small spatial scale, we examined population structure and gene flow by analysing variation at 11 microsatellite loci among four geographically close localities (<26 km apart) sampled within the distribution range of one of the colour forms, the brown-headed brown form. Our results revealed levels of genetic differentiation that are exceptionally high for birds at such a small spatial scale. This strong population structure appears to reflect low levels of historical and contemporary gene flow among populations, unless very close geographically (<10 km). Thus, we suggest that the Réunion grey white-eye shows an extremely reduced propensity to disperse, which is likely to be related to behavioural processes. PMID:24084644

  4. Beekeeping practices and geographic distance, not land use, drive gene flow across tropical bees.

    PubMed

    Jaffé, Rodolfo; Pope, Nathaniel; Acosta, André L; Alves, Denise A; Arias, Maria C; De la Rúa, Pilar; Francisco, Flávio O; Giannini, Tereza C; González-Chaves, Adrian; Imperatriz-Fonseca, Vera L; Tavares, Mara G; Jha, Shalene; Carvalheiro, Luísa G

    2016-11-01

    Across the globe, wild bees are threatened by ongoing natural habitat loss, risking the maintenance of plant biodiversity and agricultural production. Despite the ecological and economic importance of wild bees and the fact that several species are now managed for pollination services worldwide, little is known about how land use and beekeeping practices jointly influence gene flow. Using stingless bees as a model system, containing wild and managed species that are presumed to be particularly susceptible to habitat degradation, here we examine the main drivers of tropical bee gene flow. We employ a novel landscape genetic approach to analyse data from 135 populations of 17 stingless bee species distributed across diverse tropical biomes within the Americas. Our work has important methodological implications, as we illustrate how a maximum-likelihood approach can be applied in a meta-analysis framework to account for multiple factors, and weight estimates by sample size. In contrast to previously held beliefs, gene flow was not related to body size or deforestation, and isolation by geographic distance (IBD) was significantly affected by management, with managed species exhibiting a weaker IBD than wild ones. Our study thus reveals the critical importance of beekeeping practices in shaping the patterns of genetic differentiation across bee species. Additionally, our results show that many stingless bee species maintain high gene flow across heterogeneous landscapes. We suggest that future efforts to preserve wild tropical bees should focus on regulating beekeeping practices to maintain natural gene flow and enhancing pollinator-friendly habitats, prioritizing species showing a limited dispersal ability.

  5. How the gene-patenting race is affecting science

    SciTech Connect

    Wuethrich, B.

    1993-09-04

    Since the National Institutes of Health first filed for patents on thousand fragments of human genes in 1992, many researchers are confronting difficult problems arising at the intersection of science, private enterprise, and the law. At present scientists understand the function of fewer than 1,500 human genes. Decoding all these genes in the goal of the Human Genome Project, sponsored by NIH and DOE. This paper discusses the complex practical, political, ethical, and economic issues involved in describing portions of DNA sequences and the patenting (and ownership) of those sequences.

  6. Major psychological factors affecting acceptance of gene-recombination technology.

    PubMed

    Tanaka, Yutaka

    2004-12-01

    The purpose of this study was to verify the validity of a causal model that was made to predict the acceptance of gene-recombination technology. A structural equation model was used as a causal model. First of all, based on preceding studies, the factors of perceived risk, perceived benefit, and trust were set up as important psychological factors determining acceptance of gene-recombination technology in the structural equation model. An additional factor, "sense of bioethics," which I consider to be important for acceptance of biotechnology, was added to the model. Based on previous studies, trust was set up to have an indirect influence on the acceptance of gene-recombination technology through perceived risk and perceived benefit in the model. Participants were 231 undergraduate students in Japan who answered a questionnaire with a 5-point bipolar scale. The results indicated that the proposed model fits the data well, and showed that acceptance of gene-recombination technology is explained largely by four factors, that is, perceived risk, perceived benefit, trust, and sense of bioethics, whether the technology is applied to plants, animals, or human beings. However, the relative importance of the four factors was found to vary depending on whether the gene-recombination technology was applied to plants, animals, or human beings. Specifically, the factor of sense of bioethics is the most important factor in acceptance of plant gene-recombination technology and animal gene-recombination technology, and the factors of trust and perceived risk are the most important factors in acceptance of human being gene-recombination technology.

  7. Y-chromosomal genes affecting male fertility: A review

    PubMed Central

    Dhanoa, Jasdeep Kaur; Mukhopadhyay, Chandra Sekhar; Arora, Jaspreet Singh

    2016-01-01

    The mammalian sex-chromosomes (X and Y) have evolved from autosomes and are involved in sex determination and reproductive traits. The Y-chromosome is the smallest chromosome that consists of 2-3% of the haploid genome and may contain between 70 and 200 genes. The Y-chromosome plays major role in male fertility and is suitable to study the evolutionary relics, speciation, and male infertility and/or subfertility due to its unique features such as long non-recombining region, abundance of repetitive sequences, and holandric inheritance pattern. During evolution, many holandric genes were deleted. The current review discusses the mammalian holandric genes and their functions. The commonly encountered infertility and/or subfertility problems due to point or gross mutation (deletion) of the Y-chromosomal genes have also been discussed. For example, loss or microdeletion of sex-determining region, Y-linked gene results in XY males that exhibit female characteristics, deletion of RNA binding motif, Y-encoded in azoospermic factor b region results in the arrest of spermatogenesis at meiosis. The holandric genes have been covered for associating the mutations with male factor infertility. PMID:27536043

  8. Diaphanous gene mutation affects spiral cleavage and chirality in snails

    PubMed Central

    Kuroda, Reiko; Fujikura, Kohei; Abe, Masanori; Hosoiri, Yuji; Asakawa, Shuichi; Shimizu, Miho; Umeda, Shin; Ichikawa, Futaba; Takahashi, Hiromi

    2016-01-01

    L-R (left and right) symmetry breaking during embryogenesis and the establishment of asymmetric body plan are key issues in developmental biology, but the onset including the handedness-determining gene locus still remains unknown. Using pure dextral (DD) and sinistral (dd) strains of the pond snail Lymnaea stagnalis as well as its F2 through to F10 backcrossed lines, the single handedness-determining-gene locus was mapped by genetic linkage analysis, BAC cloning and chromosome walking. We have identified the actin-related diaphanous gene Lsdia1 as the strongest candidate. Although the cDNA and derived amino acid sequences of the tandemly duplicated Lsdia1 and Lsdia2 genes are very similar, we could discriminate the two genes/proteins in our molecular biology experiments. The Lsdia1 gene of the sinistral strain carries a frameshift mutation that abrogates full-length LsDia1 protein expression. In the dextral strain, it is already translated prior to oviposition. Expression of Lsdia1 (only in the dextral strain) and Lsdia2 (in both chirality) decreases after the 1-cell stage, with no asymmetric localization throughout. The evolutionary relationships among body handedness, SD/SI (spiral deformation/spindle inclination) at the third cleavage, and expression of diaphanous proteins are discussed in comparison with three other pond snails (L. peregra, Physa acuta and Indoplanorbis exustus). PMID:27708420

  9. Speciation with gene flow in equids despite extensive chromosomal plasticity

    PubMed Central

    Jónsson, Hákon; Seguin-Orlando, Andaine; Ginolhac, Aurélien; Petersen, Lillian; Fumagalli, Matteo; Albrechtsen, Anders; Petersen, Bent; Vilstrup, Julia T.; Lear, Teri; Myka, Jennifer Leigh; Lundquist, Judith; Miller, Donald C.; Alfarhan, Ahmed H.; Alquraishi, Saleh A.; Al-Rasheid, Khaled A. S.; Stagegaard, Julia; Strauss, Günter; Bertelsen, Mads Frost; Antczak, Douglas F.; Bailey, Ernest; Nielsen, Rasmus; Willerslev, Eske; Orlando, Ludovic

    2014-01-01

    Horses, asses, and zebras belong to a single genus, Equus, which emerged 4.0–4.5 Mya. Although the equine fossil record represents a textbook example of evolution, the succession of events that gave rise to the diversity of species existing today remains unclear. Here we present six genomes from each living species of asses and zebras. This completes the set of genomes available for all extant species in the genus, which was hitherto represented only by the horse and the domestic donkey. In addition, we used a museum specimen to characterize the genome of the quagga zebra, which was driven to extinction in the early 1900s. We scan the genomes for lineage-specific adaptations and identify 48 genes that have evolved under positive selection and are involved in olfaction, immune response, development, locomotion, and behavior. Our extensive genome dataset reveals a highly dynamic demographic history with synchronous expansions and collapses on different continents during the last 400 ky after major climatic events. We show that the earliest speciation occurred with gene flow in Northern America, and that the ancestor of present-day asses and zebras dispersed into the Old World 2.1–3.4 Mya. Strikingly, we also find evidence for gene flow involving three contemporary equine species despite chromosomal numbers varying from 16 pairs to 31 pairs. These findings challenge the claim that the accumulation of chromosomal rearrangements drive complete reproductive isolation, and promote equids as a fundamental model for understanding the interplay between chromosomal structure, gene flow, and, ultimately, speciation. PMID:25453089

  10. Gene flow pattern among Aedes aegypti populations in Mexico.

    PubMed

    de Lourdes Muñoz, Maria; Mercado-Curiel, Ricardo F; Diaz-Badillo, Alvaro; Pérez Ramirez, Gerardo; Black, William C

    2013-03-01

    Patterns of gene flow vary greatly among Aedes aegypti populations throughout Mexico. The populations are panmictic along the Pacific coast, isolated by distance in northeast Mexico, and exhibit moderate gene flow across the Yucatan peninsula. Nine Ae. aegypti collections from 6 cities in Oaxaca, Mexico, were taken to examine the local patterns of gene flow. Genetic variation was examined in a 387-bp region of the nicotinamide adenine dinucleotide dehydrogenase subunit 4 mitochondrial gene (ND4) using single-strand conformation polymorphism analysis, and 3 haplotypes were detected. Cluster analysis on the linearized FST genetic distances failed to group collections in geographic proximity. Regression analysis of linear or road distances on linearized F(ST) indicated that proximal collections were as diverse as distant collections across an approximately 800-km range. The geographical distribution of the Mexican mosquito haplotype frequencies was determined for the ND4 sequences from 524 individuals from Oaxaca (this study) and 2,043 individuals from our previous studies. Herein, we report on yet another pattern dominated by genetic drift among 9 Ae. aegypti collections from 6 cities in Oaxaca, Mexico, and compare it to those reported in other regions of Mexico. Molecular analysis of variance showed that there was as much genetic variation among collections 4 km apart as there was among all collections. The numbers of haplotypes and the amount of genetic diversity among the collections from Oaxaca were much lower than detected in previous studies in other regions of Mexico and may reflect the effects of control efforts or adaptations to the altitudinal limits (1,500 m) of the species in Mexico. The geographical distribution of mosquito haplotypes in Mexico is also reported. Furthermore, based on the distribution of the mosquito haplotypes in America, we suggest that mosquito dispersion is very efficient, most likely due to commercial transportation.

  11. Caesium-affected gene expression in Arabidopsis thaliana.

    PubMed

    Sahr, Tobias; Voigt, Gabriele; Paretzke, Herwig G; Schramel, Peter; Ernst, Dieter

    2005-03-01

    * Excessive caesium can be toxic to plants. Here we investigated Cs uptake and caesium-induced gene expression in Arabidopsis thaliana. * Accumulation was measured in plants grown for 5 wk on agar supplemented with nontoxic and up to toxic levels of Cs. Caesium-induced gene expression was studied by suppression-subtractive hybridization (SSH) and RT-PCR. * Caesium accumulated in leaf rosettes dependent upon the external concentration in the growth media, whereas the potassium concentration decreased in rosettes. At a concentration of 850 microM, Cs plants showed reduced development, and withered with an increase in concentration to 1 mM Cs. SSH resulted in the isolation of 73 clones that were differentially expressed at a Cs concentration of 150 microM. Most of the genes identified belong to groups of genes encoding proteins in stress defence, detoxification, transport, homeostasis and general metabolism, and proteins controlling transcription and translation. * The present study identified a number of marker genes for Cs in Arabidopsis grown under nontoxic Cs concentrations, indicating that Cs acts as an abiotic stress factor.

  12. groE genes affect SOS repair in Escherichia coli

    SciTech Connect

    Liu, S.K.; Tessman, I. )

    1990-10-01

    Repair of UV-irradiated bacteriophage in Escherichia coli by Weigle reactivation requires functional recA+ and umuD+C+ genes. When the cells were UV irradiated, the groE heat shock gene products, GroES and GroEL, were needed for at least 50% of the Weigle reactivation of the single-stranded DNA phage S13. Because of repression of the umuDC and recA genes, Weigle reactivation is normally blocked by the lexA3(Ind-) mutation (which creates a noncleavable LexA protein), but it was restored by a combination of a high-copy-number umuD+C+ plasmid and a UV dose that increases groE expression. Maximal reactivation was achieved by elevated amounts of the Umu proteins, which was accomplished in part by UV-induced expression of the groE genes. By increasing the number of copies of the umuD+C+ genes, up to 50% of the normal amount of reactivation of S13 was achieved in an unirradiated recA+ host.

  13. Paralogue Interference Affects the Dynamics after Gene Duplication.

    PubMed

    Kaltenegger, Elisabeth; Ober, Dietrich

    2015-12-01

    Proteins tend to form homomeric complexes of identical subunits, which act as functional units. By definition, the subunits are encoded from a single genetic locus. When such a gene is duplicated, the gene products are suggested initially to cross-interact when coexpressed, thus resulting in the phenomenon of paralogue interference. In this opinion article, we explore how paralogue interference can shape the fate of a duplicated gene. One important outcome is a prolonged time window in which both copies remain under selection increasing the chance to accumulate mutations and to develop new properties. Thereby, paralogue interference can mediate the coevolution of duplicates and here we illustrate the potential of this phenomenon in light of recent new studies.

  14. Unsteady flow affects swimming energetics in a labriform fish (Cymatogaster aggregata).

    PubMed

    Roche, D G; Taylor, M K; Binning, S A; Johansen, J L; Domenici, P; Steffensen, J F

    2014-02-01

    Unsteady water flows are common in nature, yet the swimming performance of fishes is typically evaluated at constant, steady speeds in the laboratory. We examined how cyclic changes in water flow velocity affect the swimming performance and energetics of a labriform swimmer, the shiner surfperch, Cymatogaster aggregata, during station holding. Using intermittent-flow respirometry, we measured critical swimming speed (Ucrit), oxygen consumption rates (O2) and pectoral fin use in steady flow versus unsteady flows with either low- [0.5 body lengths (BL) s(-1)] or high-amplitude (1.0 BL s(-1)) velocity fluctuations, with a 5 s period. Individuals in low-amplitude unsteady flow performed as well as fish in steady flow. However, swimming costs in high-amplitude unsteady flow were on average 25.3% higher than in steady flow and 14.2% higher than estimated values obtained from simulations based on the non-linear relationship between swimming speed and oxygen consumption rate in steady flow. Time-averaged pectoral fin use (fin-beat frequency measured over 300 s) was similar among treatments. However, measures of instantaneous fin use (fin-beat period) and body movement in high-amplitude unsteady flow indicate that individuals with greater variation in the duration of their fin beats were better at holding station and consumed less oxygen than fish with low variation in fin-beat period. These results suggest that the costs of swimming in unsteady flows are context dependent in labriform swimmers, and may be influenced by individual differences in the ability of fishes to adjust their fin beats to the flow environment.

  15. A gene with major phenotypic effects as a target for selection vs. homogenizing gene flow.

    PubMed

    Raeymaekers, Joost A M; Konijnendijk, Nellie; Larmuseau, Maarten H D; Hellemans, Bart; De Meester, Luc; Volckaert, Filip A M

    2014-01-01

    Genes with major phenotypic effects facilitate quantifying the contribution of genetic vs. plastic effects to adaptive divergence. A classical example is Ectodysplasin (Eda), the major gene controlling lateral plate phenotype in three-spined stickleback. Completely plated marine stickleback populations evolved repeatedly towards low-plated freshwater populations, representing a prime example of parallel evolution by natural selection. However, many populations remain polymorphic for lateral plate number. Possible explanations for this polymorphism include relaxation of selection, disruptive selection or a balance between divergent selection and gene flow. We investigated 15 polymorphic stickleback populations from brackish and freshwater habitats in coastal North-western Europe. At each site, we tracked changes in allele frequency at the Eda gene between subadults in fall, adults in spring and juveniles in summer. Eda genotypes were also compared for body size and reproductive investment. We observed a fitness advantage for the Eda allele for the low morph in freshwater and for the allele for the complete morph in brackish water. Despite these results, the differentiation at the Eda gene was poorly correlated with habitat characteristics. Neutral population structure was the best predictor of spatial variation in lateral plate number, suggestive of a substantial effect of gene flow. A meta-analysis revealed that the signature of selection at Eda was weak compared to similar studies in stickleback. We conclude that a balance between divergent selection and gene flow can maintain stickleback populations polymorphic for lateral plate number and that ecologically relevant genes may not always contribute much to local adaptation, even when targeted by selection.

  16. Early Experiences Can Alter Gene Expression and Affect Long-Term Development. Working Paper #10

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2010

    2010-01-01

    New scientific research shows that environmental influences can actually affect whether and how genes are expressed. Thus, the old ideas that genes are "set in stone" or that they alone determine development have been disproven. In fact, scientists have discovered that early experiences can determine how genes are turned on and off and even…

  17. Genes from Lycopersicon chmielewskii affecting tomato quality during fruit ripening.

    PubMed

    Azanza, F; Kim, D; Tanksley, S D; Juvik, J A

    1995-08-01

    Three chromosomal segments from the wild tomato, L. chmielewskii, introgressed into the L. esculentum genome have been previously mapped to the middle and terminal regions of chromosome 7 (7M, 7T respectively), and to the terminal region of chromosome 10 (10T). The present study was designed to investigate the physiological mechanisms controlled by the 7M and 7T segments on tomato soluble solids (SS) and pH, and their genetic regulation during fruit development. The effects of 7M and 7T were studied in 64 BC2F5 backcross inbred lines (BILs) developed from a cross between LA 1501 (an L. esculentum line containing the 7M and 7T fragments from L. chmielewskii), and VF145B-7879 (a processing cultivar). BILs were classified into four homozygous genotypes with respect to the introgressed segments based on RFLP analysis, and evaluated for fruit chemical characteristics at different harvest stages. Gene(s) in the 7M fragment reduce fruit water uptake during ripening increasing pH, sugars, and SS concentration. Gene(s) in the 7T fragment were found to be associated with higher mature green fruit starch concentration and red ripe fruit weight. Comparisons between tomatoes ripened on or off the vine suggest that the physiological mechanisms influenced by the L. chmielewskii alleles are dependent on the translocation of photosynthates and water during fruit ripening.

  18. Identification of Yeast Genes Involved in K+ Homeostasis: Loss of Membrane Traffic Genes Affects K+ Uptake

    PubMed Central

    Fell, Gillian L.; Munson, Amanda M.; Croston, Merriah A.; Rosenwald, Anne G.

    2011-01-01

    Using the homozygous diploid Saccharomyces deletion collection, we searched for strains with defects in K+ homeostasis. We identified 156 (of 4653 total) strains unable to grow in the presence of hygromycin B, a phenotype previously shown to be indicative of ion defects. The most abundant group was that with deletions of genes known to encode membrane traffic regulators. Nearly 80% of these membrane traffic defective strains showed defects in uptake of the K+ homolog, 86Rb+. Since Trk1, a plasma membrane protein localized to lipid microdomains, is the major K+ influx transporter, we examined the subcellular localization and Triton-X 100 insolubility of Trk1 in 29 of the traffic mutants. However, few of these showed defects in the steady state levels of Trk1, the localization of Trk1 to the plasma membrane, or the localization of Trk1 to lipid microdomains, and most defects were mild compared to wild-type. Three inositol kinase mutants were also identified, and in contrast, loss of these genes negatively affected Trk1 protein levels. In summary, this work reveals a nexus between K+ homeostasis and membrane traffic, which does not involve traffic of the major influx transporter, Trk1. PMID:22384317

  19. Identification of yeast genes involved in k homeostasis: loss of membrane traffic genes affects k uptake.

    PubMed

    Fell, Gillian L; Munson, Amanda M; Croston, Merriah A; Rosenwald, Anne G

    2011-06-01

    Using the homozygous diploid Saccharomyces deletion collection, we searched for strains with defects in K(+) homeostasis. We identified 156 (of 4653 total) strains unable to grow in the presence of hygromycin B, a phenotype previously shown to be indicative of ion defects. The most abundant group was that with deletions of genes known to encode membrane traffic regulators. Nearly 80% of these membrane traffic defective strains showed defects in uptake of the K(+) homolog, (86)Rb(+). Since Trk1, a plasma membrane protein localized to lipid microdomains, is the major K(+) influx transporter, we examined the subcellular localization and Triton-X 100 insolubility of Trk1 in 29 of the traffic mutants. However, few of these showed defects in the steady state levels of Trk1, the localization of Trk1 to the plasma membrane, or the localization of Trk1 to lipid microdomains, and most defects were mild compared to wild-type. Three inositol kinase mutants were also identified, and in contrast, loss of these genes negatively affected Trk1 protein levels. In summary, this work reveals a nexus between K(+) homeostasis and membrane traffic, which does not involve traffic of the major influx transporter, Trk1.

  20. Control of pollen-mediated gene flow in transgenic trees.

    PubMed

    Zhang, Chunsheng; Norris-Caneda, Kim H; Rottmann, William H; Gulledge, Jon E; Chang, Shujun; Kwan, Brian Yow-Hui; Thomas, Anita M; Mandel, Lydia C; Kothera, Ronald T; Victor, Aditi D; Pearson, Leslie; Hinchee, Maud A W

    2012-08-01

    Pollen elimination provides an effective containment method to reduce direct gene flow from transgenic trees to their wild relatives. Until now, only limited success has been achieved in controlling pollen production in trees. A pine (Pinus radiata) male cone-specific promoter, PrMC2, was used to drive modified barnase coding sequences (barnaseH102E, barnaseK27A, and barnaseE73G) in order to determine their effectiveness in pollen ablation. The expression cassette PrMC2-barnaseH102E was found to efficiently ablate pollen in tobacco (Nicotiana tabacum), pine, and Eucalyptus (spp.). Large-scale and multiple-year field tests demonstrated that complete prevention of pollen production was achieved in greater than 95% of independently transformed lines of pine and Eucalyptus (spp.) that contained the PrMC2-barnaseH102E expression cassette. A complete pollen control phenotype was achieved in transgenic lines and expressed stably over multiple years, multiple test locations, and when the PrMC2-barnaseH102E cassette was flanked by different genes. The PrMC2-barnaseH102E transgenic pine and Eucalyptus (spp.) trees grew similarly to control trees in all observed attributes except the pollenless phenotype. The ability to achieve the complete control of pollen production in field-grown trees is likely the result of a unique combination of three factors: the male cone/anther specificity of the PrMC2 promoter, the reduced RNase activity of barnaseH102E, and unique features associated with a polyploid tapetum. The field performance of the PrMC2-barnaseH102E in representative angiosperm and gymnosperm trees indicates that this gene can be used to mitigate pollen-mediated gene flow associated with large-scale deployment of transgenic trees.

  1. Land use type significantly affects microbial gene transcription in soil.

    PubMed

    Nacke, Heiko; Fischer, Christiane; Thürmer, Andrea; Meinicke, Peter; Daniel, Rolf

    2014-05-01

    Soil microorganisms play an essential role in sustaining biogeochemical processes and cycling of nutrients across different land use types. To gain insights into microbial gene transcription in forest and grassland soil, we isolated mRNA from 32 sampling sites. After sequencing of generated complementary DNA (cDNA), a total of 5,824,229 sequences could be further analyzed. We were able to assign nonribosomal cDNA sequences to all three domains of life. A dominance of bacterial sequences, which were affiliated to 25 different phyla, was found. Bacterial groups capable of aromatic compound degradation such as Phenylobacterium and Burkholderia were detected in significantly higher relative abundance in forest soil than in grassland soil. Accordingly, KEGG pathway categories related to degradation of aromatic ring-containing molecules (e.g., benzoate degradation) were identified in high abundance within forest soil-derived metatranscriptomic datasets. The impact of land use type forest on community composition and activity is evidently to a high degree caused by the presence of wood breakdown products. Correspondingly, bacterial groups known to be involved in lignin degradation and containing ligninolytic genes such as Burkholderia, Bradyrhizobium, and Azospirillum exhibited increased transcriptional activity in forest soil. Higher solar radiation in grassland presumably induced increased transcription of photosynthesis-related genes within this land use type. This is in accordance with high abundance of photosynthetic organisms and plant-infecting viruses in grassland.

  2. Barriers to Gene Flow in the Marine Environment: Insights from Two Common Intertidal Limpet Species of the Atlantic and Mediterranean

    PubMed Central

    Sá-Pinto, Alexandra; Branco, Madalena S.; Alexandrino, Paulo B.; Fontaine, Michaël C.; Baird, Stuart J. E.

    2012-01-01

    Knowledge of the scale of dispersal and the mechanisms governing gene flow in marine environments remains fragmentary despite being essential for understanding evolution of marine biota and to design management plans. We use the limpets Patella ulyssiponensis and Patella rustica as models for identifying factors affecting gene flow in marine organisms across the North-East Atlantic and the Mediterranean Sea. A set of allozyme loci and a fragment of the mitochondrial gene cytochrome C oxidase subunit I were screened for genetic variation through starch gel electrophoresis and DNA sequencing, respectively. An approach combining clustering algorithms with clinal analyses was used to test for the existence of barriers to gene flow and estimate their geographic location and abruptness. Sharp breaks in the genetic composition of individuals were observed in the transitions between the Atlantic and the Mediterranean and across southern Italian shores. An additional break within the Atlantic cluster separates samples from the Alboran Sea and Atlantic African shores from those of the Iberian Atlantic shores. The geographic congruence of the genetic breaks detected in these two limpet species strongly supports the existence of transpecific barriers to gene flow in the Mediterranean Sea and Northeastern Atlantic. This leads to testable hypotheses regarding factors restricting gene flow across the study area. PMID:23239977

  3. Association, haplotype, and gene-gene interactions of the HPA axis genes with suicidal behaviour in affective disorders.

    PubMed

    Leszczyńska-Rodziewicz, Anna; Szczepankiewicz, Aleksandra; Pawlak, Joanna; Dmitrzak-Weglarz, Monika; Hauser, Joanna

    2013-01-01

    Family twin and adoption studies have noted the heritability of specific biological factors that influence suicidal behaviour. Exposure to stress is one of the factors that strongly contribute to suicide attempts. The biological response to stress involves the hypothalamic-pituitary-adrenal axis (HPA). Therefore, we found it interesting to study polymorphisms of genes involved in the HPA axis (CRHR1, NR3C1, and AVPBR1). The study was performed on 597 patients, 225 of whom had a history of suicide attempts. We did not observe any significant differences in the studied polymorphisms between the group of patients with a history of suicide attempts and the control subjects. Our haplotype analysis of the AVPR1b gene revealed an association between the GCA haplotype and suicide attempts; however, this association was not significant after correcting for multiple testing. We did not observe any other association in haplotype and MDR analysis. We report here a comprehensive analysis of the HPA axis genes and a lack of association for genetic variations regarding the risk of suicide attempts in affective disorder patients. Nonetheless, the inconsistencies with the previously published results indicate the importance of the further investigation of these polymorphisms with respect to the risk of suicide attempts.

  4. Gene flow, invasiveness, and ecological impact of genetically modified crops.

    PubMed

    Warwick, Suzanne I; Beckie, Hugh J; Hall, Linda M

    2009-06-01

    The main environmental concerns about genetically modified (GM) crops are the potential weediness or invasiveness in the crop itself or in its wild or weedy relatives as a result of transgene movement. Here we briefly review evidence for pollen- and seed-mediated gene flow from GM crops to non-GM or other GM crops and to wild relatives. The report focuses on the effect of abiotic and biotic stress-tolerance traits on plant fitness and their potential to increase weedy or invasive tendencies. An evaluation of weediness and invasive traits that contribute to the success of agricultural weeds and invasive plants was of limited value in predicting the effect of biotic and abiotic stress-tolerance GM traits, suggesting context-specific evaluation rather than generalizations. Fitness data on herbicide, insect, and disease resistance, as well as cold-, drought-, and salinity-tolerance traits, are reviewed. We describe useful ecological models predicting the effects of gene flow and altered fitness in GM crops and wild/weedy relatives, as well as suitable mitigation measures. A better understanding of factors controlling population size, dynamics, and range limits in weedy volunteer GM crop and related host or target weed populations is necessary before the effect of biotic and abiotic stress-tolerance GM traits can be fully assessed.

  5. Divergence with gene flow within the recent chipmunk radiation (Tamias).

    PubMed

    Sullivan, J; Demboski, J R; Bell, K C; Hird, S; Sarver, B; Reid, N; Good, J M

    2014-09-01

    Increasing data have supported the importance of divergence with gene flow (DGF) in the generation of biological diversity. In such cases, lineage divergence occurs on a shorter timescale than does the completion of reproductive isolation. Although it is critical to explore the mechanisms driving divergence and preventing homogenization by hybridization, it is equally important to document cases of DGF in nature. Here we synthesize data that have accumulated over the last dozen or so years on DGF in the chipmunk (Tamias) radiation with new data that quantify very high rates of mitochondrial DNA (mtDNA) introgression among para- and sympatric species in the T. quadrivittatus group in the central and southern Rocky Mountains. These new data (188 cytochrome b sequences) bring the total number of sequences up to 1871; roughly 16% (298) of the chipmunks we have sequenced exhibit introgressed mtDNA. This includes ongoing introgression between subspecies and between both closely related and distantly related taxa. In addition, we have identified several taxa that are apparently fixed for ancient introgressions and in which there is no evidence of ongoing introgression. A recurrent observation is that these introgressions occur between ecologically and morphologically diverged, sometimes non-sister taxa that engage in well-documented niche partitioning. Thus, the chipmunk radiation in western North America represents an excellent mammalian example of speciation in the face of recurrent gene flow among lineages and where biogeography, habitat differentiation and mating systems suggest important roles for both ecological and sexual selection.

  6. Divergence with gene flow within the recent chipmunk radiation (Tamias)

    PubMed Central

    Sullivan, J; Demboski, J R; Bell, K C; Hird, S; Sarver, B; Reid, N; Good, J M

    2014-01-01

    Increasing data have supported the importance of divergence with gene flow (DGF) in the generation of biological diversity. In such cases, lineage divergence occurs on a shorter timescale than does the completion of reproductive isolation. Although it is critical to explore the mechanisms driving divergence and preventing homogenization by hybridization, it is equally important to document cases of DGF in nature. Here we synthesize data that have accumulated over the last dozen or so years on DGF in the chipmunk (Tamias) radiation with new data that quantify very high rates of mitochondrial DNA (mtDNA) introgression among para- and sympatric species in the T. quadrivittatus group in the central and southern Rocky Mountains. These new data (188 cytochrome b sequences) bring the total number of sequences up to 1871; roughly 16% (298) of the chipmunks we have sequenced exhibit introgressed mtDNA. This includes ongoing introgression between subspecies and between both closely related and distantly related taxa. In addition, we have identified several taxa that are apparently fixed for ancient introgressions and in which there is no evidence of ongoing introgression. A recurrent observation is that these introgressions occur between ecologically and morphologically diverged, sometimes non-sister taxa that engage in well-documented niche partitioning. Thus, the chipmunk radiation in western North America represents an excellent mammalian example of speciation in the face of recurrent gene flow among lineages and where biogeography, habitat differentiation and mating systems suggest important roles for both ecological and sexual selection. PMID:24781803

  7. Passive rafting is a powerful driver of transoceanic gene flow.

    PubMed

    Nikula, Raisa; Spencer, Hamish G; Waters, Jonathan M

    2013-02-23

    Dispersal by passive oceanic rafting is considered important for the assembly of biotic communities on islands. However, not much is known about levels of population genetic connectivity maintained by rafting over transoceanic distances. We assess the evolutionary impact of kelp-rafting by estimating population genetic differentiation in three kelp-associated invertebrate species across a system of islands isolated by oceanic gaps for over 5 million years, using mtDNA and AFLP markers. The species occur throughout New Zealand's subantarctic islands, but lack pelagic stages and any opportunity for anthropogenic transportation, and hence must rely on passive rafting for long-distance dispersal. They all have been directly observed to survive transoceanic kelp-rafting journeys in this region. Our analyses indicate that regular gene flow occurs among populations of all three species between all of the islands, especially those on either side of the subtropical front oceanographic boundary. Notwithstanding its perceived sporadic nature, long-distance kelp-rafting appears to enable significant gene flow among island populations separated by hundreds of kilometres of open ocean.

  8. Influence of Gene Flow and Breeding Tactics on Gene Diversity within Populations

    PubMed Central

    Chesser, R. K.

    1991-01-01

    Expressions describing the accumulation of gene correlations within and among lineages and individuals of a population are derived. The model permits different migration rates by males and females and accounts for various breeding tactics within lineages. The resultant equations enable calculation of the probabilistic quantities for the fixation indices, rates of loss of genetic variation, accumulation of inbreeding, and coefficients of relationship for the population at any generation. All fixation indices were found to attain asymptotic values rapidly despite the consistent loss of genetic variation and accumulation of inbreeding within the population. The time required to attain asymptotic values, however, was prolonged when gene flow among lineages was relatively low (<20%). The degree of genetic differentiation among breeding groups, inbreeding coefficients, and gene correlations within lineages were found to be primarily functions of breeding tactics within groups rather than gene flow among groups. Thus, the asymptotic value of S. Wright's island model is not appropriate for describing genetic differences among groups within populations. An alternative solution is provided that under limited conditions will reduce to the original island model. The evolution of polygynous breeding tactics appears to be more favorable for promoting intragroup gene correlations than modification of migration rates. Inbreeding and variance effective sizes are derived for populations that are structured by different migration and breeding tactics. Processes that reduce the inbreeding effective population size result in a concomitant increase in variance effective population size. PMID:1743493

  9. Climate niche differentiation between two passerines despite ongoing gene flow.

    PubMed

    Shaner, Pei-Jen L; Tsao, Tzu-Hsuan; Lin, Rong-Chien; Liang, Wei; Yeh, Chia-Fen; Yang, Xiao-Jun; Lei, Fu-Min; Zhou, Fang; Yang, Can-Chao; Hung, Le Manh; Hsu, Yu-Cheng; Li, Shou-Hsien

    2015-05-01

    Niche evolution underpins the generation and maintenance of biological diversity, but niche conservatism, in which niches remain little changed over time in closely related taxa, and the role of ecology in niche evolution are continually debated. To test whether climate niches are conserved in two closely related passerines in East Asia - the vinous-throated (Paradoxornis webbianus) and ashy-throated (P. alphonsianus) parrotbills - we established their potential allopatric and sympatric regions using ecological niche models and compared differences in their climate niches using niche overlap indices in background tests and multivariate statistical analyses. We also used polymorphism data on 44 nuclear genes to infer their divergence demography. We found that these two parrotbills occupy different climate niches, in both their allopatric and potential sympatric regions. Because the potential sympatric region is the area predicted to be suitable for both parrotbills based on the ecological niche models, it can serve as a natural common garden. Therefore, their observed niche differences in this potential sympatry were not simply rendered by phenotypic plasticity and probably had a genetic basis. Our genetic analyses revealed that the two parrotbills are not evolutionarily independent for the most recent part of their divergence history. The two parrotbills diverged c. 856,000 years ago and have had substantial gene flow since a presumed secondary contact c. 290,000 years ago. This study provides an empirical case demonstrating that climate niches may not be homogenized in nascent species in spite of substantial, ongoing gene flow, which in turn suggests a role for ecology in promoting and maintaining diversification among incipient species.

  10. Inteins as indicators of gene flow in the halobacteria.

    PubMed

    Soucy, Shannon M; Fullmer, Matthew S; Papke, R Thane; Gogarten, Johann Peter

    2014-01-01

    This research uses inteins, a type of mobile genetic element, to infer patterns of gene transfer within the Halobacteria. We surveyed 118 genomes representing 26 genera of Halobacteria for intein sequences. We then used the presence-absence profile, sequence similarity and phylogenies from the inteins recovered to explore how intein distribution can provide insight on the dynamics of gene flow between closely related and divergent organisms. We identified 24 proteins in the Halobacteria that have been invaded by inteins at some point in their evolutionary history, including two proteins not previously reported to contain an intein. Furthermore, the size of an intein is used as a heuristic for the phase of the intein's life cycle. Larger size inteins are assumed to be the canonical two domain inteins, consisting of self-splicing and homing endonuclease domains (HEN); smaller sizes are assumed to have lost the HEN domain. For many halobacterial groups the consensus phylogenetic signal derived from intein sequences is compatible with vertical inheritance or with a strong gene transfer bias creating these clusters. Regardless, the coexistence of intein-free and intein-containing alleles reveal ongoing transfer and loss of inteins within these groups. Inteins were frequently shared with other Euryarchaeota and among the Bacteria, with members of the Cyanobacteria (Cyanothece, Anabaena), Bacteriodetes (Salinibacter), Betaproteobacteria (Delftia, Acidovorax), Firmicutes (Halanaerobium), Actinobacteria (Longispora), and Deinococcus-Thermus-group.

  11. Inteins as indicators of gene flow in the halobacteria

    PubMed Central

    Soucy, Shannon M.; Fullmer, Matthew S.; Papke, R. Thane; Gogarten, Johann Peter

    2014-01-01

    This research uses inteins, a type of mobile genetic element, to infer patterns of gene transfer within the Halobacteria. We surveyed 118 genomes representing 26 genera of Halobacteria for intein sequences. We then used the presence-absence profile, sequence similarity and phylogenies from the inteins recovered to explore how intein distribution can provide insight on the dynamics of gene flow between closely related and divergent organisms. We identified 24 proteins in the Halobacteria that have been invaded by inteins at some point in their evolutionary history, including two proteins not previously reported to contain an intein. Furthermore, the size of an intein is used as a heuristic for the phase of the intein's life cycle. Larger size inteins are assumed to be the canonical two domain inteins, consisting of self-splicing and homing endonuclease domains (HEN); smaller sizes are assumed to have lost the HEN domain. For many halobacterial groups the consensus phylogenetic signal derived from intein sequences is compatible with vertical inheritance or with a strong gene transfer bias creating these clusters. Regardless, the coexistence of intein-free and intein-containing alleles reveal ongoing transfer and loss of inteins within these groups. Inteins were frequently shared with other Euryarchaeota and among the Bacteria, with members of the Cyanobacteria (Cyanothece, Anabaena), Bacteriodetes (Salinibacter), Betaproteobacteria (Delftia, Acidovorax), Firmicutes (Halanaerobium), Actinobacteria (Longispora), and Deinococcus-Thermus-group. PMID:25018750

  12. Transcriptional interference by RNA polymerase III affects expression of the Polr3e gene

    PubMed Central

    Yeganeh, Meghdad; Praz, Viviane; Cousin, Pascal; Hernandez, Nouria

    2017-01-01

    Overlapping gene arrangements can potentially contribute to gene expression regulation. A mammalian interspersed repeat (MIR) nested in antisense orientation within the first intron of the Polr3e gene, encoding an RNA polymerase III (Pol III) subunit, is conserved in mammals and highly occupied by Pol III. Using a fluorescence assay, CRISPR/Cas9-mediated deletion of the MIR in mouse embryonic stem cells, and chromatin immunoprecipitation assays, we show that the MIR affects Polr3e expression through transcriptional interference. Our study reveals a mechanism by which a Pol II gene can be regulated at the transcription elongation level by transcription of an embedded antisense Pol III gene. PMID:28289142

  13. Transcriptional interference by RNA polymerase III affects expression of the Polr3e gene.

    PubMed

    Yeganeh, Meghdad; Praz, Viviane; Cousin, Pascal; Hernandez, Nouria

    2017-02-15

    Overlapping gene arrangements can potentially contribute to gene expression regulation. A mammalian interspersed repeat (MIR) nested in antisense orientation within the first intron of the Polr3e gene, encoding an RNA polymerase III (Pol III) subunit, is conserved in mammals and highly occupied by Pol III. Using a fluorescence assay, CRISPR/Cas9-mediated deletion of the MIR in mouse embryonic stem cells, and chromatin immunoprecipitation assays, we show that the MIR affects Polr3e expression through transcriptional interference. Our study reveals a mechanism by which a Pol II gene can be regulated at the transcription elongation level by transcription of an embedded antisense Pol III gene.

  14. Extensive gene flow over Europe and possible speciation

    SciTech Connect

    VINCENOT, Dr. LUCIE; NARA, Dr. KAZUHIDE; STHULTZ, CHRISTOPHER; Labbe, Jessy L; DUBOIS, MARIE-PIERRE; TEDERSOO, LEHO; Martin, Francis; SELOSSE, Dr. MARC-ANDRE

    2012-01-01

    Biogeographical patterns and large-scale genetic structure have been little studied in ectomycorrhizal (EM) fungi, despite the ecological and economic importance of EM symbioses. We coupled population genetics and phylogenetic approaches to understand spatial structure in fungal populations on a continental scale. Using nine microsatellite markers, we characterized gene flow among 16 populations of the widespread EM basidiomycete Laccaria amethystina over Europe (i.e. over 2900 km). We also widened our scope to two additional populations from Japan (104 km away) and compared them with European populations through microsatellite markers and multilocus phylogenies, using three nuclear genes (NAR, G6PD and ribosomal DNA) and two mitochondrial ribosomal genes. European L. amethystina populations displayed limited differentiation (average FST = 0.041) and very weak isolation by distance (IBD). This panmictic European pattern may result from effective aerial dispersal of spores, high genetic diversity in populations and mutualistic interactions with multiple hosts that all facilitate migration. The multilocus phylogeny based on nuclear genes confirmed that Japanese and European specimens were closely related but clustered on a geographical basis. By using microsatellite markers, we found that Japanese populations were strongly differentiated from the European populations (FST = 0.416), more than expected by extrapolating the European pattern of IBD. Population structure analyses clearly separated the populations into two clusters, i.e. European and Japanese clusters. We discuss the possibility of IBD in a continuous population (considering some evidence for a ring species over the Northern Hemisphere) vs. an allopatric speciation over Eurasia, making L. amethystina a promising model of intercontinental species for future studies.

  15. Flow variation and substrate type affect dislodgement of the freshwater polychaete, Manayunkia speciosa

    USGS Publications Warehouse

    Malakauskas, David M.; Wilson, Sarah J.; Wilzbach, Margaret A.; Som, Nicholas A.

    2013-01-01

    We quantified microscale flow forces and their ability to entrain the freshwater polychaete, Manayunkia speciosa, the intermediate host for 2 myxozoan parasites (Ceratomyxa shasta and Parvicapsula minibicornis) that cause substantial mortalities in salmonid fishes in the Pacific Northwest. In a laboratory flume, we measured the shear stress associated with 2 mean flow velocities and 3 substrates and quantified associated dislodgement of polychaetes, evaluated survivorship of dislodged polychaetes, and observed behavioral responses of the polychaetes in response to increased flow. We used a generalized linear mixed model to estimate the probability of polychaete dislodgement for treatment combinations of velocity (mean flow velocity  =  55 cm/s with a shear velocity  =  3 cm/s, mean flow velocity  =  140 cm/s with a shear velocity  =  5 cm/s) and substrate type (depositional sediments and analogs of rock faces and the filamentous alga, Cladophora). Few polychaetes were dislodged at shear velocities <3 cm/s on any substrate. Above this level of shear, probability of dislodgement was strongly affected by both substrate type and velocity. After accounting for substrate, odds of dislodgement were 8× greater at the higher flow. After accounting for velocity, probability of dislodgement was greatest from fine sediments, intermediate from rock faces, and negligible from Cladophora. Survivorship of dislodged polychaetes was high. Polychaetes exhibited a variety of behaviors for avoiding increases in flow, including extrusion of mucus, burrowing into sediments, and movement to lower-flow microhabitats. Our findings suggest that polychaete populations probably exhibit high resilience to flow-mediated disturbances.

  16. Identification of nonviable genes affecting touch sensitivity in Caenorhabditis elegans using neuronally enhanced feeding RNA interference.

    PubMed

    Chen, Xiaoyin; Cuadros, Margarete Diaz; Chalfie, Martin

    2015-01-09

    Caenorhabditis elegans senses gentle touch along the body via six touch receptor neurons. Although genetic screens and microarray analyses have identified several genes needed for touch sensitivity, these methods miss pleiotropic genes that are essential for the viability, movement, or fertility of the animals. We used neuronally enhanced feeding RNA interference to screen genes that cause lethality or paralysis when mutated, and we identified 61 such genes affecting touch sensitivity, including five positive controls. We confirmed 18 genes by using available alleles, and further studied one of them, tag-170, now renamed txdc-9. txdc-9 preferentially affects anterior touch response but is needed for tubulin acetylation and microtubule formation in both the anterior and posterior touch receptor neurons. Our results indicate that neuronally enhanced feeding RNA interference screens complement traditional mutageneses by identifying additional nonviable genes needed for specific neuronal functions.

  17. Evaluating gene flow using selected markers: a case study.

    PubMed Central

    Lenormand, T; Guillemaud, T; Bourguet, D; Raymond, M

    1998-01-01

    The extent to which an organism is locally adapted in an environmental pocket depends on the selection intensities inside and outside the pocket, on migration, and on the size of the pocket. When two or more loci are involved in this local adaptation, measuring their frequency gradients and their linkage disequilbria allows one to disentangle the forces-migration and selection-acting on the system. We apply this method to the case of a local adaptation to organophosphate insecticides in the mosquito Culex pipiens pipiens in southern France. The study of two different resistance loci allowed us to estimate with support limits gene flow as well as selection pressure on insecticide resistance and the fitness costs associated with each locus. These estimates permit us to pinpoint the conditions for the maintenance of this pocket of adaptation as well as the effect of the interaction between the two resistance loci. PMID:9649528

  18. Population subdivision and gene flow among wild orangutans.

    PubMed

    Kanthaswamy, Sreetharan; Smith, David Glenn

    2002-10-01

    Genetic variability among populations of orangutans from Borneo and Sumatra was assessed using seven SSR loci. Most SSR loci were highly polymorphic and their allele frequencies exhibited substantial variation across subpopulations. While significant genetic subdivision was observed among the island populations, genetic distance did not increase with geographic distance and sufficient gene flow persists to prevent marked genetic subdivision. Since it is unlikely that the Bornean Orangutans dispersed naturally among locations separated by such formidable geographic barriers, human assistance might already have altered their genetic structure. Our data suggests that there may be at least two subspecific clades of orangutans within Borneo while Central Kalimantan animals may have become more genetically related to animals in Sumatra due to human intervention.

  19. Impact of gene stacking on gene flow: the case of maize.

    PubMed

    Paul, Lénaïc; Angevin, Frédérique; Collonnier, Cécile; Messéan, Antoine

    2012-04-01

    To respect the European labelling threshold for the adventitious presence of genetically modified organisms (GMOs) in food and feed, stakeholders mainly rely on real-time PCR analysis, which provides a measurement expressed as a percentage of GM-DNA. However, this measurement veils the complexity of gene flow, especially in the case of gene stacking. We have investigated the impact of gene stacking on adventitious GM presence due to pollen flow and seed admixture as well as its translation in terms of the percentage of GM-DNA in a non-GM maize harvest. In the case of varieties bearing one to four stacked events, we established a set of relationships between the percentage of GM kernels and the percentage of GM-DNA in a non-GM harvest as well as a set of relationships between the rate of seed admixture and the percentages of GM material in a non-GM harvest. Thanks to these relationships, and based on simulations with a gene flow model, we have been able to demonstrate that the number of events and the stacking structure of the emitting fields impact the ability of a non-GM maize producer to comply with given GM kernel or GM-DNA thresholds. We also show that a great variability in the rates of GM kernels, embryos and DNA results from seed admixture. Finally, the choice of a unit of measurement for a GM threshold in seed lots can have opposite effects on the ability of farmers to comply with a given threshold depending on whether they are crop or seed producers.

  20. Gene flow and the genealogical history of Heliconius heurippa

    PubMed Central

    2008-01-01

    Background The neotropical butterfly Heliconius heurippa has a hybrid colour pattern, which also contributes to reproductive isolation, making it a likely example of hybrid speciation. Here we used phylogenetic and coalescent-based analyses of multilocus sequence data to investigate the origin of H. heurippa. Results We sequenced a mitochondrial region (CoI and CoII), a sex-linked locus (Tpi) and two autosomal loci (w and sd) from H. heurippa and the putative parental species, H. cydno and H. melpomene. These were analysed in combination with data from two previously sequenced autosomal loci, Dll and Inv. H. heurippa was monophyletic at mtDNA and Tpi, but showed a shared distribution of alleles derived from both parental lineages at all four autosomal loci. Estimates of genetic differentiation showed that H. heurippa is closer to H. cydno at mtDNA and three autosomal loci, intermediate at Tpi, and closer to H. melpomene at Dll. Using coalescent simulations with the Isolation-Migration model (IM), we attempted to establish the incidence of gene flow in the origin of H. heurippa. This analysis suggested that ongoing introgression is frequent between all three species and variable in extent between loci. Conclusion Introgression, which is a necessary precursor of hybrid speciation, seems to have also blurred the coalescent history of these species. The origin of Heliconius heurippa may have been restricted to introgression of few colour pattern genes from H. melpomene into the H. cydno genome, with little evidence of genomic mosaicism. PMID:18454858

  1. Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes.

    PubMed

    Lin, Yongxiang; Cheng, Ying; Jin, Jing; Jin, Xiaolei; Jiang, Haiyang; Yan, Hanwei; Cheng, Beijiu

    2014-01-01

    Whole-genome duplication events (polyploidy events) and gene loss events have played important roles in the evolution of legumes. Here we show that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in gene retention exist between species. By searching for intraspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found that genome duplications accounted for 42 of 46 Hsf-containing segments in Glycine max, while paired segments were rarely identified in Lotus japonicas, Medicago truncatula and Cajanus cajan. However, by comparing interspecies microsynteny, we determined that the great majority of Hsf-containing segments in Lotus japonicas, Medicago truncatula and Cajanus cajan show extensive conservation with the duplicated regions of Glycine max. These segments formed 17 groups of orthologous segments. These results suggest that these regions shared ancient genome duplication with Hsf genes in Glycine max, but more than half of the copies of these genes were lost. On the other hand, the Glycine max Hsf gene family retained approximately 75% and 84% of duplicated genes produced from the ancient genome duplication and recent Glycine-specific genome duplication, respectively. Continuous purifying selection has played a key role in the maintenance of Hsf genes in Glycine max. Expression analysis of the Hsf genes in Lotus japonicus revealed their putative involvement in multiple tissue-/developmental stages and responses to various abiotic stimuli. This study traces the evolution of Hsf genes in legume species and demonstrates that the rates of gene gain and loss are far from equilibrium in different species.

  2. Models of selection, isolation, and gene flow in speciation.

    PubMed

    Hart, Michael W

    2014-10-01

    Many marine ecologists aspire to use genetic data to understand how selection and demographic history shape the evolution of diverging populations as they become reproductively isolated species. I propose combining two types of genetic analysis focused on this key early stage of the speciation process to identify the selective agents directly responsible for population divergence. Isolation-with-migration (IM) models can be used to characterize reproductive isolation between populations (low gene flow), while codon models can be used to characterize selection for population differences at the molecular level (especially positive selection for high rates of amino acid substitution). Accessible transcriptome sequencing methods can generate the large quantities of data needed for both types of analysis. I highlight recent examples (including our work on fertilization genes in sea stars) in which this confluence of interest, models, and data has led to taxonomically broad advances in understanding marine speciation at the molecular level. I also highlight new models that incorporate both demography and selection: simulations based on these theoretical advances suggest that polymorphisms shared among individuals (a key source of information in IM models) may lead to false-positive evidence of selection (in codon models), especially during the early stages of population divergence and speciation that are most in need of study. The false-positive problem may be resolved through a combination of model improvements plus experiments that document the phenotypic and fitness effects of specific polymorphisms for which codon models and IM models indicate selection and reproductive isolation (such as genes that mediate sperm-egg compatibility at fertilization).

  3. Investigating Pollen and Gene Flow of WYMV-Resistant Transgenic Wheat N12-1 Using a Dwarf Male-Sterile Line as the Pollen Receptor.

    PubMed

    Dong, Shanshan; Liu, Yan; Yu, Cigang; Zhang, Zhenhua; Chen, Ming; Wang, Changyong

    2016-01-01

    Pollen-mediated gene flow (PMGF) is the main mode of transgene flow in flowering plants. The study of pollen and gene flow of transgenic wheat can help to establish the corresponding strategy for preventing transgene escape and contamination between compatible genotypes in wheat. To investigate the pollen dispersal and gene flow frequency in various directions and distances around the pollen source and detect the association between frequency of transgene flow and pollen density from transgenic wheat, a concentric circle design was adopted to conduct a field experiment using transgenic wheat with resistance to wheat yellow mosaic virus (WYMV) as the pollen donor and dwarf male-sterile wheat as the pollen receptor. The results showed that the pollen and gene flow of transgenic wheat varied significantly among the different compass sectors. A higher pollen density and gene flow frequency was observed in the downwind SW and W sectors, with average frequencies of transgene flow of 26.37 and 23.69% respectively. The pollen and gene flow of transgenic wheat declined dramatically with increasing distance from its source. Most of the pollen grains concentrated within 5 m and only a few pollen grains were detected beyond 30 m. The percentage of transgene flow was the highest where adjacent to the pollen source, with an average of 48.24% for all eight compass directions at 0 m distance. Transgene flow was reduced to 50% and 95% between 1.61 to 3.15 m, and 10.71 to 20.93 m, respectively. Our results suggest that climate conditions, especially wind direction, may significantly affect pollen dispersal and gene flow of wheat. The isolation-by-distance model is one of the most effective methods for achieving stringent transgene confinement in wheat. The frequency of transgene flow is directly correlated with the relative density of GM pollen grains in air currents, and pollen competition may be a major factor influencing transgene flow.

  4. Investigating Pollen and Gene Flow of WYMV-Resistant Transgenic Wheat N12-1 Using a Dwarf Male-Sterile Line as the Pollen Receptor

    PubMed Central

    Dong, Shanshan; Liu, Yan; Yu, Cigang; Zhang, Zhenhua; Chen, Ming; Wang, Changyong

    2016-01-01

    Pollen-mediated gene flow (PMGF) is the main mode of transgene flow in flowering plants. The study of pollen and gene flow of transgenic wheat can help to establish the corresponding strategy for preventing transgene escape and contamination between compatible genotypes in wheat. To investigate the pollen dispersal and gene flow frequency in various directions and distances around the pollen source and detect the association between frequency of transgene flow and pollen density from transgenic wheat, a concentric circle design was adopted to conduct a field experiment using transgenic wheat with resistance to wheat yellow mosaic virus (WYMV) as the pollen donor and dwarf male-sterile wheat as the pollen receptor. The results showed that the pollen and gene flow of transgenic wheat varied significantly among the different compass sectors. A higher pollen density and gene flow frequency was observed in the downwind SW and W sectors, with average frequencies of transgene flow of 26.37 and 23.69% respectively. The pollen and gene flow of transgenic wheat declined dramatically with increasing distance from its source. Most of the pollen grains concentrated within 5 m and only a few pollen grains were detected beyond 30 m. The percentage of transgene flow was the highest where adjacent to the pollen source, with an average of 48.24% for all eight compass directions at 0 m distance. Transgene flow was reduced to 50% and 95% between 1.61 to 3.15 m, and 10.71 to 20.93 m, respectively. Our results suggest that climate conditions, especially wind direction, may significantly affect pollen dispersal and gene flow of wheat. The isolation-by-distance model is one of the most effective methods for achieving stringent transgene confinement in wheat. The frequency of transgene flow is directly correlated with the relative density of GM pollen grains in air currents, and pollen competition may be a major factor influencing transgene flow. PMID:26975052

  5. Phloem ultrastructure and pressure flow: Sieve-Element-Occlusion-Related agglomerations do not affect translocation.

    PubMed

    Froelich, Daniel R; Mullendore, Daniel L; Jensen, Kåre H; Ross-Elliott, Tim J; Anstead, James A; Thompson, Gary A; Pélissier, Hélène C; Knoblauch, Michael

    2011-12-01

    Since the first ultrastructural investigations of sieve tubes in the early 1960s, their structure has been a matter of debate. Because sieve tube structure defines frictional interactions in the tube system, the presence of P protein obstructions shown in many transmission electron micrographs led to a discussion about the mode of phloem transport. At present, it is generally agreed that P protein agglomerations are preparation artifacts due to injury, the lumen of sieve tubes is free of obstructions, and phloem flow is driven by an osmotically generated pressure differential according to Münch's classical hypothesis. Here, we show that the phloem contains a distinctive network of protein filaments. Stable transgenic lines expressing Arabidopsis thaliana Sieve-Element-Occlusion-Related1 (SEOR1)-yellow fluorescent protein fusions show that At SEOR1 meshworks at the margins and clots in the lumen are a general feature of living sieve tubes. Live imaging of phloem flow and flow velocity measurements in individual tubes indicate that At SEOR1 agglomerations do not markedly affect or alter flow. A transmission electron microscopy preparation protocol has been generated showing sieve tube ultrastructure of unprecedented quality. A reconstruction of sieve tube ultrastructure served as basis for tube resistance calculations. The impact of agglomerations on phloem flow is discussed.

  6. Sex-biased gene flow among elk in the greater Yellowstone ecosystem

    USGS Publications Warehouse

    , Brian K. Hand; , Shanyuan Chen; , N. Anderson; , A. Beja-Pereira; Cross, Paul C.; , M. Ebinger; , H. Edwards; , R.A. Garrott; , M.D. Kardos; Kauffman, Matthew J.; , E.L. Landguth; , A. Middleton; , B. Scurlock; , P.J. White; , P. Zager; , M.K. Schwartz; , G. Luikart

    2014-01-01

    We quantified patterns of population genetic structure to help understand gene flow among elk populations across the Greater Yellowstone Ecosystem. We sequenced 596 base pairs of the mitochondrial control region of 380 elk from eight populations. Analysis revealed high mitochondrial DNA variation within populations, averaging 13.0 haplotypes with high mean gene diversity (0.85). The genetic differentiation among populations for mitochondrial DNA was relatively high (FST = 0.161; P = 0.001) compared to genetic differentiation for nuclear microsatellite data (FST = 0.002; P = 0.332), which suggested relatively low female gene flow among populations. The estimated ratio of male to female gene flow (mm/mf = 46) was among the highest we have seen reported for large mammals. Genetic distance (for mitochondrial DNA pairwise FST) was not significantly correlated with geographic (Euclidean) distance between populations (Mantel’s r = 0.274, P = 0.168). Large mitochondrial DNA genetic distances (e.g., FST > 0.2) between some of the geographically closest populations (<65 km) suggested behavioral factors and/or landscape features might shape female gene flow patterns. Given the strong sex-biased gene flow, future research and conservation efforts should consider the sexes separately when modeling corridors of gene flow or predicting spread of maternally transmitted diseases. The growing availability of genetic data to compare male vs. female gene flow provides many exciting opportunities to explore the magnitude, causes, and implications of sex-biased gene flow likely to occur in many species

  7. Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    PubMed Central

    Skjærven, Kaja H.; Jakt, Lars Martin; Dahl, John Arne; Espe, Marit; Aanes, Håvard; Hamre, Kristin; Fernandes, Jorge M. O.

    2016-01-01

    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring. PMID:27731423

  8. Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    NASA Astrophysics Data System (ADS)

    Skjærven, Kaja H.; Jakt, Lars Martin; Dahl, John Arne; Espe, Marit; Aanes, Håvard; Hamre, Kristin; Fernandes, Jorge M. O.

    2016-10-01

    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring.

  9. Factors affecting SFHR gene correction efficiency with single-stranded DNA fragment

    SciTech Connect

    Tsuchiya, Hiroyuki; Harashima, Hideyoshi; Kamiya, Hiroyuki . E-mail: hirokam@pharm.hokudai.ac.jp

    2005-11-04

    A 606-nt single-stranded (ss) DNA fragment, prepared by restriction enzyme digestion of ss phagemid DNA, improves the gene correction efficiency by 12-fold as compared with a PCR fragment, which is the conventional type of fragment used in the small fragment homologous replacement method [H. Tsuchiya, H. Harashima, H. Kamiya, Increased SFHR gene correction efficiency with sense single-stranded DNA, J. Gene Med. 7 (2005) 486-493]. To reveal the characteristic features of this gene correction with the ss DNA fragment, the effects on the gene correction in CHO-K1 cells of the chain length, 5'-phosphate, adenine methylation, and transcription were studied. Moreover, the possibility that the ss DNA fragment is integrated into the target DNA was examined with a radioactively labeled ss DNA fragment. The presence of methylated adenine, but not the 5'-phosphate, enhanced the gene correction efficiency, and the optimal length of the ss DNA fragment ({approx}600 nt) was determined. Transcription of the target gene did not affect the gene correction efficiency. In addition, the target DNA recovered from the transfected CHO-K1 cells was radioactive. The results obtained in this study indicate that length and adenine methylation were important factors affecting the gene correction efficiency, and that the ss DNA fragment was integrated into the double-stranded target DNA.

  10. Unstable Expression of Commonly Used Reference Genes in Rat Pancreatic Islets Early after Isolation Affects Results of Gene Expression Studies.

    PubMed

    Kosinová, Lucie; Cahová, Monika; Fábryová, Eva; Týcová, Irena; Koblas, Tomáš; Leontovyč, Ivan; Saudek, František; Kříž, Jan

    2016-01-01

    The use of RT-qPCR provides a powerful tool for gene expression studies; however, the proper interpretation of the obtained data is crucially dependent on accurate normalization based on stable reference genes. Recently, strong evidence has been shown indicating that the expression of many commonly used reference genes may vary significantly due to diverse experimental conditions. The isolation of pancreatic islets is a complicated procedure which creates severe mechanical and metabolic stress leading possibly to cellular damage and alteration of gene expression. Despite of this, freshly isolated islets frequently serve as a control in various gene expression and intervention studies. The aim of our study was to determine expression of 16 candidate reference genes and one gene of interest (F3) in isolated rat pancreatic islets during short-term cultivation in order to find a suitable endogenous control for gene expression studies. We compared the expression stability of the most commonly used reference genes and evaluated the reliability of relative and absolute quantification using RT-qPCR during 0-120 hrs after isolation. In freshly isolated islets, the expression of all tested genes was markedly depressed and it increased several times throughout the first 48 hrs of cultivation. We observed significant variability among samples at 0 and 24 hrs but substantial stabilization from 48 hrs onwards. During the first 48 hrs, relative quantification failed to reflect the real changes in respective mRNA concentrations while in the interval 48-120 hrs, the relative expression generally paralleled the results determined by absolute quantification. Thus, our data call into question the suitability of relative quantification for gene expression analysis in pancreatic islets during the first 48 hrs of cultivation, as the results may be significantly affected by unstable expression of reference genes. However, this method could provide reliable information from 48 hrs onwards.

  11. Hominin evolution and gene flow in the Pleistocene Africa.

    PubMed

    Ovchinnikov, Igor V

    2013-01-01

    Africa demonstrates a complex process of the hominin evolution with a series of adaptive radiations during several millions of years that led to diverse morphological forms. Recently, Hammer et al. (2011) and Harvati et al. (2011) provided integrated morphological and genetic evidence of interbreeding between modern humans and unknown archaic hominins in Africa as recently as 35,000 years ago. However, a genetic evidence of hybridization between hominin lineages during the Lower and Middle Pleistocene epochs is unknown and the direct retrieval of DNA from extinct lineages of African hominins remains elusive. The availability of both nuclear and mitochondrial genome sequences from modern humans, Neanderthals, and Denisovans allows collecting nuclear DNA sequences of mitochondrial origin (numts) inserted into the nuclear genome of the ancestral hominin lineages and drawing conclusions about the hominin evolution in the remote past. The mtDNA and numt analysis uncovered a deep division of mtDNA lineages that existed in African hominins in the Middle Pleistocene. The first cluster included the human and Neanderthal-like mtDNA sequences while the second consisted of DNA sequences that are known today as mtAncestor-1, a nuclear fossil of the mtDNA, and the Denisova mtDNA isolated from a bone and a tooth found in southern Siberia. The two groups initially diverged 610,000-1,110,000 years ago. Approximately 220,000 years after the primary split, the Denisova - mtAncestor-1 mtDNA lineages mixed with the mtDNA pool of an ancestral population of Neanderthals and modern humans. This admixture after the profound division is demonstrated by the transposition of the Denisova-like mtDNA sequence into the nuclear genome of an ancestor of Neanderthals and modern humans. This finding suggests the matrilineal genetic structure among the Middle Pleistocene hominins as well as the existence of gene flow between African hominin lineages. Through paleogenomic analyses, it is impossible to

  12. Yeast genome-wide screen reveals dissimilar sets of host genes affecting replication of RNA viruses

    PubMed Central

    Panavas, Tadas; Serviene, Elena; Brasher, Jeremy; Nagy, Peter D.

    2005-01-01

    Viruses are devastating pathogens of humans, animals, and plants. To further our understanding of how viruses use the resources of infected cells, we systematically tested the yeast single-gene-knockout library for the effect of each host gene on the replication of tomato bushy stunt virus (TBSV), a positive-strand RNA virus of plants. The genome-wide screen identified 96 host genes whose absence either reduced or increased the accumulation of the TBSV replicon. The identified genes are involved in the metabolism of nucleic acids, lipids, proteins, and other compounds and in protein targeting/transport. Comparison with published genome-wide screens reveals that the replication of TBSV and brome mosaic virus (BMV), which belongs to a different supergroup among plus-strand RNA viruses, is affected by vastly different yeast genes. Moreover, a set of yeast genes involved in vacuolar targeting of proteins and vesicle-mediated transport both affected replication of the TBSV replicon and enhanced the cytotoxicity of the Parkinson's disease-related α-synuclein when this protein was expressed in yeast. In addition, a set of host genes involved in ubiquitin-dependent protein catabolism affected both TBSV replication and the cytotoxicity of a mutant huntingtin protein, a candidate agent in Huntington's disease. This finding suggests that virus infection and disease-causing proteins might use or alter similar host pathways and may suggest connections between chronic diseases and prior virus infection. PMID:15883361

  13. Phenological mismatch and the effectiveness of assisted gene flow.

    PubMed

    Wadgymar, Susana M; Weis, Arthur E

    2016-12-10

    The persistence of narrowly adapted species under climate change will depend on their ability to migrate apace with their historical climatic envelope or to adapt in place to maintain fitness. This second path to persistence can only occur if there is sufficient genetic variance for response to new selection regimes. Inadequate levels of genetic variation can be remedied through assisted gene flow (AGF), that is the intentional introduction of individuals genetically adapted to localities with historic climates similar to the current or future climate experienced by the resident population. However, the timing of reproduction is frequently adapted to local conditions. Phenological mismatch between residents and migrants can reduce resident × migrant mating frequencies, slowing the introgression of migrant alleles into the resident genetic background and impeding evolutionary rescue efforts. Focusing on plants, we devised a method to estimate the frequency of resident × migrant matings based on flowering schedules and applied it in an experiment that mimicked the first generation of an AGF program with Chamaecrista fasciculata, a prairie annual, under current and expected future temperature regimes. Phenological mismatch reduced the potential for resident × migrant matings by 40-90%, regardless of thermal treatment. The most successful migrant sires were the most resident like in their flowering time, further biasing the genetic admixture between resident and migrant populations. Other loci contributing to local adaptation-heat-tolerance genes, for instance-may be in linkage disequilibrium with phenology when residents and migrants are combined into a single mating pool. Thus, introgression of potentially adaptive migrant alleles into the resident genetic background is slowed when selection acts against migrant phenology. Successful AGF programs may require sustained high immigration rates or preliminary breeding programs when phenologically matched migrant

  14. Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow.

    PubMed

    Crispo, E

    2008-11-01

    Divergent natural selection, adaptive divergence and gene flow may interact in a number of ways. Recent studies have focused on the balance between selection and gene flow in natural populations, and empirical work has shown that gene flow can constrain adaptive divergence, and that divergent selection can constrain gene flow. A caveat is that phenotypic diversification may be under the direct influence of environmental factors (i.e. it may be due to phenotypic plasticity), in addition to partial genetic influence. In this case, phenotypic divergence may occur between populations despite high gene flow that imposes a constraint on genetic divergence. Plasticity may dampen the effects of natural selection by allowing individuals to rapidly adapt phenotypically to new conditions, thus slowing adaptive genetic divergence. On the other hand, plasticity may promote future adaptive divergence by allowing populations to persist in novel environments. Plasticity may promote gene flow between selective regimes by allowing dispersers to adapt to alternate conditions, or high gene flow may result in the selection for increased plasticity. Here I expand frameworks for understanding relationships among selection, adaptation and gene flow to include the effects of phenotypic plasticity in natural populations, and highlight its importance in evolutionary diversification.

  15. Euglossine bees mediate only limited long-distance gene flow in a tropical vine.

    PubMed

    Opedal, Øystein H; Falahati-Anbaran, Mohsen; Albertsen, Elena; Armbruster, W Scott; Pérez-Barrales, Rocío; Stenøien, Hans K; Pélabon, Christophe

    2017-03-01

    Euglossine bees (Apidae: Euglossini) have long been hypothesized to act as long-distance pollinators of many low-density tropical plants. We tested this hypothesis by the analysis of gene flow and genetic structure within and among populations of the euglossine bee-pollinated vine Dalechampia scandens. Using microsatellite markers, we assessed historical gene flow by the quantification of regional-scale genetic structure and isolation by distance among 18 populations, and contemporary gene flow by the estimation of recent migration rates among populations. To assess bee-mediated pollen dispersal on a smaller scale, we conducted paternity analyses within a focal population, and quantified within-population spatial genetic structure in four populations. Gene flow was limited to certain nearby populations within continuous forest blocks, whereas drift appeared to dominate on larger scales. Limited long-distance gene flow was supported by within-population patterns; gene flow was biased towards nearby plants, and significant small-scale spatial genetic structure was detected within populations. These findings suggest that, although female euglossine bees might be effective at moving pollen within populations, and perhaps within forest blocks, their contribution to gene flow on the regional scale seems too limited to counteract genetic drift in patchily distributed tropical plants. Among-population gene flow might have been reduced following habitat fragmentation.

  16. Novel Genes Affecting Blood Pressure Detected Via Gene-Based Association Analysis

    PubMed Central

    Zhang, Huan; Mo, Xing-Bo; Xu, Tan; Bu, Xiao-Qing; Lei, Shu-Feng; Zhang, Yong-Hong

    2015-01-01

    Hypertension is a common disorder and one of the most important risk factors for cardiovascular diseases. The aim of this study was to identify more novel genes for blood pressure. Based on the publically available SNP-based P values of a meta-analysis of genome-wide association studies, we performed an initial gene-based association study in a total of 69,395 individuals. To find supplementary evidence to support the importance of the identified genes, we performed GRAIL (gene relationships among implicated loci) analysis, protein–protein interaction analysis, functional annotation clustering analysis, coronary artery disease association analysis, and other bioinformatics analyses. Approximately 22,129 genes on the human genome were analyzed for blood pressure in gene-based association analysis. A total of 43 genes were statistically significant after Bonferroni correction (P < 2.3×10−6). The evidence obtained from the analyses of this study suggested the importance of ID1 (P = 2.0×10−6), CYP17A1 (P = 4.58×10−9), ATXN2 (P = 1.07×10−13), CLCN6 (P = 4.79×10−9), FURIN (P = 1.38×10−6), HECTD4 (P = 3.95×10−11), NPPA (P = 1.60×10−6), and PTPN11 (P = 8.89×10−10) in the genetic basis of blood pressure. The present study found some important genes associated with blood pressure, which might provide insights into the genetic architecture of hypertension. PMID:25820152

  17. Circumpolar Genetic Structure and Recent Gene Flow of Polar Bears: A Reanalysis.

    PubMed

    Malenfant, René M; Davis, Corey S; Cullingham, Catherine I; Coltman, David W

    2016-01-01

    Recently, an extensive study of 2,748 polar bears (Ursus maritimus) from across their circumpolar range was published in PLOS ONE, which used microsatellites and mitochondrial haplotypes to apparently show altered population structure and a dramatic change in directional gene flow towards the Canadian Archipelago-an area believed to be a future refugium for polar bears as their southernmost habitats decline under climate change. Although this study represents a major international collaborative effort and promised to be a baseline for future genetics work, methodological shortcomings and errors of interpretation undermine some of the study's main conclusions. Here, we present a reanalysis of this data in which we address some of these issues, including: (1) highly unbalanced sample sizes and large amounts of systematically missing data; (2) incorrect calculation of FST and of significance levels; (3) misleading estimates of recent gene flow resulting from non-convergence of the program BayesAss. In contrast to the original findings, in our reanalysis we find six genetic clusters of polar bears worldwide: the Hudson Bay Complex, the Western and Eastern Canadian Arctic Archipelago, the Western and Eastern Polar Basin, and-importantly-we reconfirm the presence of a unique and possibly endangered cluster of bears in Norwegian Bay near Canada's expected last sea-ice refugium. Although polar bears' abundance, distribution, and population structure will certainly be negatively affected by ongoing-and increasingly rapid-loss of Arctic sea ice, these genetic data provide no evidence of strong directional gene flow in response to recent climate change.

  18. Parentage versus two-generation analyses for estimating pollen-mediated gene flow in plant populations.

    PubMed

    Burczyk, Jaroslaw; Koralewski, Tomasz E

    2005-07-01

    Assessment of contemporary pollen-mediated gene flow in plants is important for various aspects of plant population biology, genetic conservation and breeding. Here, through simulations we compare the two alternative approaches for measuring pollen-mediated gene flow: (i) the NEIGHBORHOOD model--a representative of parentage analyses, and (ii) the recently developed TWOGENER analysis of pollen pool structure. We investigate their properties in estimating the effective number of pollen parents (N(ep)) and the mean pollen dispersal distance (delta). We demonstrate that both methods provide very congruent estimates of N(ep) and delta, when the methods' assumptions considering the shape of pollen dispersal curve and the mating system follow those used in data simulations, although the NEIGHBORHOOD model exhibits generally lower variances of the estimates. The violations of the assumptions, especially increased selfing or long-distance pollen dispersal, affect the two methods to a different degree; however, they are still capable to provide comparable estimates of N(ep). The NEIGHBORHOOD model inherently allows to estimate both self-fertilization and outcrossing due to the long-distance pollen dispersal; however, the TWOGENER method is particularly sensitive to inflated selfing levels, which in turn may confound and suppress the effects of distant pollen movement. As a solution we demonstrate that in case of TWOGENER it is possible to extract the fraction of intraclass correlation that results from outcrossing only, which seems to be very relevant for measuring pollen-mediated gene flow. The two approaches differ in estimation precision and experimental efforts but they seem to be complementary depending on the main research focus and type of a population studied.

  19. Circumpolar Genetic Structure and Recent Gene Flow of Polar Bears: A Reanalysis

    PubMed Central

    Malenfant, René M.; Davis, Corey S.; Cullingham, Catherine I.; Coltman, David W.

    2016-01-01

    Recently, an extensive study of 2,748 polar bears (Ursus maritimus) from across their circumpolar range was published in PLOS ONE, which used microsatellites and mitochondrial haplotypes to apparently show altered population structure and a dramatic change in directional gene flow towards the Canadian Archipelago—an area believed to be a future refugium for polar bears as their southernmost habitats decline under climate change. Although this study represents a major international collaborative effort and promised to be a baseline for future genetics work, methodological shortcomings and errors of interpretation undermine some of the study’s main conclusions. Here, we present a reanalysis of this data in which we address some of these issues, including: (1) highly unbalanced sample sizes and large amounts of systematically missing data; (2) incorrect calculation of FST and of significance levels; (3) misleading estimates of recent gene flow resulting from non-convergence of the program BayesAss. In contrast to the original findings, in our reanalysis we find six genetic clusters of polar bears worldwide: the Hudson Bay Complex, the Western and Eastern Canadian Arctic Archipelago, the Western and Eastern Polar Basin, and—importantly—we reconfirm the presence of a unique and possibly endangered cluster of bears in Norwegian Bay near Canada’s expected last sea-ice refugium. Although polar bears’ abundance, distribution, and population structure will certainly be negatively affected by ongoing—and increasingly rapid—loss of Arctic sea ice, these genetic data provide no evidence of strong directional gene flow in response to recent climate change. PMID:26974333

  20. Two-dimensional DNAPL migration affected by groundwater flow in unconfined aquifer.

    PubMed

    Kamon, Masashi; Endo, Kazuto; Kawabata, Junichi; Inui, Toru; Katsumi, Takeshi

    2004-07-05

    The dense non-aqueous phase liquid (DNAPL) migration process was experimentally investigated in a laboratory-scale tank (150 cm width, 82.5 cm height, and 15 cm depth) to assess a site characterization on DNAPL contamination below a groundwater table. The heterogeneous ground of the tank model consisted of Toyoura sand (hydraulic conductivity, k = 1.5 x 10(-2) cm/s for void ratio, e = 0.62) and silica #7 sand (k = 2.3 x 10(-3) cm/s for e = 0.72). A series of experiments was carried out with or without lateral groundwater flow. Hydrofluoroether was used as a representative DNAPL. The main results obtained in this study are as follows: (1) the DNAPL plume does not invade into the less permeable soil layer with higher displacement pressure head; (2) the DNAPL plume migrates faster with lateral groundwater flow than without it; (3) lateral groundwater flow does not affect lateral DNAPL migration; rather, it promotes downward migration; and (4) pore DNAPL pressure without groundwater flow is higher than that with it. The above experimental results were compared with numerical analysis. The fundamental behaviors of DNAPL source migration observed experimentally are expected to be useful for assessing the characteristics of two-dimensional DNAPL migration in an aquifer.

  1. Analysis of thirteen trinucleotide repeat loci as candidate genes for Schizophrenia and bipolar affective disorder

    SciTech Connect

    Jain, S.; Leggo, J.; Ferguson-Smith, M.A.; Rubinsztein, D.C.

    1996-04-09

    A group of diseases are due to abnormal expansions of trinucleotide repeats. These diseases all affect the nervous system. In addition, they manifest the phenomenon of anticipation, in which the disease tends to present at an earlier age or with greater severity in successive generations. Many additional genes with trinucleotide repeats are believed to be expressed in the human brain. As anticipation has been reported in schizophrenia and bipolar affective disorder, we have examined allele distributions of 13 trinucleotide repeat-containing genes, many novel and all expressed in the brain, in genomic DNA from schizophrenic (n = 20-97) and bipolar affective disorder patients (23-30) and controls (n = 43-146). No evidence was obtained to implicate expanded alleles in these 13 genes as causal factors in these diseases. 26 refs., 1 fig., 2 tabs.

  2. Interspecies systems biology uncovers metabolites affecting C. elegans gene expression and life history traits.

    PubMed

    Watson, Emma; MacNeil, Lesley T; Ritter, Ashlyn D; Yilmaz, L Safak; Rosebrock, Adam P; Caudy, Amy A; Walhout, Albertha J M

    2014-02-13

    Diet greatly influences gene expression and physiology. In mammals, elucidating the effects and mechanisms of individual nutrients is challenging due to the complexity of both the animal and its diet. Here, we used an interspecies systems biology approach with Caenorhabditis elegans and two of its bacterial diets, Escherichia coli and Comamonas aquatica, to identify metabolites that affect the animal's gene expression and physiology. We identify vitamin B12 as the major dilutable metabolite provided by Comamonas aq. that regulates gene expression, accelerates development, and reduces fertility but does not affect lifespan. We find that vitamin B12 has a dual role in the animal: it affects development and fertility via the methionine/S-Adenosylmethionine (SAM) cycle and breaks down the short-chain fatty acid propionic acid, preventing its toxic buildup. Our interspecies systems biology approach provides a paradigm for understanding complex interactions between diet and physiology.

  3. Directional gene flow and ecological separation in Yersinia enterocolitica

    PubMed Central

    Reuter, Sandra; Corander, Jukka; de Been, Mark; Harris, Simon; Cheng, Lu; Hall, Miquette; Thomson, Nicholas R.

    2015-01-01

    Yersinia enterocolitica is a common cause of food-borne gastroenteritis worldwide. Recent work defining the phylogeny of the genus Yersinia subdivided Y. enterocolitica into six distinct phylogroups. Here, we provide detailed analyses of the evolutionary processes leading to the emergence of these phylogroups. The dominant phylogroups isolated from human infections, PG3–5, show very little diversity at the sequence level, but do present marked patterns of gain and loss of functions, including those involved in pathogenicity and metabolism, including the acquisition of phylogroup-specific O-antigen loci. We tracked gene flow across the species in the core and accessory genome, and show that the non-pathogenic PG1 strains act as a reservoir for diversity, frequently acting as donors in recombination events. Analysis of the core and accessory genome also suggested that the different Y. enterocolitica phylogroups may be ecologically separated, in contrast to the long-held belief of common shared ecological niches across the Y. enterocolitica species. PMID:28348815

  4. Barriers to gene flow and ring species formation.

    PubMed

    de Brito Martins, Ayana; de Aguiar, Marcus Aloizio Martinez

    2017-02-01

    Ring species are groups of organisms that dispersed along a ring-shaped region in such a way that the two ends of the population that meet after many generations are reproductively isolated. They provide a rare opportunity to understand the role of spatial structuring in speciation. Here, we simulate the evolution of ring species assuming that individuals become sexually isolated if the genetic distance between them is above a certain threshold. The model incorporates two forms of dispersal limitation: exogenous geographic barriers that limit the population range and endogenous barriers that result in genetic structuring within the population range. As expected, species' properties that reduce gene flow within the population range facilitate the evolution of reproductive isolation and ring species formation. However, if populations are confined to narrow ranges by geographic barriers, ring species formation increases when local mating is less spatially restricted. Ring species are most likely to form if a population expands while confined to a quasi-unidimensional range but preserving high mobility in the direction of the range expansion. These conditions are unlikely to be met or persist in real populations and may explain why ring species are rare.

  5. Wolverine gene flow across a narrow climatic niche.

    PubMed

    Schwartz, Michael K; Copeland, Jeffrey P; Anderson, Neil J; Squires, John R; Inman, Robert M; McKelvey, Kevin S; Pilgrim, Kristy L; Waits, Lisette P; Cushman, Samuel A

    2009-11-01

    Wolverines (Gulo gulo) are one of the rarest carnivores in the contiguous United States. Effective population sizes in Montana, Idaho, and Wyoming, where most of the wolverines in the contiguous United States exist, were calculated to be 35 (credible limits, 28 52) suggesting low abundance. Landscape features that influence wolverine population substructure and gene flow are largely unknown. Recent work has identified strong associations between areas with persistent spring snow and wolverine presence and range. We tested whether a dispersal model in which wolverines prefer to disperse through areas characterized by persistent spring snow cover produced least-cost paths among all individuals that correlated with genetic distance among individuals. Models simulating large preferences for dispersing within areas characterized by persistent spring snow explained the data better than a model based on Euclidean distance. Partial Mantel tests separating Euclidean distance from spring snow-cover-based effects indicated that Euclidean distance was not significant in describing patterns of genetic distance. Because these models indicated that successful dispersal paths followed areas characterized by spring snow cover, we used these understandings to derive empirically based least-cost corridor maps in the U.S. Rocky Mountains. These corridor maps largely explain previously published population subdivision patterns based on mitochondrial DNA and indicate that natural colonization of the southern Rocky Mountains by wolverines will be difficult but not impossible.

  6. Gene flow from herbicide-resistant crops: it's not just for transgenes.

    PubMed

    Mallory-Smith, Carol A; Sanchez Olguin, Elena

    2011-06-08

    Gene flow was raised as one of the first issues related to the development and release of genetically engineered (GE) crops. Gene flow has remained a topic of discussion for more than 20 years and is still used as an argument against the release of transgenic crops. With respect to herbicide-resistant crops, gene flow does not differ whether the herbicide resistance trait is introduced via genetic engineering or via conventional breeding techniques. Conventional breeding and genetic engineering techniques have been used to produce herbicide resistance in many of the same crop species. In addition, conventional breeding has been used to produce a broader range of herbicide-resistant crops than have been genetically engineered for herbicide resistance. Economic, political, and social concerns center on the breeding technique, but the results of gene flow for weed management are the same irrespective of breeding technique. This paper will focus on gene flow from nonGE herbicide-resistant crops in North America.

  7. FAK and HAS Inhibition Synergistically Decrease Colon Cancer Cell Viability and Affect Expression of Critical Genes

    PubMed Central

    Heffler, Melissa; Golubovskaya, Vita; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William; Dunn, Kelli B.

    2013-01-01

    Focal adhesion kinase (FAK), hyaluronan (HA), and hyaluronan synthase-3 (HAS3) have been implicated in cancer growth and progression. FAK inhibition with the small molecule inhibitor Y15 decreases colon cancer cell growth in vitro and in vivo. HAS3 inhibition in colon cancer cells decreases FAK expression and activation, and exogenous HA increases FAK activation. We sought to determine the genes affected by HAS and FAK inhibition and hypothesized that dual inhibition would synergistically inhibit viability. Y15 (FAK inhibitor) and the HAS inhibitor 4-methylumbelliferone (4-MU) decreased viability in a dose dependent manner; viability was further inhibited by treatment with Y15 and 4-MU in colon cancer cells. HAS inhibited cells treated with 2μM of Y15 showed significantly decreased viability compared to HAS scrambled cells treated with the same dose (p<0.05) demonstrating synergistic inhibition of viability with dual FAK/HAS inhibition. Microarray analysis showed more than 2-fold up- or down-regulation of 121 genes by HAS inhibition, and 696 genes by FAK inhibition (p<0.05) and revealed 29 common genes affected by both signaling. Among the genes affected by FAK or HAS3 inhibition were genes, playing role in apoptosis, cell cycle regulation, adhesion, transcription, heat-shock and WNT pathways. Thus, FAK or HAS inhibition decreases SW620 viability and affects several similar genes, which are involved in the regulation of tumor survival. Dual inhibition of FAK and HAS3 decreases viability to a greater degree than with either agent alone, and suggests that synergistic inhibition of colon cancer cell growth can result from affecting similar genetic pathways. PMID:22934709

  8. FAK and HAS inhibition synergistically decrease colon cancer cell viability and affect expression of critical genes.

    PubMed

    Heffler, Melissa; Golubovskaya, Vita M; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G; Dunn, Kelli B

    2013-05-01

    Focal adhesion kinase (FAK), hyaluronan (HA), and hyaluronan synthase-3 (HAS3) have been implicated in cancer growth and progression. FAK inhibition with the small molecule inhibitor Y15 decreases colon cancer cell growth in vitro and in vivo. HAS3 inhibition in colon cancer cells decreases FAK expression and activation, and exogenous HA increases FAK activation. We sought to determine the genes affected by HAS and FAK inhibition and hypothesized that dual inhibition would synergistically inhibit viability. Y15 (FAK inhibitor) and the HAS inhibitor 4-methylumbelliferone (4-MU) decreased viability in a dose dependent manner; viability was further inhibited by treatment with Y15 and 4-MU in colon cancer cells. HAS inhibited cells treated with 2 μM of Y15 showed significantly decreased viability compared to HAS scrambled cells treated with the same dose (p < 0.05) demonstrating synergistic inhibition of viability with dual FAK/HAS inhibition. Microarray analysis showed more than 2-fold up- or down-regulation of 121 genes by HAS inhibition, and 696 genes by FAK inhibition (p < 0.05) and revealed 29 common genes affected by both signaling. Among the genes affected by FAK or HAS3 inhibition were genes, playing role in apoptosis, cell cycle regulation, adhesion, transcription, heatshock and WNT pathways. Thus, FAK or HAS inhibition decreases SW620 viability and affects several similar genes, which are involved in the regulation of tumor survival. Dual inhibition of FAK and HAS3 decreases viability to a greater degree than with either agent alone, and suggests that synergistic inhibition of colon cancer cell growth can result from affecting similar genetic pathways.

  9. Estimates of Gene Flow among Populations, Geographic Races, and Species in the Ipomopsis Aggregata Complex

    PubMed Central

    Wolf, P. G.; Soltis, P. S.

    1992-01-01

    Interpopulational gene flow within a species can reduce population differentiation due to genetic drift, whereas genetic exchange among taxa can impede speciation. We used allozyme data to estimate gene flow within and among geographic races and species of perennial herbs in the Ipomopsis aggregata complex (Polemoniaceae). Estimates of interpopulational gene flow within taxa from two methods (F statistics and private alleles) were correlated with one another. Gene flow among populations within each geographic race (subspecies) of I. aggregata was relatively high (Nm > ~1.0). Gene flow was also high among populations of I. arizonica and among four northern populations of I. tenuituba. However, gene flow was low (Nm < 1.0) for I. tenuituba when a population representing subsp. macrosiphon was included. This is consistent with previous findings that subsp. macrosiphon has had an independent origin and is reproductively, as well as geographically, isolated. A recently developed model, based on hierarchical F statistics, was employed to estimate genetic exchange among taxa. Gene flow estimates were generally high among races of I. aggregata (dNm(race) > 1.0) but were low among subspecies of I. tenuituba (dNm(race) < 1.0). Consistent with morphological evidence, estimates of interspecific gene flow were moderate between I. aggregata and I. tenuituba, which hybridize in several areas. However, contrary to morphological evidence, we estimated relatively high levels of interspecific gene flow involving I. arizonica. Our results suggest that I. arizonica has hybridized with other species without the transfer of morphological traits. In the I. aggregata complex, gene flow appears to be an important evolutionary force shaping geographic variation for allozymes within species, but is insufficient to prevent morphological divergence among taxa. PMID:1551582

  10. Cloning of Bacteroides fragilis plasmid genes affecting metronidazole resistance and ultraviolet survival in Escherichia coli

    SciTech Connect

    Wehnert, G.U.; Abratt, V.R.; Goodman, H.J.; Woods, D.R. )

    1990-03-01

    Since reduced metronidazole causes DNA damage, resistance to metronidazole was used as a selection method for the cloning of Bacteroides fragilis genes affecting DNA repair mechanisms in Escherichia coli. Genes from B. fragilis Bf-2 were cloned on a recombinant plasmid pMT100 which made E. coli AB1157 and uvrA, B, and C mutant strains more resistant to metronidazole, but more sensitive to far uv irradiation under aerobic conditions. The loci affecting metronidazole resistance and uv sensitivity were linked and located on a 5-kb DNA fragment which originated from the small 6-kb cryptic plasmid pBFC1 present in B. fragilis Bf-2 cells.

  11. Suppressors of Mutations in the rII Gene of Bacteriophage T4 Affect Promoter Utilization

    PubMed Central

    Hall, Dwight H.; Snyder, Ronald D.

    1981-01-01

    Homyk, Rodriguez and Weil (1976) have described T4 mutants, called sip, that partially suppress the inability of T4rII mutants to grow in λ lysogens. We have found that mutants sip1 and sip2 are resistant to folate analogs and overproduce FH2 reductase. The results of recombination and complementation studies indicate that sip mutations are in the mot gene. Like other mot mutations (Mattson, Richardson and Goodin 1974; Chace and Hall 1975; Sauerbier, Hercules and Hall 1976), the sip2 mutation affects the expression of many genes and appears to affect promoter utilization. The mot gene function is not required for T4 growth on most hosts, but we have found that it is required for good growth on E. coli CTr5X. Homyk, Rodriguez and Weil (1976) also described L mutations that reverse the effects of sip mutations. L2 decreases the folate analog resistance and the inability of sip2 to grow on CTr5X. L2 itself is partially resistant to a folate analog, and appears to reverse the effects of sip2 on gene expression. These results suggest that L2 affects another regulatory gene related to the mot gene. PMID:7262547

  12. Ditch network sustains functional connectivity and influences patterns of gene flow in an intensive agricultural landscape

    PubMed Central

    Favre-Bac, L; Mony, C; Ernoult, A; Burel, F; Arnaud, J-F

    2016-01-01

    In intensive agricultural landscapes, plant species previously relying on semi-natural habitats may persist as metapopulations within landscape linear elements. Maintenance of populations' connectivity through pollen and seed dispersal is a key factor in species persistence in the face of substantial habitat loss. The goals of this study were to investigate the potential corridor role of ditches and to identify the landscape components that significantly impact patterns of gene flow among remnant populations. Using microsatellite loci, we explored the spatial genetic structure of two hydrochorous wetland plants exhibiting contrasting local abundance and different habitat requirements: the rare and regionally protected Oenanthe aquatica and the more commonly distributed Lycopus europaeus, in an 83 km2 agricultural lowland located in northern France. Both species exhibited a significant spatial genetic structure, along with substantial levels of genetic differentiation, especially for L. europaeus, which also expressed high levels of inbreeding. Isolation-by-distance analysis revealed enhanced gene flow along ditches, indicating their key role in effective seed and pollen dispersal. Our data also suggested that the configuration of the ditch network and the landscape elements significantly affected population genetic structure, with (i) species-specific scale effects on the genetic neighborhood and (ii) detrimental impact of human ditch management on genetic diversity, especially for O. aquatica. Altogether, these findings highlighted the key role of ditches in the maintenance of plant biodiversity in intensive agricultural landscapes with few remnant wetland habitats. PMID:26486611

  13. Gene flow and mode of pollination in a dry-grassland species, Filipendula vulgaris (Rosaceae).

    PubMed

    Weidema, I R; Magnussen, L S; Philipp, M

    2000-03-01

    Filipendula vulgaris is a characteristic species of dry nonacidic grasslands in Denmark. This habitat type occurs only on marginal areas not suitable for agriculture or urbanization and that are by their nature fragmented. The population genetic structure of F. vulgaris was investigated in 17 populations within two regions of Denmark, using isozyme electrophoresis. Small populations were found to have significantly fewer polymorphic loci than larger populations, but all populations maintained the same common allelic variants. The degree of isolation of individual populations did not affect the amount of genetic variation. Offspring arrays revealed a very high outcrossing rate (0.96). The field study demonstrated a very high level of gene flow between populations considering that small insects are thought to be the main pollinators of this species. An experiment to verify whether pollen transport by wind could explain the results from the field study demonstrated long-distance transport from isolated plants to bagged plants. Filipendula vulgaris pollen grains are very small and this explains why outcrossed progeny were found using pollination bags with small pore sizes. We conclude that wind pollination is indeed possible and together with insect pollination is causing the observed patterns of genetic variation. The substantial gene flow between populations may be reducing the effects of genetic drift in the small fragmented populations of F. vulgaris.

  14. Effectiveness of managed gene flow in reducing genetic divergence associated with captive breeding

    PubMed Central

    Waters, Charles D; Hard, Jeffrey J; Brieuc, Marine S O; Fast, David E; Warheit, Kenneth I; Waples, Robin S; Knudsen, Curtis M; Bosch, William J; Naish, Kerry A

    2015-01-01

    Captive breeding has the potential to rebuild depressed populations. However, associated genetic changes may decrease restoration success and negatively affect the adaptive potential of the entire population. Thus, approaches that minimize genetic risks should be tested in a comparative framework over multiple generations. Genetic diversity in two captive-reared lines of a species of conservation interest, Chinook salmon (Oncorhynchus tshawytscha), was surveyed across three generations using genome-wide approaches. Genetic divergence from the source population was minimal in an integrated line, which implemented managed gene flow by using only naturally-born adults as captive broodstock, but significant in a segregated line, which bred only captive-origin individuals. Estimates of effective number of breeders revealed that the rapid divergence observed in the latter was largely attributable to genetic drift. Three independent tests for signatures of adaptive divergence also identified temporal change within the segregated line, possibly indicating domestication selection. The results empirically demonstrate that using managed gene flow for propagating a captive-reared population reduces genetic divergence over the short term compared to one that relies solely on captive-origin parents. These findings complement existing studies of captive breeding, which typically focus on a single management strategy and examine the fitness of one or two generations. PMID:26640521

  15. Conservation, Spillover and Gene Flow within a Network of Northern European Marine Protected Areas

    PubMed Central

    Huserbråten, Mats Brockstedt Olsen; Moland, Even; Knutsen, Halvor; Olsen, Esben Moland; André, Carl; Stenseth, Nils Chr.

    2013-01-01

    To ensure that marine protected areas (MPAs) benefit conservation and fisheries, the effectiveness of MPA designs has to be evaluated in field studies. Using an interdisciplinary approach, we empirically assessed the design of a network of northern MPAs where fishing for European lobster (Homarusgammarus) is prohibited. First, we demonstrate a high level of residency and survival (50%) for almost a year (363 days) within MPAs, despite small MPA sizes (0.5-1 km2). Second, we demonstrate limited export (4.7%) of lobsters tagged within MPAs (N = 1810) to neighbouring fished areas, over a median distance of 1.6 km out to maximum 21 km away from MPA centres. In comparison, median movement distance of lobsters recaptured within MPAs was 164 m, and recapture rate was high (40%). Third, we demonstrate a high level of gene flow within the study region, with an estimated FST of less than 0.0001 over a ≈ 400 km coastline. Thus, the restricted movement of older life stages, combined with a high level of gene flow suggests that connectivity is primarily driven by larval drift. Larval export from the MPAs can most likely affect areas far beyond their borders. Our findings are of high importance for the design of MPA networks for sedentary species with pelagic early life stages. PMID:24039927

  16. Mutations in two regions upstream of the A gamma globin gene canonical promoter affect gene expression.

    PubMed Central

    Lloyd, J A; Lee, R F; Lingrel, J B

    1989-01-01

    Two regions upstream of the human fetal (A gamma) globin gene, which interact with protein factors from K562 and HeLa nuclear extracts, have functional significance in gene expression. One binding site (site I) is at a position -290 to -267 bp upstream of the transcription initiation site, the other (site II) is at -182 to -168 bp. Site II includes the octamer sequence (ATGCAAAT) found in an immunoglobulin enhancer and the histone H2b gene promoter. A point mutation (T----C) at -175, within the octamer sequence, is characteristic of a naturally occurring HPFH (hereditary persistence of fetal hemoglobin), and decreases factor binding to an oligonucleotide containing the octamer motif. Expression assays using a A gamma globin promoter-CAT (chloramphenicol acetyl transferase) fusion gene show that the point mutation at -175 increases expression in erythroid, but not non-erythroid cells when compared to a wild-type construct. This correlates with the actual effect of the HPFH mutation in humans. This higher expression may result from a mechanism more complex than reduced binding of a negative regulator. A site I clustered-base substitution gives gamma-CAT activity well below wild-type, suggesting that this factor is a positive regulator. Images PMID:2472607

  17. In silico analysis of polymorphisms in microRNAs that target genes affecting aerobic glycolysis

    PubMed Central

    Venkatesh, Thejaswini; Tsutsumi, Rie

    2016-01-01

    Background Cancer cells preferentially metabolize glucose through aerobic glycolysis, an observation known as the Warburg effect. Recently, studies have deciphered the role of oncogenes and tumor suppressor genes in regulating the Warburg effect. Furthermore, mutations in glycolytic enzymes identified in various cancers highlight the importance of the Warburg effect at the molecular and cellular level. MicroRNAs (miRNAs) are non-coding RNAs that posttranscriptionally regulate gene expression and are dysregulated in the pathogenesis of various types of human cancers. Single nucleotide polymorphisms (SNPs) in miRNA genes may affect miRNA biogenesis, processing, function, and stability and provide additional complexity in the pathogenesis of cancer. Moreover, mutations in miRNA target sequences in target mRNAs can affect expression. Methods In silico analysis and cataloguing polymorphisms in miRNA genes that target genes directly or indirectly controlling aerobic glycolysis was carried out using different publically available databases. Results miRNA SNP2.0 database revealed several SNPs in miR-126 and miR-25 in the upstream and downstream pre-miRNA flanking regions respectively should be inserted after flanking regions and miR-504 and miR-451 had the fewest. These miRNAs target genes that control aerobic glycolysis indirectly. SNPs in premiRNA genes were found in miR-96, miR-155, miR-25 and miR34a by miRNASNP. Dragon database of polymorphic regulation of miRNA genes (dPORE-miRNA) database revealed several SNPs that modify transcription factor binding sites (TFBS) or creating new TFBS in promoter regions of selected miRNA genes as analyzed by dPORE-miRNA. Conclusions Our results raise the possibility that integration of SNP analysis in miRNA genes with studies of metabolic adaptations in cancer cells could provide greater understanding of oncogenic mechanisms. PMID:27004216

  18. Burning management in the tallgrass prairie affects root decomposition, soil food web structure and carbon flow

    NASA Astrophysics Data System (ADS)

    Shaw, E. A.; Denef, K.; Milano de Tomasel, C.; Cotrufo, M. F.; Wall, D. H.

    2015-09-01

    Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is a common management practice and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable, but significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition which, in turn, is significantly

  19. Fire affects root decomposition, soil food web structure, and carbon flow in tallgrass prairie

    NASA Astrophysics Data System (ADS)

    Shaw, E. Ashley; Denef, Karolien; Milano de Tomasel, Cecilia; Cotrufo, M. Francesca; Wall, Diana H.

    2016-05-01

    Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is common and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root-litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root-litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable but also significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition, which, in turn, is significantly affected by fire. Not

  20. Growth, nitrogen uptake and flow in maize plants affected by root growth restriction.

    PubMed

    Xu, Liangzheng; Niu, Junfang; Li, Chunjian; Zhang, Fusuo

    2009-07-01

    The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root: shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate.

  1. DNA capture reveals transoceanic gene flow in endangered river sharks.

    PubMed

    Li, Chenhong; Corrigan, Shannon; Yang, Lei; Straube, Nicolas; Harris, Mark; Hofreiter, Michael; White, William T; Naylor, Gavin J P

    2015-10-27

    For over a hundred years, the "river sharks" of the genus Glyphis were only known from the type specimens of species that had been collected in the 19th century. They were widely considered extinct until populations of Glyphis-like sharks were rediscovered in remote regions of Borneo and Northern Australia at the end of the 20th century. However, the genetic affinities between the newly discovered Glyphis-like populations and the poorly preserved, original museum-type specimens have never been established. Here, we present the first (to our knowledge) fully resolved, complete phylogeny of Glyphis that includes both archival-type specimens and modern material. We used a sensitive DNA hybridization capture method to obtain complete mitochondrial genomes from all of our samples and show that three of the five described river shark species are probably conspecific and widely distributed in Southeast Asia. Furthermore we show that there has been recent gene flow between locations that are separated by large oceanic expanses. Our data strongly suggest marine dispersal in these species, overturning the widely held notion that river sharks are restricted to freshwater. It seems that species in the genus Glyphis are euryhaline with an ecology similar to the bull shark, in which adult individuals live in the ocean while the young grow up in river habitats with reduced predation pressure. Finally, we discovered a previously unidentified species within the genus Glyphis that is deeply divergent from all other lineages, underscoring the current lack of knowledge about the biodiversity and ecology of these mysterious sharks.

  2. DNA capture reveals transoceanic gene flow in endangered river sharks

    PubMed Central

    Li, Chenhong; Corrigan, Shannon; Yang, Lei; Straube, Nicolas; Harris, Mark; Hofreiter, Michael; White, William T.; Naylor, Gavin J. P.

    2015-01-01

    For over a hundred years, the “river sharks” of the genus Glyphis were only known from the type specimens of species that had been collected in the 19th century. They were widely considered extinct until populations of Glyphis-like sharks were rediscovered in remote regions of Borneo and Northern Australia at the end of the 20th century. However, the genetic affinities between the newly discovered Glyphis-like populations and the poorly preserved, original museum-type specimens have never been established. Here, we present the first (to our knowledge) fully resolved, complete phylogeny of Glyphis that includes both archival-type specimens and modern material. We used a sensitive DNA hybridization capture method to obtain complete mitochondrial genomes from all of our samples and show that three of the five described river shark species are probably conspecific and widely distributed in Southeast Asia. Furthermore we show that there has been recent gene flow between locations that are separated by large oceanic expanses. Our data strongly suggest marine dispersal in these species, overturning the widely held notion that river sharks are restricted to freshwater. It seems that species in the genus Glyphis are euryhaline with an ecology similar to the bull shark, in which adult individuals live in the ocean while the young grow up in river habitats with reduced predation pressure. Finally, we discovered a previously unidentified species within the genus Glyphis that is deeply divergent from all other lineages, underscoring the current lack of knowledge about the biodiversity and ecology of these mysterious sharks. PMID:26460025

  3. A sea water barrier to coral gene flow.

    PubMed

    Lessios, H A

    2012-11-01

    Land is not the only barrier to dispersal encountered by marine organisms. For sedentary shallow water species, there is an additional, marine barrier, 5000 km of uninterrupted deep-water stretch between the central and the eastern Pacific. This expanse of water, known as the ‘Eastern Pacific Barrier’, has been separating faunas of the two oceanic regions since the beginning of the Cenozoic. Species with larvae that cannot stay in the plankton for the time it takes to cross between the two sides have been evolving independently. That the eastern Pacific does not share species with the rest of the Pacific was obvious to naturalists two centuries ago (Darwin 1860). Yet, this rule has exceptions. A small minority of species are known to straddle the Eastern Pacific Barrier. One such exception is the scleractinian coral Porites lobata (Fig. 1). This species is spread widely throughout the Indo-Pacific, where it is one of the major reef-builders, but it is also encountered in the eastern Pacific. Are eastern and central Pacific populations of this coral connected by gene flow? In this issue of Molecular Ecology, Baums et al. (2012) use microsatellite data to answer this question. They show that P. lobata populations in the eastern Pacific are cut off from genetic influx from the rest of the Pacific. Populations within each of the two oceanic regions are genetically connected (though those in the Hawaiian islands are also isolated). Significantly, the population in the Clipperton Atoll, the westernmost island in the eastern Pacific, genetically groups with populations from the central Pacific, suggesting that crossing the Eastern Pacific Barrier by P. lobata propagules does occasionally occur.

  4. The relative influence of natural selection and geography on gene flow in guppies.

    PubMed

    Crispo, Erika; Bentzen, Paul; Reznick, David N; Kinnison, Michael T; Hendry, Andrew P

    2006-01-01

    Two general processes may influence gene flow among populations. One involves divergent selection, wherein the maladaptation of immigrants and hybrids impedes gene flow between ecological environments (i.e. ecological speciation). The other involves geographic features that limit dispersal. We determined the relative influence of these two processes in natural populations of Trinidadian guppies (Poecilia reticulata). If selection is important, gene flow should be reduced between different selective environments. If geography is important, gene flow should be impeded by geographic distance and physical barriers. We examined how genetic divergence, long-term gene flow, and contemporary dispersal within a watershed were influenced by waterfalls, geographic distance, predation, and habitat features. We found that waterfalls and geographic distance increased genetic divergence and reduced dispersal and long-term gene flow. Differences in predation or habitat features did not influence genetic divergence or gene flow. In contrast, differences in predation did appear to reduce contemporary dispersal. We suggest that the standard predictions of ecological speciation may be heavily nuanced by the mating behaviour and life history strategies of guppies.

  5. Altered cohesin gene dosage affects Mammalian meiotic chromosome structure and behavior.

    PubMed

    Murdoch, Brenda; Owen, Nichole; Stevense, Michelle; Smith, Helen; Nagaoka, So; Hassold, Terry; McKay, Michael; Xu, Huiling; Fu, Jun; Revenkova, Ekaterina; Jessberger, Rolf; Hunt, Patricia

    2013-01-01

    Based on studies in mice and humans, cohesin loss from chromosomes during the period of protracted meiotic arrest appears to play a major role in chromosome segregation errors during female meiosis. In mice, mutations in meiosis-specific cohesin genes cause meiotic disturbances and infertility. However, the more clinically relevant situation, heterozygosity for mutations in these genes, has not been evaluated. We report here evidence from the mouse that partial loss of gene function for either Smc1b or Rec8 causes perturbations in the formation of the synaptonemal complex (SC) and affects both synapsis and recombination between homologs during meiotic prophase. Importantly, these defects increase the frequency of chromosomally abnormal eggs in the adult female. These findings have important implications for humans: they suggest that women who carry mutations or variants that affect cohesin function have an elevated risk of aneuploid pregnancies and may even be at increased risk of transmitting structural chromosome abnormalities.

  6. Direct and reverse pollen-mediated gene flow between GM rice and red rice weed

    PubMed Central

    Serrat, X.; Esteban, R.; Peñas, G.; Català, M. M.; Melé, E.; Messeguer, J.

    2013-01-01

    Potential risks of genetically modified (GM) crops must be identified before their commercialization, as happens with all new technologies. One of the major concerns is the proper risk assessment of adventitious presence of transgenic material in rice fields due to cross-pollination. Several studies have been conducted in order to quantify pollen-mediated gene flow from transgenic rice (Oryza sativa) to both conventional rice and red rice weed (O. sativa f. spontanea) under field conditions. Some of these studies reported GM pollen-donor rice transferring GM traits to red rice. However, gene flow also occurs in the opposite direction, in a phenomenon that we have called reverse gene flow, resulting in transgenic seeds that have incorporated the traits of wild red rice. We quantified reverse gene flow using material from two field trials. A molecular analysis based on amplified fragment length polymorphisms was carried out, being complemented with a phenotypic identification of red rice traits. In both field trials, the reverse gene flow detected was greater than the direct gene flow. The rate of direct gene flow varied according to the relative proportions of the donor (GM rice) and receptor (red rice) plants and was influenced by wind direction. The ecological impact of reverse gene flow is limited in comparison with that of direct gene flow because non-shattered and non-dormant seeds would be obtained in the first generation. Hybrid seed would remain in the spike and therefore most of it would be removed during harvesting. Nevertheless, this phenomenon must be considered in fields used for elite seed production and in developing countries where farmers often keep some seed for planting the following year. In these cases, there is a higher risk of GM red rice weed infestation increasing from year to year and therefore a proper monitoring plan needs to be established.

  7. Insight on Genes Affecting Tuber Development in Potato upon Potato spindle tuber viroid (PSTVd) Infection.

    PubMed

    Katsarou, Konstantina; Wu, Yun; Zhang, Runxuan; Bonar, Nicola; Morris, Jenny; Hedley, Pete E; Bryan, Glenn J; Kalantidis, Kriton; Hornyik, Csaba

    2016-01-01

    Potato (Solanum tuberosum L) is a natural host of Potato spindle tuber viroid (PSTVd) which can cause characteristic symptoms on developing plants including stunting phenotype and distortion of leaves and tubers. PSTVd is the type species of the family Pospiviroidae, and can replicate in the nucleus and move systemically throughout the plant. It is not well understood how the viroid can affect host genes for successful invasion and which genes show altered expression levels upon infection. Our primary focus in this study is the identification of genes which can affect tuber formation since viroid infection can strongly influence tuber development and especially tuber shape. In this study, we used a large-scale method to identify differentially expressed genes in potato. We have identified defence, stress and sugar metabolism related genes having altered expression levels upon infection. Additionally, hormone pathway related genes showed significant up- or down-regulation. DWARF1/DIMINUTO, Gibberellin 7-oxidase and BEL5 transcripts were identified and validated showing differential expression in viroid infected tissues. Our study suggests that gibberellin and brassinosteroid pathways have a possible role in tuber development upon PSTVd infection.

  8. Insight on Genes Affecting Tuber Development in Potato upon Potato spindle tuber viroid (PSTVd) Infection

    PubMed Central

    Zhang, Runxuan; Bonar, Nicola; Morris, Jenny; Hedley, Pete E.; Bryan, Glenn J.; Kalantidis, Kriton; Hornyik, Csaba

    2016-01-01

    Potato (Solanum tuberosum L) is a natural host of Potato spindle tuber viroid (PSTVd) which can cause characteristic symptoms on developing plants including stunting phenotype and distortion of leaves and tubers. PSTVd is the type species of the family Pospiviroidae, and can replicate in the nucleus and move systemically throughout the plant. It is not well understood how the viroid can affect host genes for successful invasion and which genes show altered expression levels upon infection. Our primary focus in this study is the identification of genes which can affect tuber formation since viroid infection can strongly influence tuber development and especially tuber shape. In this study, we used a large-scale method to identify differentially expressed genes in potato. We have identified defence, stress and sugar metabolism related genes having altered expression levels upon infection. Additionally, hormone pathway related genes showed significant up- or down-regulation. DWARF1/DIMINUTO, Gibberellin 7-oxidase and BEL5 transcripts were identified and validated showing differential expression in viroid infected tissues. Our study suggests that gibberellin and brassinosteroid pathways have a possible role in tuber development upon PSTVd infection. PMID:26937634

  9. Inhibition of Attention for Affective Material: Contributions by HOMER1 Gene Variation

    PubMed Central

    Wells, Tony T.; Judah, Matt R.; Ellis, Alissa J.; McGeary, John E.; Beevers, Christopher G.

    2015-01-01

    Failure to inhibit attention to irrelevant affective information has been linked to depression and rumination. However, few studies have investigated the biological bases of this process. Variation in the HOMER1 gene was identified in a genome-wide association study as associated with major depressive disorder and is associated with executive functioning inefficiency. Several studies have linked variation in the BDNF gene with emotional and cognitive processes such as rumination. The current study examined the association between these two auspicious genetic variants and inhibition of attention for affective information. In Study 1, 60 psychiatrically healthy community participants completed a negative affective priming task with positive and negative words. HOMER1 variation, but not BDNF variation, was associated with difficulty inhibiting irrelevant negative information. These results were replicated in a second study utilizing a sample of 97 psychiatrically healthy young adults. Implications for the current literature and future directions are discussed. PMID:26779324

  10. Application and analysis of debris-flow early warning system in Wenchuan earthquake-affected area

    NASA Astrophysics Data System (ADS)

    Liu, D. L.; Zhang, S. J.; Yang, H. J.; Jiang, Y. H.; Leng, X. P.

    2015-09-01

    The activities of debris flow (DF) in the Wenchuan earthquake-affected area significantly increased after the earthquake on 12 May 2008. The safety of local people's lives and property has been and will continue to be threatened by DFs in a long term. To this end a physics-based early warning system (EWS) for DF forecasting was developed and applied in this earthquake area. This paper introduces an application of the system in the Wenchuan earthquake-affected area and analyzes the prediction results in comparison to the DF events triggered by the strong rainfall events reported by the local government. The prediction accuracy and efficiency was first compared with contribution-factors-based system currently adopted by the Weather Bureau of Sichuan Province using the storm on 17 August 2012 as a case study. The comparison shows that the failure prediction rate and false prediction rate of the new system is respectively 19 and 21 % lower than the system based on the contribution factors. Consequently, the prediction accuracy is obviously higher than the system based on the contribution factors with a higher operational efficiency. As invited by the Weather Bureau of Sichuan Province, authors have upgraded their prediction system of DF by using this new system before the monsoon of Wenchuan earthquake-affected area in 2013. Two prediction cases on 9 July of 2013 and 10 July of 2014 were chosen here to further demonstrate that the new EWS has a high stability, efficiency and prediction accuracy.

  11. Application and analysis of debris-flow early warning system in Wenchuan earthquake-affected area

    NASA Astrophysics Data System (ADS)

    Liu, D. L.; Zhang, S. J.; Yang, H. J.; Zhao, L. Q.; Jiang, Y. H.; Tang, D.; Leng, X. P.

    2016-02-01

    The activities of debris flow (DF) in the Wenchuan earthquake-affected area significantly increased after the earthquake on 12 May 2008. The safety of the lives and property of local people is threatened by DFs. A physics-based early warning system (EWS) for DF forecasting was developed and applied in this earthquake area. This paper introduces an application of the system in the Wenchuan earthquake-affected area and analyzes the prediction results via a comparison to the DF events triggered by the strong rainfall events reported by the local government. The prediction accuracy and efficiency was first compared with a contribution-factor-based system currently used by the weather bureau of Sichuan province. The storm on 17 August 2012 was used as a case study for this comparison. The comparison shows that the false negative rate and false positive rate of the new system is, respectively, 19 and 21 % lower than the system based on the contribution factors. Consequently, the prediction accuracy is obviously higher than the system based on the contribution factors with a higher operational efficiency. On the invitation of the weather bureau of Sichuan province, the authors upgraded their prediction system of DF by using this new system before the monsoon of Wenchuan earthquake-affected area in 2013. Two prediction cases on 9 July 2013 and 10 July 2014 were chosen to further demonstrate that the new EWS has high stability, efficiency, and prediction accuracy.

  12. Local differentiation in the presence of gene flow in the citril finch Serinus citrinella

    PubMed Central

    Senar, Juan Carlos; Borras, Antoni; Cabrera, Josep; Cabrera, Toni; Björklund, Mats

    2005-01-01

    It is well known theoretically that gene flow can impede genetic differentiation between populations. In this study, we show that in a highly mobile bird species, where dispersal is well documented, there is a strong genetic and morphological differentiation over a very short geographical scale (less than 5 km). Allocation tests revealed that birds caught in one area were assigned genetically to the same area with a very high probability, in spite of current gene flow. Populations were also morphologically differentiated. The results suggest that the relationship between gene flow and differentiation can be rather complicated and non-intuitive. PMID:17148333

  13. Testing for asymmetrical gene flow in a Drosophila melanogaster body-size cline.

    PubMed Central

    Kennington, W Jason; Gockel, Julia; Partridge, Linda

    2003-01-01

    Asymmetrical gene flow is an important, but rarely examined genetic parameter. Here, we develop a new method for detecting departures from symmetrical migration between two populations using microsatellite data that are based on the difference in the proportion of private alleles. Application of this approach to data collected from wild-caught Drosophila melanogaster along a latitudinal body-size cline in eastern Australia revealed that asymmetrical gene flow could be detected, but was uncommon, nonlocalized, and occurred in both directions. We also show that, in contrast to the findings of a previous study, there is good evidence to suggest that the cline experiences significant levels of gene flow between populations. PMID:14573478

  14. Landscape-scale deforestation decreases gene flow distance of a keystone tropical palm, Euterpe edulis Mart (Arecaceae).

    PubMed

    Santos, Alesandro S; Cazetta, Eliana; Dodonov, Pavel; Faria, Deborah; Gaiotto, Fernanda A

    2016-09-01

    Habitat loss represents one of the main threats to tropical forests, which have reached extremely high rates of species extinction. Forest loss negatively impacts biodiversity, affecting ecological (e.g., seed dispersal) and genetic (e.g., genetic diversity and structure) processes. Therefore, understanding how deforestation influences genetic resources is strategic for conservation. Our aim was to empirically evaluate the effects of landscape-scale forest reduction on the spatial genetic structure and gene flow of Euterpe edulis Mart (Arecaceae), a palm tree considered a keystone resource for many vertebrate species. This study was carried out in nine forest remnants in the Atlantic Forest, northeastern Brazil, located in landscapes within a gradient of forest cover (19-83%). We collected leaves of 246 adults and 271 seedlings and performed genotyping using microsatellite markers. Our results showed that the palm populations had low spatial genetic structure, indicating that forest reduction did not influence this genetic parameter for neither seedlings nor adults. However, forest loss decreased the gene flow distance, which may negatively affect the genetic diversity of future generations by increasing the risk of local extinction of this keystone palm. For efficient strategies of genetic variability conservation and maintenance of gene flow in E. edulis, we recommend the maintenance of landscapes with intermediary to high levels of forest cover, that is, forest cover above 40%.

  15. Physiological factors affecting transcription of genes involved in the flavonoid biosynthetic pathway in different rice varieties.

    PubMed

    Chen, Xiaoqiong; Itani, Tomio; Wu, Xianjun; Chikawa, Yuuki; Irifune, Kohei

    2013-01-01

    Flavonoids play an important role in the grain color and flavor of rice. Since their characterization in maize, the flavonoid biosynthetic genes have been extensively studied in grape, Arabidopsis, and Petunia. However, we are still a long way from understanding the molecular features and mechanisms underlying the flavonoid biosynthetic pathway. The present study was undertaken to understand the physiological factors affecting the transcription and regulation of these genes. We report that the expression of CHI, CHS, DFR, LAR, and ANS, the 5 flavonoid biosynthetic genes in different rice varieties, differ dramatically with respect to the stage of development, white light, and sugar concentrations. We further demonstrate that white light could induce the transcription of the entire flavonoid biosynthetic gene pathway; however, differences were observed in the degrees of sensitivity and the required illumination time. Our study provides valuable insights into understanding the regulation of the flavonoid biosynthetic pathway.

  16. Sex-biased gene flow among elk in the greater Yellowstone ecosystem

    USGS Publications Warehouse

    Hand, Brian K.; Chen, Shanyuan; Anderson, Neil; Beja-Pereira, Albano; Cross, Paul C.; Ebinger, Michael R.; Edwards, Hank; Garrott, Robert A.; Kardos, Marty D.; Kauffman, Matthew J.; Landguth, Erin L.; Middleton, Arthur; Scurlock, Brandon M.; White, P.J.; Zager, Pete; Schwartz, Michael K.; Luikart, Gordon

    2014-01-01

    We quantified patterns of population genetic structure to help understand gene flow among elk populations across the Greater Yellowstone Ecosystem. We sequenced 596 base pairs of the mitochondrial control region of 380 elk from eight populations. Analysis revealed high mitochondrial DNA variation within populations, averaging 13.0 haplotypes with high mean gene diversity (0.85). The genetic differentiation among populations for mitochondrial DNA was relatively high (FST  =  0.161; P  =  0.001) compared to genetic differentiation for nuclear microsatellite data (FST  =  0.002; P  =  0.332), which suggested relatively low female gene flow among populations. The estimated ratio of male to female gene flow (mm/mf  =  46) was among the highest we have seen reported for large mammals. Genetic distance (for mitochondrial DNA pairwise FST) was not significantly correlated with geographic (Euclidean) distance between populations (Mantel's r  =  0.274, P  =  0.168). Large mitochondrial DNA genetic distances (e.g., FST > 0.2) between some of the geographically closest populations (<65 km) suggested behavioral factors and/or landscape features might shape female gene flow patterns. Given the strong sex-biased gene flow, future research and conservation efforts should consider the sexes separately when modeling corridors of gene flow or predicting spread of maternally transmitted diseases. The growing availability of genetic data to compare male vs. female gene flow provides many exciting opportunities to explore the magnitude, causes, and implications of sex-biased gene flow likely to occur in many species.

  17. Recent advances in assessing gene flow between diverging populations and species.

    PubMed

    Hey, Jody

    2006-12-01

    The evolutionary process of divergence, which ultimately leads to the generation of new species, is thought to occur usually without any gene exchange between the diverging populations. However, until the recent growth of multi-locus datasets, and the development of new population genetic methods, it has been very difficult to assess whether or not closely related species have, or have not, exchanged genes during their divergence. Several recent studies have found significant signals of gene flow during species formation, calling into question the conventional wisdom that gene flow is absent during speciation.

  18. Long-distance gene flow and adaptation of forest trees to rapid climate change

    PubMed Central

    Kremer, Antoine; Ronce, Ophélie; Robledo-Arnuncio, Juan J; Guillaume, Frédéric; Bohrer, Gil; Nathan, Ran; Bridle, Jon R; Gomulkiewicz, Richard; Klein, Etienne K; Ritland, Kermit; Kuparinen, Anna; Gerber, Sophie; Schueler, Silvio

    2012-01-01

    Forest trees are the dominant species in many parts of the world and predicting how they might respond to climate change is a vital global concern. Trees are capable of long-distance gene flow, which can promote adaptive evolution in novel environments by increasing genetic variation for fitness. It is unclear, however, if this can compensate for maladaptive effects of gene flow and for the long-generation times of trees. We critically review data on the extent of long-distance gene flow and summarise theory that allows us to predict evolutionary responses of trees to climate change. Estimates of long-distance gene flow based both on direct observations and on genetic methods provide evidence that genes can move over spatial scales larger than habitat shifts predicted under climate change within one generation. Both theoretical and empirical data suggest that the positive effects of gene flow on adaptation may dominate in many instances. The balance of positive to negative consequences of gene flow may, however, differ for leading edge, core and rear sections of forest distributions. We propose future experimental and theoretical research that would better integrate dispersal biology with evolutionary quantitative genetics and improve predictions of tree responses to climate change. PMID:22372546

  19. Estimating exotic gene flow into native pine stands: zygotic vs. gametic components.

    PubMed

    Unger, G M; Vendramin, G G; Robledo-Arnuncio, J J

    2014-11-01

    Monitoring contemporary gene flow from widespread exotic plantations is becoming an important problem in forest conservation genetics. In plants, where both seed and pollen disperse, three components of exotic gene flow with potentially unequal consequences should be, but have not been, explicitly distinguished: zygotic, male gametic and female gametic. Building on a previous model for estimating contemporary rates of zygotic and male gametic gene flow among plant populations, we present here an approach that additionally estimates the third (female gametic) gene flow component, based on a combination of uni- and biparentally inherited markers. Using this method and a combined set of chloroplast and nuclear microsatellites, we estimate gene flow rates from exotic plantations into two Iberian relict stands of maritime pine (Pinus pinaster) and Scots pine (Pinus sylvestris). Results show neither zygotic nor female gametic gene flow but moderate (6-8%) male gametic introgression for both species, implying significant dispersal of pollen, but not of seeds, from exotic plantations into native stands shortly after introduced trees reached reproductive maturity. Numerical simulation results suggest that the model yields reasonably accurate estimates for our empirical data sets, especially for larger samples. We discuss conservation management implications of observed levels of exposure to nonlocal genes and identify research needs to determine potentially associated hazards. Our approach should be useful for plant ecologists and ecosystem managers interested in the vectors of contemporary genetic connectivity among discrete plant populations.

  20. Long-distance gene flow and adaptation of forest trees to rapid climate change.

    PubMed

    Kremer, Antoine; Ronce, Ophélie; Robledo-Arnuncio, Juan J; Guillaume, Frédéric; Bohrer, Gil; Nathan, Ran; Bridle, Jon R; Gomulkiewicz, Richard; Klein, Etienne K; Ritland, Kermit; Kuparinen, Anna; Gerber, Sophie; Schueler, Silvio

    2012-04-01

    Forest trees are the dominant species in many parts of the world and predicting how they might respond to climate change is a vital global concern. Trees are capable of long-distance gene flow, which can promote adaptive evolution in novel environments by increasing genetic variation for fitness. It is unclear, however, if this can compensate for maladaptive effects of gene flow and for the long-generation times of trees. We critically review data on the extent of long-distance gene flow and summarise theory that allows us to predict evolutionary responses of trees to climate change. Estimates of long-distance gene flow based both on direct observations and on genetic methods provide evidence that genes can move over spatial scales larger than habitat shifts predicted under climate change within one generation. Both theoretical and empirical data suggest that the positive effects of gene flow on adaptation may dominate in many instances. The balance of positive to negative consequences of gene flow may, however, differ for leading edge, core and rear sections of forest distributions. We propose future experimental and theoretical research that would better integrate dispersal biology with evolutionary quantitative genetics and improve predictions of tree responses to climate change.

  1. Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes.

    PubMed

    Frantz, Laurent A F; Schraiber, Joshua G; Madsen, Ole; Megens, Hendrik-Jan; Cagan, Alex; Bosse, Mirte; Paudel, Yogesh; Crooijmans, Richard P M A; Larson, Greger; Groenen, Martien A M

    2015-10-01

    Traditionally, the process of domestication is assumed to be initiated by humans, involve few individuals and rely on reproductive isolation between wild and domestic forms. We analyzed pig domestication using over 100 genome sequences and tested whether pig domestication followed a traditional linear model or a more complex, reticulate model. We found that the assumptions of traditional models, such as reproductive isolation and strong domestication bottlenecks, are incompatible with the genetic data. In addition, our results show that, despite gene flow, the genomes of domestic pigs have strong signatures of selection at loci that affect behavior and morphology. We argue that recurrent selection for domestic traits likely counteracted the homogenizing effect of gene flow from wild boars and created 'islands of domestication' in the genome. Our results have major ramifications for the understanding of animal domestication and suggest that future studies should employ models that do not assume reproductive isolation.

  2. The impact of pollination syndrome and habitat on gene flow: a comparative study of two Streptocarpus (Gesneriaceae) species.

    PubMed

    Hughes, Mark; Möller, Michael; Edwards, Trevor J; Bellstedt, Dirk U; Villiers, Margaret de

    2007-10-01

    Gene flow through pollen and seed dispersal is important in terms of population differentiation and eventually speciation. Seed and pollen flow are affected in turn by habitats and pollen vectors. We examined the effect of different pollinators and habitats on gene flow by comparing two species of Streptocarpus, using microsatellite and chloroplast RFLP markers. Populations of the forest-dwelling S. primulifolius were highly differentiated according to nuclear microsatellite data and had mutually exclusive chloroplast haplotypes. This result is congruent with infrequent seed dispersal and limited between-population foraging by the long-tongued fly pollinator Stenobasipteron wiedemanni. In contrast, populations of S. dunnii growing in exposed crags had lower levels of population differentiation according to both nuclear and chloroplast data, congruent with a hypothesis of more effective between population seed dispersal and greater pollen-mediated gene flow due to the sunbird pollinator Nectarinia famosa. The population genetic behavior of these species is reflected in their taxonomy and phylogenetic position; S. primulifolius belongs to a taxonomically complex clade in which recent speciation is evident, while the clade containing S. dunnii is characterized by taxonomically well-defined species on longer phylogenetic branches. Our study shows that pollinator movements and seed dispersal patterns are a major determinant of the evolutionary trajectories of these species.

  3. Environmental implications of gene flow from sugar beet to wild beet--current status and future research needs.

    PubMed

    Bartsch, Detlef; Cuguen, Joel; Biancardi, Enrico; Sweet, Jeremy

    2003-01-01

    Gene flow via seed or pollen is a basic biological process in plant evolution. The ecological and genetic consequences of gene flow depend on the amount and direction of gene flow as well as on the fitness of hybrids. The assessment of potential risks of transgenic plants should take into account the fact that conventional crops can often cross with wild plants. The precautionary approach in risk management of genetically modified plants (GMPs) may make it necessary to monitor significant wild and weed populations that might be affected by transgene escape. Gene flow is hard to control in wind-pollinated plants like beet (Beta vulgaris). In addition, wild beet populations potentially can undergo evolutionary changes which might expand their geographical distribution. Unintended products of cultivated beets pollinated by wild beets are weed beets that bolt and flower during their first year of planting. Weed beets cause yield losses and can delay harvest. Wild beets are important plant genetic resources and the preservation of wild beet diversity in Europe has been considered in biosafety research. We present here the methodology and research approaches that can be used for monitoring the geographical distribution and diversity of Beta populations. It has recently been shown that a century of gene flow from Beta vulgaris ssp. vulgaris has not altered the genetic diversity of wild Beta vulgaris L. ssp. maritima (L.) Arcang. in the Italian sugar beet seed production area. Future research should focus on the potential evolution of transgenic wild beet populations in comparison to these baseline data. Two monitoring models are presented describing how endpoints can be measured: (1) "Pre-post" crop commercialization against today's baseline and (2) "Parallel" to crop commercialization against GMP free reference areas/ populations. Model 2 has the advantage of taking ongoing changes in genetic diversity and population dynamics into account. Model 1 is more applicable if

  4. Interface evolution of a particle in a supersaturated solution affected by a far-field uniform flow

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Wen; Wang, Zi-Dong

    2013-09-01

    The effect of far-field uniform flow on the morphological evolution of a spherical particle in a supersaturated solution affected by a far-field uniform flow is studied by using the matched asymptotic expansion method. The analytical solution for the interface shape, concentration field, and interface velocity of the particle growth shows that the convection induced by the far-field uniform flow facilitates the growth of the spherical particle, the upstream flow imposed on the particle enhances the growth velocity of the interface when the flow comes in, the downstream flow lowers the growth velocity of the surface when the flow goes out, and the interface morphology evolves into a peach-like shape.

  5. Method and apparatus for affecting a recirculation zone in a cross flow

    DOEpatents

    Bathina, Mahesh [Andhra Pradesh, IN; Singh, Ramanand [Uttar Pradesh, IN

    2012-07-17

    Disclosed is a cross flow apparatus including a surface and at least one outlet located at the surface. The cross flow apparatus further includes at least one guide at the surface configured to direct an intersecting flow flowing across the surface and increase a velocity of a cross flow being expelled from the at least one outlet downstream from the at least one outlet.

  6. Iron nanoparticles significantly affect the in vitro and in vivo expression of Id genes.

    PubMed

    Zou, Jinglu; Wang, Xin; Zhang, Ling; Wang, Jinke

    2015-03-16

    In recent DNA microarray studies, we found that the transcription of the Id3 gene was significantly down-regulated in five cell lines (RAW264.7, Hepa1-6, THP-1, HepG2, and HL7702) treated with two doses (50 and 100 μg/mL) of a DMSA-coated magnetite nanoparticle. Given the regulatory roles of Id genes in the cell cycle, growth, and differentiation, we wanted to do more investigations on the effect of the nanoparticle upon the Id genes. This study detected the expression of Id genes in six cell lines (the above cell lines plus HeLa) treated with the nanoparticle at the same doses using quantitative PCR. The results revealed that the expression of Id genes was significantly affected by the nanoparticle in these cell lines. Under each treatment, the Id3 gene was significantly (p < 0.01) down-regulated in all cell lines, the Id1 gene was significantly down-regulated in all cell lines except the RAW264.7 cells, and the Id2 gene was significantly down-regulated in the HepG2, HL7702, and HeLa cells. Because the Id1, Id2, and Id3 genes were significantly down-regulated in three liver-derived cell lines (Hepa1-6, HepG2, and HL7702) in both microarray and PCR detections, this study then detected the expression of Id genes in the liver tissues of mice that were intravenously injected with the nanoparticle at two doses (2 and 5 mg/kg body weight). The results revealed that the expression of Id1, Id2, and Id3 genes was also significantly down-regulated in the liver tissues under each treatment. Another Id gene, Id4, was also significantly regulated in some cells or liver tissues treated with the nanoparticle. These results reveal that the nanoparticle exerts a significant effect on the in vitro and in vivo expression of Id genes. This study thus provides new insights into the Id-related nanotoxicity of the nanoparticle and the close relationship between the regulation of Id genes and iron.

  7. Assessment of processes affecting low-flow water quality of Cedar Creek, west-central Illinois

    USGS Publications Warehouse

    Schmidt, Arthur R.; Freeman, W.O.; McFarlane, R.D.

    1989-01-01

    Water quality and the processes that affect dissolved oxygen, nutrient (nitrogen and phosphorus species), and algal concentrations were evaluated for a 23.8-mile reach of Cedar Creek near Galesburg, west-central Illinois, during periods of warm-weather, low-flow conditions. Water quality samples were collected and stream conditions were measured over a diel (24 hour) period on three occasions during July and August 1985. Analysis of data from the diel-sampling periods indicates that concentrations of iron, copper, manganese, phenols, and total dissolved-solids exceeded Illinois ' general-use water quality standards in some locations. Dissolved-oxygen concentrations were less than the State minimum standard throughout much of the study reach. These data were used to calibrate and verify a one-dimensional, steady-state, water quality model. The computer model was used to assess the relative effects on low-flow water quality of processes such as algal photosynthesis and respiration, ammonia oxidation, biochemical oxygen demand, sediment oxygen demand, and stream reaeration. Results from model simulations and sensitivity analysis indicate that sediment oxygen demand is the principal cause of low dissolved-oxygen concentrations in the creek. (USGS)

  8. Pollen dispersal and gene flow within and into a population of the alpine monocarpic plant Campanula thyrsoides

    PubMed Central

    Scheepens, J. F.; Frei, Eva S.; Armbruster, Georg F. J.; Stöcklin, Jürg

    2012-01-01

    Background and Aims Gene flow by seed and pollen largely shapes the genetic structure within and among plant populations. Seed dispersal is often strongly spatially restricted, making gene flow primarily dependent on pollen dispersal within and into populations. To understand distance-dependent pollination success, pollen dispersal and gene flow were studied within and into a population of the alpine monocarpic perennial Campanula thyrsoides. Methods A paternity analysis was performed on sampled seed families using microsatellites, genotyping 22 flowering adults and 331 germinated offspring to estimate gene flow, and pollen analogues were used to estimate pollen dispersal. The focal population was situated among 23 genetically differentiated populations on a subalpine mountain plateau (<10 km2) in central Switzerland. Key Results Paternity analysis assigned 110 offspring (33·2 %) to a specific pollen donor (i.e. ‘father’) in the focal population. Mean pollination distance was 17·4 m for these offspring, and the pollen dispersal curve based on positive LOD scores of all 331 offspring was strongly decreasing with distance. The paternal contribution from 20–35 offspring (6·0–10·5 %) originated outside the population, probably from nearby populations on the plateau. Multiple potential fathers were assigned to each of 186 offspring (56·2 %). The pollination distance to ‘mother’ plants was negatively affected by the mothers' degree of spatial isolation in the population. Variability in male mating success was not related to the degree of isolation of father plants. Conclusions Pollen dispersal patterns within the C. thyrsoides population are affected by spatial positioning of flowering individuals and pollen dispersal may therefore contribute to the course of evolution of populations of this species. Pollen dispersal into the population was high but apparently not strong enough to prevent the previously described substantial among

  9. Gene flow despite complex Robertsonian fusions among rock-wallaby (Petrogale) species

    PubMed Central

    Potter, Sally; Moritz, Craig; Eldridge, Mark D. B.

    2015-01-01

    Complex Robertsonian rearrangements, with shared arms in different fusions, are expected to prevent gene flow between hybrids through missegregation during meiosis. Here, we estimate gene flow between recently diverged and chromosomally diverse rock-wallabies (Petrogale) to test for this form of chromosomal speciation. Contrary to expectations, we observe relatively high admixture among species with complex fusions. Our results reinforce the need to consider alternative roles of chromosome change, together with genic divergence, in driving speciation. PMID:26445985

  10. Quantitating and dating recent gene flow between European and East Asian populations.

    PubMed

    Qin, Pengfei; Zhou, Ying; Lou, Haiyi; Lu, Dongsheng; Yang, Xiong; Wang, Yuchen; Jin, Li; Chung, Yeun-Jun; Xu, Shuhua

    2015-04-02

    Historical records indicate that extensive cultural, commercial and technological interaction occurred between European and Asian populations. What have been the biological consequences of these contacts in terms of gene flow? We systematically estimated gene flow between Eurasian groups using genome-wide polymorphisms from 34 populations representing Europeans, East Asians, and Central/South Asians. We identified recent gene flow between Europeans and Asians in most populations we studied, including East Asians and Northwestern Europeans, which are normally considered to be non-admixed populations. In addition we quantitatively estimated the extent of this gene flow using two statistical approaches, and dated admixture events based on admixture linkage disequilibrium. Our results indicate that most genetic admixtures occurred between 2,400 and 310 years ago and show the admixture proportions to be highly correlated with geographic locations, with the highest admixture proportions observed in Central Asia and the lowest in East Asia and Northwestern Europe. Interestingly, we observed a North-to-South decline of European gene flow in East Asians, suggesting a northern path of European gene flow diffusing into East Asian populations. Our findings contribute to an improved understanding of the history of human migration and the evolutionary mechanisms that have shaped the genetic structure of populations in Eurasia.

  11. Gene flow and demographic history of leopards (Panthera pardus) in the central Indian highlands

    PubMed Central

    Dutta, Trishna; Sharma, Sandeep; Maldonado, Jesús E; Wood, Thomas C; Panwar, Hemendra S; Seidensticker, John

    2013-01-01

    Gene flow is a critical ecological process that must be maintained in order to counteract the detrimental effects of genetic drift in subdivided populations, with conservation benefits ranging from promoting the persistence of small populations to spreading adaptive traits in changing environments. We evaluated historical and contemporary gene flow and effective population sizes of leopards in a landscape in central India using noninvasive sampling. Despite the dramatic changes in land-use patterns in this landscape through recent times, we did not detect any signs that the leopard populations have been through a genetic bottleneck, and they appear to have maintained migration–drift equilibrium. We found that historical levels of gene flow (mean mh = 0.07) were significantly higher than contemporary levels (mean mc = 0.03), and populations with large effective population sizes (Satpura and Kanha Tiger Reserves) are the larger exporters of migrants at both timescales. The greatest decline in historical versus contemporary gene flow is between pairs of reserves that are currently not connected by forest corridors (i.e., Melghat-Pench mh − mc = 0.063; and Kanha-Satpura mh − mc = 0.054). We attribute this reduction in gene flow to accelerated fragmentation and habitat alteration in the landscape over the past few centuries, and suggest protection of forest corridors to maintain gene flow in this landscape. PMID:24062803

  12. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice

    PubMed Central

    Hou, Siyuan; Xian, Li; Shi, Peiliang; Li, Chaojun; Lin, Zhaoyu; Gao, Xiang

    2016-01-01

    While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress. PMID:27226137

  13. Gene flow and population structure of a solitary top carnivore in a human-dominated landscape.

    PubMed

    McManus, Jeannine S; Dalton, Desiré L; Kotzé, Antoinette; Smuts, Bool; Dickman, Amy; Marshal, Jason P; Keith, Mark

    2015-01-01

    While African leopard populations are considered to be continuous as demonstrated by their high genetic variation, the southernmost leopard population exists in the Eastern and Western Cape, South Africa, where anthropogenic activities may be affecting this population's structure. Little is known about the elusive, last free-roaming top predator in the region and this study is the first to report on leopard population structuring using nuclear DNA. By analyzing 14 microsatellite markers from 40 leopard tissue samples, we aimed to understand the populations' structure, genetic distance, and gene flow (Nm). Our results, based on spatially explicit analysis with Bayesian methods, indicate that leopards in the region exist in a fragmented population structure with lower than expected genetic diversity. Three population groups were identified, between which low to moderate levels of gene flow were observed (Nm 0.5 to 3.6). One subpopulation exhibited low genetic differentiation, suggesting a continuous population structure, while the remaining two appear to be less connected, with low emigration and immigration between these populations. Therefore, genetic barriers are present between the subpopulations, and while leopards in the study region may function as a metapopulation, anthropogenic activities threaten to decrease habitat and movement further. Our results indicate that the leopard population may become isolated within a few generations and suggest that management actions should aim to increase habitat connectivity and reduce human-carnivore conflict. Understanding genetic diversity and connectivity of populations has important conservation implications that can highlight management of priority populations to reverse the effects of human-caused extinctions.

  14. Gene flow and population structure of a solitary top carnivore in a human-dominated landscape

    PubMed Central

    McManus, Jeannine S; Dalton, Desiré L; Kotzé, Antoinette; Smuts, Bool; Dickman, Amy; Marshal, Jason P; Keith, Mark

    2015-01-01

    While African leopard populations are considered to be continuous as demonstrated by their high genetic variation, the southernmost leopard population exists in the Eastern and Western Cape, South Africa, where anthropogenic activities may be affecting this population's structure. Little is known about the elusive, last free-roaming top predator in the region and this study is the first to report on leopard population structuring using nuclear DNA. By analyzing 14 microsatellite markers from 40 leopard tissue samples, we aimed to understand the populations' structure, genetic distance, and gene flow (Nm). Our results, based on spatially explicit analysis with Bayesian methods, indicate that leopards in the region exist in a fragmented population structure with lower than expected genetic diversity. Three population groups were identified, between which low to moderate levels of gene flow were observed (Nm 0.5 to 3.6). One subpopulation exhibited low genetic differentiation, suggesting a continuous population structure, while the remaining two appear to be less connected, with low emigration and immigration between these populations. Therefore, genetic barriers are present between the subpopulations, and while leopards in the study region may function as a metapopulation, anthropogenic activities threaten to decrease habitat and movement further. Our results indicate that the leopard population may become isolated within a few generations and suggest that management actions should aim to increase habitat connectivity and reduce human–carnivore conflict. Understanding genetic diversity and connectivity of populations has important conservation implications that can highlight management of priority populations to reverse the effects of human-caused extinctions. PMID:25691961

  15. Gene Flow of a Forest-Dependent Bird across a Fragmented Landscape.

    PubMed

    Adams, Rachael V; Burg, Theresa M

    2015-01-01

    Habitat loss and fragmentation can affect the persistence of populations by reducing connectivity and restricting the ability of individuals to disperse across landscapes. Dispersal corridors promote population connectivity and therefore play important roles in maintaining gene flow in natural populations inhabiting fragmented landscapes. In the prairies, forests are restricted to riparian areas along river systems which act as important dispersal corridors for forest dependent species across large expanses of unsuitable grassland habitat. However, natural and anthropogenic barriers within riparian systems have fragmented these forested habitats. In this study, we used microsatellite markers to assess the fine-scale genetic structure of a forest-dependent species, the black-capped chickadee (Poecile atricapillus), along 10 different river systems in Southern Alberta. Using a landscape genetic approach, landscape features (e.g., land cover) were found to have a significant effect on patterns of genetic differentiation. Populations are genetically structured as a result of natural breaks in continuous habitat at small spatial scales, but the artificial barriers we tested do not appear to restrict gene flow. Dispersal between rivers is impeded by grasslands, evident from isolation of nearby populations (~ 50 km apart), but also within river systems by large treeless canyons (>100 km). Significant population genetic differentiation within some rivers corresponded with zones of different cottonwood (riparian poplar) tree species and their hybrids. This study illustrates the importance of considering the impacts of habitat fragmentation at small spatial scales as well as other ecological processes to gain a better understanding of how organisms respond to their environmental connectivity. Here, even in a common and widespread songbird with high dispersal potential, small breaks in continuous habitats strongly influenced the spatial patterns of genetic variation.

  16. Gene Flow of a Forest-Dependent Bird across a Fragmented Landscape

    PubMed Central

    2015-01-01

    Habitat loss and fragmentation can affect the persistence of populations by reducing connectivity and restricting the ability of individuals to disperse across landscapes. Dispersal corridors promote population connectivity and therefore play important roles in maintaining gene flow in natural populations inhabiting fragmented landscapes. In the prairies, forests are restricted to riparian areas along river systems which act as important dispersal corridors for forest dependent species across large expanses of unsuitable grassland habitat. However, natural and anthropogenic barriers within riparian systems have fragmented these forested habitats. In this study, we used microsatellite markers to assess the fine-scale genetic structure of a forest-dependent species, the black-capped chickadee (Poecile atricapillus), along 10 different river systems in Southern Alberta. Using a landscape genetic approach, landscape features (e.g., land cover) were found to have a significant effect on patterns of genetic differentiation. Populations are genetically structured as a result of natural breaks in continuous habitat at small spatial scales, but the artificial barriers we tested do not appear to restrict gene flow. Dispersal between rivers is impeded by grasslands, evident from isolation of nearby populations (~ 50 km apart), but also within river systems by large treeless canyons (>100 km). Significant population genetic differentiation within some rivers corresponded with zones of different cottonwood (riparian poplar) tree species and their hybrids. This study illustrates the importance of considering the impacts of habitat fragmentation at small spatial scales as well as other ecological processes to gain a better understanding of how organisms respond to their environmental connectivity. Here, even in a common and widespread songbird with high dispersal potential, small breaks in continuous habitats strongly influenced the spatial patterns of genetic variation. PMID

  17. Differential threshold effects of habitat fragmentation on gene flow in two widespread species of bush crickets.

    PubMed

    Lange, Rebecca; Durka, Walter; Holzhauer, Stephanie I J; Wolters, Volkmar; Diekötter, Tim

    2010-11-01

    Effects of habitat fragmentation on genetic diversity vary among species. This may be attributed to the interacting effects of species traits and landscape structure. While widely distributed and abundant species are often considered less susceptible to fragmentation, this may be different if they are small sized and show limited dispersal. Under intensive land use, habitat fragmentation may reach thresholds at which gene flow among populations of small-sized and dispersal-limited species becomes disrupted. Here, we studied the genetic diversity of two abundant and widespread bush crickets along a gradient of habitat fragmentation in an agricultural landscape. We applied traditional (G(ST), θ) and recently developed (G'ST', D) estimators of genetic differentiation on microsatellite data from each of twelve populations of the grassland species Metrioptera roeselii and the forest-edge species Pholidoptera griseoaptera to identify thresholds of habitat fragmentation below which genetic population structure is affected. Whereas the grassland species exhibited a uniform genetic structuring (G(ST) = 0.020-0.033; D = 0.085-0.149) along the whole fragmentation gradient, the forest-edge species' genetic differentiation increased significantly from D < 0.063 (G(ST) < 0.018) to D = 0.166 (G(ST) = 0.074), once the amount of suitable habitat dropped below a threshold of 20% and its proximity decreased substantially at the landscape scale. The influence of fragmentation on genetic differentiation was qualitatively unaffected by the choice of estimators of genetic differentiation but quantitatively underestimated by the traditional estimators. These results indicate that even for widespread species in modern agricultural landscapes fragmentation thresholds exist at which gene flow among suitable habitat patches becomes restricted.

  18. Linkage of the VNTR/insulin-gene and type I diabetes mellitus: Increased gene sharing in affected sibling pairs

    SciTech Connect

    Owerbach, D.; Gabbay, K.H. )

    1994-05-01

    Ninety-six multiplex type I diabetic families were typed at the 5' flanking region of the insulin gene by using a PCR assay that better resolves the VNTR into multiple alleles. Affected sibling pairs shared 2, 1, and 0 VNTR alleles - identical by descent - at a frequency of .47, .45, and .08, respectively, a ratio that deviated from the expected 1:2:1 ratio (P<.001). These results confirm linkage of the chromosome 11p15.5 region with type I diabetes mellitus susceptibility. 20 refs., 2 tabs.

  19. Pharmacological and Genetic Modulation of REV-ERB Activity and Expression Affects Orexigenic Gene Expression

    PubMed Central

    Amador, Ariadna; Wang, Yongjun; Banerjee, Subhashis; Kameneka, Theodore M.; Solt, Laura A.; Burris, Thomas P.

    2016-01-01

    The nuclear receptors REV-ERBα and REV-ERBβ are transcription factors that play pivotal roles in the regulation of the circadian rhythm and various metabolic processes. The circadian rhythm is an endogenous mechanism, which generates entrainable biological changes that follow a 24-hour period. It regulates a number of physiological processes, including sleep/wakeful cycles and feeding behaviors. We recently demonstrated that REV-ERB-specific small molecules affect sleep and anxiety. The orexinergic system also plays a significant role in mammalian physiology and behavior, including the regulation of sleep and food intake. Importantly, orexin genes are expressed in a circadian manner. Given these overlaps in function and circadian expression, we wanted to determine whether the REV-ERBs might regulate orexin. We found that acute in vivo modulation of REV-ERB activity, with the REV-ERB-specific synthetic ligand SR9009, affects the circadian expression of orexinergic genes in mice. Long term dosing with SR9009 also suppresses orexinergic gene expression in mice. Finally, REV-ERBβ-deficient mice present with increased orexinergic transcripts. These data suggest that the REV-ERBs may be involved in the repression of orexinergic gene expression. PMID:26963516

  20. TITER AND PRODUCT AFFECTS THE DISTRIBUTION OF GENE EXPRESSION AFTER INTRAPUTAMINAL CONVECTION-ENHANCED DELIVERY

    PubMed Central

    Emborg, Marina E.; Hurley, Samuel A.; Joers, Valerie; Tromp, Do P.M.; Swanson, Christine R.; Ohshima-Hosoyama, Sachiko; Bondarenko, Viktorya; Cummisford, Kyle; Sonnemans, Marc; Hermening, Stephan; Blits, Bas; Alexander, Andrew L.

    2014-01-01

    Background Efficacy and safety of intracerebral gene therapy for brain disorders, like Parkinson’s disease, depends on appropriate distribution of gene expression. Objectives To assess if the distribution of gene expression is affected by vector titer and protein type. Methods Four adult macaque monkeys seronegative for adeno-associated virus 5 (AAV5) received in the right and left ventral postcommisural putamen 30μl inoculation of a high or low titer suspension of AAV5 encoding glial derived neurotrophic factor (GDNF) or green fluorescent protein (GFP). Inoculations were performed using convection enhanced delivery and intraoperative MRI (IMRI). Results IMRI confirmed targeting and infusion cloud irradiating from the catheter tip into surrounding area. Postmortem analysis six weeks after surgery revealed GFP and GDNF expression ipsilateral to the injection side that had a titer-dependent distribution. GFP and GDNF expression was also observed in fibers in the Substantia Nigra (SN) pars reticulata (pr), demonstrating anterograde transport. Few GFP-positive neurons were present in the SN pars compacta (pc), possibly by direct retrograde transport of the vector. GDNF was present in many SNpc and SNpr neurons. Conclusions After controlling for target and infusate volume, intracerebral distribution of gene product is affected by vector titer and product biology. PMID:24943657

  1. Paternal benzo[a]pyrene exposure affects gene expression in the early developing mouse embryo.

    PubMed

    Brevik, Asgeir; Lindeman, Birgitte; Rusnakova, Vendula; Olsen, Ann-Karin; Brunborg, Gunnar; Duale, Nur

    2012-09-01

    The health of the offspring depends on the genetic constitution of the parental germ cells. The paternal genome appears to be important; e.g., de novo mutations in some genes seem to arise mostly from the father, whereas epigenetic modifications of DNA and histones are frequent in the paternal gonads. Environmental contaminants which may affect the integrity of the germ cells comprise the polycyclic aromatic hydrocarbon, benzo[a]pyrene (B[a]P). B[a]P has received much attention due to its ubiquitous distribution, its carcinogenic and mutagenic potential, and also effects on reproduction. We conducted an in vitro fertilization (IVF) experiment using sperm cells from B[a]P-exposed male mice to study effects of paternal B[a]P exposure on early gene expression in the developing mouse embryo. Male mice were exposed to a single acute dose of B[a]P (150 mg/kg, ip) 4 days prior to isolation of cauda sperm, followed by IVF of oocytes from unexposed superovulated mice. Gene expression in fertilized zygotes/embryos was determined using reverse transcription-qPCR at the 1-, 2-, 4-, 8-, and blastocyst cell stages of embryo development. We found that paternal B[a]P exposure altered the expression of numerous genes in the developing embryo especially at the blastocyst stage. Some genes were also affected at earlier developmental stages. Embryonic gene expression studies seem useful to identify perturbations of signaling pathways resulting from exposure to contaminants, and can be used to address mechanisms of paternal effects on embryo development.

  2. Tumor-specific mutations in low-frequency genes affect their functional properties.

    PubMed

    Erdem-Eraslan, Lale; Heijsman, Daphne; de Wit, Maurice; Kremer, Andreas; Sacchetti, Andrea; van der Spek, Peter J; Sillevis Smitt, Peter A E; French, Pim J

    2015-05-01

    Causal genetic changes in oligodendrogliomas (OD) with 1p/19q co-deletion include mutations in IDH1, IDH2, CIC, FUBP1, TERT promoter and NOTCH1. However, it is generally assumed that more somatic mutations are required for tumorigenesis. This study aimed to establish whether genes mutated at low frequency can be involved in OD initiation and/or progression. We performed whole-genome sequencing on three anaplastic ODs with 1p/19q co-deletion. To estimate mutation frequency, we performed targeted resequencing on an additional 39 ODs. Whole-genome sequencing identified a total of 55 coding mutations (range 8-32 mutations per tumor), including known abnormalities in IDH1, IDH2, CIC and FUBP1. We also identified mutations in genes, most of which were previously not implicated in ODs. Targeted resequencing on 39 additional ODs confirmed that these genes are mutated at low frequency. Most of the mutations identified were predicted to have a deleterious functional effect. Functional analysis on a subset of these genes (e.g. NTN4 and MAGEH1) showed that the mutation affects the subcellular localization of the protein (n = 2/12). In addition, HOG cells stably expressing mutant GDI1 or XPO7 showed altered cell proliferation compared to those expressing wildtype constructs. Similarly, HOG cells expressing mutant SASH3 or GDI1 showed altered migration. The significantly higher rate of predicted deleterious mutations, the changes in subcellular localization and the effects on proliferation and/or migration indicate that many of these genes functionally may contribute to gliomagenesis and/or progression. These low-frequency genes and their affected pathways may provide new treatment targets for this tumor type.

  3. Gluten affects epithelial differentiation-associated genes in small intestinal mucosa of coeliac patients.

    PubMed

    Juuti-Uusitalo, K; Mäki, M; Kainulainen, H; Isola, J; Kaukinen, K

    2007-11-01

    In coeliac disease gluten induces an immunological reaction in genetically susceptible patients, and influences on epithelial cell proliferation and differentiation in the small-bowel mucosa. Our aim was to find novel genes which operate similarly in epithelial proliferation and differentiation in an epithelial cell differentiation model and in coeliac disease patient small-bowel mucosal biopsy samples. The combination of cDNA microarray data originating from a three-dimensional T84 epithelial cell differentiation model and small-bowel mucosal biopsy samples from untreated and treated coeliac disease patients and healthy controls resulted in 30 genes whose mRNA expression was similarly affected. Nine of 30 were located directly or indirectly in the receptor tyrosine kinase pathway starting from the epithelial growth factor receptor. Removal of gluten from the diet resulted in a reversion in the expression of 29 of the 30 genes in the small-bowel mucosal biopsy samples. Further characterization by blotting and labelling revealed increased epidermal growth factor receptor and beta-catenin protein expression in the small-bowel mucosal epithelium in untreated coeliac disease patients compared to healthy controls and treated coeliac patients. We found 30 genes whose mRNA expression was affected similarly in the epithelial cell differentiation model and in the coeliac disease patient small-bowel mucosal biopsy samples. In particular, those genes involved in the epithelial growth factor-mediated signalling pathways may be involved in epithelial cell differentiation and coeliac disease pathogenesis. The epithelial cell differentiation model is a useful tool for studying gene expression changes in the crypt-villus axis.

  4. Gene Flow and the Measurement of Dispersal in Plant Populations.

    ERIC Educational Resources Information Center

    Nicholls, Marc S.

    1986-01-01

    Reviews methods of estimating pollen and seed dispersals and discusses the extent and frequency of gene exchange within and between populations. Offers suggestions for designing exercises suitable for estimating dispersal distances in natural plant populations. (ML)

  5. Patterns of gene flow between crop and wild carrot, Daucus carota (Apiaceae) in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies of gene flow between crops and their wild relatives have implications for both management practices for farming and breeding as well as understanding the risk of transgene escape. These types of studies may also yield insight into population dynamics and the evolutionary consequences of gene...

  6. Bears in a forest of gene trees: phylogenetic inference is complicated by incomplete lineage sorting and gene flow.

    PubMed

    Kutschera, Verena E; Bidon, Tobias; Hailer, Frank; Rodi, Julia L; Fain, Steven R; Janke, Axel

    2014-08-01

    Ursine bears are a mammalian subfamily that comprises six morphologically and ecologically distinct extant species. Previous phylogenetic analyses of concatenated nuclear genes could not resolve all relationships among bears, and appeared to conflict with the mitochondrial phylogeny. Evolutionary processes such as incomplete lineage sorting and introgression can cause gene tree discordance and complicate phylogenetic inferences, but are not accounted for in phylogenetic analyses of concatenated data. We generated a high-resolution data set of autosomal introns from several individuals per species and of Y-chromosomal markers. Incorporating intraspecific variability in coalescence-based phylogenetic and gene flow estimation approaches, we traced the genealogical history of individual alleles. Considerable heterogeneity among nuclear loci and discordance between nuclear and mitochondrial phylogenies were found. A species tree with divergence time estimates indicated that ursine bears diversified within less than 2 My. Consistent with a complex branching order within a clade of Asian bear species, we identified unidirectional gene flow from Asian black into sloth bears. Moreover, gene flow detected from brown into American black bears can explain the conflicting placement of the American black bear in mitochondrial and nuclear phylogenies. These results highlight that both incomplete lineage sorting and introgression are prominent evolutionary forces even on time scales up to several million years. Complex evolutionary patterns are not adequately captured by strictly bifurcating models, and can only be fully understood when analyzing multiple independently inherited loci in a coalescence framework. Phylogenetic incongruence among gene trees hence needs to be recognized as a biologically meaningful signal.

  7. Bears in a Forest of Gene Trees: Phylogenetic Inference Is Complicated by Incomplete Lineage Sorting and Gene Flow

    PubMed Central

    Kutschera, Verena E.; Bidon, Tobias; Hailer, Frank; Rodi, Julia L.; Fain, Steven R.; Janke, Axel

    2014-01-01

    Ursine bears are a mammalian subfamily that comprises six morphologically and ecologically distinct extant species. Previous phylogenetic analyses of concatenated nuclear genes could not resolve all relationships among bears, and appeared to conflict with the mitochondrial phylogeny. Evolutionary processes such as incomplete lineage sorting and introgression can cause gene tree discordance and complicate phylogenetic inferences, but are not accounted for in phylogenetic analyses of concatenated data. We generated a high-resolution data set of autosomal introns from several individuals per species and of Y-chromosomal markers. Incorporating intraspecific variability in coalescence-based phylogenetic and gene flow estimation approaches, we traced the genealogical history of individual alleles. Considerable heterogeneity among nuclear loci and discordance between nuclear and mitochondrial phylogenies were found. A species tree with divergence time estimates indicated that ursine bears diversified within less than 2 My. Consistent with a complex branching order within a clade of Asian bear species, we identified unidirectional gene flow from Asian black into sloth bears. Moreover, gene flow detected from brown into American black bears can explain the conflicting placement of the American black bear in mitochondrial and nuclear phylogenies. These results highlight that both incomplete lineage sorting and introgression are prominent evolutionary forces even on time scales up to several million years. Complex evolutionary patterns are not adequately captured by strictly bifurcating models, and can only be fully understood when analyzing multiple independently inherited loci in a coalescence framework. Phylogenetic incongruence among gene trees hence needs to be recognized as a biologically meaningful signal. PMID:24903145

  8. Effect of pollinator abundance on self-fertilization and gene flow: application to GM Canola.

    PubMed

    Hoyle, Martin; Hayter, Katrina; Cresswell, James E

    2007-10-01

    Cross-pollination from fields of transgenic crops is of great public concern. Although cross-pollination in commercial canola (Brassica napus) fields has been empirically measured, field trials are expensive and do not identify the causes of cross-pollination. Therefore, theoretical models can be valuable because they can provide estimates of cross-pollination at any given site and time. We present a general analytical model of field-to-field gene flow due to the following competing mechanisms: the wind, bees, and autonomous pollination. We parameterize the model for the particular case of field-to-field cross-pollination of genetically modified (GM) canola via the wind and via bumble bees (Bombus spp.) and honey bees (Apis mellifera). We make extensive use of the large data set of bee densities collected during the recent U.K. Farm Scale Evaluations. We predict that canola approaches almost full seed set without pollinators and that autonomous pollination is responsible for > or = 25% of seed set, irrespective of pollinator abundance. We do not predict the relative contribution of bees vs. the wind in landscape-scale gene flow in canola. However, under model assumptions, we predict that the maximum field-to-field gene flow due to bumble bees is 0.04% and 0.13% below the current EU limit for adventitious GM presence for winter- and spring-sown canola, respectively. We predict that gene flow due to bees is approximately 3.1 times higher at 20% compared to 100% male-fertility, and due to the wind, 1.3 times higher at 20% compared to 100% male-fertility, for both winter- and spring-sown canola. Bumble bee-mediated gene flow is approximately 2.7 times higher and wind-mediated gene flow approximately 1.7 times lower in spring-sown than in winter-sown canola, regardless of the degree of male-sterility. The model of cross-pollination due to the wind most closely predicted three previously published observations: field-to-field gene flow is low; gene flow increases with

  9. Identification of Differentially Expressed Genes through Integrated Study of Alzheimer’s Disease Affected Brain Regions

    PubMed Central

    Berretta, Regina; Moscato, Pablo

    2016-01-01

    Background Alzheimer’s disease (AD) is the most common form of dementia in older adults that damages the brain and results in impaired memory, thinking and behaviour. The identification of differentially expressed genes and related pathways among affected brain regions can provide more information on the mechanisms of AD. In the past decade, several studies have reported many genes that are associated with AD. This wealth of information has become difficult to follow and interpret as most of the results are conflicting. In that case, it is worth doing an integrated study of multiple datasets that helps to increase the total number of samples and the statistical power in detecting biomarkers. In this study, we present an integrated analysis of five different brain region datasets and introduce new genes that warrant further investigation. Methods The aim of our study is to apply a novel combinatorial optimisation based meta-analysis approach to identify differentially expressed genes that are associated to AD across brain regions. In this study, microarray gene expression data from 161 samples (74 non-demented controls, 87 AD) from the Entorhinal Cortex (EC), Hippocampus (HIP), Middle temporal gyrus (MTG), Posterior cingulate cortex (PC), Superior frontal gyrus (SFG) and visual cortex (VCX) brain regions were integrated and analysed using our method. The results are then compared to two popular meta-analysis methods, RankProd and GeneMeta, and to what can be obtained by analysing the individual datasets. Results We find genes related with AD that are consistent with existing studies, and new candidate genes not previously related with AD. Our study confirms the up-regualtion of INFAR2 and PTMA along with the down regulation of GPHN, RAB2A, PSMD14 and FGF. Novel genes PSMB2, WNK1, RPL15, SEMA4C, RWDD2A and LARGE are found to be differentially expressed across all brain regions. Further investigation on these genes may provide new insights into the development of AD

  10. Phosphoinositide-specific Phospholipase C β1 gene deletion in bipolar disorder affected patient.

    PubMed

    Lo Vasco, Vincenza Rita; Longo, Lucia; Polonia, Patrizia

    2013-03-01

    The involvement of phosphoinositides (PI) signal transduction pathway and related molecules, such as the Phosphoinositide-specific Phospholipase C (PI-PLC) enzymes, in the pathophysiology of mood disorders is corroborated by a number of recent evidences. Our previous works identified the deletion of PLCB1 gene, which codifies for the PI-PLC β1 enzyme, in 4 out 15 patients affected with schizophrenia, and no deletion both in major depression affected patients and in normal controls. By using interphase fluorescent in situ hybridization methodology, we analyzed PLCB1 in paraffin embedded samples of orbito-frontal cortex of 15 patients affected with bipolar disorder. Deletion of PLCB1 was identified in one female patient.

  11. Left ventricular end-diastolic pressure affects measurement of fractional flow reserve

    PubMed Central

    Leonardi, Robert A.; Townsend, Jacob C.; Patel, Chetan A.; Wolf, Bethany J.; Todoran, Thomas M.; Fernandes, Valerian L.; Nielsen, Christopher D.; Steinberg, Daniel H.; Powers, Eric R.

    2013-01-01

    Background Fractional flow reserve (FFR), the hyperemic ratio of distal (Pd) to proximal (Pa) coronary pressure, is used to identify the need for coronary revascularization. Changes in left ventricular end-diastolic pressure (LVEDP) might affect measurements of FFR. Methods and Materials LVEDP was recorded simultaneously with Pd and Pa during conventional FFR measurement as well as during additional infusion of nitroprusside. The relationship between LVEDP, Pa, and FFR was assessed using linear mixed models. Results Prospectively collected data for 528 cardiac cycles from 20 coronary arteries in 17 patients were analyzed. Baseline median Pa, Pd, FFR, and LVEDP were 73 mmHg, 49 mmHg, 0.69, and 18 mmHg, respectively. FFR < 0.80 was present in 14 arteries (70%). With nitroprusside median Pa, Pd, FFR, and LVEDP were 61 mmHg, 42 mmHg, 0.68, and 12 mmHg, respectively. In a multivariable model for the entire population LVEDP was positively associated with FFR such that FFR increased by 0.008 for every 1-mmHg increase in LVEDP (beta = 0.008; P < 0.001), an association that was greater in obstructed arteries with FFR < 0.80 (beta = 0.01; P < 0.001). Pa did not directly affect FFR in the multivariable model, but an interaction between LVEDP and Pa determined that LVEDP’s effect on FFR is greater at lower Pa. Conclusions LVEDP was positively associated with FFR. The association was greater in obstructive disease (FFR < 0.80) and at lower Pa. These findings have implications for the use of FFR to guide revascularization in patients with heart failure. Summary for Annotated Table of Contents The impact of left ventricular diastolic pressure on measurement of fractional flow reserve (FFR) is not well described. We present a hemodynamic study of the issue, concluding that increasing left ventricular diastolic pressure can increase measurements of FFR, particularly in patients with FFR < 0.80 and lower blood pressure. PMID:23886870

  12. Pleiotropic Genes Affecting Carcass Traits in Bos indicus (Nellore) Cattle Are Modulators of Growth

    PubMed Central

    Milanesi, Marco; Torrecilha, Rafaela B. P.; Carmo, Adriana S.; Neves, Haroldo H. R.; Carvalheiro, Roberto; Ajmone-Marsan, Paolo; Sonstegard, Tad S.; Sölkner, Johann; Contreras-Castillo, Carmen J.; Garcia, José F.

    2016-01-01

    Two complementary methods, namely Multi-Trait Meta-Analysis and Versatile Gene-Based Test for Genome-wide Association Studies (VEGAS), were used to identify putative pleiotropic genes affecting carcass traits in Bos indicus (Nellore) cattle. The genotypic data comprised over 777,000 single-nucleotide polymorphism markers scored in 995 bulls, and the phenotypic data included deregressed breeding values (dEBV) for weight measurements at birth, weaning and yearling, as well visual scores taken at weaning and yearling for carcass finishing precocity, conformation and muscling. Both analyses pointed to the pleomorphic adenoma gene 1 (PLAG1) as a major pleiotropic gene. VEGAS analysis revealed 224 additional candidates. From these, 57 participated, together with PLAG1, in a network involved in the modulation of the function and expression of IGF1 (insulin like growth factor 1), IGF2 (insulin like growth factor 2), GH1 (growth hormone 1), IGF1R (insulin like growth factor 1 receptor) and GHR (growth hormone receptor), suggesting that those pleiotropic genes operate as satellite regulators of the growth pathway. PMID:27410030

  13. Pleiotropic Genes Affecting Carcass Traits in Bos indicus (Nellore) Cattle Are Modulators of Growth.

    PubMed

    G T Pereira, Anirene; Utsunomiya, Yuri T; Milanesi, Marco; Torrecilha, Rafaela B P; Carmo, Adriana S; Neves, Haroldo H R; Carvalheiro, Roberto; Ajmone-Marsan, Paolo; Sonstegard, Tad S; Sölkner, Johann; Contreras-Castillo, Carmen J; Garcia, José F

    2016-01-01

    Two complementary methods, namely Multi-Trait Meta-Analysis and Versatile Gene-Based Test for Genome-wide Association Studies (VEGAS), were used to identify putative pleiotropic genes affecting carcass traits in Bos indicus (Nellore) cattle. The genotypic data comprised over 777,000 single-nucleotide polymorphism markers scored in 995 bulls, and the phenotypic data included deregressed breeding values (dEBV) for weight measurements at birth, weaning and yearling, as well visual scores taken at weaning and yearling for carcass finishing precocity, conformation and muscling. Both analyses pointed to the pleomorphic adenoma gene 1 (PLAG1) as a major pleiotropic gene. VEGAS analysis revealed 224 additional candidates. From these, 57 participated, together with PLAG1, in a network involved in the modulation of the function and expression of IGF1 (insulin like growth factor 1), IGF2 (insulin like growth factor 2), GH1 (growth hormone 1), IGF1R (insulin like growth factor 1 receptor) and GHR (growth hormone receptor), suggesting that those pleiotropic genes operate as satellite regulators of the growth pathway.

  14. Abundance and Genetic Diversity of nifH Gene Sequences in Anthropogenically Affected Brazilian Mangrove Sediments

    PubMed Central

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk

    2012-01-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies. PMID:22941088

  15. Mutation in fucose synthesis gene of Klebsiella pneumoniae affects capsule composition and virulence in mice.

    PubMed

    Pan, Po-Chang; Chen, Hui-Wen; Wu, Po-Kuan; Wu, Yu-Yang; Lin, Chun-Hung; Wu, June H

    2011-02-01

    The emerging pathogenicity of Klebsiella pneumoniae (KP) is evident by the increasing number of clinical cases of liver abscess (LA) due to KP infection. A unique property of KP is its thick mucoid capsule. The bacterial capsule has been found to contain fucose in KP strains causing LA but not in those causing urinary tract infections. The products of the gmd and wcaG genes are responsible for converting mannose to fucose in KP. A KP strain, KpL1, which is known to have a high death rate in infected mice, was mutated by inserting an apramycin-resistance gene into the gmd. The mutant expressed genes upstream and downstream of gmd, but not gmd itself, as determined by reverse transcriptase polymerase chain reaction. The DNA mapping confirmed the disruption of the gmd gene. This mutant decreased its ability to kill infected mice and showed decreased virulence in infected HepG2 cells. Compared with wild-type KpL1, the gmd mutant lost fucose in capsular polysaccharides, increased biofilm formation and interacted more readily with macrophages. The mutant displayed morphological changes with long filament forms and less uniform sizes. The mutation also converted the serotype from K1 of wild-type to K2 and weak K3. The results indicate that disruption of the fucose synthesis gene affected the pathophysiology of this bacterium and may be related to the virulence of this KpL1 strain.

  16. Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker

    USGS Publications Warehouse

    Watrud, L.S.; Lee, E.H.; Fairbrother, A.; Burdick, C.; Reichman, J.R.; Bollman, M.; Storm, M.; King, G.; Van De Water, Peter K.

    2004-01-01

    Sampling methods and results of a gene flow study are described that will be of interest to plant scientists, evolutionary biologists, ecologists, and stakeholders assessing the environmental safety of transgenic crops. This study documents gene flow on a landscape level from creeping bentgrass (Agrostis stolonifera L.), one of the first wind-pollinated, perennial, and highly outcrossing transgenic crops being developed for commercial use. Most of the gene flow occurred within 2 km in the direction of prevailing winds. The maximal gene flow distances observed were 21 km and 14 km in sentinel and resident plants, respectively, that were located in primarily nonagronomic habitats. The selectable marker used in these studies was the CP4 EPSPS gene derived from Agrobacterium spp. strain CP4 that encodes 5-enol-pyruvylshikimate-3-phosphate synthase and confers resistance to glyphosate herbicide. Evidence for gene flow to 75 of 138 sentinel plants of A. stolonifera and to 29 of 69 resident Agrostis plants was based on seedling progeny survival after spraying with glyphosate in greenhouse assays and positive TraitChek, PCR, and sequencing results. Additional studies are needed to determine whether introgression will occur and whether it will affect the ecological fitness of progeny or the structure of plant communities in which transgenic progeny may become established.

  17. Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker.

    PubMed

    Watrud, Lidia S; Lee, E Henry; Fairbrother, Anne; Burdick, Connie; Reichman, Jay R; Bollman, Mike; Storm, Marjorie; King, George; Van de Water, Peter K

    2004-10-05

    Sampling methods and results of a gene flow study are described that will be of interest to plant scientists, evolutionary biologists, ecologists, and stakeholders assessing the environmental safety of transgenic crops. This study documents gene flow on a landscape level from creeping bentgrass (Agrostis stolonifera L.), one of the first wind-pollinated, perennial, and highly outcrossing transgenic crops being developed for commercial use. Most of the gene flow occurred within 2 km in the direction of prevailing winds. The maximal gene flow distances observed were 21 km and 14 km in sentinel and resident plants, respectively, that were located in primarily nonagronomic habitats. The selectable marker used in these studies was the CP4 EPSPS gene derived from Agrobacterium spp. strain CP4 that encodes 5-enol-pyruvylshikimate-3-phosphate synthase and confers resistance to glyphosate herbicide. Evidence for gene flow to 75 of 138 sentinel plants of A. stolonifera and to 29 of 69 resident Agrostis plants was based on seedling progeny survival after spraying with glyphosate in greenhouse assays and positive TraitChek, PCR, and sequencing results. Additional studies are needed to determine whether introgression will occur and whether it will affect the ecological fitness of progeny or the structure of plant communities in which transgenic progeny may become established.

  18. Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker

    PubMed Central

    Watrud, Lidia S.; Lee, E. Henry; Fairbrother, Anne; Burdick, Connie; Reichman, Jay R.; Bollman, Mike; Storm, Marjorie; King, George; Van de Water, Peter K.

    2004-01-01

    Sampling methods and results of a gene flow study are described that will be of interest to plant scientists, evolutionary biologists, ecologists, and stakeholders assessing the environmental safety of transgenic crops. This study documents gene flow on a landscape level from creeping bentgrass (Agrostis stolonifera L.), one of the first wind-pollinated, perennial, and highly outcrossing transgenic crops being developed for commercial use. Most of the gene flow occurred within 2 km in the direction of prevailing winds. The maximal gene flow distances observed were 21 km and 14 km in sentinel and resident plants, respectively, that were located in primarily nonagronomic habitats. The selectable marker used in these studies was the CP4 EPSPS gene derived from Agrobacterium spp. strain CP4 that encodes 5-enol-pyruvylshikimate-3-phosphate synthase and confers resistance to glyphosate herbicide. Evidence for gene flow to 75 of 138 sentinel plants of A. stolonifera and to 29 of 69 resident Agrostis plants was based on seedling progeny survival after spraying with glyphosate in greenhouse assays and positive TraitChek, PCR, and sequencing results. Additional studies are needed to determine whether introgression will occur and whether it will affect the ecological fitness of progeny or the structure of plant communities in which transgenic progeny may become established. PMID:15448206

  19. Gene flow among wild and domesticated almond species: insights from chloroplast and nuclear markers

    PubMed Central

    Delplancke, Malou; Alvarez, Nadir; Espíndola, Anahí; Joly, Hélène; Benoit, Laure; Brouck, Elise; Arrigo, Nils

    2012-01-01

    Hybridization has played a central role in the evolutionary history of domesticated plants. Notably, several breeding programs relying on gene introgression from the wild compartment have been performed in fruit tree species within the genus Prunus but few studies investigated spontaneous gene flow among wild and domesticated Prunus species. Consequently, a comprehensive understanding of genetic relationships and levels of gene flow between domesticated and wild Prunus species is needed. Combining nuclear and chloroplastic microsatellites, we investigated the gene flow and hybridization among two key almond tree species, the cultivated Prunus dulcis and one of the most widespread wild relative Prunus orientalis in the Fertile Crescent. We detected high genetic diversity levels in both species along with substantial and symmetric gene flow between the domesticated P. dulcis and the wild P. orientalis. These results were discussed in light of the cultivated species diversity, by outlining the frequent spontaneous genetic contributions of wild species to the domesticated compartment. In addition, crop-to-wild gene flow suggests that ad hoc transgene containment strategies would be required if genetically modified cultivars were introduced in the northwestern Mediterranean. PMID:25568053

  20. Adaptive divergence with gene flow in incipient speciation of Miscanthus floridulus/sinensis complex (Poaceae).

    PubMed

    Huang, Chao-Li; Ho, Chuan-Wen; Chiang, Yu-Chung; Shigemoto, Yasumasa; Hsu, Tsai-Wen; Hwang, Chi-Chuan; Ge, Xue-Jun; Chen, Charles; Wu, Tai-Han; Chou, Chang-Hung; Huang, Hao-Jen; Gojobori, Takashi; Osada, Naoki; Chiang, Tzen-Yuh

    2014-12-01

    Young incipient species provide ideal materials for untangling the process of ecological speciation in the presence of gene flow. The Miscanthus floridulus/sinensis complex exhibits diverse phenotypic and ecological differences despite recent divergence (approximately 1.59 million years ago). To elucidate the process of genetic differentiation during early stages of ecological speciation, we analyzed genomic divergence in the Miscanthus complex using 72 randomly selected genes from a newly assembled transcriptome. In this study, rampant gene flow was detected between species, estimated as M = 3.36 × 10(-9) to 1.20 × 10(-6) , resulting in contradicting phylogenies across loci. Nevertheless, beast analyses revealed the species identity and the effects of extrinsic cohesive forces that counteracted the non-stop introgression. As expected, early in speciation with gene flow, only 3-13 loci were highly diverged; two to five outliers (approximately 2.78-6.94% of the genome) were characterized by strong linkage disequilibrium, and asymmetrically distributed among ecotypes, indicating footprints of diversifying selection. In conclusion, ecological speciation of incipient species of Miscanthus probably followed the parapatric model, whereas allopatric speciation cannot be completely ruled out, especially between the geographically isolated northern and southern M. sinensis, for which no significant gene flow across oceanic barriers was detected. Divergence between local ecotypes in early-stage speciation began at a few genomic regions under the influence of natural selection and divergence hitchhiking that overcame gene flow.

  1. Endometriosis Located Proximal to or Remote From the Uterus Differentially Affects Uterine Gene Expression.

    PubMed

    Naqvi, Hanyia; Mamillapalli, Ramanaiah; Krikun, Graciela; Taylor, Hugh S

    2016-02-01

    The mechanisms that lead to the altered uterine gene expression in women with endometriosis are poorly understood. Are these changes in gene expression mediated by proximity to endometriotic lesions or is endometriosis a systemic disease where the effect is independent of proximity to the uterus? To answer this question, we created endometriosis in a murine model either in the peritoneal cavity (proximal) or at a subcutaneous remote site (distal). The expression of several genes that are involved in endometrial receptivity (homeobox A10 [Hoxa10], homeobox A11 [Hoxa11], insulin-like growth factor binding protein 1 [Igfbp1], Kruppel-like factor 9 [Klf9], and progesterone receptor [Pgr]) was measured in the eutopic endometrium of mice transplanted with either proximal or distal endometriosis lesions. Decreased expression of Hoxa10, Igfbp1, Klf9, and total Pgr genes was observed in the eutopic endometrium of mice with peritoneal endometriosis. In the mice with distal lesions, overall expression of these genes was not as severely affected, however, Igfbp1 expression was similarly decreased and the effect on Pgr was more pronounced. Endometriosis does have a systemic effect that varies with distance to the end organ. However, even remote disease selectively and profoundly alters the expression of genes such as Pgr. This is the first controlled experiment demonstrating that endometriosis is not simply a local peritoneal disease. Selective alteration of genes critical for endometrial receptivity and endometriosis propagation may be systemic. Similarly, systemic effects of endometriosis on other organs may also be responsible for the widespread manifestations of the disease.

  2. Interaction between the Stress Phase Angle (SPA) and the Oscillatory Shear Index (OSI) Affects Endothelial Cell Gene Expression

    PubMed Central

    Amaya, Ronny; Cancel, Limary M.; Tarbell, John M.

    2016-01-01

    Hemodynamic forces play an important role in the non-uniform distribution of atherosclerotic lesions. Endothelial cells are exposed simultaneously to fluid wall shear stress (WSS) and solid circumferential stress (CS). Due to variations in impedance (global factors) and geometric complexities (local factors) in the arterial circulation a time lag arises between these two forces that can be characterized by the temporal phase angle between CS and WSS (stress phase angle–SPA). Asynchronous flows (SPA close to -180°) that are most prominent in coronary arteries have been associated with localization of atherosclerosis. Reversing oscillatory flows characterized by an oscillatory shear index (OSI) that is great than zero are also associated with atherosclerosis localization. In this study we examined the relationship between asynchronous flows and reversing flows in altering the expression of 37 genes relevant to atherosclerosis development. In the case of reversing oscillatory flow, we observed that the asynchronous condition upregulated 8 genes compared to synchronous hemodynamics, most of them proatherogenic. Upregulation of the pro-inflammatory transcription factor NFκB p65 was confirmed by western blot, and nuclear translocation of NFκB p65 was confirmed by immunofluorescence staining. A comparative study between non-reversing flow and reversing flow found that in the case of synchronous hemodynamics, reversing flow altered the expression of 11 genes, while in the case of asynchronous hemodynamics, reversing flow altered the expression of 17 genes. Reversing flow significantly upregulated protein expression of NFκB p65 for both synchronous and asynchronous conditions. Nuclear translocation of NFκB p65 was confirmed for synchronous and asynchronous conditions in the presence of flow reversal. These data suggest that asynchronous hemodynamics and reversing flow can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics

  3. Interaction between the Stress Phase Angle (SPA) and the Oscillatory Shear Index (OSI) Affects Endothelial Cell Gene Expression.

    PubMed

    Amaya, Ronny; Cancel, Limary M; Tarbell, John M

    2016-01-01

    Hemodynamic forces play an important role in the non-uniform distribution of atherosclerotic lesions. Endothelial cells are exposed simultaneously to fluid wall shear stress (WSS) and solid circumferential stress (CS). Due to variations in impedance (global factors) and geometric complexities (local factors) in the arterial circulation a time lag arises between these two forces that can be characterized by the temporal phase angle between CS and WSS (stress phase angle-SPA). Asynchronous flows (SPA close to -180°) that are most prominent in coronary arteries have been associated with localization of atherosclerosis. Reversing oscillatory flows characterized by an oscillatory shear index (OSI) that is great than zero are also associated with atherosclerosis localization. In this study we examined the relationship between asynchronous flows and reversing flows in altering the expression of 37 genes relevant to atherosclerosis development. In the case of reversing oscillatory flow, we observed that the asynchronous condition upregulated 8 genes compared to synchronous hemodynamics, most of them proatherogenic. Upregulation of the pro-inflammatory transcription factor NFκB p65 was confirmed by western blot, and nuclear translocation of NFκB p65 was confirmed by immunofluorescence staining. A comparative study between non-reversing flow and reversing flow found that in the case of synchronous hemodynamics, reversing flow altered the expression of 11 genes, while in the case of asynchronous hemodynamics, reversing flow altered the expression of 17 genes. Reversing flow significantly upregulated protein expression of NFκB p65 for both synchronous and asynchronous conditions. Nuclear translocation of NFκB p65 was confirmed for synchronous and asynchronous conditions in the presence of flow reversal. These data suggest that asynchronous hemodynamics and reversing flow can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without

  4. Genetic differentiation in spite of high gene flow in the dominant rainforest tree of southeastern Australia, Nothofagus cunninghamii

    PubMed Central

    Duncan, C J; Worth, J R P; Jordan, G J; Jones, R C; Vaillancourt, R E

    2016-01-01

    Nothofagus cunninghamii is a long-lived, wind-pollinated tree species that dominates the cool temperate rainforests of southeastern Australia. The species' distribution is more or less continuous in western Tasmania but is fragmented elsewhere. However, it is unknown whether this fragmentation has affected the species' genetic architecture. Thus, we examined N. cunninghamii using 12 nuclear microsatellites and 633 individuals from 18 populations spanning the species' natural range. Typical of wind-pollinated trees, there was low range-wide genetic structure (FST=0.04) consistent with significant gene flow across most of the species' range. However, gene flow was not high enough to overcome the effects of drift across some disjunctions. Victorian populations (separated from Tasmania by the 240 km wide Bass Strait) formed a genetic group distinct from Tasmanian populations, had lower diversity (mean allelic richness (Ar)=5.4 in Victoria versus 6.9 in Tasmania) and were significantly more differentiated from one another than those in Tasmania (FST=0.045 in Victoria versus 0.012 in Tasmania). Evidence for bottlenecking was found in small populations that were at least 20 km from other populations. Interestingly, we found little divergence in microsatellite markers between the extremes of genetically based morphological and physiological altitudinal clines suggesting adaptive differentiation is strongly driven by selection because it is likely to be occurring in the presence of gene flow. Even though the cool temperate rainforests of Australia are highly relictual, the species is relatively robust to population fragmentation due to high levels of genetic diversity and gene flow, especially in Tasmania. PMID:26350630

  5. Genetic differentiation in spite of high gene flow in the dominant rainforest tree of southeastern Australia, Nothofagus cunninghamii.

    PubMed

    Duncan, C J; Worth, J R P; Jordan, G J; Jones, R C; Vaillancourt, R E

    2016-01-01

    Nothofagus cunninghamii is a long-lived, wind-pollinated tree species that dominates the cool temperate rainforests of southeastern Australia. The species' distribution is more or less continuous in western Tasmania but is fragmented elsewhere. However, it is unknown whether this fragmentation has affected the species' genetic architecture. Thus, we examined N. cunninghamii using 12 nuclear microsatellites and 633 individuals from 18 populations spanning the species' natural range. Typical of wind-pollinated trees, there was low range-wide genetic structure (FST=0.04) consistent with significant gene flow across most of the species' range. However, gene flow was not high enough to overcome the effects of drift across some disjunctions. Victorian populations (separated from Tasmania by the 240 km wide Bass Strait) formed a genetic group distinct from Tasmanian populations, had lower diversity (mean allelic richness (Ar)=5.4 in Victoria versus 6.9 in Tasmania) and were significantly more differentiated from one another than those in Tasmania (FST=0.045 in Victoria versus 0.012 in Tasmania). Evidence for bottlenecking was found in small populations that were at least 20 km from other populations. Interestingly, we found little divergence in microsatellite markers between the extremes of genetically based morphological and physiological altitudinal clines suggesting adaptive differentiation is strongly driven by selection because it is likely to be occurring in the presence of gene flow. Even though the cool temperate rainforests of Australia are highly relictual, the species is relatively robust to population fragmentation due to high levels of genetic diversity and gene flow, especially in Tasmania.

  6. Elimination of veterinary antibiotics and antibiotic resistance genes from swine wastewater in the vertical flow constructed wetlands.

    PubMed

    Liu, Lin; Liu, Chaoxiang; Zheng, Jiayu; Huang, Xu; Wang, Zhen; Liu, Yuhong; Zhu, Gefu

    2013-05-01

    This paper investigated the efficiency of two vertical flow constructed wetlands characterized by volcanic (CW1) and zeolite (CW2) respectively, at removing three common antibiotics (ciprofloxacin HCl, oxytetracycline HCl, and sulfamethazine) and tetracycline resistance (tet) genes (tetM, tetO, and tetW) from swine wastewater. The result indicated that the two systems could significantly reduce the wastewater antibiotics content, and elimination rates were in the following sequence: oxytetracycline HCl>ciprofloxacin HCl>sulfamethazine. The zeolite-medium system was superior to that of the volcanic-medium system vis-à-vis removal, perhaps because of the differing pH values and average pore sizes of the respective media. A higher concentration of antibiotics accumulated in the soil than in the media and vegetation, indicating that soil plays the main role in antibiotics removal from wastewater in vertical flow constructed wetlands. The characteristics of the wetland medium may also affect the antibiotic resistance gene removal capability of the system; the total absolute abundances of three tet genes and of 16S rRNA were reduced by 50% in CW1, and by almost one order of magnitude in CW2. However, the relative abundances of target tet genes tended to increase following CW1 treatment.

  7. Possible association between the dopamine D3 receptor gene and bipolar affective disorder

    SciTech Connect

    Todd, R.D.; Chakraverty, S.; Parsian, A.

    1994-09-01

    A variety of studies have reported possible genetic associations between bipolar affective disorder and different loci using relative risk approaches. An alternative approach is to determine untransmitted genotypes from families selected through a single affected individual. We have used both approaches to test for possible associations between alleles of the dopamine D3 receptor gene and bipolar affective disorder. For relative risk studies, the probands of multiple incidence bipolar affective disorder (n=66) and alcoholism (n=132) families and psychiatric normal controls (n=91) have been compared. Non-transmitted allele approaches have used bipolar affective disorder (n=28) and alcoholic (n=25) probands in which both parents were available for genotyping. Using the Bal I restriction enzyme site polymorphism of Lannfelt, we have found no differences in the allele or genotype frequencies for bipolar or alcoholic probands versus psychiatrically normal controls. In contrast, we have found evidence for an increased frequency of allele 1 and allele 1 containing genotypes in transmitted alleles from bipolar families.

  8. Possible association between the dopamine D{sub 3} receptor gene and bipolar affective disorder

    SciTech Connect

    Parsian, A.; Chakraverty, S.; Todd, R.D.

    1995-06-19

    A variety of studies have reported possible genetic associations between bipolar affective disorder and different loci using relative risk (case-control) comparisons. An alternative approach is to construct a contrast group using parental alleles which were not transmitted to an affected individual. We have used both approaches to test for possible associations between alleles of the dopamine D{sub 3} receptor gene and bipolar affective disorder. For relative risk studies, the probands of multiple incidence bipolar affective disorder families have been compared to alcoholic and psychiatrically normal contrast groups. Nontransmitted allele approaches have used bipolar affective disorder and alcoholic probands in which both parents were available for genotyping. Using the BalI restriction enzyme site polymorphism of Lannfelt et al., we have found no differences in the allele or genotype frequencies for bipolar vs. alcoholic or psychiatrically normal controls. In contrast, we have found evidence for an increased frequency of allele 1 and allele 1 containing genotypes in transmitted alleles from bipolar families. 21 refs., 4 tabs.

  9. Scaling preferential flow processes in agricultural soils affected by tillage and trafficking at the field scale

    NASA Astrophysics Data System (ADS)

    Filipović, Vilim; Coquet, Yves

    2016-04-01

    There is an accumulation of experimental evidences that agricultural soils, at least the top horizons affected by tillage practices, are not homogeneous and present a structure that is strongly dependent on farming practices like tillage and trafficking. Soil tillage and trafficking can create compacted zones in the soil with hydraulic properties and porosity which are different from those of the non-compacted zones. This spatial variability can strongly influence transport processes and initiate preferential flow. Two or three dimensional models can be used to account for spatial variability created by agricultural practices, but such models need a detailed assessment of spatial heterogeneity which can be rather impractical to provide. This logically raises the question whether and how one dimensional model may be designed and used to account for the within-field spatial variability in soil structure created by agricultural practices. Preferential flow (dual-permeability) modelling performed with HYDRUS-1D will be confronted to classical modelling based on the Richards and convection-dispersion equations using HYDRUS-2D taking into account the various soil heterogeneities created by agricultural practices. Our goal is to derive one set of equivalent 1D soil hydraulic parameters from 2D simulations which accounts for soil heterogeneities created by agricultural operations. A field experiment was carried out in two phases: infiltration and redistribution on a plot by uniform sprinkle irrigation with water or bromide solution. Prior to the field experiment the soil structure of the tilled layer was determined along the face of a large trench perpendicular to the tillage direction (0.7 m depth and 3.1 m wide). Thirty TDR probes and tensiometers were installed in different soil structural zones (Δ compacted soil and Γ macroporous soil) which ensured soil water monitoring throughout the experiment. A map of bromide was constructed from small core samples (4 cm diam

  10. Design configurations affecting flow pattern and solids accumulation in horizontal free water and subsurface flow constructed wetlands.

    PubMed

    Pedescoll, A; Sidrach-Cardona, R; Sánchez, J C; Carretero, J; Garfi, M; Bécares, E

    2013-03-01

    The aim of this study was to evaluate the effect of different horizontal constructed wetland (CW) design parameters on solids distribution, loss of hydraulic conductivity over time and hydraulic behaviour, in order to assess clogging processes in wetlands. For this purpose, an experimental plant with eight CWs was built at mesocosm scale. Each CW presented a different design characteristic, and the most common CW configurations were all represented: free water surface flow (FWS) with different effluent pipe locations, FWS with floating macrophytes and subsurface flow (SSF), and the presence of plants and specific species (Typha angustifolia and Phragmites australis) was also considered. The loss of the hydraulic conductivity of gravel was greatly influenced by the presence of plants and organic load (representing a loss of 20% and c.a. 10% in planted wetlands and an overloaded system, respectively). Cattail seems to have a greater effect on the development of clogging since its below-ground biomass weighed twice as much as that of common reed. Hydraulic behaviour was greatly influenced by the presence of a gravel matrix and the outlet pipe position. In strict SSF CW, the water was forced to cross the gravel and tended to flow diagonally from the top inlet to the bottom outlet (where the inlet and outlet pipes were located). However, when FWS was considered, water preferentially flowed above the gravel, thus losing half the effective volume of the system. Only the presence of plants seemed to help the water flow partially within the gravel matrix.

  11. Confocal Microscopy and Flow Cytometry System Performance: Assessment of QA Parameters that affect data Quanitification

    EPA Science Inventory

    Flow and image cytometers can provide useful quantitative fluorescence data. We have devised QA tests to be used on both a flow cytometer and a confocal microscope to assure that the data is accurate, reproducible and precise. Flow Cytometry: We have provided two simple perform...

  12. Inbreeding Affects Gene Expression Differently in Two Self-Incompatible Arabidopsis lyrata Populations with Similar Levels of Inbreeding Depression.

    PubMed

    Menzel, Mandy; Sletvold, Nina; Ågren, Jon; Hansson, Bengt

    2015-08-01

    Knowledge of which genes and pathways are affected by inbreeding may help understanding the genetic basis of inbreeding depression, the potential for purging (selection against deleterious recessive alleles), and the transition from outcrossing to selfing. Arabidopsis lyrata is a predominantly self-incompatible perennial plant, closely related to the selfing model species A. thaliana. To examine how inbreeding affects gene expression, we compared the transcriptome of experimentally selfed and outcrossed A. lyrata originating from two Scandinavian populations that express similar inbreeding depression for fitness (∂ ≈ 0.80). The number of genes significantly differentially expressed between selfed and outcrossed individuals were 2.5 times higher in the Norwegian population (≈ 500 genes) than in the Swedish population (≈ 200 genes). In both populations, a majority of genes were upregulated on selfing (≈ 80%). Functional annotation analysis of the differentially expressed genes showed that selfed offspring were characterized by 1) upregulation of stress-related genes in both populations and 2) upregulation of photosynthesis-related genes in Sweden but downregulation in Norway. Moreover, we found that reproduction- and pollination-related genes were affected by inbreeding only in Norway. We conclude that inbreeding causes both general and population-specific effects. The observed common effects suggest that inbreeding generally upregulates rather than downregulates gene expression and affects genes associated with stress response and general metabolic activity. Population differences in the number of affected genes and in effects on the expression of photosynthesis-related genes show that the genetic basis of inbreeding depression can differ between populations with very similar levels of inbreeding depression.

  13. Spatiotemporal analysis of gene flow in Chesapeake Bay Diamondback Terrapins (Malaclemys terrapin).

    PubMed

    Converse, Paul E; Kuchta, Shawn R; Roosenburg, Willem M; Henry, Paula F P; Haramis, G Michael; King, Tim L

    2015-12-01

    There is widespread concern regarding the impacts of anthropogenic activities on connectivity among populations of plants and animals, and understanding how contemporary and historical processes shape metapopulation dynamics is crucial for setting appropriate conservation targets. We used genetic data to identify population clusters and quantify gene flow over historical and contemporary time frames in the Diamondback Terrapin (Malaclemys terrapin). This species has a long and complicated history with humans, including commercial overharvesting and subsequent translocation events during the early twentieth century. Today, terrapins face threats from habitat loss and mortality in fisheries bycatch. To evaluate population structure and gene flow among Diamondback Terrapin populations in the Chesapeake Bay region, we sampled 617 individuals from 15 localities and screened individuals at 12 polymorphic microsatellite loci. Our goals were to demarcate metapopulation structure, quantify genetic diversity, estimate effective population sizes, and document temporal changes in gene flow. We found that terrapins in the Chesapeake Bay region harbour high levels of genetic diversity and form four populations. Effective population sizes were variable. Among most population comparisons, estimates of historical and contemporary terrapin gene flow were generally low (m ≈ 0.01). However, we detected a substantial increase in contemporary gene flow into Chesapeake Bay from populations outside the bay, as well as between two populations within Chesapeake Bay, possibly as a consequence of translocations during the early twentieth century. Our study shows that inferences across multiple time scales are needed to evaluate population connectivity, especially as recent changes may identify threats to population persistence.

  14. Divergence with gene flow as facilitated by ecological differences: within-island variation in Darwin's finches

    PubMed Central

    de León, Luis Fernando; Bermingham, Eldredge; Podos, Jeffrey; Hendry, Andrew P.

    2010-01-01

    Divergence and speciation can sometimes proceed in the face of, and even be enhanced by, ongoing gene flow. We here study divergence with gene flow in Darwin's finches, focusing on the role of ecological/adaptive differences in maintaining/promoting divergence and reproductive isolation. To this end, we survey allelic variation at 10 microsatellite loci for 989 medium ground finches (Geospiza fortis) on Santa Cruz Island, Galápagos. We find only small genetic differences among G. fortis from different sites. We instead find noteworthy genetic differences associated with beak. Moreover, G. fortis at the site with the greatest divergence in beak size also showed the greatest divergence at neutral markers; i.e. the lowest gene flow. Finally, morphological and genetic differentiation between the G. fortis beak-size morphs was intermediate to that between G. fortis and its smaller (Geospiza fuliginosa) and larger (Geospiza magnirostris) congeners. We conclude that ecological differences associated with beak size (i.e. foraging) influence patterns of gene flow within G. fortis on a single island, providing additional support for ecological speciation in the face of gene flow. Patterns of genetic similarity within and between species also suggest that interspecific hybridization might contribute to the formation of beak-size morphs within G. fortis. PMID:20194167

  15. Forest corridors maintain historical gene flow in a tiger metapopulation in the highlands of central India

    PubMed Central

    Sharma, Sandeep; Dutta, Trishna; Maldonado, Jesús E.; Wood, Thomas C.; Panwar, Hemendra Singh; Seidensticker, John

    2013-01-01

    Understanding the patterns of gene flow of an endangered species metapopulation occupying a fragmented habitat is crucial for landscape-level conservation planning and devising effective conservation strategies. Tigers (Panthera tigris) are globally endangered and their populations are highly fragmented and exist in a few isolated metapopulations across their range. We used multi-locus genotypic data from 273 individual tigers (Panthera tigris tigris) from four tiger populations of the Satpura–Maikal landscape of central India to determine whether the corridors in this landscape are functional. This 45 000 km2 landscape contains 17% of India's tiger population and 12% of its tiger habitat. We applied Bayesian and coalescent-based analyses to estimate contemporary and historical gene flow among these populations and to infer their evolutionary history. We found that the tiger metapopulation in central India has high rates of historical and contemporary gene flow. The tests for population history reveal that tigers populated central India about 10 000 years ago. Their population subdivision began about 1000 years ago and accelerated about 200 years ago owing to habitat fragmentation, leading to four spatially separated populations. These four populations have been in migration–drift equilibrium maintained by high gene flow. We found the highest rates of contemporary gene flow in populations that are connected by forest corridors. This information is highly relevant to conservation practitioners and policy makers, because deforestation, road widening and mining are imminent threats to these corridors. PMID:23902910

  16. Forest corridors maintain historical gene flow in a tiger metapopulation in the highlands of central India.

    PubMed

    Sharma, Sandeep; Dutta, Trishna; Maldonado, Jesús E; Wood, Thomas C; Panwar, Hemendra Singh; Seidensticker, John

    2013-09-22

    Understanding the patterns of gene flow of an endangered species metapopulation occupying a fragmented habitat is crucial for landscape-level conservation planning and devising effective conservation strategies. Tigers (Panthera tigris) are globally endangered and their populations are highly fragmented and exist in a few isolated metapopulations across their range. We used multi-locus genotypic data from 273 individual tigers (Panthera tigris tigris) from four tiger populations of the Satpura-Maikal landscape of central India to determine whether the corridors in this landscape are functional. This 45 000 km(2) landscape contains 17% of India's tiger population and 12% of its tiger habitat. We applied Bayesian and coalescent-based analyses to estimate contemporary and historical gene flow among these populations and to infer their evolutionary history. We found that the tiger metapopulation in central India has high rates of historical and contemporary gene flow. The tests for population history reveal that tigers populated central India about 10 000 years ago. Their population subdivision began about 1000 years ago and accelerated about 200 years ago owing to habitat fragmentation, leading to four spatially separated populations. These four populations have been in migration-drift equilibrium maintained by high gene flow. We found the highest rates of contemporary gene flow in populations that are connected by forest corridors. This information is highly relevant to conservation practitioners and policy makers, because deforestation, road widening and mining are imminent threats to these corridors.

  17. How species evolve collectively: implications of gene flow and selection for the spread of advantageous alleles

    PubMed Central

    MORJAN, CARRIE L.; RIESEBERG, LOREN H.

    2008-01-01

    The traditional view that species are held together through gene flow has been challenged by observations that migration is too restricted among populations of many species to prevent local divergence. However, only very low levels of gene flow are necessary to permit the spread of highly advantageous alleles, providing an alternative means by which low-migration species might be held together. We re-evaluate these arguments given the recent and wide availability of indirect estimates of gene flow. Our literature review of FST values for a broad range of taxa suggests that gene flow in many taxa is considerably greater than suspected from earlier studies and often is sufficiently high to homogenize even neutral alleles. However, there are numerous species from essentially all organismal groups that lack sufficient gene flow to prevent divergence. Crude estimates on the strength of selection on phenotypic traits and effect sizes of quantitative trait loci (QTL) suggest that selection coefficients for leading QTL underlying phenotypic traits may be high enough to permit their rapid spread across populations. Thus, species may evolve collectively at major loci through the spread of favourable alleles, while simultaneously differentiating at other loci due to drift and local selection. PMID:15140081

  18. Pollinator sharing and gene flow among closely related sympatric dioecious fig taxa.

    PubMed

    Wang, Gang; Cannon, Charles H; Chen, Jin

    2016-04-13

    Hybridization and insect pollination are widely believed to increase rates of plant diversification. The extreme diversity of figs (Ficus) and their obligate pollinators, fig wasps (Agaonidae), provides an opportunity to examine the possible role of pollinator-mediated hybridization in plant diversification. Increasing evidence suggests that pollinator sharing and hybridization occurs among fig taxa, despite relatively strict coevolution with the pollinating wasp. Using five sympatric dioecious fig taxa and their pollinators, we examine the degree of pollinator sharing and inter-taxa gene flow. We experimentally test pollinator preference for floral volatiles, the main host recognition signal, from different figs. All five fig taxa shared pollinators with other taxa, and gene flow occurred between fig taxa within and between sections. Floral volatiles of each taxon attracted more than one pollinator species. Floral volatiles were more similar between closely related figs, which experienced higher levels of pollinator sharing and inter-taxa gene flow. This study demonstrates that pollinator sharing and inter-taxa gene flow occurs among closely related sympatric dioecious fig taxa and that pollinators choose the floral volatiles of multiple fig taxa. The implications of pollinator sharing and inter-taxa gene flow on diversification, occurring even in this highly specialized obligate pollination system, require further study.

  19. Is Gene Flow Promoting the Reversal of Pleistocene Divergence in the Mountain Chickadee (Poecile gambeli)?

    PubMed Central

    Manthey, Joseph D.; Klicka, John; Spellman, Garth M.

    2012-01-01

    The Pleistocene glacial cycles left a genetic legacy on taxa throughout the world; however, the persistence of genetic lineages that diverged during these cycles is dependent upon levels of gene flow and introgression. The consequences of secondary contact among taxa may reveal new insights into the history of the Pleistocene’s genetic legacy. Here, we use phylogeographic methods, using 20 nuclear loci from regional populations, to infer the consequences of secondary contact following divergence in the Mountain Chickadee (Poecile gambeli). Analysis of nuclear data identified two geographically-structured genetic groups, largely concordant with results from a previous mitochondrial DNA (mtDNA) study. Additionally, the estimated multilocus divergence times indicate a Pleistocene divergence, and are highly concordant with mtDNA. The previous mtDNA study showed a paucity of sympatry between clades, while nuclear patterns of gene flow show highly varied patterns between populations. The observed pattern of gene flow, from coalescent-based analyses, indicates southern populations in both clades exhibit little gene flow within or between clades, while northern populations are experiencing higher gene flow within and between clades. If this pattern were to persist, it is possible the historical legacy of Pleistocene divergence may be preserved in the southern populations only, and the northern populations would become a genetically diverse hybrid species. PMID:23152877

  20. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed

    PubMed Central

    Liu, Jing; Hua, Wei; Hu, Zhiyong; Yang, Hongli; Zhang, Liang; Li, Rongjun; Deng, Linbin; Sun, Xingchao; Wang, Xinfa; Wang, Hanzhong

    2015-01-01

    Seed weight (SW), which is one of the three major factors influencing grain yield, has been widely accepted as a complex trait that is controlled by polygenes, particularly in polyploid crops. Brassica napus L., which is the second leading crop source for vegetable oil around the world, is a tetraploid (4×) species. In the present study, we identified a major quantitative trait locus (QTL) on chromosome A9 of rapeseed in which the genes for SW and silique length (SL) were colocated. By fine mapping and association analysis, we uncovered a 165-bp deletion in the auxin-response factor 18 (ARF18) gene associated with increased SW and SL. ARF18 encodes an auxin-response factor and shows inhibitory activity on downstream auxin genes. This 55-aa deletion prevents ARF18 from forming homodimers, in turn resulting in the loss of binding activity. Furthermore, reciprocal crossing has shown that this QTL affects SW by maternal effects. Transcription analysis has shown that ARF18 regulates cell growth in the silique wall by acting via an auxin-response pathway. Together, our results suggest that ARF18 regulates silique wall development and determines SW via maternal regulation. In addition, our study reveals the first (to our knowledge) QTL in rapeseed and may provide insights into gene cloning involving polyploid crops. PMID:26324896

  1. A recent evolutionary change affects a regulatory element in the human FOXP2 gene.

    PubMed

    Maricic, Tomislav; Günther, Viola; Georgiev, Oleg; Gehre, Sabine; Curlin, Marija; Schreiweis, Christiane; Naumann, Ronald; Burbano, Hernán A; Meyer, Matthias; Lalueza-Fox, Carles; de la Rasilla, Marco; Rosas, Antonio; Gajovic, Srecko; Kelso, Janet; Enard, Wolfgang; Schaffner, Walter; Pääbo, Svante

    2013-04-01

    The FOXP2 gene is required for normal development of speech and language. By isolating and sequencing FOXP2 genomic DNA fragments from a 49,000-year-old Iberian Neandertal and 50 present-day humans, we have identified substitutions in the gene shared by all or nearly all present-day humans but absent or polymorphic in Neandertals. One such substitution is localized in intron 8 and affects a binding site for the transcription factor POU3F2, which is highly conserved among vertebrates. We find that the derived allele of this site is less efficient than the ancestral allele in activating transcription from a reporter construct. The derived allele also binds less POU3F2 dimers than POU3F2 monomers compared with the ancestral allele. Because the substitution in the POU3F2 binding site is likely to alter the regulation of FOXP2 expression, and because it is localized in a region of the gene associated with a previously described signal of positive selection, it is a plausible candidate for having caused a recent selective sweep in the FOXP2 gene.

  2. Divergence in the face of gene flow: the case of two newts (amphibia: salamandridae).

    PubMed

    Nadachowska, Krystyna; Babik, Wieslaw

    2009-04-01

    Understanding the process of divergence requires the quantitative characterization of patterns of gene flow between diverging taxa. New and powerful coalescent-based methods give insight into these processes in unprecedented details by enabling the reconstruction of the temporal distribution of past gene flow. Here, we use sequence variation at eight nuclear markers and mitochondrial DNA (mtDNA) in multiple populations to study diversity, divergence, and gene flow between two subspecies of a salamander, the smooth newt (Lissotriton vulgaris kosswigi and Lissotriton vulgaris vulgaris) in Turkey. The ranges of both subspecies encompass mainly the areas of this important glacial refugial area. Populations in refugia where species have been present for a long time and differentiated in situ should better preserve the record of past gene flow than young populations in postglacial expansion areas. Sequence diversity in both subspecies was substantial (nuclear pi(sil) = 0.69% and 1.31%). We detected long-term demographic stability in these refugial populations with large effective population sizes (N(e)) of the order of 1.5-3 x 10(5) individuals. Gene trees and the isolation with migration (IM) analysis complemented by tests of nested IM models showed that despite deep, pre-Pleistocene divergence of the studied newts, asymmetric introgression from vulgaris to kosswigi has occurred, with signatures of recent gene flow in mtDNA and an anonymous nuclear marker, and evidence for more ancient introgression in nuclear introns. The distribution of migration times raises the intriguing possibility that even the initial divergence may have occurred in the face of gene flow.

  3. Local adaptation, patterns of selection, and gene flow in the Californian serpentine sunflower (Helianthus exilis).

    PubMed

    Sambatti, Julianno B M; Rice, Kevin J

    2006-04-01

    The traditional view of the species as the fundamental unit of evolution has been challenged by observations that in heterogeneous environments, gene flow may be too restricted to overcome the effects of local selection. Whether a species evolves as a cohesive unit depends critically on the dynamic balance between homogenizing gene flow among populations and potentially disruptive local adaptation. To examine this evolutionary balance between "global" gene flow and local selection, we studied northern Californian populations of Helianthus exilis, the serpentine sunflower, within a mosaic of contrasting serpentine and nonserpentine areas that differ considerably in soil chemistry and water availability. Local adaptation to riparian and serpentine habitats was studied in Helianthus exilis along with an analysis of gene flow patterns among populations within these habitats. Local adaptation was assessed in H. exilis during 2002 and 2003 using reciprocal transplant experiments at multiple locations within serpentine and riparian habitats. Effects of competition and germination date on the expression of local adaptation were also examined within the reciprocal transplant experiments. Local adaptation was detected in both years at the local site level and at the level of habitat. The analysis of the transplanted populations indicated that the patterns of selection differed considerably between riparian and serpentine sites. Differential survivorship occurred in serpentine habitats, whereas selection on reproductive output predominated in riparian habitats. Local adaptation was expressed only in the absence of competition. Local adaptation in terms of survivorship was most strongly expressed in treatments with delayed seed germination. Microsatellite markers were used to quantify population genetic parameters and examine the patterns of gene flow among sampled populations. Analysis of molecular markers revealed a system of population patches that freely exchange genes

  4. Cryptic Species? Patterns of Maternal and Paternal Gene Flow in Eight Neotropical Bats

    PubMed Central

    Clare, Elizabeth L.

    2011-01-01

    Levels of sequence divergence at mitochondrial loci are frequently used in phylogeographic analysis and species delimitation though single marker systems cannot assess bi-parental gene flow. In this investigation I compare the phylogeographic patterns revealed through the maternally inherited mitochondrial COI region and the paternally inherited 7th intron region of the Dby gene on the Y-chromosome in eight common Neotropical bat species. These species are diverse and include members of two families from the feeding guilds of sanguivores, nectarivores, frugivores, carnivores and insectivores. In each case, the currently recognized taxon is comprised of distinct, substantially divergent intraspecific mitochondrial lineages suggesting cryptic species complexes. In Chrotopterus auritus, and Saccopteryx bilineata I observed congruent patterns of divergence in both genetic regions suggesting a cessation of gene flow between intraspecific groups. This evidence supports the existence of cryptic species complexes which meet the criteria of the genetic species concept. In Glossophaga soricina two intraspecific groups with largely sympatric South American ranges show evidence for incomplete lineage sorting or frequent hybridization while a third group with a Central American distribution appears to diverge congruently at both loci suggesting speciation. Within Desmodus rotundus and Trachops cirrhosus the paternally inherited region was monomorphic and thus does not support or refute the potential for cryptic speciation. In Uroderma bilobatum, Micronycteris megalotis and Platyrrhinus helleri the gene regions show conflicting patterns of divergence and I cannot exclude ongoing gene flow between intraspecific groups. This analysis provides a comprehensive comparison across taxa and employs both maternally and paternally inherited gene regions to validate patterns of gene flow. I present evidence for previously unrecognized species meeting the criteria of the genetic species

  5. The Caenorhabditis Elegans Unc-31 Gene Affects Multiple Nervous System-Controlled Functions

    PubMed Central

    Avery, L.; Bargmann, C. I.; Horvitz, H. R.

    1993-01-01

    We have devised a method for selecting Caenorhabditis elegans mutants that execute feeding motions in the absence of food. One mutation isolated in this way is an allele of the gene unc-31, first discovered by S. Brenner in 1974, because of its effects on locomotion. We find that strong unc-31 mutations cause defects in four functions controlled by the nervous system. Mutant worms are lethargic, feed constitutively, are defective in egg-laying and produce dauer larvae that fail to recover. We discuss two extreme models to explain this pleiotropy: either unc-31 affects one or a few neurons that coordinately control several different functions, or it affects many neurons that independently control different functions. PMID:8325482

  6. Anthropogenic and natural drivers of gene flow in a temperate wild fruit tree: a basis for conservation and breeding programs in apples.

    PubMed

    Cornille, Amandine; Feurtey, Alice; Gélin, Uriel; Ropars, Jeanne; Misvanderbrugge, Kristine; Gladieux, Pierre; Giraud, Tatiana

    2015-04-01

    Gene flow is an essential component of population adaptation and species evolution. Understanding of the natural and anthropogenic factors affecting gene flow is also critical for the development of appropriate management, breeding, and conservation programs. Here, we explored the natural and anthropogenic factors impacting crop-to-wild and within wild gene flow in apples in Europe using an unprecedented dense sampling of 1889 wild apple (Malus sylvestris) from European forests and 339 apple cultivars (Malus domestica). We made use of genetic, environmental, and ecological data (microsatellite markers, apple production across landscapes and records of apple flower visitors, respectively). We provide the first evidence that both human activities, through apple production, and human disturbance, through modifications of apple flower visitor diversity, have had a significant impact on crop-to-wild interspecific introgression rates. Our analysis also revealed the impact of previous natural climate change on historical gene flow in the nonintrogressed wild apple M. sylvestris, by identifying five distinct genetic groups in Europe and a north-south gradient of genetic diversity. These findings identify human activities and climate as key drivers of gene flow in a wild temperate fruit tree and provide a practical basis for conservation, agroforestry, and breeding programs for apples in Europe.

  7. Anthropogenic and natural drivers of gene flow in a temperate wild fruit tree: a basis for conservation and breeding programs in apples

    PubMed Central

    Cornille, Amandine; Feurtey, Alice; Gélin, Uriel; Ropars, Jeanne; Misvanderbrugge, Kristine; Gladieux, Pierre; Giraud, Tatiana

    2015-01-01

    Gene flow is an essential component of population adaptation and species evolution. Understanding of the natural and anthropogenic factors affecting gene flow is also critical for the development of appropriate management, breeding, and conservation programs. Here, we explored the natural and anthropogenic factors impacting crop-to-wild and within wild gene flow in apples in Europe using an unprecedented dense sampling of 1889 wild apple (Malus sylvestris) from European forests and 339 apple cultivars (Malus domestica). We made use of genetic, environmental, and ecological data (microsatellite markers, apple production across landscapes and records of apple flower visitors, respectively). We provide the first evidence that both human activities, through apple production, and human disturbance, through modifications of apple flower visitor diversity, have had a significant impact on crop-to-wild interspecific introgression rates. Our analysis also revealed the impact of previous natural climate change on historical gene flow in the nonintrogressed wild apple M. sylvestris, by identifying five distinct genetic groups in Europe and a north–south gradient of genetic diversity. These findings identify human activities and climate as key drivers of gene flow in a wild temperate fruit tree and provide a practical basis for conservation, agroforestry, and breeding programs for apples in Europe. PMID:25926882

  8. The ANK3 gene and facial affect processing: An ERP study.

    PubMed

    Zhao, Wan; Zhang, Qiumei; Yu, Ping; Zhang, Zhifang; Chen, Xiongying; Gu, Huang; Zhai, Jinguo; Chen, Min; Du, Boqi; Deng, Xiaoxiang; Ji, Feng; Wang, Chuanyue; Xiang, Yu-Tao; Li, Dawei; Wu, Hongjie; Dong, Qi; Luo, Yuejia; Li, Jun; Chen, Chuansheng

    2016-09-01

    ANK3 is one of the most promising candidate genes for bipolar disorder (BD). A polymorphism (rs10994336) within the ANK3 gene has been associated with BD in at least three genome-wide association studies of BD [McGuffin et al., 2003; Kieseppä, 2004; Edvardsen et al., 2008]. Because facial affect processing is disrupted in patients with BD, the current study aimed to explore whether the BD risk alleles are associated with the N170, an early event-related potential (ERP) component related to facial affect processing. We collected data from two independent samples of healthy individuals (Ns = 83 and 82, respectively) to test the association between rs10994336 and an early event-related potential (ERP) component (N170) that is sensitive to facial affect processing. Repeated-measures analysis of covariance in both samples consistently revealed significant main effects of rs10994336 genotype (Sample I: F (1, 72) = 7.24, P = 0.009; Sample II: F (1, 69) = 11.81, P = 0.001), but no significant interaction of genotype × electrodes (Ps > 0.05) or genotype × emotional conditions (Ps > 0.05). These results suggested that rs10994336 was linked to early ERP component reflecting facial structural encoding during facial affect processing. These results shed new light on the brain mechanism of this risk SNP and associated disorders such as BD. © 2016 Wiley Periodicals, Inc.

  9. New Candidate Genes Affecting Rice Grain Appearance and Milling Quality Detected by Genome-Wide and Gene-Based Association Analyses.

    PubMed

    Wang, Xiaoqian; Pang, Yunlong; Wang, Chunchao; Chen, Kai; Zhu, Yajun; Shen, Congcong; Ali, Jauhar; Xu, Jianlong; Li, Zhikang

    2016-01-01

    Appearance and milling quality are two crucial properties of rice grains affecting its market acceptability. Understanding the genetic base of rice grain quality could considerably improve the high quality breeding. Here, we carried out an association analysis to identify QTL affecting nine rice grain appearance and milling quality traits using a diverse panel of 258 accessions selected from 3K Rice Genome Project and evaluated in two environments Sanya and Shenzhen. Genome-wide association analyses using 22,488 high quality SNPs identified 72 QTL affecting the nine traits. Combined gene-based association and haplotype analyses plus functional annotation allowed us to shortlist 19 candidate genes for seven important QTL regions affecting the grain quality traits, including two cloned genes (GS3 and TUD), two fine mapped QTL (qGRL7.1 and qPGWC7) and three newly identified QTL (qGL3.4, qGW1.1, and qGW10.2). The most likely candidate gene(s) for each important QTL were also discussed. This research demonstrated the superior power to shortlist candidate genes affecting complex phenotypes by the strategy of combined GWAS, gene-based association and haplotype analyses. The identified candidate genes provided valuable sources for future functional characterization and genetic improvement of rice appearance and milling quality.

  10. New Candidate Genes Affecting Rice Grain Appearance and Milling Quality Detected by Genome-Wide and Gene-Based Association Analyses

    PubMed Central

    Wang, Xiaoqian; Pang, Yunlong; Wang, Chunchao; Chen, Kai; Zhu, Yajun; Shen, Congcong; Ali, Jauhar; Xu, Jianlong; Li, Zhikang

    2017-01-01

    Appearance and milling quality are two crucial properties of rice grains affecting its market acceptability. Understanding the genetic base of rice grain quality could considerably improve the high quality breeding. Here, we carried out an association analysis to identify QTL affecting nine rice grain appearance and milling quality traits using a diverse panel of 258 accessions selected from 3K Rice Genome Project and evaluated in two environments Sanya and Shenzhen. Genome-wide association analyses using 22,488 high quality SNPs identified 72 QTL affecting the nine traits. Combined gene-based association and haplotype analyses plus functional annotation allowed us to shortlist 19 candidate genes for seven important QTL regions affecting the grain quality traits, including two cloned genes (GS3 and TUD), two fine mapped QTL (qGRL7.1 and qPGWC7) and three newly identified QTL (qGL3.4, qGW1.1, and qGW10.2). The most likely candidate gene(s) for each important QTL were also discussed. This research demonstrated the superior power to shortlist candidate genes affecting complex phenotypes by the strategy of combined GWAS, gene-based association and haplotype analyses. The identified candidate genes provided valuable sources for future functional characterization and genetic improvement of rice appearance and milling quality. PMID:28101096

  11. The facioscapulohumeral muscular dystrophy (FSHD1) gene affects males more severely and more frequently than females.

    PubMed

    Zatz, M; Marie, S K; Cerqueira, A; Vainzof, M; Pavanello, R C; Passos-Bueno, M R

    1998-05-01

    We investigated 52 families of patients with facioscapulohumeral muscular dystrophy (FSHD1), including 172 patients (104 males and 68 females). Among 273 DNA samples which were analyzed with probe p13E-11, 131 (67 males and 64 females) were shown to carry an EcoRI fragment smaller than 35 kb; 114 among them were examined clinically and neurologically. Results of the present investigation showed that: a) there is no molecular evidence for autosomal or X-linked recessive inheritance of FSHD1; b) an excess of affected males, which is explained by a significantly greater proportion of females than males among asymptomatic cases and a significantly greater proportion of affected sons than daughters observed in the offspring of asymptomatic mothers; c) the penetrance of the FSHD1 gene until age 30 was estimated as 83% for both sexes but was significantly greater for males (95%) than for females (69%); d) new mutations occur significantly more frequently in females than males among somatic/germinal mosaic cases; and e) severely affected cases originated more often through new mutations or were transmitted through maternal than through paternal lines including somatic/germinal mothers. These observations have important implications for understanding the molecular mechanisms responsible for FSHD1 and for genetic and prognostic counseling according to the gender of the affected patient.

  12. Gene flow from North Africa contributes to differential human genetic diversity in southern Europe

    PubMed Central

    Botigué, Laura R.; Henn, Brenna M.; Gravel, Simon; Maples, Brian K.; Gignoux, Christopher R.; Corona, Erik; Atzmon, Gil; Burns, Edward; Ostrer, Harry; Flores, Carlos; Bertranpetit, Jaume; Comas, David; Bustamante, Carlos D.

    2013-01-01

    Human genetic diversity in southern Europe is higher than in other regions of the continent. This difference has been attributed to postglacial expansions, the demic diffusion of agriculture from the Near East, and gene flow from Africa. Using SNP data from 2,099 individuals in 43 populations, we show that estimates of recent shared ancestry between Europe and Africa are substantially increased when gene flow from North Africans, rather than Sub-Saharan Africans, is considered. The gradient of North African ancestry accounts for previous observations of low levels of sharing with Sub-Saharan Africa and is independent of recent gene flow from the Near East. The source of genetic diversity in southern Europe has important biomedical implications; we find that most disease risk alleles from genome-wide association studies follow expected patterns of divergence between Europe and North Africa, with the principal exception of multiple sclerosis. PMID:23733930

  13. Applying gene flow science to environmental policy needs: a boundary work perspective.

    PubMed

    Ridley, Caroline E; Alexander, Laurie C

    2016-08-01

    One application of gene flow science is the policy arena. In this article, we describe two examples in which the topic of gene flow has entered into the U.S. national environmental policymaking process: regulation of genetically engineered crops and clarification of the jurisdictional scope of the Clean Water Act. We summarize both current scientific understanding and the legal context within which gene flow science has relevance. We also discuss the process by which scientific knowledge has been synthesized and communicated to decision-makers in these two contexts utilizing the concept of 'boundary work'. Boundary organizations, the work they engage in to bridge the worlds of science, policy, and practice, and the boundary objects they produce to translate scientific knowledge existed in both examples. However, the specific activities and attributes of the objects produced varied based on the needs of the decision-makers. We close with suggestions for how scientists can contribute to or engage in boundary work with policymakers.

  14. Gene flow from North Africa contributes to differential human genetic diversity in southern Europe.

    PubMed

    Botigué, Laura R; Henn, Brenna M; Gravel, Simon; Maples, Brian K; Gignoux, Christopher R; Corona, Erik; Atzmon, Gil; Burns, Edward; Ostrer, Harry; Flores, Carlos; Bertranpetit, Jaume; Comas, David; Bustamante, Carlos D

    2013-07-16

    Human genetic diversity in southern Europe is higher than in other regions of the continent. This difference has been attributed to postglacial expansions, the demic diffusion of agriculture from the Near East, and gene flow from Africa. Using SNP data from 2,099 individuals in 43 populations, we show that estimates of recent shared ancestry between Europe and Africa are substantially increased when gene flow from North Africans, rather than Sub-Saharan Africans, is considered. The gradient of North African ancestry accounts for previous observations of low levels of sharing with Sub-Saharan Africa and is independent of recent gene flow from the Near East. The source of genetic diversity in southern Europe has important biomedical implications; we find that most disease risk alleles from genome-wide association studies follow expected patterns of divergence between Europe and North Africa, with the principal exception of multiple sclerosis.

  15. Co-stimulatory CD28 and transcription factor NFKB1 gene variants affect idiopathic recurrent miscarriages.

    PubMed

    Misra, Maneesh Kumar; Singh, Bharti; Mishra, Aditi; Agrawal, Suraksha

    2016-12-01

    Co-stimulatory CD28 and transcription factor NFKB1 genes are considered as a crucial player in the determination of inflammatory responses; genetic variability in these may modulate the risk for idiopathic recurrent miscarriages (IRM). We investigated the association of functional variants of CD28 (rs3116496 T/C) and NFKB1 (rs28362491 ins/del and rs696 A/G) with IRM cases. We recruited 200 IRM women with a history of at least three consecutive pregnancy losses before 20th week of pregnancy and 300 fertile control women. Determination of CD28 (rs3116496 T/C) and NFKB1 (rs28362491 ins/del and rs696 A/G) gene variants were based on the polymerase chain reaction pursued by restriction fragment length polymorphism analysis and validated with Sanger sequencing. Single marker analysis and multifactor dimensionality reduction (MDR) model used to predict the IRM risk. We observed nearly three- to twofold increased risk in single marker analysis for minor homozygous genotypes of rs3116496 T/C, rs28362491 ins/del and rs696 A/G tag-SNPs in IRM cases, suggesting the risk association. In MDR analysis, we observed 10.5-fold augmented risk among IRM women in three-SNP model (rs3116496 T/C, rs28362491 ins/del and rs696 A/G). The eQTL mapping analyses was performed to strengthen the results of our study. The eQTL mapping analysis revealed that the variations in CD28 and NFKB1 gene content might affect the abundance of transcripts of CD28 and Family with sequence similarity 177 member A1 (FAM177A1) genes, respectively. These results suggest that CD28 and NFKB1 gene variants may be associated with increased risks to IRM.

  16. Cancer-associated genes can affect somatic intrachromosomal recombination early in carcinogenesis.

    PubMed

    Hooker, Antony M; Morley, Alexander A; Tilley, Wayne D; Sykes, Pamela J

    2004-06-04

    The pKZ1 recombination mutagenesis model has provided a sensitive assay where we study somatic intrachromosomal recombination (SICR) as a mutation end-point. SICR is associated with non-homologous end-joining repair of double-strand breaks and can result in chromosomal inversions and deletions, both of which are common chromosomal aberrations identified in cancers. It has been difficult to study the effect of cancer-associated genes on chromosomal changes prior to tumour formation in vivo because of a lack of appropriate test systems. We hypothesised that cancer-associated genes play a role in formation of chromosomal aberrations and that the pKZ1 model would provide a system in which such a role could be studied in the initial steps of carcinogenesis. Transgenic tumour model mice were bred to pKZ1 mice to produce double transgenic animals. SICR inversion events were scored in mouse tissues at an early time, prior to evident tumour formation, and compared with endogenous pKZ1 SICR levels. Over-expression of the c-myc proto-oncogene resulted in a significant 2.1-fold increase in SICR in spleen. Loss of Msh2 and expression of the SV40 T antigen resulted in a significantly reduced SICR frequency (0.3 of the endogenous frequency in pKZ1 mice) in spleen and prostate respectively. Therefore SICR was affected in the case of all three cancer-associated genes studied. We hypothesise that the increase and decrease in SICR in the presence of cancer-associated genes results from incorrect repairing of double-strand breaks. The data presented here suggest that the pKZ1 model may provide a powerful tool for studying the effect of cancer-associated genes on chromosomal changes in the early stages of carcinogenesis.

  17. Self administration of oxycodone by adolescent and adult mice affects striatal neurotransmitter receptor gene expression.

    PubMed

    Mayer-Blackwell, B; Schlussman, S D; Butelman, E R; Ho, A; Ott, J; Kreek, M J; Zhang, Y

    2014-01-31

    Illicit use of prescription opioid analgesics (e.g., oxycodone) in adolescence is a pressing public health issue. Our goal was to determine whether oxycodone self administration differentially affects striatal neurotransmitter receptor gene expression in the dorsal striatum of adolescent compared to adult C57BL/6J mice. Groups of adolescent mice (4 weeks old, n=12) and of adult mice (11 weeks old, n=11) underwent surgery during which a catheter was implanted into their jugular veins. After recovering from surgery, mice self administered oxycodone (0.25 mg/kg/infusion) 2 h/day for 14 consecutive days or served as yoked saline controls. Mice were sacrificed within 1h after the last self-administration session and the dorsal striatum was isolated for mRNA analysis. Gene expression was analyzed with real time PCR using a commercially available neurotransmitter receptor PCR array containing 84 genes. We found that adolescent mice self administered less oxycodone than adult mice over the 14 days. Monoamine oxidase A (Maoa) and neuropeptide Y receptor 5 mRNA levels were lower in adolescent mice than in adult mice without oxycodone exposure. Oxycodone self administration increased Maoa mRNA levels compared to controls in both age groups. There was a positive correlation of the amount of oxycodone self administered in the last session or across 14 sessions with Maoa mRNA levels. Gastrin-releasing peptide receptor mRNA showed a significant Drug × Age interaction, with point-wise significance. More genes in the dorsal striatum of adolescents (19) changed in response to oxycodone self administration compared to controls than in adult (4) mice. Overall, this study demonstrates that repeated oxycodone self administration alters neurotransmitter receptors gene expression in the dorsal striatum of adolescent and adult mice.

  18. Influence of long-distance seed dispersal on the genetic diversity of seed rain in fragmented Pinus densiflora populations relative to pollen-mediated gene flow.

    PubMed

    Ozawa, Hajime; Watanabe, Atsushi; Uchiyama, Kentaro; Saito, Yoko; Ide, Yuji

    2013-01-01

    Long-distance dispersal (LDD) of seeds has a critical impact on species survival in patchy landscapes. However, relative to pollen dispersal, empirical data on how seed LDD affects genetic diversity in fragmented populations have been poorly reported. Thus, we attempted to indirectly evaluate the influence of seed LDD by estimating maternal and paternal inbreeding in the seed rain of fragmented 8 Pinus densiflora populations. In total, the sample size was 458 seeds and 306 adult trees. Inbreeding was estimated by common parentage analysis to evaluate gene flow within populations and by sibship reconstruction analysis to estimate gene flow within and among populations. In the parentage analysis, the observed probability that sampled seeds had the same parents within populations was significantly larger than the expected probability in many populations. This result suggested that gene dispersal was limited to within populations. In the sibship reconstruction, many donors both within and among populations appeared to contribute to sampled seeds. Significant differences in sibling ratios were not detected between paternity and maternity. These results suggested that seed-mediated gene flow and pollen-mediated gene flow from outside population contributed some extent to high genetic diversity of the seed rain (H E > 0.854). We emphasize that pine seeds may have excellent potential for gene exchange within and among populations.

  19. Comparison of CFD simulations and measurements of flow affected by coanda effect

    NASA Astrophysics Data System (ADS)

    Fišer, Jan; Jedelský, Jan; Vach, Tomáš; Forman, Matěj; Jícha, Miroslav

    2012-04-01

    The article deals with experimental research and numerical simulations of specific phenomena in fluid flows called Coanda effect (CE), which has numerous important engineering applications. Although many researchers have concerned with wall jets, the physics of this flow still remains not well understood. This study is focused on analysis of behaviour of jet flow close to the wall and influence of its inclination. The flow has been visualized using smoke and velocity was measured by means of Hot Wire Anemometry (HWA). CFD simulations have been performed on the same geometry and compared with experiments in order to find a tool for correct prediction of the CE.

  20. Diversity of the Genes Implicated in Algerian Patients Affected by Usher Syndrome.

    PubMed

    Abdi, Samia; Bahloul, Amel; Behlouli, Asma; Hardelin, Jean-Pierre; Makrelouf, Mohamed; Boudjelida, Kamel; Louha, Malek; Cheknene, Ahmed; Belouni, Rachid; Rous, Yahia; Merad, Zahida; Selmane, Djamel; Hasbelaoui, Mokhtar; Bonnet, Crystel; Zenati, Akila; Petit, Christine

    2016-01-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by a dual sensory impairment affecting hearing and vision. USH is clinically and genetically heterogeneous. Ten different causal genes have been reported. We studied the molecular bases of the disease in 18 unrelated Algerian patients by targeted-exome sequencing, and identified the causal biallelic mutations in all of them: 16 patients carried the mutations at the homozygous state and 2 at the compound heterozygous state. Nine of the 17 different mutations detected in MYO7A (1 of 5 mutations), CDH23 (4 of 7 mutations), PCDH15 (1 mutation), USH1C (1 mutation), USH1G (1 mutation), and USH2A (1 of 2 mutations), had not been previously reported. The deleterious consequences of a missense mutation of CDH23 (p.Asp1501Asn) and the in-frame single codon deletion in USH1G (p.Ala397del) on the corresponding proteins were predicted from the solved 3D-structures of extracellular cadherin (EC) domains of cadherin-23 and the sterile alpha motif (SAM) domain of USH1G/sans, respectively. In addition, we were able to show that the USH1G mutation is likely to affect the binding interface between the SAM domain and USH1C/harmonin. This should spur the use of 3D-structures, not only of isolated protein domains, but also of protein-protein interaction interfaces, to predict the functional impact of mutations detected in the USH genes.

  1. Global Deletion of TSPO Does Not Affect the Viability and Gene Expression Profile

    PubMed Central

    Wang, Huaishan; Yang, Jia; Yang, Qi; Fu, Yi; Hu, Yu; Liu, Fang; Wang, Weiqing; Cui, Lianxian; Chen, Hui; Zhang, Jianmin; He, Wei

    2016-01-01

    Translocator Protein (18kDa, TSPO) is a mitochondrial outer membrane transmembrane protein. Its expression is elevated during inflammation and injury. However, the function of TSPO in vivo is still controversial. Here, we constructed a TSPO global knockout (KO) mouse with a Cre-LoxP system that abolished TSPO protein expression in all tissues and showed normal phenotypes in the physiological condition. The birth rates of TSPO heterozygote (Het) x Het or KO x KO breeding were consistent with Mendel’s Law, suggesting a normal viability of TSPO KO mice at birth. RNA-seq analysis showed no significant difference in the gene expression profile of lung tissues from TSPO KO mice compared with wild type mice, including the genes associated with bronchial alveoli immune homeostasis. The alveolar macrophage population was not affected by TSPO deletion in the physiological condition. Our findings contradict the results of Papadopoulos, but confirmed Selvaraj’s findings. This study confirms TSPO deficiency does not affect viability and bronchial alveolar immune homeostasis. PMID:27907096

  2. Changes in gravity affect gene expression, protein modulation and metabolite pools of arabidopsis

    NASA Astrophysics Data System (ADS)

    Hampp, R.; Martzivanou, M.; Maier, R. M.; Magel, E.

    Callus cultures of Arabidopsis thaliana (cv. Columbia) in Petri dishes / suspension cultures were exposed to altered g-forces by centrifugation (1 to 10 g), klinorotation, and μ g (sounding rocket flights). Using semi-quantitative RT-PCR, transcripts of genes coding for metabolic key enzymes (ADP-glucose pyrophosphorylase, ADPG-PP; ß-amylase, fructose-1,6-bisphosphatase, FBPase; glyceraldehyde-P dehydrogenase, GAPDH; hydroxymethylglutaryl-CoA reductase, HMG; phenylalanine-ammonium-lyase, PAL; PEP carboxylase, PEPC) were used to monitor threshold conditions for g-number (all) and time of exposure (ß-amylase) which led to altered amounts of the gene product. Exposure to approx. 5 g and higher for 1h resulted in altered transcript levels: transcripts of ß-amylase, PAL, and PEPC were increased, those of ADPG-PP decreased, while those of FBPase, GAPDH, and HMG were not affected. This probably indicates a shift from starch synthesis to starch degradation and increased rates of anaplerosis (PEPC: supply of ketoacids for amino acid synthesis). In order to get more information about g-related effects on gene expression, we used a 1h-exposure to 7 g for a microarray analysis. Transcripts of more than 200 genes were significantly increased in amount (ratio 7g / 1g control; 21.6 and larger). They fall into several categories. Transcripts coding for enzymes of major pathways form the largest group (25%), followed by gene products involved in cellular organisation and cell wall formation / rearrangement (17%), signalling, phosphorylation/dephosphorylation (12%), proteolysis and transport (10% each), hormone synthesis plus related events (8%), defense (4%), stress-response (2%), and gravisensing (2%). Many of the alterations are part of a general stress response, but some changes related to the synthesis / rearrangement of cell wall components could be more hyper-g-specific. Using macroarrays with selected genes according to our hypergravity study (metabolism / signalling

  3. Uncover disease genes by maximizing information flow in the phenome–interactome network

    PubMed Central

    Chen, Yong; Jiang, Tao; Jiang, Rui

    2011-01-01

    Motivation: Pinpointing genes that underlie human inherited diseases among candidate genes in susceptibility genetic regions is the primary step towards the understanding of pathogenesis of diseases. Although several probabilistic models have been proposed to prioritize candidate genes using phenotype similarities and protein–protein interactions, no combinatorial approaches have been proposed in the literature. Results: We propose the first combinatorial approach for prioritizing candidate genes. We first construct a phenome–interactome network by integrating the given phenotype similarity profile, protein–protein interaction network and associations between diseases and genes. Then, we introduce a computational method called MAXIF to maximize the information flow in this network for uncovering genes that underlie diseases. We demonstrate the effectiveness of this method in prioritizing candidate genes through a series of cross-validation experiments, and we show the possibility of using this method to identify diseases with which a query gene may be associated. We demonstrate the competitive performance of our method through a comparison with two existing state-of-the-art methods, and we analyze the robustness of our method with respect to the parameters involved. As an example application, we apply our method to predict driver genes in 50 copy number aberration regions of melanoma. Our method is not only able to identify several driver genes that have been reported in the literature, it also shed some new biological insights on the understanding of the modular property and transcriptional regulation scheme of these driver genes. Contact: ruijiang@tsinghua.edu.cn PMID:21685067

  4. Spread of a New Parasitic B Chromosome Variant Is Facilitated by High Gene Flow

    PubMed Central

    Manrique-Poyato, María Inmaculada; López-León, María Dolores; Cabrero, Josefa; Perfectti, Francisco; Camacho, Juan Pedro M.

    2013-01-01

    The B24 chromosome variant emerged several decades ago in a Spanish population of the grasshopper Eyprepocnemis plorans and is currently reaching adjacent populations. Here we report, for the first time, how a parasitic B chromosome (a strictly vertically transmitted parasite) expands its geographical range aided by high gene flow in the host species. For six years we analyzed B frequency in several populations to the east and west of the original population and found extensive spatial variation, but only a slight temporal trend. The highest B24 frequency was found in its original population (Torrox) and it decreased closer to both the eastern and the western populations. The analysis of Inter Simple Sequence Repeat (ISSR) markers showed the existence of a low but significant degree of population subdivision, as well as significant isolation by distance (IBD). Pairwise Nem estimates suggested the existence of high gene flow between the four populations located in the Torrox area, with higher values towards the east. No significant barriers to gene flow were found among these four populations, and we conclude that high gene flow is facilitating B24 diffusion both eastward and westward, with minor role for B24 drive due to the arrival of drive suppressor genes which are also frequent in the donor population. PMID:24386259

  5. Gene flow persists millions of years after speciation in Heliconius butterflies

    PubMed Central

    2008-01-01

    Background Hybridization, or the interbreeding of two species, is now recognized as an important process in the evolution of many organisms. However, the extent to which hybridization results in the transfer of genetic material across the species boundary (introgression) remains unknown in many systems, as does the length of time after initial divergence that the species boundary remains porous to such gene flow. Results Here I use genome-wide genotypic and DNA sequence data to show that there is introgression and admixture between the melpomene/cydno and silvaniform clades of the butterfly genus Heliconius, groups that separated from one another as many as 30 million generations ago. Estimates of historical migration based on 523 DNA sequences from 14 genes suggest unidirectional gene flow from the melpomene/cydno clade into the silvaniform clade. Furthermore, genetic clustering based on 520 amplified fragment length polymorphisms (AFLPs) identified multiple individuals of mixed ancestry showing that introgression is on-going. Conclusion These results demonstrate that genomes can remain porous to gene flow very long after initial divergence. This, in turn, greatly expands the evolutionary potential afforded by introgression. Phenotypic and species diversity in a wide variety of organisms, including Heliconius, have likely arisen from introgressive hybridization. Evidence for continuous gene flow over millions of years points to introgression as a potentially important source of genetic variation to fuel the evolution of novel forms. PMID:18371203

  6. Intensity-duration threshold of rainfall-triggered debris flows in the Wenchuan Earthquake affected area, China

    NASA Astrophysics Data System (ADS)

    Guo, Xiaojun; Cui, Peng; Li, Yong; Ma, Li; Ge, Yonggang; Mahoney, William B.

    2016-01-01

    The Ms 8.0 Wenchuan Earthquake has greatly altered the rainfall threshold for debris flows in the affected areas. This study explores the local intensity-duration (I-D) relationship based on 252 post-earthquake debris flows. It was found that I = 5.25 D-0.76 accounts for more than 98% of the debris flow occurrences with rainfall duration between 1 and 135 h; therefore the curve defines the threshold for debris flows in the study area. This gives much lower thresholds than those proposed by the previous studies, suggesting that the earthquake has greatly decreased the thresholds in the past years. Moreover, the rainfall thresholds appear to increase annually in the period of 2008-2013, and present a logarithmic increasing tendency, indicating that the thresholds will recover in the future decades.

  7. A 57-bp deletion in the ovine KAP6-1 gene affects wool fibre diameter.

    PubMed

    Zhou, H; Gong, H; Li, S; Luo, Y; Hickford, J G H

    2015-08-01

    High glycine-tyrosine keratin-associated proteins (HGT-KAPs) are predominantly present in the orthocortex of wool fibres. They vary in abundance in different wools and have been implicated in regulating wool fibre properties, but little is known about the functional roles of these proteins in the fibre matrix. In this study, we used polymerase chain reaction--single-strand conformational polymorphism (PCR-SSCP) analysis to screen for variation in a gene encoding the ovine HGT-KAP6-1 protein. We identified three gene variants (A, B and C). Variants A and B were similar to each other, with only three nucleotide differences occurring downstream of the coding sequence. However, variant C had a 57-bp deletion that would notionally result in a loss of 19 amino acids in the protein. The presence of C was found to be associated with an increase in mean fibre diameter (MFD), fibre diameter standard deviation (FDSD), coefficient of variation of fibre diameter (CVFD) and prickle factor (percentage of fibres over 30 microns; PF). Sheep of genotype BC produced wool of greater MFD, FDSD and PF than sheep of genotypes AA, AB and BB. The CVFD was greater in the BC sheep than the AB sheep. The results suggest that variation in ovine KRTAP6-1 affects wool fibre diameter-associated traits and that the 57-bp deletion in this gene would lead to coarser wool with greater FDSD, CVFD and PF.

  8. Vanillin differentially affects azoxymethane-injected rat colon carcinogenesis and gene expression.

    PubMed

    Ho, Ket Li; Chong, Pei Pei; Yazan, Latifah Saiful; Ismail, Maznah

    2012-12-01

    Vanillin is the substance responsible for the flavor and smell of vanilla, a widely used flavoring agent. Previous studies reported that vanillin is a good antimutagen and anticarcinogen. However, there are also some contradicting findings showing that vanillin was a comutagen and cocarcinogen. This study investigated whether vanillin is an anticarcinogen or a cocarcinogen in rats induced with azoxymethane (AOM). Rats induced with AOM will develop aberrant crypt foci (ACF). AOM-challenged rats were treated with vanillin orally and intraperitoneally at low and high concentrations and ACF density, multiplicity, and distribution were observed. The gene expression of 14 colorectal cancer-related genes was also studied. Results showed that vanillin consumed orally had no effect on ACF. However, high concentrations (300 mg/kg body weight) of vanillin administered through intraperitoneal injection could increase ACF density and ACF multiplicity. ACF were mainly found in the distal colon rather than in the mid-section and proximal colon. The expression of colorectal cancer biomarkers, protooncogenes, recombinational repair, mismatch repair, and cell cycle arrest, and tumor suppressor gene expression were also affected by vanillin. Vanillin was not cocarcinogenic when consumed orally. However, it was cocarcinogenic when being administered intraperitoneally at high concentration. Hence, the use of vanillin in food should be safe but might have cocarcinogenic potential when it is used in high concentration for therapeutic purposes.

  9. Subchromoplast sequestration of carotenoids affects regulatory mechanisms in tomato lines expressing different carotenoid gene combinations.

    PubMed

    Nogueira, Marilise; Mora, Leticia; Enfissi, Eugenia M A; Bramley, Peter M; Fraser, Paul D

    2013-11-01

    Metabolic engineering of the carotenoid pathway in recent years has successfully enhanced the carotenoid contents of crop plants. It is now clear that only increasing biosynthesis is restrictive, as mechanisms to sequestrate these increased levels in the cell or organelle should be exploited. In this study, biosynthetic pathway genes were overexpressed in tomato (Solanum lycopersicum) lines and the effects on carotenoid formation and sequestration revealed. The bacterial Crt carotenogenic genes, independently or in combination, and their zygosity affect the production of carotenoids. Transcription of the pathway genes was perturbed, whereby the tissue specificity of transcripts was altered. Changes in the steady state levels of metabolites in unrelated sectors of metabolism were found. Of particular interest was a concurrent increase of the plastid-localized lipid monogalactodiacylglycerol with carotenoids along with membranous subcellular structures. The carotenoids, proteins, and lipids in the subchromoplast fractions of the transgenic tomato fruit with increased carotenoid content suggest that cellular structures can adapt to facilitate the sequestration of the newly formed products. Moreover, phytoene, the precursor of the pathway, was identified in the plastoglobule, whereas the biosynthetic enzymes were in the membranes. The implications of these findings with respect to novel pathway regulation mechanisms are discussed.

  10. Cold sore susceptibility gene-1 genotypes affect the expression of herpes labialis in unrelated human subjects.

    PubMed

    Kriesel, John D; Bhatia, Amiteshwar; Thomas, Alun

    2014-01-01

    Our group has recently described a gene on human chromosome 21, the Cold Sore Susceptibility Gene-1 (CSSG-1, also known as C21orf91), which may confer susceptibility to frequent cold sores in humans. We present here a genotype-phenotype analysis of CSSG-1 in a new, unrelated human population. Seven hundred fifty-eight human subjects were enrolled in a case/control Cold Sore Study. CSSG-1 genotyping, herpes simplex virus 1 (HSV1) serotyping, demographic and phenotypic data was available from 622 analyzed subjects. Six major alleles (H1-H6) were tested for associations with each of the self-reported phenotypes. The statistical analysis was adjusted for age, sex and ethnicity. Genotype-phenotype associations were analyzed from 388 HSV1-seropositive subjects. There were significant CSSG-1 haplotype effects on annual cold sore outbreaks (P=0.006), lifetime cold sores (P=0.012) and perceived cold sore severity (P=0.012). There were relatively consistent trends toward protection from frequent and severe cold sores among those with the H3 or H5/6 haplotypes, whereas those with H1, H2, and H4 haplotypes tended to have more frequent and more severe episodes. Different alleles of the newly described gene CSSG-1 affect the expression of cold sore phenotypes in this new, unrelated human population, confirming the findings of the previous family-based study.

  11. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells

    PubMed Central

    Trevisan, Marta; Desole, Giovanna; Costanzi, Giulia; Lavezzo, Enrico; Palù, Giorgio; Barzon, Luisa

    2017-01-01

    Induced pluripotent stem cells (iPSCs) are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs. PMID:28117672

  12. Cytogenetic and molecular localization of tipE: A gene affecting sodium channels in Drosophila melanogaster

    SciTech Connect

    Feng, G.; Deak, P.; Hall, L.M.

    1995-04-01

    Voltage-sensitive sodium channels play a key role in nerve cells where they are responsible for the increase in sodium permeability during the rising phase of action potentials. In Drosophila melanogaster a subset of temperature-sensitive paralytic mutations affect sodium channel function. One such mutation is temperature-induced paralysis locus E (tipE), which has been shown by electrophysiology and ligand binding studies to reduce sodium channel numbers. Three new {gamma}-ray-induced tipE alleles associated with either visible deletions in 64AB or a translocation breakpoint within 64B2 provide landmarks for positional cloning of tipE. Beginning with the flanking cloned gene Ras2, a 140-kb walk across the translocation breakpoint was completed. Germline transformation using a 42-kb cosmid clone and successively smaller subclones localized the tipE gene within a 7.4-kb genomic DNA segment. Although this chromosome region is rich in transcripts, only three overlapping mRNAs (5.4, 4.4, and 1.7 kb) lie completely within the smallest rescuing construct. The small sizes of the rescuing construct and transcripts suggests that tipE does not encode a standard sodium channel {alpha}-subunit with four homologous repeats. Sequencing these transcripts will elucidate the role of the tipE gene product in sodium channel functional regulation. 55 refs., 4 figs., 2 tabs.

  13. Cytogenetic and molecular localization of tipE: a gene affecting sodium channels in Drosophila melanogaster.

    PubMed

    Feng, G; Deák, P; Kasbekar, D P; Gil, D W; Hall, L M

    1995-04-01

    Voltage-sensitive sodium channels play a key role in nerve cells where they are responsible for the increase in sodium permeability during the rising phase of action potentials. In Drosophila melanogaster a subset of temperature-sensitive paralytic mutations affect sodium channel function. One such mutation is temperature-induced paralysis locus E (tipE), which has been shown by electrophysiology and ligand binding studies to reduce sodium channel numbers. Three new gamma-ray-induced tipE alleles associated with either visible deletions in 64AB or a translocation breakpoint within 64B2 provide landmarks for positional cloning of tipE. Beginning with the flanking cloned gene Ras2, a 140-kb walk across the translocation breakpoint was completed. Germline transformation using a 42-kb cosmid clone and successively smaller subclones localized the tipE gene within a 7.4-kb genomic DNA segment. Although this chromosome region is rich in transcripts, only three overlapping mRNAs (5.4, 4.4, and 1.7 kb) lie completely within the smallest rescuing construct. The small sizes of the rescuing construct and transcripts suggest that tipE does not encode a standard sodium channel alpha-subunit with four homologous repeats. Sequencing these transcripts will elucidate the role of the tipE gene product in sodium channel functional regulation.

  14. Mosaicism for the FMR1 gene influences adaptive skills development in fragile X-affected males

    SciTech Connect

    Cohen, I.L.; Sudhalter, V.; Nolin, S.L.

    1996-08-09

    Fragile X syndrome is one of the most common forms of inherited mental retardation, and the first of a new class of genetic disorders associated with expanded trinucleotide repeats. Previously, we found that about 41% of affected males are mosaic for this mutation in that some of their blood cells have an active fragile X gene and others do not. It has been hypothesized that these mosaic cases should show higher levels of functioning than those who have only the inactive full mutation gene, but previous studies have provided negative or equivocal results. In the present study, the cross-sectional development of communication, self-care, socialization, and motor skills was studied in 46 males with fragile X syndrome under age 20 years as a function of two variables: age and the presence or absence of mosaicism. The rate of adaptive skills development was 2-4 times as great in mosaic cases as in full mutation cases. There was also a trend for cases with autism to be more prevalent in the full-mutation group. These results have implications for prognosis, for the utility of gene or protein replacement therapies for this disorder, and for understanding the association between mental retardation, developmental disorders, and fragile X syndrome. 21 refs., 3 figs.

  15. Downregulation of RWA genes in hybrid aspen affects xylan acetylation and wood saccharification.

    PubMed

    Pawar, Prashant Mohan-Anupama; Ratke, Christine; Balasubramanian, Vimal K; Chong, Sun-Li; Gandla, Madhavi Latha; Adriasola, Mathilda; Sparrman, Tobias; Hedenström, Mattias; Szwaj, Klaudia; Derba-Maceluch, Marta; Gaertner, Cyril; Mouille, Gregory; Ezcurra, Ines; Tenkanen, Maija; Jönsson, Leif J; Mellerowicz, Ewa J

    2017-03-03

    High acetylation of angiosperm wood hinders its conversion to sugars by glycoside hydrolases, subsequent ethanol fermentation and (hence) its use for biofuel production. We studied the REDUCED WALL ACETYLATION (RWA) gene family of the hardwood model Populus to evaluate its potential for improving saccharification. The family has two clades, AB and CD, containing two genes each. All four genes are expressed in developing wood but only RWA-A and -B are activated by master switches of the secondary cell wall PtNST1 and PtMYB21. Histochemical analysis of promoter::GUS lines in hybrid aspen (Populus tremula × tremuloides) showed activation of RWA-A and -B promoters in the secondary wall formation zone, while RWA-C and -D promoter activity was diffuse. Ectopic downregulation of either clade reduced wood xylan and xyloglucan acetylation. Suppressing both clades simultaneously using the wood-specific promoter reduced wood acetylation by 25% and decreased acetylation at position 2 of Xylp in the dimethyl sulfoxide-extracted xylan. This did not affect plant growth but decreased xylose and increased glucose contents in the noncellulosic monosaccharide fraction, and increased glucose and xylose yields of wood enzymatic hydrolysis without pretreatment. Both RWA clades regulate wood xylan acetylation in aspen and are promising targets to improve wood saccharification.

  16. Polymorphisms in the Perilipin Gene May Affect Carcass Traits of Chinese Meat-type Chickens.

    PubMed

    Zhang, Lu; Zhu, Qing; Liu, Yiping; Gilbert, Elizabeth R; Li, Diyan; Yin, Huadong; Wang, Yan; Yang, Zhiqin; Wang, Zhen; Yuan, Yuncong; Zhao, Xiaoling

    2015-06-01

    Improved meat quality and greater muscle yield are highly sought after in high-quality chicken breeding programs. Past studies indicated that polymorphisms of the Perilipin gene (PLIN1) are highly associated with adiposity in mammals and are potential molecular markers for improving meat quality and carcass traits in chickens. In the present study, we screened single nucleotide polymorphisms (SNPs) in all exons of the PLIN1 gene with a direct sequencing method in six populations with different genetic backgrounds (total 240 individuals). We evaluated the association between the polymorphisms and carcass and meat quality traits. We identified three SNPs, located on the 5' flanking region and exon 1 of PLIN1 on chromosome 10 (rs315831750, rs313726543, and rs80724063, respectively). Eight main haplotypes were constructed based on these SNPs. We calculated the allelic and genotypic frequencies, and genetic diversity parameters of the three SNPs. The polymorphism information content (PIC) ranged from 0.2768 to 0.3750, which reflected an intermediate genetic diversity for all chickens. The CC, CT, and TT genotypes influenced the percentage of breast muscle (PBM), percentage of leg muscle (PLM) and percentage of abdominal fat at rs315831750 (p<0.05). Diplotypes (haplotype pairs) affected the percentage of eviscerated weight (PEW) and PBM (p<0.05). Compared with chickens carrying other diplotypes, H3H7 had the greatest PEW and H2H2 had the greatest PBM, and those with diplotype H7H7 had the smallest PEW and PBM. We conclude that PLIN1 gene polymorphisms may affect broiler carcass and breast muscle yields, and diplotypes H3H7 and H2H2 could be positive molecular markers to enhance PEW and PBM in chickens.

  17. Polymorphisms in the Perilipin Gene May Affect Carcass Traits of Chinese Meat-type Chickens

    PubMed Central

    Zhang, Lu; Zhu, Qing; Liu, Yiping; Gilbert, Elizabeth R.; Li, Diyan; Yin, Huadong; Wang, Yan; Yang, Zhiqin; Wang, Zhen; Yuan, Yuncong; Zhao, Xiaoling

    2015-01-01

    Improved meat quality and greater muscle yield are highly sought after in high-quality chicken breeding programs. Past studies indicated that polymorphisms of the Perilipin gene (PLIN1) are highly associated with adiposity in mammals and are potential molecular markers for improving meat quality and carcass traits in chickens. In the present study, we screened single nucleotide polymorphisms (SNPs) in all exons of the PLIN1 gene with a direct sequencing method in six populations with different genetic backgrounds (total 240 individuals). We evaluated the association between the polymorphisms and carcass and meat quality traits. We identified three SNPs, located on the 5′ flanking region and exon 1 of PLIN1 on chromosome 10 (rs315831750, rs313726543, and rs80724063, respectively). Eight main haplotypes were constructed based on these SNPs. We calculated the allelic and genotypic frequencies, and genetic diversity parameters of the three SNPs. The polymorphism information content (PIC) ranged from 0.2768 to 0.3750, which reflected an intermediate genetic diversity for all chickens. The CC, CT, and TT genotypes influenced the percentage of breast muscle (PBM), percentage of leg muscle (PLM) and percentage of abdominal fat at rs315831750 (p<0.05). Diplotypes (haplotype pairs) affected the percentage of eviscerated weight (PEW) and PBM (p<0.05). Compared with chickens carrying other diplotypes, H3H7 had the greatest PEW and H2H2 had the greatest PBM, and those with diplotype H7H7 had the smallest PEW and PBM. We conclude that PLIN1 gene polymorphisms may affect broiler carcass and breast muscle yields, and diplotypes H3H7 and H2H2 could be positive molecular markers to enhance PEW and PBM in chickens. PMID:25925053

  18. Global identification of genes affecting iron-sulfur cluster biogenesis and iron homeostasis.

    PubMed

    Hidese, Ryota; Mihara, Hisaaki; Kurihara, Tatsuo; Esaki, Nobuyoshi

    2014-03-01

    Iron-sulfur (Fe-S) clusters are ubiquitous cofactors that are crucial for many physiological processes in all organisms. In Escherichia coli, assembly of Fe-S clusters depends on the activity of the iron-sulfur cluster (ISC) assembly and sulfur mobilization (SUF) apparatus. However, the underlying molecular mechanisms and the mechanisms that control Fe-S cluster biogenesis and iron homeostasis are still poorly defined. In this study, we performed a global screen to identify the factors affecting Fe-S cluster biogenesis and iron homeostasis using the Keio collection, which is a library of 3,815 single-gene E. coli knockout mutants. The approach was based on radiolabeling of the cells with [2-(14)C]dihydrouracil, which entirely depends on the activity of an Fe-S enzyme, dihydropyrimidine dehydrogenase. We identified 49 genes affecting Fe-S cluster biogenesis and/or iron homeostasis, including 23 genes important only under microaerobic/anaerobic conditions. This study defines key proteins associated with Fe-S cluster biogenesis and iron homeostasis, which will aid further understanding of the cellular mechanisms that coordinate the processes. In addition, we applied the [2-(14)C]dihydrouracil-labeling method to analyze the role of amino acid residues of an Fe-S cluster assembly scaffold (IscU) as a model of the Fe-S cluster assembly apparatus. The analysis showed that Cys37, Cys63, His105, and Cys106 are essential for the function of IscU in vivo, demonstrating the potential of the method to investigate in vivo function of proteins involved in Fe-S cluster assembly.

  19. In vivo treatments with fulvestrant and anastrozole differentially affect gene expression in the rat efferent ductules.

    PubMed

    Gomes, Gisele Renata Oliveira; Yasuhara, Fabiana; Siu, Erica Rosanna; Fernandes, Sheilla Alessandra Ferreira; Avellar, Maria Christina Werneck; Lazari, Maria Fatima Magalhaes; Porto, Catarina Segreti

    2011-01-01

    Estrogen plays a key role in maintaining the morphology and function of the efferent ductules. We previously demonstrated that the antiestrogen fulvestrant markedly affected gene expression in the rat efferent ductules. The mechanism of fulvestrant action to modulate gene expression may involve not only the blockade of ESR1 and ESR2 estrogen receptors, but also the activation of ESR1 and ESR2 when the receptors are tethered to AP-1 or SP1 transcription factors, or the activation of the G protein-coupled estrogen receptor 1. We therefore compared the effects of two strategies to interfere with estrogen action in the rat efferent ductules: treatment with fulvestrant or with the aromatase inhibitor anastrozole. Whereas fulvestrant markedly increased Mmp7 and Spp1, and reduced Nptx1 mRNA levels, no changes were observed with anastrozole. Fulvestrant caused changes in epithelial morphology that were not seen with anastrozole. Fulvestrant shifted MMP7 immunolocalization in the epithelial cells from the supranuclear to the apical region; this effect was less pronounced with anastrozole. In vitro studies of (35)S-methionine incorporation showed that protein release was increased, whereas tissue protein content in the efferent ductules of fulvestrant-treated rats was decreased. Although fulvestrant markedly affected gene expression, no changes were observed on AP-1 and SP1 DNA-binding activity. The blockade of ESRs seems to be the major reason explaining the differences between both treatments. At least some of the effects of fulvestrant appear to result from compensatory mechanisms activated by the dramatic changes caused by ESR1 blockade.

  20. A family with a dystrophin gene mutation specifically affecting dystrophin expression in the heart

    SciTech Connect

    Muntoni, F.; Davies, K.; Dubowitz, V.

    1994-09-01

    We recently described a family with X-linked dilated cardiomyopathy where a large deletion in the muscle promoter region of the dystrophin gene was associated with a severe dilated cardiomyopathy in absence of clinical skeletal muscle involvement. The deletion removed the entire muscle promoter region, the first muscle exon and part of intron 1. The brain and Purkinje cell promoters were not affected by the deletion. Despite the lack of both the muscle promoter and the first muscle exon, dystrophin was detected immunocytochemically in relative high levels in the skeletal muscle of the affected males. We have now found that both the brain and Purkinje cell promoters were transcribed at high levels in the skeletal muscle of these individuals. This phenomenon, that does not occur in normal skeletal muscle, indicates that these two isoforms, physiologically expressed mainly in the central nervous system, can be transcribed and be functionally active in skeletal muscle under specific circumstances. Contrary to what is observed in skeletal muscle, dystrophin was not detected in the heart of one affected male using immunocytochemistry and an entire panel of anti-dystrophin antibodies. This was most likely the cause for the pronounced cardiac fibrosis observed and eventually responsible for the severe cardiac involvement invariably seen in seven affected males. In conclusion, the mutation of the muscle promoter, first muscle exon and part of intron 1 specifically affected expression of dystrophin in the heart. We believe that this deletion removes sequences involved in regulation of dystrophin expression in the heart and are at the moment characterizing other families with X-linked cardiomyopathy secondary to a dystrophinopathy.

  1. Analysing Thermal Response Test Data Affected by Groundwater Flow and Surface Temperature Change

    NASA Astrophysics Data System (ADS)

    Verdoya, Massimo; Imitazione, Gianmario; Chiozzi, Paolo; Orsi, Marco; Armadillo, Egidio

    2014-05-01

    Tests that record the underground temperature variation due to a constant heat injected into a borehole (or extracted from it) by means of a carrier fluid are routinely performed to infer subsurface thermal conductivity and borehole thermal resistance, which are needed to size geothermal heat pump systems. The most popular model to analyse temperature-time curves obtained from these tests is the infinite line source (ILS). This model gives appropriate estimations of thermal parameters only if particular hydro-geological conditions are fulfilled. Several flaws can however affect data interpretation with ILS, which is based on strong assumptions like those of a purely conductive heat transfer regime in a homogeneous medium, no vertical heat flow and infinite length of the borehole. Other drawbacks can arise from the difficulty in the proper thermal insulation of the test equipment, and consequently with oscillations of the carrier fluid temperature due to surface temperature changes. In this paper, we focused on the treatment of thermal response test data when both advection and periodic changes of surface temperature occur. We used a moving line source model to simulate temperature-time signals under different hypothesis of Darcy velocity and thermal properties. A random noise was added to the signal in order to mimic high frequency disturbances, possibly caused by equipment operating conditions and/or geological variability. The subsurface thermal conductivity, the Darcy velocity and the borehole thermal resistance were inferred by minimising the root mean square error between the synthetic dataset and the theoretical model. The optimisation was carried out with the Nelder-Mead algorithm, and thermal and hydraulic properties were determined by iterative reprocessing according to a trial-and-error procedure. The inferred thermal and hydraulic parameters are well consistent with the 'a priory' values, and the presence of noise in the synthetic data does not produce

  2. Enhanced Geothermal Systems Research and Development: Models of Subsurface Chemical Processes Affecting Fluid Flow

    SciTech Connect

    Moller, Nancy; Weare J. H.

    2008-05-29

    /or injected fluids is critical to predict important chemical behaviors affecting fluid flow, such as mineral precipitation/dissolution reactions. We successfully achieved the project goal and objectives by demonstrating the ability of our modeling technology to correctly predict the complex pH dependent solution chemistry of the Al3+ cation and its hydrolysis species: Al(OH)2+, Al(OH)2+, Al(OH)30, and Al(OH)4- as well as the solubility of common aluminum hydroxide and aluminosilicate minerals in aqueous brines containing components (Na, K, Cl) commonly dominating hydrothermal fluids. In the sodium chloride system, where experimental data for model parameterization are most plentiful, the model extends to 300°C. Determining the stability fields of aluminum species that control the solubility of aluminum-containing minerals as a function of temperature and composition has been a major objective of research in hydrothermal chemistry.

  3. The microarray gene profiling analysis of glioblastoma cancer cells reveals genes affected by FAK inhibitor Y15 and combination of Y15 and temozolomide.

    PubMed

    Huang, Grace; Ho, Baotran; Conroy, Jeffrey; Liu, Song; Qiang, Hu; Golubovskaya, Vita

    2014-01-01

    Focal adhesion is known to be highly expressed and activated in glioma cells. Recently, we demonstrated that FAK autophosphorylation inhibitor, Y15 significantly decreased tumor growth of DBTRG and U87 cells, especially in combination with temozolomide. In the present report, we performed gene expression analysis in these cells to reveal genes affected by Y15, temozolomide and combination of Y15 and temozolomide. We tested the effect of Y15 on gene expression by Illumina Human HT12v4 microarray assay and detected 8087 and 6555 genes, which were significantly either up- or down-regulated by Y15-treatment in DBTRG and U87 cells, respectively (p<0.05). Moreover, DBTRG and U87 cells treated with Y15 changed expression of 1332 and 462 genes more than 1.5 fold, p<0.05, respectively and had 237 common genes affected by Y15. The common genes up-regulated by Y15 included GADD45A, HSPA6 (heat-shock 70); DUSP1, DUSP 5 (dual-phosphatase 5); CDKN1A (p21) and common down-regulated genes included kinesins, such as KIF11, 14, 20A, 20B; topoisomerase II, TOP2A; cyclin F; cell cycle protein: BUB1; PARP1, POLA1. In addition, we detected genes affected by temozolomide and by combination of Y15 and temozolomide treatment in U87 cells. Among genes up-regulated by Y15 and temozolomide more significantly than by each agent alone were: COX7B; interferon, gamma-inducible transcript: IFI16; DDIT4; GADD45G and down-regulated: KIF3A, AKT1; ABL; JAK1, GLI3 and ALDH1A3. Thus, microarray gene expression analysis can be effective in establishing genes affected in response to FAK inhibitor alone and in response to combination of Y15 with temozolomide that is important for glioblastoma therapy.

  4. Long distance pollen-mediated gene flow at a landscape level: the weed beet as a case study.

    PubMed

    Fénart, Stéphane; Austerlitz, Frédéric; Cuguen, Joël; Arnaud, Jean-François

    2007-09-01

    Gene flow is a crucial parameter that can affect the organization of genetic diversity in plant species. It has important implications in terms of conservation of genetic resources and of gene exchanges between crop to wild relatives and within crop species complex. In the Beta vulgaris complex, hybridization between crop and wild beets in seed production areas is well documented and the role of the ensuing hybrids, weed beets, as bridges towards wild forms in sugar beet production areas have been shown. Indeed, in contrast to cultivated beets that are bi-annual, weed beets can bolt, flower and reproduce in the same crop season. Nonetheless, the extent of pollen gene dispersal through weedy lineages remains unknown. In this study, the focus is directed towards weed-to-weed gene flow, and we report the results of a pollen-dispersal analysis within an agricultural landscape composed of five sugar beet fields with different levels of infestation by weed beets. Our results, based on paternity analysis of 3240 progenies from 135 maternal plants using 10 microsatellite loci, clearly demonstrate that even if weedy plants are mostly pollinated by individuals from the same field, some mating events occur between weed beets situated several kilometres apart (up to 9.6 km), with rates of interfield-detected paternities ranging from 11.3% to 17.5%. Moreover, we show that pollen flow appears to be more restricted when individuals are aggregated as most mating events occurred only for short-distance classes. The best-fit dispersal curves were fat-tailed geometric functions for populations exhibiting low densities of weed beets and thin-tailed Weibull function for fields with weed beet high densities. Thus, weed beet populations characterized by low density with geographically isolated individuals may be difficult to detect but are likely to act as pollen traps for pollen emitted by close and remote fields. Hence, it appears evident that interfield pollen-mediated gene flow

  5. Trichostatin A affects histone acetylation and gene expression in porcine somatic cell nucleus transfer embryos.

    PubMed

    Cervera, R P; Martí-Gutiérrez, N; Escorihuela, E; Moreno, R; Stojkovic, M

    2009-11-01

    Epigenetic aberrancies likely preclude correct and complete nuclear reprogramming after somatic cell nucleus transfer (SCNT) and may underlie the observed reduced viability of cloned embryos. In the current study, we tested the effects of the histone deacetylase-inhibitor trichostatin A (TSA) on preimplantation development and on histone acetylation and the gene expression of nucleus transfer (NT) porcine (Sus scrofa) embryos. Our results showed that 5 nM TSA for 26 h after reconstitution resulted in embryos (NTTSA) that reached the blastocyst stage at a higher level (48.1% vs. 20.2%) and increased number of cells (105.0 vs. 75.3) than that of the control (NTC) embryos. In addition, and unlike the NTC embryos, the treated embryos displayed a global acetylated histone H4 at lysine 8 profile similar to the in vitro-fertilized (IVF) and cultured embryos during the preimplantation development. Finally, we determined that several transcription factors exert a dramatic amount of genetic control over pluripotency, including Oct4, Nanog, Cdx2, and Rex01, the imprinting genes Igf2 and Igf2r, and the histone deacetyltransferase gene Hdac2. The NT blastocysts showed similar levels of Oct4, Cdx2, and Hdac2 but lower levels of Nanog than those of the IVF blastocyst. However, the NTTSA blastocysts showed similar levels of Rex01, Igf2, and Igf2r as those of IVF blastocysts, whereas the NTC blastocysts showed significantly lower levels for those genes. Our results suggest that TSA improves porcine SCNT preimplantation development and affects the acetylated status of the H4K8, rendering acetylation levels similar to those of the IVF counterparts.

  6. Escherichia coli tol and rcs genes participate in the complex network affecting curli synthesis.

    PubMed

    Vianney, Anne; Jubelin, Grégory; Renault, Sophie; Dorel, Corine; Lejeune, Philippe; Lazzaroni, Jean Claude

    2005-07-01

    Curli are necessary for the adherence of Escherichia coli to surfaces, and to each other, during biofilm formation, and the csgBA and csgDEFG operons are both required for their synthesis. A recent survey of gene expression in Pseudomonas aeruginosa biofilms has identified tolA as a gene activated in biofilms. The tol genes play a fundamental role in maintaining the outer-membrane integrity of Gram-negative bacteria. RcsC, the sensor of the RcsBCD phosphorelay, is involved, together with RcsA, in colanic acid capsule synthesis, and also modulates the expression of tolQRA and csgDEFG. In addition, the RcsBCD phosphorelay is activated in tol mutants or when Tol proteins are overexpressed. These results led the authors to investigate the role of the tol genes in biofilm formation in laboratory and clinical isolates of E. coli. It was shown that the adherence of cells was lowered in the tol mutants. This could be the result of a drastic decrease in the expression of the csgBA operon, even though the expression of csgDEFG was slightly increased under such conditions. It was also shown that the Rcs system negatively controls the expression of the two csg operons in an RcsA-dependent manner. In the tol mutants, activation of csgDEFG occurred via OmpR and was dominant upon repression by RcsB and RcsA, while these two regulatory proteins repressed csgBA through a dominant effect on the activator protein CsgD, thus affecting curli synthesis. The results demonstrate that the Rcs system, previously known to control the synthesis of the capsule and the flagella, is an additional component involved in the regulation of curli. Furthermore, it is shown that the defect in cell motility observed in the tol mutants depends on RcsB and RcsA.

  7. Gene expression responses of HeLa cells to chemical species generated by an atmospheric plasma flow

    SciTech Connect

    Yokoyama, Mayo; Johkura, Kohei; Sato, Takehiko

    2014-08-08

    Highlights: • Response of HeLa cells to a plasma-irradiated medium was revealed by DNA microarray. • Gene expression pattern was basically different from that in a H{sub 2}O{sub 2}-added medium. • Prominently up-/down-regulated genes were partly shared by the two media. • Gene ontology analysis showed both similar and different responses in the two media. • Candidate genes involved in response to ROS were detected in each medium. - Abstract: Plasma irradiation generates many factors able to affect the cellular condition, and this feature has been studied for its application in the field of medicine. We previously reported that hydrogen peroxide (H{sub 2}O{sub 2}) was the major cause of HeLa cell death among the chemical species generated by high level irradiation of a culture medium by atmospheric plasma. To assess the effect of plasma-induced factors on the response of live cells, HeLa cells were exposed to a medium irradiated by a non-lethal plasma flow level, and their gene expression was broadly analyzed by DNA microarray in comparison with that in a corresponding concentration of 51 μM H{sub 2}O{sub 2}. As a result, though the cell viability was sufficiently maintained at more than 90% in both cases, the plasma-medium had a greater impact on it than the H{sub 2}O{sub 2}-medium. Hierarchical clustering analysis revealed fundamentally different cellular responses between these two media. A larger population of genes was upregulated in the plasma-medium, whereas genes were downregulated in the H{sub 2}O{sub 2}-medium. However, a part of the genes that showed prominent differential expression was shared by them, including an immediate early gene ID2. In gene ontology analysis of upregulated genes, the plasma-medium showed more diverse ontologies than the H{sub 2}O{sub 2}-medium, whereas ontologies such as “response to stimulus” were common, and several genes corresponded to “response to reactive oxygen species.” Genes of AP-1 proteins, e.g., JUN

  8. A structured population modeling framework for quantifying and predicting gene expression noise in flow cytometry data.

    PubMed

    Flores, Kevin B

    2013-07-01

    We formulated a structured population model with distributed parameters to identify mechanisms that contribute to gene expression noise in time-dependent flow cytometry data. The model was validated using cell population-level gene expression data from two experiments with synthetically engineered eukaryotic cells. Our model captures the qualitative noise features of both experiments and accurately fit the data from the first experiment. Our results suggest that cellular switching between high and low expression states and transcriptional re-initiation are important factors needed to accurately describe gene expression noise with a structured population model.

  9. Genetics of NIDDM in France: studies with 19 candidate genes in affected sib pairs.

    PubMed

    Vionnet, N; Hani, E H; Lesage, S; Philippi, A; Hager, J; Varret, M; Stoffel, M; Tanizawa, Y; Chiu, K C; Glaser, B; Permutt, M A; Passa, P; Demenais, F; Froguel, P

    1997-06-01

    As part of an ongoing search for susceptibility loci for NIDDM, we tested 19 genes whose products are implicated in insulin secretion or action for linkage with NIDDM. Loci included the G-protein-coupled inwardly rectifying potassium channels expressed in beta-cells (KCNJ3 and KCNJ7), glucagon (GCG), glucokinase regulatory protein (GCKR), glucagon-like peptide I receptor (GLP1R), LIM/homeodomain islet-1 (ISL1), caudal-type homeodomain 3 (CDX3), proprotein convertase 2 (PCSK2), cholecystokinin B receptor (CCKBR), hexokinase 1 (HK1), hexokinase 2 (HK2), mitochondrial FAD-glycerophosphate dehydrogenase (GPD2), liver and muscle forms of pyruvate kinase (PKL, PKM), fatty acid-binding protein 2 (FABP2), hepatic phosphofructokinase (PFKL), protein serine/threonine phosphatase 1 beta (PPP1CB), and low-density lipoprotein receptor (LDLR). Additionally, we tested the histidine-rich calcium locus (HRC) on chromosome 19q. All regions were tested for linkage with microsatellite markers in 751 individuals from 172 families with at least two patients with overt NIDDM (according to World Health Organization criteria) in the sibship, using nonparametric methods. These 172 families comprise 352 possible affected sib pairs with overt NIDDM or 621 possible affected sib pairs defined as having a fasting plasma glucose value of >6.1 mmol/l or a glucose value of >7.8 mmol/l 2 h after oral glucose load. No evidence for linkage was found with any of the 19 candidate genes and NIDDM in our population by nonparametric methods, suggesting that those genes are not major contributors to the pathogenesis of NIDDM. However, some evidence for suggestive linkage was found between a more severe form of NIDDM, defined as overt NIDDM diagnosed before 45 years of age, and the CCKBR locus (11p15.4; P = 0.004). Analyses of six additional markers spanning 27 cM on chromosome 11p confirmed the suggestive linkage in this region. Whether an NIDDM susceptibility gene lies on chromosome 11p in our population

  10. Elevational speciation in action? Restricted gene flow associated with adaptive divergence across an altitudinal gradient

    USGS Publications Warehouse

    Funk, W. C.; Murphy, M.A.; Hoke, K. L.; Muths, Erin L.; Amburgey, Staci M.; Lemmon, Emily M.; Lemmon, A. R.

    2016-01-01

    Evolutionary theory predicts that divergent selection pressures across elevational gradients could cause adaptive divergence and reproductive isolation in the process of ecological speciation. Although there is substantial evidence for adaptive divergence across elevation, there is less evidence that this restricts gene flow. Previous work in the boreal chorus frog (Pseudacris maculata) has demonstrated adaptive divergence in morphological, life history and physiological traits across an elevational gradient from approximately 1500–3000 m in the Colorado Front Range, USA. We tested whether this adaptive divergence is associated with restricted gene flow across elevation – as would be expected if incipient speciation were occurring – and, if so, whether behavioural isolation contributes to reproductive isolation. Our analysis of 12 microsatellite loci in 797 frogs from 53 populations revealed restricted gene flow across elevation, even after controlling for geographic distance and topography. Calls also varied significantly across elevation in dominant frequency, pulse number and pulse duration, which was partly, but not entirely, due to variation in body size and temperature across elevation. However, call variation did not result in strong behavioural isolation: in phonotaxis experiments, low-elevation females tended to prefer an average low-elevation call over a high-elevation call, and vice versa for high-elevation females, but this trend was not statistically significant. In summary, our results show that adaptive divergence across elevation restricts gene flow in P. maculata, but the mechanisms for this potential incipient speciation remain open.

  11. Speciation with gene flow in whiptail lizards from a Neotropical xeric biome.

    PubMed

    Oliveira, Eliana F; Gehara, Marcelo; São-Pedro, Vinícius A; Chen, Xin; Myers, Edward A; Burbrink, Frank T; Mesquita, Daniel O; Garda, Adrian A; Colli, Guarino R; Rodrigues, Miguel T; Arias, Federico J; Zaher, Hussam; Santos, Rodrigo M L; Costa, Gabriel C

    2015-12-01

    Two main hypotheses have been proposed to explain the diversification of the Caatinga biota. The riverine barrier hypothesis (RBH) claims that the São Francisco River (SFR) is a major biogeographic barrier to gene flow. The Pleistocene climatic fluctuation hypothesis (PCH) states that gene flow, geographic genetic structure and demographic signatures on endemic Caatinga taxa were influenced by Quaternary climate fluctuation cycles. Herein, we analyse genetic diversity and structure, phylogeographic history, and diversification of a widespread Caatinga lizard (Cnemidophorus ocellifer) based on large geographical sampling for multiple loci to test the predictions derived from the RBH and PCH. We inferred two well-delimited lineages (Northeast and Southwest) that have diverged along the Cerrado-Caatinga border during the Mid-Late Miocene (6-14 Ma) despite the presence of gene flow. We reject both major hypotheses proposed to explain diversification in the Caatinga. Surprisingly, our results revealed a striking complex diversification pattern where the Northeast lineage originated as a founder effect from a few individuals located along the edge of the Southwest lineage that eventually expanded throughout the Caatinga. The Southwest lineage is more diverse, older and associated with the Cerrado-Caatinga boundaries. Finally, we suggest that C. ocellifer from the Caatinga is composed of two distinct species. Our data support speciation in the presence of gene flow and highlight the role of environmental gradients in the diversification process.

  12. Landscape heterogeneity predicts gene flow in a widespread polymorphic bumble bee, Bombus bifarius (Hymentoptera: Apidae).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bombus bifarius is a widespread bumble bee that occurs in montane regions of western North America. This species has several major color polymorphisms, and shows evidence of genetic structuring among regional populations. We test whether this structure is evidence for discrete gene flow barriers tha...

  13. Elevational speciation in action? Restricted gene flow associated with adaptive divergence across an altitudinal gradient.

    PubMed

    Funk, W C; Murphy, M A; Hoke, K L; Muths, E; Amburgey, S M; Lemmon, E M; Lemmon, A R

    2016-02-01

    Evolutionary theory predicts that divergent selection pressures across elevational gradients could cause adaptive divergence and reproductive isolation in the process of ecological speciation. Although there is substantial evidence for adaptive divergence across elevation, there is less evidence that this restricts gene flow. Previous work in the boreal chorus frog (Pseudacris maculata) has demonstrated adaptive divergence in morphological, life history and physiological traits across an elevational gradient from approximately 1500-3000 m in the Colorado Front Range, USA. We tested whether this adaptive divergence is associated with restricted gene flow across elevation - as would be expected if incipient speciation were occurring - and, if so, whether behavioural isolation contributes to reproductive isolation. Our analysis of 12 microsatellite loci in 797 frogs from 53 populations revealed restricted gene flow across elevation, even after controlling for geographic distance and topography. Calls also varied significantly across elevation in dominant frequency, pulse number and pulse duration, which was partly, but not entirely, due to variation in body size and temperature across elevation. However, call variation did not result in strong behavioural isolation: in phonotaxis experiments, low-elevation females tended to prefer an average low-elevation call over a high-elevation call, and vice versa for high-elevation females, but this trend was not statistically significant. In summary, our results show that adaptive divergence across elevation restricts gene flow in P. maculata, but the mechanisms for this potential incipient speciation remain open.

  14. Gene flow and pathogen transmission among bobcats (Lynx rufus) in a fragmented urban landscape

    USGS Publications Warehouse

    Lee, Justin S.; Ruell, Emily W.; Boydston, Erin E.; Lyren, Lisa M.; Alonso, Robert S.; Troyer, Jennifer L.; Crooks, Kevin R.; VandeWoude, Sue

    2012-01-01

    Urbanization can result in the fragmentation of once contiguous natural landscapes into a patchy habitat interspersed within a growing urban matrix. Animals living in fragmented landscapes often have reduced movement among habitat patches because of avoidance of intervening human development, which potentially leads to both reduced gene flow and pathogen transmission between patches. Mammalian carnivores with large home ranges, such as bobcats (Lynx rufus), may be particularly sensitive to habitat fragmentation. We performed genetic analyses on bobcats and their directly transmitted viral pathogen, feline immunodeficiency virus (FIV), to investigate the effects of urbanization on bobcat movement. We predicted that urban development, including major freeways, would limit bobcat movement and result in genetically structured host and pathogen populations. We analysed molecular markers from 106 bobcats and 19 FIV isolates from seropositive animals in urban southern California. Our findings indicate that reduced gene flow between two primary habitat patches has resulted in genetically distinct bobcat subpopulations separated by urban development including a major highway. However, the distribution of genetic diversity among FIV isolates determined through phylogenetic analyses indicates that pathogen genotypes are less spatially structured--exhibiting a more even distribution between habitat fragments. We conclude that the types of movement and contact sufficient for disease transmission occur with enough frequency to preclude structuring among the viral population, but that the bobcat population is structured owing to low levels of effective bobcat migration resulting in gene flow. We illustrate the utility in using multiple molecular markers that differentially detect movement and gene flow between subpopulations when assessing connectivity.

  15. Gene flow of Acanthaster planci (L.) in relation to ocean currents revealed by microsatellite analysis.

    PubMed

    Yasuda, Nina; Nagai, Satoshi; Hamaguchi, Masami; Okaji, Ken; Gérard, Karin; Nadaoka, Kazuo

    2009-04-01

    Population outbreaks of the coral-eating starfish, Acanthaster planci, are hypothesized to spread to many localities in the Indo-Pacific Ocean through dispersal of planktonic larvae. To elucidate the gene flow of A. planci across the Indo-Pacific in relation to ocean currents and to test the larval dispersal hypothesis, the genetic structure among 23 samples over the Indo-Pacific was analysed using seven highly polymorphic microsatellite loci. The F-statistics and genetic admixture analysis detected genetically distinct groups in accordance with ocean current systems, that is, the Southeast African group (Kenya and Mayotte), the Northwestern Pacific group (the Philippines and Japan), Palau, the North Central Pacific group (Majuro and Pohnpei), the Great Barrier Reef, Fiji, and French Polynesia, with a large genetic break between the Indian and Pacific Oceans. A pattern of significant isolation by distance was observed among all samples (P = 0.001, r = 0.88, n = 253, Mantel test), indicating restricted gene flow among the samples in accordance with geographical distances. The data also indicated strong gene flow within the Southeast African, Northwestern Pacific, and Great Barrier Reef groups. These results suggest that the western boundary currents have strong influence on gene flow of this species and may trigger secondary outbreaks.

  16. Genetic structure and gene flow among Komodo dragon populations inferred by microsatellite loci analysis.

    PubMed

    Ciofi, C; Bruford, M W

    1999-12-01

    A general concern for the conservation of endangered species is the maintenance of genetic variation within populations, particularly when they become isolated and reduced in size. Estimates of gene flow and effective population size are therefore important for any conservation initiative directed to the long-term persistence of a species in its natural habitat. In the present study, 10 microsatellite loci were used to assess the level of genetic variability among populations of the Komodo dragon Varanus komodoensis. Effective population size was calculated and gene flow estimates were compared with palaeogeographic data in order to assess the degree of vulnerability of four island populations. Rinca and Flores, currently separated by an isthmus of about 200 m, retained a high level of genetic diversity and showed a high degree of genetic similarity, with gene flow values close to one migrant per generation. The island of Komodo showed by far the highest levels of genetic divergence, and its allelic distinctiveness was considered of great importance in the maintenance of genetic variability within the species. A lack of distinct alleles and low levels of gene flow and genetic variability were found for the small population of Gili Motang island, which was identified as vulnerable to stochastic threats. Our results are potentially important for both the short- and long-term management of the Komodo dragon, and are critical in view of future re-introduction or augmentation in areas where the species is now extinct or depleted.

  17. Gene flow and pathogen transmission among bobcats (Lynx rufus) in a fragmented urban landscape.

    PubMed

    Lee, Justin S; Ruell, Emily W; Boydston, Erin E; Lyren, Lisa M; Alonso, Robert S; Troyer, Jennifer L; Crooks, Kevin R; Vandewoude, Sue

    2012-04-01

    Urbanization can result in the fragmentation of once contiguous natural landscapes into a patchy habitat interspersed within a growing urban matrix. Animals living in fragmented landscapes often have reduced movement among habitat patches because of avoidance of intervening human development, which potentially leads to both reduced gene flow and pathogen transmission between patches. Mammalian carnivores with large home ranges, such as bobcats (Lynx rufus), may be particularly sensitive to habitat fragmentation. We performed genetic analyses on bobcats and their directly transmitted viral pathogen, feline immunodeficiency virus (FIV), to investigate the effects of urbanization on bobcat movement. We predicted that urban development, including major freeways, would limit bobcat movement and result in genetically structured host and pathogen populations. We analysed molecular markers from 106 bobcats and 19 FIV isolates from seropositive animals in urban southern California. Our findings indicate that reduced gene flow between two primary habitat patches has resulted in genetically distinct bobcat subpopulations separated by urban development including a major highway. However, the distribution of genetic diversity among FIV isolates determined through phylogenetic analyses indicates that pathogen genotypes are less spatially structured-exhibiting a more even distribution between habitat fragments. We conclude that the types of movement and contact sufficient for disease transmission occur with enough frequency to preclude structuring among the viral population, but that the bobcat population is structured owing to low levels of effective bobcat migration resulting in gene flow. We illustrate the utility in using multiple molecular markers that differentially detect movement and gene flow between subpopulations when assessing connectivity.

  18. Pollen and seed mediated gene flow in commercial alfalfa seed production fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential for gene flow has been widely recognized since alfalfa is pollinated by bees. The Western US is a major exporter of alfalfa seed and hay and the organic dairy industry is one of the fastest growing agricultural sectors. Because of this, many alfalfa producers are impacted by market sen...

  19. Gene flow matters in switchgrass (Panicum virgatum L.), a potential widespread biofuel feedstock.

    PubMed

    Kwit, Charles; Stewart, C Neal

    2012-01-01

    There currently exists a large push for the use, improvement, and expansion via landscape modification of dedicated biofuel crops (feedstocks) in the United States and in many parts of the world. Ecological concerns have been voiced because many biofuel feedstocks exhibit characteristics associated with invasiveness, and due to potential negative consequences of agronomic genes in native wild populations. Seed purity concerns for biofuel feedstock cultivars whose seeds would be harvested in agronomic fields also exist from the agribusiness sector. The common thread underlying these concerns, which have regulatory implications, is gene flow; thus detailed knowledge of gene flow in biofuel crop plants is important in the formulation of environmental risk management plans. Here, we synthesize the current state of knowledge of gene flow in an exemplary biofuel crop, switchgrass (Panicum virgatum L.), which is native to eastern North America and is currently experiencing conventional and technological advances in biomass yields and ethanol production. Surprisingly little is known regarding aspects of switchgrass pollen flow and seed dispersal, and whether native populations of conspecific or congeneric relatives will readily cross with current agronomic switchgrass cultivars. We pose that filling these important gaps will be required to confront the sustainability challenges of widespread planting of biofuel feedstocks.

  20. Intercontinental gene flow among western arctic populations of lesser snow geese

    USGS Publications Warehouse

    Shorey, R.I.; Scribner, K.T.; Kanefsky, J.; Samuel, M.D.; Libants, S.V.

    2011-01-01

    Quantifying the spatial genetic structure of highly vagile species of birds is important in predicting their degree of population demographic and genetic independence during changing environmental conditions, and in assessing their abundance and distribution. In the western Arctic, Lesser Snow Geese (Chen caerulescens caerulescens) provide an example useful for evaluating spatial population genetic structure and the relative contribution of male and female philopatry to breeding and wintering locales. We analyzed biparentally inherited microsatellite loci and maternally inherited mtDNA sequences from geese breeding at Wrangel Island (Russia) and Banks Island (Canada) to estimate gene flow among populations whose geographic overlap during breeding and winter differ. Significant differences in the frequencies of mtDNA haplotypes contrast with the homogeneity of allele frequencies for microsatellite loci. Coalescence simulations revealed high variability and asymmetry between males and females in rates and direction of gene flow between populations. Our results highlight the importance of wintering areas to demographic independence and spatial genetic structure of these populations. Male-mediated gene flow among the populations on northern Wrangel Island, southern Wrangel Island, and Banks Island has been substantial. A high rate of female-mediated gene flow from southern Wrangel Island to Banks Island suggests that population exchange can be achieved when populations winter in a common area. Conversely, when birds from different breeding populations do not share a common wintering area, the probability of population exchange is likely to be dramatically reduced. ?? The Cooper Ornithological Society 2011.

  1. Can gene flow have negative demographic consequences? Mixed evidence from stream threespine stickleback

    PubMed Central

    Moore, Jean-Sébastien; Hendry, Andrew P.

    2009-01-01

    Dispersal and gene flow can have both positive and negative effects on population size, but little empirical support from nature exists for the negative effects. We test for such effects in a stream population of threespine stickleback (Gasterosteus aculeatus L.) that is subject to high gene flow from a lake and is thus maladapted to stream conditions. In this system, maladaptation increases with distance along the stream, and this increase is associated with decreasing population densities until stickleback are no longer present (2.5 km from the lake). We conducted field experiments to inform whether this association might reflect a negative role for gene flow in constraining population size and therefore causing a local range limit. We specifically tested predictions deriving from theory: peripheral populations should show partial local adaptation, be under strong selection and not simply be maintained by dispersal. First, a transplant experiment suggested a weak home-site advantage in the peripheral population. Second, a mark–recapture study showed directional selection for a stream-adapted phenotype in 1 of 2 years. Third, another mark–recapture experiment showed that dispersal is limited to the point that positive demographic effects of dispersal are probably minimal. We conclude that, although gene flow does constrain morphological maladaptation in the outlet stream population, the evidence for its contribution to population size and range limits is mixed. We discuss the implications of our work for the study of factors influencing the evolution of species' ranges. PMID:19414468

  2. Estimation of male gene flow from measures of nuclear and female genetic differentiation.

    PubMed

    Hedrick, Philip W; Allendorf, Fred W; Baker, C Scott

    2013-01-01

    An approach is provided to estimate male gene flow and the ratio of male to female gene flow, given that there are estimates of diploid, nuclear gene flow and haploid, female gene flow. This approach can be applied to estimates of differentiation (F ST ) from biparentally and maternally inherited markers, assuming the equilibrium island model and equal effective numbers of males and females. Corrections to formulas used previously for California sea lions (González-Suárez M, Flatz R, Aurioles-Gamboa D, Hedrick PW, Gerber LR. 2009. Isolation by distance among California sea lion populations in Mexico: redefining management stocks. Mol Ecol. 18:1088-1099.) and American bison (Halbert ND, Gogan PJP, Hedrick PW, Wahl L, Derr JN. 2012. Genetic population substructure in bison in Yellowstone National Park. J Hered. 103:360-370.) are given and revised values for those species are calculated. The effect of unequal male and female effective population sizes, nonequilibrium conditions, and approximations of differentiation formulas are briefly discussed.

  3. Overland flow generation mechanisms affected by topsoil treatment: Application to soil conservation

    NASA Astrophysics Data System (ADS)

    Hueso-González, P.; Ruiz-Sinoga, J. D.; Martínez-Murillo, J. F.; Lavee, H.

    2015-01-01

    Hortonian overland-flow is responsible for significant amounts of soil loss in Mediterranean geomorphological systems. Restoring the native vegetation is the most effective way to control runoff and sediment yield. During the seeding and plant establishment, vegetation cover may be better sustained if soil is amended with an external source. Four amendments were applied in an experimental set of plots: straw mulching (SM); mulch with chipped branches of Aleppo Pine (Pinus halepensis L.) (PM); TerraCottem hydroabsorbent polymer (HP); and sewage sludge (RU). Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha- 1. This research demonstrates the role played by the treatments in overland flow generation mechanism. On one hand, the high macroporosity of SM and PM, together with the fact that soil moisture increased with depth, explains weak overland flow and thus low sediment yield due to saturation conditions. Therefore, regarding overland flow and sediment yield, RU behaves similarly to SM and PM. On the other hand, when HP was applied, overland flow developed quickly with relatively high amounts. This, together with the decrease downward in soil moisture along the soil profile, proved that mechanisms of overland flow are of the Hortonian type.

  4. Polymorphism of the prion protein gene (PRNP) in Polish cattle affected by classical bovine spongiform encephalopathy.

    PubMed

    Gurgul, Artur; Czarnik, Urszula; Urszula, Czarnik; Larska, Magdalena; Polak, Mirosław P; Strychalski, Janusz; Słota, Ewa

    2012-05-01

    Recent attempts to discover genetic factors affecting cattle resistance/susceptibility to bovine spongiform encephalopathy (BSE) have led to the identification of two insertion/deletion (indel) polymorphisms, located within the promoter and intron 1 of the prion protein gene PRNP, showing a significant association with the occurrence of classical form of the disease. Because the effect of the polymorphisms was studied only in few populations, in this study we investigated whether previously described association of PRNP indel polymorphisms with BSE susceptibility in cattle is also present in Polish cattle population. We found a significant relation between the investigated PRNP indel polymorphisms (23 and 12 bp indels), and susceptibility of Polish Holstein-Friesian cattle to classical BSE (P < 0.05). The deletion variants of both polymorphisms were related to increased susceptibility, whereas insertion variants were protective against BSE.

  5. Monitoring gene flow from transgenic sugar beet using cytoplasmic male-sterile bait plants.

    PubMed

    Saeglitz, C; Pohl, M; Bartsch, D

    2000-12-01

    One of the most discussed environmental effects associated with the use of transgenic plants is the flow of genes to plants in the environment. The flow of genes may occur through pollen since it is the reproductive system that is designed for gene movement. Pollen-mediated gene escape is hard to control in mating plants. Pollen from a wind pollinator can move over distances of more than 1000 m. To investigate the efficiency of transgenic pollen movement under realistic environmental conditions, the use of bait plants might be an effective tool. In this study, cytoplasmic male-sterile (CMS) sugar beets were tested with regard to their potential for monitoring transgene flow. As the pollen source, transgenic sugar beets were used that express recombinant DNA encoding viral (beet necrotic yellow vein virus) resistance, and antibiotic (kanamycin) and herbicide (glufosinate) tolerance genes. In a field trial, the effectiveness of a hemp (Cannabis sativa) stripe containment strategy was tested by measuring the frequency of pollinated CMS bait plants placed at different distances and directions from a transgenic pollen source. The results demonstrated the ineffectiveness of the containment strategy. Physiological and molecular tests confirmed the escape and production of transgenic offspring more than 200 m behind the hemp containment. Since absolute containment is unlikely to be effective, the CMS-bait plant detection system is a useful tool for other monitoring purposes.

  6. Local Evolution of Pyrethroid Resistance Offsets Gene Flow Among Aedes aegypti Collections in Yucatan State, Mexico

    PubMed Central

    Saavedra-Rodriguez, Karla; Beaty, Meaghan; Lozano-Fuentes, Saul; Denham, Steven; Garcia-Rejon, Julian; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Loroño-Pino, Maria Alba; Flores-Suarez, Adriana; Ponce-Garcia, Gustavo; Beaty, Barry; Eisen, Lars; Black, William C.

    2015-01-01

    The mosquito Aedes aegypti is the major vector of the four serotypes of dengue virus (DENV1–4). Previous studies have shown that Ae. aegypti in Mexico have a high effective migration rate and that gene flow occurs among populations that are up to 150 km apart. Since 2000, pyrethroids have been widely used for suppression of Ae. aegypti in cities in Mexico. In Yucatan State in particular, pyrethroids have been applied in and around dengue case households creating an opportunity for local selection and evolution of resistance. Herein, we test for evidence of local adaptation by comparing patterns of variation among 27 Ae. aegypti collections at 13 single nucleotide polymorphisms (SNPs): two in the voltage-gated sodium channel gene para known to confer knockdown resistance, three in detoxification genes previously associated with pyrethroid resistance, and eight in putatively neutral loci. The SNPs in para varied greatly in frequency among collections, whereas SNPs at the remaining 11 loci showed little variation supporting previous evidence for extensive local gene flow. Among Ae. aegypti in Yucatan State, Mexico, local adaptation to pyrethroids appears to offset the homogenizing effects of gene flow. PMID:25371186

  7. [Gene flow and its ecological risks of transgenic oilseed rape ( Brassica napus)].

    PubMed

    Tang, Guixiang; Song, Wenjian; Zhou, Weijun

    2005-12-01

    Transgenic oilseed rape Brassica napus, one of the first genetically modified crops, has now been released to commercial use in Canada and Australia. As a cross-pollinating crop, its natural crossing rate is 30%, and it is liable to cross with other Brassica species. The ecological risk of transgenic oilseed rape has been concerned by the scientists all over the world. There are two ways for the pollens flow of transgenic oilseed rape, one takes place between transgenic oilseed rape and other related wild species, and the other occurs between transgenic and nontransgenic oilseed rape. The gene may flow to other related wild species, but it is unlikely to get hybrids in field. Because the gene can really flow to the conventional oilseed rape, it is necessary to have a sufficient isolation distance in cultivating transgenic oilseed rape.

  8. Extended in vitro maturation affects gene expression and DNA methylation in bovine oocytes.

    PubMed

    Heinzmann, Julia; Mattern, Felix; Aldag, Patrick; Bernal-Ulloa, Sandra Milena; Schneider, Tamara; Haaf, Thomas; Niemann, Heiner

    2015-10-01

    To mimic post-ovulatory ageing, we have extended the in vitro maturation (IVM) phase to 48 h and examined effects on (i) developmental potential, (ii) expression of a panel of developmentally important genes and (iii) gene-specific epigenetic marks. Results were compared with the 24 h IVM protocol (control) usually employed for bovine oocytes. Cleavage rates and blastocyst yields were significantly reduced in oocytes after extended IVM. No significant differences were observed in the methylation of entire alleles in oocytes for the genes bH19, bSNRPN, bZAR1, bOct4 and bDNMT3A. However, we found differentially methylated CpG sites in the bDNMT3Ls locus in oocytes after extended IVM and in embryos derived from them compared with controls. Moreover, embryos derived from the 48 h matured oocyte group were significantly less methylated at CpG5 and CpG7 compared with the 24 h group. CpG7 was significantly hypermethylated in embryos produced from the control oocytes, but not in oocytes matured for 48 h. Furthermore, methylation for CpG5-CpG8 of bDNMT3Ls was significantly lower in oocytes of the 24 h group compared with embryos derived therefrom, whereas no such difference was found for oocytes and embryos of the in vitro aged group. Expression of most of the selected genes was not affected by duration of IVM. However, transcript abundance for the imprinted gene bIGF2R was significantly reduced in oocytes analyzed after extended IVM compared with control oocytes. Transcript levels for bPRDX1, bDNMT3A and bBCLXL were significantly reduced in 4- to 8-cell embryos derived from in vitro aged oocytes. These results indicate that extended IVM leads to ageing-like alterations and demonstrate that epigenetic mechanisms are critically involved in ageing of bovine oocytes, which warrants further studies into epigenetic mechanisms involved in ageing of female germ cells, including humans.

  9. Variable gene dispersal conditions and spatial deforestation patterns can interact to affect tropical tree conservation outcomes.

    PubMed

    Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H

    2015-01-01

    Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with 'Near' distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal

  10. Fasting and sampling time affect liver gene expression of high-fat diet-fed mice.

    PubMed

    Lee, C Y

    2010-05-01

    Several physiological and biological variables are known to affect peroxisome proliferator-activated receptor (PPAR)-α-dependent signaling pathway and plasma biochemical profiles. However, less is known about the effect of these variables on high-fat diet-fed mice. In a 5-week study, C57BL/6 mice were divided into control (C) and high-fat diet-fed (H) groups, whereby before dissection, each group was subdivided into non-fasted (nC and nH) and a 15-h fasted mice (fC and fH) killed in the early light cycle, and a 15-h fasted mice (eC and eH) killed in the late phase of the light cycle. Liver and blood from the vena cava were collected. Non-fasted nC and nH mice have a marginal difference in their body weight gain, whereas significant differences were found for fasted mice. In nH mice, PPAR-α, acyl-CoA oxidase and insulin-like growth factor-binding protein expressions were significantly elevated, in contrast to fatty acid synthase (Fasn), stearoyl CoA-desaturase (SCD)-1, and elongase (ELOVL)-6 expressions. Fasn was profoundly induced in fH mice, while decreased sterol regulatory-binding protein-1 and SCD-1 were found only in eH mice. Different from the gene expression profiles, plasma total cholesterol level of the eH mice was higher than controls, whereas nH mice have increased plasma non-esterified fatty acids. Only glucose level of the fH mice was higher than that observed for controls. Results showed that fasting and sampling time have significantly affected liver gene expression and plasma biochemical indices of the high-fat diet-treated mice. An overlook in these aspects can cause serious discrepancies in the experimental data and their interpretations.

  11. Diversity of the Genes Implicated in Algerian Patients Affected by Usher Syndrome

    PubMed Central

    Abdi, Samia; Bahloul, Amel; Behlouli, Asma; Hardelin, Jean-Pierre; Makrelouf, Mohamed; Boudjelida, Kamel; Louha, Malek; Cheknene, Ahmed; Belouni, Rachid; Rous, Yahia; Merad, Zahida; Selmane, Djamel; Hasbelaoui, Mokhtar; Bonnet, Crystel; Zenati, Akila; Petit, Christine

    2016-01-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by a dual sensory impairment affecting hearing and vision. USH is clinically and genetically heterogeneous. Ten different causal genes have been reported. We studied the molecular bases of the disease in 18 unrelated Algerian patients by targeted-exome sequencing, and identified the causal biallelic mutations in all of them: 16 patients carried the mutations at the homozygous state and 2 at the compound heterozygous state. Nine of the 17 different mutations detected in MYO7A (1 of 5 mutations), CDH23 (4 of 7 mutations), PCDH15 (1 mutation), USH1C (1 mutation), USH1G (1 mutation), and USH2A (1 of 2 mutations), had not been previously reported. The deleterious consequences of a missense mutation of CDH23 (p.Asp1501Asn) and the in-frame single codon deletion in USH1G (p.Ala397del) on the corresponding proteins were predicted from the solved 3D-structures of extracellular cadherin (EC) domains of cadherin-23 and the sterile alpha motif (SAM) domain of USH1G/sans, respectively. In addition, we were able to show that the USH1G mutation is likely to affect the binding interface between the SAM domain and USH1C/harmonin. This should spur the use of 3D-structures, not only of isolated protein domains, but also of protein-protein interaction interfaces, to predict the functional impact of mutations detected in the USH genes. PMID:27583663

  12. Variable Gene Dispersal Conditions and Spatial Deforestation Patterns Can Interact to Affect Tropical Tree Conservation Outcomes

    PubMed Central

    Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H.

    2015-01-01

    Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with ‘Near’ distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal

  13. Temperature and water loss affect ADH activity and gene expression in grape berry during postharvest dehydration.

    PubMed

    Cirilli, Marco; Bellincontro, Andrea; De Santis, Diana; Botondi, Rinaldo; Colao, Maria Chiara; Muleo, Rosario; Mencarelli, Fabio

    2012-05-01

    Clusters of Aleatico wine grape were picked at 18°Brix and placed at 10, 20, or 30°C, 45% relative humidity (RH) and 1.5m/s of air flow to dehydrate the berries up to 40% of loss of initial fresh weight. Sampling was done at 0%, 10%, 20%, 30%, and 40% weight loss (wl). ADH (alcohol dehydrogenase) gene expression, enzyme activity, and related metabolites were analysed. At 10°C, acetaldehyde increased rapidly and then declined, while ethanol continued to rise. At 20°C, acetaldehyde and ethanol increased significantly with the same pattern and declined at 40%wl. At 30°C, acetaldehyde did not increase but ethanol increased rapidly already at 10%wl. At the latter temperature, a significant increase in acetic acid and ethyl acetate occurred, while at 10°C their values were low. At 30°C, the ADH activity (ethanol to acetaldehyde direction), increased rapidly but acetaldehyde did not rise because of its oxidation to acetic acid, which increased together with ethyl acetate. At 10°C, the ADH activity increased at 20%wl and continued to rise even at 40%wl, meaning that ethanol oxidation was delayed. At 20°C, the behaviour was intermediate to the other temperatures. The relative expression of the VvAdh2 gene was the highest at 10°C already at 10%wl in a synchrony with the ADH activity, indicating a rapid response likely due to low temperature. The expression subsequently declined. At 20 and 30°C, the expression was lower and increased slightly during dehydration in combination with the ADH activity. This imbalance between gene expression and ADH activity at 10°C, as well as the unexpected expression of the carotenoid cleavage dioxygenase 1 (CCD1) gene, opens the discussion on the stress sensitivity and transcription event during postharvest dehydration, and the importance of carefully monitoring temperature during dehydration.

  14. Asymmetric hybridization and gene flow between Joshua trees (Agavaceae: Yucca) reflect differences in pollinator host specificity.

    PubMed

    Starr, Tyler N; Gadek, Katherine E; Yoder, Jeremy B; Flatz, Ramona; Smith, Christopher I

    2013-01-01

    The angiosperms are by far the largest group of terrestrial plants. Their spectacular diversity is often attributed to specialized pollination. Obligate pollination mutualisms where both a plant and its pollinator are dependent upon one another for reproduction are thought to be prone to rapid diversification through co-evolution and pollinator isolation. However, few studies have evaluated the degree to which pollinators actually mediate reproductive isolation in these systems. Here, we examine evidence for hybridization and gene flow between two subspecies of Joshua tree (Yucca brevifolia brevifolia and Yucca brevifolia jaegeriana) pollinated by two sister species of yucca moth. Previous work indicated that the pollinators differ in host specificity, and DNA sequence data suggested asymmetric introgression between the tree subspecies. Through intensive sampling in a zone of sympatry, a large number of morphologically intermediate trees were identified. These included trees with floral characters typical of Y. b. jaegeriana, but vegetative features typical of Y. b. brevifolia. The opposite combination-Y. b. brevifolia flowers with Y. b. jaegeriana vegetative morphology-never occurred. Microsatellite genotyping revealed a high frequency of genetically admixed, hybrid trees. Coalescent-based estimates of migration indicated significant gene flow between the subspecies and that the direction of gene flow matches differences in pollinator host fidelity. The data suggest that pollinator behaviour determines the magnitude and direction of gene flow between the two subspecies, but that specialized pollination alone is not sufficient to maintain species boundaries. Natural selection may be required to maintain phenotypic differences in the face of ongoing gene flow.

  15. Divergence and gene flow in the globally distributed blue-winged ducks

    USGS Publications Warehouse

    Nelson, Joel; Wilson, Robert E.; McCracken, Kevin G.; Cumming, Graeme; Joseph, Leo; Guay, Patrick-Jean; Peters, Jeffrey

    2016-01-01

    The ability to disperse over long distances can result in a high propensity for colonizing new geographic regions, including uninhabited continents, and lead to lineage diversification via allopatric speciation. However, high vagility can also result in gene flow between otherwise allopatric populations, and in some cases, parapatric or divergence-with-gene-flow models might be more applicable to widely distributed lineages. Here, we use five nuclear introns and the mitochondrial control region along with Bayesian models of isolation with migration to examine divergence, gene flow, and phylogenetic relationships within a cosmopolitan lineage comprising six species, the blue-winged ducks (genus Anas), which inhabit all continents except Antarctica. We found two primary sub-lineages, the globally-distributed shoveler group and the New World blue-winged/cinnamon teal group. The blue-winged/cinnamon sub-lineage is composed of sister taxa from North America and South America, and taxa with parapatric distributions are characterized by low to moderate levels of gene flow. In contrast, our data support strict allopatry for most comparisons within the shovelers. However, we found evidence of gene flow from the migratory, Holarctic northern shoveler (A. clypeata) and the more sedentary, African Cape shoveler (A. smithii) into the Australasian shoveler (A. rhynchotis), although we could not reject strict allopatry. Given the diverse mechanisms of speciation within this complex, the shovelers and blue-winged/cinnamon teals can serve as an effective model system for examining how the genome diverges under different evolutionary processes and how genetic variation is partitioned among highly dispersive taxa.

  16. Patterns of Gene Flow between Crop and Wild Carrot, Daucus carota (Apiaceae) in the United States

    PubMed Central

    Mandel, Jennifer R.; Ramsey, Adam J.; Iorizzo, Massimo; Simon, Philipp W.

    2016-01-01

    Studies of gene flow between crops and their wild relatives have implications for both management practices for cultivation and understanding the risk of transgene escape. These types of studies may also yield insight into population dynamics and the evolutionary consequences of gene flow for wild relatives of crop species. Moreover, the comparison of genetic markers with different modes of inheritance, or transmission, such as those of the nuclear and chloroplast genomes, can inform the relative risk of transgene escape via pollen versus seed. Here we investigate patterns of gene flow between crop and wild carrot, Daucus carota (Apiaceae) in two regions of the United States. We employed 15 nuclear simple sequence repeat (SSR) markers and one polymorphic chloroplast marker. Further, we utilized both conventional population genetic metrics along with Shannon diversity indices as the latter have been proposed to be more sensitive to allele frequency changes and differentiation. We found that populations in both regions that were proximal to crop fields showed lower levels of differentiation to the crops than populations that were located farther away. We also found that Shannon measures were more sensitive to differences in both genetic diversity and differentiation in our study. Finally, we found indirect evidence of paternal transmission of chloroplast DNA and accompanying lower than expected levels of chloroplast genetic structure amongst populations as might be expected if chloroplast DNA genes flow through both seed and pollen. Our findings of substantial gene flow for both nuclear and chloroplast markers demonstrate the efficiency of both pollen and seed to transfer genetic information amongst populations of carrot. PMID:27603516

  17. Phenotypic variation across chromosomal hybrid zones of the common shrew (Sorex araneus) indicates reduced gene flow.

    PubMed

    Polly, P David; Polyakov, Andrei V; Ilyashenko, Vadim B; Onischenko, Sergei S; White, Thomas A; Shchipanov, Nikolay A; Bulatova, Nina S; Pavlova, Svetlana V; Borodin, Pavel M; Searle, Jeremy B

    2013-01-01

    Sorex araneus, the Common shrew, is a species with more than 70 karyotypic races, many of which form parapatric hybrid zones, making it a model for studying chromosomal speciation. Hybrids between races have reduced fitness, but microsatellite markers have demonstrated considerable gene flow between them, calling into question whether the chromosomal barriers actually do contribute to genetic divergence. We studied phenotypic clines across two hybrid zones with especially complex heterozygotes. Hybrids between the Novosibirsk and Tomsk races produce chains of nine and three chromosomes at meiosis, and hybrids between the Moscow and Seliger races produce chains of eleven. Our goal was to determine whether phenotypes show evidence of reduced gene flow at hybrid zones. We used maximum likelihood to fit tanh cline models to geometric shape data and found that phenotypic clines in skulls and mandibles across these zones had similar centers and widths as chromosomal clines. The amount of phenotypic differentiation across the zones is greater than expected if it were dissipating due to unrestricted gene flow given the amount of time since contact, but it is less than expected to have accumulated from drift during allopatric separation in glacial refugia. Only if heritability is very low, Ne very high, and the time spent in allopatry very short, will the differences we observe be large enough to match the expectation of drift. Our results therefore suggest that phenotypic differentiation has been lost through gene flow since post-glacial secondary contact, but not as quickly as would be expected if there was free gene flow across the hybrid zones. The chromosomal tension zones are confirmed to be partial barriers that prevent differentiated races from becoming phenotypically homogenous.

  18. Patterns of Gene Flow between Crop and Wild Carrot, Daucus carota (Apiaceae) in the United States.

    PubMed

    Mandel, Jennifer R; Ramsey, Adam J; Iorizzo, Massimo; Simon, Philipp W

    2016-01-01

    Studies of gene flow between crops and their wild relatives have implications for both management practices for cultivation and understanding the risk of transgene escape. These types of studies may also yield insight into population dynamics and the evolutionary consequences of gene flow for wild relatives of crop species. Moreover, the comparison of genetic markers with different modes of inheritance, or transmission, such as those of the nuclear and chloroplast genomes, can inform the relative risk of transgene escape via pollen versus seed. Here we investigate patterns of gene flow between crop and wild carrot, Daucus carota (Apiaceae) in two regions of the United States. We employed 15 nuclear simple sequence repeat (SSR) markers and one polymorphic chloroplast marker. Further, we utilized both conventional population genetic metrics along with Shannon diversity indices as the latter have been proposed to be more sensitive to allele frequency changes and differentiation. We found that populations in both regions that were proximal to crop fields showed lower levels of differentiation to the crops than populations that were located farther away. We also found that Shannon measures were more sensitive to differences in both genetic diversity and differentiation in our study. Finally, we found indirect evidence of paternal transmission of chloroplast DNA and accompanying lower than expected levels of chloroplast genetic structure amongst populations as might be expected if chloroplast DNA genes flow through both seed and pollen. Our findings of substantial gene flow for both nuclear and chloroplast markers demonstrate the efficiency of both pollen and seed to transfer genetic information amongst populations of carrot.

  19. Gene flow in Prunus species in the context of novel trait risk assessment.

    PubMed

    Cici, S Zahra H; Van Acker, Rene C

    2010-01-01

    Prunus species are important commercial fruit (plums, apricot, peach and cherries), nut (almond) and ornamental trees cultivated broadly worldwide. This review compiles information from available literature on Prunus species in regard to gene flow and hybridization within this complex of species. The review serves as a resource for environmental risk assessment related to pollen mediated gene flow and the release of transgenic Prunus. It reveals that Prunus species, especially plums and cherries show high potential for transgene flow. A range of characteristics including; genetic diversity, genetic bridging capacity, inter- and intra-specific genetic compatibility, self sterility (in most species), high frequency of open pollination, insect assisted pollination, perennial nature, complex phenotypic architecture (canopy height, heterogeneous crown, number of flowers produced in an individual plant), tendency to escape from cultivation, and the existence of ornamental and road side Prunus species suggest that there is a tremendous and complicated ability for pollen mediated gene movement among Prunus species. Ploidy differences among Prunus species do not necessarily provide genetic segregation. The characteristics of Prunu s species highlight the complexity of maintaining coexistence between GM and non-GM Prunus if there were commercial production of GM Prunus species. The results of this review suggest that the commercialization of one GM Prunus species can create coexistence issues for commercial non-GM Prunus production. Despite advances in molecular markers and genetic analysis in agroecology, there remains limited information on the ecological diversity, metapopulation nature, population dynamics, and direct measures of gene flow among different subgenera represented in the Prunus genus. Robust environmental impact, biosafety and coexistence assessments for GM Prunus species will require better understanding of the mechanisms of gene flow and hybridization

  20. Genetic drift and gene flow in post-famine Ireland.

    PubMed

    Relethford, J H; Crawford, M H; Blangero, J

    1997-08-01

    This study examines the genetic impact of the Great Famine (1846-1851) on the regional genetic structure of Ireland. The Great Famine resulted in a rapid decrease in population size throughout Ireland in a short period of time, increasing the possibility of genetic drift. Our study is based on migration and anthropometric data collected originally in the 1930s from 7211 adult Irish males. These data were subdivided into three time periods defined by year of birth: 1861-1880, 1881-1900, and 1901-1920. Within each time period the data were further subdivided into six geographic regions of Ireland. Estimates of Wright's FST were calculated from parent-offspring migration data and from 17 anthropometric variables (10 head measures, 7 body measures). Over time, the average population size decreased, but average rates of migration increased. The estimates of FST at equilibrium from migration matrix analysis suggest that the net effect of these opposite effects is a reduction in among-group variation. Closer examination shows that within each time period the rate of convergence to equilibrium is slow, meaning that the expected levels of genetic homogeneity revealed from migration matrix analysis are not likely to be seen over short intervals of time. Estimates of FST from anthropometric data show either relatively little change in microdifferentiation or some increase, depending on which variables are analyzed. Investigation of a simple model of demographic and genetic change shows that, given the demographic changes in post-Famine Ireland, FST could in theory increase, decrease, or remain the same over short intervals of time. Overall, the Great Famine appears to have had minimal impact on the genetic structure of Ireland on a regional level. Comparison with studies focusing on local genetic structure shows the opposite. It appears that the level of genetic impact depends strongly on the level of analysis; local populations are affected to a greater extent by demographic

  1. Detection of differentially expressed genes in broiler pectoralis major muscle affected by White Striping - Wooden Breast myopathies.

    PubMed

    Zambonelli, Paolo; Zappaterra, Martina; Soglia, Francesca; Petracci, Massimiliano; Sirri, Federico; Cavani, Claudio; Davoli, Roberta

    2016-12-01

    White Striping and Wooden Breast (WS/WB) are abnormalities increasingly occurring in the fillets of high breast yield and growth rate chicken hybrids. These defects lead to consistent economic losses for poultry meat industry, as affected broiler fillets present an impaired visual appearance that negatively affects consumers' acceptability. Previous studies have highlighted in affected fillets a severely damaged muscle, showing profound inflammation, fibrosis, and lipidosis. The present study investigated the differentially expressed genes and pathways linked to the compositional changes observed in WS/WB breast muscles, in order to outline a more complete framework of the gene networks related to the occurrence of this complex pathological picture. The biochemical composition was performed on 20 pectoralis major samples obtained from high breast yield and growth rate broilers (10 affected vs. 10 normal) and 12 out of the 20 samples were used for the microarray gene expression profiling (6 affected vs. 6 normal). The obtained results indicate strong changes in muscle mineral composition, coupled to an increased deposition of fat. In addition, 204 differentially expressed genes (DEG) were found: 102 up-regulated and 102 down-regulated in affected breasts. The gene expression pathways found more altered in WS/WB muscles are those related to muscle development, polysaccharide metabolic processes, proteoglycans synthesis, inflammation, and calcium signaling pathway. On the whole, the findings suggest that a multifactorial and complex etiology is associated with the occurrence of WS/WB muscle abnormalities, contributing to further defining the transcription patterns associated with these myopathies.

  2. Overexpression of a glutamine synthetase gene affects growth and development in sorghum.

    PubMed

    Urriola, Jazmina; Rathore, Keerti S

    2015-06-01

    Nitrogen is a primary macronutrient in plants, and nitrogen fertilizers play a critical role in crop production and yield. In this study, we investigated the effects of overexpressing a glutamine synthetase (GS) gene on nitrogen metabolism, and plant growth and development in sorghum (Sorghum bicolor L., Moench). GS catalyzes the ATP dependent reaction between ammonia and glutamate to produce glutamine. A 1,071 bp long coding sequence of a sorghum cytosolic GS gene (Gln1) under the control of the maize ubiquitin (Ubq) promoter was introduced into sorghum immature embryos by Agrobacterium-mediated transformation. Progeny of the transformants exhibited higher accumulation of the Gln1 transcripts and up to 2.2-fold higher GS activity compared to the non-transgenic controls. When grown under optimal nitrogen conditions, these Gln1 transgenic lines showed greater tillering and up to 2.1-fold increase in shoot vegetative biomass. Interestingly, even under greenhouse conditions, we observed a seasonal component to both these parameters and the grain yield. Our results, showing that the growth and development of sorghum Gln1 transformants are also affected by N availability and other environmental factors, suggest complexity of the relationship between GS activity and plant growth and development. A better understanding of other control points and the ability to manipulate these will be needed to utilize the transgenic technology to improve nitrogen use efficiency of crop plants.

  3. Deletion of the homeobox gene PRX-2 affects fetal but not adult fibroblast wound healing responses.

    PubMed

    White, Philip; Thomas, David W; Fong, Steven; Stelnicki, Eric; Meijlink, Fritz; Largman, Corey; Stephens, Phil

    2003-01-01

    The phenotype of fibroblasts repopulating experimental wounds in vivo has been shown to influence both wound healing responses and clinical outcome. Recent studies have demonstrated that the human homeobox gene PRX-2 is strongly upregulated in fibroblasts within fetal, but not adult, mesenchymal tissues during healing. Differential homeobox gene expression by fibroblasts may therefore be important in mediating the scarless healing exhibited in early fetal wounds. RNase protection analysis demonstrated that murine Prx-2 expression was involved in fetal but not adult wound healing responses in vitro. Using fibroblasts established from homozygous mutant (Prx-2-/-) and wild-type (Prx-2+/+) murine skin tissues it was demonstrated that Prx-2 affected a number of fetal fibroblastic responses believed to be important in mediating scarless healing in vivo; namely cellular proliferation, extracellular matrix reorganization, and matrix metalloproteinase 2 and hyaluronic acid production. These data demonstrate how Prx-2 may contribute to the regulation of fetal, but not adult, fibroblasts and ultimately the wound healing phenotype. This study provides further evidence for the importance of homeobox transcription factors in the regulation of scarless wound healing. A further understanding of these processes will, it is hoped, enable the targeting of specific therapies in wound healing, both to effect scarless healing and to stimulate healing in chronic, nonhealing wounds such as venous leg ulcers.

  4. Low intensity infrared laser affects expression of oxidative DNA repair genes in mitochondria and nucleus

    NASA Astrophysics Data System (ADS)

    Fonseca, A. S.; Magalhães, L. A. G.; Mencalha, A. L.; Geller, M.; Paoli, F.

    2014-11-01

    Practical properties and physical characteristics of low intensity lasers have made possible their application to treat soft tissue diseases. Excitation of intracellular chromophores by red and infrared radiation at low energy fluences with increase of mitochondrial metabolism is the basis of the biostimulation effect but free radicals can be produced. DNA lesions induced by free radicals are repaired by the base excision repair pathway. In this work, we evaluate the expression of POLγ and APEX2 genes related to repair of mitochondrial and nuclear DNA, respectively. Skin and muscle tissue of Wistar rats were exposed to low intensity infrared laser at different fluences. One hour and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of POLγ and APEX2 mRNA expression by real time quantitative polymerase chain reaction. Skin and muscle tissue of Wistar rats exposed to laser radiation show different expression of POLγ and APEX2 mRNA depending of the fluence and time after exposure. Our study suggests that a low intensity infrared laser affects expression of genes involved in repair of oxidative lesions in mitochondrial and nuclear DNA.

  5. Disruption of a DNA topoisomerase I gene affects morphogenesis in Arabidopsis.

    PubMed

    Takahashi, Taku; Matsuhara, Shio; Abe, Mitsutomo; Komeda, Yoshibumi

    2002-09-01

    The genesis of phyllotaxis, which often is associated with the Fibonacci series of numbers, is an old unsolved puzzle in plant morphogenesis. Here, we show that disruption of an Arabidopsis topoisomerase (topo) I gene named TOP1alpha affects phyllotaxis and plant architecture. The divergence angles and internode lengths between two successive flowers were more random in the top1alpha mutant than in the wild type. The top1alpha plants sporadically produced multiple flowers from one node, and the number of floral organ primordia often was different. The mutation also caused the twisting of inflorescences and individual flowers and the serration of leaf margins. These morphological abnormalities indicate that TOP1alpha may play a critical role in the maintenance of a regular pattern of organ initiation. The top1alpha mutant transformed with the RNA interference construct for TOP1beta, another topo I gene arrayed tandemly with TOP1alpha, was found to be lethal at young seedling stages, suggesting that topo I activity is essential in plants.

  6. An analysis of the mode of gene action affecting pupa weight in Tribolium castaneum.

    PubMed

    Goodwill, R

    1975-02-01

    Triple-testcross experiments (Kearsey and Jinks 1968) were employed to investigate the mode of gene action affecting pupa weight in Tribolium castaneum. Their experimental design involves two inbred lines, the F1 progeny and a segregating population derived from the cross of the inbred lines. In the present experiments, four segregating populations were used. These populations included the F2 generation, a select line (SEL) and two relaxed select lines (RSI and RSII). In addition, all possible reciprocal crosses were made among the RSI, RSII, and SEL populations. It was observed that: (1) additive, dominant and epistatic gene effects all made significant contributions to the pupa weight of the progeny from all four segregating populations: (2) there was no evidence of either accumulation of epistasis as a result of selection in the SEL population or decline in epistasis as a result of removing selection pressure from the RSI and RSII populations; and (3) significant negative heterosis and maternal effects contributed to the pupa weight of the crossbred progeny of the RSI, RSII and SEL populations.

  7. Bovine growth hormone gene polymorphism affects stress response in Japanese Black cattle.

    PubMed

    Tachi, Noriko; Tanaka, Sigefumi; Ardiyanti, Astrid; Katoh, Kazuo; Sato, Shusuke

    2014-06-01

    We investigate the associations between growth hormone (GH) gene polymorphism and behavioral and physiological responses to stressors and learning ability in Japanese Black cattle. Flight distance test was conducted in the first experiment. Steers with haplotype C of GH gene polymorphism avoided human approaches at a significantly greater distance than ones without haplotype C (C: 1.9 ± 0.9, non-C: 1.0 ± 0.2 m, P < 0.05). An open-field test was conducted in the second experiment. Behavioral responses did not differ significantly between steers with and without haplotype C. Increases of heart rates to dropping of iron pipes was significantly higher in steers with haplotype C (C:161.7 ± 21.8, non-C:130.7 ± 31.3%, P < 0.05). Despite basal serum concentrations not being different between steers with and without haplotype C, serum cortisol in blood sampling immediately after severe confinement in a race tended to be higher in steers with haplotype C (P = 0.1). The maze test was conducted as the third experiment. There was no difference in performance in the maze test between steers with and without haplotype C. It is concluded that genetic polymorphism of GH may affect stress responses through GH concentration in steers.

  8. Do circadian genes and ambient temperature affect substrate-borne signalling during Drosophila courtship?

    PubMed Central

    Medina, Izarne; Casal, José; Fabre, Caroline C. G.

    2015-01-01

    ABSTRACT Courtship vibratory signals can be air-borne or substrate-borne. They convey distinct and species-specific information from one individual to its prospective partner. Here, we study the substrate-borne vibratory signals generated by the abdominal quivers of the Drosophila male during courtship; these vibrations travel through the ground towards courted females and coincide with female immobility. It is not known which physical parameters of the vibrations encode the information that is received by the females and induces them to pause. We examined the intervals between each vibratory pulse, a feature that was reported to carry information for animal communication. We were unable to find evidence of periodic variations in the lengths of these intervals, as has been reported for fly acoustical signals. Because it was suggested that the genes involved in the circadian clock may also regulate shorter rhythms, we search for effects of period on the interval lengths. Males that are mutant for the period gene produced vibrations with significantly altered interpulse intervals; also, treating wild type males with constant light results in similar alterations to the interpulse intervals. Our results suggest that both the clock and light/dark cycles have input into the interpulse intervals of these vibrations. We wondered if we could alter the interpulse intervals by other means, and found that ambient temperature also had a strong effect. However, behavioural analysis suggests that only extreme ambient temperatures can affect the strong correlation between female immobility and substrate-borne vibrations. PMID:26519517

  9. Age affects gene expression in mouse spermatogonial stem/progenitor cells.

    PubMed

    Kokkinaki, Maria; Lee, Tin-Lap; He, Zuping; Jiang, Jiji; Golestaneh, Nady; Hofmann, Marie-Claude; Chan, Wai-Yee; Dym, Martin

    2010-06-01

    Spermatogenesis in man starts with spermatogonial stem cells (SSCs), and leads to the production of sperm in approximately 64 days, common to old and young men. Sperm from elderly men are functional and able to fertilize eggs and produce offspring, even though daily sperm production is more than 50% lower and damage to sperm DNA is significantly higher in older men than in those who are younger. Our hypothesis is that the SSC/spermatogonial progenitors themselves age. To test this hypothesis, we studied the gene expression profile of mouse SSC/progenitor cells at several ages using microarrays. After sequential enzyme dispersion, we purified the SSC/progenitors with immunomagnetic cell sorting using an antibody to GFRA1, a known SSC/progenitor cell marker. RNA was isolated and used for the in vitro synthesis of amplified and labeled cRNAs that were hybridized to the Affymetrix mouse genome microarrays. The experiments were repeated twice with different cell preparations, and statistically significant results are presented. Quantitative RT-PCR analysis was used to confirm the microarray results. Comparison of four age groups (6 days, 21 days, 60 days, and 8 months old) showed a number of genes that were expressed specifically in the older mice. Two of them (i.e. Icam1 and Selp) have also been shown to mark aging hematopoietic stem cells. On the other hand, the expression levels of the genes encoding the SSC markers Gfra1 and Plzf did not seem to be significantly altered by age, indicating that age affects only certain SSC/progenitor properties.

  10. Arabidopsis flower specific defense gene expression patterns affect resistance to pathogens

    PubMed Central

    Ederli, Luisa; Dawe, Adam; Pasqualini, Stefania; Quaglia, Mara; Xiong, Liming; Gehring, Chris

    2015-01-01

    We investigated whether the Arabidopsis flower evolved protective measures to increase reproductive success. Firstly, analyses of available transcriptome data show that the most highly expressed transcripts in the closed sepal (stage 12) are enriched in genes with roles in responses to chemical stimuli and cellular metabolic processes. At stage 15, there is enrichment in transcripts with a role in responses to biotic stimuli. Comparative analyses between the sepal and petal in the open flower mark an over-representation of transcripts with a role in responses to stress and catalytic activity. Secondly, the content of the biotic defense-associated phytohormone salicylic acid (SA) in sepals and petals is significantly higher than in leaves. To understand whether the high levels of stress responsive transcripts and the higher SA content affect defense, wild-type plants (Col-0) and transgenic plants defective in SA accumulation (nahG) were challenged with the biotrophic fungus Golovinomyces cichoracearum, the causal agent of powdery mildew, and the necrotrophic fungus Botrytis cinerea. NahG leaves were more sensitive than those of Col-0, suggesting that in leaves SA has a role in the defense against biotrophs. In contrast, sepals and petals of both genotypes were resistant to G. cichoracearum, indicating that in the flower, resistance to the biotrophic pathogen is not critically dependent on SA, but likely dependent on the up-regulation of stress-responsive genes. Since sepals and petals of both genotypes are equally susceptible to B. cinerea, we conclude that neither stress-response genes nor increased SA accumulation offers protection against the necrotrophic pathogen. These results are interpreted in the light of the distinctive role of the flower and we propose that in the early stages, the sepal may act as a chemical defense barrier of the developing reproductive structures against biotrophic pathogens. PMID:25750645

  11. Autism Associated Haplotype Affects the Regulation of the Homeobox Gene, ENGRAILED 2

    PubMed Central

    Benayed, Rym; Choi, Jiyeon; Matteson, Paul G; Gharani, Neda; Kamdar, Silky; Brzustowicz, Linda M; Millonig, James H

    2009-01-01

    Background Association analysis identified the homeobox transcription factor, ENGRAILED 2 (EN2), as a possible Autism Spectrum Disorder (ASD) susceptibility gene (ASD [MIM 608636]; EN2 [MIM 131310]). The common alleles (underlined) of two intronic SNPs, rs1861972 (A/G) and rs1861973 (C/T), are over-transmitted to affected individuals both singly and as a haplotype in three separate datasets (518 families total, haplotype P=0.00000035). Methods: Further support that EN2 is a possible ASD susceptibility gene requires the identification of a risk allele, a DNA variant that is consistently associated with ASD but is also functional. To identify possible risk alleles, additional association analysis and LD mapping were performed. Candidate polymorphisms were then tested for functional differences by luciferase (luc) reporter transfections and Electrophoretic Mobility Shift Assays (EMSAs). Results: Association analysis of additional EN2 polymorphisms and LD mapping with Hapmap SNPs identified the rs1861972-rs1861973 haplotype as the most appropriate candidate to test for functional differences. Luc reporters for the two common rs1861972-rs1861973 haplotypes (A-C and G-T) were then transfected into human and rat cell lines as well as primary mouse neuronal cultures. In all cases the A-C haplotype resulted in a significant increase in luc levels (P<.005). EMSAs were then performed and nuclear factors bound specifically to the A and C alleles of both SNPs. Conclusions: These data indicate the AC haplotype is functional and together with the association and LD mapping results support EN2 as a likely ASD susceptibility gene and the A-C haplotype as a possible risk allele. PMID:19615670

  12. The PSORS1 locus gene CCHCR1 affects keratinocyte proliferation in transgenic mice.

    PubMed

    Tiala, Inkeri; Wakkinen, Janica; Suomela, Sari; Puolakkainen, Pauli; Tammi, Raija; Forsberg, Sofi; Rollman, Ola; Kainu, Kati; Rozell, Björn; Kere, Juha; Saarialho-Kere, Ulpu; Elomaa, Outi

    2008-04-01

    The CCHCR1 gene (Coiled-Coil alpha-Helical Rod protein 1) within the major psoriasis susceptibility locus PSORS1 is a plausible candidate gene for the risk effect. We have previously generated transgenic mice overexpressing either the psoriasis-associated risk allele CCHCR1*WWCC or the normal allele of CCHCR1. All transgenic CCHCR1 mice appeared phenotypically normal, but exhibited altered expression of genes relevant to the pathogenesis of psoriasis, including upregulation of hyperproliferation markers keratins 6, 16 and 17. Here, we challenged the skin of CCHCR1 transgenic mice with wounding or 12-O-tetradecanoyl-13-acetate (TPA), treatments able to induce epidermal hyperplasia and proliferation that both are hallmarks of psoriasis. These experiments revealed that CCHCR1 regulates keratinocyte proliferation. Early wound healing on days 1 and 4 was delayed, and TPA-induced epidermal hyperproliferation was less pronounced in mice with the CCHCR1*WWCC risk allele than in mice with the normal allele or in wild-type animals. Finally, we demonstrated that overexpression of CCHCR1 affects basal keratinocyte proliferation in mice; CCHCR1*WWCC mice had less proliferating keratinocytes than the non-risk allele mice. Similarly, keratinocytes isolated from risk allele mice proliferated more slowly in culture than wild-type cells when measured by BrdU labeling and ELISA. Our data show that CCHCR1 may function as a negative regulator of keratinocyte proliferation. Thus, aberrant function of CCHCR1 may lead to abnormal keratinocyte proliferation which is a key feature of psoriatic epidermis.

  13. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    SciTech Connect

    Puddu, A.; Storace, D.; Odetti, P.; Viviani, G.L.

    2010-04-23

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic {beta}-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation prevents FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.

  14. The non-psychoactive plant cannabinoid, cannabidiol affects cholesterol metabolism-related genes in microglial cells.

    PubMed

    Rimmerman, Neta; Juknat, Ana; Kozela, Ewa; Levy, Rivka; Bradshaw, Heather B; Vogel, Zvi

    2011-08-01

    Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that is clinically used in a 1:1 mixture with the psychoactive cannabinoid Δ(9)-tetrahydrocannabinol (THC) for the treatment of neuropathic pain and spasticity in multiple sclerosis. Our group previously reported that CBD exerts anti-inflammatory effects on microglial cells. In addition, we found that CBD treatment increases the accumulation of the endocannabinoid N-arachidonoyl ethanolamine (AEA), thus enhancing endocannabinoid signaling. Here we proceeded to investigate the effects of CBD on the modulation of lipid-related genes in microglial cells. Cell viability was tested using FACS analysis, AEA levels were measured using LC/MS/MS, gene array analysis was validated with real-time qPCR, and cytokine release was measured using ELISA. We report that CBD significantly upregulated the mRNAs of the enzymes sterol-O-acyl transferase (Soat2), which synthesizes cholesteryl esters, and of sterol 27-hydroxylase (Cyp27a1). In addition, CBD increased the mRNA of the lipid droplet-associated protein, perilipin2 (Plin2). Moreover, we found that pretreatment of the cells with the cholesterol chelating agent, methyl-β-cyclodextrin (MBCD), reversed the CBD-induced increase in Soat2 mRNA but not in Plin2 mRNA. Incubation with AEA increased the level of Plin2, but not of Soat2 mRNA. Furthermore, MBCD treatment did not affect the reduction by CBD of the LPS-induced release of the proinflammatory cytokine IL-1β. CBD treatment modulates cholesterol homeostasis in microglial cells, and pretreatment with MBCD reverses this effect without interfering with CBD's anti-inflammatory effects. The effects of the CBD-induced increase in AEA accumulation on lipid-gene expression are discussed.

  15. Rainfall intensity-duration threshold and erosion competence of debris flows in four areas affected by the 2008 Wenchuan earthquake

    NASA Astrophysics Data System (ADS)

    Ma, Chao; Wang, Yujie; Hu, Kaiheng; Du, Cui; Yang, Wentao

    2017-04-01

    Debris flows in the Wenchuan seismic region have caused human casualties and severe damage to local infrastructure. Consequently, the triggering rainfall threshold and erosion capability of post-quake debris flows has become an important research topic worldwide. In this study, we analyze five years of rainstorms and debris flow data from four typical earthquake-hit regions in order to examine the local rainfall intensity-duration (I-D) thresholds and debris supply conditions. It was found that debris flow events in the four seismic areas exhibited different I-D thresholds, related to local mean annual hourly precipitation and debris flow supply conditions. The I-D thresholds, normalized by mean annual maximum hourly rainfall, illustrate that post-quake rainfall thresholds were reduced by at least 30% compared to pre-quake levels. Regression analysis revealed a clear linear relationship between the debris supply condition and the empirical coefficient, α, of the I-D equation. This means that rainfall thresholds of post-quake debris flows in different areas are distinctive and are strongly affected by sediment volume. Different relationships between the entrainment rate and the debris volume per watershed area and its product with the channel gradient illustrate that stream sediments in Yingxiu and Dujiangyan are more eroded, and that local debris flows might persist over a shorter time than in Qingping and Beichuan in the future. Finally, debris flows in the studied area exhibit no tendency of reduction in erosion competence entrainment rate, as found in Taiwan, which might be indicative of a higher entrainment rate persisting for a longer time.

  16. Numerical Investigation of Blade Lean and Sweep affecting Secondary Flows in an Axial Expansion Turbine

    NASA Astrophysics Data System (ADS)

    Neipp, A.; Riedelbauch, S.

    2016-11-01

    Based on an axial expansion turbine used for energy recovery from working fluids an automated CFD-flow optimization was performed to increase the turbine efficiency without narrowing the operating range. The optimization results showed that even small changes in the optimization target had a significant influence on the lean and sweep of the new blade designs. The resulting blade shapes were extraordinary. The lean and sweep resembled more that of thermal turbomachinery than hydraulic machinery. It became clear that the special blade shapes were a result of the very low aspect ratio of the turbine and the resulting large influence of secondary flows. The blade lean and sweep induce secondary flow structures which are of decisive importance for the turbine performance. The simulation results showed that positive compound lean increases the efficiency and positive compound sweep improves the cavitation behavior of the investigated axial expansion turbine. However the complexity of the occurring secondary flows make an universally valid statement on the effect of blade lean and sweep on the flow behavior of an axial turbine impossible.

  17. The shock-vortex interaction patterns affected by vortex flow regime and vortex models

    NASA Astrophysics Data System (ADS)

    Chang, Keun-Shik; Barik, Hrushikesh; Chang, Se-Myong

    2009-08-01

    We have used a third-order essentially non-oscillatory method to obtain numerical shadowgraphs for investigation of shock-vortex interaction patterns. To search different interaction patterns, we have tested two vortex models (the composite vortex model and the Taylor vortex model) and as many as 47 parametric data sets. By shock-vortex interaction, the impinging shock is deformed to a S-shape with leading and lagging parts of the shock. The vortex flow is locally accelerated by the leading shock and locally decelerated by the lagging shock, having a severely elongated vortex core with two vertices. When the leading shock escapes the vortex, implosion effect creates a high pressure in the vertex area where the flow had been most expanded. This compressed region spreads in time with two frontal waves, an induced expansion wave and an induced compression wave. They are subsonic waves when the shock-vortex interaction is weak but become supersonic waves for strong interactions. Under a intermediate interaction, however, an induced shock wave is first developed where flow speed is supersonic but is dissipated where the incoming flow is subsonic. We have identified three different interaction patterns that depend on the vortex flow regime characterized by the shock-vortex interaction.

  18. Affected Kindred Analysis of Human X Chromosome Exomes to Identify Novel X-Linked Intellectual Disability Genes

    PubMed Central

    Niranjan, Tejasvi S.; Skinner, Cindy; May, Melanie; Turner, Tychele; Rose, Rebecca; Stevenson, Roger; Schwartz, Charles E.; Wang, Tao

    2015-01-01

    X-linked Intellectual Disability (XLID) is a group of genetically heterogeneous disorders caused by mutations in genes on the X chromosome. Deleterious mutations in ~10% of X chromosome genes are implicated in causing XLID disorders in ~50% of known and suspected XLID families. The remaining XLID genes are expected to be rare and even private to individual families. To systematically identify these XLID genes, we sequenced the X chromosome exome (X-exome) in 56 well-established XLID families (a single affected male from 30 families and two affected males from 26 families) using an Agilent SureSelect X-exome kit and the Illumina HiSeq 2000 platform. To enrich for disease-causing mutations, we first utilized variant filters based on dbSNP, the male-restricted portions of the 1000 Genomes Project, or the Exome Variant Server datasets. However, these databases present limitations as automatic filters for enrichment of XLID genes. We therefore developed and optimized a strategy that uses a cohort of affected male kindred pairs and an additional small cohort of affected unrelated males to enrich for potentially pathological variants and to remove neutral variants. This strategy, which we refer to as Affected Kindred/Cross-Cohort Analysis, achieves a substantial enrichment for potentially pathological variants in known XLID genes compared to variant filters from public reference databases, and it has identified novel XLID candidate genes. We conclude that Affected Kindred/Cross-Cohort Analysis can effectively enrich for disease-causing genes in rare, Mendelian disorders, and that public reference databases can be used effectively, but cautiously, as automatic filters for X-linked disorders. PMID:25679214

  19. Affected kindred analysis of human X chromosome exomes to identify novel X-linked intellectual disability genes.

    PubMed

    Niranjan, Tejasvi S; Skinner, Cindy; May, Melanie; Turner, Tychele; Rose, Rebecca; Stevenson, Roger; Schwartz, Charles E; Wang, Tao

    2015-01-01

    X-linked Intellectual Disability (XLID) is a group of genetically heterogeneous disorders caused by mutations in genes on the X chromosome. Deleterious mutations in ~10% of X chromosome genes are implicated in causing XLID disorders in ~50% of known and suspected XLID families. The remaining XLID genes are expected to be rare and even private to individual families. To systematically identify these XLID genes, we sequenced the X chromosome exome (X-exome) in 56 well-established XLID families (a single affected male from 30 families and two affected males from 26 families) using an Agilent SureSelect X-exome kit and the Illumina HiSeq 2000 platform. To enrich for disease-causing mutations, we first utilized variant filters based on dbSNP, the male-restricted portions of the 1000 Genomes Project, or the Exome Variant Server datasets. However, these databases present limitations as automatic filters for enrichment of XLID genes. We therefore developed and optimized a strategy that uses a cohort of affected male kindred pairs and an additional small cohort of affected unrelated males to enrich for potentially pathological variants and to remove neutral variants. This strategy, which we refer to as Affected Kindred/Cross-Cohort Analysis, achieves a substantial enrichment for potentially pathological variants in known XLID genes compared to variant filters from public reference databases, and it has identified novel XLID candidate genes. We conclude that Affected Kindred/Cross-Cohort Analysis can effectively enrich for disease-causing genes in rare, Mendelian disorders, and that public reference databases can be used effectively, but cautiously, as automatic filters for X-linked disorders.

  20. Effects of gene flow on phenotype matching between two varieties of Joshua tree (Yucca brevifolia; Agavaceae) and their pollinators.

    PubMed

    Yoder, J B; Smith, C I; Rowley, D J; Flatz, R; Godsoe, W; Drummond, C; Pellmyr, O

    2013-06-01

    In animal-pollinated plants, local adaptation to pollinator behaviour or morphology can restrict gene flow among plant populations; but gene flow may also prevent divergent adaptation. Here, we examine possible effects of gene flow on plant-pollinator trait matching in two varieties of Joshua tree (Agavaceae: Yucca brevifolia). The two varieties differ in strikingly in floral morphology, which matches differences in the morphology of their pollinators. However, this codivergence is not present at a smaller scale: within the two varieties of Joshua tree, variation in floral morphology between demes is not correlated with differences in moth morphology. We use population genetic data for Joshua tree and its pollinators to test the hypotheses that gene flow between Joshua tree populations is structured by pollinator specificity, and that gene flow within the divergent plant-pollinator associations 'swamps' fine-scale coadaptation. Our data show that Joshua tree populations are structured by pollinator association, but the two tree varieties are only weakly isolated - meaning that their phenotypic differences are maintained in the face of significant gene flow. Coalescent analysis of gene flow between the two Joshua tree types suggests that it may be shaped by asymmetric pollinator specificity, which has been observed in a narrow zone of sympatry. Finally, we find evidence suggesting that gene flow among Joshua tree sites may shape floral morphology within one plant-pollinator association, but not the other.

  1. METHODS FOR DETERMINING EXPOSURE TO AND POTENTIAL ECOLOGICAL EFFECTS OF GENE FLOW FROM GENETICALLY MODIFIED CROPS TO COMPATIBLE RELATIVES

    EPA Science Inventory

    SCIENCE QUESTIONS:

    -Does gene flow occur from genetically modified (GM) crop plants to compatible plants?

    -How can it be measured?

    -Are there ecological consequences of GM crop gene flow to plant communities?



    RESEARCH:

    The objectives ...

  2. Dopamine Transporter Gene Variant Affecting Expression in Human Brain is Associated with Bipolar Disorder

    PubMed Central

    Pinsonneault, Julia K; Han, Dawn D; Burdick, Katherine E; Kataki, Maria; Bertolino, Alessandro; Malhotra, Anil K; Gu, Howard H; Sadee, Wolfgang

    2011-01-01

    The gene encoding the dopamine transporter (DAT) has been implicated in CNS disorders, but the responsible polymorphisms remain uncertain. To search for regulatory polymorphisms, we measured allelic DAT mRNA expression in substantia nigra of human autopsy brain tissues, using two marker SNPs (rs6347 in exon 9 and rs27072 in the 3′-UTR). Allelic mRNA expression imbalance (AEI), an indicator of cis-acting regulatory polymorphisms, was observed in all tissues heterozygous for either of the two marker SNPs. SNP scanning of the DAT locus with AEI ratios as the phenotype, followed by in vitro molecular genetics studies, demonstrated that rs27072 C>T affects mRNA expression and translation. Expression of the minor T allele was dynamically regulated in transfected cell cultures, possibly involving microRNA interactions. Both rs6347 and rs3836790 (intron8 5/6 VNTR) also seemed to affect DAT expression, but not the commonly tested 9/10 VNTR in the 3′UTR (rs28363170). All four polymorphisms (rs6347, intron8 5/6 VNTR, rs27072 and 3′UTR 9/10 VNTR) were genotyped in clinical cohorts, representing schizophrenia, bipolar disorder, depression, and controls. Only rs27072 was significantly associated with bipolar disorder (OR=2.1, p=0.03). This result was replicated in a second bipolar/control population (OR=1.65, p=0.01), supporting a critical role for DAT regulation in bipolar disorder. PMID:21525861

  3. Misexpression of BRE gene in the developing chick neural tube affects neurulation and somitogenesis.

    PubMed

    Wang, Guang; Li, Yan; Wang, Xiao-Yu; Chuai, Manli; Yeuk-Hon Chan, John; Lei, Jian; Münsterberg, Andrea; Lee, Kenneth Ka Ho; Yang, Xuesong

    2015-03-01

    The brain and reproductive expression (BRE) gene is expressed in numerous adult tissues and especially in the nervous and reproductive systems. However, little is known about BRE expression in the developing embryo or about its role in embryonic development. In this study, we used in situ hybridization to reveal the spatiotemporal expression pattern for BRE in chick embryo during development. To determine the importance of BRE in neurogenesis, we overexpressed BRE and also silenced BRE expression specifically in the neural tube. We established that overexpressing BRE in the neural tube indirectly accelerated Pax7(+) somite development and directly increased HNK-1(+) neural crest cell (NCC) migration and TuJ-1(+) neurite outgrowth. These altered morphogenetic processes were associated with changes in the cell cycle of NCCs and neural tube cells. The inverse effect was obtained when BRE expression was silenced in the neural tube. We also determined that BMP4 and Shh expression in the neural tube was affected by misexpression of BRE. This provides a possible mechanism for how altering BRE expression was able to affect somitogenesis, neurogenesis, and NCC migration. In summary, our results demonstrate that BRE plays an important role in regulating neurogenesis and indirectly somite differentiation during early chick embryo development.

  4. Increased cerebral blood flow during hypercapnia is not affected by lesion of the nucleus locus ceruleus

    SciTech Connect

    Harik, S.I.; Prado, R.; Busto, R.; Ginsberg, M.D.

    1986-11-01

    To test the hypothesis that the putative noradrenergic innervation of intraparenchymal cerebral blood vessels from the nucleus locus ceruleus mediates the vasodilatory response to hypercapnia, regional cerebral blood flow was measured by iodo-(/sup 14/C)antipyrine autoradiography in awake and restrained rats with unilateral 6-hydroxydopamine lesion of the nucleus locus ceruleus and in unlesioned control rats. Hypercapnia, induced by the inhalation of 5% or 8% CO/sub 2/ in air for 8 minutes caused a 2 to 5-fold increase in regional cerebral blood flow. However, despite a marked reduction of about 90% in cortical norepinephrine levels ipsilateral to the lesion, blood flow to the frontal and parietal cortex, hippocampus, striatum and cerebellum increased to the same extent in ipsilateral and contralateral regions. Thus, lesion of the locus ceruleus and the resultant depletion of endogenous cortical and hippocampal norepinephrine, does not influence the cerebrovascular response to hypercapnia.

  5. How the flow affects the phase behaviour and microstructure of polymer nanocomposites

    SciTech Connect

    Stephanou, Pavlos S.

    2015-02-14

    We address the issue of flow effects on the phase behaviour of polymer nanocomposite melts by making use of a recently reported Hamiltonian set of evolution equations developed on principles of non-equilibrium thermodynamics. To this end, we calculate the spinodal curve, by computing values for the nanoparticle radius as a function of the polymer radius-of-gyration for which the second derivative of the generalized free energy of the system becomes zero. Under equilibrium conditions, we recover the phase diagram predicted by Mackay et al. [Science 311, 1740 (2006)]. Under non-equilibrium conditions, we account for the extra terms in the free energy due to changes in the conformations of polymer chains by the shear flow. Overall, our model predicts that flow enhances miscibility, since the corresponding miscibility window opens up for non-zero shear rate values.

  6. Does tropicamide affect choroidal blood flow in humans? a laser Doppler flowmetry study

    NASA Astrophysics Data System (ADS)

    Palanisamy, Nithiyanantham; Riva, Charles E.; Rovati, Luigi; Cellini, Mauro; Gizzi, Corrado; Strobbe, Ernesto; Campos, Emilio C.

    2012-03-01

    The measurement of blood flow in the ocular fundus is of scientific and clinical interest. Investigating ocular blood flow in the choroid may be important to understand the pathogenesis of numerous ocular diseases, such as glaucoma or agerelated macular degeneration (AMD). Laser Doppler flowmetry (LDF) was applied to measure relative velocity, volume and flux of red blood cells in the tissues of human eye. Its main application lies in the possibility of assessing alterations in blood flow early in the course of diseases. The purpose of the present study was to investigate the effect of pupil dilatation with one drop of 1% tropicamide on blood flow in the foveal region of the choroid of the human fundus. The blood flow parameters were measured in 24 eyes during 30 minutes (one measurement in every 3 minutes) after the application of the drop. Since the Doppler parameters depend on the scattering geometry, which may change as the pupil dilates; an artificial pupil of 4mm in diameter was placed directly in front the eye. Following the administration of tropicamide the mean pupil diameter was increased from 3.29 mm to 8.25 mm (P<0.0001, Paired student t-test). In comparison to the baseline values, the data shows no significant increases were observed in velocity, volume, and flow with 4 mm artificial pupil (0.2%, 1.3%, 0.8% respectively) and a statistically significant increases were observed without artificial pupil (10.7%, 13.9%, 12.8% respectively) following the application of tropicamide.

  7. Perinatal exposure to diesel exhaust affects gene expression in mouse cerebrum.

    PubMed

    Tsukue, Naomi; Watanabe, Manabu; Kumamoto, Takayuki; Takano, Hirohisa; Takeda, Ken

    2009-11-01

    Many environmental toxins alter reproductive function and affect the central nervous system (CNS). Gonadal steroid hormones cause differentiation of neurons and affect brain function and behavior during the perinatal period, and the CNS is thought to be particularly susceptible to toxic insult during this period. It was, therefore, hypothesized that inhalation of diesel exhaust (DE) during the fetal or suckling period would disrupt the sexual differentiation of brain function in mice, and the effects of exposure to DE during the perinatal period on sexual differentiation related gene expression of the brain were investigated. In the fetal period exposure group, pregnant ICR mice were exposed to DE from 1.5 days post-coitum (dpc) until 16 dpc. In the neonatal period exposure group, dams and their offspring were exposed to DE from the day of birth [postnatal day (PND)-0] until PND-16. Then, the cerebrums of males and females at PND-2, -5, and -16 from both groups were analyzed for expression level of mRNA encoding stress-related proteins [cytochrome P450 1A1 (CYP1A1), heme oxygenase-1 (HO-1)] and steroid hormone receptors [estrogen receptor alpha (ER alpha), estrogen receptor beta (ER beta), androgen receptor (AR)]. Expression levels of ER alpha and ER beta mRNA were increased in the cerebrum of newborns in the DE exposure groups as well as mRNA for CYP1A1 and HO-1. Results indicate that perinatal exposure to DE during the critical period of sexual differentiation of the brain may affect endocrine function.

  8. The connectivity of Mytilus galloprovincialis in northern Morocco: A gene flow crossroads between continents

    NASA Astrophysics Data System (ADS)

    Ouagajjou, Yassine; Presa, Pablo

    2015-01-01

    Previous population genetic studies on the Mediterranean mussel Mytilus galloprovincialis have shown the existence of two well differentiated sets of populations around Southern European coasts, one Atlantic and another Mediterranean. Those two population pools are kept apart by the Almería - Oran Oceanographic Front (AOOF), an oceanographic discontinuity acting either as a cause of such differentiation or simply as a means of maintaining two historically differentiated gene pools. The role of the Gibraltar Strait at shaping mussel larval flow entering the Alboran Sea has been much less addressed, especially regarding mussel swarms inhabiting the northern coast of Morocco. The present study applies seven microsatellite markers to describing the genetic status of northern Moroccan populations of M. galloprovincialis and their relationship with the two well-characterized mussel gene pools from southern Europe. We show that the Atlantic Iberia gene pool extending continuously from the Cantabrian Sea (NE Iberia) to the Alboran Sea (SE Iberia) up to the AOOF is well differentiated from the Atlantic Moroccan mussel. Either an oceanographic barrier or a limited larval dispersal or both, are required to explain this unexpected intercontinental differentiation regarding previous studies on this species. Populations from Atlantic Morocco conformed to a single gene pool (FST ± SD = 0.012 ± 0.007) as opposed to the reported latitudinal barrier to gene flow at Cape Ghir in western Morocco. Additionally, a significant restriction to gene flow was observed between Atlantic Morocco and Alboran Morocco (FST ± SD = 0.038 ± 0.010) in contrast to the reported mussel genetic continuity along the Iberian coast up to AOOF. Three major mussel gene pools appear to meet at this crossroads between continents and between seas, namely, a Mediterranean European subpopulation, an Atlantic Iberia subpopulation including the Alboran Sea, and an Atlantic Morocco subpopulation. Knowledge on

  9. Extended gene map reveals tripartite motif, C-type lectin, and Ig superfamily type genes within a subregion of the chicken MHC-B affecting infectious disease.

    PubMed

    Shiina, Takashi; Briles, W Elwood; Goto, Ronald M; Hosomichi, Kazuyoshi; Yanagiya, Kazuyo; Shimizu, Sayoko; Inoko, Hidetoshi; Miller, Marcia M

    2007-06-01

    MHC haplotypes have a remarkable influence on whether tumors form following infection of chickens with oncogenic Marek's disease herpesvirus. Although resistance to tumor formation has been mapped to a subregion of the chicken MHC-B region, the gene or genes responsible have not been identified. A full gene map of the subregion has been lacking. We have expanded the MHC-B region gene map beyond the 92-kb core previously reported for another haplotype revealing the presence of 46 genes within 242 kb in the Red Jungle Fowl haplotype. Even though MHC-B is structured differently, many of the newly revealed genes are related to loci typical of the MHC in other species. Other MHC-B loci are homologs of genes found within MHC paralogous regions (regions thought to be derived from ancient duplications of a primordial immune defense complex where genes have undergone differential silencing over evolutionary time) on other chromosomes. Still others are similar to genes that define the NK complex in mammals. Many of the newly mapped genes display allelic variability and fall within the MHC-B subregion previously shown to affect the formation of Marek's disease tumors and hence are candidates for genes conferring resistance.

  10. Improving AFLP analysis of large-scale patterns of genetic variation--a case study with the Central African lianas Haumania spp (Marantaceae) showing interspecific gene flow.

    PubMed

    Ley, A C; Hardy, O J

    2013-04-01

    AFLP markers are often used to study patterns of population genetic variation and gene flow because they offer a good coverage of the nuclear genome, but the reliability of AFLP scoring is critical. To assess interspecific gene flow in two African rainforest liana species (Haumania danckelmaniana, H. liebrechtsiana) where previous evidence of chloroplast captures questioned the importance of hybridization and species boundaries, we developed new AFLP markers and a novel approach to select reliable bands from their degree of reproducibility. The latter is based on the estimation of the broad-sense heritability of AFLP phenotypes, an improvement over classical scoring error rates, which showed that the polymorphism of most AFLP bands was affected by a substantial nongenetic component. Therefore, using a quantitative genetics framework, we also modified an existing estimator of pairwise kinship coefficient between individuals correcting for the limited heritability of markers. Bayesian clustering confirms the recognition of the two Haumania species. Nevertheless, the decay of the relatedness between individuals of distinct species with geographic distance demonstrates that hybridization affects the nuclear genome. In conclusion, although we showed that AFLP markers might be substantially affected by nongenetic factors, their analysis using the new methods developed considerably advanced our understanding of the pattern of gene flow in our model species.

  11. Key design factors affecting microbial community composition and pathogenic organism removal in horizontal subsurface flow constructed wetlands.

    PubMed

    Morató, Jordi; Codony, Francesc; Sánchez, Olga; Pérez, Leonardo Martín; García, Joan; Mas, Jordi

    2014-05-15

    Constructed wetlands constitute an interesting option for wastewater reuse since high concentrations of contaminants and pathogenic microorganisms can be removed with these natural treatment systems. In this work, the role of key design factors which could affect microbial removal and wetland performance, such as granular media, water depth and season effect was evaluated in a pilot system consisting of eight parallel horizontal subsurface flow (HSSF) constructed wetlands treating urban wastewater from Les Franqueses del Vallès (Barcelona, Spain). Gravel biofilm as well as influent and effluent water samples of these systems were taken in order to detect the presence of bacterial indicators such as total coliforms (TC), Escherichia coli, fecal enterococci (FE), Clostridium perfringens, and other microbial groups such as Pseudomonas and Aeromonas. The overall microbial inactivation ratio ranged between 1.4 and 2.9 log-units for heterotrophic plate counts (HPC), from 1.2 to 2.2 log units for total coliforms (TC) and from 1.4 to 2.3 log units for E. coli. The presence of fine granulometry strongly influenced the removal of all the bacterial groups analyzed. This effect was significant for TC (p=0.009), E. coli (p=0.004), and FE (p=0.012). Shallow HSSF constructed wetlands were more effective for removing Clostridium spores (p=0.039), and were also more efficient for removing TC (p=0.011) and E. coli (p=0.013) when fine granulometry was used. On the other hand, changes in the total bacterial community from gravel biofilm were examined by using denaturing gradient gel electrophoresis (DGGE) and sequencing of polymerase chain reaction (PCR)-amplified fragments of the 16S rRNA gene recovered from DGGE bands. Cluster analysis of the DGGE banding pattern from the different wetlands showed that microbial assemblages separated according to water depth, and sequences of different phylogenetic groups, such as Alpha, Beta and Delta-Proteobacteria, Nitrospirae, Bacteroidetes

  12. Overland flow generation mechanisms affected by topsoil treatment: Application to soil conservation

    NASA Astrophysics Data System (ADS)

    González Paloma, Hueso; Juan Francisco, Martinez-Murillo; Damian, Ruiz-Sinoga Jose; Hanoch, Lavee

    2015-04-01

    Hortonian overland-flow is responsible for significant amounts of soil loss in Mediterranean geomorphological systems. Restoring the native vegetation is the most effective way to control runoff and sediment yield. During the seeding and plant establishment, vegetation cover may be better sustained if soil is amended with an external source. Four amendments were applied in an experimental set of plots: straw mulching (SM); mulch with chipped branches of Aleppo Pine (Pinus halepensis L.) (PM); TerraCotten hydroabsobent polymers (HP); sewage sludge (RU); and control (C). Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. This research demonstrates the role played by the treatments in overland flow generation mechanism (runoff, overland flow and soil moisture along the soil profile). The general overland flow characteristics showed that in the C plots the average overland flow was 8.0 ± 22.0 l per event, and the HP plots produced a similar mean value (8.1 ± 20.1 l). The average overland flow per event was significantly less for soil amended with SM, PM or RU (2.7 ± 8.3 l; 1.3 ± 3.5 l and 2.2 ± 5.9 l, respectively). There was a similar trend with respect to the maximum overland flow. The mean sediment yield per event was relatively high in the C and HP plots (8.6 ± 27.8 kg and 14.8 ± 43.4 kg, respectively), while significantly lower values were registered in the SM, PM and RU plots (0.4 ± 1.0 kg; 0.2 ± 0.3 kg and 0.2 ± 0.3 kg, respectively). Very similar trends were found for the maximum sediment yield. Regarding to the soil moisture values, there was a difference in the trends between the C and HP plots and the SM, PM and RU plots. In the C and HP plots the general trend was for a decrease in soil moisture downward through the soil profile, while in the SM, PM and RU plots the soil moisture remained relatively constant or increased, except for the RU treatment in which the soil moisture

  13. An Examination of Parameters Affecting Large Eddy Simulations of Flow Past a Square Cylinder

    NASA Technical Reports Server (NTRS)

    Mankbadi, M. R.; Georgiadis, N. J.

    2014-01-01

    Separated flow over a bluff body is analyzed via large eddy simulations. The turbulent flow around a square cylinder features a variety of complex flow phenomena such as highly unsteady vortical structures, reverse flow in the near wall region, and wake turbulence. The formation of spanwise vortices is often times artificially suppressed in computations by either insufficient depth or a coarse spanwise resolution. As the resolution is refined and the domain extended, the artificial turbulent energy exchange between spanwise and streamwise turbulence is eliminated within the wake region. A parametric study is performed highlighting the effects of spanwise vortices where the spanwise computational domain's resolution and depth are varied. For Re=22,000, the mean and turbulent statistics computed from the numerical large eddy simulations (NLES) are in good agreement with experimental data. Von-Karman shedding is observed in the wake of the cylinder. Mesh independence is illustrated by comparing a mesh resolution of 2 million to 16 million. Sensitivities to time stepping were minimized and sampling frequency sensitivities were nonpresent. While increasing the spanwise depth and resolution can be costly, this practice was found to be necessary to eliminating the artificial turbulent energy exchange.

  14. Phloem Ultrastructure and Pressure Flow: Sieve-Element-Occlusion-Related Agglomerations Do Not Affect Translocation[W

    PubMed Central

    Froelich, Daniel R.; Mullendore, Daniel L.; Jensen, Kåre H.; Ross-Elliott, Tim J.; Anstead, James A.; Thompson, Gary A.; Pélissier, Hélène C.; Knoblauch, Michael

    2011-01-01

    Since the first ultrastructural investigations of sieve tubes in the early 1960s, their structure has been a matter of debate. Because sieve tube structure defines frictional interactions in the tube system, the presence of P protein obstructions shown in many transmission electron micrographs led to a discussion about the mode of phloem transport. At present, it is generally agreed that P protein agglomerations are preparation artifacts due to injury, the lumen of sieve tubes is free of obstructions, and phloem flow is driven by an osmotically generated pressure differential according to Münch’s classical hypothesis. Here, we show that the phloem contains a distinctive network of protein filaments. Stable transgenic lines expressing Arabidopsis thaliana Sieve-Element-Occlusion-Related1 (SEOR1)–yellow fluorescent protein fusions show that At SEOR1 meshworks at the margins and clots in the lumen are a general feature of living sieve tubes. Live imaging of phloem flow and flow velocity measurements in individual tubes indicate that At SEOR1 agglomerations do not markedly affect or alter flow. A transmission electron microscopy preparation protocol has been generated showing sieve tube ultrastructure of unprecedented quality. A reconstruction of sieve tube ultrastructure served as basis for tube resistance calculations. The impact of agglomerations on phloem flow is discussed. PMID:22198148

  15. Secondary contact and asymmetrical gene flow in a cosmopolitan marine fish across the Benguela upwelling zone.

    PubMed

    Reid, K; Hoareau, T B; Graves, J E; Potts, W M; Dos Santos, S M R; Klopper, A W; Bloomer, P

    2016-11-01

    The combination of oceanographic barriers and habitat heterogeneity are known to reduce connectivity and leave specific genetic signatures in the demographic history of marine species. However, barriers to gene flow in the marine environment are almost never impermeable which inevitably allows secondary contact to occur. In this study, eight sampling sites (five along the South African coastline, one each in Angola, Senegal and Portugal) were chosen to examine the population genetic structure and phylogeographic history of the cosmopolitan bluefish (Pomatomus saltatrix), distributed across a large South-east Atlantic upwelling zone. Molecular analyses were applied to mtDNA cytochrome b, intron AM2B1 and 15 microsatellite loci. We detected uncharacteristically high genetic differentiation (FST 0.15-0.20; P<0.001) between the fish sampled from South Africa and the other sites, strongly influenced by five outlier microsatellite loci located in conserved intergenic regions. In addition, differentiation among the remaining East Atlantic sites was detected, although mtDNA indicated past isolation with subsequent secondary contact between these East Atlantic populations. We further identified secondary contact, with unidirectional gene flow from South Africa to Angola. The directional contact is likely explained by a combination of the northward flowing offshore current and endogenous incompatibilities restricting integration of certain regions of the genome and limiting gene flow to the south. The results confirm that the dynamic system associated with the Benguela current upwelling zone influences species distributions and population processes in the South-east Atlantic.

  16. Gene Flow Among Different Teosinte Taxa and Into the Domesticated Maize Gene Pool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize (Zea mays ssp. mays) was domesticated from one wild species ancestor, the Balsas teosinte (Zea mays ssp. parviglumis) about 9000 years ago. Higher levels of gene diversity are found in teosinte taxa compared to maize following domestication and selection bottlenecks. Diversity in maize can b...

  17. How much gene flow is needed to avoid inbreeding depression in wild tiger populations?

    PubMed Central

    Kenney, John; Allendorf, Fred W.; McDougal, Charles; Smith, James L. D.

    2014-01-01

    The number and size of tiger populations continue to decline owing to habitat loss, habitat fragmentation and poaching of tigers and their prey. As a result, tiger populations have become small and highly structured. Current populations have been isolated since the early 1970s or for approximately seven generations. The objective of this study is to explore how inbreeding may be affecting the persistence of remaining tiger populations and how dispersal, either natural or artificial, may reduce the potentially detrimental effect of inbreeding depression. We developed a tiger simulation model and used published levels of genetic load in mammals to simulate inbreeding depression. Following a 50 year period of population isolation, we introduced one to four dispersing male tigers per generation to explore how gene flow from nearby populations may reduce the negative impact of inbreeding depression. For the smallest populations, even four dispersing male tigers per generation did not increase population viability, and the likelihood of extinction is more than 90% within 30 years. Unless habitat connectivity is restored or animals are artificially introduced in the next 70 years, medium size wild populations are also likely to go extinct, with only four to five of the largest wild tiger populations likely to remain extant in this same period without intervention. To reduce the risk of local extinction, habitat connectivity must be pursued concurrently with efforts to increase population size (e.g. enhance habitat quality, increase habitat availability). It is critical that infrastructure development, dam construction and other similar projects are planned appropriately so that they do not erode the extent or quality of habitat for these populations so that they can truly serve as future source populations. PMID:24990671

  18. How much gene flow is needed to avoid inbreeding depression in wild tiger populations?

    PubMed

    Kenney, John; Allendorf, Fred W; McDougal, Charles; Smith, James L D

    2014-08-22

    The number and size of tiger populations continue to decline owing to habitat loss, habitat fragmentation and poaching of tigers and their prey. As a result, tiger populations have become small and highly structured. Current populations have been isolated since the early 1970s or for approximately seven generations. The objective of this study is to explore how inbreeding may be affecting the persistence of remaining tiger populations and how dispersal, either natural or artificial, may reduce the potentially detrimental effect of inbreeding depression. We developed a tiger simulation model and used published levels of genetic load in mammals to simulate inbreeding depression. Following a 50 year period of population isolation, we introduced one to four dispersing male tigers per generation to explore how gene flow from nearby populations may reduce the negative impact of inbreeding depression. For the smallest populations, even four dispersing male tigers per generation did not increase population viability, and the likelihood of extinction is more than 90% within 30 years. Unless habitat connectivity is restored or animals are artificially introduced in the next 70 years, medium size wild populations are also likely to go extinct, with only four to five of the largest wild tiger populations likely to remain extant in this same period without intervention. To reduce the risk of local extinction, habitat connectivity must be pursued concurrently with efforts to increase population size (e.g. enhance habitat quality, increase habitat availability). It is critical that infrastructure development, dam construction and other similar projects are planned appropriately so that they do not erode the extent or quality of habitat for these populations so that they can truly serve as future source populations.

  19. Genetics, Gene Flow, and Glaciation: The Case of the South American Limpet Nacella mytilina.

    PubMed

    González-Wevar, Claudio A; Rosenfeld, Sebastián; Segovia, Nicolás I; Hüne, Mathias; Gérard, Karin; Ojeda, Jaime; Mansilla, Andrés; Brickle, Paul; Díaz, Angie; Poulin, Elie

    2016-01-01

    Glacial episodes of the Quaternary, and particularly the Last Glacial Maximum (LGM) drastically altered the distribution of the Southern-Hemisphere biota, principally at higher latitudes. The irregular coastline of Patagonia expanding for more than 84.000 km constitutes a remarkable area to evaluate the effect of Quaternary landscape and seascape shifts over the demography of near-shore marine benthic organisms. Few studies describing the biogeographic responses of marine species to the LGM have been conducted in Patagonia, but existing data from coastal marine species have demonstrated marked genetic signatures of post-LGM recolonization and expansion. The kelp-dweller limpet Nacella mytilina is broadly distributed along the southern tip of South America and at the Falkland/Malvinas Islands. Considering its distribution, abundance, and narrow bathymetry, N. mytilina represents an appropriate model to infer how historical and contemporary processes affected the distribution of intraspecific genetic diversity and structure along the southern tip of South America. At the same time, it will be possible to determine how life history traits and the ecology of the species are responsible for the current pattern of gene flow and connectivity across the study area. We conducted phylogeographic and demographic inference analyses in N. mytilina from 12 localities along Pacific Patagonia (PP) and one population from the Falkland/Malvinas Islands (FI). Analyses of the mitochondrial gene COI in 300 individuals of N. mytilina revealed low levels of genetic polymorphism and the absence of genetic differentiation along PP. In contrast, FI showed a strong and significant differentiation from Pacific Patagonian populations. Higher levels of genetic diversity were also recorded in the FI population, together with a more expanded genealogy supporting the hypothesis of glacial persistence of the species in these islands. Haplotype genealogy, and mismatch analyses in the FI population

  20. Genetics, Gene Flow, and Glaciation: The Case of the South American Limpet Nacella mytilina

    PubMed Central

    González-Wevar, Claudio A.; Rosenfeld, Sebastián; Segovia, Nicolás I.; Hüne, Mathias; Gérard, Karin; Ojeda, Jaime; Mansilla, Andrés; Brickle, Paul; Díaz, Angie; Poulin, Elie

    2016-01-01

    Glacial episodes of the Quaternary, and particularly the Last Glacial Maximum (LGM) drastically altered the distribution of the Southern-Hemisphere biota, principally at higher latitudes. The irregular coastline of Patagonia expanding for more than 84.000 km constitutes a remarkable area to evaluate the effect of Quaternary landscape and seascape shifts over the demography of near-shore marine benthic organisms. Few studies describing the biogeographic responses of marine species to the LGM have been conducted in Patagonia, but existing data from coastal marine species have demonstrated marked genetic signatures of post-LGM recolonization and expansion. The kelp-dweller limpet Nacella mytilina is broadly distributed along the southern tip of South America and at the Falkland/Malvinas Islands. Considering its distribution, abundance, and narrow bathymetry, N. mytilina represents an appropriate model to infer how historical and contemporary processes affected the distribution of intraspecific genetic diversity and structure along the southern tip of South America. At the same time, it will be possible to determine how life history traits and the ecology of the species are responsible for the current pattern of gene flow and connectivity across the study area. We conducted phylogeographic and demographic inference analyses in N. mytilina from 12 localities along Pacific Patagonia (PP) and one population from the Falkland/Malvinas Islands (FI). Analyses of the mitochondrial gene COI in 300 individuals of N. mytilina revealed low levels of genetic polymorphism and the absence of genetic differentiation along PP. In contrast, FI showed a strong and significant differentiation from Pacific Patagonian populations. Higher levels of genetic diversity were also recorded in the FI population, together with a more expanded genealogy supporting the hypothesis of glacial persistence of the species in these islands. Haplotype genealogy, and mismatch analyses in the FI population

  1. Crossing the divide: gene flow produces intergeneric hybrid in feral transgenic creeping bentgrass population.

    PubMed

    Zapiola, María L; Mallory-Smith, Carol A

    2012-10-01

    Gene flow is the most frequently expressed public concern related to the deregulation of transgenic events (Snow 2002; Ellstrand 2003). However, assessing the potential for transgene escape is complex because it depends on the opportunities for unintended gene flow, and establishment and persistence of the transgene in the environment (Warwick et al. 2008). Creeping bentgrass (Agrostis stolonifera L.), a turfgrass species widely used on golf courses, has been genetically engineered to be resistant to glyphosate, a nonselective herbicide. Outcrossing species, such as creeping bentgrass (CB), which have several compatible species, have greater chances for gene escape and spontaneous hybridization (i.e. natural, unassisted sexual reproduction between taxa in the field), which challenges transgene containment. Several authors have emphasized the need for evidence of spontaneous hybridization to infer the potential for gene flow (Armstrong et al. 2005). Here we report that a transgenic intergeneric hybrid has been produced as result of spontaneous hybridization of a feral-regulated transgenic pollen receptor (CB) and a nontransgenic pollen donor (rabbitfoot grass, RF, Polypogon monspeliensis (L.) Desf.). We identified an off-type transgenic seedling and confirmed it to be CB × RF intergeneric hybrid. This first report of a transgenic intergeneric hybrid produced in situ with a regulated transgenic event demonstrates the importance of considering all possible avenues for transgene spread at the landscape level before planting a regulated transgenic crop in the field. Spontaneous hybridization adds a level of complexity to transgene monitoring, containment, mitigation and remediation programmes.

  2. Relationship Analysis of Debris Flow-inducing Factors in Typhoon Morakot Affected Area By Using Data Mining Techniques

    NASA Astrophysics Data System (ADS)

    Shen, Che-Wei; Hsiao, Cheng-Yang; Ku, Bing-Huan; Tsao, Ting-Chi; Cheng, Chin-Tung; Lo, Wen-Chun; Chen, Chen-Yu

    2013-04-01

    Typhoon Morakot lashed Taiwan during Aug. 7 to 9, 2009. It dumped heavy rainfall in southern Taiwan, especially around the Central Mountain Range in Pingtung, Chia-Yi, and Kaohsiung County. In view of this, Comprehensive field investigation was carried out by government and private organizations after Typhoon Morakot, useful information of debris flow was gathered. Besides, after Typhoon Morakot, the debris flow-inducing factors become more challenging in Taiwan, many aspects had to be considered. The scope of this study was mainly discussed in debris flow-inducing factors in serious damaged areas which including Nantou, Chia-Yi, Tainan, Kaohsiung, Pingtung, Taitung County. Totally 218 torrents were included. Field investigation data and disaster records of Typhoon Morakot were utilized to analyze debris flow-inducing factors in three aspects: terrain, rainfall and sediment source. First, by using Principle Component Analysis(PCA) and Pearson Product Moment Correlation Analysis(CA) to select significant factors, 101 factors were reduced to the most important 18. Then through descriptive statistics and scatter diagram were selected to discuss the correlation among "Average slope gradient of watershed", "Landslide rate along the stream within 50m buffer zone" as well as the "rainfall intensity during Typhoon Morakot". The above charts were used to summarize the range of factor value which tend to occur phenomenon of debris flow in Typhoon Morakot. Besides, Random Forest Algorithm (RF) was utilized to research the relationship toward multi-variables. The significant factors which tend to affect the debris flow-inducing factor were "effective accumulated rainfall", "hourly rainfall", "landslide rate along the stream within 50m buffer zone", "average elevation value of effective watershed area higher than 10 degree", sequentially. By the results, the most significant factor is the rainfall factor during Typhoon Morakot. The results can be utilized in improving debris

  3. High Rates of Gene Flow by Pollen and Seed in Oak Populations across Europe

    PubMed Central

    Gerber, Sophie; Chadœuf, Joël; Gugerli, Felix; Lascoux, Martin; Buiteveld, Joukje; Cottrell, Joan; Dounavi, Aikaterini; Fineschi, Silvia; Forrest, Laura L.; Fogelqvist, Johan; Goicoechea, Pablo G.; Jensen, Jan Svejgaard; Salvini, Daniela; Vendramin, Giovanni G.; Kremer, Antoine

    2014-01-01

    Gene flow is a key factor in the evolution of species, influencing effective population size, hybridisation and local adaptation. We analysed local gene flow in eight stands of white oak (mostly Quercus petraea and Q. robur, but also Q. pubescens and Q. faginea) distributed across Europe. Adult trees within a given area in each stand were exhaustively sampled (range [239, 754], mean 423), mapped, and acorns were collected ([17,147], 51) from several mother trees ([3], [47], 23). Seedlings ([65,387], 178) were harvested and geo-referenced in six of the eight stands. Genetic information was obtained from screening distinct molecular markers spread across the genome, genotyping each tree, acorn or seedling. All samples were thus genotyped at 5–8 nuclear microsatellite loci. Fathers/parents were assigned to acorns and seedlings using likelihood methods. Mating success of male and female parents, pollen and seed dispersal curves, and also hybridisation rates were estimated in each stand and compared on a continental scale. On average, the percentage of the wind-borne pollen from outside the stand was 60%, with large variation among stands (21–88%). Mean seed immigration into the stand was 40%, a high value for oaks that are generally considered to have limited seed dispersal. However, this estimate varied greatly among stands (20–66%). Gene flow was mostly intraspecific, with large variation, as some trees and stands showed particularly high rates of hybridisation. Our results show that mating success was unevenly distributed among trees. The high levels of gene flow suggest that geographically remote oak stands are unlikely to be genetically isolated, questioning the static definition of gene reserves and seed stands. PMID:24454802

  4. High rates of gene flow by pollen and seed in oak populations across Europe.

    PubMed

    Gerber, Sophie; Chadœuf, Joël; Gugerli, Felix; Lascoux, Martin; Buiteveld, Joukje; Cottrell, Joan; Dounavi, Aikaterini; Fineschi, Silvia; Forrest, Laura L; Fogelqvist, Johan; Goicoechea, Pablo G; Jensen, Jan Svejgaard; Salvini, Daniela; Vendramin, Giovanni G; Kremer, Antoine

    2014-01-01

    Gene flow is a key factor in the evolution of species, influencing effective population size, hybridisation and local adaptation. We analysed local gene flow in eight stands of white oak (mostly Quercus petraea and Q. robur, but also Q. pubescens and Q. faginea) distributed across Europe. Adult trees within a given area in each stand were exhaustively sampled (range [239, 754], mean 423), mapped, and acorns were collected ([17,147], 51) from several mother trees ([3], [47], 23). Seedlings ([65,387], 178) were harvested and geo-referenced in six of the eight stands. Genetic information was obtained from screening distinct molecular markers spread across the genome, genotyping each tree, acorn or seedling. All samples were thus genotyped at 5-8 nuclear microsatellite loci. Fathers/parents were assigned to acorns and seedlings using likelihood methods. Mating success of male and female parents, pollen and seed dispersal curves, and also hybridisation rates were estimated in each stand and compared on a continental scale. On average, the percentage of the wind-borne pollen from outside the stand was 60%, with large variation among stands (21-88%). Mean seed immigration into the stand was 40%, a high value for oaks that are generally considered to have limited seed dispersal. However, this estimate varied greatly among stands (20-66%). Gene flow was mostly intraspecific, with large variation, as some trees and stands showed particularly high rates of hybridisation. Our results show that mating success was unevenly distributed among trees. The high levels of gene flow suggest that geographically remote oak stands are unlikely to be genetically isolated, questioning the static definition of gene reserves and seed stands.

  5. Gene-Splitting Technology: A Novel Approach for the Containment of Transgene Flow in Nicotiana tabacum

    PubMed Central

    Kong, Ning; Jia, Shi-Rong; Tang, Qiao-Ling; Wang, Zhi-Xing

    2014-01-01

    The potential impact of transgene escape on the environment and food safety is a major concern to the scientists and public. This work aimed to assess the effect of intein-mediated gene splitting on containment of transgene flow. Two fusion genes, EPSPSn-In and Ic-EPSPSc, were constructed and integrated into N. tabacum, using Agrobacterium tumefaciens-mediated transformation. EPSPSn-In encodes the first 295 aa of the herbicide resistance gene 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) fused with the first 123 aa of the Ssp DnaE intein (In), whereas Ic-EPSPSc encodes the 36 C-terminal aa of the Ssp DnaE intein (Ic) fused to the rest of EPSPS C terminus peptide sequences. Both EPSPSn-In and Ic-EPSPSc constructs were introduced into the same N. tabacum genome by genetic crossing. Hybrids displayed resistance to the herbicide N-(phosphonomethyl)-glycine (glyphosate). Western blot analysis of protein extracts from hybrid plants identified full-length EPSPS. Furthermore, all hybrid seeds germinated and grew normally on glyphosate selective medium. The 6-8 leaf hybrid plants showed tolerance of 2000 ppm glyphosate in field spraying. These results indicated that functional EPSPS protein was reassembled in vivo by intein-mediated trans-splicing in 100% of plants. In order to evaluate the effect of the gene splitting technique for containment of transgene flow, backcrossing experiments were carried out between hybrids, in which the foreign genes EPSPSn-In and Ic-EPSPSc were inserted into different chromosomes, and non-transgenic plants NC89. Among the 2812 backcrossing progeny, about 25% (664 plantlets) displayed glyphosate resistance. These data indicated that transgene flow could be reduced by 75%. Overall, our findings provide a new and highly effective approach for biological containment of transgene flow. PMID:24915192

  6. The heterogeneous immune microenvironment in breast cancer is affected by hypoxia-related genes.

    PubMed

    Duechler, Markus; Peczek, Lukasz; Zuk, Karolina; Zalesna, Izabela; Jeziorski, Arkadiusz; Czyz, Malgorzata

    2014-02-01

    The immune system constitutes an important first-line defence against malignant transformation. However, cancer mediated immunosuppression inactivates the mechanisms of host immune surveillance. Cancer cells shut down anti-cancer immunity through direct cell-cell interactions with leukocytes and through soluble factors, establishing an immunosuppressive environment for unimpeded cancer growth. The composition of the immunosuppressive microenvironment in breast tumours is not well documented. To address this question, selected immunosuppressive factors were analyzed in tumour specimens from 33 breast cancer patients after surgery. The mRNA expression of selected genes was quantified in fresh tumour samples. Tumour infiltrating leukocytes were characterized by flow cytometry to identify regulatory T cells, myeloid derived suppressor cells, and type 2 macrophages. Statistical analysis revealed several interesting correlations between the studied parameters and clinical features. Overall, a surprisingly high degree of heterogeneity in the composition of the immunosuppressive environment was found across all breast cancer samples which adds to the complexity of this disease. The influence of the hypoxia inducible factors (HIFs) on the immune microenvironment was also addressed. The level of HIFs correlated with hormone receptor status and the expression of several immunosuppressive molecules. Targeting HIFs might not only sensitize breast tumours for radiation and chemotherapies but also interfere with cancer immunosuppression.

  7. CP27 affects viability, proliferation, attachment and gene expression in embryonic fibroblasts.

    PubMed

    Luan, X; Diekwisch, T G H

    2002-08-01

    CP27 is a gene that has been cloned from an E11 early embryonic library and has been suggested to mediate early organogenesis (Diekwisch et al., 1999, Gene 235, 19). We have hypothesized that CP27 exhibits its effects on organogenesis by affecting individual cell function. Based on the CP27 expression pattern we have selected the CP27 expressing embryonic fibroblast cell line BALB/c 3T3 to determine the effects of CP27 on cell function. CP27 loss of function strategies were performed by adding 5, 12.5 or 25 micro g/ml anti-CP27 antibody to cultured BALB/c 3T3 cells and comparing the results to controls in which identical concentrations of rabbit serum were added to the culture medium. Other controls included an antibody against another extracellular matrix protein amelogenin (negative control) and anti-CP27 antibodies directed against other areas of the CP27 molecule (positive control). Following cell culture, cell viability, apoptosis, cell proliferation, cell shape, cellular attachment and fibronectin matrix production were assayed using MTT colourimetric assay, BrdU staining, morphometry, immunostaining and western blot analysis. Block of CP27 function using an antibody strategy resulted in the following significant changes: (i) reduced viability, (ii) increased number of apoptotic cells, (iii) reduced proliferation, (iv) alterations in cell shape, (v) loss of attachment, and (vi) reduction in fibronectin matrix production. There was also a redistribution in fibronectin matrix organization demonstrated by immunohistochemistry. We conclude that CP27 plays an important role in the maintance of normal cell function and that CP27 block leads to significant changes in cellular behaviour.

  8. Identification of genes affecting production of the adhesion organelle of Caulobacter crescentus CB2.

    PubMed Central

    Mitchell, D; Smit, J

    1990-01-01

    Transposon (Tn5) mutagenesis was used to identify regions in the genome involved with production, regulation, or attachment to the cell surface of the adhesive holdfast of the freshwater bacterium Caulobacter crescentus CB2. A total of 12,000 independently selected transposon insertion mutants were screened for defects in adhesion to cellulose acetate; 77 mutants were detected and examined by Southern blot hybridization mapping methods and pulsed-field gel electrophoresis. Ten unique sites of Tn5 insertion affecting holdfast function were identified that were clustered in four regions of the genome. Representative mutants of the 10 Tn5 insertion sites were examined by a variety of methods for differences in their phenotype leading to the loss of adhesiveness. Four phenotypes were identified: no holdfast production, production of a smaller or an altered holdfast, production of a holdfast that was unable to remain attached to the cell, and a fourth category in which a possible alteration of the stalk was related to impaired adhesion of the cell. With the possible exception of the last class, no pleiotropic mutants (those with multiple defects in the polar region of the cell) were detected among the adhesion-defective mutants. This was unexpected, since holdfast deficiency is often a characteristic of pleiotropic mutants obtained when selecting for loss of other polar structures. Overall, the evidence suggests that we have identified regions containing structural genes for the holdfast, genes involved with proper attachment or positioning on the caulobacter surface, and possibly regions that regulate the levels of holdfast production. Images PMID:2168382

  9. Identification of Genes Affecting Salmonella enterica Serovar Enteritidis Infection of Chicken Macrophages

    PubMed Central

    Zhao, Yixian; Jansen, Ruud; Gaastra, Wim; Arkesteijn, Ger; van der Zeijst, Bernard A. M.; van Putten, Jos P. M.

    2002-01-01

    Screening of 7,680 Salmonella enterica serovar Enteritidis mutants for attenuation in a chicken macrophage infection model yielded a series of mutants including several with defects in previously unrecognized Salmonella virulence genes. One of the newly identified genes was the pbpA2 gene, belonging to the penicillin binding protein gene family. PMID:12183592

  10. Xp21 contiguous gene syndromes: Deletion quantitation with bivariate flow karyotyping allows mapping of patient breakpoints

    SciTech Connect

    McCabe, E.R.B.; Towbin, J.A. ); Engh, G. van den; Trask, B.J. )

    1992-12-01

    Bivariate flow karyotyping was used to estimate the deletion sizes for a series of patients with Xp21 contiguous gene syndromes. The deletion estimates were used to develop an approximate scale for the genomic map in Xp21. The bivariate flow karyotype results were compared with clinical and molecular genetic information on the extent of the patients' deletions, and these various types of data were consistent. The resulting map spans >15 Mb, from the telomeric interval between DXS41 (99-6) and DXS68 (1-4) to a position centromeric to the ornithine transcarbamylase locus. The deletion sizing was considered to be accurate to [plus minus]1 Mb. The map provides information on the relative localization of genes and markers within this region. For example, the map suggests that the adrenal hypoplasia congenita and glycerol kinase genes are physically close to each other, are within 1-2 Mb of the telomeric end of the Duchenne muscular dystrophy (DMD) gene, and are nearer to the DMD locus than to the more distal marker DXS28 (C7). Information of this type is useful in developing genomic strategies for positional cloning in Xp21. These investigations demonstrate that the DNA from patients with Xp21 contiguous gene syndromes can be valuable reagents, not only for ordering loci and markers but also for providing an approximate scale to the map of the Xp21 region surrounding DMD. 44 refs., 3 figs.

  11. Nonequilibrium water dynamics in the rhizosphere: How mucilage affects water flow in soils

    NASA Astrophysics Data System (ADS)

    Kroener, Eva; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2014-08-01

    The flow of water from soil to plant roots is controlled by the properties of the narrow region of soil close to the roots, the rhizosphere. In particular, the hydraulic properties of the rhizosphere are altered by mucilage, a polymeric gel exuded by the roots. In this paper we present experimental results and a conceptual model of water flow in unsaturated soils mixed with mucilage. A central hypothesis of the model is that the different drying/wetting rate of mucilage compared to the bulk soil results in nonequilibrium relations between water content and water potential in the rhizosphere. We coupled this nonequilibrium relation with the Richards equation and obtained a constitutive equation for water flow in soil and mucilage. To test the model assumptions, we measured the water retention curve and the saturated hydraulic conductivity of sandy soil mixed with mucilage from chia seeds. Additionally, we used neutron radiography to image water content in a layer of soil mixed with mucilage during drying and wetting cycles. The radiographs demonstrated the occurrence of nonequilibrium water dynamics in the soil-mucilage mixture. The experiments were simulated by numerically solving the nonequilibrium model. Our study provides conceptual and experimental evidences that mucilage has a strong impact on soil water dynamics. During drying, mucilage maintains a greater soil water content for an extended time, while during irrigation it delays the soil rewetting. We postulate that mucilage exudation by roots attenuates plant water stress by modulating water content dynamics in the rhizosphere.

  12. Seawater Acidification and Elevated Temperature Affect Gene Expression Patterns of the Pearl Oyster Pinctada fucata

    PubMed Central

    Liu, Wenguang; Huang, Xiande; Lin, Jianshi; He, Maoxian

    2012-01-01

    Oceanic uptake of anthropogenic carbon dioxide results in decrease in seawater pH and increase in temperature. In this study, we demonstrated the synergistic effects of elevated seawater temperature and declined seawater pH on gene expression patterns of aspein, calmodulin, nacrein, she-7-F10 and hsp70 in the pearl oyster Pinctada fucata. Under ‘business-as-usual’ scenarios, four treatments were examined: (1) ambient pH (8.10) and ambient temperature (27°C) (control condition), (2) ambient pH and elevated temperature (+3°C), (3) declined pH (7.70) and ambient temperature, (4) declined pH and elevated temperature. The results showed that under warming and acidic seawater conditions, expression of aspein and calmodulin showed no significant differences among different time point in condition 8.10 T. But the levels of aspein and calmodulin in conditions 8.10 T+3, 7.70 T and 7.70 T+3, and levels of nacrein, she-7-F10 in all the four treatments changed significantly. Low pH and pH×temperature interaction influenced the expression of aspein and calmodulin significantly after hours 48 and 96. Significant effects of low pH and pH×temperature interaction on the expression of nacrein were observed at hour 96. The expression level of she-7-F10 was affected significantly by pH after hours 48 and 96. The expression of hsp70 was significantly affected by temperature, pH, temperature×pH interaction at hour 6, and by temperature×pH interaction at hour 24. This study suggested that declined pH and pH×temperature interaction induced down regulation of calcification related genes, and the interaction between declined seawater pH and elevated temperature caused up regulation of hsp70 in P. facata. These results demonstrate that the declined seawater pH and elevated temperature will impact the physiological process, and potentially the adaptability of P. fucata to future warming and acidified ocean. PMID:22438983

  13. Differential replication dynamics for large and small Vibrio chromosomes affect gene dosage, expression and location

    PubMed Central

    Dryselius, Rikard; Izutsu, Kaori; Honda, Takeshi; Iida, Tetsuya

    2008-01-01

    Background Replication of bacterial chromosomes increases copy numbers of genes located near origins of replication relative to genes located near termini. Such differential gene dosage depends on replication rate, doubling time and chromosome size. Although little explored, differential gene dosage may influence both gene expression and location. For vibrios, a diverse family of fast growing gammaproteobacteria, gene dosage may be particularly important as they harbor two chromosomes of different size. Results Here we examined replication dynamics and gene dosage effects for the separate chromosomes of three Vibrio species. We also investigated locations for specific gene types within the genome. The results showed consistently larger gene dosage differences for the large chromosome which also initiated replication long before the small. Accordingly, large chromosome gene expression levels were generally higher and showed an influence from gene dosage. This was reflected by a higher abundance of growth essential and growth contributing genes of which many locate near the origin of replication. In contrast, small chromosome gene expression levels were low and appeared independent of gene dosage. Also, species specific genes are highly abundant and an over-representation of genes involved in transcription could explain its gene dosage independent expression. Conclusion Here we establish a link between replication dynamics and differential gene dosage on one hand and gene expression levels and the location of specific gene types on the other. For vibrios, this relationship appears connected to a polarisation of genetic content between its chromosomes, which may both contribute to and be enhanced by an improved adaptive capacity. PMID:19032792

  14. Early developmental gene enhancers affect subcortical volumes in the adult human brain.

    PubMed

    Becker, Martin; Guadalupe, Tulio; Franke, Barbara; Hibar, Derrek P; Renteria, Miguel E; Stein, Jason L; Thompson, Paul M; Francks, Clyde; Vernes, Sonja C; Fisher, Simon E

    2016-05-01

    Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype-phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations. Hum Brain Mapp 37:1788-1800, 2016. © 2016 Wiley Periodicals, Inc.

  15. Folate-related gene variants in Irish families affected by neural tube defects.

    PubMed

    Fisk Green, Ridgely; Byrne, Julianne; Crider, Krista S; Gallagher, Margaret; Koontz, Deborah; Berry, Robert J

    2013-01-01

    Periconceptional folic acid use can often prevent neural tube defects (NTDs). Variants of genes involved in folate metabolism in mothers and children have been associated with occurrence of NTDs. We identified Irish families with individuals affected by neural tube defects. In these families, we observed that neural tube defects and birth defects overall occurred at a higher rate in the maternal lineage compared with the paternal lineage. The goal of this study was to look for evidence for genetic effects that could explain the discrepancy in the occurrence of these birth defects in the maternal vs. paternal lineage. We genotyped blood samples from 322 individuals from NTD-affected Irish families, identified through their membership in spina bifida associations. We looked for differences in distribution in maternal vs. paternal lineages of five genetic polymorphisms: the DHFR 19 bp deletion, MTHFD1 1958G>A, MTHFR 1298A>C, MTHFR 677C>T, and SLC19A1 80A>G. In addition to looking at genotypes individually, we determined the number of genotypes associated with decreased folate metabolism in each relative ("risk genotypes") and compared the distribution of these genotypes in maternal vs. paternal relatives. Overall, maternal relatives had a higher number of genotypes associated with lower folate metabolism than paternal relatives (p = 0.017). We expected that relatives would share the same risk genotype as the individuals with NTDs and/or their mothers. However, we observed that maternal relatives had an over-abundance of any risk genotype, rather than one specific genotype. The observed genetic effects suggest an epigenetic mechanism in which decreased folate metabolism results in epigenetic alterations related to the increased rate of NTDs and other birth defects seen in the maternal lineage. Future studies on the etiology of NTDs and other birth defects could benefit from including multigenerational extended families, in order to explore potential epigenetic

  16. Fluoride at non-toxic dose affects odontoblast gene expression in vitro.

    PubMed

    Wurtz, Tilmann; Houari, Sophia; Mauro, Nicole; MacDougall, Mary; Peters, Heiko; Berdal, Ariane

    2008-07-10

    Elevated fluoride intake may lead to local tissue disturbances, known as fluorosis. Towards an understanding of this effect, fluoride-induced molecular responses were analyzed in MO6-G3 cultured odontoblasts cells. NaF at 1mM changed expression of genes implicated in tissue formation and growth, without affecting cell proliferation or inducing stress factor RNAs. Up to 1mM NaF, DNA accumulation was not inhibited, whereas at 3mM, cells detached from their support and did not proliferate. Intracellular structures, characterized by EM, were normal up to 1mM, but at 3mM, necrotic features were evident. No sign of apoptotic transformation appeared at any NaF concentration. Fluoride-sensitive genes were identified by microarray analysis; expression levels of selected RNAs were determined by conventional and real-time RT-PCR. At 1mM fluoride, RNAs encoding the extracellular matrix proteins asporin and fibromodulin, and the cell membrane associated proteins periostin and IMT2A were 10-fold reduced. RNA coding for signaling factor TNF-receptor 9 was diminished to one-third, whereas that for the chemokine Scya-5 was enhanced 2.5-fold. These RNAs are present in vivo in tooth forming cells. This was demonstrated by in situ hybridization and RT-PCR on RNA from dissected tissue samples; for the presence and functioning of fibromodulin in dentin matrix, a more comprehensive study has earlier been performed by others [Goldberg, M., Septier, D., Oldberg, A., Young, M.F., Ameye, L.G., 2006. Fibromodulin deficient mice display impaired collagen fibrillogenesis in predentin as well as altered dentin mineralization and enamel formation. J. Histochem. Cytochem. 54, 525-537]. Expression of most other RNA species, in particular of stress factor coding RNAs, was not altered. It was concluded that fluoride could influence the transcription pattern without inducing cell stress or apoptosis. In odontoblasts in vivo, aberrant expression of these fluoride-sensitive genes may impair the

  17. Genetic factors affecting gene transcription and catalytic activity of UDP-glucuronosyltransferases in human liver.

    PubMed

    Liu, Wanqing; Ramírez, Jacqueline; Gamazon, Eric R; Mirkov, Snezana; Chen, Peixian; Wu, Kehua; Sun, Chang; Cox, Nancy J; Cook, Edwin; Das, Soma; Ratain, Mark J

    2014-10-15

    The aim of this study was to discover cis- and trans-acting factors significantly affecting mRNA expression and catalytic activity of human hepatic UDP-glucuronosyltransferases (UGTs). Transcription levels of five major hepatic UGT1A (UGT1A1, UGT1A3, UGT1A4, UGT1A6 and UGT1A9) and five UGT2B (UGT2B4, UGT2B7, UGT2B10, UGT2B15 and UGT2B17) genes were quantified in human liver tissue samples (n = 125) using real-time PCR. Glucuronidation activities of 14 substrates were measured in 47 livers. We genotyped 167 tagSNPs (single-nucleotide polymorphisms) in UGT1A (n = 43) and UGT2B (n = 124), as well as the known functional UGT1A1*28 and UGT2B17 CNV (copy number variation) polymorphisms. Transcription levels of 15 transcription factors (TFs) known to regulate these UGTs were quantified. We found that UGT expression and activity were highly variable among the livers (median and range of coefficient of variations: 135%, 74-217% and 52%, 39-105%, respectively). CAR, PXR and ESR1 were found to be the most important trans-regulators of UGT transcription (median and range of correlation coefficients: 46%, 6-58%; 47%, 9-58%; and 52%, 24-75%, respectively). Hepatic UGT activities were mainly determined by UGT gene transcription levels. Twenty-one polymorphisms were significantly (FDR-adjusted P < 0.05) associated with mRNA expression and/or activities of UGT1A1, UGT1A3 and UGT2B17. We found novel SNPs in the UGT2B17 CNV region accounting for variability in UGT2B17 gene transcription and testosterone glucuronidation rate, in addition to that attributable to the UGT2B17 CNV. Our study discovered novel pharmacogenetic markers and provided detailed insight into the genetic network regulating hepatic UGTs.

  18. Comparative estimation of effective population sizes and temporal gene flow in two contrasting population systems.

    PubMed

    Fraser, Dylan J; Hansen, Michael M; Ostergaard, Siri; Tessier, Nathalie; Legault, Michel; Bernatchez, Louis

    2007-09-01

    Estimation of effective population sizes (N(e)) and temporal gene flow (N(e)m, m) has many implications for understanding population structure in evolutionary and conservation biology. However, comparative studies that gauge the relative performance of N(e), N(e)m or m methods are few. Using temporal genetic data from two salmonid fish population systems with disparate population structure, we (i) evaluated the congruence in estimates and precision of long- and short-term N(e), N(e)m and m from six methods; (ii) explored the effects of metapopulation structure on N(e) estimation in one system with spatiotemporally linked subpopulations, using three approaches; and (iii) determined to what degree interpopulation gene flow was asymmetric over time. We found that long-term N(e) estimates exceeded short-term N(e) within populations by 2-10 times; the two were correlated in the system with temporally stable structure (Atlantic salmon, Salmo salar) but not in the highly dynamic system (brown trout, Salmo trutta). Four temporal methods yielded short-term N(e) estimates within populations that were strongly correlated, and these were higher but more variable within salmon populations than within trout populations. In trout populations, however, these short-term N(e) estimates were always lower when assuming gene flow than when assuming no gene flow. Linkage disequilibrium data generally yielded short-term N(e) estimates of the same magnitude as temporal methods in both systems, but the two were uncorrelated. Correlations between long- and short-term geneflow estimates were inconsistent between methods, and their relative size varied up to eightfold within systems. While asymmetries in gene flow were common in both systems (58-63% of population-pair comparisons), they were only temporally stable in direction within certain salmon population pairs, suggesting that gene flow between particular populations is often intermittent and/or variable. Exploratory metapopulation N

  19. Alteration of BRCA1 expression affects alcohol-induced transcription of RNA Pol III-dependent genes.

    PubMed

    Zhong, Qian; Shi, Ganggang; Zhang, Yanmei; Lu, Lei; Levy, Daniel; Zhong, Shuping

    2015-02-01

    Emerging evidence has indicated that alcohol consumption is an established risk factor for breast cancer. Deregulation of RNA polymerase III (Pol III) transcription enhances cellular Pol III gene production, leading to an increase in translational capacity to promote cell transformation and tumor formation. We have reported that alcohol intake increases Pol III gene transcription to promote cell transformation and tumor formation in vitro and in vivo. Studies revealed that tumor suppressors, pRb, p53, PTEN and Maf1 repress the transcription of Pol III genes. BRCA1 is a tumor suppressor and its mutation is tightly related to breast cancer development. However, it is not clear whether BRCA1 expression affects alcohol-induced transcription of Pol III genes. At the present studies, we report that restoring BRCA1 in HCC 1937 cells, which is a BRCA1 deficient cell line, represses Pol III gene transcription. Expressing mutant or truncated BRCA1 in these cells does not affect the ability of repression on Pol III genes. Our analysis has demonstrated that alcohol induces Pol III gene transcription. More importantly, overexpression of BRCA1 in estrogen receptor positive (ER+) breast cancer cells (MCF-7) decreases the induction of tRNA(Leu) and 5S rRNA genes by alcohol, whereas reduction of BRCA1 by its siRNA slightly increases the transcription of the class of genes. This suggests that BRCA1 is associated with alcohol-induced deregulation of Pol III genes. These studies for the first time demonstrate the role of BRCA1 in induction of Pol III genes by alcohol and uncover a novel mechanism of alcohol-associated breast cancer.

  20. A Theory for Market Impact: How Order Flow Affects Stock Price

    NASA Astrophysics Data System (ADS)

    Gerig, Austin

    2008-04-01

    It is known that the impact of transactions on stock price (market impact) is a concave function of the size of the order, but there exists little quantitative theory that suggests why this is so. I develop a quantitative theory for the market impact of hidden orders (orders that reflect the true intention of buying and selling) that matches the empirically measured result and that reproduces some of the non-trivial and universal properties of stock returns (returns are percent changes in stock price). The theory is based on a simple premise, that the stock market can be modeled in a mechanical way - as a device that translates order flow into an uncorrelated price stream. Given that order flow is highly autocorrelated, this premise requires that market impact (1) depends on past order flow and (2) is asymmetric for buying and selling. I derive the specific form for the dependence in (1) by assuming that current liquidity responds to information about all currently active hidden orders (liquidity is a measure of the price response to a transaction of a given size). This produces an equation that suggests market impact should scale logarithmically with total order size. Using data from the London Stock Exchange I empirically measure market impact and show that the result matches the theory. Also using empirical data, I qualitatively specify the asymmetry of (2). Putting all results together, I form a model for market impact that reproduces three universal properties of stock returns - that returns are uncorrelated, that returns are distributed with a power law tail, and that the magnitude of returns is highly autocorrelated (also known as clustered volatility).

  1. Transcription factor organic cation transporter 1 (OCT-1) affects the expression of porcine Klotho (KL) gene

    PubMed Central

    Zhou, Jiawei

    2016-01-01

    Klotho (KL), originally discovered as an aging suppressor, is a membrane protein that shares sequence similarity with the β-glucosidase enzymes. Recent reports showed Klotho might play a role in adipocyte maturation and systemic glucose metabolism. However, little is known about the transcription factors involved in regulating the expression of porcine KL gene. Deletion fragment analysis identified KL-D2 (−418 bp to −3 bp) as the porcine KL core promoter. MARC0022311SNP (A or G) in KL intron 1 was detected in Landrace × DIV pigs using the Porcine SNP60 BeadChip. The pGL-D2-A and pGL-D2-G were constructed with KL-D2 and the intron fragment of different alleles and relative luciferase activity of pGL3-D2-G was significantly higher than that of pGL3-D2-A in the PK cells and ST cells. This was possibly the result of a change in KL binding ability with transcription factor organic cation transporter 1 (OCT-1), which was confirmed using electrophoretic mobility shift assays (EMSA) and chromatin immune-precipitation (ChIP). Moreover, OCT-1 regulated endogenous KL expression by RNA interference experiments. Our study indicates SNP MARC0022311 affects porcine KL expression by regulating its promoter activity via OCT-1. PMID:27478698

  2. Evidence for gene flow between two sympatric mealybug species (Insecta; Coccoidea; Pseudococcidae).

    PubMed

    Kol-Maimon, Hofit; Ghanim, Murad; Franco, José Carlos; Mendel, Zvi

    2014-01-01

    Occurrence of inter-species hybrids in natural populations might be evidence of gene flow between species. In the present study we found evidence of gene flow between two sympatric, genetically related scale insect species--the citrus mealybug Planococcus citri (Risso) and the vine mealybug Planococcus ficus (Signoret). These species can be distinguished by morphological, behavioral, and molecular traits. We employed the sex pheromones of the two respective species to study their different patterns of male attraction. We also used nuclear ITS2 (internal transcribed spacer 2) and mitochondrial COI (Cytochrome c oxidase sub unit 1) DNA sequences to characterize populations of the two species, in order to demonstrate the outcome of a possible gene flow between feral populations of the two species. Our results showed attraction to P. ficus pheromones of all tested populations of P. citri males but not vice versa. Furthermore, ITS2 sequences revealed the presence of 'hybrid females' among P. citri populations but not among those of P. ficus. 'hybrid females' from P. citri populations identified as P. citri females according to COI sequences. We offer two hypotheses for these results. 1) The occurrence of phenotypic and genotypic traits of P. ficus in P. citri populations may be attributed to both ancient and contemporary gene flow between their populations; and 2) we cannot rule out that an ancient sympatric speciation by which P. ficus emerged from P. citri might have led to the present situation of shared traits between these species. In light of these findings we also discuss the origin of the studied species and the importance of the pherotype phenomenon as a tool with which to study genetic relationships between congener scale insects.

  3. Consequences of gene flow between oilseed rape (Brassica napus) and its relatives.

    PubMed

    Liu, Yongbo; Wei, Wei; Ma, Keping; Li, Junsheng; Liang, Yuyong; Darmency, Henri

    2013-10-01

    Numerous studies have focused on the probability of occurrence of gene flow between transgenic crops and their wild relatives and the likelihood of transgene escape, which should be assessed before the commercial release of transgenic crops. This review paper focuses on this issue for oilseed rape, Brassica napus L., a species that produces huge numbers of pollen grains and seeds. We analyze separately the distinct steps of gene flow: (1) pollen and seeds as vectors of gene flow; (2) spontaneous hybridization; (3) hybrid behavior, fitness cost due to hybridization and mechanisms of introgression; (4) and fitness benefit due to transgenes (e.g. herbicide resistance and Bt toxin). Some physical, biological and molecular means of transgene containment are also described. Although hybrids and first generation progeny are difficult to identify in fields and non-crop habitats, the literature shows that transgenes could readily introgress into Brassica rapa, Brassica juncea and Brassica oleracea, while introgression is expected to be rare with Brassica nigra, Hirschfeldia incana and Raphanus raphanistrum. The hybrids grow well but produce less seed than their wild parent. The difference declines with increasing generations. However, there is large uncertainty about the evolution of chromosome numbers and recombination, and many parameters of life history traits of hybrids and progeny are not determined with satisfactory confidence to build generic models capable to really cover the wide diversity of situations. We show that more studies are needed to strengthen and organize biological knowledge, which is a necessary prerequisite for model simulations to assess the practical and evolutionary outputs of introgression, and to provide guidelines for gene flow management.

  4. Coalescent and biophysical models of stepping-stone gene flow in neritid snails.

    PubMed

    Crandall, Eric D; Treml, Eric A; Barber, Paul H

    2012-11-01

    Marine species in the Indo-Pacific have ranges that can span thousands of kilometres, yet studies increasingly suggest that mean larval dispersal distances are less than historically assumed. Gene flow across these ranges must therefore rely to some extent on larval dispersal among intermediate 'stepping-stone' populations in combination with long-distance dispersal far beyond the mean of the dispersal kernel. We evaluate the strength of stepping-stone dynamics by employing a spatially explicit biophysical model of larval dispersal in the tropical Pacific to construct hypotheses for dispersal pathways. We evaluate these hypotheses with coalescent models of gene flow among high-island archipelagos in four neritid gastropod species. Two of the species live in the marine intertidal, while the other two are amphidromous, living in fresh water but retaining pelagic dispersal. Dispersal pathways predicted by the biophysical model were strongly favoured in 16 of 18 tests against alternate hypotheses. In regions where connectivity among high-island archipelagos was predicted as direct, there was no difference in gene flow between marine and amphidromous species. In regions where connectivity was predicted through stepping-stone atolls only accessible to marine species, gene flow estimates between high-island archipelagos were significantly higher in marine species. Moreover, one of the marine species showed a significant pattern of isolation by distance consistent with stepping-stone dynamics. While our results support stepping-stone dynamics in Indo-Pacific species, we also see evidence for nonequilibrium processes such as range expansions or rare long-distance dispersal events. This study couples population genetic and biophysical models to help to shed light on larval dispersal pathways.

  5. PROCESS FLOW FOR CLASSIFICATION AND CLUSTERING OF FRUIT FLY GENE EXPRESSION PATTERNS

    PubMed Central

    Heffel, Andreas; Stadler, Peter F.; Prohaska, Sonja J.; Kauer, Gerhard; Kuska, Jens-Peer

    2009-01-01

    The rapidly growing collection of fruit fly embryo images makes automated Image Segmentation and classification an indispensable requirement for a large-scale analysis of in situ hybridization (ISH) – gene expression patterns (GEP). We present here such an automated process flow for Segmenting, Classification, and Clustering large-scale sets of Drosophila melanogaster GEP that is capable of dealing with most of the complications implicated in the images. PMID:20046820

  6. Evidence for Gene Flow between Two Sympatric Mealybug Species (Insecta; Coccoidea; Pseudococcidae)

    PubMed Central

    Kol-Maimon, Hofit; Ghanim, Murad; Franco, José Carlos; Mendel, Zvi

    2014-01-01

    Occurrence of inter-species hybrids in natural populations might be evidence of gene flow between species. In the present study we found evidence of gene flow between two sympatric, genetically related scale insect species – the citrus mealybug Planococcus citri (Risso) and the vine mealybug Planococcus ficus (Signoret). These species can be distinguished by morphological, behavioral, and molecular traits. We employed the sex pheromones of the two respective species to study their different patterns of male attraction. We also used nuclear ITS2 (internal transcribed spacer 2) and mitochondrial COI (Cytochrome c oxidase sub unit 1) DNA sequences to characterize populations of the two species, in order to demonstrate the outcome of a possible gene flow between feral populations of the two species. Our results showed attraction to P. ficus pheromones of all tested populations of P. citri males but not vice versa. Furthermore, ITS2 sequences revealed the presence of ‘hybrid females’ among P. citri populations but not among those of P. ficus. ‘hybrid females’ from P. citri populations identified as P. citri females according to COI sequences. We offer two hypotheses for these results. 1) The occurrence of phenotypic and genotypic traits of P. ficus in P. citri populations may be attributed to both ancient and contemporary gene flow between their populations; and 2) we cannot rule out that an ancient sympatric speciation by which P. ficus emerged from P. citri might have led to the present situation of shared traits between these species. In light of these findings we also discuss the origin of the studied species and the importance of the pherotype phenomenon as a tool with which to study genetic relationships between congener scale insects. PMID:24523894

  7. Landscape effects on gene flow for a climate-sensitive montane species, the American pika.

    PubMed

    Castillo, Jessica A; Epps, Clinton W; Davis, Anne R; Cushman, Samuel A

    2014-02-01

    Climate change is arguably the greatest challenge to conservation of our time. Most vulnerability assessments rely on past and current species distributions to predict future persistence but ignore species' abilities to disperse through landscapes, which may be particularly important in fragmented habitats and crucial for long-term persistence in changing environments. Landscape genetic approaches explore the interactions between landscape features and gene flow and can clarify how organisms move among suitable habitats, but have suffered from methodological uncertainties. We used a landscape genetic approach to determine how landscape and climate-related features influence gene flow for American pikas (Ochotona princeps) in Crater Lake National Park. Pikas are heat intolerant and restricted to cool microclimates; thus, range contractions have been predicted as climate changes. We evaluated the correlation between landscape variables and genetic distance using partial Mantel tests in a causal modelling framework, and used spatially explicit simulations to evaluate methods of model optimization including a novel approach based on relative support and reciprocal causal modelling. We found that gene flow was primarily restricted by topographic relief, water and west-facing aspects, suggesting that physical restrictions related to small body size and mode of locomotion, as well as exposure to relatively high temperatures, limit pika dispersal in this alpine habitat. Our model optimization successfully identified landscape features influencing resistance in the simulated data for this landscape, but underestimated the magnitude of resistance. This is the first landscape genetic study to address the fundamental question of what limits dispersal and gene flow in the American pika.

  8. Historical divergence and gene flow: coalescent analyses of mitochondrial, autosomal and sex-linked loci in Passerina buntings.

    PubMed

    Carling, Matthew D; Lovette, Irby J; Brumfield, Robb T

    2010-06-01

    Quantifying the role of gene flow during the divergence of closely related species is crucial to understanding the process of speciation. We collected DNA sequence data from 20 loci (one mitochondrial, 13 autosomal, and six sex-linked) for population samples of Lazuli Buntings (Passerina amoena) and Indigo Buntings (Passerina cyanea) (Aves: Cardinalidae) to test explicitly between a strict allopatric speciation model and a model in which divergence occurred despite postdivergence gene flow. Likelihood ratio tests of coalescent-based population genetic parameter estimates indicated a strong signal of postdivergence gene flow and a strict allopatric speciation model was rejected. Analyses of partitioned datasets (mitochondrial, autosomal, and sex-linked) suggest the overall gene flow patterns are driven primarily by autosomal gene flow, as there is no evidence of mitochondrial gene flow and we were unable to reject an allopatric speciation model for the sex-linked data. This pattern is consistent with either a parapatric divergence model or repeated periods of allopatry with gene flow occurring via secondary contact. These results are consistent with the low fitness of female avian hybrids under Haldane's rule and demonstrate that sex-linked loci likely are important in the initial generation of reproductive isolation, not just its maintenance.

  9. Efficient removal of antibiotics in surface-flow constructed wetlands, with no observed impact on antibiotic resistance genes.

    PubMed

    Berglund, Björn; Khan, Ghazanfar Ali; Weisner, Stefan E B; Ehde, Per Magnus; Fick, Jerker; Lindgren, Per-Eric

    2014-04-01

    Recently, there have been growing concerns about pharmaceuticals including antibiotics as environmental contaminants. Antibiotics of concentrations commonly encountered in wastewater have been suggested to affect bacterial population dynamics and to promote dissemination of antibiotic resistance. Conventional wastewater treatment processes do not always adequately remove pharmaceuticals causing environmental dissemination of low levels of these compounds. Using constructed wetlands as an additional treatment step after sewage treatment plants have been proposed as a cheap alternative to increase reduction of wastewater contaminants, however this means that the natural microbial community of the wetlands becomes exposed to elevated levels of antibiotics. In this study, experimental surface-flow wetlands in Sweden were continuously exposed to antibiotics of concentrations commonly encountered in wastewater. The aim was to assess the antibiotic removal efficiency of constructed wetlands and to evaluate the impact of low levels of antibiotics on bacterial diversity, resistance development and expression in the wetland bacterial community. Antibiotic concentrations were measured using liquid chromatography-mass spectrometry and the effect on the bacterial diversity was assessed with 16S rRNA-based denaturing gradient gel electrophoresis. Real-time PCR was used to detect and quantify antibiotic resistance genes and integrons in the wetlands, during and after the exposure period. The results indicated that the antibiotic removal efficiency of constructed wetlands was comparable to conventional wastewater treatment schemes. Furthermore, short-term treatment of the constructed wetlands with environmentally relevant concentrations (i.e. 100-2000 ng×l(-1)) of antibiotics did not significantly affect resistance gene concentrations, suggesting that surface-flow constructed wetlands are well-suited for wastewater treatment purposes.

  10. Pollen-mediated gene flow from transgenic perennial creeping bentgrass and hybridization at the landscape level

    PubMed Central

    Mallory-Smith, Carol Ann

    2017-01-01

    The planting of 162 ha of transgenic glyphosate-resistant creeping bentgrass (Agrostis stolonifera) near Madras, OR, USA, allowed a unique opportunity to study gene flow over time from a perennial outcrossing species at the landscape level. While conducting a four year in situ survey, we collected panicles and leaf tissue samples from creeping bentgrass and its sexually compatible species. Seeds from the panicles were planted, and seedlings were tested in the greenhouse for expression of the transgene. Gene flow via pollen was found in all four years, at frequencies of 0.004 to 2.805%. Chloroplast markers, in combination with internal transcribed spacer nuclear sequence analysis, were used to aid in identification of transgenic interspecific and intergeneric hybrid seedlings found during the testing and of established plants that could not be positively identified in the field. Interspecific transgenic hybrids produced on redtop (Agrostis gigantea) plants in situ were identified three of the four years and one intergeneric transgenic creeping bentgrass x rabbitfoot grass (Polypogon monspeliensis) hybrid was identified in 2005. In addition, we confirmed a non-transgenic creeping bentgrass x redtop hybrid in situ, demonstrating that interspecific hybrids have established in the environment outside production fields. Results of this study should be considered for deregulation of transgenic events, studies of population dynamics, and prediction of gene flow in the environment. PMID:28257488

  11. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears.

    PubMed

    Cahill, James A; Stirling, Ian; Kistler, Logan; Salamzade, Rauf; Ersmark, Erik; Fulton, Tara L; Stiller, Mathias; Green, Richard E; Shapiro, Beth

    2015-03-01

    Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we present an analysis of data from a large panel of polar bear and brown bear genomes that includes brown bears from the ABC islands, the Alaskan mainland and Europe. Our results provide clear evidence that gene flow between the two species had a geographically wide impact, with polar bear DNA found within the genomes of brown bears living both on the ABC islands and in the Alaskan mainland. Intriguingly, while brown bear genomes contain up to 8.8% polar bear ancestry, polar bear genomes appear to be devoid of brown bear ancestry, suggesting the presence of a barrier to gene flow in that direction.

  12. Admixture and Gene Flow from Russia in the Recovering Northern European Brown Bear (Ursus arctos)

    PubMed Central

    Kopatz, Alexander; Eiken, Hans Geir; Aspi, Jouni; Kojola, Ilpo; Tobiassen, Camilla; Tirronen, Konstantin F.; Danilov, Pjotr I.; Hagen, Snorre B.

    2014-01-01

    Large carnivores were persecuted to near extinction during the last centuries, but have now recovered in some countries. It has been proposed earlier that the recovery of the Northern European brown bear is supported by migration from Russia. We tested this hypothesis by obtaining for the first time continuous sampling of the whole Finnish bear population, which is located centrally between the Russian and Scandinavian bear populations. The Finnish population is assumed to experience high gene flow from Russian Karelia. If so, no or a low degree of genetic differentiation between Finnish and Russian bears could be expected. We have genotyped bears extensively from all over Finland using 12 validated microsatellite markers and compared their genetic composition to bears from Russian Karelia, Sweden, and Norway. Our fine masked investigation identified two overlapping genetic clusters structured by isolation-by-distance in Finland (pairwise FST = 0.025). One cluster included Russian bears, and migration analyses showed a high number of migrants from Russia into Finland, providing evidence of eastern gene flow as an important driver during recovery. In comparison, both clusters excluded bears from Sweden and Norway, and we found no migrants from Finland in either country, indicating that eastern gene flow was probably not important for the population recovery in Scandinavia. Our analyses on different spatial scales suggest a continuous bear population in Finland and Russian Karelia, separated from Scandinavia. PMID:24839968

  13. Land clearing reduces gene flow in the granite outcrop-dwelling lizard, Ctenophorus ornatus.

    PubMed

    Levy, Esther; Kennington, W Jason; Tomkins, Joseph L; Lebas, Natasha R

    2010-10-01

    An important question for the conservation of species dwelling in fragmented habitats is whether changes to the intervening landscape create a barrier to gene flow. Here, we make use of the spatial distribution of the granite outcrop-dwelling lizard, Ctenophorus ornatus, to compare inferred levels of gene flow between outcrops in a nature reserve with that between outcrops in the adjacent agricultural land. Genetic variation, relatedness and subdivision were compared within groups of individuals from different outcrops similar in size and distance apart at each site. In the agricultural land, we found significantly lower genetic variation within outcrops and greater genetic differentiation between outcrops than in the reserve. Further, the rate at which genetic divergence between outcrops increased over geographical distance was significantly greater in the agricultural land than in the reserve. We also found that individuals were more closely related within outcrops but more distantly related between outcrops in the cleared land. These effects occur over a small spatial scale with an average distance between outcrops of less than five kilometres. Thus, even though land clearing around the outcrops leaves outcrop size unchanged, it restricts gene flow, reducing genetic variation and increasing population structure, with potentially negative consequences for the long-term persistence of the lizards on these outcrops.

  14. Detecting the existence of gene flow between Spanish and North African goats through a coalescent approach.

    PubMed

    Martínez, Amparo; Manunza, Arianna; Delgado, Juan Vicente; Landi, Vincenzo; Adebambo, Ayotunde; Ismaila, Muritala; Capote, Juan; El Ouni, Mabrouk; Elbeltagy, Ahmed; Abushady, Asmaa M; Galal, Salah; Ferrando, Ainhoa; Gómez, Mariano; Pons, Agueda; Badaoui, Bouabid; Jordana, Jordi; Vidal, Oriol; Amills, Marcel

    2016-12-14

    Human-driven migrations are one of the main processes shaping the genetic diversity and population structure of domestic species. However, their magnitude and direction have been rarely analysed in a statistical framework. We aimed to estimate the impact of migration on the population structure of Spanish and African goats. To achieve this goal, we analysed a dataset of 1,472 individuals typed with 23 microsatellites. Population structure of African and Spanish goats was moderate (mean FST = 0.07), with the exception of the Canarian and South African breeds that displayed a significant differentiation when compared to goats from North Africa and Nigeria. Measurement of gene flow with Migrate-n and IMa coalescent genealogy samplers supported the existence of a bidirectional gene flow between African and Spanish goats. Moreover, IMa estimates of the effective number of migrants were remarkably lower than those calculated with Migrate-n and classical approaches. Such discrepancies suggest that recent divergence, rather than extensive gene flow, is the main cause of the weak population structure observed in caprine breeds.

  15. Gene Flow Patterns of the Mayfly Fallceon quilleri in San Diego County, California.

    NASA Astrophysics Data System (ADS)

    Zickovich, J.; Bohonak, A. J.

    2005-05-01

    Management decisions and conservation strategies for freshwater invertebrates critically depend on an understanding of gene flow and genetic structure. We collected the mayfly Fallceon quilleri (Ephemeroptera: Baetidae) from 15 streams across three geographically distinct watersheds in San Diego County, California (San Dieguito, Santa Margarita, and Tijuana) and one site in Anza-Borrego desert. We sequenced a 667 base pair region of the mitochondrial DNA (COI) to assess genetic structure and gene flow. We found eight haplotypes across all populations. San Dieguito and Santa Margarita each contained six haplotypes. Tijuana and Anza Borrego each contained four haplotypes. The expected heterozygosity for San Dieguito, Santa Margarita, Tijuana, and Anza Borrego was 0.81, 0.83, 0.75, and 1.0, respectively. A hierarchical AMOVA analysis indicated restricted gene flow and a pairwise comparison indicated that Tijuana watershed differs significantly from San Dieguito and Anza Borrego. A haplotype cladogram revealed two internal ancestral haplotypes and six derived tip haplotypes that are unique to particular watersheds. These results suggest that Tijuana (the southernmost and the most impacted watershed) is more genetically distinct and isolated than the other watersheds sampled.

  16. Climate change alters reproductive isolation and potential gene flow in an annual plant

    PubMed Central

    Franks, Steven J; Weis, Arthur E

    2009-01-01

    Climate change will likely cause evolution due not only to selection but also to changes in reproductive isolation within and among populations. We examined the effects of a natural drought on the timing of flowering in two populations of Brassica rapa and the consequences for predicted reproductive isolation and potential gene flow. Seeds were collected before and after a 5-year drought in southern California from two populations varying in soil moisture. Lines derived from these seeds were raised in the greenhouse under wet and drought conditions. We found that the natural drought caused changes in reproductive timing and that the changes were greater for plants from the wet than from the dry site. This differential shift caused the populations to become more phenological similar, which should lead to less reproductive isolation and increased gene flow. We estimated a high level of assortative mating by flowering time, which potentially contributed to the rapid evolution of phenological traits following the drought. Estimates of assortative mating were higher for the wet site population, and assortative mating was reduced following the drought. This study shows that climate change can potentially alter gene flow and reproductive isolation within and among populations, strongly influencing evolution. PMID:25567893

  17. Detecting the existence of gene flow between Spanish and North African goats through a coalescent approach

    PubMed Central

    Martínez, Amparo; Manunza, Arianna; Delgado, Juan Vicente; Landi, Vincenzo; Adebambo, Ayotunde; Ismaila, Muritala; Capote, Juan; El Ouni, Mabrouk; Elbeltagy, Ahmed; Abushady, Asmaa M.; Galal, Salah; Ferrando, Ainhoa; Gómez, Mariano; Pons, Agueda; Badaoui, Bouabid; Jordana, Jordi; Vidal, Oriol; Amills, Marcel

    2016-01-01

    Human-driven migrations are one of the main processes shaping the genetic diversity and population structure of domestic species. However, their magnitude and direction have been rarely analysed in a statistical framework. We aimed to estimate the impact of migration on the population structure of Spanish and African goats. To achieve this goal, we analysed a dataset of 1,472 individuals typed with 23 microsatellites. Population structure of African and Spanish goats was moderate (mean FST = 0.07), with the exception of the Canarian and South African breeds that displayed a significant differentiation when compared to goats from North Africa and Nigeria. Measurement of gene flow with Migrate-n and IMa coalescent genealogy samplers supported the existence of a bidirectional gene flow between African and Spanish goats. Moreover, IMa estimates of the effective number of migrants were remarkably lower than those calculated with Migrate-n and classical approaches. Such discrepancies suggest that recent divergence, rather than extensive gene flow, is the main cause of the weak population structure observed in caprine breeds. PMID:27966592

  18. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears

    PubMed Central

    Cahill, James A; Stirling, Ian; Kistler, Logan; Salamzade, Rauf; Ersmark, Erik; Fulton, Tara L; Stiller, Mathias; Green, Richard E; Shapiro, Beth

    2015-01-01

    Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we present an analysis of data from a large panel of polar bear and brown bear genomes that includes brown bears from the ABC islands, the Alaskan mainland and Europe. Our results provide clear evidence that gene flow between the two species had a geographically wide impact, with polar bear DNA found within the genomes of brown bears living both on the ABC islands and in the Alaskan mainland. Intriguingly, while brown bear genomes contain up to 8.8% polar bear ancestry, polar bear genomes appear to be devoid of brown bear ancestry, suggesting the presence of a barrier to gene flow in that direction. PMID:25490862

  19. Identification of landscape features influencing gene flow: How useful are habitat selection models?

    PubMed

    Roffler, Gretchen H; Schwartz, Michael K; Pilgrim, Kristy L; Talbot, Sandra L; Sage, George K; Adams, Layne G; Luikart, Gordon

    2016-07-01

    Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is important to consider explicit assumptions and spatial scales of measurement. We calculated pairwise genetic distance among 301 Dall's sheep (Ovis dalli dalli) in southcentral Alaska using an intensive noninvasive sampling effort and 15 microsatellite loci. We used multiple regression of distance matrices to assess the correlation of pairwise genetic distance and landscape resistance derived from an RSF, and combinations of landscape features hypothesized to influence dispersal. Dall's sheep gene flow was positively correlated with steep slopes, moderate peak normalized difference vegetation indices (NDVI), and open land cover. Whereas RSF covariates were significant in predicting genetic distance, the RSF model itself was not significantly correlated with Dall's sheep gene flow, suggesting that certain habitat features important during summer (rugged terrain, mid-range elevation) were not influential to effective dispersal. This work underscores that consideration of both habitat selection and landscape genetics models may be useful in developing management strategies to both meet the immediate survival of a species and allow for long-term genetic connectivity.

  20. Inferring landscape effects on gene flow: a new model selection framework.

    PubMed

    Shirk, A J; Wallin, D O; Cushman, S A; Rice, C G; Warheit, K I

    2010-09-01

    Populations in fragmented landscapes experience reduced gene flow, lose genetic diversity over time and ultimately face greater extinction risk. Improving connectivity in fragmented landscapes is now a major focus of conservation biology. Designing effective wildlife corridors for this purpose, however, requires an accurate understanding of how landscapes shape gene flow. The preponderance of landscape resistance models generated to date, however, is subjectively parameterized based on expert opinion or proxy measures of gene flow. While the relatively few studies that use genetic data are more rigorous, frameworks they employ frequently yield models only weakly related to the observed patterns of genetic isolation. Here, we describe a new framework that uses expert opinion as a starting point. By systematically varying each model parameter, we sought to either validate the assumptions of expert opinion, or identify a peak of support for a new model more highly related to genetic isolation. This approach also accounts for interactions between variables, allows for nonlinear responses and excludes variables that reduce model performance. We demonstrate its utility on a population of mountain goats inhabiting a fragmented landscape in the Cascade Range, Washington.

  1. Identification of landscape features influencing gene flow: How useful are habitat selection models?

    USGS Publications Warehouse

    Roffler, Gretchen H.; Schwartz, Michael K.; Pilgrim, Kristy L.; Talbot, Sandra; Sage, Kevin; Adams, Layne G.; Luikart, Gordon

    2016-01-01

    Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is important to consider explicit assumptions and spatial scales of measurement. We calculated pairwise genetic distance among 301 Dall's sheep (Ovis dalli dalli) in southcentral Alaska using an intensive noninvasive sampling effort and 15 microsatellite loci. We used multiple regression of distance matrices to assess the correlation of pairwise genetic distance and landscape resistance derived from an RSF, and combinations of landscape features hypothesized to influence dispersal. Dall's sheep gene flow was positively correlated with steep slopes, moderate peak normalized difference vegetation indices (NDVI), and open land cover. Whereas RSF covariates were significant in predicting genetic distance, the RSF model itself was not significantly correlated with Dall's sheep gene flow, suggesting that certain habitat features important during summer (rugged terrain, mid-range elevation) were not influential to effective dispersal. This work underscores that consideration of both habitat selection and landscape genetics models may be useful in developing management strategies to both meet the immediate survival of a species and allow for long-term genetic connectivity.

  2. Spatial and Temporal Assessment of Pollen- and Seed-Mediated Gene Flow from Genetically Engineered Plum Prunus domestica

    PubMed Central

    Scorza, Ralph; Kriss, Alissa B.; Callahan, Ann M.; Webb, Kevin; Demuth, Mark; Gottwald, Tim

    2013-01-01

    Pollen flow from a 0.46 ha plot of genetically engineered (GE) Prunus domestica located in West Virginia, USA was evaluated from 2000–2010. Sentinel plum trees were planted at distances ranging from 132 to 854 m from the center of the GE orchard. Plots of mixed plum varieties and seedlings were located at 384, 484 and 998 m from the GE plot. Bee hives (Apis mellifera) were dispersed between the GE plum plot and the pollen flow monitoring sites. Pollen-mediated gene flow from out of the GE plum plot to non-GE plums under the study conditions was low, only occurring at all in 4 of 11 years and then in only 0.31% of the 12,116 seeds analyzed. When it occurred, gene flow, calculated as the number of GUS positive embryos/total embryos sampled, ranged from 0.215% at 132 m from the center of the GE plum plot (28 m from the nearest GE plum tree) to 0.033–0.017% at longer distances (384–998 m). Based on the percentage of GUS positive seeds per individual sampled tree the range was 0.4% to 12%. Within the GE field plot, gene flow ranged from 4.9 to 39%. Gene flow was related to distance and environmental conditions. A single year sample from a sentinel plot 132 m from the center of the GE plot accounted for 65% of the total 11-year gene flow. Spatial modeling indicated that gene flow dramatically decreased at distances over 400 m from the GE plot. Air temperature and rainfall were, respectively, positively and negatively correlated with gene flow, reflecting the effects of weather conditions on insect pollinator activity. Seed-mediated gene flow was not detected. These results support the feasibility of coexistence of GE and non-GE plum orchards. PMID:24098374

  3. Spatial and temporal assessment of pollen- and seed-mediated gene flow from genetically engineered plum Prunus domestica.

    PubMed

    Scorza, Ralph; Kriss, Alissa B; Callahan, Ann M; Webb, Kevin; Demuth, Mark; Gottwald, Tim

    2013-01-01

    Pollen flow from a 0.46 ha plot of genetically engineered (GE) Prunus domestica located in West Virginia, USA was evaluated from 2000-2010. Sentinel plum trees were planted at distances ranging from 132 to 854 m from the center of the GE orchard. Plots of mixed plum varieties and seedlings were located at 384, 484 and 998 m from the GE plot. Bee hives (Apis mellifera) were dispersed between the GE plum plot and the pollen flow monitoring sites. Pollen-mediated gene flow from out of the GE plum plot to non-GE plums under the study conditions was low, only occurring at all in 4 of 11 years and then in only 0.31% of the 12,116 seeds analyzed. When it occurred, gene flow, calculated as the number of GUS positive embryos/total embryos sampled, ranged from 0.215% at 132 m from the center of the GE plum plot (28 m from the nearest GE plum tree) to 0.033-0.017% at longer distances (384-998 m). Based on the percentage of GUS positive seeds per individual sampled tree the range was 0.4% to 12%. Within the GE field plot, gene flow ranged from 4.9 to 39%. Gene flow was related to distance and environmental conditions. A single year sample from a sentinel plot 132 m from the center of the GE plot accounted for 65% of the total 11-year gene flow. Spatial modeling indicated that gene flow dramatically decreased at distances over 400 m from the GE plot. Air temperature and rainfall were, respectively, positively and negatively correlated with gene flow, reflecting the effects of weather conditions on insect pollinator activity. Seed-mediated gene flow was not detected. These results support the feasibility of coexistence of GE and non-GE plum orchards.

  4. Historical gene flow and profound spatial genetic structure among golden pheasant populations suggested by multi-locus analysis.

    PubMed

    He, Ke; Liu, Hong-Yi; Ge, Yun-Fa; Wu, Shao-Ying; Wan, Qiu-Hong

    2017-05-01

    Major histocompatibility complex (MHC) is a good marker system for geographical genetics since they are functional genes in the immune system that are likely to affect the fitness of the individual, and the survival and evolutionary potential of a population in a changing environment. Golden pheasant (Chrysolophus pictus) is a wild Phasianidae distributed in central and north China. In this study, we used a locus-specific genotyping technique for MHC IIB genes of golden pheasant. Combining with microsatellites (simple sequence repeat, SSR) and mitochondrial DNA (mtDNA) D-loop region, we investigated the demographic history and illuminate genetic structure of this bird in detail. SYR (south of Yangtze river) - NYR (north of Yangtze river) lineages, separated by Yangtze River, were defined in genetic structure of MHC IIB. NYR was supposed as refuge during glacial period, suggested by diversity parameters and more ancient alleles in this region. Based on this hypothesis, there was gene flow from NYR to SYR, which was proved by three pieces of evidence: (1) distinct demographic histories of SYR (kept stable) and NYR (experienced expansion); (2) specific affiliation of LC in genetic structure of SSR and MHC genes; (3) significant gene flow from NYR to SYR. Moreover, we also found balancing selection by combination of three Grouping A2's regions (SC, QL and North) into one in Grouping B4 (NYR) and no pattern of isolation by distance (IBD) found in MHC IIB, whereas for SSR we found a relatively strong and significant IBD. Several mechanisms in the evolution of MHC IIB genes, including recombination, historically positive selection, trans-species evolution and concerted evolution, were shown by molecular and phylogenetic analysis. Overall these results suggest the Yangtze River was inferred to be a geological barrier for this avian and NYR might experience population expansion, which invaded into a neighboring region. This study contributes to the understanding of the

  5. Utility of bromide and heat tracers for aquifer characterization affected by highly transient flow conditions

    NASA Astrophysics Data System (ADS)

    Ma, Rui; Zheng, Chunmiao; Zachara, John M.; Tonkin, Matthew

    2012-08-01

    A tracer test using both bromide and heat tracers conducted at the Integrated Field Research Challenge site in Hanford 300 Area (300A), Washington, provided an instrument for evaluating the utility of bromide and heat tracers for aquifer characterization. The bromide tracer data were critical to improving the calibration of the flow model complicated by the highly dynamic nature of the flow field. However, most bromide concentrations were obtained from fully screened observation wells, lacking depth-specific resolution for vertical characterization. On the other hand, depth-specific temperature data were relatively simple and inexpensive to acquire. However, temperature-driven fluid density effects influenced heat plume movement. Moreover, the temperature data contained "noise" caused by heating during fluid injection and sampling events. Using the hydraulic conductivity distribution obtained from the calibration of the bromide transport model, the temperature depth profiles and arrival times of temperature peaks simulated by the heat transport model were in reasonable agreement with observations. This suggested that heat can be used as a cost-effective proxy for solute tracers for calibration of the hydraulic conductivity distribution, especially in the vertical direction. However, a heat tracer test must be carefully designed and executed to minimize fluid density effects and sources of noise in temperature data. A sensitivity analysis also revealed that heat transport was most sensitive to hydraulic conductivity and porosity, less sensitive to thermal distribution factor, and least sensitive to thermal dispersion and heat conduction. This indicated that the hydraulic conductivity remains the primary calibration parameter for heat transport.

  6. Dynamic regimes of buoyancy-affected two-phase flow in unconsolidated porous media.

    PubMed

    Stöhr, M; Khalili, A

    2006-03-01

    The invasion and subsequent flow of a nonwetting fluid (NWF) in a three-dimensional, unconsolidated porous medium saturated with a wetting fluid of higher density and viscosity have been studied experimentally using a light-transmission technique. Distinct dynamic regimes have been found for different relative magnitudes of viscous, capillary, and gravity forces. It is shown that the ratio of viscous and hydrostatic pressure gradients can be used as a relevant dimensionless number K for the characterization of the different flow regimes. For low values of K, the invasion is characterized by the migration and fragmentation of isolated clusters of the NWF resulting from the prevalence of gravity and capillary forces. At high values of K, the dominance of viscous and gravity forces leads to an anisotropic fingerlike invasion. When the invasion stops after the breakthrough of the NWF at the open upper boundary, the invasion structure retracts under the influence of gravity and transforms into stable vertical channels. It is shown that the stability of these channels is the result of a balance between hydrostatic and viscous pressure gradients.

  7. Dynamic regimes of buoyancy-affected two-phase flow in unconsolidated porous media

    NASA Astrophysics Data System (ADS)

    Stöhr, M.; Khalili, A.

    2006-03-01

    The invasion and subsequent flow of a nonwetting fluid (NWF) in a three-dimensional, unconsolidated porous medium saturated with a wetting fluid of higher density and viscosity have been studied experimentally using a light-transmission technique. Distinct dynamic regimes have been found for different relative magnitudes of viscous, capillary, and gravity forces. It is shown that the ratio of viscous and hydrostatic pressure gradients can be used as a relevant dimensionless number K for the characterization of the different flow regimes. For low values of K , the invasion is characterized by the migration and fragmentation of isolated clusters of the NWF resulting from the prevalence of gravity and capillary forces. At high values of K , the dominance of viscous and gravity forces leads to an anisotropic fingerlike invasion. When the invasion stops after the breakthrough of the NWF at the open upper boundary, the invasion structure retracts under the influence of gravity and transforms into stable vertical channels. It is shown that the stability of these channels is the result of a balance between hydrostatic and viscous pressure gradients.

  8. Factors affecting flow cytometric detection of apoptotic nuclei by DNA analysis

    SciTech Connect

    Elstein, K.H.; Thomas, D.J.; Zucker, R.M.

    1995-10-01

    Apoptotic thymocyte nuclei normally appear on a flow cytometric DNA histogram as a subdiploid peak. We observed that addition of a specific RNase A preparation to the detergent-based lysing buffer increased the fluorescence of toxicant-induced apoptotic nuclei to the level of untreated diploid nuclei. The chelating agent EDTA partially inhibited the RNase effect, suggesting contaminating divalent cations may have been involved. Moreover, spectrofluorometric analysis revealed that addition of RNase or divalent cations decreased the amount of DNA present in the lysate. This suggested that the upscale fluorescence shift was due to a decrease in the ability of the lysing buffer to extract DNA, possibly as a result of cation-induced chromatin condensation, rather than increased accessibility of fluorochrome binding sites due to apoptotic degeneration. Moreover, during a 16-h culture, we observed a similar, but time-dependent, upscale shift in the fluorescence of thymocytes undergoing apoptosis either spontaneously or as a result of exposure to 1 {mu}M tributyltin methoxide (TBT), 2% ethanol, 2% methanol, or 1 {mu}M dexamethasone phosphate (DEX). This commonality of effect suggests that a similar magnitude of chromatin reorganization occurs in apoptotic cells in prolonged culture regardless of the method of apoptotic induction. These findings should alert investigators to potential inaccuracies in the flow cytometric quantitation of apoptosis in vitro systems employing prolonged toxicant exposures or complex lysing cocktails that may contain active contaminants. 37 refs., 3 figs., 1 tab.

  9. Vascular flows and transpiration affect peach (Prunus persica Batsch.) fruit daily growth.

    PubMed

    Morandi, Brunella; Rieger, Mark; Grappadelli, Luca Corelli

    2007-01-01

    The relative contributions of xylem, phloem, and transpiration to fruit growth and the daily patterns of their flows have been determined in peach, during the two stages of rapid diameter increase, by precise and continuous monitoring of fruit diameter variations. Xylem, phloem, and transpiration contributions to growth were quantified by comparing the diurnal patterns of diameter change of fruits, which were then girdled and subsequently detached. Xylem supports peach growth by 70%, and phloem 30%, while transpiration accounts for approximately 60% of daily total inflows. These figures and their diurnal patterns were comparable among years, stages, and cultivars. Xylem was functional at both stage I and III, while fruit transpiration was high and strictly dependent on environmental conditions, causing periods of fruit shrinkage. Phloem imports were correlated to fruit shrinkage and appear to facilitate subsequent fruit enlargement. Peach displays a growth mechanism which can be explained on the basis of passive unloading of photoassimilates from the phloem. A pivotal role is played by the large amount of water flowing from the tree to the fruit and from the fruit to the atmosphere.

  10. A new capture fraction method to map how pumpage affects surface water flow

    USGS Publications Warehouse

    Leake, S.A.; Reeves, H.W.; Dickinson, J.E.

    2010-01-01

    All groundwater pumped is balanced by removal of water somewhere, initially from storage in the aquifer and later from capture in the form of increase in recharge and decrease in discharge. Capture that results in a loss of water in streams, rivers, and wetlands now is a concern in many parts of the United States. Hydrologists commonly use analytical and numerical approaches to study temporal variations in sources of water to wells for select points of interest. Much can be learned about coupled surface/groundwater systems, however, by looking at the spatial distribution of theoretical capture for select times of interest. Development of maps of capture requires (1) a reasonably well-constructed transient or steady state model of an aquifer with head-dependent flow boundaries representing surface water features or evapotranspiration and (2) an automated procedure to run the model repeatedly and extract results, each time with a well in a different location. This paper presents new methods for simulating and mapping capture using three-dimensional groundwater flow models and presents examples from Arizona, Oregon, and Michigan. Journal compilation ?? 2010 National Ground Water Association. No claim to original US government works.

  11. MC1R variants affect the expression of melanocortin and melanogenic genes and the association between melanocortin genes and coloration.

    PubMed

    San-Jose, Luis M; Ducrest, Anne-Lyse; Ducret, Valérie; Simon, Céline; Richter, Hannes; Wakamatsu, Kazumasa; Roulin, Alexandre

    2017-01-01

    The melanocortin-1 receptor (MC1R) gene influences coloration by altering the expression of genes acting downstream in the melanin synthesis. MC1R belongs to the melanocortin system, a genetic network coding for the ligands that regulate MC1R and other melanocortin receptors controlling different physiological and behavioural traits. The impact of MC1R variants on these regulatory melanocortin genes was never considered, even though MC1R mutations could alter the influence of these genes on coloration (e.g. by decreasing MC1R response to melanocortin ligands). Using barn owl growing feathers, we investigated the differences between MC1R genotypes in the (co)expression of six melanocortin and nine melanogenic-related genes and in the association between melanocortin gene expression and phenotype (feather pheomelanin content). Compared to the MC1R rufous allele, responsible for reddish coloration, the white allele was not only associated with an expected lower expression of melanogenic-related genes (TYR, TYRP1, OCA2, SLC45A2, KIT, DCT) but also with a lower MC1R expression and a higher expression of ASIP, the MC1R antagonist. More importantly, the expression of PCSK2, responsible for the maturation of the MC1R agonist, α-melanocyte-stimulating hormone, was positively related to pheomelanin content in MC1R white homozygotes but not in individuals carrying the MC1R rufous allele. These findings indicate that MC1R mutations not only alter the expression of melanogenic-related genes but also the association between coloration and the expression of melanocortin genes upstream of MC1R. This suggests that MC1R mutations can modulate the regulation of coloration by the pleiotropic melanocortin genes, potentially decoupling the often-observed associations between coloration and other phenotypes.

  12. Bayesian Statistical Analyses for Presence of Single Genes Affecting Meat Quality Traits in a Crossed Pig Population

    PubMed Central

    Janss, LLG.; Van-Arendonk, JAM.; Brascamp, E. W.

    1997-01-01

    Presence of single genes affecting meat quality traits was investigated in F(2) individuals of a cross between Chinese Meishan and Western pig lines using phenotypic measurements on 11 traits. A Bayesian approach was used for inference about a mixed model of inheritance, postulating effects of polygenic background genes, action of a biallelic autosomal single gene and various nongenetic effects. Cooking loss, drip loss, two pH measurements, intramuscular fat, shearforce and back-fat thickness were traits found to be likely influenced by a single gene. In all cases, a recessive allele was found, which likely originates from the Meishan breed and is absent in the Western founder lines. By studying associations between genotypes assigned to individuals based on phenotypic measurements for various traits, it was concluded that cooking loss, two pH measurements and possibly backfat thickness are influenced by one gene, and that a second gene influences intramuscular fat and possibly shearforce and drip loss. Statistical findings were supported by demonstrating marked differences in variances of families of fathers inferred as carriers and those inferred as noncarriers. It is concluded that further molecular genetic research effort to map single genes affecting these traits based on the same experimental data has a high probability of success. PMID:9071593

  13. Methods of RNA preparation affect mRNA abundance quantification of reference genes in pig maturing oocytes.

    PubMed

    Wang, Y-K; Li, X; Song, Z-Q; Yang, C-X

    2017-04-13

    To ensure accurate normalization and quantification of target RNA transcripts using reverse transcription quantitative polymerase chain reaction (RT-qPCR), most studies focus on the identification of stably expressed gene(s) as internal reference. However, RNA preparation methods could also be an important factor, especially for test samples of limited quantity (e.g. oocytes). In this study, we aimed to select appropriate reference gene(s), and evaluate the effect of RNA preparation methods on gene expression quantification in porcine oocytes and cumulus cells during in vitro maturation. Expression profiles of seven genes (GAPDH, 18S, YWHAG, BACT, RPL4, HPRT1 and PPIA) were examined, on RNA samples extracted from cumulus cells (RNeasy Kit) and oocytes (RNeasy Kit and Lysis Kit) during in vitro maturation, respectively. Interestingly, different RNA preparation methods were found to potentially affect the quantification of reference gene expression in pig oocytes cultured in vitro. After geNorm analyses, the most suitable genes for normalization were identified, GAPDH/18S for cumulus cells and YWHAG/BACT for oocytes, respectively. Thus, our results provide useful data and information on the selection of better reference genes and RNA preparation method for related functional studies.

  14. Detection of Gene Flow from Sexual to Asexual Lineages in Thrips tabaci (Thysanoptera: Thripidae).

    PubMed

    Li, Xiao-Wei; Wang, Ping; Fail, Jozsef; Shelton, Anthony M

    2015-01-01

    Populations of Thrips tabaci are known to have two sympatric but genetically isolated reproductive modes, arrhenotoky (sexual reproduction) and thelytoky (asexual reproduction). Herein, we report behavioral, ecological and genetic studies to determine whether there is gene flow between arrhenotokous and thelytokous T. tabaci. We did not detect significant preference by arrhenotokous males to mate with females of a particular reproductive mode, nor did we detect significant behavioral differences between arrhenotokous males mated with arrhenotokous or thelytokous females in their pre-copulation, copulation duration and mating frequency. Productive gene transfer resulting from the mating between the two modes was experimentally confirmed. Gene transfer from arrhenotokous T. tabaci to thelytokous T. tabaci was further validated by confirmation of the passage of the arrhenotokous male-originated nuclear gene (histone H3 gene) allele to the F2 generation. These behavioral, ecological and genetic studies confirmed gene transfer from the sexual arrhenotokous mode to the asexual thelytokous mode of T. tabaci in the laboratory. These results demonstrate that asexual T. tabaci populations may acquire genetic variability from sexual populations, which could offset the long-term disadvantage of asexual reproduction.

  15. Asymmetrical Gene Flow in a Hybrid Zone of Hawaiian Schiedea (Caryophyllaceae) Species with Contrasting Mating Systems

    PubMed Central

    Wallace, Lisa E.; Culley, Theresa M.; Weller, Stephen G.; Sakai, Ann K.; Kuenzi, Ashley; Roy, Tilottama; Wagner, Warren L.; Nepokroeff, Molly

    2011-01-01

    Asymmetrical gene flow, which has frequently been documented in naturally occurring hybrid zones, can result from various genetic and demographic factors. Understanding these factors is important for determining the ecological conditions that permitted hybridization and the evolutionary potential inherent in hybrids. Here, we characterized morphological, nuclear, and chloroplast variation in a putative hybrid zone between Schiedea menziesii and S. salicaria, endemic Hawaiian species with contrasting breeding systems. Schiedea menziesii is hermaphroditic with moderate selfing; S. salicaria is gynodioecious and wind-pollinated, with partially selfing hermaphrodites and largely outcrossed females. We tested three hypotheses: 1) putative hybrids were derived from natural crosses between S. menziesii and S. salicaria, 2) gene flow via pollen is unidirectional from S. salicaria to S. menziesii and 3) in the hybrid zone, traits associated with wind pollination would be favored as a result of pollen-swamping by S. salicaria. Schiedea menziesii and S. salicaria have distinct morphologies and chloroplast genomes but are less differentiated at the nuclear loci. Hybrids are most similar to S. menziesii at chloroplast loci, exhibit nuclear allele frequencies in common with both parental species, and resemble S. salicaria in pollen production and pollen size, traits important to wind pollination. Additionally, unlike S. menziesii, the hybrid zone contains many females, suggesting that the nuclear gene responsible for male sterility in S. salicaria has been transferred to hybrid plants. Continued selection of nuclear genes in the hybrid zone may result in a population that resembles S. salicaria, but retains chloroplast lineage(s) of S. menziesii. PMID:21949765

  16. Measuring gene flow from two birdsfoot trefoil (Lotus corniculatus) field trials using transgenes as tracer markers.

    PubMed

    De Marchis, F; Bellucci, M; Arcioni, S

    2003-06-01

    Genetic engineering is becoming a useful tool in the improvement of plants but concern has been expressed about the potential environmental risks of releasing genetically modified (GM) organisms into the environment. Attention has focused on pollen dispersal as a major issue in the risk assessment of transgenic crop plants. In this study, pollen-mediated dispersal of transgenes via cross-fertilization was examined. Plants of Lotus corniculatus L. transformed with either the Escherichia coli asparagine synthetase gene asnA or the beta-glucuronidase gene uidA, were used as the pollen donor. Nontransgenic plants belonging to the species L. corniculatus L., L. tenuis Waldst. and Kit. ex Willd, and L. pedunculatus Cav., were utilized as recipients. Two experimental fields were established in two areas of central Italy. Plants carrying the uidA gene were partially sterile, therefore only the asnA gene was used as a tracer marker. No transgene flow between L. corniculatus transformants and the nontransgenic L. tenuis and L. pedunculatus plants was detected. As regards nontransgenic L. corniculatus plants, in one location flow of asnA transgene was detected up to 18 m from the 1.8 m2 donor plot. In the other location, pollen dispersal occurred up to 120 m from the 14 m2 pollinating plot.

  17. Arctigenin exhibits relaxation effect on bronchus by affecting transmembrane flow of calcium.

    PubMed

    Zhao, Zhenying; Yin, Yongqiang; Wang, Zengyong; Fang, Runping; Wu, Hong; Jiang, Min; Bai, Gang; Luo, Guo'an

    2013-12-01

    Arctigenin, a lignan extract from Arctium lappa (L.), exhibits anti-inflammation, antioxidation, vasodilator effects, etc. However, the effects of arctigenin on bronchus relaxation are not well investigated. This study aimed to investigate how arctigenin regulates bronchus tone and calcium ion (Ca(2+)) flow. Trachea strips of guinea pigs were prepared for testing the relaxation effect of arctigenin to acetylcholine, histamine, KCl, and CaCl2, respectively. Furthermore, L-type calcium channel currents were detected by patch-clamp, and intracellular Ca(2+) concentration was detected by confocal microscopy. The results showed that arctigenin exhibited relaxation effect on tracheae to different constrictors, and this was related to decreasing cytoplasmic Ca(2+) concentration by inhibiting Ca(2+) influx partly through L-type calcium channel as well as promoting Ca(2+) efflux. In summary, this study provides new insight into the mechanisms by which arctigenin exhibits relaxation effect on bronchus and suggests its potential use for airway disease therapy.

  18. Utility of Bromide and Heat Tracers for Aquifer Characterization Affected by Highly Transient Flow Conditions

    SciTech Connect

    Ma, Rui; Zheng, Chunmiao; Zachara, John M.; Tonkin, Matthew J.

    2012-08-29

    A tracer test using both bromide and heat tracers conducted at the Integrated Field Research Challenge site in Hanford 300 Area (300A), Washington, provided an instrument for evaluating the utility of bromide and heat tracers for aquifer characterization. The bromide tracer data were critical to improving the calibration of the flow model complicated by the highly dynamic nature of the flow field. However, most bromide concentrations were obtained from fully screened observation wells, lacking depth-specific resolution for vertical characterization. On the other hand, depth-specific temperature data were relatively simple and inexpensive to acquire. However, temperature-driven fluid density effects influenced heat plume movement. Moreover, the temperature data contained “noise” caused by heating during fluid injection and sampling events. Using the hydraulic conductivity distribution obtained from the calibration of the bromide transport model, the temperature depth profiles and arrival times of temperature peaks simulated by the heat transport model were in reasonable agreement with observations. This suggested that heat can be used as a cost-effective proxy for solute tracers for calibration of the hydraulic conductivity distribution, especially in the vertical direction. However, a heat tracer test must be carefully designed and executed to minimize fluid density effects and sources of noise in temperature data. A sensitivity analysis also revealed that heat transport was most sensitive to hydraulic conductivity and porosity, less sensitive to thermal distribution factor, and least sensitive to thermal dispersion and heat conduction. This indicated that the hydraulic conductivity remains the primary calibration parameter for heat transport.

  19. Flows, droughts, and aliens: factors affecting the fish assemblage in a Sierra Nevada, California, stream.

    PubMed

    Kiernan, Joseph D; Moyle, Peter B

    2012-06-01

    The fishes of Martis Creek, in the Sierra Nevada of California (USA), were sampled at four sites annually over 30 years, 1979-2008. This long-term data set was used to examine (1) the persistence and stability of the Martis Creek fish assemblage in the face of environmental stochasticity; (2) whether native and alien fishes responded differently to a natural hydrologic regime (e.g., timing and magnitude of high and low flows); and (3) the importance of various hydrologic and physical habitat variables in explaining the abundances of native and alien fish species through time. Our results showed that fish assemblages were persistent at all sample sites, but individual species exhibited marked interannual variability in density, biomass, and relative abundance. The density and biomass of native fishes generally declined over the period of study, whereas most alien species showed no significant long-term trends. Only alien rainbow trout increased in both density and biomass at all sites over time. Redundancy analysis identified three hydrologic variables (annual 7-day minimum discharge, maximum winter discharge, and number of distinct winter floods) and two habitat variables (percentage of pool habitat and percentage of gravel substrate) that each explained a significant portion of the annual variation in fish assemblage structure. For alien taxa, their proportional contribution to the total fish assemblage was inversely related to mean annual streamflow, one-day maximum discharge in both winter and spring, and the frequency of springtime floods. Results of this study highlight the need for continuous annual monitoring of streams with highly variable flow regimes to evaluate shifts in fish community structure. Apparent successes or failures in stream management may appear differently depending on the time series of available data.

  20. Accurately assessing the risk of schizophrenia conferred by rare copy-number variation affecting genes with brain function.

    PubMed

    Raychaudhuri, Soumya; Korn, Joshua M; McCarroll, Steven A; Altshuler, David; Sklar, Pamela; Purcell, Shaun; Daly, Mark J

    2010-09-09

    Investigators have linked rare copy number variation (CNVs) to neuropsychiatric diseases, such as schizophrenia. One hypothesis is that CNV events cause disease by affecting genes with specific brain functions. Under these circumstances, we expect that CNV events in cases should impact brain-function genes more frequently than those events in controls. Previous publications have applied "pathway" analyses to genes within neuropsychiatric case CNVs to show enrichment for brain-functions. While such analyses have been suggestive, they often have not rigorously compared the rates of CNVs impacting genes with brain function in cases to controls, and therefore do not address important confounders such as the large size of brain genes and overall differences in rates and sizes of CNVs. To demonstrate the potential impact of confounders, we genotyped rare CNV events in 2,415 unaffected controls with Affymetrix 6.0; we then applied standard pathway analyses using four sets of brain-function genes and observed an apparently highly significant enrichment for each set. The enrichment is simply driven by the large size of brain-function genes. Instead, we propose a case-control statistical test, cnv-enrichment-test, to compare the rate of CNVs impacting specific gene sets in cases versus controls. With simulations, we demonstrate that cnv-enrichment-test is robust to case-control differences in CNV size, CNV rate, and systematic differences in gene size. Finally, we apply cnv-enrichment-test to rare CNV events published by the International Schizophrenia Consortium (ISC). This approach reveals nominal evidence of case-association in neuronal-activity and the learning gene sets, but not the other two examined gene sets. The neuronal-activity genes have been associated in a separate set of schizophrenia cases and controls; however, testing in independent samples is necessary to definitively confirm this association. Our method is implemented in the PLINK software package.

  1. Divergence with gene flow between Ponto-Caspian refugia in an anadromous cyprinid Rutilus frisii revealed by multiple gene phylogeography.

    PubMed

    Kotlík, Petr; Marková, Silvia; Choleva, Lukás; Bogutskaya, Nina G; Ekmekçi, F Guler; Ivanova, Petya P

    2008-02-01

    The Black and Caspian Seas have experienced alternating periods of isolation and interconnection over many Milankovitch climate oscillations and most recently became separated when the meltwater overflow from the Caspian Sea ceased at the end of the last glaciation. Climate-induced habitat changes have indisputably had profound impacts on distribution and demography of aquatic species, yet uncertainties remain about the relative roles of isolation and dispersal in the response of species shared between the Black and Caspian Sea basins. We examined these issues using phylogeographical analysis of an anadromous cyprinid fish Rutilus frisii. Bayesian coalescence analyses of sequence variation at two nuclear and one mitochondrial genes suggest that the Black and Caspian Seas supported separate populations of R. frisii during the last glaciation. Parameter estimates from the fitted isolation-with-migration model showed that their separation was not complete, however, and that the two populations continued to exchange genes in both directions. These analyses also suggested that majority of migrations occurred during the Pleistocene, showing that the variation shared between the Black and Caspian Seas is the result of ancient dispersal along the temporary natural connections between the basins, rather than of incomplete lineage sorting or recent human-mediated dispersal. Gene flow between the refugial populations was therefore an important source of genetic variation, and we suggest that it facilitated the evolutionary response of the populations to changing climate.

  2. Identification of Novel Genes Affected by Gamma Irradiation Using a Gene-Trapped Library of Human Mammary Epithelial Cells

    DTIC Science & Technology

    2005-04-01

    Chromosomal and chromatid analysis was performed on the DREV 1 knockdown MCF10A cells to access cel l survival following ionizing radiation treatment...statement of work as well as their response to ionizing radiation . 14 . SUBJECT TERMS 15 . NUMBER OF PAGE S 3 0 Gamma Irradiation, gene trapping...line with and without ionizing radiation treatment . We felt that it was important t o analyze the identified gene expression levels following IR

  3. Association analysis of the monoamine oxidase A gene in bipolar affective disorder by using family-based internal controls

    SciTech Connect

    Noethen, M.M.; Eggermann, K.; Propping, P.

    1995-10-01

    It is well accepted that association studies are a major tool in investigating the contribution of single genes to the development of diseases that do not follow simple Mendelian inheritance pattern (so-called complex traits). Such major psychiatric diseases as bipolar affective disorder and schizophrenia clearly fall into this category of diseases. 7 refs., 1 tab.

  4. Comprehensive association analysis of 27 genes from the GABAergic system in Japanese individuals affected with schizophrenia.

    PubMed

    Balan, Shabeesh; Yamada, Kazuo; Iwayama, Yoshimi; Hashimoto, Takanori; Toyota, Tomoko; Shimamoto, Chie; Maekawa, Motoko; Takagai, Shu; Wakuda, Tomoyasu; Kameno, Yosuke; Kurita, Daisuke; Yamada, Kohei; Kikuchi, Mitsuru; Hashimoto, Tasuku; Kanahara, Nobuhisa; Yoshikawa, Takeo

    2017-01-07

    Involvement of the gamma-aminobutyric acid (GABA)-ergic system in schizophrenia pathogenesis through disrupted neurodevelopment has been highlighted in numerous studies. However, the function of common genetic variants of this system in determining schizophrenia risk is unknown. We therefore tested the association of 375 tagged SNPs in genes derived from the GABAergic system, such as GABAA receptor subunit genes, and GABA related genes (glutamate decarboxylase genes, GABAergic-marker gene, genes involved in GABA receptor trafficking and scaffolding) in Japanese schizophrenia case-control samples (n=2926; 1415 cases and 1511 controls). We observed nominal association of SNPs in nine GABAA receptor subunit genes and the GPHN gene with schizophrenia, although none survived correction for study-wide multiple testing. Two SNPs located in the GABRA1 gene, rs4263535 (Pallele=0.002; uncorrected) and rs1157122 (Pallele=0.006; uncorrected) showed top hits, followed by rs723432 (Pallele=0.007; uncorrected) in the GPHN gene. All three were significantly associated with schizophrenia and survived gene-wide multiple testing. Haplotypes containing associated variants in GABRA1 but not GPHN were significantly associated with schizophrenia. To conclude, we provided substantiating genetic evidence for the involvement of the GABAergic system in schizophrenia susceptibility. These results warrant further investigations to replicate the association of GABRA1 and GPHN with schizophrenia and to discern the precise mechanisms of disease pathophysiology.

  5. Performance of vertical up-flow constructed wetlands on swine wastewater containing tetracyclines and tet genes.

    PubMed

    Huang, Xu; Liu, Chaoxiang; Li, Ke; Su, Jianqiang; Zhu, Gefu; Liu, Lin

    2015-03-01

    Antibiotics and antibiotic resistance genes (ARGs) pollution in animal feeding farms received more public attention recently. Livestock wastewater contains large quantities of antibiotics and ARGs even after traditional lagoon treatment. In this study, the performance of vertical up-flow constructed wetlands (VUF-CWs) on swine wastewater containing tetracycline compounds (TCs) and tet genes was evaluated based on three aspects, TCs and tet genes removal efficiencies, residual TCs and tet genes in soils and plants, and the effect of TCs accumulation on nutrients removal and tet genes development. High removal efficiencies (69.0-99.9%) were achieved for oxytetracycline (OTC), tetracycline (TC) and chlortetracycline (CTC) with or without OTC spiked in the influent additionally. TCs concentrations in surface soils increased at first two sampling periods and then decreased after plants were harvested. Satisfactory nutrients removal efficiencies were also obtained, but TN and NH4-N removal efficiencies were significantly negative correlated with total concentration of TCs (∑TCs) in the soils (p < 0.01). The absolute abundances of all the target genes (tetO, tetM, tetW, tetA, tetX and intI1) were greatly reduced with their log units ranging from 0.26 to 3.3. However, the relative abundances of tetO, tetM and tetX in some effluent samples were significantly higher than those in the influent (p < 0.05). The relative abundances of tet genes except for tetO were significantly correlated with ∑TCs in the soils (p < 0.05). In summary, the proposed VUF-CWs are effective alternative for the removal of TCs and tet genes. But it is of great importance to prevent large accumulation of TCs in the soils.

  6. Genetic divergence and gene flow among Mesorhizobium strains nodulating the shrub legume Caragana.

    PubMed

    Ji, Zhaojun; Yan, Hui; Cui, Qingguo; Wang, Entao; Chen, Wenxin; Chen, Wenfeng

    2015-05-01

    Although the biogeography of rhizobia has been investigated extensively, little is known about the adaptive molecular evolution of rhizobia influenced by soil environments and selected by legumes. In this study, microevolution of Mesorhizobium strains nodulating Caragana in a semi-fixing desert belt in northern China was investigated. Five core genes-atpD, glnII, gyrB, recA, and rpoB, six heat-shock factor genes-clpA, clpB, dnaK, dnaJ, grpE, and hlsU, and five nodulation genes-nodA, nodC, nodD, nodG, and nodP, of 72 representative mesorhizobia were studied in order to determine their genetic variations. A total of 21 genospecies were defined based on the average nucleotide identity (ANI) of concatenated core genes using a threshold of 96% similarity, and by the phylogenetic analyses of the core/heat-shock factor genes. Significant genetic divergence was observed among the genospecies in the semi-fixing desert belt (areas A-E) and Yunnan province (area F), which was closely related to the environmental conditions and geographic distance. Gene flow occurred more frequently among the genospecies in areas A-E, and three sites in area B, than between area F and the other five areas. Recombination occurred among strains more frequently for heat-shock factor genes than the other genes. The results conclusively showed that the Caragana-associated mesorhizobia had divergently evolved according to their geographic distribution, and have been selected not only by the environmental conditions but also by the host plants.

  7. Incomplete barriers to mitochondrial gene flow between pheromone races of the North American pine engraver, Ips pini (Say) (Coleoptera, Scolytidae)

    PubMed Central

    Cognato, A. I.; Seybold, S. J.; Sperling, F. A. H.

    1999-01-01

    The pine engraver Ips pini (Say) is known to include three pheromone races, but gene flow between these races has not been investigated. We used maternally inherited mitochondrial DNA (mtDNA) variation to infer gene flow between 22 widely distributed North American populations of I. pini for a total of 217 individuals, based on 354 bp of the cytochrome oxidase I gene. Gene flow was estimated cladistically as migrants per generation (Nm) and as haplotype variation between populations (Nst). Three distinct mtDNA haplotype lineages, generally corresponding to eastern (I), Rocky Mountain (II) and western (III) regions of North America, were resolved with a total of 34 distinct I. pini haplotypes. The distributions of these lineages were largely congruent with the geographical ranges of the 'New York', 'California' and 'Idaho–Montana' pheromone races. Only individuals with lineage I mtDNA were observed among eastern populations, whereas individuals with lineage II or III mtDNA predominated among western populations. Gene flow (Nm and Nst) was generally moderate between all populations. However, the presence of lineage I mtDNA on the eastern side of western North America and the absence of lineage II and III mtDNA in eastern North America suggest directional gene flow from east to west. These results indicate that female-controlled assortative mating among pheromone races may disrupt gene flow between conspecifics, reflecting incomplete pre-mating barriers.

  8. Polymorphisms within beta-catenin encoding gene affect multiple myeloma development and treatment.

    PubMed

    Butrym, Aleksandra; Rybka, Justyna; Łacina, Piotr; Gębura, Katarzyna; Frontkiewicz, Diana; Bogunia-Kubik, Katarzyna; Mazur, Grzegorz

    2015-12-01

    Recent studies have suggested that cereblon (CRBN) is essential for the anti-myeloma (MM) activity of immunomodulatory drugs (IMiDs), such as thalidomide and lenalidomide, and that dysregulation of Wnt/β-catenin pathway may be one of possible reasons of lenalidomide resistance. This prompted us to analyze the effect of polymorphisms within the genes coding for cereblon (CRBN (rs121918368 C>T)) and β-catenin (CTNNB1 (rs4135385 A>G; rs4533622 A>C)). MM patients (n=142) and healthy individuals (n=123) were genotyped using the Light SNiP assays. The presence of the CTNNB1 (rs4533622) A allele was more frequently detected in patients presented with stage II-III disease according to International Staging System (63/82 vs. 26/44, p=0.043) and Durie-Salmon criteria (75/99 vs. 14/26, p=0.049). The CTNNB1 (rs4135385) AA homozygosity was more frequent among patients with better response to CTD, i.e., cyclophosphamide-thalidomide-dexamethasone (18/23 vs. 32/60, p=0.047). Patients carrying the CTNNB1 (rs4533622) AA genotype were better responders to the first line therapy with thalidomide containing regimens (p<0.05). No significant association was observed between the effect of lenalidomide therapy and polymorphisms studied. However, the occurrence of neutropenia during lenalidomide therapy was more frequent among the CTNNB1 (rs4135385) AA carriers (p=0.019), while the CTNNB1 (rs4533622) AA homozygosity characterized patients with high grade (3-4) neutropenia (p=0.044). No association was found for the CRBN polymorphism. These results suggest that the CTNNB1 polymorphisms may affect the clinical course and response to chemotherapy in patients with multiple myeloma.

  9. Power training and postmenopausal hormone therapy affect transcriptional control of specific co-regulated gene clusters in skeletal muscle

    PubMed Central

    Fey, Vidal; Törmäkangas, Timo; Ronkainen, Paula H. A.; Taaffe, Dennis R.; Takala, Timo; Koskinen, Satu; Cheng, Sulin; Puolakka, Jukka; Kujala, Urho M.; Suominen, Harri; Sipilä, Sarianna; Kovanen, Vuokko

    2010-01-01

    At the moment, there is no clear molecular explanation for the steeper decline in muscle performance after menopause or the mechanisms of counteractive treatments. The goal of this genome-wide study was to identify the genes and gene clusters through which power training (PT) comprising jumping activities or estrogen containing hormone replacement therapy (HRT) may affect skeletal muscle properties after menopause. We used musculus vastus lateralis samples from early stage postmenopausal (50–57 years old) women participating in a yearlong randomized double-blind placebo-controlled trial with PT and HRT interventions. Using microarray platform with over 24,000 probes, we identified 665 differentially expressed genes. The hierarchical clustering method was used to assort the genes. Additionally, enrichment analysis of gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways was carried out to clarify whether assorted gene clusters are enriched with particular functional categories. The analysis revealed transcriptional regulation of 49 GO/KEGG categories. PT upregulated transcription in “response to contraction”—category revealing novel candidate genes for contraction-related regulation of muscle function while HRT upregulated gene expression related to functionality of mitochondria. Moreover, several functional categories tightly related to muscle energy metabolism, development, and function were affected regardless of the treatment. Our results emphasize that during the early stages of the postmenopause, muscle properties are under transcriptional modulation, which both PT and HRT partially counteract leading to preservation of muscle power and potentially reducing the risk for aging-related muscle weakness. More specifically, PT and HRT may function through improving energy metabolism, response to contraction as well as by preserving functionality of the mitochondria. Electronic supplementary material The online version of this

  10. Changes in the number and timing of days of ice-affected flow on northern New England rivers, 1930-2000

    USGS Publications Warehouse

    Hodgkins, G.A.; Dudley, R.W.; Huntington, T.G.

    2005-01-01

    Historical dates of ice-affected flows for 16 rural, unregulated rivers in northern New England, USA were analyzed. The total annual days of ice-affected flow decreased significantly (p < 0.1) over the 20th century at 12 of the 16 rivers. On average, for the nine longest-record rivers, the total annual days of ice-affected flow decreased by 20 days from 1936 to 2000, with most of the decrease occurring from the 1960s to 2000. Four of the 16 rivers had significantly later first dates of ice-affected flow in the fall. Twelve of the 16 rivers had significantly earlier last dates of ice-affected flow in the spring. On average, the last dates became earlier by 11 days from 1936 to 2000 with most of the change occurring from the 1960s to 2000. The total annual days of ice-affected flow were significantly correlated with November through April air temperatures (r = -0.70) and with November through April precipitation (r = -0.52). The last spring dates were significantly correlated with March through April air temperatures (r = -0.73) and with January through April precipitation (r = -0.37). March mean river flows increased significantly at 13 of the 16 rivers in this study. ?? Springer 2005.

  11. Steady shear flow behavior of sage seed gum affected by various salts and sugars: Time-independent properties.

    PubMed

    Yousefi, Ali R; Eivazlou, Razieh; Razavi, Seyed M A

    2016-10-01

    The rheological properties of food hydrocolloids are remarkably influenced by the quality of solvent/cosolutes in a food system. In this work, the steady shear flow behavior of sage seed gum (SSG, 0.5% w/w) at the presence of different levels of salts (KCl & MgCl2, 0-100mM) and sugars (sucrose, lactose & glucose, 0-6% w/w) was studied. It was found that the rheological properties of SSG were affected by the type of sugars and salts and their concentrations as well. Synergistic interaction was observed between SSG and sugars which enhanced the viscosity of gum solutions, while salts addition diminished the viscosity. SSG solutions exhibited a shear thinning behavior at all conditions tested. Various time-independent rheological models were used to fit the shear stress-shear rate data, although the Herschel-Bulkley (R(2)=0.994-0.999) and Sisko (R(2)=0.995-0.999) models showed the best results to describe the flow behavior of SSG. In the presence of salts, the yield stress (τ0), consistency coefficient (k), and flow behavior index (n) values decreased. The k and τ0 values enhanced and the n value lowered in the presence of sugars. Divalent cations of Mg(2+) and sucrose roughly showed more effect on rheological parameters than others.

  12. Pangenome evidence for extensive interdomain horizontal transfer affecting lineage core and shell genes in uncultured planktonic thaumarchaeota and euryarchaeota.

    PubMed

    Deschamps, Philippe; Zivanovic, Yvan; Moreira, David; Rodriguez-Valera, Francisco; López-García, Purificación

    2014-06-12

    Horizontal gene transfer (HGT) is an important force in evolution, which may lead, among other things, to the adaptation to new environments by the import of new metabolic functions. Recent studies based on phylogenetic analyses of a few genome fragments containing archaeal 16S rRNA genes and fosmid-end sequences from deep-sea metagenomic libraries have suggested that marine planktonic archaea could be affected by high HGT frequency. Likewise, a composite genome of an uncultured marine euryarchaeote showed high levels of gene sequence similarity to bacterial genes. In this work, we ask whether HGT is frequent and widespread in genomes of these marine archaea, and whether HGT is an ancient and/or recurrent phenomenon. To answer these questions, we sequenced 997 fosmid archaeal clones from metagenomic libraries of deep-Mediterranean waters (1,000 and 3,000 m depth) and built comprehensive pangenomes for planktonic Thaumarchaeota (Group I archaea) and Euryarchaeota belonging to the uncultured Groups II and III Euryarchaeota (GII/III-Euryarchaeota). Comparison with available reference genomes of Thaumarchaeota and a composite marine surface euryarchaeote genome allowed us to define sets of core, lineage-specific core, and shell gene ortholog clusters for the two archaeal lineages. Molecular phylogenetic analyses of all gene clusters showed that 23.9% of marine Thaumarchaeota genes and 29.7% of GII/III-Euryarchaeota genes had been horizontally acquired from bacteria. HGT is not only extensive and directional but also ongoing, with high HGT levels in lineage-specific core (ancient transfers) and shell (recent transfers) genes. Many of the acquired genes are related to metabolism and membrane biogenesis, suggesting an adaptive value for life in cold, oligotrophic oceans. We hypothesize that the acquisition of an important amount of foreign genes by the ancestors of these archaeal groups significantly contributed to their divergence and ecological success.

  13. Genetic structure and gene flow among European corn borer populations from the Great Plains to the Appalachians of North America

    EPA Science Inventory

    Earlier population genetic spatial analysis of European corn borer, Ostrinia nubilalis (Hubner), indicated no genetic differentiation even between locations separated by 720 km. This result suggests either high dispersal resulting in high gene flow, or that populations are not in...

  14. Seminal plasma applied post-thawing affects boar sperm physiology: a flow cytometry study.

    PubMed

    Fernández-Gago, Rocío; Domínguez, Juan Carlos; Martínez-Pastor, Felipe

    2013-09-01

    Cryopreservation induces extensive biophysical and biochemical changes in the sperm. In the present study, we used flow cytometry to assess the capacitation-like status of frozen-thawed boar spermatozoa and its relationship with intracellular calcium, assessment of membrane fluidity, modification of thiol groups in plasma membrane proteins, reactive oxygen species (ROS) levels, viability, acrosomal status, and mitochondrial activity. This experiment was performed to verify the effect of adding seminal plasma on post-thaw sperm functions. To determine these effects after cryopreservation, frozen-thawed semen from seven boars was examined after supplementation with different concentrations of pooled seminal plasma (0%, 10%, and 50%) at various times of incubation from 0 to 4 hours. Incubation caused a decrease in membrane integrity and an increase in acrosomal damage, with small changes in other parameters (P > 0.05). Although 10% seminal plasma showed few differences with 0% (ROS increase at 4 hours, P < 0.05), 50% seminal plasma caused important changes. Membrane fluidity increased considerably from the beginning of the experiment, and ROS and free thiols in the cell surface increased by 2 hours of incubation. By the end of the experiment, viability decreased and acrosomal damage increased in the 50% seminal plasma samples. The addition of 50% of seminal plasma seems to modify the physiology of thawed boar spermatozoa, possibly through membrane changes and ROS increase. Although some effects were detrimental, the stimulatory effect of 50% seminal plasma could favor the performance of post-thawed boar semen, as showed in the field (García JC, Domínguez JC, Peña FJ, Alegre B, Gonzalez R, Castro MJ, Habing GG, Kirkwood RN. Thawing boar semen in the presence of seminal plasma: effects on sperm quality and fertility. Anim Reprod Sci 2010;119:160-5).

  15. Rapid Speciation with Gene Flow Following the Formation of Mt. Etna

    PubMed Central

    Osborne, Owen G.; Batstone, Thomas E.; Hiscock, Simon J.; Filatov, Dmitry A.

    2013-01-01

    Environmental or geological changes can create new niches that drive ecological species divergence without the immediate cessation of gene flow. However, few such cases have been characterized. On a recently formed volcano, Mt. Etna, Senecio aethnensis and S. chrysanthemifolius inhabit contrasting environments of high and low altitude, respectively. They have very distinct phenotypes, despite hybridizing promiscuously, and thus may represent an important example of ecological speciation “in action,” possibly as a response to the rapid geological changes that Mt. Etna has recently undergone. To elucidate the species’ evolutionary history, and help establish the species as a study system for speciation genomics, we sequenced the transcriptomes of the two Etnean species, and the outgroup, S. vernalis, using Illumina sequencing. Despite the species’ substantial phenotypic divergence, synonymous divergence between the high- and low-altitude species was low (dS = 0.016 ± 0.017 [SD]). A comparison of species divergence models with and without gene flow provided unequivocal support in favor of the former and demonstrated a recent time of species divergence (153,080 ya ± 11,470 [SE]) that coincides with the growth of Mt. Etna to the altitudes that separate the species today. Analysis of dN/dS revealed wide variation in selective constraint between genes, and evidence that highly expressed genes, more “multifunctional” genes, and those with more paralogs were under elevated purifying selection. Taken together, these results are consistent with a model of ecological speciation, potentially as a response to the emergence of a new, high-altitude niche as the volcano grew. PMID:23973865

  16. Minimally-Invasive Gene Transfection by Chemical and Physical Interaction of Atmospheric Pressure Plasma Flow

    NASA Astrophysics Data System (ADS)

    Kaneko, Toshiro

    2014-10-01

    Non-equilibrium atmospheric pressure plasma irradiated to the living-cell is investigated for medical applications such as gene transfection, which is expected to play an important role in molecular biology, gene therapy, and creation of induced pluripotent stem (iPS) cells. However, the conventional gene transfection using the plasma has some problems that the cell viability is low and the genes cannot be transferred into some specific lipid cells, which is attributed to the unknown mechanism of the gene transfection using the plasma. Therefore, the time-controlled atmospheric pressure plasma flow is generated and irradiated to the living-cell suspended solution for clarifying the transfection mechanism toward developing highly-efficient and minimally- invasive gene transfection system. In this experiment, fluorescent dye YOYO-1 is used as the simulated gene and LIVE/DEAD Stain is simultaneously used for cell viability assay. By the fluorescence image, the transfection efficiency is calculated as the ratio of the number of transferred and surviving cells to total cell count. It is clarified that the transfection efficiency is significantly increased by the short-time (<4 sec) and short-distance (<40 mm) plasma irradiation, and the high transfection efficiency of 53% is realized together with the high cell viability (>90%). This result indicates that the physical effects such as the electric field caused by the charged particles arriving at the surface of the cell membrane, and chemical effects associated with plasma-activated products in solution act synergistically to enhance the cell-membrane transport with low-damage. This work was supported by JSPS KAKENHI Grant Number 24108004.

  17. Dissimilarity of contemporary and historical gene flow in a wild carrot (Daucus carota) metapopulation under contrasting levels of human disturbance: implications for risk assessment and management of transgene introgression

    PubMed Central

    Rong, Jun; Xu, Shuhua; Meirmans, Patrick G.; Vrieling, Klaas

    2013-01-01

    Background and Aims Transgene introgression from crops into wild relatives may increase the resistance of wild plants to herbicides, insects, etc. The chance of transgene introgression depends not only on the rate of hybridization and the establishment of hybrids in local wild populations, but also on the metapopulation dynamics of the wild relative. The aim of the study was to estimate gene flow in a metapopulation for assessing and managing the risks of transgene introgression. Methods Wild carrots (Daucus carota) were sampled from 12 patches in a metapopulation. Eleven microsatellites were used to genotype wild carrots. Genetic structure was estimated based on the FST statistic. Contemporary (over the last several generations) and historical (over many generations) gene flow was estimated with assignment and coalescent methods, respectively. Key Results The genetic structure in the wild carrot metapopulation was moderate (FST = 0·082) and most of the genetic variation resided within patches. A pattern of isolation by distance was detected, suggesting that most of the gene flow occurred between neighbouring patches (≤1 km). The mean contemporary gene flow was 5 times higher than the historical estimate, and the correlation between them was very low. Moreover, the contemporary gene flow in roadsides was twice that in a nature reserve, and the correlation between contemporary and historical estimates was much higher in the nature reserve. Mowing of roadsides may contribute to the increase in contemporary gene flow. Simulations demonstrated that the higher contemporary gene flow could accelerate the process of transgene introgression in the metapopulation. Conclusions Human disturbance such as mowing may alter gene flow patterns in wild populations, affecting the metapopulation dynamics of wild plants and the processes of transgene introgression in the metapopulation. The risk assessment and management of transgene introgression and the control of weeds need to

  18. Is the Gibraltar strait a barrier to gene flow for the bat Myotis myotis (Chiroptera: Vespertilionidae)?

    PubMed

    Castella, V; Ruedi, M; Excoffier, L; Ibáñez, C; Arlettaz, R; Hausser, J

    2000-11-01

    Because of their role in limiting gene flow, geographical barriers like mountains or seas often coincide with intraspecific genetic discontinuities. Although the Strait of Gibraltar represents such a potential barrier for both plants and animals, few studies have been conducted on its impact on gene flow. Here we test this effect on a bat species (Myotis myotis) which is apparently distributed on both sides of the strait. Six colonies of 20 Myotis myotis each were sampled in southern Spain and northern Morocco along a linear transect of 1350 km. Results based on six nuclear microsatellite loci reveal no significant population structure within regions, but a complete isolation between bats sampled on each side of the strait. Variability at 600 bp of a mitochondrial gene (cytochrome b) confirms the existence of two genetically distinct and perfectly segregating clades, which diverged several million years ago. Despite the narrowness of the Gibraltar Strait (14 km), these molecular data suggest that neither males, nor females from either region have ever reproduced on the opposite side of the strait. Comparisons of molecular divergence with bats from a closely related species (M. blythii) suggest that the North African clade is possibly a distinct taxon warranting full species rank. We provisionally refer to it as Myotis cf punicus Felten 1977, but a definitive systematic understanding of the whole Mouse-eared bat species complex awaits further genetic sampling, especially in the Eastern Mediterranean areas.

  19. Genetic architecture and genomic patterns of gene flow between hybridizing species of Picea

    PubMed Central

    De La Torre, A; Ingvarsson, P K; Aitken, S N

    2015-01-01

    Hybrid zones provide an opportunity to study the effects of selection and gene flow in natural settings. We employed nuclear microsatellites (single sequence repeat (SSR)) and candidate gene single-nucleotide polymorphism markers (SNPs) to characterize the genetic architecture and patterns of interspecific gene flow in the Picea glauca × P. engelmannii hybrid zone across a broad latitudinal (40–60 degrees) and elevational (350–3500 m) range in western North America. Our results revealed a wide and complex hybrid zone with broad ancestry levels and low interspecific heterozygosity, shaped by asymmetric advanced-generation introgression, and low reproductive barriers between parental species. The clinal variation based on geographic variables, lack of concordance in clines among loci and the width of the hybrid zone points towards the maintenance of species integrity through environmental selection. Congruency between geographic and genomic clines suggests that loci with narrow clines are under strong selection, favoring either one parental species (directional selection) or their hybrids (overdominance) as a result of strong associations with climatic variables such as precipitation as snow and mean annual temperature. Cline movement due to past demographic events (evidenced by allelic richness and heterozygosity shifts from the average cline center) may explain the asymmetry in introgression and predominance of P. engelmannii found in this study. These results provide insights into the genetic architecture and fine-scale patterns of admixture, and identify loci that may be involved in reproductive barriers between the species. PMID:25806545

  20. Whisker row deprivation affects the flow of sensory information through rat barrel cortex

    PubMed Central

    Jacob, Vincent; Mitani, Akinori; Toyoizumi, Taro

    2016-01-01

    Whisker trimming causes substantial reorganization of neuronal response properties in barrel cortex. However, little is known about experience-dependent rerouting of sensory processing following sensory deprivation. To address this, we performed in vivo intracellular recordings from layers 2/3 (L2/3), layer 4 (L4), layer 5 regular-spiking (L5RS), and L5 intrinsically bursting (L5IB) neurons and measured their multiwhisker receptive field at the level of spiking activity, membrane potential, and synaptic conductance before and after sensory deprivation. We used Chernoff information to quantify the “sensory information” contained in the firing patterns of cells in response to spared and deprived whisker stimulation. In the control condition, information for flanking-row and same-row whiskers decreased in the order L4, L2/3, L5IB, L5RS. However, after whisker-row deprivation, spared flanking-row whisker information was reordered to L4, L5RS, L5IB, L2/3. Sensory information from the trimmed whiskers was reduced and delayed in L2/3 and L5IB neurons, whereas sensory information from spared whiskers was increased and advanced in L4 and L5RS neurons. Sensory information from spared whiskers was increased in L5IB neurons without a latency change. L5RS cells exhibited the largest changes in sensory information content through an atypical plasticity combining a significant decrease in spontaneous activity and an increase in a short-latency excitatory conductance. NEW & NOTEWORTHY Sensory cortical plasticity is usually quantified by changes in evoked firing rate. In this study we quantified plasticity by changes in sensory detection performance using Chernoff information and receiver operating characteristic analysis. We found that whisker deprivation causes a change in information flow within the cortical layers and that layer 5 regular-spiking cells, despite showing only a small potentiation of short-latency input, show the greatest increase in information content for

  1. The influence of gene flow and drift on genetic and phenotypic divergence in two species of Zosterops in Vanuatu.

    PubMed

    Clegg, Sonya M; Phillimore, Albert B

    2010-04-12

    Colonization of an archipelago sets the stage for adaptive radiation. However, some archipelagos are home to spectacular radiations, while others have much lower levels of diversification. The amount of gene flow among allopatric populations is one factor proposed to contribute to this variation. In island colonizing birds, selection for reduced dispersal ability is predicted to produce changing patterns of regional population genetic structure as gene flow-dominated systems give way to drift-mediated divergence. If this transition is important in facilitating phenotypic divergence, levels of genetic and phenotypic divergence should be associated. We consider population genetic structure and phenotypic divergence among two co-distributed, congeneric (Genus: Zosterops) bird species inhabiting the Vanuatu archipelago. The more recent colonist, Z. lateralis, exhibits genetic patterns consistent with a strong influence of distance-mediated gene flow. However, complex patterns of asymmetrical gene flow indicate variation in dispersal ability or inclination among populations. The endemic species, Z. flavifrons, shows only a partial transition towards a drift-mediated system, despite a long evolutionary history on the archipelago. We find no strong evidence that gene flow constrains phenotypic divergence in either species, suggesting that levels of inter-island gene flow do not explain the absence of a radiation across this archipelago.

  2. The influence of gene flow and drift on genetic and phenotypic divergence in two species of Zosterops in Vanuatu

    PubMed Central

    Clegg, Sonya M.; Phillimore, Albert B.

    2010-01-01

    Colonization of an archipelago sets the stage for adaptive radiation. However, some archipelagos are home to spectacular radiations, while others have much lower levels of diversification. The amount of gene flow among allopatric populations is one factor proposed to contribute to this variation. In island colonizing birds, selection for reduced dispersal ability is predicted to produce changing patterns of regional population genetic structure as gene flow-dominated systems give way to drift-mediated divergence. If this transition is important in facilitating phenotypic divergence, levels of genetic and phenotypic divergence should be associated. We consider population genetic structure and phenotypic divergence among two co-distributed, congeneric (Genus: Zosterops) bird species inhabiting the Vanuatu archipelago. The more recent colonist, Z. lateralis, exhibits genetic patterns consistent with a strong influence of distance-mediated gene flow. However, complex patterns of asymmetrical gene flow indicate variation in dispersal ability or inclination among populations. The endemic species, Z. flavifrons, shows only a partial transition towards a drift-mediated system, despite a long evolutionary history on the archipelago. We find no strong evidence that gene flow constrains phenotypic divergence in either species, suggesting that levels of inter-island gene flow do not explain the absence of a radiation across this archipelago. PMID:20194170

  3. Light affects ascorbate content and ascorbate-related gene expression in tomato leaves more than in fruits.

    PubMed

    Massot, Capucine; Stevens, Rebecca; Génard, Michel; Longuenesse, Jean-Jacques; Gautier, Hélène

    2012-01-01

    Little is known about the light regulation of vitamin C synthesis in fruits. In contrast, previous studies in leaves revealed that VTC2 (coding for GDP-L: -galactose phosphorylase) was one of the key genes up-regulated by light in leaves. Our objective was to determine how the expression of ascorbate (AsA) synthesis genes in tomato (Solanum lycopersicum) was modified according to light irradiance in both leaves and fruits. Seven days of shading strongly decreased total ascorbate (reduced and oxidized form) content in leaves (50%) and to a lesser extent in fruits (10%). Among the last six steps of AsA biosynthesis, only two genes, VTC2 and GPP1 (one of the two unigenes coding for L: -galactose-1-P phosphatase in tomato), were down-regulated by long-term shading in red ripe fruits, compared to seven genes regulated in leaves. This underlines that light affects AsA-related gene expression more in leaves than in ripening fruits. Moreover, this study reveals strong daily changes in transcript levels of enzymes of the AsA biosynthetic pathway in leaves (11 of the 12 studied genes showed significant changes in their expression pattern). Among those genes, we found that diurnal variation in transcript levels of VTC2 and GME1 correlated to leaf AsA content measured 8 h later. This study provides a new hypothesis on the role of GME1 in addition to VTC2 in light-regulated AsA biosynthesis.

  4. Genetic perturbation of key central metabolic genes extends lifespan in Drosophila and affects response to dietary restriction<