Science.gov

Sample records for affect host-pathogen interactions

  1. Host-Pathogen Interactions

    PubMed Central

    English, Patricia D.; Jurale, Joseph Byrne; Albersheim, Peter

    1971-01-01

    The effect of a number of physiological variables on the secretion of polysaccharide-degrading enzymes by culture-grown Colletotrichum lindemuthianum (Saccardo and Magnus) Scribner was determined. The number of spores used to inoculate cultures grown on isolated bean hypocotyl cell walls affects the time after inoculation at which enzyme secretion occurs, but has no significant effect on the maximal amount of enzyme ultimately secreted. Cell walls isolated from bean leaves, first internodes, or hypocotyls (susceptible to C. lindemuthianum infection), when used as carbon source for C. lindemuthianum growth, stimulate the fungus to secrete more α-galactosidase than do cell walls isolated from roots (resistant to infection). The concentration of carbon source used for fungal growth determines the final level of enzyme activity in the culture fluid. The level of enzyme secretion is not proportional to fungal growth; rather, enzyme secretion is induced. Maximal α-galactosidase activity in the culture medium is found when the concentration of cell walls used as carbon source is 1% or greater. A higher concentration of cell walls is necessary for maximal α-arabinosidase activity. Galactose, when used as the carbon source, stimulates α-galactosidase secretion but, at comparable concentrations, is less effective in doing so than are cell walls. Polysaccharide-degrading enzymes are secreted by C. lindemuthianum at different times during growth of the pathogen on isolated cell walls. Pectinase and α-arabinosidase are secreted first, followed by β-xylosidase and cellulase, then β-glucosidase, and, finally, α-galactosidase. PMID:16657562

  2. Host-Pathogen Coupled Interactions

    DTIC Science & Technology

    2015-01-04

    AFRL- RH -WP-TP-2015-0012 Host-Pathogen Coupled Interactions Peter J. Robinson C. Eric Hack Jeffery M...them. Qualified requestors may obtain copies of this report from the Defense Technical Information Center (DTIC) (http://www.dtic.mil). (AFRL- RH ...Branch Wright-Patterson AFB OH 45433-5707 10. SPONSOR/MONITOR’S ACRONYM(S) 711 HPW/RHDJ 11. SPONSORING/MONITORING AGENCY REPORT NUMBER AFRL- RH -WP

  3. Host-Pathogen Interactions: II. Parameters Affecting Polysaccharide-degrading Enzyme Secretion by Colletotrichum lindemuthianum Grown in Culture.

    PubMed

    English, P D; Jurale, J B; Albersheim, P

    1971-01-01

    The effect of a number of physiological variables on the secretion of polysaccharide-degrading enzymes by culture-grown Colletotrichum lindemuthianum (Saccardo and Magnus) Scribner was determined. The number of spores used to inoculate cultures grown on isolated bean hypocotyl cell walls affects the time after inoculation at which enzyme secretion occurs, but has no significant effect on the maximal amount of enzyme ultimately secreted. Cell walls isolated from bean leaves, first internodes, or hypocotyls (susceptible to C. lindemuthianum infection), when used as carbon source for C. lindemuthianum growth, stimulate the fungus to secrete more alpha-galactosidase than do cell walls isolated from roots (resistant to infection). The concentration of carbon source used for fungal growth determines the final level of enzyme activity in the culture fluid. The level of enzyme secretion is not proportional to fungal growth; rather, enzyme secretion is induced. Maximal alpha-galactosidase activity in the culture medium is found when the concentration of cell walls used as carbon source is 1% or greater. A higher concentration of cell walls is necessary for maximal alpha-arabinosidase activity. Galactose, when used as the carbon source, stimulates alpha-galactosidase secretion but, at comparable concentrations, is less effective in doing so than are cell walls. Polysaccharide-degrading enzymes are secreted by C. lindemuthianum at different times during growth of the pathogen on isolated cell walls. Pectinase and alpha-arabinosidase are secreted first, followed by beta-xylosidase and cellulase, then beta-glucosidase, and, finally, alpha-galactosidase.

  4. Exploring NAD+ metabolism in host-pathogen interactions.

    PubMed

    Mesquita, Inês; Varela, Patrícia; Belinha, Ana; Gaifem, Joana; Laforge, Mireille; Vergnes, Baptiste; Estaquier, Jérôme; Silvestre, Ricardo

    2016-03-01

    Nicotinamide adenine dinucleotide (NAD(+)) is a vital molecule found in all living cells. NAD(+) intracellular levels are dictated by its synthesis, using the de novo and/or salvage pathway, and through its catabolic use as co-enzyme or co-substrate. The regulation of NAD(+) metabolism has proven to be an adequate drug target for several diseases, including cancer, neurodegenerative or inflammatory diseases. Increasing interest has been given to NAD(+) metabolism during innate and adaptive immune responses suggesting that its modulation could also be relevant during host-pathogen interactions. While the maintenance of NAD(+) homeostatic levels assures an adequate environment for host cell survival and proliferation, fluctuations in NAD(+) or biosynthetic precursors bioavailability have been described during host-pathogen interactions, which will interfere with pathogen persistence or clearance. Here, we review the double-edged sword of NAD(+) metabolism during host-pathogen interactions emphasizing its potential for treatment of infectious diseases.

  5. Host-pathogen-biocontrol agent interaction as affected by sequential application of Na2CO3 and CaCl2.

    PubMed

    Molinu, G M; Arras, G; Dore, A; Venditti, T; Petretto, A; D'Hallewin, G

    2009-01-01

    Among the alternatives to synthetic postharvest fungicides encouraging results have been reported with biocontrol agents, and on Citrus fruits, their efficacy was improved when co-applied with GRAS compounds or with physical means. Still, the reason for this increased efficacy has not been explained and therefore a study was performed using orange fruit (Citrus sinensis Osbec. cv 'Washington navel') as host, P. digitatum as the pathogen, a yeast (Pichia guiliermondii, isolate 5A) as the biocontrol agent, white 2% Na2CO3 (SC) and 1% CaCl2 were employed as GRAS compounds. When treatments were combined salts were applied sequentially, and SC preceded CaCl2 followed by the yeast. As a result of large scale trait with inoculated and un-inoculated fruit a clear beneficial interaction occurred when treatments were combined. SC exerted a direct fungistatic activity and an indirect one by inducing scoparone in host tissue. Also the isolate A5 induced the phytoalexin accumulation and when combined with SC a greater accumulation occurred within the first 7 days post-treatment. The application of CaCl2 alone had no effect on pathogenesis, while when combined with SC or with the yeast, decay was towered. The yeast growth on an amended medium was negatively affected by the addition of SC; while in vivo this effect was missing. The antagonist growth in vivo was enhanced when applied together with 1% CaCl2 also when applied with SC. The results reported improve our knowledge on the complex interactions among host, pathogen and the antagonist as affected by SC and CaCl2.

  6. Host/pathogen interactions and immune effector mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An understanding of the host/pathogen interactions for mycobacterial infections underpins many of the outcomes required for improving disease control, including better diagnostic tests, vaccines and breeding for disease resistance. Upon infection these mycobacteria come in contact with cells of the ...

  7. Host-pathogen interactions: A cholera surveillance system

    SciTech Connect

    Wright, Aaron T.

    2016-02-22

    Bacterial pathogen-secreted proteases may play a key role in inhibiting a potentially widespread host-pathogen interaction. Activity-based protein profiling enabled the identification of a major Vibrio cholerae serine protease that limits the ability of a host-derived intestinal lectin to bind to the bacterial pathogen in vivo.

  8. Specialization for resistance in wild host-pathogen interaction networks.

    PubMed

    Barrett, Luke G; Encinas-Viso, Francisco; Burdon, Jeremy J; Thrall, Peter H

    2015-01-01

    Properties encompassed by host-pathogen interaction networks have potential to give valuable insight into the evolution of specialization and coevolutionary dynamics in host-pathogen interactions. However, network approaches have been rarely utilized in previous studies of host and pathogen phenotypic variation. Here we applied quantitative analyses to eight networks derived from spatially and temporally segregated host (Linum marginale) and pathogen (Melampsora lini) populations. First, we found that resistance strategies are highly variable within and among networks, corresponding to a spectrum of specialist and generalist resistance types being maintained within all networks. At the individual level, specialization was strongly linked to partial resistance, such that partial resistance was effective against a greater number of pathogens compared to full resistance. Second, we found that all networks were significantly nested. There was little support for the hypothesis that temporal evolutionary dynamics may lead to the development of nestedness in host-pathogen infection networks. Rather, the common patterns observed in terms of nestedness suggests a universal driver (or multiple drivers) that may be independent of spatial and temporal structure. Third, we found that resistance networks were significantly modular in two spatial networks, clearly reflecting spatial and ecological structure within one of the networks. We conclude that (1) overall patterns of specialization in the networks we studied mirror evolutionary trade-offs with the strength of resistance; (2) that specific network architecture can emerge under different evolutionary scenarios; and (3) network approaches offer great utility as a tool for probing the evolutionary and ecological genetics of host-pathogen interactions.

  9. Structure-based prediction of host-pathogen protein interactions.

    PubMed

    Mariano, Rachelle; Wuchty, Stefan

    2017-03-16

    The discovery, validation, and characterization of protein-based interactions from different species are crucial for translational research regarding a variety of pathogens, ranging from the malaria parasite Plasmodium falciparum to HIV-1. Here, we review recent advances in the prediction of host-pathogen protein interfaces using structural information. In particular, we observe that current methods chiefly perform machine learning on sequence and domain information to produce large sets of candidate interactions that are further assessed and pruned to generate final, highly probable sets. Structure-based studies have also emphasized the electrostatic properties and evolutionary transformations of pathogenic interfaces, supplying crucial insight into antigenic determinants and the ways pathogens compete for host protein binding. Advancements in spectroscopic and crystallographic methods complement the aforementioned techniques, permitting the rigorous study of true positives at a molecular level. Together, these approaches illustrate how protein structure on a variety of levels functions coordinately and dynamically to achieve host takeover.

  10. Host-pathogen interactions between the skin and Staphylococcus aureus.

    PubMed

    Krishna, Sheila; Miller, Lloyd S

    2012-02-01

    Staphylococcus aureus is responsible for the vast majority of bacterial skin infections in humans. The propensity for S. aureus to infect skin involves a balance between cutaneous immune defense mechanisms and virulence factors of the pathogen. The tissue architecture of the skin is different from other epithelia especially since it possesses a corneal layer, which is an important barrier that protects against the pathogenic microorganisms in the environment. The skin surface, epidermis, and dermis all contribute to host defense against S. aureus. Conversely, S. aureus utilizes various mechanisms to evade these host defenses to promote colonization and infection of the skin. This review will focus on host-pathogen interactions at the skin interface during the pathogenesis of S. aureus colonization and infection.

  11. MicroRNAs as mediators of insect host-pathogen interactions and immunity.

    PubMed

    Hussain, Mazhar; Asgari, Sassan

    2014-11-01

    Insects are the most successful group of animals on earth, owing this partly to their very effective immune responses to microbial invasion. These responses mainly include cellular and humoral responses as well as RNA interference (RNAi). Small non-coding RNAs (snRNAs) produced through RNAi are important molecules in the regulation of gene expression in almost all living organisms; contributing to important processes such as development, differentiation, immunity as well as host-microorganism interactions. The main snRNAs produced by the RNAi response include short interfering RNAs, microRNAs and piwi-interacting RNAs. In addition to the host snRNAs, some microorganisms encode snRNAs that affect the dynamics of host-pathogen interactions. In this review, we will discuss the latest developments in regards to the role of microRNA in insect host-pathogen interactions and provide some insights into this rapidly developing area of research.

  12. Host-Pathogen Interactions Made Transparent with the Zebrafish Model

    PubMed Central

    Meijer, Annemarie H; Spaink, Herman P

    2011-01-01

    The zebrafish holds much promise as a high-throughput drug screening model for immune-related diseases, including inflammatory and infectious diseases and cancer. This is due to the excellent possibilities for in vivo imaging in combination with advanced tools for genomic and large scale mutant analysis. The context of the embryo’s developing immune system makes it possible to study the contribution of different immune cell types to disease progression. Furthermore, due to the temporal separation of innate immunity from adaptive responses, zebrafish embryos and larvae are particularly useful for dissecting the innate host factors involved in pathology. Recent studies have underscored the remarkable similarity of the zebrafish and human immune systems, which is important for biomedical applications. This review is focused on the use of zebrafish as a model for infectious diseases, with emphasis on bacterial pathogens. Following a brief overview of the zebrafish immune system and the tools and methods used to study host-pathogen interactions in zebrafish, we discuss the current knowledge on receptors and downstream signaling components that are involved in the zebrafish embryo’s innate immune response. We summarize recent insights gained from the use of bacterial infection models, particularly the Mycobacterium marinum model, that illustrate the potential of the zebrafish model for high-throughput antimicrobial drug screening. PMID:21366518

  13. Recent insights into host-pathogen interaction in white spot syndrome virus infected penaeid shrimp.

    PubMed

    Shekhar, M S; Ponniah, A G

    2015-07-01

    Viral disease outbreaks are a major concern impeding the development of the shrimp aquaculture industry. The viral disease due to white spot syndrome virus (WSSV) observed in early 1990s still continues unabated affecting the shrimp farms and cause huge economic loss to the shrimp aquaculture industry. In the absence of effective therapeutics to control WSSV, it is important to understand viral pathogenesis and shrimp response to WSSV at the molecular level. Identification and molecular characterization of WSSV proteins and receptors may facilitate in designing and development of novel therapeutics and antiviral drugs that may inhibit viral replication. Investigations into host-pathogen interactions might give new insights to viral infectivity, tissue tropism and defence mechanism elicited in response to WSSV infection. However, due to the limited information on WSSV gene function and host immune response, the signalling pathways which are associated in shrimp pathogen interaction have also not been elucidated completely. In the present review, the focus is on those shrimp proteins and receptors that are potentially involved in virus infection or in the defence mechanism against WSSV. In addition, the major signalling pathways involved in the innate immune response and the role of apoptosis in host-pathogen interaction is discussed.

  14. Revealing the molecular signatures of host-pathogen interactions

    PubMed Central

    2011-01-01

    Advances in sequencing technology and genome-wide association studies are now revealing the complex interactions between hosts and pathogen through genomic variation signatures, which arise from evolutionary co-existence. PMID:22011345

  15. Possible Effects of Microbial Ecto-Nucleoside Triphosphate Diphosphohydrolases on Host-Pathogen Interactions

    PubMed Central

    Sansom, Fiona M.; Robson, Simon C.; Hartland, Elizabeth L.

    2008-01-01

    Summary: In humans, purinergic signaling plays an important role in the modulation of immune responses through specific receptors that recognize nucleoside tri- and diphosphates as signaling molecules. Ecto-nucleoside triphosphate diphosphohydrolases (ecto-NTPDases) have important roles in the regulation of purinergic signaling by controlling levels of extracellular nucleotides. This process is key to pathophysiological protective responses such as hemostasis and inflammation. Ecto-NTPDases are found in all higher eukaryotes, and recently it has become apparent that a number of important parasitic pathogens of humans express surface-located NTPDases that have been linked to virulence. For those parasites that are purine auxotrophs, these enzymes may play an important role in purine scavenging, although they may also influence the host response to infection. Although ecto-NTPDases are rare in bacteria, expression of a secreted NTPDase in Legionella pneumophila was recently described. This ecto-enzyme enhances intracellular growth of the bacterium and potentially affects virulence. This discovery represents an important advance in the understanding of the contribution of other microbial NTPDases to host-pathogen interactions. Here we review other progress made to date in the characterization of ecto-NTPDases from microbial pathogens, how they differ from mammalian enzymes, and their association with organism viability and virulence. In addition, we postulate how ecto-NTPDases may contribute to the host-pathogen interaction by reviewing the effect of selected microbial pathogens on purinergic signaling. Finally, we raise the possibility of targeting ecto-NTPDases in the development of novel anti-infective agents based on potential structural and clear enzymatic differences from the mammalian ecto-NTPDases. PMID:19052327

  16. Tick Genome Assembled: New Opportunities for Research on Tick-Host-Pathogen Interactions

    PubMed Central

    de la Fuente, José; Waterhouse, Robert M.; Sonenshine, Daniel E.; Roe, R. Michael; Ribeiro, Jose M.; Sattelle, David B.; Hill, Catherine A.

    2016-01-01

    As tick-borne diseases are on the rise, an international effort resulted in the sequence and assembly of the first genome of a tick vector. This result promotes research on comparative, functional and evolutionary genomics and the study of tick-host-pathogen interactions to improve human, animal and ecosystem health on a global scale. PMID:27695689

  17. Host pathogen interactions in Helicobacter pylori related gastric cancer.

    PubMed

    Chmiela, Magdalena; Karwowska, Zuzanna; Gonciarz, Weronika; Allushi, Bujana; Stączek, Paweł

    2017-03-07

    Helicobacter pylori (H. pylori), discovered in 1982, is a microaerophilic, spiral-shaped gram-negative bacterium that is able to colonize the human stomach. Nearly half of the world's population is infected by this pathogen. Its ability to induce gastritis, peptic ulcers, gastric cancer and mucosa-associated lymphoid tissue lymphoma has been confirmed. The susceptibility of an individual to these clinical outcomes is multifactorial and depends on H. pylori virulence, environmental factors, the genetic susceptibility of the host and the reactivity of the host immune system. Despite the host immune response, H. pylori infection can be difficult to eradicate. H. pylori is categorized as a group I carcinogen since this bacterium is responsible for the highest rate of cancer-related deaths worldwide. Early detection of cancer can be lifesaving. The 5-year survival rate for gastric cancer patients diagnosed in the early stages is nearly 90%. Gastric cancer is asymptomatic in the early stages but always progresses over time and begins to cause symptoms when untreated. In 97% of stomach cancer cases, cancer cells metastasize to other organs. H. pylori infection is responsible for nearly 60% of the intestinal-type gastric cancer cases but also influences the development of diffuse gastric cancer. The host genetic susceptibility depends on polymorphisms of genes involved in H. pylori-related inflammation and the cytokine response of gastric epithelial and immune cells. H. pylori strains differ in their ability to induce a deleterious inflammatory response. H. pylori-driven cytokines accelerate the inflammatory response and promote malignancy. Chronic H. pylori infection induces genetic instability in gastric epithelial cells and affects the DNA damage repair systems. Therefore, H. pylori infection should always be considered a pro-cancerous factor.

  18. Host pathogen interactions in Helicobacter pylori related gastric cancer

    PubMed Central

    Chmiela, Magdalena; Karwowska, Zuzanna; Gonciarz, Weronika; Allushi, Bujana; Stączek, Paweł

    2017-01-01

    Helicobacter pylori (H. pylori), discovered in 1982, is a microaerophilic, spiral-shaped gram-negative bacterium that is able to colonize the human stomach. Nearly half of the world's population is infected by this pathogen. Its ability to induce gastritis, peptic ulcers, gastric cancer and mucosa-associated lymphoid tissue lymphoma has been confirmed. The susceptibility of an individual to these clinical outcomes is multifactorial and depends on H. pylori virulence, environmental factors, the genetic susceptibility of the host and the reactivity of the host immune system. Despite the host immune response, H. pylori infection can be difficult to eradicate. H. pylori is categorized as a group I carcinogen since this bacterium is responsible for the highest rate of cancer-related deaths worldwide. Early detection of cancer can be lifesaving. The 5-year survival rate for gastric cancer patients diagnosed in the early stages is nearly 90%. Gastric cancer is asymptomatic in the early stages but always progresses over time and begins to cause symptoms when untreated. In 97% of stomach cancer cases, cancer cells metastasize to other organs. H. pylori infection is responsible for nearly 60% of the intestinal-type gastric cancer cases but also influences the development of diffuse gastric cancer. The host genetic susceptibility depends on polymorphisms of genes involved in H. pylori-related inflammation and the cytokine response of gastric epithelial and immune cells. H. pylori strains differ in their ability to induce a deleterious inflammatory response. H. pylori-driven cytokines accelerate the inflammatory response and promote malignancy. Chronic H. pylori infection induces genetic instability in gastric epithelial cells and affects the DNA damage repair systems. Therefore, H. pylori infection should always be considered a pro-cancerous factor. PMID:28321154

  19. Technologies for Proteome-Wide Discovery of Extracellular Host-Pathogen Interactions

    PubMed Central

    2017-01-01

    Pathogens have evolved unique mechanisms to breach the cell surface barrier and manipulate the host immune response to establish a productive infection. Proteins exposed to the extracellular environment, both cell surface-expressed receptors and secreted proteins, are essential targets for initial invasion and play key roles in pathogen recognition and subsequent immunoregulatory processes. The identification of the host and pathogen extracellular molecules and their interaction networks is fundamental to understanding tissue tropism and pathogenesis and to inform the development of therapeutic strategies. Nevertheless, the characterization of the proteins that function in the host-pathogen interface has been challenging, largely due to the technical challenges associated with detection of extracellular protein interactions. This review discusses available technologies for the high throughput study of extracellular protein interactions between pathogens and their hosts, with a focus on mammalian viruses and bacteria. Emerging work illustrates a rich landscape for extracellular host-pathogen interaction and points towards the evolution of multifunctional pathogen-encoded proteins. Further development and application of technologies for genome-wide identification of extracellular protein interactions will be important in deciphering functional host-pathogen interaction networks, laying the foundation for development of novel therapeutics. PMID:28321417

  20. Ocean acidification and host-pathogen interactions: blue mussels, Mytilus edulis, encountering Vibrio tubiashii.

    PubMed

    Asplund, Maria E; Baden, Susanne P; Russ, Sarah; Ellis, Robert P; Gong, Ningping; Hernroth, Bodil E

    2014-04-01

    Ocean acidification (OA) can shift the ecological balance between interacting organisms. In this study, we have used a model system to illustrate the interaction between a calcifying host organism, the blue mussel Mytilus edulis and a common bivalve bacterial pathogen, Vibrio tubiashii, with organisms being exposed to a level of acidification projected to occur by the end of the 21st century. OA exposures of the mussels were carried out in relative long-term (4 months) and short-term (4 days) experiments. We found no effect of OA on the culturability of V. tubiashii, in broth or in seawater. OA inhibited mussel shell growth and impaired crystalline shell structures but did not appear to affect mussel immune parameters (i.e haemocyte counts and phagocytotic capacity). Despite no evident impact on host immunity or growth and virulence of the pathogen, V. tubiashii was clearly more successful in infecting mussels exposed to long-term OA compared to those maintained under ambient conditions. Moreover, OA exposed V. tubiashii increased their viability when exposed to haemocytes of OA-treated mussel. Our findings suggest that even though host organisms may have the capacity to cope with periods of OA, these conditions may alter the outcome of host-pathogen interactions, favouring the success of the latter.

  1. Proteomics and integrative omic approaches for understanding host-pathogen interactions and infectious diseases.

    PubMed

    Jean Beltran, Pierre M; Federspiel, Joel D; Sheng, Xinlei; Cristea, Ileana M

    2017-03-27

    Organisms are constantly exposed to microbial pathogens in their environments. When a pathogen meets its host, a series of intricate intracellular interactions shape the outcome of the infection. The understanding of these host-pathogen interactions is crucial for the development of treatments and preventive measures against infectious diseases. Over the past decade, proteomic approaches have become prime contributors to the discovery and understanding of host-pathogen interactions that represent anti- and pro-pathogenic cellular responses. Here, we review these proteomic methods and their application to studying viral and bacterial intracellular pathogens. We examine approaches for defining spatial and temporal host-pathogen protein interactions upon infection of a host cell. Further expanding the understanding of proteome organization during an infection, we discuss methods that characterize the regulation of host and pathogen proteomes through alterations in protein abundance, localization, and post-translational modifications. Finally, we highlight bioinformatic tools available for analyzing such proteomic datasets, as well as novel strategies for integrating proteomics with other omic tools, such as genomics, transcriptomics, and metabolomics, to obtain a systems-level understanding of infectious diseases.

  2. Mining Host-Pathogen Protein Interactions to Characterize Burkholderia mallei Infectivity Mechanisms

    DTIC Science & Technology

    2015-03-04

    RESEARCH ARTICLE Mining Host-Pathogen Protein Interactions to Characterize Burkholderia mallei Infectivity Mechanisms Vesna Memišević1, Nela...were shown to attenuate disease progression in an aerosol infection animal model using the virulent Burkholderia mallei ATCC 23344 strain. Here, we...host-cell environment for the successful establishment of host infections and intracellular spread. PLOS Computational Biology | DOI:10.1371

  3. Mathematical and computational approaches can complement experimental studies of host-pathogen interactions.

    PubMed

    Kirschner, Denise E; Linderman, Jennifer J

    2009-04-01

    In addition to traditional and novel experimental approaches to study host-pathogen interactions, mathematical and computer modelling have recently been applied to address open questions in this area. These modelling tools not only offer an additional avenue for exploring disease dynamics at multiple biological scales, but also complement and extend knowledge gained via experimental tools. In this review, we outline four examples where modelling has complemented current experimental techniques in a way that can or has already pushed our knowledge of host-pathogen dynamics forward. Two of the modelling approaches presented go hand in hand with articles in this issue exploring fluorescence resonance energy transfer and two-photon intravital microscopy. Two others explore virtual or 'in silico' deletion and depletion as well as a new method to understand and guide studies in genetic epidemiology. In each of these examples, the complementary nature of modelling and experiment is discussed. We further note that multi-scale modelling may allow us to integrate information across length (molecular, cellular, tissue, organism, population) and time (e.g. seconds to lifetimes). In sum, when combined, these compatible approaches offer new opportunities for understanding host-pathogen interactions.

  4. Mathematical and computational approaches can complement experimental studies of host-pathogen interactions

    PubMed Central

    Kirschner, Denise E.; Linderman, Jennifer J.

    2009-01-01

    SUMMARY In addition to traditional and novel experimental approaches to study host-pathogen interactions, mathematical and computer modeling has recently been applied to address open questions in this area. These modeling tools not only offer an additional avenue for exploring disease dynamics at multiple biological scales, but also complement and extend knowledge gained via experimental tools. In this review, we outline four examples where modeling has complemented current experimental techniques in a way that can or has already pushed our knowledge of host-pathogen dynamics forward. Two of the modeling approaches presented go hand-in-hand with articles in this issue exploring FRET and two-photon intra-vital microscopy. Two others explore virtual or “in silico” deletion and depletion as well as a new method to understand and guide studies in genetic epidemiology. In each of these examples, the complementary nature of modeling and experiment is discussed. We further note that multi-scale modeling may allow us to integrate information across length (molecular, cellular, tissue, organism, population) and time (e.g. seconds to lifetimes). In sum, when combined, these compatible approaches offer new opportunities for understanding host-pathogen interactions. PMID:19134115

  5. Nearest-neighbor interactions, habitat fragmentation, and the persistence of host-pathogen systems.

    PubMed

    Wodarz, Dominik; Sun, Zhiying; Lau, John W; Komarova, Natalia L

    2013-09-01

    Spatial interactions are known to promote stability and persistence in enemy-victim interactions if instability and extinction occur in well-mixed settings. We investigate the effect of spatial interactions in the opposite case, where populations can persist in well-mixed systems. A stochastic agent-based model of host-pathogen dynamics is considered that describes nearest-neighbor interactions in an undivided habitat. Contrary to previous notions, we find that in this setting, spatial interactions in fact promote extinction. The reason is that, in contrast to the mass-action system, the outcome of the nearest-neighbor model is governed by dynamics in small "local neighborhoods." This is an abstraction that describes interactions in a minimal grid consisting of an individual plus its nearest neighbors. The small size of this characteristic scale accounts for the higher extinction probabilities. Hence, nearest-neighbor interactions in a continuous habitat lead to outcomes reminiscent of a fragmented habitat, which is underlined further with a metapopulation model that explicitly assumes habitat fragmentation. Beyond host-pathogen dynamics, axiomatic modeling shows that our results hold for generic enemy-victim interactions under specified assumptions. These results are used to interpret a set of published experiments that provide a first step toward model testing and are discussed in the context of the literature.

  6. MODELING HOST-PATHOGEN INTERACTIONS: COMPUTATIONAL BIOLOGY AND BIOINFORMATICS FOR INFECTIOUS DISEASE RESEARCH (Session introduction)

    SciTech Connect

    McDermott, Jason E.; Braun, Pascal; Bonneau, Richard A.; Hyduke, Daniel R.

    2011-12-01

    Pathogenic infections are a major cause of both human disease and loss of crop yields and animal stocks and thus cause immense damage to the worldwide economy. The significance of infectious diseases is expected to increase in an ever more connected warming world, in which new viral, bacterial and fungal pathogens can find novel hosts and ecologic niches. At the same time, the complex and sophisticated mechanisms by which diverse pathogenic agents evade defense mechanisms and subvert their hosts networks to suit their lifestyle needs is still very incompletely understood especially from a systems perspective [1]. Thus, understanding host-pathogen interactions is both an important and a scientifically fascinating topic. Recently, technology has offered the opportunity to investigate host-pathogen interactions on a level of detail and scope that offers immense computational and analytical possibilities. Genome sequencing was pioneered on some of these pathogens, and the number of strains and variants of pathogens sequenced to date vastly outnumbers the number of host genomes available. At the same time, for both plant and human hosts more and more data on population level genomic variation becomes available and offers a rich field for analysis into the genetic interactions between host and pathogen.

  7. Dissection of the host-pathogen interaction in human tuberculosis using a bioengineered 3-dimensional model

    PubMed Central

    Tezera, Liku B; Bielecka, Magdalena K; Chancellor, Andrew; Reichmann, Michaela T; Shammari, Basim Al; Brace, Patience; Batty, Alex; Tocheva, Annie; Jogai, Sanjay; Marshall, Ben G; Tebruegge, Marc; Jayasinghe, Suwan N; Mansour, Salah; Elkington, Paul T

    2017-01-01

    Cell biology differs between traditional cell culture and 3-dimensional (3-D) systems, and is modulated by the extracellular matrix. Experimentation in 3-D presents challenges, especially with virulent pathogens. Mycobacterium tuberculosis (Mtb) kills more humans than any other infection and is characterised by a spatially organised immune response and extracellular matrix remodelling. We developed a 3-D system incorporating virulent mycobacteria, primary human blood mononuclear cells and collagen–alginate matrix to dissect the host-pathogen interaction. Infection in 3-D led to greater cellular survival and permitted longitudinal analysis over 21 days. Key features of human tuberculosis develop, and extracellular matrix integrity favours the host over the pathogen. We optimised multiparameter readouts to study emerging therapeutic interventions: cytokine supplementation, host-directed therapy and immunoaugmentation. Each intervention modulates the host-pathogen interaction, but has both beneficial and harmful effects. This methodology has wide applicability to investigate infectious, inflammatory and neoplastic diseases and develop novel drug regimes and vaccination approaches. DOI: http://dx.doi.org/10.7554/eLife.21283.001 PMID:28063256

  8. Enhanced understanding of the host-pathogen interaction in sepsis: new opportunities for omic approaches.

    PubMed

    Goh, Cyndi; Knight, Julian C

    2017-03-01

    Progress in sepsis research has been severely hampered by a heterogeneous disease phenotype, limiting the interpretation of clinical trials and the development of effective therapeutic interventions. Application of omics-based methodologies is advancing understanding of the dysregulated host immune response to infection in sepsis. However, the frequently elusive nature of the infecting organism in sepsis has limited efforts to understand the effect of disease heterogeneity involving the pathogen. Recent advances in nucleic acid sequencing-based pathogen analysis provide the opportunity for more accurate and comprehensive microbiological diagnosis. In this Review, we explore how better understanding of the host-pathogen interaction can substantially enhance, and in turn benefit from, current and future application of omics-based approaches to understand the host response in sepsis. We illustrate this using recent work accounting for heterogeneity involving the pathogen. We propose that there is a timely opportunity to further resolve sepsis heterogeneity by considering host-pathogen interactions, enabling progress towards a precision medicine approach.

  9. Genetic background of host-pathogen interaction between Cucumis sativus L. and Pseudomonas syringae pv. lachrymans.

    PubMed

    Olczak-Woltman, H; Schollenberger, M; Niemirowicz-Szczytt, K

    2009-01-01

    The interplay of plant resistance mechanisms and bacterial pathogenicity is very complex. This applies also to the interaction that takes place between the pathogen Pseudomonas syringae pv. lachrymans (Smith et Bryan) and the cucumber (Cucumis sativus L.) as its host plant. Research on P. syringae pv. lachrymans has led to the discovery of specific factors produced during pathogenesis, i.e. toxins or enzymes. Similarly, studies on cucumber have identified the specific types of plant resistance expressed, namely Systemic Acquired Resistance (SAR) or Induced Systemic Resistance (ISR). This paper presents a summary of the current state of knowledge about this particular host-pathogen interaction, with reference to general information about interactions of P. syringae pathovars with host plants.

  10. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells

    PubMed Central

    David, Jonathan; Bell, Rachel E.; Clark, Graeme C.

    2015-01-01

    Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widely recognized as an important player in innate immunity and the early response to infections. Here we review the complex relationship between Burkholderia species and epithelial cells with an emphasis on the most pathogenic species, Burkholderia pseudomallei and Burkholderia mallei. The current gaps in knowledge in our understanding are highlighted along with the epithelial host-pathogen interactions that offer potential opportunities for therapeutic intervention. PMID:26636042

  11. HPIDB 2.0: a curated database for host-pathogen interactions.

    PubMed

    Ammari, Mais G; Gresham, Cathy R; McCarthy, Fiona M; Nanduri, Bindu

    2016-01-01

    Identification and analysis of host-pathogen interactions (HPI) is essential to study infectious diseases. However, HPI data are sparse in existing molecular interaction databases, especially for agricultural host-pathogen systems. Therefore, resources that annotate, predict and display the HPI that underpin infectious diseases are critical for developing novel intervention strategies. HPIDB 2.0 (http://www.agbase.msstate.edu/hpi/main.html) is a resource for HPI data, and contains 45, 238 manually curated entries in the current release. Since the first description of the database in 2010, multiple enhancements to HPIDB data and interface services were made that are described here. Notably, HPIDB 2.0 now provides targeted biocuration of molecular interaction data. As a member of the International Molecular Exchange consortium, annotations provided by HPIDB 2.0 curators meet community standards to provide detailed contextual experimental information and facilitate data sharing. Moreover, HPIDB 2.0 provides access to rapidly available community annotations that capture minimum molecular interaction information to address immediate researcher needs for HPI network analysis. In addition to curation, HPIDB 2.0 integrates HPI from existing external sources and contains tools to infer additional HPI where annotated data are scarce. Compared to other interaction databases, our data collection approach ensures HPIDB 2.0 users access the most comprehensive HPI data from a wide range of pathogens and their hosts (594 pathogen and 70 host species, as of February 2016). Improvements also include enhanced search capacity, addition of Gene Ontology functional information, and implementation of network visualization. The changes made to HPIDB 2.0 content and interface ensure that users, especially agricultural researchers, are able to easily access and analyse high quality, comprehensive HPI data. All HPIDB 2.0 data are updated regularly, are publically available for direct

  12. Exosomes: From Functions in Host-Pathogen Interactions and Immunity to Diagnostic and Therapeutic Opportunities.

    PubMed

    Carrière, Jessica; Barnich, Nicolas; Nguyen, Hang Thi Thu

    2016-01-01

    Since their first description in the 1980s, exosomes, small endosomal-derived extracellular vesicles, have been involved in innate and adaptive immunity through modulating immune responses and mediating antigen presentation. Increasing evidence has reported the role of exosomes in host-pathogen interactions and particularly in the activation of antimicrobial immune responses. The growing interest concerning exosomes in infectious diseases, their accessibility in various body fluids, and their capacity to convey a rich content (e.g., proteins, lipids, and nucleic acids) to distant recipient cells led the scientific community to consider the use of exosomes as potential new diagnostic and therapeutic tools. In this review, we summarize current understandings of exosome biogenesis and their composition and highlight the function of exosomes as immunomodulators in pathological states such as in infectious disorders. The potential of using exosomes as diagnostic and therapeutic tools is also discussed.

  13. Use of high-throughput mass spectrometry to elucidate host pathogen interactions in Salmonella

    SciTech Connect

    Rodland, Karin D.; Adkins, Joshua N.; Ansong, Charles; Chowdhury, Saiful M.; Manes, Nathan P.; Shi, Liang; Yoon, Hyunjin; Smith, Richard D.; Heffron, Fred

    2008-12-01

    Capabilities in mass spectrometry are evolving rapidly, with recent improvements in sensitivity, data analysis, and most important, from the standpoint of this review, much higher throughput allowing analysis of many samples in a single day. This short review describes how these improvements in mass spectrometry can be used to dissect host-pathogen interactions using Salmonella as a model system. This approach enabled direct identification of the majority of annotated Salmonella proteins, quantitation of expression changes under various in vitro growth conditions, and new insights into virulence and expression of Salmonella proteins within host cell cells. One of the most significant findings is that a very high percentage of the all annotated genes (>20%) in Salmonella are regulated post-transcriptionally. In addition, new and unexpected interactions have been identified for several Salmonella virulence regulators that involve protein-protein interactions, suggesting additional functions of these regulators in coordinating virulence expression. Overall high throughput mass spectrometry provides a new view of pathogen-host interactions emphasizing the protein products and defining how protein interactions determine the outcome of infection.

  14. Use of high-throughput mass spectrometry to elucidate host-pathogen interactions in Salmonella

    SciTech Connect

    Rodland, Karin D.; Adkins, Joshua N.; Ansong, Charles; Chowdhury, Saiful M.; Manes, Nathan P.; Shi, Liang; Yoon, Hyunjin; Smith, Richard D.; Heffron, Fred

    2008-12-01

    New improvements to mass spectrometry include increased sensitivity, improvements in analyzing the collected data, and most important, from the standpoint of this review, a much higher throughput allowing analysis of many samples in a single day. This short review describes how host-pathogen interactions can be dissected by mass spectrometry using Salmonella as a model system. The approach allowed direct identification of the majority of annotate Salmonella proteins, how expression changed under various in vitro growth conditions, and how this relates to virulence and expression within host cell cells. One of the most significant findings is that a very high percentage of the all annotated genes (>20%) are regulated post-transcriptionally. In addition, new and unexpected interactions have been identified for several Salmonella virulence regulators that involve protein-protein interactions suggesting additional functions of the regulator in coordinating virulence expression. Overall high throughput mass spectrometer provides a new view of pathogen-host interaction emphasizing the protein products and defining how protein interactions determine the outcome of infection.

  15. A Sensitive High-Throughput Assay for Evaluating Host-Pathogen Interactions in Cryptococcus neoformans Infection

    PubMed Central

    Srikanta, Deepa; Yang, Meng; Williams, Matthew; Doering, Tamara L.

    2011-01-01

    Background Cryptococcus neoformans causes serious disease in immunocompromised individuals, leading to over 600,000 deaths per year worldwide. Part of this impact is due to the organism's ability to thwart what should be the mammalian hosts' first line of defense against cryptococcal infection: internalization by macrophages. Even when C. neoformans is engulfed by host phagocytes, it can survive and replicate within them rather than being destroyed; this ability is central in cryptococcal virulence. It is therefore critical to elucidate the interactions of this facultative intracellular pathogen with phagocytic cells of its mammalian host. Methodology/Principal Findings To accurately assess initial interactions between human phagocytic cells and fungi, we have developed a method using high-throughput microscopy to efficiently distinguish adherent and engulfed cryptococci and quantitate each population. This method offers significant advantages over currently available means of assaying host-fungal cell interactions, and remains statistically robust when implemented in an automated fashion appropriate for screening. It was used to demonstrate the sensitivity of human phagocytes to subtle changes in the cryptococcal capsule, a major virulence factor of this pathogen. Conclusions/Significance Our high-throughput method for characterizing interactions between C. neoformans and mammalian phagocytic cells offers a powerful tool for elucidating the relationship between these cell types during pathogenesis. This approach will be useful for screens of this organism and has potentially broad applications for investigating host-pathogen interactions. PMID:21829509

  16. Exploring host-pathogen interactions through genome wide protein microarray analysis

    PubMed Central

    Scietti, Luigi; Sampieri, Katia; Pinzuti, Irene; Bartolini, Erika; Benucci, Barbara; Liguori, Alessia; Haag, Andreas F.; Lo Surdo, Paola; Pansegrau, Werner; Nardi-Dei, Vincenzo; Santini, Laura; Arora, Seguinde; Leber, Xavier; Rindi, Simonetta; Savino, Silvana; Costantino, Paolo; Maione, Domenico; Merola, Marcello; Speziale, Pietro; Bottomley, Matthew J.; Bagnoli, Fabio; Masignani, Vega; Pizza, Mariagrazia; Scharenberg, Meike; Schlaeppi, Jean-Marc; Nissum, Mikkel; Liberatori, Sabrina

    2016-01-01

    During bacterial pathogenesis extensive contacts between the human and the bacterial extracellular proteomes take place. The identification of novel host-pathogen interactions by standard methods using a case-by-case approach is laborious and time consuming. To overcome this limitation, we took advantage of large libraries of human and bacterial recombinant proteins. We applied a large-scale protein microarray-based screening on two important human pathogens using two different approaches: (I) 75 human extracellular proteins were tested on 159 spotted Staphylococcus aureus recombinant proteins and (II) Neisseria meningitidis adhesin (NadA), an important vaccine component against serogroup B meningococcus, was screened against ≈2300 spotted human recombinant proteins. The approach presented here allowed the identification of the interaction between the S. aureus immune evasion protein FLIPr (formyl-peptide receptor like-1 inhibitory protein) and the human complement component C1q, key players of the offense-defense fighting; and of the interaction between meningococcal NadA and human LOX-1 (low-density oxidized lipoprotein receptor), an endothelial receptor. The novel interactions between bacterial and human extracellular proteins here presented might provide a better understanding of the molecular events underlying S. aureus and N. meningitidis pathogenesis. PMID:27302108

  17. Exploring host-pathogen interactions through genome wide protein microarray analysis.

    PubMed

    Scietti, Luigi; Sampieri, Katia; Pinzuti, Irene; Bartolini, Erika; Benucci, Barbara; Liguori, Alessia; Haag, Andreas F; Lo Surdo, Paola; Pansegrau, Werner; Nardi-Dei, Vincenzo; Santini, Laura; Arora, Seguinde; Leber, Xavier; Rindi, Simonetta; Savino, Silvana; Costantino, Paolo; Maione, Domenico; Merola, Marcello; Speziale, Pietro; Bottomley, Matthew J; Bagnoli, Fabio; Masignani, Vega; Pizza, Mariagrazia; Scharenberg, Meike; Schlaeppi, Jean-Marc; Nissum, Mikkel; Liberatori, Sabrina

    2016-06-15

    During bacterial pathogenesis extensive contacts between the human and the bacterial extracellular proteomes take place. The identification of novel host-pathogen interactions by standard methods using a case-by-case approach is laborious and time consuming. To overcome this limitation, we took advantage of large libraries of human and bacterial recombinant proteins. We applied a large-scale protein microarray-based screening on two important human pathogens using two different approaches: (I) 75 human extracellular proteins were tested on 159 spotted Staphylococcus aureus recombinant proteins and (II) Neisseria meningitidis adhesin (NadA), an important vaccine component against serogroup B meningococcus, was screened against ≈2300 spotted human recombinant proteins. The approach presented here allowed the identification of the interaction between the S. aureus immune evasion protein FLIPr (formyl-peptide receptor like-1 inhibitory protein) and the human complement component C1q, key players of the offense-defense fighting; and of the interaction between meningococcal NadA and human LOX-1 (low-density oxidized lipoprotein receptor), an endothelial receptor. The novel interactions between bacterial and human extracellular proteins here presented might provide a better understanding of the molecular events underlying S. aureus and N. meningitidis pathogenesis.

  18. Lawrence Livermore National Laboratory Workshop Characterization of Pathogenicity, Virulence and Host-Pathogen Interactions

    SciTech Connect

    Krishnan, A

    2006-08-30

    The threats of bio-terrorism and newly emerging infectious diseases pose serious challenges to the national security infrastructure. Rapid detection and diagnosis of infectious disease in human populations, as well as characterizing pathogen biology, are critical for reducing the morbidity and mortality associated with such threats. One of the key challenges in managing an infectious disease outbreak, whether through natural causes or acts of overt terrorism, is detection early enough to initiate effective countermeasures. Much recent attention has been directed towards the utility of biomarkers or molecular signatures that result from the interaction of the pathogen with the host for improving our ability to diagnose and mitigate the impact of a developing infection during the time window when effective countermeasures can be instituted. Host responses may provide early signals in blood even from localized infections. Multiple innate and adaptive immune molecules, in combination with other biochemical markers, may provide disease-specific information and new targets for countermeasures. The presence of pathogen specific markers and an understanding of the molecular capabilities and adaptations of the pathogen when it interacts with its host may likewise assist in early detection and provide opportunities for targeting countermeasures. An important question that needs to be addressed is whether these molecular-based approaches will prove useful for early diagnosis, complement current methods of direct agent detection, and aid development and use of countermeasures. Lawrence Livermore National Laboratory (LLNL) will host a workshop to explore the utility of host- and pathogen-based molecular diagnostics, prioritize key research issues, and determine the critical steps needed to transition host-pathogen research to tools that can be applied towards a more effective national bio-defense strategy. The workshop will bring together leading researchers/scientists in the

  19. Adaptation of mammalian host-pathogen interactions in a changing arctic environment

    PubMed Central

    2011-01-01

    Many arctic mammals are adapted to live year-round in extreme environments with low winter temperatures and great seasonal variations in key variables (e.g. sunlight, food, temperature, moisture). The interaction between hosts and pathogens in high northern latitudes is not very well understood with respect to intra-annual cycles (seasons). The annual cycles of interacting pathogen and host biology is regulated in part by highly synchronized temperature and photoperiod changes during seasonal transitions (e.g., freezeup and breakup). With a warming climate, only one of these key biological cues will undergo drastic changes, while the other will remain fixed. This uncoupling can theoretically have drastic consequences on host-pathogen interactions. These poorly understood cues together with a changing climate by itself will challenge host populations that are adapted to pathogens under the historic and current climate regime. We will review adaptations of both host and pathogens to the extreme conditions at high latitudes and explore some potential consequences of rapid changes in the Arctic. PMID:21392401

  20. Visualization of coral host-pathogen interactions using a stable GFP-labeled Vibrio coralliilyticus strain

    NASA Astrophysics Data System (ADS)

    Pollock, F. Joseph; Krediet, Cory J.; Garren, Melissa; Stocker, Roman; Winn, Karina; Wilson, Bryan; Huete-Stauffer, Carla; Willis, Bette L.; Bourne, David G.

    2015-06-01

    The bacterium Vibrio coralliilyticus has been implicated as the causative agent of coral tissue loss diseases (collectively known as white syndromes) at sites across the Indo-Pacific and represents an emerging model pathogen for understanding the mechanisms linking bacterial infection and coral disease. In this study, we used a mini-Tn7 transposon delivery system to chromosomally label a strain of V. coralliilyticus isolated from a white syndrome disease lesion with a green fluorescent protein gene (GFP). We then tested the utility of this modified strain as a research tool for studies of coral host-pathogen interactions. A suite of biochemical assays and experimental infection trials in a range of model organisms confirmed that insertion of the GFP gene did not interfere with the labeled strain's virulence. Using epifluorescence video microscopy, the GFP-labeled strain could be reliably distinguished from non-labeled bacteria present in the coral holobiont, and the pathogen's interactions with the coral host could be visualized in real time. This study demonstrates that chromosomal GFP labeling is a useful technique for visualization and tracking of coral pathogens and provides a novel tool to investigate the role of V. coralliilyticus in coral disease pathogenesis.

  1. Chikungunya virus: recent advances in epidemiology, host pathogen interaction and vaccine strategies.

    PubMed

    Deeba, Farah; Islam, Asimul; Kazim, Syed Naqui; Naqvi, Irshad Hussain; Broor, Shobha; Ahmed, Anwar; Parveen, Shama

    2016-04-01

    The Chikungunya virus is a re-emerging alphavirus that belongs to the family Togaviridae. The symptoms include fever, rashes, nausea and joint pain that may last for months. The laboratory diagnosis of the infection is based on the serologic assays, virus isolation and molecular methods. The pathogenesis of the Chikungunya viral infection is not completely understood. Some of the recent investigations have provided information on replication of the virus in various cells and organs. In addition, some recent reports have indicated that the severity of the disease is correlated with the viral load and cytokines. The Chikungunya virus infection re-emerged as an explosive epidemic during 2004-09 affecting millions of people in the Indian Ocean. Subsequent global attention was given to research on this viral pathogen due to its broad area of geographical distribution during this epidemic. Chikungunya viral infection has become a challenge for the public health system because of the absence of a vaccine as well as antiviral drugs. A number of potential vaccine candidates have been tested on humans and animal models during clinical and preclinical trials. In this review, we mainly discuss the host-pathogen relationship, epidemiology and recent advances in the development of drugs and vaccines for the Chikungunya viral infection.

  2. Constraint-based analysis of metabolic capacity of Salmonella typhimurium during host-pathogen interaction

    PubMed Central

    Raghunathan, Anu; Reed, Jennifer; Shin, Sookil; Palsson, Bernhard; Daefler, Simon

    2009-01-01

    Background Infections with Salmonella cause significant morbidity and mortality worldwide. Replication of Salmonella typhimurium inside its host cell is a model system for studying the pathogenesis of intracellular bacterial infections. Genome-scale modeling of bacterial metabolic networks provides a powerful tool to identify and analyze pathways required for successful intracellular replication during host-pathogen interaction. Results We have developed and validated a genome-scale metabolic network of Salmonella typhimurium LT2 (iRR1083). This model accounts for 1,083 genes that encode proteins catalyzing 1,087 unique metabolic and transport reactions in the bacterium. We employed flux balance analysis and in silico gene essentiality analysis to investigate growth under a wide range of conditions that mimic in vitro and host cell environments. Gene expression profiling of S. typhimurium isolated from macrophage cell lines was used to constrain the model to predict metabolic pathways that are likely to be operational during infection. Conclusion Our analysis suggests that there is a robust minimal set of metabolic pathways that is required for successful replication of Salmonella inside the host cell. This model also serves as platform for the integration of high-throughput data. Its computational power allows identification of networked metabolic pathways and generation of hypotheses about metabolism during infection, which might be used for the rational design of novel antibiotics or vaccine strains. PMID:19356237

  3. Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions

    PubMed Central

    Hebecker, Betty; Vlaic, Sebastian; Conrad, Theresia; Bauer, Michael; Brunke, Sascha; Kapitan, Mario; Linde, Jörg; Hube, Bernhard; Jacobsen, Ilse D.

    2016-01-01

    Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses. PMID:27808111

  4. Global analysis of host-pathogen interactions that regulate early stage HIV-1 replication

    PubMed Central

    König, Renate; Zhou, Yingyao; Elleder, Daniel; Diamond, Tracy L.; Bonamy, Ghislain M.C.; Irelan, Jeffrey T.; Chiang, Chih-yuan; Tu, Buu P.; De Jesus, Paul D.; Lilley, Caroline E.; Seidel, Shannon; Opaluch, Amanda M.; Caldwell, Jeremy S.; Weitzman, Matthew D.; Kuhen, Kelli L.; Bandyopadhyay, Sourav; Ideker, Trey; Orth, Anthony P.; Miraglia, Loren J.; Bushman, Frederic D.; Young, John A.; Chanda, Sumit K.

    2008-01-01

    Human Immunodeficiency Viruses (HIV-1 and HIV-2) rely upon host-encoded proteins to facilitate their replication. Here we combined genome-wide siRNA analyses with interrogation of human interactome databases to assemble a host-pathogen biochemical network containing 213 confirmed host cellular factors and 11 HIV-1-encoded proteins. Protein complexes that regulate ubiquitin conjugation, proteolysis, DNA damage response and RNA splicing were identified as important modulators of early stage HIV-1 infection. Additionally, over 40 new factors were shown to specifically influence initiation and/or kinetics of HIV-1 DNA synthesis, including cytoskeletal regulatory proteins, modulators of post-translational modification, and nucleic acid binding proteins. Finally, fifteen proteins with diverse functional roles, including nuclear transport, prostaglandin synthesis, ubiquitination, and transcription, were found to influence nuclear import or viral DNA integration. Taken together, the multi-scale approach described here has uncovered multiprotein virus-host interactions that likely act in concert to facilitate early steps of HIV-1 infection. PMID:18854154

  5. Mammalian microRNA: an important modulator of host-pathogen interactions in human viral infections.

    PubMed

    Ojha, Chet Raj; Rodriguez, Myosotys; Dever, Seth M; Mukhopadhyay, Rita; El-Hage, Nazira

    2016-10-26

    MicroRNAs (miRNAs), which are small non-coding RNAs expressed by almost all metazoans, have key roles in the regulation of cell differentiation, organism development and gene expression. Thousands of miRNAs regulating approximately 60 % of the total human genome have been identified. They regulate genetic expression either by direct cleavage or by translational repression of the target mRNAs recognized through partial complementary base pairing. The active and functional unit of miRNA is its complex with Argonaute proteins known as the microRNA-induced silencing complex (miRISC). De-regulated miRNA expression in the human cell may contribute to a diverse group of disorders including cancer, cardiovascular dysfunctions, liver damage, immunological dysfunction, metabolic syndromes and pathogenic infections. Current day studies have revealed that miRNAs are indeed a pivotal component of host-pathogen interactions and host immune responses toward microorganisms. miRNA is emerging as a tool for genetic study, therapeutic development and diagnosis for human pathogenic infections caused by viruses, bacteria, parasites and fungi. Many pathogens can exploit the host miRNA system for their own benefit such as surviving inside the host cell, replication, pathogenesis and bypassing some host immune barriers, while some express pathogen-encoded miRNA inside the host contributing to their replication, survival and/or latency. In this review, we discuss the role and significance of miRNA in relation to some pathogenic viruses.

  6. Human mini-guts: new insights into intestinal physiology and host-pathogen interactions.

    PubMed

    In, Julie G; Foulke-Abel, Jennifer; Estes, Mary K; Zachos, Nicholas C; Kovbasnjuk, Olga; Donowitz, Mark

    2016-11-01

    The development of indefinitely propagating human 'mini-guts' has led to a rapid advance in gastrointestinal research related to transport physiology, developmental biology, pharmacology, and pathophysiology. These mini-guts, also called enteroids or colonoids, are derived from LGR5(+) intestinal stem cells isolated from the small intestine or colon. Addition of WNT3A and other growth factors promotes stemness and results in viable, physiologically functional human intestinal or colonic cultures that develop a crypt-villus axis and can be differentiated into all intestinal epithelial cell types. The success of research using human enteroids has highlighted the limitations of using animals or in vitro, cancer-derived cell lines to model transport physiology and pathophysiology. For example, curative or preventive therapies for acute enteric infections have been limited, mostly due to the lack of a physiological human intestinal model. However, the human enteroid model enables specific functional studies of secretion and absorption in each intestinal segment as well as observations of the earliest molecular events that occur during enteric infections. This Review describes studies characterizing these human mini-guts as a physiological model to investigate intestinal transport and host-pathogen interactions.

  7. DAF as a therapeutic target for steroid hormones: implications for host-pathogen interactions.

    PubMed

    Nowicki, Bogdan; Nowicki, Stella

    2013-01-01

    In this chapter, we present a concise historic prospective and a summary of accumulated knowledge on steroid hormones, DAF expression, and therapeutic implication of steroid hormone treatment on multiple pathologies, including infection and the host-pathogen interactions. DAF/CD55 plays multiple physiologic functions including tissue protection from the cytotoxic complement injury, an anti-inflammatory function due to its anti-adherence properties which enhance transmigration of monocytes and macrophages and reduce tissue injury. DAF physiologic functions are essential in many organ systems including pregnancy for protection of the semiallogeneic fetus or for preventing uncontrolled infiltration by white cells in their pro- and/or anti-inflammatory functions. DAF expression appears to have multiple regulatory tissue-specific and/or menstrual cycle-specific mechanisms, which involve complex signaling mechanisms. Regulation of DAF expression may involve a direct or an indirect effect of at least the estrogen, progesterone, and corticosteroid regulatory pathways. DAF is exploited in multiple pathologic conditions by pathogens and viruses in chronic tissue infection processes. The binding of Escherichia coli bearing Dr adhesins to the DAF/CD55 receptor is DAF density dependent and triggers internalization of E. coli via an endocytic pathway involving CD55, lipid rafts, and microtubules. Dr+ E. coli or Dr antigen may persist in vivo in the interstitium for several months. Further understanding of such processes should be instrumental in designing therapeutic strategies for multiple conditions involving DAF's protective or pathologic functions and tailoring host expression of DAF.

  8. Investigating host-pathogen behavior and their interaction using genome-scale metabolic network models.

    PubMed

    Sadhukhan, Priyanka P; Raghunathan, Anu

    2014-01-01

    Genome Scale Metabolic Modeling methods represent one way to compute whole cell function starting from the genome sequence of an organism and contribute towards understanding and predicting the genotype-phenotype relationship. About 80 models spanning all the kingdoms of life from archaea to eukaryotes have been built till date and used to interrogate cell phenotype under varying conditions. These models have been used to not only understand the flux distribution in evolutionary conserved pathways like glycolysis and the Krebs cycle but also in applications ranging from value added product formation in Escherichia coli to predicting inborn errors of Homo sapiens metabolism. This chapter describes a protocol that delineates the process of genome scale metabolic modeling for analysing host-pathogen behavior and interaction using flux balance analysis (FBA). The steps discussed in the process include (1) reconstruction of a metabolic network from the genome sequence, (2) its representation in a precise mathematical framework, (3) its translation to a model, and (4) the analysis using linear algebra and optimization. The methods for biological interpretations of computed cell phenotypes in the context of individual host and pathogen models and their integration are also discussed.

  9. The Use of High Pressure Freezing and Freeze Substitution to Study Host-Pathogen Interactions in Fungal Diseases of Plants

    NASA Astrophysics Data System (ADS)

    Mims, C. W.; Celio, Gail J.; Richardson, Elizabeth A.

    2003-12-01

    This article reports on the use of high pressure freezing followed by freeze substitution (HPF/FS) to study ultrastructural details of host pathogen interactions in fungal diseases of plants. The specific host pathogen systems discussed here include a powdery mildew infection of poinsettia and rust infections of daylily and Indian strawberry. The three pathogens considered here all attack the leaves of their hosts and produce specialized hyphal branches known as haustoria that invade individual host cells without killing them. We found that HPF/FS provided excellent preservation of both haustoria and host cells for all three host pathogen systems. Preservation of fungal and host cell membranes was particularly good and greatly facilitated the detailed study of host pathogen interfaces. In some instances, HPF/FS provided information that was not available in samples prepared for study using conventional chemical fixation. On the other hand, we did encounter various problems associated with the use of HPF/FS. Examples included freeze damage of samples, inconsistency of fixation in different samples, separation of plant cell cytoplasm from cell walls, breakage of cell walls and membranes, and splitting of thin sections. However, we believe that the outstanding preservation of ultrastructural details afforded by HPF/FS significantly outweighs these problems and we highly recommend the use of this fixation protocol for future studies of fungal host-plant interactions.

  10. An Enriched European Eel Transcriptome Sheds Light upon Host-Pathogen Interactions with Vibrio vulnificus

    PubMed Central

    Callol, Agnès; Reyes-López, Felipe E.; Roig, Francisco J.; Goetz, Giles; Goetz, Frederick W.; Amaro, Carmen; MacKenzie, Simon A.

    2015-01-01

    Infectious diseases are one of the principal bottlenecks for the European eel recovery. The aim of this study was to develop a new molecular tool to be used in host-pathogen interaction experiments in the eel. To this end, we first stimulated adult eels with different pathogen-associated molecular patterns (PAMPs), extracted RNA from the immune-related tissues and sequenced the transcriptome. We obtained more than 2x106 reads that were assembled and annotated into 45,067 new descriptions with a notable representation of novel transcripts related with pathogen recognition, signal transduction and the immune response. Then, we designed a DNA-microarray that was used to analyze the early immune response against Vibrio vulnificus, a septicemic pathogen that uses the gills as the portal of entry into the blood, as well as the role of the main toxin of this species (RtxA13) on this early interaction. The gill transcriptomic profiles obtained after bath infecting eels with the wild type strain or with a mutant deficient in rtxA13 were analyzed and compared. Results demonstrate that eels react rapidly and locally against the pathogen and that this immune-response is rtxA13-dependent as transcripts related with cell destruction were highly up-regulated only in the gills from eels infected with the wild-type strain. Furthermore, significant differences in the immune response against the wild type and the mutant strain also suggest that host survival after V. vulnificus infection could depend on an efficient local phagocytic activity. Finally, we also found evidence of the presence of an interbranchial lymphoid tissue in European eel gills although further experiments will be necessary to identify such tissue. PMID:26207370

  11. Burkholderia cenocepacia differential gene expression during host-pathogen interactions and adaptation to the host environment.

    PubMed

    O'Grady, Eoin P; Sokol, Pamela A

    2011-01-01

    Members of the Burkholderia cepacia complex (Bcc) are important in medical, biotechnological, and agricultural disciplines. These bacteria naturally occur in soil and water environments and have adapted to survive in association with plants and animals including humans. All Bcc species are opportunistic pathogens including Burkholderia cenocepacia that causes infections in cystic fibrosis and chronic granulomatous disease patients. The adaptation of B. cenocepacia to the host environment was assessed in a rat chronic respiratory infection model and compared to that of high cell-density in vitro grown cultures using transcriptomics. The distribution of genes differentially expressed on chromosomes 1, 2, and 3 was relatively proportional to the size of each genomic element, whereas the proportion of plasmid-encoded genes differentially expressed was much higher relative to its size and most genes were induced in vivo. The majority of genes encoding known virulence factors, components of types II and III secretion systems and chromosome 2-encoded type IV secretion system were similarly expressed between in vitro and in vivo environments. Lower expression in vivo was detected for genes encoding N-acyl-homoserine lactone synthase CepI, orphan LuxR homolog CepR2, zinc metalloproteases ZmpA and ZmpB, LysR-type transcriptional regulator ShvR, nematocidal protein AidA, and genes associated with flagellar motility, Flp type pilus formation, and type VI secretion. Plasmid-encoded type IV secretion genes were markedly induced in vivo. Additional genes induced in vivo included genes predicted to be involved in osmotic stress adaptation or intracellular survival, metal ion, and nutrient transport, as well as those encoding outer membrane proteins. Genes identified in this study are potentially important for virulence during host-pathogen interactions and may be associated with survival and adaptation to the host environment during chronic lung infections.

  12. Studying Host-Pathogen Interactions In 3-D: Organotypic Models For Infectious Disease And Drug Development

    NASA Technical Reports Server (NTRS)

    Nickerson, Cheryl A.; Richter, Emily G.; Ott, C. Mark

    2006-01-01

    Representative, reproducible and high-throughput models of human cells and tissues are critical for a meaningful evaluation of host-pathogen interactions and are an essential component of the research developmental pipeline. The most informative infection models - animals, organ explants and human trials - are not suited for extensive evaluation of pathogenesis mechanisms and screening of candidate drugs. At the other extreme, more cost effective and accessible infection models such as conventional cell culture and static co-culture may not capture physiological and three-dimensional aspects of tissue biology that are important in assessing pathogenesis, and effectiveness and cytotoxicity of therapeutics. Our lab has used innovative bioengineering technology to establish biologically meaningful 3-D models of human tissues that recapitulate many aspects of the differentiated structure and function of the parental tissue in vivo, and we have applied these models to study infectious disease. We have established a variety of different 3-D models that are currently being used in infection studies - including small intestine, colon, lung, placenta, bladder, periodontal ligament, and neuronal models. Published work from our lab has shown that our 3-D models respond to infection with bacterial and viral pathogens in ways that reflect the infection process in vivo. By virtue of their physiological relevance, 3-D cell cultures may also hold significant potential as models to provide insight into the neuropathogenesis of HIV infection. Furthermore, the experimental flexibility, reproducibility, cost-efficiency, and high throughput platform afforded by these 3-D models may have important implications for the design and development of drugs with which to effectively treat neurological complications of HIV infection.

  13. If it transcribes, we can sequence it: mining the complexities of host-pathogen-environment interactions using RNA-seq.

    PubMed

    Colgan, Aoife M; Cameron, Andrew Ds; Kröger, Carsten

    2017-02-09

    Host-pathogen interactions are exceedingly complex because they involve multiple host tissues, often occur in the context of normal microflora, and can span diverse microenvironments. Although decades of gene expression studies have provided detailed insights into infection processes, technical challenges have restricted experiments to single pathogenic species or host tissues. RNA-sequencing (RNA-seq) has revolutionized the study of gene expression because in addition to quantifying transcriptional output, it allows detection and characterization of all transcripts in a genome. Here, we review how refined approaches to RNA-seq are used to map the transcriptional networks that control host-pathogen interactions. These enhanced techniques include dRNA-seq and term-seq for the fine-scale mapping of transcriptional start and termination sites, and dual RNA-seq for simultaneous sequencing of host and bacterial pathogen transcriptomes. Dual RNA-seq experiments are currently limited to in vitro infection systems that do not fully reflect the complexities of the in vivo environment, thus a challenge is to develop in vivo model systems and experimental approaches that address the biological heterogeneity of host environments, followed by the integration of RNA-seq with other genome-scale datasets to identify the transcriptional networks that mediate host-pathogen interactions.

  14. Systems biology and systems genetics - novel innovative approaches to study host-pathogen interactions during influenza infection.

    PubMed

    Kollmus, Heike; Wilk, Esther; Schughart, Klaus

    2014-06-01

    Influenza represents a serious threat to public health with thousands of deaths each year. A deeper understanding of the host-pathogen interactions is urgently needed to evaluate individual and population risks for severe influenza disease and to identify new therapeutic targets. Here, we review recent progress in large scale omics technologies, systems genetics as well as new mathematical and computational developments that are now in place to apply a systems biology approach for a comprehensive description of the multidimensional host response to influenza infection. In addition, we describe how results from experimental animal models can be translated to humans, and we discuss some of the future challenges ahead.

  15. A Novel Mechanism of Host-Pathogen Interaction through sRNA in Bacterial Outer Membrane Vesicles

    PubMed Central

    Koeppen, Katja; Hampton, Thomas H.; Jarek, Michael; Scharfe, Maren; Gerber, Scott A.; Mielcarz, Daniel W.; Demers, Elora G.; Dolben, Emily L.; Hammond, John H.; Hogan, Deborah A.; Stanton, Bruce A.

    2016-01-01

    Bacterial outer membrane vesicle (OMV)-mediated delivery of proteins to host cells is an important mechanism of host-pathogen communication. Emerging evidence suggests that OMVs contain differentially packaged short RNAs (sRNAs) with the potential to target host mRNA function and/or stability. In this study, we used RNA-Seq to characterize differentially packaged sRNAs in Pseudomonas aeruginosa OMVs, and to show transfer of OMV sRNAs to human airway cells. We selected one sRNA for further study based on its stable secondary structure and predicted mRNA targets. Our candidate sRNA (sRNA52320), a fragment of a P. aeruginosa methionine tRNA, was abundant in OMVs and reduced LPS-induced as well as OMV-induced IL-8 secretion by cultured primary human airway epithelial cells. We also showed that sRNA52320 attenuated OMV-induced KC cytokine secretion and neutrophil infiltration in mouse lung. Collectively, these findings are consistent with the hypothesis that sRNA52320 in OMVs is a novel mechanism of host-pathogen interaction whereby P. aeruginosa reduces the host immune response. PMID:27295279

  16. Use of GFP-tagged strains of Penicillium digitatum and Penicillium expansum to study host-pathogen interactions in oranges and apples.

    PubMed

    Buron-Moles, G; López-Pérez, M; González-Candelas, L; Viñas, I; Teixidó, N; Usall, J; Torres, R

    2012-11-15

    Penicillium digitatum and Penicillium expansum are responsible for green and blue molds in citrus and pome fruits, respectively, which result in major monetary losses worldwide. In order to study their infection process in fruits, we successfully introduced a green fluorescent protein (GFP) encoding gene into wild type P. digitatum and P. expansum isolates, using Agrobacterium tumefaciens-mediated transformation (ATMT), with hygromycin B resistance as the selectable marker. To our knowledge, this is the first report describing the transformation of these two important postharvest pathogens with GFP and the use of transformed strains to study compatible and non-host pathogen interactions. Transformation did not affect the pathogenicity or the ecophysiology of either species compared to their respective wild type strains. The GFP-tagged strains were used for in situ analysis of compatible and non-host pathogen interactions on oranges and apples. Knowledge of the infection process of apples and oranges by these pathogens will facilitate the design of novel strategies to control these postharvest diseases and the use of the GFP-tagged strains will help to determine the response of P. digitatum and P. expansum on/in plant surface and tissues to different postharvest treatments.

  17. A hypothetical model of host-pathogen interaction of Streptococcus suis in the gastro-intestinal tract

    PubMed Central

    Ferrando, Maria Laura; Schultsz, Constance

    2016-01-01

    ABSTRACT Streptococcus suis (SS) is a zoonotic pathogen that can cause systemic infection in pigs and humans. The ingestion of contaminated pig meat is a well-established risk factor for zoonotic S. suis disease. In our studies, we provide experimental evidence that S. suis is capable to translocate across the host gastro-intestinal tract (GIT) using in vivo and in vitro models. Hence, S. suis should be considered an emerging foodborne pathogen. In this addendum, we give an overview of the complex interactions between S. suis and host-intestinal mucosa which depends on the host origin, the serotype and genotype of S. suis, as well as the presence and expression of virulence factors involved in host-pathogen interaction. Finally, we propose a hypothetical model of S. suis interaction with the host-GIT taking in account differences in conditions between the porcine and human host. PMID:26900998

  18. Genomic RNAi screening in Drosophila S2 cells: What have we learned about host-pathogen interactions?

    PubMed Central

    Cherry, Sara

    2008-01-01

    The détente between pathogen and host has been of keen interest to researchers in spite of being exceedingly difficult to probe. Recently, new RNA interference (RNAi) technologies, in particular in Drosophila tissue culture cells, have made it possible to interrogate the genetics of host organisms rapidly, with nearly complete genomic coverage and high fidelity. Therefore, it is not surprising that the applications of RNAi to the study of host-pathogen interactions were amongst the first to be published, and have already revealed many new insights into the hosts’ role in infection. This review will highlight the application of RNAi screening to pathogen-host interactions in Drosophila cells and will reveal some of the lessons learned from this approach. PMID:18539520

  19. Effector prediction in host-pathogen interaction based on a Markov model of a ubiquitous EPIYA motif

    PubMed Central

    2010-01-01

    Background Effector secretion is a common strategy of pathogen in mediating host-pathogen interaction. Eight EPIYA-motif containing effectors have recently been discovered in six pathogens. Once these effectors enter host cells through type III/IV secretion systems (T3SS/T4SS), tyrosine in the EPIYA motif is phosphorylated, which triggers effectors binding other proteins to manipulate host-cell functions. The objectives of this study are to evaluate the distribution pattern of EPIYA motif in broad biological species, to predict potential effectors with EPIYA motif, and to suggest roles and biological functions of potential effectors in host-pathogen interactions. Results A hidden Markov model (HMM) of five amino acids was built for the EPIYA-motif based on the eight known effectors. Using this HMM to search the non-redundant protein database containing 9,216,047 sequences, we obtained 107,231 sequences with at least one EPIYA motif occurrence and 3115 sequences with multiple repeats of the EPIYA motif. Although the EPIYA motif exists among broad species, it is significantly over-represented in some particular groups of species. For those proteins containing at least four copies of EPIYA motif, most of them are from intracellular bacteria, extracellular bacteria with T3SS or T4SS or intracellular protozoan parasites. By combining the EPIYA motif and the adjacent SH2 binding motifs (KK, R4, Tarp and Tir), we built HMMs of nine amino acids and predicted many potential effectors in bacteria and protista by the HMMs. Some potential effectors for pathogens (such as Lawsonia intracellularis, Plasmodium falciparum and Leishmania major) are suggested. Conclusions Our study indicates that the EPIYA motif may be a ubiquitous functional site for effectors that play an important pathogenicity role in mediating host-pathogen interactions. We suggest that some intracellular protozoan parasites could secrete EPIYA-motif containing effectors through secretion systems similar to the

  20. Pharmacological Targeting of the Host-Pathogen Interaction: Alternatives to Classical Antibiotics to Combat Drug-Resistant Superbugs.

    PubMed

    Munguia, Jason; Nizet, Victor

    2017-03-07

    The rise of multidrug-resistant pathogens and the dearth of new antibiotic development place an existential strain on successful infectious disease therapy. Breakthrough strategies that go beyond classical antibiotic mechanisms are needed to combat this looming public health catastrophe. Reconceptualizing antibiotic therapy in the richer context of the host-pathogen interaction is required for innovative solutions. By defining specific virulence factors, the essence of a pathogen, and pharmacologically neutralizing their activities, one can block disease progression and sensitize microbes to immune clearance. Likewise, host-directed strategies to boost phagocyte bactericidal activity, enhance leukocyte recruitment, or reverse pathogen-induced immunosuppression seek to replicate the success of cancer immunotherapy in the field of infectious diseases. The answer to the threat of multidrug-resistant pathogens lies 'outside the box' of current antibiotic paradigms.

  1. Genetics of host-pathogen interactions in the wheat-Stagonospora nodorum pathosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stagonospora nodorum causes the disease Stagonospora nodorum blotch (SNB) in wheat. S. nodorum produces numerous host-selective toxins (HSTs), all of which interact with dominant host sensitivity genes to cause disease. These host-toxin interactions are mirror images of classical gene-for-gene inter...

  2. A Systems Biology Approach to the Coordination of Defensive and Offensive Molecular Mechanisms in the Innate and Adaptive Host-Pathogen Interaction Networks.

    PubMed

    Wu, Chia-Chou; Chen, Bor-Sen

    2016-01-01

    Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host-pathogen dynamic interaction networks. The consideration of host-pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host-pathogen molecular interaction networks, and consequent inferences of the host-pathogen relationship could be translated into biomedical applications.

  3. "Features of two proteins of Leptospira interrogans with potential role in host-pathogen interactions"

    PubMed Central

    2012-01-01

    Background Leptospirosis is considered a re-emerging infectious disease caused by pathogenic spirochaetes of the genus Leptospira. Pathogenic leptospires have the ability to survive and disseminate to multiple organs after penetrating the host. Leptospires were shown to express surface proteins that interact with the extracellular matrix (ECM) and to plasminogen (PLG). This study examined the interaction of two putative leptospiral proteins with laminin, collagen Type I, collagen Type IV, cellular fibronectin, plasma fibronectin, PLG, factor H and C4bp. Results We show that two leptospiral proteins encoded by LIC11834 and LIC12253 genes interact with laminin in a dose - dependent and saturable mode, with dissociation equilibrium constants (KD) of 367.5 and 415.4 nM, respectively. These proteins were named Lsa33 and Lsa25 (Leptospiral surface adhesin) for LIC11834 and LIC12253, respectively. Metaperiodate - treated laminin reduced Lsa25 - laminin interaction, suggesting that sugar moieties of this ligand participate in this interaction. The Lsa33 is also PLG - binding receptor, with a KD of 23.53 nM, capable of generating plasmin in the presence of an activator. Although in a weak manner, both proteins interact with C4bp, a regulator of complement classical route. In silico analysis together with proteinase K and immunoflorescence data suggest that these proteins might be surface exposed. Moreover, the recombinant proteins partially inhibited leptospiral adherence to immobilized laminin and PLG. Conclusions We believe that these multifunctional proteins have the potential to participate in the interaction of leptospires to hosts by mediating adhesion and by helping the bacteria to escape the immune system and to overcome tissue barriers. To our knowledge, Lsa33 is the first leptospiral protein described to date with the capability of binding laminin, PLG and C4bp in vitro. PMID:22463075

  4. Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions

    DTIC Science & Technology

    2013-06-23

    Wallqvist‡ Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent ...causative agent of glan- ders, a disease primarily affecting horses but transmittable to humans; and Burkholderia pseudomallei, which is responsible for...ingestion, inhalation , or skin abrasion. Given their considerable antibiotic resistance, ability to infect via aerosol, and absence of vaccines, these

  5. Mathematical modeling of bacterial virulence and host-pathogen interactions in the Dictyostelium/Pseudomonas system.

    PubMed

    Fumanelli, Laura; Iannelli, Mimmo; Janjua, Hussnain Ahmed; Jousson, Olivier

    2011-02-07

    We present some studies on the mechanisms of pathogenesis based on experimental work and on its interpretation through a mathematical model. Using a collection of clinical strains of the opportunistic human pathogen Pseudomonas aeruginosa, we performed co-culture experiments with Dictyostelium amoebae, to investigate the two organisms' interaction, characterized by a cross action between amoeba, feeding on bacteria, and bacteria exerting their pathogenic action against amoeba. In order to classify bacteria virulence, independently of this cross interaction, we have also performed killing experiments of bacteria against the nematode Caenorhabditis elegans. A mathematical model was developed to infer how the populations of the amoeba-bacteria system evolve according to a number of parameters, taking into account the specific features underlying the interaction. The model does not fall within the class of traditional prey-predator models because not only does an amoeba feed on bacteria, but also it is in turn attacked by them; thus the model must include a feedback term modeling this further interaction aspect. The model shows the existence of multiple steady states and the resulting behavior of the solutions, showing bi-stability of the system, gives a qualitative explanation of the co-culture experiments.

  6. Genome-Wide Host-Pathogen Interaction Unveiled by Transcriptomic Response of Diamondback Moth to Fungal Infection

    PubMed Central

    Chu, Zhen-Jian; Wang, Yu-Jun; Ying, Sheng-Hua; Wang, Xiao-Wei; Feng, Ming-Guang

    2016-01-01

    Genome-wide insight into insect pest response to the infection of Beauveria bassiana (fungal insect pathogen) is critical for genetic improvement of fungal insecticides but has been poorly explored. We constructed three pairs of transcriptomes of Plutella xylostella larvae at 24, 36 and 48 hours post treatment of infection (hptI) and of control (hptC) for insight into the host-pathogen interaction at genomic level. There were 2143, 3200 and 2967 host genes differentially expressed at 24, 36 and 48 hptI/hptC respectively. These infection-responsive genes (~15% of the host genome) were enriched in various immune processes, such as complement and coagulation cascades, protein digestion and absorption, and drug metabolism-cytochrome P450. Fungal penetration into cuticle and host defense reaction began at 24 hptI, followed by most intensive host immune response at 36 hptI and attenuated immunity at 48 hptI. Contrastingly, 44% of fungal genes were differentially expressed in the infection course and enriched in several biological processes, such as antioxidant activity, peroxidase activity and proteolysis. There were 1636 fungal genes co-expressed during 24–48 hptI, including 116 encoding putative secretion proteins. Our results provide novel insights into the insect-pathogen interaction and help to probe molecular mechanisms involved in the fungal infection to the global pest. PMID:27043942

  7. Genome-Wide Host-Pathogen Interaction Unveiled by Transcriptomic Response of Diamondback Moth to Fungal Infection.

    PubMed

    Chu, Zhen-Jian; Wang, Yu-Jun; Ying, Sheng-Hua; Wang, Xiao-Wei; Feng, Ming-Guang

    2016-01-01

    Genome-wide insight into insect pest response to the infection of Beauveria bassiana (fungal insect pathogen) is critical for genetic improvement of fungal insecticides but has been poorly explored. We constructed three pairs of transcriptomes of Plutella xylostella larvae at 24, 36 and 48 hours post treatment of infection (hptI) and of control (hptC) for insight into the host-pathogen interaction at genomic level. There were 2143, 3200 and 2967 host genes differentially expressed at 24, 36 and 48 hptI/hptC respectively. These infection-responsive genes (~15% of the host genome) were enriched in various immune processes, such as complement and coagulation cascades, protein digestion and absorption, and drug metabolism-cytochrome P450. Fungal penetration into cuticle and host defense reaction began at 24 hptI, followed by most intensive host immune response at 36 hptI and attenuated immunity at 48 hptI. Contrastingly, 44% of fungal genes were differentially expressed in the infection course and enriched in several biological processes, such as antioxidant activity, peroxidase activity and proteolysis. There were 1636 fungal genes co-expressed during 24-48 hptI, including 116 encoding putative secretion proteins. Our results provide novel insights into the insect-pathogen interaction and help to probe molecular mechanisms involved in the fungal infection to the global pest.

  8. Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions.

    PubMed

    Chemes, Lucía Beatriz; de Prat-Gay, Gonzalo; Sánchez, Ignacio Enrique

    2015-06-01

    Pathogen linear motif mimics are highly evolvable elements that facilitate rewiring of host protein interaction networks. Host linear motifs and pathogen mimics differ in sequence, leading to thermodynamic and structural differences in the resulting protein-protein interactions. Moreover, the functional output of a mimic depends on the motif and domain repertoire of the pathogen protein. Regulatory evolution mediated by linear motifs can be understood by measuring evolutionary rates, quantifying positive and negative selection and performing phylogenetic reconstructions of linear motif natural history. Convergent evolution of linear motif mimics is widespread among unrelated proteins from viral, prokaryotic and eukaryotic pathogens and can also take place within individual protein phylogenies. Statistics, biochemistry and laboratory models of infection link pathogen linear motifs to phenotypic traits such as tropism, virulence and oncogenicity. In vitro evolution experiments and analysis of natural sequences suggest that changes in linear motif composition underlie pathogen adaptation to a changing environment.

  9. Database of host-pathogen and related species interactions, and their global distribution.

    PubMed

    Wardeh, Maya; Risley, Claire; McIntyre, Marie Kirsty; Setzkorn, Christian; Baylis, Matthew

    2015-01-01

    Interactions between species, particularly where one is likely to be a pathogen of the other, as well as the geographical distribution of species, have been systematically extracted from various web-based, free-access sources, and assembled with the accompanying evidence into a single database. The database attempts to answer questions such as what are all the pathogens of a host, and what are all the hosts of a pathogen, what are all the countries where a pathogen was found, and what are all the pathogens found in a country. Two datasets were extracted from the database, focussing on species interactions and species distribution, based on evidence published between 1950-2012. The quality of their evidence was checked and verified against well-known, alternative, datasets of pathogens infecting humans, domestic animals and wild mammals. The presented datasets provide a valuable resource for researchers of infectious diseases of humans and animals, including zoonoses.

  10. Database of host-pathogen and related species interactions, and their global distribution

    PubMed Central

    Wardeh, Maya; Risley, Claire; McIntyre, Marie Kirsty; Setzkorn, Christian; Baylis, Matthew

    2015-01-01

    Interactions between species, particularly where one is likely to be a pathogen of the other, as well as the geographical distribution of species, have been systematically extracted from various web-based, free-access sources, and assembled with the accompanying evidence into a single database. The database attempts to answer questions such as what are all the pathogens of a host, and what are all the hosts of a pathogen, what are all the countries where a pathogen was found, and what are all the pathogens found in a country. Two datasets were extracted from the database, focussing on species interactions and species distribution, based on evidence published between 1950–2012. The quality of their evidence was checked and verified against well-known, alternative, datasets of pathogens infecting humans, domestic animals and wild mammals. The presented datasets provide a valuable resource for researchers of infectious diseases of humans and animals, including zoonoses. PMID:26401317

  11. Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions*

    PubMed Central

    Memišević, Vesna; Zavaljevski, Nela; Pieper, Rembert; Rajagopala, Seesandra V.; Kwon, Keehwan; Townsend, Katherine; Yu, Chenggang; Yu, Xueping; DeShazer, David; Reifman, Jaques; Wallqvist, Anders

    2013-01-01

    Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent. Given its genetic origin as a commensal soil organism, it is equipped with an extensive and varied set of adapted mechanisms to cope with and modulate host-cell environments. One essential virulence mechanism constitutes the specialized secretion systems that are designed to penetrate host-cell membranes and insert pathogen proteins directly into the host cell's cytosol. However, the secretion systems' proteins and, in particular, their host targets are largely uncharacterized. Here, we used a combined in silico, in vitro, and in vivo approach to identify B. mallei proteins required for pathogenicity. We used bioinformatics tools, including orthology detection and ab initio predictions of secretion system proteins, as well as published experimental Burkholderia data to initially select a small number of proteins as putative virulence factors. We then used yeast two-hybrid assays against normalized whole human and whole murine proteome libraries to detect and identify interactions among each of these bacterial proteins and host proteins. Analysis of such interactions provided both verification of known virulence factors and identification of three new putative virulence proteins. We successfully created insertion mutants for each of these three proteins using the virulent B. mallei ATCC 23344 strain. We exposed BALB/c mice to mutant strains and the wild-type strain in an aerosol challenge model using lethal B. mallei doses. In each set of experiments, mice exposed to mutant strains survived for the 21-day duration of the experiment, whereas mice exposed to the wild-type strain rapidly died. Given their in vivo role in pathogenicity, and based on the yeast two-hybrid interaction data, these results point to the importance of these pathogen proteins in modulating host ubiquitination pathways, phagosomal escape, and actin

  12. Host-pathogen interactions during coronavirus infection of primary alveolar epithelial cells

    PubMed Central

    Miura, Tanya A.; Holmes, Kathryn V.

    2009-01-01

    Viruses that infect the lung are a significant cause of morbidity and mortality in animals and humans worldwide. Coronaviruses are being associated increasingly with severe diseases in the lower respiratory tract. Alveolar epithelial cells are an important target for coronavirus infection in the lung, and infected cells can initiate innate immune responses to viral infection. In this overview, we describe in vitro models of highly differentiated alveolar epithelial cells that are currently being used to study the innate immune response to coronavirus infection. We have shown that rat coronavirus infection of rat alveolar type I epithelial cells in vitro induces expression of CXC chemokines, which may recruit and activate neutrophils. Although neutrophils are recruited early in infection in several coronavirus models including rat coronavirus. However, their role in viral clearance and/or immune-mediated tissue damage is not understood. Primary cultures of differentiated alveolar epithelial cells will be useful for identifying the interactions between coronaviruses and alveolar epithelial cells that influence the innate immune responses to infection in the lung. Understanding the molecular details of these interactions will be critical for the design of effective strategies to prevent and treat coronavirus infections in the lung. PMID:19638499

  13. Intravital two-photon microscopy of host-pathogen interactions in a mouse model of Staphylococcus aureus skin abscess formation.

    PubMed

    Liese, Jan; Rooijakkers, Suzan H M; van Strijp, Jos A G; Novick, Richard P; Dustin, Michael L

    2013-06-01

    Staphylococcus (S.) aureus is a frequent cause of severe skin infections. The ability to control the infection is largely dependent on the rapid recruitment of neutrophils (PMN). To gain more insight into the dynamics of PMN migration and host-pathogen interactions in vivo, we used intravital two-photon (2-P) microscopy to visualize S. aureus skin infections in the mouse. Reporter S. aureus strains expressing fluorescent proteins were developed, which allowed for detection of the bacteria in vivo. By employing LysM-EGFP mice to visualize PMN, we observed the rapid appearance of PMN in the extravascular space of the dermis and their directed movement towards the focus of infection, which led to the delineation of an abscess within 1 day. Moreover, tracking of transferred labelled bone-marrow neutrophils showed that PMN localization to the site of infection is dependent on the presence of G-protein-coupled receptors on the PMN, whereas Interleukin-1 receptor was required on host cells other than PMN. Furthermore, the S. aureus complement inhibitor Ecb could block PMN accumulation at thesite of infection. Our results establish that 2-P microscopy is a powerful tool to investigate the orchestration of the immune cells, S. aureus location and gene expression in vivo on a single cell level.

  14. The Course of Colonization of Two Different Vitis Genotypes by Plasmopara viticola Indicates Compatible and Incompatible Host-Pathogen Interactions.

    PubMed

    Unger, Sabine; Büche, Claudia; Boso, Susana; Kassemeyer, Hanns-Heinz

    2007-07-01

    ABSTRACT The course of colonization of leaf mesophyll by the causal agent of grapevine downy mildew, Plasmopara viticola, in a susceptible and a resistant grapevine genotype was examined in order to characterize the development of the pathogen in compatible and incompatible host-pathogen interactions. Within a few hours after inoculation, the pathogen was established in the susceptible Vitis vinifera cv. Müller-Thurgau and formed primary hyphae with a first haustorium. No further development occurred in the following 10 to 18 h. The next step, in which the hyphae grew and branched to colonize the intercellular space of the host tissue, was observed 1.5 days after inoculation. After 3 days, the intercostal fields were entirely filled with mycelium and sporulation was abundant under favorable environmental conditions. The first infection steps were essentially the same in the resistant V. rupestris. However, the invasive growth of P. viticola was delayed, and further development ceased before the intercostal fields were filled with mycelium.

  15. Calcineurin orchestrates dimorphic transitions, antifungal drug responses, and host-pathogen interactions of the pathogenic mucoralean fungus Mucor circinelloides

    PubMed Central

    Lee, Soo Chan; Li, Alicia; Calo, Silvia; Inoue, Makoto; Tonthat, Nam K.; Bain, Judith M.; Louw, Johanna; Shinohara, Mari L.; Erwig, Lars P.; Schumacher, Maria A.; Ko, Dennis C.; Heitman, Joseph

    2015-01-01

    Summary Calcineurin plays essential roles in virulence and growth of pathogenic fungi and is a target of the natural products FK506 and Cyclosporine A. In the pathogenic mucoralean fungus Mucor circinelloides, calcineurin mutation or inhibition confers a yeast-locked phenotype indicating that calcineurin governs the dimorphic transition. Genetic analysis in this study reveals that two calcineurin A catalytic subunits (out of three) are functionally diverged. Homology modeling illustrates modes of resistance resulting from amino substitutions in the interface between each calcineurin subunit and the inhibitory drugs. In addition, we show how the dimorphic transition orchestrated by calcineurin programs different outcomes during host-pathogen interactions. For example, when macrophages phagocytose Mucor yeast, subsequent phagosomal maturation occurs, indicating host cells respond appropriately to control the pathogen. On the other hand, upon phagocytosis of spores, macrophages fail to form mature phagosomes. Cytokine production from immune cells differs following exposure to yeast vs. spores (which germinate into hyphae). Thus, the morphogenic transition can be targeted as an efficient treatment option against Mucor infection. In addition, genetic analysis (including gene disruption and mutational studies) further strengthens the understanding of calcineurin and provides a foundation to develop antifungal agents targeting calcineurin to deploy against Mucor and other pathogenic fungi. PMID:26010100

  16. The membrane as the gatekeeper of infection: Cholesterol in host-pathogen interaction.

    PubMed

    Kumar, G Aditya; Jafurulla, Md; Chattopadhyay, Amitabha

    2016-09-01

    The cellular plasma membrane serves as a portal for the entry of intracellular pathogens. An essential step for an intracellular pathogen to gain entry into a host cell therefore is to be able to cross the cell membrane. In this review, we highlight the role of host membrane cholesterol in regulating the entry of intracellular pathogens using insights obtained from work on the interaction of Leishmania and Mycobacterium with host cells. The entry of these pathogens is known to be dependent on host membrane cholesterol. Importantly, pathogen entry is inhibited either upon depletion (or complexation), or enrichment of membrane cholesterol. In other words, an optimum level of host membrane cholesterol is necessary for efficient infection by pathogens. In this overall context, we propose a general mechanism, based on cholesterol-induced conformational changes, involving cholesterol binding sites in host cell surface receptors that are implicated in this process. A therapeutic strategy targeting modulation of membrane cholesterol would have the advantage of avoiding the commonly encountered problem of drug resistance in tackling infection by intracellular pathogens. Insights into the role of host membrane cholesterol in pathogen entry would be instrumental in the development of novel therapeutic strategies to effectively tackle intracellular pathogenesis.

  17. Automated image analysis of the host-pathogen interaction between phagocytes and Aspergillus fumigatus.

    PubMed

    Mech, Franziska; Thywissen, Andreas; Guthke, Reinhard; Brakhage, Axel A; Figge, Marc Thilo

    2011-05-05

    Aspergillus fumigatus is a ubiquitous airborne fungus and opportunistic human pathogen. In immunocompromised hosts, the fungus can cause life-threatening diseases like invasive pulmonary aspergillosis. Since the incidence of fungal systemic infections drastically increased over the last years, it is a major goal to investigate the pathobiology of A. fumigatus and in particular the interactions of A. fumigatus conidia with immune cells. Many of these studies include the activity of immune effector cells, in particular of macrophages, when they are confronted with conidia of A. fumigus wild-type and mutant strains. Here, we report the development of an automated analysis of confocal laser scanning microscopy images from macrophages coincubated with different A. fumigatus strains. At present, microscopy images are often analysed manually, including cell counting and determination of interrelations between cells, which is very time consuming and error-prone. Automation of this process overcomes these disadvantages and standardises the analysis, which is a prerequisite for further systems biological studies including mathematical modeling of the infection process. For this purpose, the cells in our experimental setup were differentially stained and monitored by confocal laser scanning microscopy. To perform the image analysis in an automatic fashion, we developed a ruleset that is generally applicable to phagocytosis assays and in the present case was processed by the software Definiens Developer XD. As a result of a complete image analysis we obtained features such as size, shape, number of cells and cell-cell contacts. The analysis reported here, reveals that different mutants of A. fumigatus have a major influence on the ability of macrophages to adhere and to phagocytose the respective conidia. In particular, we observe that the phagocytosis ratio and the aggregation behaviour of pksP mutant compared to wild-type conidia are both significantly increased.

  18. Staphylococcus epidermidis Esp Degrades Specific Proteins Associated with Staphylococcus aureus Biofilm Formation and Host-Pathogen Interaction

    PubMed Central

    Iwamoto, Takeo; Takada, Koji; Okuda, Ken-ichi; Tajima, Akiko; Iwase, Tadayuki

    2013-01-01

    Staphylococcus aureus exhibits a strong capacity to attach to abiotic or biotic surfaces and form biofilms, which lead to chronic infections. We have recently shown that Esp, a serine protease secreted by commensal Staphylococcus epidermidis, disassembles preformed biofilms of S. aureus and inhibits its colonization. Esp was expected to degrade protein determinants of the adhesive and cohesive strength of S. aureus biofilms. The aim of this study was to elucidate the substrate specificity and target proteins of Esp and thereby determine the mechanism by which Esp disassembles S. aureus biofilms. We used a mutant Esp protein (EspS235A) with defective proteolytic activity; this protein did not disassemble the biofilm formed by a clinically isolated methicillin-resistant S. aureus (MRSA) strain, thereby indicating that the proteolytic activity of Esp is essential for biofilm disassembly. Esp degraded specific proteins in the biofilm matrix and cell wall fractions, in contrast to proteinase K, which is frequently used for testing biofilm robustness and showed no preference for proteolysis. Proteomic and immunological analyses showed that Esp degrades at least 75 proteins, including 11 biofilm formation- and colonization-associated proteins, such as the extracellular adherence protein, the extracellular matrix protein-binding protein, fibronectin-binding protein A, and protein A. In addition, Esp selectively degraded several human receptor proteins of S. aureus (e.g., fibronectin, fibrinogen, and vitronectin) that are involved in its colonization or infection. These results suggest that Esp inhibits S. aureus colonization and biofilm formation by degrading specific proteins that are crucial for biofilm construction and host-pathogen interaction. PMID:23316041

  19. Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction.

    PubMed

    Sugimoto, Shinya; Iwamoto, Takeo; Takada, Koji; Okuda, Ken-Ichi; Tajima, Akiko; Iwase, Tadayuki; Mizunoe, Yoshimitsu

    2013-04-01

    Staphylococcus aureus exhibits a strong capacity to attach to abiotic or biotic surfaces and form biofilms, which lead to chronic infections. We have recently shown that Esp, a serine protease secreted by commensal Staphylococcus epidermidis, disassembles preformed biofilms of S. aureus and inhibits its colonization. Esp was expected to degrade protein determinants of the adhesive and cohesive strength of S. aureus biofilms. The aim of this study was to elucidate the substrate specificity and target proteins of Esp and thereby determine the mechanism by which Esp disassembles S. aureus biofilms. We used a mutant Esp protein (Esp(S235A)) with defective proteolytic activity; this protein did not disassemble the biofilm formed by a clinically isolated methicillin-resistant S. aureus (MRSA) strain, thereby indicating that the proteolytic activity of Esp is essential for biofilm disassembly. Esp degraded specific proteins in the biofilm matrix and cell wall fractions, in contrast to proteinase K, which is frequently used for testing biofilm robustness and showed no preference for proteolysis. Proteomic and immunological analyses showed that Esp degrades at least 75 proteins, including 11 biofilm formation- and colonization-associated proteins, such as the extracellular adherence protein, the extracellular matrix protein-binding protein, fibronectin-binding protein A, and protein A. In addition, Esp selectively degraded several human receptor proteins of S. aureus (e.g., fibronectin, fibrinogen, and vitronectin) that are involved in its colonization or infection. These results suggest that Esp inhibits S. aureus colonization and biofilm formation by degrading specific proteins that are crucial for biofilm construction and host-pathogen interaction.

  20. A Genomic Approach to Unravel Host-Pathogen Interaction in Chelonians: The Example of Testudinid Herpesvirus 3

    PubMed Central

    Origgi, Francesco C.; Tecilla, Marco; Pilo, Paola; Aloisio, Fabio; Otten, Patricia; Aguilar-Bultet, Lisandra; Sattler, Ursula; Roccabianca, Paola; Romero, Carlos H.; Bloom, David C.; Jacobson, Elliott R.

    2015-01-01

    information is not only fundamental for the genetic characterization of this virus but is also critical to lay the groundwork for an improved understanding of host-pathogen interactions in chelonians and contribute to tortoise conservation. PMID:26244892

  1. Secretomic Analysis of Host-Pathogen Interactions Reveals That Elongation Factor-Tu Is a Potential Adherence Factor of Helicobacter pylori during Pathogenesis.

    PubMed

    Chiu, Kuo-Hsun; Wang, Ling-Hui; Tsai, Tsung-Ting; Lei, Huan-Yao; Liao, Pao-Chi

    2017-01-06

    The secreted proteins of bacteria are usually accompanied by virulence factors, which can cause inflammation and damage host cells. Identifying the secretomes arising from the interactions of bacteria and host cells could therefore increase understanding of the mechanisms during initial pathogenesis. The present study used a host-pathogen coculture system of Helicobacter pylori and monocytes (THP-1 cells) to investigate the secreted proteins associated with initial H. pylori pathogenesis. The secreted proteins from the conditioned media from H. pylori, THP-1 cells, and the coculture were collected and analyzed using SDS-PAGE and LC-MS/MS. Results indicated the presence of 15 overexpressed bands in the coculture. Thirty-one proteins were identified-11 were derived from THP-1 cells and 20 were derived from H. pylori. A potential adherence factor from H. pylori, elongation factor-Tu (EF-Tu), was selected for investigation of its biological function. Results from confocal microscopic and flow cytometric analyses indicated the contribution of EF-Tu to the binding ability of H. pylori in THP-1. The data demonstrated that fluorescence of EF-Tu on THP-1 cells increased after the addition of the H. pylori-conditioned medium. This study reports a novel secretory adherence factor in H. pylori, EF-Tu, and further elucidates mechanisms of H. pylori adaptation for host-pathogen interaction during pathogenesis.

  2. The 2.15 A crystal structure of Mycobacterium tuberculosis chorismate mutase reveals an unexpected gene duplication and suggests a role in host-pathogen interactions.

    PubMed

    Qamra, Rohini; Prakash, Prachee; Aruna, Bandi; Hasnain, Seyed E; Mande, Shekhar C

    2006-06-13

    Chorismate mutase catalyzes the first committed step toward the biosynthesis of the aromatic amino acids, phenylalanine and tyrosine. While this biosynthetic pathway exists exclusively in the cell cytoplasm, the Mycobacterium tuberculosis enzyme has been shown to be secreted into the extracellular medium. The secretory nature of the enzyme and its existence in M. tuberculosis as a duplicated gene are suggestive of its role in host-pathogen interactions. We report here the crystal structure of homodimeric chorismate mutase (Rv1885c) from M. tuberculosis determined at 2.15 A resolution. The structure suggests possible gene duplication within each subunit of the dimer (residues 35-119 and 130-199) and reveals an interesting proline-rich region on the protein surface (residues 119-130), which might act as a recognition site for protein-protein interactions. The structure also offers an explanation for its regulation by small ligands, such as tryptophan, a feature previously unknown in the prototypical Escherichia coli chorismate mutase. The tryptophan ligand is found to be sandwiched between the two monomers in a dimer contacting residues 66-68. The active site in the "gene-duplicated" monomer is occupied by a sulfate ion and is located in the first half of the polypeptide, unlike in the Saccharomyces cerevisiae (yeast) enzyme, where it is located in the later half. We hypothesize that the M. tuberculosis chorismate mutase might have a role to play in host-pathogen interactions, making it an important target for designing inhibitor molecules against the deadly pathogen.

  3. A Comprehensive Analysis of the Transcriptomes of Marssonina brunnea and Infected Poplar Leaves to Capture Vital Events in Host-Pathogen Interactions

    PubMed Central

    Zhang, Liang; Xu, Minjie; Jiang, Jianping; Dou, Tonghai; Lin, Wei; Zhao, Guoping; Huang, Minren; Zhou, Yan

    2015-01-01

    Background Understanding host-pathogen interaction mechanisms helps to elucidate the entire infection process and focus on important events, and it is a promising approach for improvement of disease control and selection of treatment strategy. Time-course host-pathogen transcriptome analyses and network inference have been applied to unravel the direct or indirect relationships of gene expression alterations. However, time series analyses can suffer from absent time points due to technical problems such as RNA degradation, which limits the application of algorithms that require strict sequential sampling. Here, we introduce an efficient method using independence test to infer an independent network that is exclusively concerned with the frequency of gene expression changes. Results Highly resistant NL895 poplar leaves and weakly resistant NL214 leaves were infected with highly active and weakly active Marssonina brunnea, respectively, and were harvested at different time points. The independent network inference illustrated the top 1,000 vital fungus-poplar relationships, which contained 768 fungal genes and 54 poplar genes. These genes could be classified into three categories: a fungal gene surrounded by many poplar genes; a poplar gene connected to many fungal genes; and other genes (possessing low degrees of connectivity). Notably, the fungal gene M6_08342 (a metalloprotease) was connected to 10 poplar genes, particularly including two disease-resistance genes. These core genes, which are surrounded by other genes, may be of particular importance in complicated infection processes and worthy of further investigation. Conclusions We provide a clear framework of the interaction network and identify a number of candidate key effectors in this process, which might assist in functional tests, resistant clone selection, and disease control in the future. PMID:26222429

  4. The role of flagella and chemotaxis genes in host pathogen interaction of the host adapted Salmonella enterica serovar Dublin compared to the broad host range serovar S. Typhimurium

    PubMed Central

    2013-01-01

    Background The importance of flagella and chemotaxis genes in host pathogen interaction in Salmonella enterica is mainly based on studies of the broad host range serovar, S. Typhimurium, while little is known on the importance in host specific and host adapted serovars, such as S. Dublin. In the current study we have used previously characterized insertion mutants in flagella and chemotaxis genes to investigate this and possible differences in the importance between the two serovars. Results fliC (encoding the structural protein of the flagella) was essential for adhesion and fliC and cheB (CheB restores the chemotaxis system to pre-stimulus conformation) were essential for invasion of S. Dublin into epithelial Int407 cells. In S. Typhimurium, both lack of flagella (fliC/fljB double mutant) and cheB influenced adhesion, and invasion was influenced by lack of both cheA (the histidine-kinase of the chemotaxis system), fliC/fljB and cheB mutation. Uptake in J774A.1 macrophage cells was significantly reduced in cheA, cheB and fliC mutants of S. Dublin, while cheA was dispensable in S. Typhimurium. Removal of flagella in both serotypes caused an increased ability to propagate intracellular in J774 macrophage cells and decreased cytotoxicity toward these cells. Flagella and chemotaxis genes were found not to influence the oxidative response. The induction of IL-6 from J774A-1 cells depended on the presence of flagella in S. Typhimurium, whilst this was not the case following challenge with S. Dublin. Addition of fliC from S. Typhimurium in trans to a fliC mutant of S. Dublin increased cytotoxicity but it did not increase the IL-6 production. Flagella were demonstrated to contribute to the outcome of infection following oral challenge of mice in S. Dublin, while an S. Typhimurium fliC/fljB mutant showed increased virulence following intra peritoneal challenge. Conclusions The results showed that flagella and chemotaxis genes differed in their role in host pathogen

  5. Amoebae as a tool to isolate new bacterial species, to discover new virulence factors and to study the host-pathogen interactions.

    PubMed

    Tosetti, Nicolo; Croxatto, Antony; Greub, Gilbert

    2014-12-01

    Amoebae are unicellular protozoan present worldwide in several environments mainly feeding on bacteria. Some of them, the amoebae-resistant bacteria (ARBs), have evolved mechanisms to survive and replicate inside amoebal species. These mainly include legionella, mycobacteria and Chlamydia-related bacteria. Amoebae can provide a replicative niche, can act as reservoir for bacteria whereas the cystic form can protect the internalized bacteria. Moreover, the amoebae represent a Trojan horse for ARBs to infect animals. The long interaction between amoebae and bacteria has likely selected for bacterial virulence traits leading to the adaptation towards an intracellular lifestyle, and some ARBs have acquired the ability to infect mammals. This review intends to highlight the important uses of amoebae in several fields in microbiology by describing the main tools developed using amoebal cells. First, amoebae such as Acanthamoeba are used to isolate and discover new intracellular bacterial species by two main techniques: the amoebal co-culture and the amoebal enrichment. In the second part, taking Waddlia chondrophila as example, we summarize some important recent applications of amoebae to discover new bacterial virulence factors, in particular thanks to the amoebal plaque assay. Finally, the genetically tractable Dictyostelium discoideum is used as a model organism to study host-pathogen interactions, in particular with the development of several approaches to manipulate its genome that allowed the creation of a wide range of mutated strains largely shared within the Dictyostelium community.

  6. A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions

    PubMed Central

    Noel, Gaelle; Baetz, Nicholas W.; Staab, Janet F.; Donowitz, Mark; Kovbasnjuk, Olga; Pasetti, Marcela F.; Zachos, Nicholas C.

    2017-01-01

    Integration of the intestinal epithelium and the mucosal immune system is critical for gut homeostasis. The intestinal epithelium is a functional barrier that secludes luminal content, senses changes in the gut microenvironment, and releases immune regulators that signal underlying immune cells. However, interactions between epithelial and innate immune cells to maintain barrier integrity and prevent infection are complex and poorly understood. We developed and characterized a primary human macrophage-enteroid co-culture model for in-depth studies of epithelial and macrophage interactions. Human intestinal stem cell-derived enteroid monolayers co-cultured with human monocyte-derived macrophages were used to evaluate barrier function, cytokine secretion, and protein expression under basal conditions and following bacterial infection. Macrophages enhanced barrier function and maturity of enteroid monolayers as indicated by increased transepithelial electrical resistance and cell height. Communication between the epithelium and macrophages was demonstrated through morphological changes and cytokine production. Intraepithelial macrophage projections, efficient phagocytosis, and stabilized enteroid barrier function revealed a coordinated response to enterotoxigenic and enteropathogenic E. coli infections. In summary, we have established the first primary human macrophage-enteroid co-culture system, defined conditions that allow for a practical and reproducible culture model, and demonstrated its suitability to study gut physiology and host responses to enteric pathogens. PMID:28345602

  7. Insights into host-pathogen interactions from state-of-the-art animal models of respiratory Pseudomonas aeruginosa infections.

    PubMed

    Lorenz, Anne; Pawar, Vinay; Häussler, Susanne; Weiss, Siegfried

    2016-11-01

    Pseudomonas aeruginosa is an important opportunistic pathogen that can cause acute respiratory infections in immunocompetent patients or chronic infections in immunocompromised individuals and in patients with cystic fibrosis. When acquiring the chronic infection state, bacteria are encapsulated within biofilm structures enabling them to withstand diverse environmental assaults, including immune reactions and antimicrobial therapy. Understanding the molecular interactions within the bacteria, as well as with the host or other bacteria, is essential for developing innovative treatment strategies. Such knowledge might be accumulated in vitro. However, it is ultimately necessary to confirm these findings in vivo. In the present Review, we describe state-of-the-art in vivo models that allow studying P. aeruginosa infections in molecular detail. The portrayed mammalian models exclusively focus on respiratory infections. The data obtained by alternative animal models which lack lung tissue, often provide molecular insights that are easily transferable to mammals. Importantly, these surrogate in vivo systems reveal complex molecular interactions of P. aeruginosa with the host. Herein, we also provide a critical assessment of the advantages and disadvantages of such models.

  8. Virulence of Leucobacter chromiireducens subsp. solipictus to Caenorhabditis elegans: characterization of a novel host-pathogen interaction.

    PubMed

    Muir, Rachel E; Tan, Man-Wah

    2008-07-01

    We describe the pathogenic interaction between a newly described gram-positive bacterium, Leucobacter chromiireducens subsp. solipictus strain TAN 31504, and the nematode Caenorhabditis elegans. TAN 31504 pathogenesis on C. elegans is exerted primarily through infection of the adult nematode uterus. TAN 31504 enters the uterus through the external vulval opening, and the ensuing uterine infection is strongly correlated with a significant reduction in host life span. Young worms can feed and develop on TAN 31504, but not preferably over the standard food source. C. elegans worms reared on TAN 31504 as the sole food source develop into thin adults with little intestinal fat stores, produce few progeny, and subsequently cannot persist on the pathogenic food source. Within 12 h of exposure, adult worms challenged with TAN 31504 alter the expression of a number of C. elegans innate immunity-related genes, including nlp-29, which encodes a neuropeptide-like protein. C. elegans worms exposed briefly to TAN 31504 develop lethal uterine infections analogous to worms exposed continuously to pathogen, suggesting that mere contact with the pathogen is sufficient for the host to become infected. TAN 31504 produces a robust biofilm, and this behavior is speculated to play a role in the virulence exerted on the nematode host. The interaction between TAN 31504 and C. elegans provides a convenient opportunity to study bacterial virulence on nematode tissues other than the intestine and may allow for the discovery of host innate immunity elicited specifically in response to vulva-uterus infection.

  9. RNA-seq in kinetoplastids: A powerful tool for the understanding of the biology and host-pathogen interactions.

    PubMed

    Patino, Luz Helena; Ramírez, Juan David

    2017-04-01

    The kinetoplastids include a large number of parasites responsible for serious diseases in humans and animals (Leishmania and Trypanosoma brucei) considered endemic in several regions of the world. These parasites are characterized by digenetic life cycles that undergo morphological and genetic changes that allow them to adapt to different microenvironments on their vertebrates and invertebrates hosts. Recent advances in ´omics´ technology, specifically transcriptomics have allowed to reveal aspects associated with such molecular changes. So far, different techniques have been used to evaluate the gene expression profile during the various stages of the life cycle of these parasites and during the host-parasite interactions. However, some of them have serious drawbacks that limit the precise study and full understanding of their transcriptomes. Therefore, recently has been implemented the latest technology (RNA-seq), which overcomes the drawbacks of traditional methods. In this review, studies that so far have used RNA-seq are presented and allowed to expand our knowledge regarding the biology of these parasites and their interactions with their hosts.

  10. Understanding Host-Pathogen Interactions with Expression Profiling of NILs Carrying Rice-Blast Resistance Pi9 Gene

    PubMed Central

    Jain, Priyanka; Singh, Pankaj K.; Kapoor, Ritu; Khanna, Apurva; Solanke, Amolkumar U.; Krishnan, S. Gopala; Singh, Ashok K.; Sharma, Vinay; Sharma, Tilak R.

    2017-01-01

    Magnaporthe oryzae infection causes rice blast, a destructive disease that is responsible for considerable decrease in rice yield. Development of resistant varieties via introgressing resistance genes with marker-assisted breeding can eliminate pesticide use and minimize crop losses. Here, resistant near-isogenic line (NIL) of Pusa Basmati-1(PB1) carrying broad spectrum rice blast resistance gene Pi9 was used to investigate Pi9-mediated resistance response. Infected and uninfected resistant NIL and susceptible control line were subjected to RNA-Seq. With the exception of one gene (Pi9), transcriptional signatures between the two lines were alike, reflecting basal similarities in their profiles. Resistant and susceptible lines possessed 1043 (727 up-regulated and 316 down-regulated) and 568 (341 up-regulated and 227 down-regulated) unique and significant differentially expressed loci (SDEL), respectively. Pathway analysis revealed higher transcriptional activation of kinases, WRKY, MYB, and ERF transcription factors, JA-ET hormones, chitinases, glycosyl hydrolases, lipid biosynthesis, pathogenesis and secondary metabolism related genes in resistant NIL than susceptible line. Singular enrichment analysis demonstrated that blast resistant NIL is significantly enriched with genes for primary and secondary metabolism, response to biotic stimulus and transcriptional regulation. The co-expression network showed proteins of genes in response to biotic stimulus interacted in a manner unique to resistant NIL upon M. oryzae infection. These data suggest that Pi9 modulates genome-wide transcriptional regulation in resistant NIL but not in susceptible PB1. We successfully used transcriptome profiling to understand the molecular basis of Pi9-mediated resistance mechanisms, identified potential candidate genes involved in early pathogen response and revealed the sophisticated transcriptional reprogramming during rice-M. oryzae interactions. PMID:28280498

  11. Understanding Host-Pathogen Interactions with Expression Profiling of NILs Carrying Rice-Blast Resistance Pi9 Gene.

    PubMed

    Jain, Priyanka; Singh, Pankaj K; Kapoor, Ritu; Khanna, Apurva; Solanke, Amolkumar U; Krishnan, S Gopala; Singh, Ashok K; Sharma, Vinay; Sharma, Tilak R

    2017-01-01

    Magnaporthe oryzae infection causes rice blast, a destructive disease that is responsible for considerable decrease in rice yield. Development of resistant varieties via introgressing resistance genes with marker-assisted breeding can eliminate pesticide use and minimize crop losses. Here, resistant near-isogenic line (NIL) of Pusa Basmati-1(PB1) carrying broad spectrum rice blast resistance gene Pi9 was used to investigate Pi9-mediated resistance response. Infected and uninfected resistant NIL and susceptible control line were subjected to RNA-Seq. With the exception of one gene (Pi9), transcriptional signatures between the two lines were alike, reflecting basal similarities in their profiles. Resistant and susceptible lines possessed 1043 (727 up-regulated and 316 down-regulated) and 568 (341 up-regulated and 227 down-regulated) unique and significant differentially expressed loci (SDEL), respectively. Pathway analysis revealed higher transcriptional activation of kinases, WRKY, MYB, and ERF transcription factors, JA-ET hormones, chitinases, glycosyl hydrolases, lipid biosynthesis, pathogenesis and secondary metabolism related genes in resistant NIL than susceptible line. Singular enrichment analysis demonstrated that blast resistant NIL is significantly enriched with genes for primary and secondary metabolism, response to biotic stimulus and transcriptional regulation. The co-expression network showed proteins of genes in response to biotic stimulus interacted in a manner unique to resistant NIL upon M. oryzae infection. These data suggest that Pi9 modulates genome-wide transcriptional regulation in resistant NIL but not in susceptible PB1. We successfully used transcriptome profiling to understand the molecular basis of Pi9-mediated resistance mechanisms, identified potential candidate genes involved in early pathogen response and revealed the sophisticated transcriptional reprogramming during rice-M. oryzae interactions.

  12. Scaling up complexity in host-pathogens interaction models. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Aguiar, Maíra

    2015-12-01

    Caused by micro-organisms that are pathogenic to the host, infectious diseases have caused debilitation and premature death to large portions of the human population, leading to serious social-economic concerns. The persistence and increase in the occurrence of infectious diseases as well the emergence or resurgence of vector-borne diseases are closely related with demographic factors such as the uncontrolled urbanization and remarkable population growth, political, social and economical changes, deforestation, development of resistance to insecticides and drugs and increased human travel. In recent years, mathematical modeling became an important tool for the understanding of infectious disease epidemiology and dynamics, addressing ideas about the components of host-pathogen interactions. Acting as a possible tool to understand, predict the spread of infectious diseases these models are also used to evaluate the introduction of intervention strategies like vector control and vaccination. Many scientific papers have been published recently on these topics, and most of the models developed try to incorporate factors focusing on several different aspects of the disease (and eventually biological aspects of the vector), which can imply rich dynamic behavior even in the most basic dynamical models. As one example to be cited, there is a minimalistic dengue model that has shown rich dynamic structures, with bifurcations (Hopf, pitchfork, torus and tangent bifurcations) up to chaotic attractors in unexpected parameter regions [1,2], which was able to describe the large fluctuations observed in empirical outbreak data [3,4].

  13. Labeling of the pathogenic bacterium Staphylococcus aureus with gold or ferric oxide-core nanoparticles highlights new capabilities for investigation of host-pathogen interactions.

    PubMed

    Depke, Maren; Surmann, Kristin; Hildebrandt, Petra; Jehmlich, Nico; Michalik, Stephan; Stanca, Sarmiza E; Fritzsche, Wolfgang; Völker, Uwe; Schmidt, Frank

    2014-02-01

    Throughout the world, infections caused by bacteria such as Staphylococcus aureus are a major cause of morbidity and mortality. In order to gain some understanding of the complicated physiological link between host and pathogen, modern techniques such as confocal microscopy and sophisticated OMICs technologies are suitable. However, labeling of pathogens such as S. aureus with green fluorescent protein, for example, or the generation of a reliable antibody, which are prerequisites for the application of reproducible isolation techniques, does not always succeed. Here, we present a universal approach for monitoring pathogen traffic after internalization into host cells by fluorescence microscopy and for isolation of bacteria from host-pathogen interaction assays using gold or ferric oxide-core, poly(vinyl alcohol) coated, and fluorescence-labeled nanoparticles (NP). The incubation of S. aureus HG001 with those NP had only minor effects on the bacterial growth in vitro. Quantitative proteome analysis after 24 h of NP incubation revealed that presence of NP provoked only marginal changes in the proteome pattern. The method presented enabled us to investigate the behavior of S. aureus HG001 during infection of S9 human epithelial cells by means of fluorescence microscopy and proteomics using magnetic separation or cell sorting.

  14. Tracing amino acid exchange during host-pathogen interaction by combined stable-isotope time-resolved Raman spectral imaging

    NASA Astrophysics Data System (ADS)

    Naemat, Abida; Elsheikha, Hany M.; Boitor, Radu A.; Notingher, Ioan

    2016-02-01

    This study investigates the temporal and spatial interchange of the aromatic amino acid phenylalanine (Phe) between human retinal pigment epithelial cell line (ARPE-19) and tachyzoites of the apicomplexan protozoan parasite Toxoplasma gondii (T. gondii). Stable isotope labelling by amino acids in cell culture (SILAC) is combined with Raman micro-spectroscopy to selectively monitor the incorporation of deuterium-labelled Phe into proteins in individual live tachyzoites. Our results show a very rapid uptake of L-Phe(D8) by the intracellular growing parasite. T. gondii tachyzoites are capable of extracting L-Phe(D8) from host cells as soon as it invades the cell. L-Phe(D8) from the host cell completely replaces the L-Phe within T. gondii tachyzoites 7–9 hours after infection. A quantitative model based on Raman spectra allowed an estimation of the exchange rate of Phe as 0.5–1.6 × 104 molecules/s. On the other hand, extracellular tachyzoites were not able to consume L-Phe(D8) after 24 hours of infection. These findings further our understanding of the amino acid trafficking between host cells and this strictly intracellular parasite. In particular, this study highlights new aspects of the metabolism of amino acid Phe operative during the interaction between T. gondii and its host cell.

  15. The PE_PGRS Proteins of Mycobacterium tuberculosis Are Ca(2+) Binding Mediators of Host-Pathogen Interaction.

    PubMed

    Yeruva, Veena C; Kulkarni, Apoorva; Khandelwal, Radhika; Sharma, Yogendra; Raghunand, Tirumalai R

    2016-08-23

    The phenomenal success of Mycobacterium tuberculosis (M.tb) as a pathogen is primarily based on its ability to modulate host immune responses. The genome of M.tb encodes multiple immunomodulatory proteins, including several members of the multigenic PE_PPE family of which the PE_PGRS proteins are a subset. Curiously, 56 of the 61 PE_PGRS proteins contain multiple copies of the glycine-rich sequence motif GGXGXD/NXUX, a nonapeptide sequence predicted to bind Ca(2+), but the functional significance of these motifs remains a mystery. Here we provide evidence via isothermal titration calorimetry, (45)Ca blotting, fluorescence, and circular dichroism spectroscopy that Ca(2+) binds to the PE_PGRS proteins, PE_PGRS33 (Rv1818c) (10 motifs) and PE_PGRS61 (Rv3653) (one motif). Ca(2+) was observed not to bind to PE_PGRS8 (Rv0742), which lacks nonapeptide motifs. Using recombinant Mycobacterium smegmatis strains expressing Rv1818c and Rv3653 and the THP-1 macrophage model of infection, we show that the two proteins mediate Ca(2+)-dependent upregulation of the anti-inflammatory cytokine IL-10, events critical to the pathogenesis of M.tb. Both Rv1818c and Rv3653 interact with TLR2 in a Ca(2+)-dependent manner, providing a novel mechanistic basis for their immunomodulatory effects. Mutations in the nonapeptide motif of Rv3653 led to compromised Ca(2+) binding, validating the functional criticality of this motif. This study demonstrates for the first time not only their Ca(2+) binding properties but also an essential role for Ca(2+) in the functioning of the M.tb PE_PGRS proteins, opening up the possibility of developing novel anti-tuberculosis therapeutics that inhibit Ca(2+)-PE_PGRS binding.

  16. Learning from epidemiological, clinical, and immunological studies on Mycobacterium africanum for improving current understanding of host-pathogen interactions, and for the development and evaluation of diagnostics, host-directed therapies, and vaccines for tuberculosis.

    PubMed

    Zumla, Alimuddin; Otchere, Isaac Darko; Mensah, Gloria Ivy; Asante-Poku, Adwoa; Gehre, Florian; Maeurer, Markus; Bates, Matthew; Mwaba, Peter; Ntoumi, Francine; Yeboah-Manu, Dorothy

    2017-03-01

    Mycobacterium africanum comprises two phylogenetic lineages within the Mycobacterium tuberculosis complex (MTBC). M. africanum was first described and isolated in 1968 from the sputum of a Senegalese patient with pulmonary tuberculosis (TB) and it has been identified increasingly as an important cause of human TB, particularly prevalent in West Africa. The restricted geographical distribution of M. africanum, in contrast to the widespread global distribution of other species of MTBC, requires explanation. Available data indicate that M. africanum may also have important differences in transmission, pathogenesis, and host-pathogen interactions, which could affect the evaluation of new TB intervention tools (diagnostics and vaccines)-those currently in use and those under development. The unequal geographical distribution and spread of MTBC species means that individual research findings from one country or region cannot be generalized across the continent. Thus, generalizing data from previous and ongoing research studies on MTBC may be inaccurate and inappropriate. A major rethink is required regarding the design and structure of future clinical trials of new interventions. The West, Central, East, and Southern African EDCTP Networks of Excellence provide opportunities to take forward these pan-Africa studies. More investments into molecular, epidemiological, clinical, diagnostic, and immunological studies across the African continent are required to enable further understanding of host-M. africanum interactions, leading to the development of more specific diagnostics, biomarkers, host-directed therapies, and vaccines for TB.

  17. Agent-based dynamic knowledge representation of Pseudomonas aeruginosa virulence activation in the stressed gut: Towards characterizing host-pathogen interactions in gut-derived sepsis

    PubMed Central

    2011-01-01

    Background There is a growing realization that alterations in host-pathogen interactions (HPI) can generate disease phenotypes without pathogen invasion. The gut represents a prime region where such HPI can arise and manifest. Under normal conditions intestinal microbial communities maintain a stable, mutually beneficial ecosystem. However, host stress can lead to changes in environmental conditions that shift the nature of the host-microbe dialogue, resulting in escalation of virulence expression, immune activation and ultimately systemic disease. Effective modulation of these dynamics requires the ability to characterize the complexity of the HPI, and dynamic computational modeling can aid in this task. Agent-based modeling is a computational method that is suited to representing spatially diverse, dynamical systems. We propose that dynamic knowledge representation of gut HPI with agent-based modeling will aid in the investigation of the pathogenesis of gut-derived sepsis. Methodology/Principal Findings An agent-based model (ABM) of virulence regulation in Pseudomonas aeruginosa was developed by translating bacterial and host cell sense-and-response mechanisms into behavioral rules for computational agents and integrated into a virtual environment representing the host-microbe interface in the gut. The resulting gut milieu ABM (GMABM) was used to: 1) investigate a potential clinically relevant laboratory experimental condition not yet developed - i.e. non-lethal transient segmental intestinal ischemia, 2) examine the sufficiency of existing hypotheses to explain experimental data - i.e. lethality in a model of major surgical insult and stress, and 3) produce behavior to potentially guide future experimental design - i.e. suggested sample points for a potential laboratory model of non-lethal transient intestinal ischemia. Furthermore, hypotheses were generated to explain certain discrepancies between the behaviors of the GMABM and biological experiments, and new

  18. The Host-Pathogen interaction of human cyclophilin A and HIV-1 Vpr requires specific N-terminal and novel C-terminal domains

    PubMed Central

    2011-01-01

    Background Cyclophilin A (CypA) represents a potential key molecule in future antiretroviral therapy since inhibition of CypA suppresses human immunodeficiency virus type 1 (HIV-1) replication. CypA interacts with the virus proteins Capsid (CA) and Vpr, however, the mechanism through which CypA influences HIV-1 infectivity still remains unclear. Results Here the interaction of full-length HIV-1 Vpr with the host cellular factor CypA has been characterized and quantified by surface plasmon resonance spectroscopy. A C-terminal region of Vpr, comprising the 16 residues 75GCRHSRIGVTRQRRAR90, with high binding affinity for CypA has been identified. This region of Vpr does not contain any proline residues but binds much more strongly to CypA than the previously characterized N-terminal binding domain of Vpr, and is thus the first protein binding domain to CypA described involving no proline residues. The fact that the mutant peptide Vpr75-90 R80A binds more weakly to CypA than the wild-type peptide confirms that Arg-80 is a key residue in the C-terminal binding domain. The N- and C-terminal binding regions of full-length Vpr bind cooperatively to CypA and have allowed a model of the complex to be created. The dissociation constant of full-length Vpr to CypA was determined to be approximately 320 nM, indicating that the binding may be stronger than that of the well characterized interaction of HIV-1 CA with CypA. Conclusions For the first time the interaction of full-length Vpr and CypA has been characterized and quantified. A non-proline-containing 16-residue region of C-terminal Vpr which binds specifically to CypA with similar high affinity as full-length Vpr has been identified. The fact that this is the first non-proline containing binding motif of any protein found to bind to CypA, changes the view on how CypA is able to interact with other proteins. It is interesting to note that several previously reported key functions of HIV-1 Vpr are associated with the

  19. Genome-wide diversity and gene expression profiling of Babesia microti isolates identify polymorphic genes that mediate host-pathogen interactions

    PubMed Central

    Silva, Joana C.; Cornillot, Emmanuel; McCracken, Carrie; Usmani-Brown, Sahar; Dwivedi, Ankit; Ifeonu, Olukemi O.; Crabtree, Jonathan; Gotia, Hanzel T.; Virji, Azan Z.; Reynes, Christelle; Colinge, Jacques; Kumar, Vidya; Lawres, Lauren; Pazzi, Joseph E.; Pablo, Jozelyn V.; Hung, Chris; Brancato, Jana; Kumari, Priti; Orvis, Joshua; Tretina, Kyle; Chibucos, Marcus; Ott, Sandy; Sadzewicz, Lisa; Sengamalay, Naomi; Shetty, Amol C.; Su, Qi; Tallon, Luke; Fraser, Claire M.; Frutos, Roger; Molina, Douglas M.; Krause, Peter J.; Ben Mamoun, Choukri

    2016-01-01

    Babesia microti, a tick-transmitted, intraerythrocytic protozoan parasite circulating mainly among small mammals, is the primary cause of human babesiosis. While most cases are transmitted by Ixodes ticks, the disease may also be transmitted through blood transfusion and perinatally. A comprehensive analysis of genome composition, genetic diversity, and gene expression profiling of seven B. microti isolates revealed that genetic variation in isolates from the Northeast United States is almost exclusively associated with genes encoding the surface proteome and secretome of the parasite. Furthermore, we found that polymorphism is restricted to a small number of genes, which are highly expressed during infection. In order to identify pathogen-encoded factors involved in host-parasite interactions, we screened a proteome array comprised of 174 B. microti proteins, including several predicted members of the parasite secretome. Using this immuno-proteomic approach we identified several novel antigens that trigger strong host immune responses during the onset of infection. The genomic and immunological data presented herein provide the first insights into the determinants of B. microti interaction with its mammalian hosts and their relevance for understanding the selective pressures acting on parasite evolution. PMID:27752055

  20. Host-pathogen interactions between the human innate immune system and Candida albicans—understanding and modeling defense and evasion strategies

    PubMed Central

    Dühring, Sybille; Germerodt, Sebastian; Skerka, Christine; Zipfel, Peter F.; Dandekar, Thomas; Schuster, Stefan

    2015-01-01

    The diploid, polymorphic yeast Candida albicans is one of the most important human pathogenic fungi. C. albicans can grow, proliferate and coexist as a commensal on or within the human host for a long time. However, alterations in the host environment can render C. albicans virulent. In this review, we describe the immunological cross-talk between C. albicans and the human innate immune system. We give an overview in form of pairs of human defense strategies including immunological mechanisms as well as general stressors such as nutrient limitation, pH, fever etc. and the corresponding fungal response and evasion mechanisms. Furthermore, Computational Systems Biology approaches to model and investigate these complex interactions are highlighted with a special focus on game-theoretical methods and agent-based models. An outlook on interesting questions to be tackled by Systems Biology regarding entangled defense and evasion mechanisms is given. PMID:26175718

  1. Increased pilus production conferred by a naturally occurring mutation alters host-pathogen interaction in favor of carriage in Streptococcus pyogenes.

    PubMed

    Flores, Anthony R; Olsen, Randall J; Cantu, Concepcion; Pallister, Kyler B; Guerra, Fermin E; Voyich, Jovanka M; Musser, James M

    2017-03-06

    Studies of the human pathogen group A Streptococcus (GAS) define the carrier phenotype as increased ability to adhere to and persist on epithelial surfaces and decreased ability to cause disease. We tested the hypothesis that a single amino acid change (Arg135Gly) in a highly conserved sensor kinase (LiaS) of a poorly defined GAS regulatory system contributes to a carrier phenotype through increased pilus production. When introduced into an emm serotype-matched invasive strain, the carrier allele (liaS(R135G)) recapitulated a carrier phenotype defined by increased ability to adhere to mucosal surfaces and decreased ability to cause disease. Gene transcript analyses revealed that the liaS mutation significantly altered transcription of the genes encoding pilus when in the presence of bacitracin. Elimination of pilus production in the isogenic carrier mutant decreased ability to colonize the mouse nasopharynx, adhere to and be internalized by cultured human epithelial cells, and restored a virulence phenotype in a mouse model of necrotizing fasciitis. We also observed significantly reduced survival of the isogenic carrier mutant compared to the parental invasive strain after exposure to human neutrophils. Elimination of pilus in the isogenic carrier mutant increased neutrophil survival to the parental invasive strain level. Together, our data demonstrate that the carrier mutation (liaS(R135G)) affects pilus expression. Our data suggest new mechanisms of pilus gene regulation in GAS and differs from the enhanced invasiveness associated with increased pilus production in other bacterial pathogens.

  2. Impact Of Environmental Variation On Host Performance Differs With Pathogen Identity: Implications For Host-Pathogen Interactions In A Changing Climate

    PubMed Central

    Shikano, Ikkei; Cory, Jenny S.

    2015-01-01

    Specialist and generalist pathogens may exert different costs on their hosts; thereby altering the way hosts cope with environmental variation. We examined how pathogen-challenge alters the environmental conditions that maximize host performance by simultaneously varying temperature and nutrition (protein to carbohydrate ratio; P:C) after exposure to two baculoviruses; one that is specific to the cabbage looper, Trichoplusia ni (TnSNPV) and another that has a broad host range (AcMNPV). Virus-challenged larvae performed better on more protein-biased diets, primarily due to higher survival, whereas unchallenged larvae performed best on a balanced diet. The environmental conditions that maximized host performance differed with virus identity because TnSNPV-challenge inflicted fitness costs (reduced pupal weight and prolonged development) whereas AcMNPV-challenge did not. The performance of TnSNPV-challenged larvae rose with increasing P:C across all temperatures, whereas temperature modulated the optimal P:C in AcMNPV-challenged larvae (slightly protein-biased at 16 °C to increasingly higher P:C as temperature increased). Increasing temperature reduced pupal size, but only at more balanced P:C ratios, indicating that nutrition moderates the temperature-size rule. Our findings highlight the complex environmental interactions that can alter host performance after exposure to pathogens, which could impact the role of entomopathogens as regulators of insect populations in a changing climate. PMID:26477393

  3. Impact Of Environmental Variation On Host Performance Differs With Pathogen Identity: Implications For Host-Pathogen Interactions In A Changing Climate.

    PubMed

    Shikano, Ikkei; Cory, Jenny S

    2015-10-19

    Specialist and generalist pathogens may exert different costs on their hosts; thereby altering the way hosts cope with environmental variation. We examined how pathogen-challenge alters the environmental conditions that maximize host performance by simultaneously varying temperature and nutrition (protein to carbohydrate ratio; P:C) after exposure to two baculoviruses; one that is specific to the cabbage looper, Trichoplusia ni (TnSNPV) and another that has a broad host range (AcMNPV). Virus-challenged larvae performed better on more protein-biased diets, primarily due to higher survival, whereas unchallenged larvae performed best on a balanced diet. The environmental conditions that maximized host performance differed with virus identity because TnSNPV-challenge inflicted fitness costs (reduced pupal weight and prolonged development) whereas AcMNPV-challenge did not. The performance of TnSNPV-challenged larvae rose with increasing P:C across all temperatures, whereas temperature modulated the optimal P:C in AcMNPV-challenged larvae (slightly protein-biased at 16 °C to increasingly higher P:C as temperature increased). Increasing temperature reduced pupal size, but only at more balanced P:C ratios, indicating that nutrition moderates the temperature-size rule. Our findings highlight the complex environmental interactions that can alter host performance after exposure to pathogens, which could impact the role of entomopathogens as regulators of insect populations in a changing climate.

  4. Natural Variation in the Promoter of the Gene Encoding the Mga Regulator Alters Host-Pathogen Interactions in Group A Streptococcus Carrier Strains

    PubMed Central

    Flores, Anthony R.; Olsen, Randall J.; Wunsche, Andrea; Kumaraswami, Muthiah; Shelburne, Samuel A.; Carroll, Ronan K.

    2013-01-01

    Humans commonly carry pathogenic bacteria asymptomatically, but the molecular factors underlying microbial asymptomatic carriage are poorly understood. We previously reported that two epidemiologically unassociated serotype M3 group A Streptococcus (GAS) carrier strains had an identical 12-bp deletion in the promoter of the gene encoding Mga, a global positive gene regulator. Herein, we report on studies designed to test the hypothesis that the identified 12-bp deletion in the mga promoter alters GAS virulence, thereby potentially contributing to the asymptomatic carrier phenotype. Using allelic exchange, we introduced the variant promoter into a serotype M3 invasive strain and the wild-type promoter into an asymptomatic carrier strain. Compared to strains with the wild-type mga promoter, we discovered that strains containing the promoter with the 12-bp deletion produced significantly fewer mga and Mga-regulated gene transcripts. Consistent with decreased mga transcripts, strains containing the variant mga promoter were also significantly less virulent in in vivo and ex vivo models of GAS disease. Further, we provide evidence that the pleiotropic regulator protein CodY binds to the mga promoter and that the 12-bp deletion in the mga promoter reduces CodY-mediated mga transcription. We conclude that the naturally occurring 12-bp deletion in the mga promoter significantly alters the pathogen-host interaction of these asymptomatic carrier strains. Our findings provide new insight into the molecular basis of the carrier state of an important human pathogen. PMID:23980109

  5. Maintenance of brucellosis in Yellowstone bison: linking seasonal food resources, host-pathogen interaction, and life-history trade-offs.

    PubMed

    Treanor, John J; Geremia, Chris; Ballou, Michael A; Keisler, Duane H; White, Patrick J; Cox, John J; Crowley, Philip H

    2015-09-01

    The seasonal availability of food resources is an important factor shaping the life-history strategies of organisms. During times of nutritional restriction, physiological trade-offs can induce periods of immune suppression, thereby increasing susceptibility to infectious disease. Our goal was to provide a conceptual framework describing how the endemic level bovine brucellosis (Brucella abortus) may be maintained in Yellowstone bison based on the seasonality of food resources and the life-history strategies of the host and pathogen. Our analysis was based on active B. abortus infection (measured via bacterial culture), nutritional indicators (measured as metabolites and hormones in plasma), and carcass measurements of 402 slaughtered bison. Data from Yellowstone bison were used to investigate (1) whether seasonal changes in diet quality affect nutritional condition and coincide with the reproductive needs of female bison; (2) whether active B. abortus infection and infection intensities vary with host nutrition and nutritional condition; and (3) the evidence for seasonal changes in immune responses, which may offer protection against B. abortus, in relation to nutritional condition. Female bison experienced a decline in nutritional condition during winter as reproductive demands of late gestation increased while forage quality and availability declined. Active B. abortus infection was negatively associated with bison age and nutritional condition, with the intensity of infection negatively associated with indicators of nutrition (e.g., dietary protein and energy) and body weight. Data suggest that protective cell-mediated immune responses may be reduced during the B. abortus transmission period, which coincides with nutritional insufficiencies and elevated reproductive demands during spring. Our results illustrate how seasonal food restriction can drive physiological trade-offs that suppress immune function and create infection and transmission opportunities

  6. Establishment of Myotis myotis Cell Lines - Model for Investigation of Host-Pathogen Interaction in a Natural Host for Emerging Viruses

    PubMed Central

    He, Xiaocui; Korytář, Tomáš; Zhu, Yaqing; Pikula, Jiří; Bandouchova, Hana; Zukal, Jan; Köllner, Bernd

    2014-01-01

    Bats are found to be the natural reservoirs for many emerging viruses. In most cases, severe clinical signs caused by such virus infections are normally not seen in bats. This indicates differences in the virus-host interactions and underlines the necessity to develop natural host related models to study these phenomena. Due to the strict protection of European bat species, immortalized cell lines are the only alternative to investigate the innate anti-virus immune mechanisms. Here, we report about the establishment and functional characterization of Myotis myotis derived cell lines from different tissues: brain (MmBr), tonsil (MmTo), peritoneal cavity (MmPca), nasal epithelium (MmNep) and nervus olfactorius (MmNol) after immortalization by SV 40 large T antigen. The usefulness of these cell lines to study antiviral responses has been confirmed by analysis of their susceptibility to lyssavirus infection and the mRNA patterns of immune-relevant genes after poly I:C stimulation. Performed experiments indicated varying susceptibility to lyssavirus infection with MmBr being considerably less susceptible than the other cell lines. Further investigation demonstrated a strong activation of interferon mediated antiviral response in MmBr contributing to its resistance. The pattern recognition receptors: RIG-I and MDA5 were highly up-regulated during rabies virus infection in MmBr, suggesting their involvement in promotion of antiviral responses. The presence of CD14 and CD68 in MmBr suggested MmBr cells are microglia-like cells which play a key role in host defense against infections in the central nervous system (CNS). Thus the expression pattern of MmBr combined with the observed limitation of lyssavirus replication underpin a protective mechanism of the CNS controlling the lyssavirus infection. Overall, the established cell lines are important tools to analyze antiviral innate immunity in M. myotis against neurotropic virus infections and present a valuable tool for a

  7. MHC polymorphism under host-pathogen coevolution.

    PubMed

    Borghans, José A M; Beltman, Joost B; De Boer, Rob J

    2004-02-01

    The genes encoding major histocompatibility (MHC) molecules are among the most polymorphic genes known for vertebrates. Since MHC molecules play an important role in the induction of immune responses, the evolution of MHC polymorphism is often explained in terms of increased protection of hosts against pathogens. Two selective pressures that are thought to be involved are (1) selection favoring MHC heterozygous hosts, and (2) selection for rare MHC alleles by host-pathogen coevolution. We have developed a computer simulation of coevolving hosts and pathogens to study the relative impact of these two mechanisms on the evolution of MHC polymorphism. We found that heterozygote advantage per se is insufficient to explain the high degree of polymorphism at the MHC, even in very large host populations. Host-pathogen coevolution, on the other hand, can easily account for realistic polymorphisms of more than 50 alleles per MHC locus. Since evolving pathogens mainly evade presentation by the most common MHC alleles in the host population, they provide a selective pressure for a large variety of rare MHC alleles. Provided that the host population is sufficiently large, a large set of MHC alleles can persist over many host generations under host-pathogen coevolution, despite the fact that allele frequencies continuously change.

  8. Population extinction in an inhomogeneous host-pathogen model

    NASA Astrophysics Data System (ADS)

    Bagarti, Trilochan

    2016-01-01

    We study inhomogeneous host-pathogen dynamics to model the global amphibian population extinction in a lake basin system. The lake basin system is modeled as quenched disorder. In this model we show that once the pathogen arrives at the lake basin it spreads from one lake to another, eventually spreading to the entire lake basin system in a wave like pattern. The extinction time has been found to depend on the steady state host population and pathogen growth rate. Linear estimate of the extinction time is computed. The steady state host population shows a threshold behavior in the interaction strength for a given growth rate.

  9. Polyproline and triple helix motifs in host-pathogen recognition.

    PubMed

    Berisio, Rita; Vitagliano, Luigi

    2012-12-01

    Secondary structure elements often mediate protein-protein interactions. Despite their low abundance in folded proteins, polyproline II (PPII) and its variant, the triple helix, are frequently involved in protein-protein interactions, likely due to their peculiar propensity to be solvent-exposed. We here review the role of PPII and triple helix in mediating hostpathogen interactions, with a particular emphasis to the structural aspects of these processes. After a brief description of the basic structural features of these elements, examples of host-pathogen interactions involving these motifs are illustrated. Literature data suggest that the role played by PPII motif in these processes is twofold. Indeed, PPII regions may directly mediate interactions between proteins of the host and the pathogen. Alternatively, PPII may act as structural spacers needed for the correct positioning of the elements needed for adhesion and infectivity. Recent investigations have highlighted that collagen triple helix is also a common target for bacterial adhesins. Although structural data on complexes between adhesins and collagen models are rather limited, experimental and theoretical studies have unveiled some interesting clues of the recognition process. Interestingly, very recent data show that not only is the triple helix used by pathogens as a target in the host-pathogen interaction but it may also act as a bait in these processes since bacterial proteins containing triple helix regions have been shown to interact with host proteins. As both PPII and triple helix expose several main chain non-satisfied hydrogen bond acceptors and donors, both elements are highly solvated. The preservation of the solvation state of both PPII and triple helix upon protein-protein interaction is an emerging aspect that will be here thoroughly discussed.

  10. Centrality in the host-pathogen interactome is associated with pathogen fitness during infection

    NASA Astrophysics Data System (ADS)

    Crua Asensio, Núria; Muñoz Giner, Elisabet; de Groot, Natalia Sánchez; Torrent Burgas, Marc

    2017-01-01

    To perform their functions proteins must interact with each other, but how these interactions influence bacterial infection remains elusive. Here we demonstrate that connectivity in the host-pathogen interactome is directly related to pathogen fitness during infection. Using Y. pestis as a model organism, we show that the centrality-lethality rule holds for pathogen fitness during infection but only when the host-pathogen interactome is considered. Our results suggest that the importance of pathogen proteins during infection is directly related to their number of interactions with the host. We also show that pathogen proteins causing an extensive rewiring of the host interactome have a higher impact in pathogen fitness during infection. Hence, we conclude that hubs in the host-pathogen interactome should be explored as promising targets for antimicrobial drug design.

  11. Cell scale host-pathogen modeling: another branch in the evolution of constraint-based methods

    PubMed Central

    Jamshidi, Neema; Raghunathan, Anu

    2015-01-01

    Constraint-based models have become popular methods for systems biology as they enable the integration of complex, disparate datasets in a biologically cohesive framework that also supports the description of biological processes in terms of basic physicochemical constraints and relationships. The scope, scale, and application of genome scale models have grown from single cell bacteria to multi-cellular interaction modeling; host-pathogen modeling represents one of these examples at the current horizon of constraint-based methods. There are now a small number of examples of host-pathogen constraint-based models in the literature, however there has not yet been a definitive description of the methodology required for the functional integration of genome scale models in order to generate simulation capable host-pathogen models. Herein we outline a systematic procedure to produce functional host-pathogen models, highlighting steps which require debugging and iterative revisions in order to successfully build a functional model. The construction of such models will enable the exploration of host-pathogen interactions by leveraging the growing wealth of omic data in order to better understand mechanism of infection and identify novel therapeutic strategies. PMID:26500611

  12. Characterization of Pathogenicity, Virulence and Host-Pathogen Interractions

    SciTech Connect

    Krishnan, A; Folta, P

    2006-07-27

    The threats of bio-terrorism and newly emerging infectious diseases pose serious challenges to the national security infrastructure. Rapid detection and diagnosis of infectious disease in human populations, as well as characterizing pathogen biology, are critical for reducing the morbidity and mortality associated with such threats. One of the key challenges in managing an infectious disease outbreak, whether through natural causes or acts of overt terrorism, is detection early enough to initiate effective countermeasures. Much recent attention has been directed towards the utility of biomarkers or molecular signatures that result from the interaction of the pathogen with the host for improving our ability to diagnose and mitigate the impact of a developing infection during the time window when effective countermeasures can be instituted. Host responses may provide early signals in blood even from localized infections. Multiple innate and adaptive immune molecules, in combination with other biochemical markers, may provide disease-specific information and new targets for countermeasures. The presence of pathogen specific markers and an understanding of the molecular capabilities and adaptations of the pathogen when it interacts with its host may likewise assist in early detection and provide opportunities for targeting countermeasures. An important question that needs to be addressed is whether these molecular-based approaches will prove useful for early diagnosis, complement current methods of direct agent detection, and aid development and use of countermeasures. Lawrence Livermore National Laboratory (LLNL) will host a workshop to explore the utility of host- and pathogen-based molecular diagnostics, prioritize key research issues, and determine the critical steps needed to transition host-pathogen research to tools that can be applied towards a more effective national bio-defense strategy. The workshop will bring together leading researchers/scientists in the

  13. Warmer temperatures increase disease transmission and outbreak intensity in a host-pathogen system.

    PubMed

    Elderd, Bret D; Reilly, James R

    2014-07-01

    While rising global temperatures are increasingly affecting both species and their biotic interactions, the debate about whether global warming will increase or decrease disease transmission between individuals remains far from resolved. This may stem from the lack of empirical data. Using a tractable and easily manipulated insect host-pathogen system, we conducted a series of field and laboratory experiments to examine how increased temperatures affect disease transmission using the crop-defoliating pest, the fall armyworm (Spodoptera frugiperda) and its species-specific baculovirus, which causes a fatal infection. To examine the effects of temperature on disease transmission in the field, we manipulated baculovirus density and temperature. As infection occurs when a host consumes leaf tissue on which the pathogen resides, baculovirus density was controlled by placing varying numbers of infected neonate larvae on experimental plants. Temperature was manipulated by using open-top chambers (OTCs). The laboratory experiments examined how increased temperatures affect fall armyworm feeding and development rates, which provide insight into how host feeding behaviour and physiology may affect transmission. Disease transmission and outbreak intensity, measured as the cumulative fraction infected during an epizootic, increased at higher temperatures. However, there was no appreciable change in the mean transmission rate of the disease, which is often the focus of empirical and theoretical research. Instead, the coefficient of variation (CV) associated with the transmission rate shrunk. As the CV decreased, heterogeneity in disease risk across individuals declined, which resulted in an increase in outbreak intensity. In the laboratory, increased temperatures increased feeding rates and decreased developmental times. As the host consumes the virus along with the leaf tissue on which it resides, increased feeding rate is likely to increase the probability of an individual

  14. Determinants of the Sympatric Host-Pathogen Relationship in Tuberculosis.

    PubMed

    David, Susana; Mateus, A R A; Duarte, Elsa L; Albuquerque, José; Portugal, Clara; Sancho, Luísa; Lavinha, João; Gonçalves, Guilherme

    2015-01-01

    Major contributions from pathogen genome analysis and host genetics have equated the possibility of Mycobacterium tuberculosis co-evolution with its human host leading to more stable sympatric host-pathogen relationships. However, the attribution to either sympatric or allopatric categories depends on the resolution or grain of genotypic characterization. We explored the influence on the sympatric host-pathogen relationship of clinical (HIV infection and multidrug-resistant tuberculosis [MDRTB]) and demographic (gender and age) factors in regards to the genotypic grain by using spacer oligonucleotide typing (spoligotyping) for classification of M. tuberculosis strains within the Euro-American lineage. We analyzed a total of 547 tuberculosis (TB) cases, from six year consecutive sampling in a setting with high TB-HIV coinfection (32.0%). Of these, 62.0% were caused by major circulating pathogen genotypes. The sympatric relationship was defined according to spoligotype in comparison to the international spoligotype database SpolDB4. While no significant association with Euro-American lineage was observed with any of the factors analyzed, increasing the resolution with spoligotyping evidenced a significant association of MDRTB with sympatric strains, regardless of the HIV status. Furthermore, distribution curves of the prevalence of sympatric and allopatric TB in relation to patients' age showed an accentuation of the relevance of the age of onset in the allopatric relationship, as reflected in the trimodal distribution. On the contrary, sympatric TB was characterized by the tendency towards a typical (standard) distribution curve. Our results suggest that within the Euro-American lineage a greater degree of genotyping fine-tuning is necessary in modeling the biological processes behind the host-pathogen interplay. Furthermore, prevalence distribution of sympatric TB to age was suggestive of host genetic determinisms driven by more common variants.

  15. Insect Outbreaks, Host-Pathogen Interactions, and Induced Plant Defenses

    DTIC Science & Technology

    2009-09-30

    often induced by defoliation15, and because defoliation and thus induced-defense concentrations increase with insect densities8, the laboratory data...study relied on experimental defoliation , without successfully causing induction18. It therefore appears that defoliation must be quite severe for...induction to occur, yet se- vere defoliation would remove so much leaf material that it would be impossible to measure virus transmission in the field

  16. Host-pathogen interactions in progressive chronic periodontitis.

    PubMed

    Hernández, M; Dutzan, N; García-Sesnich, J; Abusleme, L; Dezerega, A; Silva, N; González, F E; Vernal, R; Sorsa, T; Gamonal, J

    2011-10-01

    Periodontitis is an infection characterized by the occurrence of supporting tissue destruction with an episodic nature. Disease progression is often determined by the loss of attachment level or alveolar bone, and sequential probing of periodontal attachment remains the most commonly utilized method to diagnose progressive destruction of the periodontium. The tolerance method has been the most extensive clinical method used in recent years to determine site-specific attachment level changes. There is abundant evidence that major tissue destruction in periodontal lesions results from the recruitment of immune cells. Considerable effort has been made to study the host cell and mediator profiles involved in the pathogenesis of chronic periodontitis, but the definition of active sites, where current periodontal breakdown occurs, and consecutive characterization of the mediators involved are still among the main concerns. In the present review, we summarize periodontopathic bacteria and host factors, including infiltrating cell populations, cytokines, and host matrix metalloproteinases, associated with under-going episodic attachment loss that could partly explain the mechanisms involved in destruction of the supporting tissues of the tooth.

  17. Determinants of the Sympatric Host-Pathogen Relationship in Tuberculosis

    PubMed Central

    David, Susana; Mateus, A. R. A.; Duarte, Elsa L.; Albuquerque, José; Portugal, Clara; Sancho, Luísa; Lavinha, João; Gonçalves, Guilherme

    2015-01-01

    Major contributions from pathogen genome analysis and host genetics have equated the possibility of Mycobacterium tuberculosis co-evolution with its human host leading to more stable sympatric host–pathogen relationships. However, the attribution to either sympatric or allopatric categories depends on the resolution or grain of genotypic characterization. We explored the influence on the sympatric host-pathogen relationship of clinical (HIV infection and multidrug-resistant tuberculosis [MDRTB]) and demographic (gender and age) factors in regards to the genotypic grain by using spacer oligonucleotide typing (spoligotyping) for classification of M. tuberculosis strains within the Euro-American lineage. We analyzed a total of 547 tuberculosis (TB) cases, from six year consecutive sampling in a setting with high TB-HIV coinfection (32.0%). Of these, 62.0% were caused by major circulating pathogen genotypes. The sympatric relationship was defined according to spoligotype in comparison to the international spoligotype database SpolDB4. While no significant association with Euro-American lineage was observed with any of the factors analyzed, increasing the resolution with spoligotyping evidenced a significant association of MDRTB with sympatric strains, regardless of the HIV status. Furthermore, distribution curves of the prevalence of sympatric and allopatric TB in relation to patients’ age showed an accentuation of the relevance of the age of onset in the allopatric relationship, as reflected in the trimodal distribution. On the contrary, sympatric TB was characterized by the tendency towards a typical (standard) distribution curve. Our results suggest that within the Euro-American lineage a greater degree of genotyping fine-tuning is necessary in modeling the biological processes behind the host-pathogen interplay. Furthermore, prevalence distribution of sympatric TB to age was suggestive of host genetic determinisms driven by more common variants. PMID:26529092

  18. Gene-for-gene relationship in the host-pathogen system Malus × robusta 5-Erwinia amylovora.

    PubMed

    Vogt, Isabelle; Wöhner, Thomas; Richter, Klaus; Flachowsky, Henryk; Sundin, George W; Wensing, Annette; Savory, Elizabeth A; Geider, Klaus; Day, Brad; Hanke, Magda-Viola; Peil, Andreas

    2013-03-01

    Fire blight is a destructive bacterial disease caused by Erwinia amylovora affecting plants in the family Rosaceae, including apple. Host resistance to fire blight is present mainly in accessions of Malus spp. and is thought to be quantitative in this pathosystem. In this study we analyzed the importance of the E. amylovora effector avrRpt2(EA) , a homolog of Pseudomonas syringae avrRpt2, for resistance of Malus × robusta 5 (Mr5). The deletion mutant E. amylovora Ea1189ΔavrRpt2(EA) was able to overcome the fire blight resistance of Mr5. One single nucleotide polymorphism (SNP), resulting in an exchange of cysteine to serine in the encoded protein, was detected in avrRpt2(EA) of several Erwinia strains differing in virulence to Mr5. E. amylovora strains encoding serine (S-allele) were able to overcome resistance of Mr5, whereas strains encoding cysteine (C-allele) were not. Allele specificity was also observed in a coexpression assay with Arabidopsis thaliana RIN4 in Nicotiana benthamiana. A homolog of RIN4 has been detected and isolated in Mr5. These results suggest a system similar to the interaction of RPS2 from A. thaliana and AvrRpt2 from P. syringae with RIN4 as guard. Our data are suggestive of a gene-for-gene relationship for the host-pathogen system Mr5 and E. amylovora.

  19. Competition for Manganese at the Host-Pathogen Interface.

    PubMed

    Kelliher, J L; Kehl-Fie, T E

    2016-01-01

    Transition metals such as manganese are essential nutrients for both pathogen and host. Vertebrates exploit this necessity to combat invading microbes by restricting access to these critical nutrients, a defense known as nutritional immunity. During infection, the host uses several mechanisms to impose manganese limitation. These include removal of manganese from the phagolysosome, sequestration of extracellular manganese, and utilization of other metals to prevent bacterial acquisition of manganese. In order to cause disease, pathogens employ a variety of mechanisms that enable them to adapt to and counter nutritional immunity. These adaptations include, but are likely not limited to, manganese-sensing regulators and high-affinity manganese transporters. Even though successful pathogens can overcome host-imposed manganese starvation, this defense inhibits manganese-dependent processes, reducing the ability of these microbes to cause disease. While the full impact of host-imposed manganese starvation on bacteria is unknown, critical bacterial virulence factors such as superoxide dismutases are inhibited. This chapter will review the factors involved in the competition for manganese at the host-pathogen interface and discuss the impact that limiting the availability of this metal has on invading bacteria.

  20. Manganese acquisition and homeostasis at the host-pathogen interface

    PubMed Central

    Lisher, John P.; Giedroc, David P.

    2013-01-01

    Pathogenic bacteria acquire transition metals for cell viability and persistence of infection in competition with host nutritional defenses. The human host employs a variety of mechanisms to stress the invading pathogen with both cytotoxic metal ions and oxidative and nitrosative insults while withholding essential transition metals from the bacterium. For example, the S100 family protein calprotectin (CP) found in neutrophils is a calcium-activated chelator of extracellular Mn and Zn and is found in tissue abscesses at sites of infection by Staphylococcus aureus. In an adaptive response, bacteria have evolved systems to acquire the metals in the face of this competition while effluxing excess or toxic metals to maintain a bioavailability of transition metals that is consistent with a particular inorganic “fingerprint” under the prevailing conditions. This review highlights recent biological, chemical and structural studies focused on manganese (Mn) acquisition and homeostasis and connects this process to oxidative stress resistance and iron (Fe) availability that operates at the human host-pathogen interface. PMID:24367765

  1. Host-pathogen systems in a spatially patchy environment.

    PubMed

    White, A; Begon, M; Bowers, R G

    1996-03-22

    A discrete model for a host-pathogen system is developed and is used to represent the dynamics in each patch within a landscape of n x n patches. These patches are linked by between-generation dispersal to neighbouring patches. Important results (compared to similar 'coupled map lattice' studies) include an increase in the likelihood of metapopulation extinction if the natural loss of pathogen particles is low, and the observation of a radial wave pattern (not previously reported) where the wavefront propagates uniformly from a central focus. This result has additional significance in that it permits the system to exhibit 'intermittency' between two quasi-stable spatial patterns: spirals and radial waves. With intermittent behaviour, the dynamics may look consistent when viewed at one time scale, but over a longer time scale they can alter dramatically and repeatedly between the two patterns. There is also evidence of clear links between spatial structure and temporal metapopulation behaviour in both the intermittent and 'pure' regions, verified by results from an algorithmic complexity measure and a spectral analysis of the temporal dynamics.

  2. Anthropogenic noise affects vocal interactions.

    PubMed

    McMullen, Heather; Schmidt, Rouven; Kunc, Hansjoerg P

    2014-03-01

    Animal communication plays a crucial role in many species, and it involves a sender producing a signal and a receiver responding to that signal. The shape of a signal is determined by selection pressures acting upon it. One factor that exerts selection on acoustic signals is the acoustic environment through which the signal is transmitted. Recent experimental studies clearly show that senders adjust their signals in response to increased levels of anthropogenic noise. However, to understand how noise affects the whole process of communication, it is vital to know how noise affects the receiver's response during vocal interactions. Therefore, we experimentally manipulated ambient noise levels to expose male European robins (Erithacus rubecula) to two playback treatments consisting of the same song: one with noise and another one without noise. We found that males responding to a conspecific in a noise polluted environment increased minimum frequency and decreased song complexity and song duration. Thus, we show that the whole process of communication is affected by noise, not just the behaviour of the sender.

  3. Host-Pathogen Checkpoints and Population Bottlenecks in Persistent and Intracellular Uropathogenic E. coli Bladder Infection

    PubMed Central

    Hannan, Thomas J.; Totsika, Makrina; Mansfield, Kylie J.; Moore, Kate H.; Schembri, Mark A.; Hultgren, Scott J.

    2013-01-01

    Bladder infections affect millions of people yearly, and recurrent symptomatic infections (cystitis) are very common. The rapid increase in infections caused by multi-drug resistant uropathogens threatens to make recurrent cystitis an increasingly troubling public health concern. Uropathogenic E. coli (UPEC) cause the vast majority of bladder infections. Upon entry into the lower urinary tract, UPEC face obstacles to colonization that constitute population bottlenecks, reducing diversity and selecting for fit clones. A critical mucosal barrier to bladder infection is the epithelium (urothelium). UPEC bypass this barrier when they invade urothelial cells and form intracellular bacterial communities (IBCs), a process which requires type 1 pili. IBCs are transient in nature, occurring primarily during acute infection. Chronic bladder infection is common and can be either latent, in the form of the Quiescent Intracellular Reservoir (QIR), or active, in the form of asymptomatic bacteriuria (ASB/ABU) or chronic cystitis. In mice, the fate of bladder infection: QIR, ASB, or chronic cystitis, is determined within the first 24 hours of infection and constitutes a putative host-pathogen mucosal checkpoint that contributes to susceptibility to recurrent cystitis. Knowledge of these checkpoints and bottlenecks is critical for our understanding of bladder infection and efforts to devise novel therapeutic strategies. PMID:22404313

  4. Mood Swings: An Affective Interactive Art System

    NASA Astrophysics Data System (ADS)

    Bialoskorski, Leticia S. S.; Westerink, Joyce H. D. M.; van den Broek, Egon L.

    The progress in the field of affective computing enables the realization of affective consumer products, affective games, and affective art. This paper describes the affective interactive art system Mood Swings, which interprets and visualizes affect expressed by a person. Mood Swings is founded on the integration of a framework for affective movements and a color model. This enables Mood Swings to recognize affective movement characteristics as expressed by a person and display a color that matches the expressed emotion. With that, a unique interactive system is introduced, which can be considered as art, a game, or a combination of both.

  5. What Can Phages Tell Us about Host-Pathogen Coevolution?

    PubMed Central

    Dennehy, John J.

    2012-01-01

    The outcomes of host-parasite interactions depend on the coevolutionary forces acting upon them, but because every host-parasite relation is enmeshed in a web of biotic and abiotic interactions across a heterogeneous landscape, host-parasite coevolution has proven difficult to study. Simple laboratory phage-bacteria microcosms can ameliorate this difficulty by allowing controlled, well-replicated experiments with a limited number of interactors. Genetic, population, and life history data obtained from these studies permit a closer examination of the fundamental correlates of host-parasite coevolution. In this paper, I describe the results of phage-bacteria coevolutionary studies and their implications for the study of host-parasite coevolution. Recent experimental studies have confirmed phage-host coevolutionary dynamics in the laboratory and have shown that coevolution can increase parasite virulence, specialization, adaptation, and diversity. Genetically, coevolution frequently proceeds in a manner best described by the Gene for Gene model, typified by arms race dynamics, but certain contexts can result in Red Queen dynamics according to the Matching Alleles model. Although some features appear to apply only to phage-bacteria systems, other results are broadly generalizable and apply to all instances of antagonistic coevolution. With laboratory host-parasite coevolutionary studies, we can better understand the perplexing array of interactions that characterize organismal diversity in the wild. PMID:23213618

  6. Affect Control in International Interactions

    ERIC Educational Resources Information Center

    Heise, David R.; Lerner, Steven J.

    2006-01-01

    This research tests the proposition that national leaders generate international interactions in the process of maintaining sentiments about nations and international actions. The analysis deals with 1,934 international incidents in which one of 25 Middle Eastern nations responded twice within four weeks to an instigation by another of the 25…

  7. The Affective Regulation of Social Interaction*

    PubMed Central

    Clore, Gerald L.; Pappas, Jesse

    2008-01-01

    The recent publication of David Heise’s Expressive Order (2007) provides an occasion for discussing some of the key ideas in Affect Control Theory. The theory proposes that a few dimensions of affective meaning provide a common basis for interrelating personal identities and social actions. It holds that during interpersonal interactions, social behavior is continually regulated to maintain an affective tone compatible with whatever social roles or identities define the situation. We outline the intellectual history of the proposed dimensions and of the idea that each social action invites an action from the other that has a particular location along these dimensions. We also relate these ideas to the Affect-as-Information hypothesis, an approach that often guides research in psychology on the role of affect in regulating judgment and thought. PMID:18461152

  8. A damage spreading transition in a stochastic host-pathogen system

    NASA Astrophysics Data System (ADS)

    Fried, Yael; Ben-Zion, Yossi; Shnerb, Nadav M.

    2013-11-01

    One of the leading proposals for solving the biodiversity problem is the Janzen-Connell hypothesis, suggesting that the abundance of a species is limited by a host-specific exploiter. Motivated by this model, here we analyze a spatially explicit host-pathogen system, looking for coexistence conditions under stochastic dynamics. Above the standard extinction transition associated with the failure of the pathogen to invade, we report another, damage spreading transition, marking the point where macroscopic clusters of host individuals disappear. Beyond its practical significance, this transition is apparently a generic landmark along the axis of decreasing stochasticity, if the deterministic dynamics support cycles or quasicycles.

  9. Affective loop experiences: designing for interactional embodiment

    PubMed Central

    Höök, Kristina

    2009-01-01

    Involving our corporeal bodies in interaction can create strong affective experiences. Systems that both can be influenced by and influence users corporeally exhibit a use quality we name an affective loop experience. In an affective loop experience, (i) emotions are seen as processes, constructed in the interaction, starting from everyday bodily, cognitive or social experiences; (ii) the system responds in ways that pull the user into the interaction, touching upon end users' physical experiences; and (iii) throughout the interaction the user is an active, meaning-making individual choosing how to express themselves—the interpretation responsibility does not lie with the system. We have built several systems that attempt to create affective loop experiences with more or less successful results. For example, eMoto lets users send text messages between mobile phones, but in addition to text, the messages also have colourful and animated shapes in the background chosen through emotion-gestures with a sensor-enabled stylus pen. Affective Diary is a digital diary with which users can scribble their notes, but it also allows for bodily memorabilia to be recorded from body sensors mapping to users' movement and arousal and placed along a timeline. Users can see patterns in their bodily reactions and relate them to various events going on in their lives. The experiences of building and deploying these systems gave us insights into design requirements for addressing affective loop experiences, such as how to design for turn-taking between user and system, how to create for ‘open’ surfaces in the design that can carry users' own meaning-making processes, how to combine modalities to create for a ‘unity’ of expression, and the importance of mirroring user experience in familiar ways that touch upon their everyday social and corporeal experiences. But a more important lesson gained from deploying the systems is how emotion processes are co-constructed and

  10. Affective loop experiences: designing for interactional embodiment.

    PubMed

    Höök, Kristina

    2009-12-12

    Involving our corporeal bodies in interaction can create strong affective experiences. Systems that both can be influenced by and influence users corporeally exhibit a use quality we name an affective loop experience. In an affective loop experience, (i) emotions are seen as processes, constructed in the interaction, starting from everyday bodily, cognitive or social experiences; (ii) the system responds in ways that pull the user into the interaction, touching upon end users' physical experiences; and (iii) throughout the interaction the user is an active, meaning-making individual choosing how to express themselves-the interpretation responsibility does not lie with the system. We have built several systems that attempt to create affective loop experiences with more or less successful results. For example, eMoto lets users send text messages between mobile phones, but in addition to text, the messages also have colourful and animated shapes in the background chosen through emotion-gestures with a sensor-enabled stylus pen. Affective Diary is a digital diary with which users can scribble their notes, but it also allows for bodily memorabilia to be recorded from body sensors mapping to users' movement and arousal and placed along a timeline. Users can see patterns in their bodily reactions and relate them to various events going on in their lives. The experiences of building and deploying these systems gave us insights into design requirements for addressing affective loop experiences, such as how to design for turn-taking between user and system, how to create for 'open' surfaces in the design that can carry users' own meaning-making processes, how to combine modalities to create for a 'unity' of expression, and the importance of mirroring user experience in familiar ways that touch upon their everyday social and corporeal experiences. But a more important lesson gained from deploying the systems is how emotion processes are co-constructed and experienced

  11. Variation in infectivity and aggressiveness in space and time in wild host-pathogen systems – causes and consequences

    PubMed Central

    Tack, Ayco JM; Thrall, Peter H; Barrett, Luke G; Burdon, Jeremy J; Laine, Anna-Liisa

    2012-01-01

    Variation in host resistance and in the ability of pathogens to infect and grow (i.e. pathogenicity) is important as it provides the raw material for antagonistic (co)evolution, and therefore underlies risks of disease spread, disease evolution, and host shifts. Moreover, the distribution of this variation in space and time may inform us about the mode of coevolutionary selection (arms race vs. fluctuating selection dynamics) and the relative roles of GxG interactions, gene flow, selection and genetic drift in shaping coevolutionary processes. While variation in host resistance has recently been reviewed, little is known about overall patterns in the frequency and scale of variation in pathogenicity, particularly in natural systems. Using 48 studies from 30 distinct host-pathogen systems, this review demonstrates that variation in pathogenicity is ubiquitous across multiple spatial and temporal scales. Quantitative analysis of a subset of extensively studied plant-pathogen systemsshows that the magnitude of within-population variation in pathogenicity is large relative to among-population variation, and that the distribution of pathogenicity partly mirrors the distribution of host resistance. At least part of the variation in pathogenicity found at a given spatial scale is adaptive, as evidenced by studies that have examined local adaptation at scales ranging from single hosts through metapopulations to entire continents, and – to a lesser extent - by comparisons of pathogenicity with neutral genetic variation. Together these results support coevolutionary selection through fluctuating selection dynamics. We end by outlining several promising directions for future research. PMID:22905782

  12. Toxoplasmosis and Polygenic Disease Susceptibility Genes: Extensive Toxoplasma gondii Host/Pathogen Interactome Enrichment in Nine Psychiatric or Neurological Disorders

    PubMed Central

    Carter, C. J.

    2013-01-01

    Toxoplasma gondii is not only implicated in schizophrenia and related disorders, but also in Alzheimer's or Parkinson's disease, cancer, cardiac myopathies, and autoimmune disorders. During its life cycle, the pathogen interacts with ~3000 host genes or proteins. Susceptibility genes for multiple sclerosis, Alzheimer's disease, schizophrenia, bipolar disorder, depression, childhood obesity, Parkinson's disease, attention deficit hyperactivity disorder (P  from  8.01E − 05  (ADHD)  to  1.22E − 71) (multiple sclerosis), and autism (P = 0.013), but not anorexia or chronic fatigue are highly enriched in the human arm of this interactome and 18 (ADHD) to 33% (MS) of the susceptibility genes relate to it. The signalling pathways involved in the susceptibility gene/interactome overlaps are relatively specific and relevant to each disease suggesting a means whereby susceptibility genes could orient the attentions of a single pathogen towards disruption of the specific pathways that together contribute (positively or negatively) to the endophenotypes of different diseases. Conditional protein knockdown, orchestrated by T. gondii proteins or antibodies binding to those of the host (pathogen derived autoimmunity) and metabolite exchange, may contribute to this disruption. Susceptibility genes may thus be related to the causes and influencers of disease, rather than (and as well as) to the disease itself. PMID:23533776

  13. Host-Pathogen Interactions: I. A Correlation Between alpha-Galactosidase Production and Virulence.

    PubMed

    English, P D; Albersheim, P

    1969-02-01

    Resistance or susceptibility of Red Kidney, Pinto and Small White beans (Phaseolus vulgaris) to the alpha, beta, and gamma strains of Colletotrichum lindemuthianum was either confirmed or established. These fungal strains secrete alpha-galactosidase, beta-galactosidase and beta-xylosidase when grown on cell walls isolated from the hypocotyls of any of the above bean varieties. These enzymes effectively degrade cell walls isolated from susceptible 5-day old hypocotyls but degrade only slightly the walls isolated from resistant 18-day old hypocotyls. The amounts of the beta-galactosidase and beta-xylosidase secreted by the 3 fungal strains are relatively low and are approximately equivalent. The secretion of these 2 enzymes is not dependent upon the bean variety from which the hypocotyl cell walls used as a carbon source were isolated. However, the fungal strains secrete greater amounts of alpha-galactosidase when grown on hypocotyl cell walls isolated from susceptible plants than when grown on walls from resistant plants. Virulent isolates of the fungus, when grown on hypocotyl cell walls isolated from a susceptible plant, secrete more alpha-galactosidase than do attenuated (avirulent) isolates of the same fungal strain grown under the same conditions. The alpha-galactosidase secreted by each of the fungal strains is capable of removing galactose from the hypocotyl cell walls of each bean variety tested. Galactose is removed from the cell walls of each variety at the same rate regardless of whether the cell walls were isolated from a susceptible or resistant plant.

  14. Host-Pathogen Coupled Networks: Model for Bacillus Anthracis Interaction with Host Macrophages

    DTIC Science & Technology

    2015-09-01

    regional lymph nodes where vegetative BA bacteria synthesize protective antigen (PA), lethal factor (LF), and edema factor (EF) for release into...vegetative B. anthracis bacteria synthesize protective antigen (PA), lethal factor (LF), and edema factor (EF) for release into the circulation...proteins to which B. anthracis owes its virulence. These proteins are protective antigen (PA), lethal factor (LF), and edema factor (EF). LF is a

  15. Evolutionary fine-tuning of conformational ensembles in FimH during host-pathogen interactions

    PubMed Central

    Kalas, Vasilios; Pinkner, Jerome S.; Hannan, Thomas J.; Hibbing, Michael E.; Dodson, Karen W.; Holehouse, Alex S.; Zhang, Hao; Tolia, Niraj H.; Gross, Michael L.; Pappu, Rohit V.; Janetka, James; Hultgren, Scott J.

    2017-01-01

    Positive selection in the two-domain type 1 pilus adhesin FimH enhances Escherichia coli fitness in urinary tract infection (UTI). We report a comprehensive atomic-level view of FimH in two-state conformational ensembles in solution, composed of one low-affinity tense (T) and multiple high-affinity relaxed (R) conformations. Positively selected residues allosterically modulate the equilibrium between these two conformational states, each of which engages mannose through distinct binding orientations. A FimH variant that only adopts the R state is severely attenuated early in a mouse model of uncomplicated UTI but is proficient at colonizing catheterized bladders in vivo or bladder transitional-like epithelial cells in vitro. Thus, the bladder habitat has barrier(s) to R state–mediated colonization possibly conferred by the terminally differentiated bladder epithelium and/or decoy receptors in urine. Together, our studies reveal the conformational landscape in solution, binding mechanisms, and adhesive strength of an allosteric two-domain adhesin that evolved “moderate” affinity to optimize persistence in the bladder during UTI. PMID:28246638

  16. Studying Salmonellae and Yersiniae host-pathogen interactions using integrated 'omics and modeling.

    PubMed

    Ansong, Charles; Deatherage, Brooke L; Hyduke, Daniel; Schmidt, Brian; McDermott, Jason E; Jones, Marcus B; Chauhan, Sadhana; Charusanti, Pep; Kim, Young-Mo; Nakayasu, Ernesto S; Li, Jie; Kidwai, Afshan; Niemann, George; Brown, Roslyn N; Metz, Thomas O; McAteer, Kathleen; Heffron, Fred; Peterson, Scott N; Motin, Vladimir; Palsson, Bernhard O; Smith, Richard D; Adkins, Joshua N

    2013-01-01

    Salmonella and Yersinia are two distantly related genera containing species with wide host-range specificity and pathogenic capacity. The metabolic complexity of these organisms facilitates robust lifestyles both outside of and within animal hosts. Using a pathogen-centric systems biology approach, we are combining a multi-omics (transcriptomics, proteomics, metabolomics) strategy to define properties of these pathogens under a variety of conditions including those that mimic the environments encountered during pathogenesis. These high-dimensional omics datasets are being integrated in selected ways to improve genome annotations, discover novel virulence-related factors, and model growth under infectious states. We will review the evolving technological approaches toward understanding complex microbial life through multi-omic measurements and integration, while highlighting some of our most recent successes in this area.

  17. Host-pathogen interactions and genome evolution in two generalist and specialist microsporidian pathogens of mosquitoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The adaptation of two distantly related microsporidia to their mosquito hosts was investigated. Edhazardia aedis is a specialist pathogen that infects Aedes aegypti, the main vector of dengue and yellow fever arboviruses. Vavraia culicis is a generalist pathogen of several insects including Anophele...

  18. Physiology of host-pathogen interaction in wilt diseases of cotton in relation to pathogen management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium and Fusarium wilts are important vascular wilt diseases of cotton that significantly reduce cotton yields and negatively impact fiber quality. In spite of intense efforts to control these diseases, yield losses persist and in the US alone were estimated to be about 133 and 28 thousand b...

  19. Model of Host-Pathogen Interaction Dynamics Links In Vivo Optical Imaging and Immune Responses

    PubMed Central

    Ale, Angelique; Crepin, Valerie F.; Collins, James W.; Constantinou, Nicholas; Habibzay, Maryam; Babtie, Ann C.

    2016-01-01

    ABSTRACT Tracking disease progression in vivo is essential for the development of treatments against bacterial infection. Optical imaging has become a central tool for in vivo tracking of bacterial population development and therapeutic response. For a precise understanding of in vivo imaging results in terms of disease mechanisms derived from detailed postmortem observations, however, a link between the two is needed. Here, we develop a model that provides that link for the investigation of Citrobacter rodentium infection, a mouse model for enteropathogenic Escherichia coli (EPEC). We connect in vivo disease progression of C57BL/6 mice infected with bioluminescent bacteria, imaged using optical tomography and X-ray computed tomography, to postmortem measurements of colonic immune cell infiltration. We use the model to explore changes to both the host immune response and the bacteria and to evaluate the response to antibiotic treatment. The developed model serves as a novel tool for the identification and development of new therapeutic interventions. PMID:27821583

  20. The Transcription and Translation Landscapes during Human Cytomegalovirus Infection Reveal Novel Host-Pathogen Interactions

    PubMed Central

    Shitrit, Alina; Shani, Odem; Le-Trilling, Vu Thuy Khanh; Trilling, Mirko; Friedlander, Gilgi; Tanenbaum, Marvin; Stern-Ginossar, Noam

    2015-01-01

    Viruses are by definition fully dependent on the cellular translation machinery, and develop diverse mechanisms to co-opt this machinery for their own benefit. Unlike many viruses, human cytomegalovirus (HCMV) does suppress the host translation machinery, and the extent to which translation machinery contributes to the overall pattern of viral replication and pathogenesis remains elusive. Here, we combine RNA sequencing and ribosomal profiling analyses to systematically address this question. By simultaneously examining the changes in transcription and translation along HCMV infection, we uncover extensive transcriptional control that dominates the response to infection, but also diverse and dynamic translational regulation for subsets of host genes. We were also able to show that, at late time points in infection, translation of viral mRNAs is higher than that of cellular mRNAs. Lastly, integration of our translation measurements with recent measurements of protein abundance enabled comprehensive identification of dozens of host proteins that are targeted for degradation during HCMV infection. Since targeted degradation indicates a strong biological importance, this approach should be applicable for discovering central host functions during viral infection. Our work provides a framework for studying the contribution of transcription, translation and degradation during infection with any virus. PMID:26599541

  1. Examining host-pathogen interactions at mucosal surfaces reveals novel molecular targets for columnaris disease intervention

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Columnaris disease, caused by the bacterial pathogen Flavobacterium columnare, is a major problem globally and leads to tremendous losses of freshwater fish, particularly in intensively farmed aquaculture species. Despite its widespread importance, our understanding of F. columnare infectious proce...

  2. Genetic mechanisms of host-pathogen interactions for charcoal rot in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean is a leading agronomic crop and it is contributing to food and agricultural security with expanding production in diverse regions around the world. Although soybean is attacked by several diseases and pests, and progress has been made in understanding and managing some of these pathogens and...

  3. Salmonella pathogenicity islands in host specificity, host pathogen-interactions and antibiotics resistance of Salmonella enterica.

    PubMed

    Gerlach, Roman G; Hensel, Michael

    2007-01-01

    Salmonella enterica is a pathogen highly successful in causing a variety of gastrointestinal and systemic diseases in animals and humans. While some serovars of S. enterica are able to infect a broad range of host organisms, other serovars are highly restricted to specific host species. The colonization of hosts by S. enterica depends on the function of a large number of virulence determinants. The molecular analyses of virulence genes demonstrated that most of these loci are clustered within Salmonella Pathogenicity Islands (SPI). SPI1 and SPI2 each encode type III secretion systems (T355) that confer main virulence traits of S. enterica, i.e. invasion, enteropathogenesis and intracellular survival and proliferation. Further SPI encode factors that contribute to intracellular survival, different types of adhesins, or effector proteins of the SPI1-T3SS or SPI2-T3SS. The availability of genome sequences of several serovars of S. enterica also revealed serovar-specific SPI. In this review, the main characteristics of the currently known SPI are summarized with focus on their roles in various animal hosts and putative functions in human infections.

  4. Genome Scale Evolution of Myxoma Virus Reveals Host-Pathogen Adaptation and Rapid Geographic Spread

    PubMed Central

    Kerr, Peter J.; Rogers, Matthew B.; Fitch, Adam; DePasse, Jay V.; Cattadori, Isabella M.; Twaddle, Alan C.; Hudson, Peter J.; Tscharke, David C.; Read, Andrew F.; Holmes, Edward C.

    2013-01-01

    The evolutionary interplay between myxoma virus (MYXV) and the European rabbit (Oryctolagus cuniculus) following release of the virus in Australia in 1950 as a biological control is a classic example of host-pathogen coevolution. We present a detailed genomic and phylogeographic analysis of 30 strains of MYXV, including the Australian progenitor strain Standard Laboratory Strain (SLS), 24 Australian viruses isolated from 1951 to 1999, and three isolates from the early radiation in Britain from 1954 and 1955. We show that in Australia MYXV has spread rapidly on a spatial scale, with multiple lineages cocirculating within individual localities, and that both highly virulent and attenuated viruses were still present in the field through the 1990s. In addition, the detection of closely related virus lineages at sites 1,000 km apart suggests that MYXV moves freely in geographic space, with mosquitoes, fleas, and rabbit migration all providing means of transport. Strikingly, despite multiple introductions, all modern viruses appear to be ultimately derived from the original introductions of SLS. The rapidity of MYXV evolution was also apparent at the genomic scale, with gene duplications documented in a number of viruses. Duplication of potential virulence genes may be important in increasing the expression of virulence proteins and provides the basis for the evolution of novel functions. Mutations leading to loss of open reading frames were surprisingly frequent and in some cases may explain attenuation, but no common mutations that correlated with virulence or attenuation were identified. PMID:24067966

  5. Genome scale evolution of myxoma virus reveals host-pathogen adaptation and rapid geographic spread.

    PubMed

    Kerr, Peter J; Rogers, Matthew B; Fitch, Adam; Depasse, Jay V; Cattadori, Isabella M; Twaddle, Alan C; Hudson, Peter J; Tscharke, David C; Read, Andrew F; Holmes, Edward C; Ghedin, Elodie

    2013-12-01

    The evolutionary interplay between myxoma virus (MYXV) and the European rabbit (Oryctolagus cuniculus) following release of the virus in Australia in 1950 as a biological control is a classic example of host-pathogen coevolution. We present a detailed genomic and phylogeographic analysis of 30 strains of MYXV, including the Australian progenitor strain Standard Laboratory Strain (SLS), 24 Australian viruses isolated from 1951 to 1999, and three isolates from the early radiation in Britain from 1954 and 1955. We show that in Australia MYXV has spread rapidly on a spatial scale, with multiple lineages cocirculating within individual localities, and that both highly virulent and attenuated viruses were still present in the field through the 1990s. In addition, the detection of closely related virus lineages at sites 1,000 km apart suggests that MYXV moves freely in geographic space, with mosquitoes, fleas, and rabbit migration all providing means of transport. Strikingly, despite multiple introductions, all modern viruses appear to be ultimately derived from the original introductions of SLS. The rapidity of MYXV evolution was also apparent at the genomic scale, with gene duplications documented in a number of viruses. Duplication of potential virulence genes may be important in increasing the expression of virulence proteins and provides the basis for the evolution of novel functions. Mutations leading to loss of open reading frames were surprisingly frequent and in some cases may explain attenuation, but no common mutations that correlated with virulence or attenuation were identified.

  6. Scaling laws describe memories of host-pathogen riposte in the HIV population.

    PubMed

    Barton, John P; Kardar, Mehran; Chakraborty, Arup K

    2015-02-17

    The enormous genetic diversity and mutability of HIV has prevented effective control of this virus by natural immune responses or vaccination. Evolution of the circulating HIV population has thus occurred in response to diverse, ultimately ineffective, immune selection pressures that randomly change from host to host. We show that the interplay between the diversity of human immune responses and the ways that HIV mutates to evade them results in distinct sets of sequences defined by similar collectively coupled mutations. Scaling laws that relate these sets of sequences resemble those observed in linguistics and other branches of inquiry, and dynamics reminiscent of neural networks are observed. Like neural networks that store memories of past stimulation, the circulating HIV population stores memories of host-pathogen combat won by the virus. We describe an exactly solvable model that captures the main qualitative features of the sets of sequences and a simple mechanistic model for the origin of the observed scaling laws. Our results define collective mutational pathways used by HIV to evade human immune responses, which could guide vaccine design.

  7. Systems approach to characterizing cell signaling in host-pathogen response to staphylococcus toxin.

    SciTech Connect

    Ambrosiano, J. J.; Gupta, G.; Gray, P. C.; Hush, D. R.; Fugate, M. L.; Cleland, T. J.; Roberts, R. M.; Hlavacek, W. S.; Smith, J. L.

    2002-01-01

    The mammalian immune system is capable of highly sensitive and specific responses when challenged by pathogens. It is believed that the human immune repertoire - the total number of distinct antigens that can be recognized - is between 10{sup 9} and 10{sup 11}. The most specific responses are cell mediated and involve complex and subtle communications among the immune cells via small proteins known as cytokines. The details of host-pathogen response are exceedingly complex, involving both intracellular and extracellular mechanisms. These include the presentation of antigen by B cells to helper T cells and subsequent stimulation of signal transduction pathways and gene expression within both B and T-cell populations. These in turn lead to the secretion of cytokines and receptor expression. Intercellular cytokine signaling can trigger a host of immune responses including the proliferation and specialization of naive immune cells and the marshaling of effector cells to combat infection. In the ever-evolving game of threat and countermeasure played out by pathogens and their intended hosts, there are direct assaults aimed at subverting the immune system's ability to recognize antigens and respond effectively to challenge by pathogens. Staphylococcus is one of these. Staph bacteria secrete a variety of toxins known generically as superantigens. Superantigen molecules bind simultaneously to the MHC receptors of antigen presenting cells and the TCR receptors of helper T cells, locking them in place and leading to overstimulation. This strategy can effectively burn out the immune system in a matter of days.

  8. Low host-pathogen specificity in the leaf-cutting ant-microbe symbiosis.

    PubMed

    Taerum, Stephen J; Cafaro, Matías J; Little, Ainslie E F; Schultz, Ted R; Currie, Cameron R

    2007-08-22

    Host-parasite associations are shaped by coevolutionary dynamics. One example is the complex fungus-growing ant-microbe symbiosis, which includes ancient host-parasite coevolution. Fungus-growing ants and the fungi they cultivate for food have an antagonistic symbiosis with Escovopsis, a specialized microfungus that infects the ants' fungus gardens. The evolutionary histories of the ant, cultivar and Escovopsis are highly congruent at the deepest phylogenetic levels, with specific parasite lineages exclusively associating with corresponding groups of ants and cultivar. Here, we examine host-parasite specificity at finer phylogenetic levels, within the most derived clade of fungus-growing ants, the leaf-cutters (Atta spp. and Acromyrmex spp.). Our molecular phylogeny of Escovopsis isolates from the leaf-cutter ant-microbe symbiosis confirms specificity at the broad phylogenetic level, but reveals frequent host-switching events between species and genera of leaf-cutter ants. Escovopsis strains isolated from Acromyrmex and Atta gardens occur together in the same clades, and very closely related strains can even infect the gardens of both ant genera. Experimental evidence supports low host-parasite specificity, with phylogenetically diverse strains of Escovopsis being capable of overgrowing all leaf-cutter cultivars examined. Thus, our findings indicate that this host-pathogen association is shaped by the farming ants having to protect their cultivated fungus from phylogenetically diverse Escovopsis garden pathogens.

  9. Affect in Human-Robot Interaction

    DTIC Science & Technology

    2014-01-01

    even without deliberately modeling them: for example, if a robot backs away from a staircase it might be interpreted as a fear of falling by a person...chosen to deliberately embed explicit models of affect into robots, with the express purpose of enhancing the relationship between the human and robot...many psychological models of human affect have been explored. Two examples that have had commercial success are described

  10. Facial Affect Reciprocity in Dyadic Interactions

    DTIC Science & Technology

    2012-09-01

    predicted. Surprisingly, however, it was not the exchange of emotional expressions per se that was the best predictor of the various outcomes ; instead...suggest a role for the concept of emotion regulation in predicting better behavioral outcomes in dyadic interaction. Emotion regulation refers to the...degree to which individuals can manage and modify their emotional reactions in order to achieve constructive, goal-directed outcomes . One component

  11. Pharmaceutical formulation affects titanocene transferrin interactions.

    PubMed

    Buettner, Katherine M; Snoeberger, Robert C; Batista, Victor S; Valentine, Ann M

    2011-10-07

    Since the discovery of the anticancer activity of titanocene dichloride (TDC), many derivatives have been developed and evaluated. MKT4, a soluble, water-stable formulation of TDC, was used for both Phase I and Phase II human clinical trials. This formulation is investigated here by using (1)H and (13)C NMR, FT-ICR mass spectrometry, and UV/vis-detected pH-dependent speciation. DFT calculations are also utilized to assess the likelihood of proposed species. Human serum transferrin has been identified as a potential vehicle for the Ti anticancer drugs; these studies examine whether and how formulation of TDC as MKT4 may influence its interactions, both thermodynamic and kinetic, with human serum transferrin by using UV/vis absorption and fluorescence quenching. MKT4 binds differently than TDC to transferrin, showing different kinetics of binding as well as a different molar absorptivity of binding (7500 M(-1) cm(-1) per site). Malate, used in the buffer for MKT4 administration, acts as a synergistic anion for Ti binding, shifting the tyrosine to Ti charge transfer energy and decreasing the molar absorptivity to 5000 M(-1) cm(-1) per site. These differences may have had consequences after the change from TDC to MKT4 in human clinical trials.

  12. A Multi-Omic View of Host-Pathogen-Commensal Interplay in Salmonella-Mediated Intestinal Infection

    SciTech Connect

    Kaiser, Brooke LD; Li, Jie; Sanford, James A.; Kim, Young-Mo; Kronewitter, Scott R.; Jones, Marcus B.; Peterson, Christine; Peterson, Scott N.; Frank, Bryan C.; Purvine, Samuel O.; Brown, Joseph N.; Metz, Thomas O.; Smith, Richard D.; Heffron, Fred; Adkins, Joshua N.

    2013-06-26

    The potential for commensal microorganisms indigenous to a host (the ‘microbiome’ or ‘microbiota’) to alter infection outcome by influencing host-pathogen interplay is largely unknown. We used a multi-omics “systems” approach, incorporating proteomics, metabolomics, glycomics, and metagenomics, to explore the molecular interplay between the murine host, the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), and commensal gut microorganisms during intestinal infection with S. Typhimurium. We find proteomic evidence that S. Typhimurium thrives within the infected 129/SvJ mouse gut without antibiotic pre-treatment, inducing inflammation and disrupting the intestinal microbiome (e.g., suppressing Bacteroidetes and Firmicutes while promoting growth of Salmonella and Enterococcus). Alteration of the host microbiome population structure was highly correlated with gut environmental changes, including the accumulation of metabolites normally consumed by commensal microbiota. Finally, the less characterized phase of S. Typhimurium’s lifecycle was investigated, and both proteomic and glycomic evidence suggests S. Typhimurium may take advantage of increased fucose moieties to metabolize fucose while growing in the gut. The application of multiple omics measurements to Salmonella-induced intestinal inflammation provides insights into complex molecular strategies employed during pathogenesis between host, pathogen, and the microbiome.

  13. Affective Behavior and Nonverbal Interaction in Collaborative Virtual Environments

    ERIC Educational Resources Information Center

    Peña, Adriana; Rangel, Nora; Muñoz, Mirna; Mejia, Jezreel; Lara, Graciela

    2016-01-01

    While a person's internal state might not be easily inferred through an automatic computer system, within a group, people express themselves through their interaction with others. The group members' interaction can be then helpful to understand, to certain extent, its members' affective behavior in any case toward the task at hand. In this…

  14. Effects of Pesticide Mixtures on Host-Pathogen Dynamics of the Amphibian Chytrid Fungus

    PubMed Central

    Buck, Julia C.; Hua, Jessica; Brogan, William R.; Dang, Trang D.; Urbina, Jenny; Bendis, Randall J.; Stoler, Aaron B.; Blaustein, Andrew R.; Relyea, Rick A.

    2015-01-01

    Anthropogenic and natural stressors often interact to affect organisms. Amphibian populations are undergoing unprecedented declines and extinctions with pesticides and emerging infectious diseases implicated as causal factors. Although these factors often co-occur, their effects on amphibians are usually examined in isolation. We hypothesized that exposure of larval and metamorphic amphibians to ecologically relevant concentrations of pesticide mixtures would increase their post-metamorphic susceptibility to the fungus Batrachochytrium dendrobatidis (Bd), a pathogen that has contributed to amphibian population declines worldwide. We exposed five anuran species (Pacific treefrog, Pseudacris regilla; spring peeper, Pseudacris crucifer; Cascades frog, Rana cascadae; northern leopard frog, Lithobates pipiens; and western toad, Anaxyrus boreas) from three families to mixtures of four common insecticides (chlorpyrifos, carbaryl, permethrin, and endosulfan) or herbicides (glyphosate, acetochlor, atrazine, and 2,4-D) or a control treatment, either as tadpoles or as newly metamorphic individuals (metamorphs). Subsequently, we exposed animals to Bd or a control inoculate after metamorphosis and compared survival and Bd load. Bd exposure significantly increased mortality in Pacific treefrogs, spring peepers, and western toads, but not in Cascades frogs or northern leopard frogs. However, the effects of pesticide exposure on mortality were negligible, regardless of the timing of exposure. Bd load varied considerably across species; Pacific treefrogs, spring peepers, and western toads had the highest loads, whereas Cascades frogs and northern leopard frogs had the lowest loads. The influence of pesticide exposure on Bd load depended on the amphibian species, timing of pesticide exposure, and the particular pesticide treatment. Our results suggest that exposure to realistic pesticide concentrations has minimal effects on Bd-induced mortality, but can alter Bd load. This result

  15. Deciphering the host-pathogen protein interface in chikungunya virus-mediated sickness.

    PubMed

    Rana, Jyoti; Sreejith, R; Gulati, Sahil; Bharti, Isha; Jain, Surangna; Gupta, Sanjay

    2013-06-01

    Successful infection with chikungunya virus (CHIKV) depends largely on the ability of this virus to manipulate cellular processes in its favour through specific interactions with several host factors. The knowledge of virus-host interactions is of particular value for understanding the interface through which therapeutic strategies could be applied. In the current study, the authors have employed a computational method to study the protein interactions between CHIKV and both its human host and its mosquito vector. In this structure-based study, 2028 human and 86 mosquito proteins were predicted to interact with those of CHIKV through 3918 and 112 unique interactions, respectively. This approach could predict 40 % of the experimentally confirmed CHIKV-host interactions along with several novel interactions, suggesting the involvement of CHIKV in intracellular cell signaling, programmed cell death, and transcriptional and translational regulation. The data corresponded to those obtained in earlier studies for HIV and dengue viruses using the same methodology. This study provides a conservative set of potential interactions that can be employed for future experimental studies with a view to understanding CHIKV biology.

  16. The effect of delayed host self-regulation on host-pathogen population cycles in forest insects.

    PubMed

    Xiao, Yanni; Bowers, Roger G; Tang, Sanyi

    2009-05-21

    Delayed host self-regulation using a Beverton-Holt function and delayed logistic self-regulation are included in a host-pathogen model with free-living infective stages (Anderson and May's model G) with the purpose of investigating whether adding the relatively complex self-regulations decrease the likelihood of population cycles. The main results indicate that adding delayed self-regulation to the baseline model increases the likelihood of population cycles. The dynamics display some of the key features seen in the field, such as cycle peak density exceeding the carrying capacity and a locally stable equilibrium coexisting with a stable cycle (bistability). Numerical studies show that the model with more complex forms of self-regulation can generate cycles which match most aspects of the cycles observed in nature.

  17. Back to the metal age: battle for metals at the host-pathogen interface during urinary tract infection.

    PubMed

    Subashchandrabose, Sargurunathan; Mobley, Harry L T

    2015-06-01

    Urinary tract infection (UTI) represents one of the most common bacterial infections in humans and uropathogenic E. coli (UPEC) is the major causative agent of UTI in people. Research on UPEC and other bacterial pathogens causing UTI has now identified the critical role of metal transport systems in the pathogenesis of UTI. Here we review the major effectors of metal transport in bacteria and host proteins that impair metal acquisition by bacterial pathogens. In particular, we describe the studies that identified iron, zinc and nickel import and copper export as key virulence and fitness determinants during UTI. Various metal transport systems and mechanisms that govern the expression of metal transport systems are also presented here. Specific examples from UPEC and other uropathogens, when available, are presented to depict the battle for metals at the host-pathogen interface during UTI.

  18. Affective Patterns in Triadic Family Interactions: Associations with Adolescent Depression

    PubMed Central

    Hollenstein, Tom; Allen, Nicholas; Sheeber, Lisa

    2016-01-01

    Affective family processes are associated with the development of depression during adolescence. However, empirical description of these processes is generally based on examining affect at the individual or dyadic level. The purpose of this study was to examine triadic patterns of affect during parent-adolescent interactions in families with or without a depressed adolescent. We used state space grid analysis to characterize the state of all three actors simultaneously. Compared to healthy controls, triads with depressed adolescents displayed a wider range of affect, demonstrated less predictability of triadic affective sequences, spent more time and returned more quickly to discrepant affective states, and spent less time and returned more slowly to matched affective states, particularly while engaged in a problem-solving interaction. Furthermore, we identified seven unique triadic states in which triads with depressed adolescents spent significantly more time than triads with healthy controls. The present study enhances understanding of family affective processes related to depression by taking a more systemic approach and revealing triadic patterns that go beyond individual and dyadic analyses. PMID:25797844

  19. fMRI Scanner Noise Interaction with Affective Neural Processes

    PubMed Central

    Skouras, Stavros; Gray, Marcus; Critchley, Hugo; Koelsch, Stefan

    2013-01-01

    The purpose of the present study was the investigation of interaction effects between functional MRI scanner noise and affective neural processes. Stimuli comprised of psychoacoustically balanced musical pieces, expressing three different emotions (fear, neutral, joy). Participants (N=34, 19 female) were split into two groups, one subjected to continuous scanning and another subjected to sparse temporal scanning that features decreased scanner noise. Tests for interaction effects between scanning group (sparse/quieter vs continuous/noisier) and emotion (fear, neutral, joy) were performed. Results revealed interactions between the affective expression of stimuli and scanning group localized in bilateral auditory cortex, insula and visual cortex (calcarine sulcus). Post-hoc comparisons revealed that during sparse scanning, but not during continuous scanning, BOLD signals were significantly stronger for joy than for fear, as well as stronger for fear than for neutral in bilateral auditory cortex. During continuous scanning, but not during sparse scanning, BOLD signals were significantly stronger for joy than for neutral in the left auditory cortex and for joy than for fear in the calcarine sulcus. To the authors' knowledge, this is the first study to show a statistical interaction effect between scanner noise and affective processes and extends evidence suggesting scanner noise to be an important factor in functional MRI research that can affect and distort affective brain processes. PMID:24260420

  20. Group Composition Affecting Student Interaction and Achievement: Instructors' Perspectives

    ERIC Educational Resources Information Center

    Lei, Simon A.; Kuestermeyer, Bailey N.; Westmeyer, Kara A.

    2010-01-01

    Multiple research studies have been conducted that focus on various uses of collaborative learning in and out of the classroom in higher education institutions. The purpose of this article is to review previously published literature regarding group composition and how it affects student interaction and achievement. Group composition research has…

  1. Locomotion in Stroke Subjects: Interactions between Unaffected and Affected Sides

    ERIC Educational Resources Information Center

    Kloter, Evelyne; Wirz, Markus; Dietz, Volker

    2011-01-01

    The aim of this study was to evaluate the sensorimotor interactions between unaffected and affected sides of post-stroke subjects during locomotion. In healthy subjects, stimulation of the tibial nerve during the mid-stance phase is followed by electromyography responses not only in the ipsilateral tibialis anterior, but also in the proximal arm…

  2. viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence.

    PubMed

    Csorba, Tibor; Kontra, Levente; Burgyán, József

    2015-05-01

    RNA silencing is a homology-dependent gene inactivation mechanism that regulates a wide range of biological processes including antiviral defense. To deal with host antiviral responses viruses evolved mechanisms to avoid or counteract this, most notably through expression of viral suppressors of RNA silencing. Besides working as silencing suppressors, these proteins may also fulfill other functions during infection. In many cases the interplay between the suppressor function and other "unrelated" functions remains elusive. We will present host factors implicated in antiviral pathways and summarize the current status of knowledge about the diverse viral suppressors' strategies acting at various steps of antiviral silencing in plants. Besides, we will consider the multi-functionality of these versatile proteins and related biochemical processes in which they may be involved in fine-tuning the plant-virus interaction. Finally, we will present the current applications and discuss perspectives of the use of these proteins in molecular biology and biotechnology.

  3. Host-pathogen interplay in the respiratory environment of Cystic Fibrosis

    PubMed Central

    Hurley, Bryan P.; Bragonzi, Alessandra

    2015-01-01

    Significant advances have been made in the understanding of disease progression in cystic fibrosis (CF), revealing a complex interplay between host and pathogenic organisms. The diverse CF microbiota within the airway activates an aberrant immune response that is ineffective in clearing infection. An appreciation of how the CF host immune system interacts with these organisms is crucial to understanding the pathogenesis of CF pulmonary disease. Here we discuss the microbial complexity present in the lungs of individuals with CF, review emerging concepts of innate and adaptive immune responses to pathogens that chronically inhabit the CF lung, and discuss therapies that target the aberrant inflammatory response that characterizes CF. A greater understanding of the underlying mechanisms will shed light on pathogenesis and guide more targeted therapies in the future that serve to reduce infection, minimize lung pathology, and improve the quality of life for patients with CF. PMID:25800687

  4. What a Dinner Party! Mechanisms and Functions of Interkingdom Signaling in Host-Pathogen Associations

    PubMed Central

    Kendall, Melissa M.

    2016-01-01

    ABSTRACT Chemical signaling between cells is an effective way to coordinate behavior within a community. Although cell-to-cell signaling has mostly been studied in single species, it is now appreciated that the sensing of chemical signals across kingdoms can be an important regulator of nutrient acquisition, virulence, and host defense. In this review, we focus on the role of interkingdom signaling in the interactions that occur between bacterial pathogens and their mammalian hosts. We discuss the quorum-sensing (QS) systems and other mechanisms used by these bacteria to sense, respond to, and modulate host signals that include hormones, immune factors, and nutrients. We also describe cross talk between these signaling pathways and strategies used by the host to interfere with bacterial signaling, highlighting the complex bidirectional signaling networks that are established across kingdoms. PMID:26933054

  5. New evidence that deformed wing virus and black queen cell virus are multi-host pathogens.

    PubMed

    Zhang, X; He, S Y; Evans, J D; Pettis, J S; Yin, G F; Chen, Y P

    2012-01-01

    The host-range breadth of pathogens can have important consequences for pathogens' long term evolution and virulence, and play critical roles in the emergence and spread of the new diseases. Black queen cell virus (BQCV) and Deformed wing virus (DWV) are the two most common and prevalent viruses in European honey bees, Apis mellifera. Here we provide the evidence that BQCV and DWV infect wild species of honey bees, Apis florea and Apis dorsata. Phylogenetic analyses suggest that these viruses might have moved from A. mellifera to wild bee species and that genetic relatedness as well as the geographical proximity of host species likely play an important role in host range of the viruses. The information obtained from this present study can have important implication for understanding the population structure of bee virus as well as host-virus interactions.

  6. A preliminary investigation of affective interaction in chronic pain couples.

    PubMed

    Johansen, Ayna Beate; Cano, Annmarie

    2007-11-01

    The objective of this preliminary study was to examine the extent to which affective marital interaction related to depressive symptoms in persons with chronic pain and their spouses and to pain severity in persons with pain. Couples from the community completed self-report surveys and engaged in a videotaped conversation on a topic of mutual disagreement that was coded for three affect types (i.e., anger/contempt, sadness, humor). Humor was positively related to marital satisfaction in both partners. Spouse anger/contempt and sadness were positively related to depressive symptoms in spouses. Several significant interaction effects between couple pain status (i.e., whether one or both partners reported pain) and affect also emerged. Specifically, sadness in the participant designated as the person with pain was associated with greater depressive symptoms and pain severity when only he or she reported pain whereas sadness was related to fewer depressive symptoms and less pain severity when both partners reported pain. The relationships between spouse anger and spouse depressive symptoms and between spouse humor and pain severity in the person with pain were also moderated by couple pain status. These exploratory findings can be interpreted in light of emotion regulation and pain empathy theories. For example, partners who have not experienced pain themselves may fail to empathize with persons in pain, thus preventing effective emotion regulation. When both spouses report chronic pain, expressions of negative affect may instead promote emotion regulation because the affect is experienced with a spouse who may be more empathetic.

  7. Locomotion in stroke subjects: interactions between unaffected and affected sides.

    PubMed

    Kloter, Evelyne; Wirz, Markus; Dietz, Volker

    2011-03-01

    The aim of this study was to evaluate the sensorimotor interactions between unaffected and affected sides of post-stroke subjects during locomotion. In healthy subjects, stimulation of the tibial nerve during the mid-stance phase is followed by electromyography responses not only in the ipsilateral tibialis anterior, but also in the proximal arm muscles of both sides, with larger amplitudes prior to swing over an obstacle compared with normal swing. In post-stroke subjects, the electromyography responses were stronger on both sides when the tibial nerve of the unaffected leg was stimulated compared with stimulation of the affected leg. This difference was more pronounced when stimuli were applied prior to swing over an obstacle than prior to normal swing. This indicates an impaired processing of afferent input from the affected leg resulting in attenuated and little task-modulated reflex responses in the arm muscles on both sides. In contrast, an afferent volley from the unaffected leg resulted in larger electromyography responses, even in the muscles of the affected arm. Arm muscle activations were stronger during swing over an obstacle than during normal swing, with no difference in electromyography amplitudes between the unaffected and affected sides. It is concluded that the deficits of the affected arm are compensated for by influences from the unaffected side. These observations indicate strong mutual influences between unaffected and affected sides during locomotion of post-stroke subjects, which might be used to optimize rehabilitation approaches.

  8. Wildly Growing Asparagus (Asparagus officinalis L.) Hosts Pathogenic Fusarium Species and Accumulates Their Mycotoxins.

    PubMed

    Stępień, Łukasz; Waśkiewicz, Agnieszka; Urbaniak, Monika

    2016-05-01

    Asparagus officinalis L. is an important crop in many European countries, likely infected by a number of Fusarium species. Most of them produce mycotoxins in plant tissues, thus affecting the physiology of the host plant. However, there is lack of information on Fusarium communities in wild asparagus, where they would definitely have considerable environmental significance. Therefore, the main scientific aim of this study was to identify the Fusarium species and quantify their typical mycotoxins present in wild asparagus plants collected at four time points of the season. Forty-four Fusarium strains of eight species--Fusarium acuminatum, Fusarium avenaceum, Fusarium culmorum, Fusarium equiseti, Fusarium oxysporum, Fusarium proliferatum, Fusarium sporotrichioides, and Fusarium tricinctum--were isolated from nine wild asparagus plants in 2013 season. It is the first report of F. sporotrichioides isolated from this particular host. Fumonisin B1 was the most abundant mycotoxin, and the highest concentrations of fumonisins B1-B3 and beauvericin were found in the spears collected in May. Moniliformin and enniatins were quantified at lower concentrations. Mycotoxins synthesized by individual strains obtained from infected asparagus tissues were assessed using in vitro cultures on sterile rice grain. Most of the F. sporotrichioides strains synthesized HT-2 toxin and F. equiseti strains were found to be effective zearalenone producers.

  9. Foreign Body Infection Models to Study Host-Pathogen Response and Antimicrobial Tolerance of Bacterial Biofilm

    PubMed Central

    Nowakowska, Justyna; Landmann, Regine; Khanna, Nina

    2014-01-01

    The number of implanted medical devices is steadily increasing and has become an effective intervention improving life quality, but still carries the risk of infection. These infections are mainly caused by biofilm-forming staphylococci that are difficult to treat due to the decreased susceptibility to both antibiotics and host defense mechanisms. To understand the particular pathogenesis and treatment tolerance of implant-associated infection (IAI) animal models that closely resemble human disease are needed. Applications of the tissue cage and catheter abscess foreign body infection models in the mouse will be discussed herein. Both models allow the investigation of biofilm and virulence of various bacterial species and a comprehensive insight into the host response at the same time. They have also been proven to serve as very suitable tools to study the anti-adhesive and anti-infective efficacy of different biomaterial coatings. The tissue cage model can additionally be used to determine pharmacokinetics, efficacy and cytotoxicity of antimicrobial compounds as the tissue cage fluid can be aspirated repeatedly without the need to sacrifice the animal. Moreover, with the advance in innovative imaging systems in rodents, these models may offer new diagnostic measures of infection. In summary, animal foreign body infection models are important tools in the development of new antimicrobials against IAI and can help to elucidate the complex interactions between bacteria, the host immune system, and prosthetic materials. PMID:27025752

  10. Homologous Recombination and Xylella fastidiosa Host-Pathogen Associations in South America.

    PubMed

    Coletta-Filho, Helvécio D; Francisco, Carolina S; Lopes, João R S; Muller, Christiane; Almeida, Rodrigo P P

    2017-03-01

    Homologous recombination affects the evolution of bacteria such as Xylella fastidiosa, a naturally competent plant pathogen that requires insect vectors for dispersal. This bacterial species is taxonomically divided into subspecies, with phylogenetic clusters within subspecies that are host specific. One subspecies, pauca, is primarily limited to South America, with the exception of recently reported strains in Europe and Costa Rica. Despite the economic importance of X. fastidiosa subsp. pauca in South America, little is known about its genetic diversity. Multilocus sequence typing (MLST) has previously identified six sequence types (ST) among plant samples collected in Brazil (both subsp. pauca and multiplex). Here, we report on a survey of X. fastidiosa genetic diversity (MLST based) performed in six regions in Brazil and two in Argentina, by sampling five different plant species. In addition to the six previously reported ST, seven new subsp. pauca and two new subsp. multiplex ST were identified. The presence of subsp. multiplex in South America is considered to be the consequence of a single introduction from its native range in North America more than 80 years ago. Different phylogenetic approaches clustered the South American ST into four groups, with strains infecting citrus (subsp. pauca); coffee and olive (subsp. pauca); coffee, hibiscus, and plum (subsp. pauca); and plum (subsp. multiplex). In areas where these different genetic clusters occurred sympatrically, we found evidence of homologous recombination in the form of bidirectional allelic exchange between subspp. pauca and multiplex. In fact, the only strain of subsp. pauca isolated from a plum host had an allele that originated from subsp. multiplex. These signatures of bidirectional homologous recombination between endemic and introduced ST indicate that gene flow occurs in short evolutionary time frames in X. fastidiosa, despite the ecological isolation (i.e., host plant species) of genotypes.

  11. Multiple-host pathogens in domestic hunting dogs in Nicaragua's Bosawás Biosphere Reserve.

    PubMed

    Fiorello, Christine V; Straub, Mary H; Schwartz, Laura M; Liu, James; Campbell, Amanda; Kownacki, Alexa K; Foley, Janet E

    2017-03-01

    Nicaragua's Bosawás Biosphere Reserve is a vast forested area inhabited largely by indigenous Mayangna and Miskitu people. Most Bosawás residents rely on subsistence hunting and swidden agriculture, and hunting dogs are important for finding and securing wild game. We investigated the health of hunting dogs in three communities differing in location, size, and economy. Dogs in all communities were nutritionally compromised and experienced a heavy burden of disease. Seroprevalence of canine distemper, canine parvovirus, Rickettsia rickettsii, and Leptospira spp. exceeded 50% of dogs. At least one dog was actively shedding leptospires in urine, and many dogs were anemic and/or dehydrated. These dogs interact with wildlife in the forest and humans and domestic livestock in the communities, and may therefore serve as sources of zoonotic and wildlife diseases. Bosawás represents one of the largest intact tracts of habitat for jaguars (Panthera onca) in Central America, and given that these communities are located within the forest, jaguars may be at risk from disease spillover from hunting dogs. Dog owners reported that four of 49 dogs had been attacked and killed by jaguars in the past year, and that retaliatory killing of jaguars was sometimes practiced. Disease spillover from dogs to wildlife could occur both in the course of dogs' hunting activities as well as during jaguar attacks. A better understanding of dog depredation by jaguars, pathogen exposure in jaguars, and a management strategy for the hunting dog population, are urgently needed to mitigate these dual threats to jaguars, improve the lives of hunting dogs, and safeguard the health of their owners.

  12. Host-pathogen time series data in wildlife support a transmission function between density and frequency dependence.

    PubMed

    Smith, Matthew J; Telfer, Sandra; Kallio, Eva R; Burthe, Sarah; Cook, Alex R; Lambin, Xavier; Begon, Michael

    2009-05-12

    A key aim in epidemiology is to understand how pathogens spread within their host populations. Central to this is an elucidation of a pathogen's transmission dynamics. Mathematical models have generally assumed that either contact rate between hosts is linearly related to host density (density-dependent) or that contact rate is independent of density (frequency-dependent), but attempts to confirm either these or alternative transmission functions have been rare. Here, we fit infection equations to 6 years of data on cowpox virus infection (a zoonotic pathogen) for 4 natural populations to investigate which of these transmission functions is best supported by the data. We utilize a simple reformulation of the traditional transmission equations that greatly aids the estimation of the relationship between density and host contact rate. Our results provide support for an infection rate that is a saturating function of host density. Moreover, we find strong support for seasonality in both the transmission coefficient and the relationship between host contact rate and host density, probably reflecting seasonal variations in social behavior and/or host susceptibility to infection. We find, too, that the identification of an appropriate loss term is a key component in inferring the transmission mechanism. Our study illustrates how time series data of the host-pathogen dynamics, especially of the number of susceptible individuals, can greatly facilitate the fitting of mechanistic disease models.

  13. Non-coding RNAs in Host-Pathogen Interactions: Subversion of Mammalian Cell Functions by Protozoan Parasites.

    PubMed

    Bayer-Santos, Ethel; Marini, Marjorie M; da Silveira, José F

    2017-01-01

    Pathogens have evolved mechanisms to modulate host cell functions and avoid recognition and destruction by the host damage response. For many years, researchers have focused on proteins as the main effectors used by pathogens to hijack host cell pathways, but only recently with the development of deep RNA sequencing these molecules were brought to light as key players in infectious diseases. Protozoan parasites such as those from the genera Plasmodium, Toxoplasma, Leishmania, and Trypanosoma cause life-threatening diseases and are responsible for 1000s of deaths worldwide every year. Some of these parasites replicate intracellularly when infecting mammalian hosts, whereas others can survive and replicate extracellularly in the bloodstream. Each of these parasites uses specific evasion mechanisms to avoid being killed by the host defense system. An increasing number of studies have shown that these pathogens can transfer non-coding RNA molecules to the host cells to modulate their functions. This transference usually happens via extracellular vesicles, which are small membrane vesicles secreted by the microorganism. In this mini-review we will combine published work regarding several protozoan parasites that were shown to use non-coding RNAs in inter-kingdom communication and briefly discuss future perspectives in the field.

  14. Chlamydia trachomatis ChxR is a transcriptional regulator of virulence factors that function in in vivo host pathogen interactions.

    PubMed

    Yang, Chunfu; Kari, Laszlo; Sturdevant, Gail L; Song, Lihua; Patton, Michael John; Couch, Claire E; Ilgenfritz, Jillian M; Southern, Timothy R; Whitmire, William M; Briones, Michael; Bonner, Christine; Grant, Chris; Hu, Pinzhao; McClarty, Grant; Caldwell, Harlan D

    2017-03-22

    Chlamydia trachomatis is an obligate intracellular pathogen characterized by a unique biphasic developmental cycle that alternates between infectious and non-infectious organisms. Chlamydial ChxR is a transcriptional activator that has been implicated in the regulation of the development cycle. We used a reverse genetics approach to generate three chxR null mutants. All three mutants grew normally in cultured mammalian cells. Whole genome sequencing identified SNPs in other genes, however, none of the mutated genes were common to all three ChxR null mutants arguing against a genetic compensatory mechanism that would explain the non-essential in vitro growth phenotype. Comparative proteomics identified five proteins, CT005, CT214, CT565, CT694 and CT695 that were significantly down regulated in all ChxR null mutants. This group includes established inclusion membrane and type III secreted proteins. ChxR transcriptional regulation of these genes was confirmed by qRT-PCR. Importantly, while ChxR null mutants exhibited no growth deficiencies in in vitro, they did show significant differences in in vivo growth using a mouse genital tract model. Collectively, our findings demonstrated that ChxR is a transcriptional activator that regulates the expression of virulence genes whose functions are restricted to in vivo infection.

  15. Host-pathogen interactions in specific pathogen-free chickens following aerogenous infection with Chlamydia psittaci and Chlamydia abortus.

    PubMed

    Kalmar, Isabelle; Berndt, Angela; Yin, Lizi; Chiers, Koen; Sachse, Konrad; Vanrompay, Daisy

    2015-03-15

    Although Chlamydia (C.) psittaci infections are recognized as an important factor causing economic losses and impairing animal welfare in poultry production, the specific mechanisms leading to severe clinical outcomes are poorly understood. In the present study, we comparatively investigated pathology and host immune response, as well as systemic dissemination and expression of essential chlamydial genes in the course of experimental aerogeneous infection with C. psittaci and the closely related C. abortus, respectively, in specific pathogen-free chicks. Clinical signs appeared sooner and were more severe in the C. psittaci-infected group. Compared to C. abortus infection, more intense systemic dissemination of C. psittaci correlated with higher and faster infiltration of immune cells, as well as more macroscopic lesions and epithelial pathology, such as hyperplasia and erosion. In thoracic air sac tissue, mRNA expression of immunologically relevant factors, such as IFN-γ, IL-1β, IL-6, IL-17, IL-22, LITAF and iNOS was significantly stronger up-regulated in C. psittaci- than in C. abortus-infected birds between 3 and 14 days post-infection. Likewise, transcription rates of the chlamydial genes groEL, cpaf and ftsW were consistently higher in C. psittaci during the acute phase. These findings illustrate that the stronger replication of C. psittaci in its natural host also evoked a more intense immune response than in the case of C. abortus infection.

  16. Host-Pathogen interactions. 25. Endopolygalacturonic acid lyase from Erwinia carotovora elicits phytoalexin accumulation by releasing plant cell wall fragments

    SciTech Connect

    Davis, K.R.; Lyon, G.D.; Darvill, A.G.; Albersheim, P.

    1984-01-01

    Heat-labile elicitors of phytoalexin accumulation in soybeans (Glycine max L. Merr. cv Wayne) were detected in culture filtrates of Erwinia carotovora grown on a defined medium containing citrus pectin as the sole carbon source. The heat-labile elicitors were highly purified by cation-exchange chromatography on a CM-Sephadex (C-50) column, followed by agarose-affinity chromatography on a Bio-Gel A-0.5m gel filtration column. The heat-labile elicitor activity co-purified with two ..cap alpha..-1,4-endopolygalacturonic acid lyases (EC 4 x 2 x 2 x 2). Endopolygalacturonic acid lyase activity appeared to be necessary for elicitor activity because heat-inactivated enzyme preparations did not elicit phytoalexins. The purified endopolygalacturonic acid lyases elicited pterocarpan phytoalexins at microbial-inhibitory concentrations in the soybean-cotyledon bioassay when applied at a concentration of 55 nanograms per milliliter (1 x 10/sup -9/ molar). One of these lyases released heat-stable elicitors from soybean cell walls, citrus pectin, and sodium polypectate. The heat-stable elicitor-active material solubilized from soybean cell walls by the lyase was composed of at least 90% (w/v) uronosyl residues. These results demonstrate that endopolygalacturonic acid lyase elicits phytoalexin accumulation by releasing fragments from pectic polysaccharides in plant cell walls.

  17. Proteome data from a host-pathogen interaction study with Staphylococcus aureus and human lung epithelial cells.

    PubMed

    Surmann, Kristin; Simon, Marjolaine; Hildebrandt, Petra; Pförtner, Henrike; Michalik, Stephan; Dhople, Vishnu M; Bröker, Barbara M; Schmidt, Frank; Völker, Uwe

    2016-06-01

    To simultaneously obtain proteome data of host and pathogen from an internalization experiment, human alveolar epithelial A549 cells were infected with Staphylococcus aureus HG001 which carried a plasmid (pMV158GFP) encoding a continuously expressed green fluorescent protein (GFP). Samples were taken hourly between 1.5 h and 6.5 h post infection. By fluorescence activated cell sorting GFP-expressing bacteria could be enriched from host cell debris, but also infected host cells could be separated from those which did not carry bacteria after contact (exposed). Additionally, proteome data of A549 cells which were not exposed to S. aureus but underwent the same sample processing steps are provided as a control. Time-resolved changes in bacterial protein abundance were quantified in a label-free approach. Proteome adaptations of host cells were monitored by comparative analysis to a stable isotope labeled cell culture (SILAC) standard. Proteins were extracted from the cells, digested proteolytically, measured by nanoLC-MS/MS, and subsequently identified by database search and then quantified. The data presented here are related to a previously published research article describing the interplay of S. aureus HG001 and human epithelial cells (Surmann et al., 2015 [1]). They have been deposited to the ProteomeXchange platform with the identifiers PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002384 for the S. aureus HG001 proteome dataset and PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002388 for the A549 proteome dataset.

  18. Clinical End-Points Associated with Mycobacterium tuberculosis and Lung Cancer: Implications into Host-Pathogen Interaction and Coevolution

    PubMed Central

    Tian, Yansheng; Hao, Tong; Cao, Bin; Zhang, Wei; Ma, Yan; Lin, Qiang; Li, Xiaomin

    2015-01-01

    There is a recent emerging theory that suggests a cross-link between pathogens and cancer. In this context, we examined the association between the Mycobacterium tuberculosis (MTB) with its L-forms (MTB-L) and lung cancer. In the present study, we have optimized and applied a highly sensitive assay to detect the presence of MTB and MTB-L in 187 lung cancer samples and 39 samples of other cancer origins. By carefully controlling confounding factors, we have found that 62% of the lung cancer samples are MTB-L positive, while only 5.1% of the other cancer samples are MTB-L positive. Through generalized linear models and random forest models, we have further identified a set of clinical end-points that are strongly associated with MTB-L presence. Our finding provides the basis for future studies to investigate the underlying mechanism linking MTB-L infection to lung cancer development. PMID:26583138

  19. Subcellular proteomic analysis of host-pathogen interactions using human monocytes exposed to Yersinia pestis and Yersinia pseudotuberculosis

    SciTech Connect

    Zhang, C G; Gonzales, A D; Choi, M W; Chromy, B A; Fitch, J P; McCutchen-Maloney, S L

    2004-05-20

    Yersinia pestis, the etiological agent of plague, is of concern to human health both from an infectious disease and a civilian biodefense perspective. While Y. pestis and Y. pseudotuberculosis share more than 90% DNA homology, they have significantly different clinical manifestations. Plague is often fatal if untreated, yet Y. pseudotuberculosis causes severe intestinal distress and is rarely fatal. A better understanding of host response to these closely related pathogens may help explain the different mechanisms of virulence and pathogenesis that result in such different clinical outcomes. The aim of this study was to characterize host protein expression changes in human monocyte-like U937 cells after exposure to Y. pestis and Y. pseudotuberculosis. In order to gain global proteomic coverage of host response, proteins from cytoplasmic, nuclear and membrane fractions of host cells were studied by 2-dimensional differential gel electrophoresis (2-D DIGE) and relative protein expression differences were quantitated. Differentially expressed proteins, with at least 1.5 fold expression changes and p values of 0.01 or less, were identified by MALDI-MS or LC/MS/MS. With these criteria, differential expression was detected in 16 human proteins after Y. pestis exposure and 13 human proteins after Y. pseudotuberculosis exposure, of which only two of the differentially expressed proteins identified were shared between the two exposures. Proteins identified in this study are reported to be involved in a wide spectrum of cellular functions and host defense mechanisms including apoptosis, cytoskeletal rearrangement, protein synthesis and degradation, DNA replication and transcription, metabolism, protein folding, and cell signaling. Notably, the differential expression patterns observed can distinguish the two pathogen exposures from each other and from unexposed host cells. The functions of the differentially expressed proteins identified provide insight on the different virulence and pathogenic mechanisms of Y. pestis and Y. pseudotuberculosis.

  20. Genome to Phenome: Integromic Approaches to Define Networks of Host-Pathogen Interactions and Vaccine Biomarker Discovery

    DTIC Science & Technology

    2008-12-01

    reveal phases of progression of illness to a) provide stage- specific diagnosis and b) identify potential molecular targets for stage-appropriate...reactions within hours of exposure and may lead to death in a few days. In contrast, Brucella infection (B. melitensis 16M) produces late- onset of...throughput computing approaches to study diseases is now allowing us to apply an integrative systems biology work frame for drug and biomarker

  1. Neurons versus herpes simplex virus: the innate immune interactions that contribute to a host-pathogen standoff.

    PubMed

    Rosato, Pamela C; Leib, David A

    2015-06-01

    Herpes simplex virus (HSV) is a prevalent neurotropic virus, which establishes lifelong latent infections in the neurons of sensory ganglia. Despite our long-standing knowledge that HSV predominately infects sensory neurons during its life cycle, little is known about the neuronal antiviral response to HSV infection. Recent studies show that while sensory neurons have impaired intrinsic immunity to HSV infection, paracrine IFN signaling can potentiate a potent antiviral response. Additionally, antiviral autophagy plays an important role in neuronal control of HSV infection. Here we review the literature of antiviral signaling and autophagy in neurons, the mechanisms by which HSV can counteract these responses, and postulate how these two pathways may synergize to mediate neuronal control of HSV infection and yet result in lifelong persistence of the virus.

  2. Pesticide interactions with soils affected by olive oil mill wastewater

    NASA Astrophysics Data System (ADS)

    Keren, Yonatan; Bukhanovsky, Nadezhda; Borisover, Mikhail

    2013-04-01

    Soil pesticide sorption is well known to affect the fate of pesticides, their bioavailability and the potential to contaminate air and water. Soil - pesticide interactions may be strongly influenced by soil organic matter (SOM) and organic matter (OM)-rich soil amendments. One special OM source in soils is related to olive oil production residues that may include both solid and liquid wastes. In the Mediterranean area, the olive oil production is considered as an important field in the agricultural sector. Due to the significant rise in olive oil production, the amount of wastes is growing respectively. Olive oil mill waste water (OMWW) is the liquid byproduct in the so-called "three phase" technological process. Features of OMWW include the high content of fatty aliphatic components and polyphenols and their often-considered toxicity. One way of OMWW disposal is the land spreading, e.g., in olive orchards. The land application of OMWW (either controlled or not) is supposed to affect the multiple soil properties, including hydrophobicity and the potential of soils to interact with pesticides. Therefore, there is both basic and applied interest in elucidating the interactions between organic compounds and soils affected by OMWW. However, little is known about the impact of OMWW - soil interactions on sorption of organic compounds, and specifically, on sorption of agrochemicals. This paper reports an experimental study of sorption interactions of a series of organic compounds including widely used herbicides such as diuron and simazine, in a range of soils that were affected by OMWW (i) historically or (ii) in the controlled land disposal experiments. It is demonstrated that there is a distinct increase in apparent sorption of organic chemicals in soils affected by OMWW. In selected systems, this increase may be explained by increase in SOM content. However, the SOM quality places a role: the rise in organic compound - soil interactions may both exceed the SOM

  3. The vibration of nanosprings affected by van der Waals interactions.

    PubMed

    Zhao, Junhua; Ben, Sudong; Yu, Peishi

    2016-10-01

    The vibration of tightly helical nanosprings affected by van der Waals (vdW) interactions is investigated based on continuum modelling. Explicit solutions are derived to clarify the influence of initial pitch, stiffness and the number of nanosprings on the period, frequency and amplitude of the vibration. Unlike classic linear/nonlinear springs, the waveform of the vibration is always asymmetric for tightly helical nanosprings due to the asymmetry of vdW attraction and repulsion. The at most three equilibrium positions for the nanosprings strongly depend on the deformation due to competition between the vdW interactions and the elastic energy of the nanosprings. This study provides physical insights into the origin of the novel dynamic properties of such nanosprings.

  4. Can the hydrophilicity of functional monomers affect chemical interaction?

    PubMed

    Feitosa, V P; Ogliari, F A; Van Meerbeek, B; Watson, T F; Yoshihara, K; Ogliari, A O; Sinhoreti, M A; Correr, A B; Cama, G; Sauro, S

    2014-02-01

    The number of carbon atoms and/or ester/polyether groups in spacer chains may influence the interaction of functional monomers with calcium and dentin. The present study assessed the chemical interaction and bond strength of 5 standard-synthesized phosphoric-acid ester functional monomers with different spacer chain characteristics, by atomic absorption spectroscopy (AAS), ATR-FTIR, thin-film x-ray diffraction (TF-XRD), scanning electron microscopy (SEM), and microtensile bond strength (μTBS). The tested functional monomers were 2-MEP (two-carbon spacer chain), 10-MDP (10-carbon), 12-MDDP (12-carbon), MTEP (more hydrophilic polyether spacer chain), and CAP-P (intermediate hydrophilicity ester spacer). The intensity of monomer-calcium salt formation measured by AAS differed in the order of 12-MDDP=10-MDP>CAP-P>MTEP>2-MEP. FTIR and SEM analyses of monomer-treated dentin surfaces showed resistance to rinsing for all monomer-dentin bonds, except with 2-MEP. TF-XRD confirmed the weaker interaction of 2-MEP. Highest µTBS was observed for 12-MDDP and 10-MDP. A shorter spacer chain (2-MEP) of phosphate functional monomers induced formation of unstable monomer-calcium salts, and lower chemical interaction and dentin bond strength. The presence of ester or ether groups within longer spacer carbon chains (CAP-P and MTEP) may affect the hydrophilicity, μTBS, and also the formation of monomer-calcium salts.

  5. Corridors affect plants, animals, and their interactions in fragmented landscapes.

    SciTech Connect

    Tewksbury, Joshua, J.; Levey, Douglas, J.; Haddad, Nick, M.; Sargent, Sarah; Orrock, John, L.; Weldon, Aimee; Danielson, Brent, J.; Brinkerhoff, Jory; Damschen, Ellen, I.; Townsend, Patricia

    2002-10-01

    Tewksbury, J.J., D.J. Levey, N.M. Haddad, S. Sargent, J.L. Orrock, A. Weldon, B.J. Danielson, J. Brinkerhoff, E.I. Damschen, and P. Townsend. 2002. Corridors affect plants, animals, and their interactions in fragmented landscapes. PNAS 99(20):12923-12926. Among the most popular strategies for maintaining populations of both plants and animals in fragmented landscapes is to connect isolated patches with thin strips of habitat, called corridors. Corridors are thought to increase the exchange of individuals between habitat patches, promoting genetic exchange and reducing population fluctuations. Empirical studies addressing the effects of corridors have either been small in scale or have ignored confounding effects of increased habitat area created by the presence of a corridor. These methodological difficulties, coupled with a paucity of studies examining the effects of corridors on plants and plant-animal interactions, have sparked debate over the purported value of corridors in conservation planning. We report results of a large-scale experiment that directly address this debate. We demonstrate that corridors not only increase the exchange of animals between patches, but also facilitate two key plant-animal interactions: pollination and seed dispersal. Our results show that the beneficial effects of corridors extend beyond the area they add, and suggest that increased plant and animal movement through corridors will have positive impacts on plant populations and community interactions in fragmented landscapes.

  6. Thiacloprid affects trophic interaction between gammarids and mayflies.

    PubMed

    Englert, D; Bundschuh, M; Schulz, R

    2012-08-01

    Neonicotinoid insecticides like thiacloprid enter agricultural surface waters, where they may affect predator-prey-interactions, which are of central importance for ecosystems as well as the functions these systems provide. The effects of field relevant thiacloprid concentrations on the leaf consumption of Gammarus fossarum (Amphipoda) were assessed over 96 h (n = 13-17) in conjunction with its predation on Baetis rhodani (Ephemeroptera) nymphs. The predation by Gammarus increased significantly at 0.50-1.00 μg/L. Simultaneously, its leaf consumption decreased with increasing thiacloprid concentration. As a consequence of the increased predation at 1.00 μg/L, gammarids' dry weight rose significantly by 15% compared to the control. At 4.00 μg/L, the reduced leaf consumption was not compensated by an increase in predation causing a significantly reduced dry weight of Gammarus (∼20%). These results may finally suggest that thiacloprid adversely affects trophic interactions, potentially translating into alterations in ecosystem functions, like leaf litter breakdown and aquatic-terrestrial subsidies.

  7. Rootstock-scion interaction affecting citrus response to CTV infection: a proteomic view.

    PubMed

    Laino, Paolo; Russo, Maria P; Guardo, Maria; Reforgiato-Recupero, Giuseppe; Valè, Giampiero; Cattivelli, Luigi; Moliterni, Vita M C

    2016-04-01

    Citrus tristeza virus (CTV) is the causal agent of various diseases with dramatic effects on citrus crops worldwide. Most Citrus species, grown on their own roots, are symptomless hosts for many CTV isolates. However, depending on different scion-rootstock combination, CTV infection should result in distinct syndromes, being 'tristeza' the more severe one, leading to a complete decline of the susceptible plants in a few weeks. Transcriptomic analyses revealed several genes involved either in defense response, or systemic acquired resistance, as well as transcription factors and components of the phosphorylation cascades, to be differentially regulated during CTV infection in Citrus aurantifolia species. To date little is known about the molecular mechanism of this host-pathogen interaction, and about the rootstock effect on citrus response to CTV infection. In this work, the response to CTV infection has been investigated in tolerant and susceptible scion-rootstock combinations by two-dimensional gel electrophoresis (2DE). A total of 125 protein spots have been found to be differently accumulated and/or phosphorylated between the two rootstock combinations. Downregulation in tolerant plants upon CTV infection was detected for proteins involved in reactive oxygen species (ROS) scavenging and defense response, suggesting a probable acclimation response able to minimize the systemic effects of virus infection. Some of these proteins resulted to be modulated also in absence of virus infection, revealing a rootstock effect on scion proteome modulation. Moreover, the phospho-modulation of proteins involved in ROS scavenging and defense response, further supports their involvement either in scion-rootstock crosstalk or in the establishment of tolerance/susceptibility to CTV infection.

  8. Interactions between dietary boron and thiamine affect lipid metabolism

    SciTech Connect

    Herbel, J.L.; Hunt, C.D. )

    1991-03-15

    An experiment was designed to test the hypothesis that dietary boron impacts upon the function of various coenzymes involved in energy metabolism. In a 2 {times} 7 factorially-arranged experiment, weanling, vitamin D{sub 3}-deprived rats were fed a ground corn-casein-corn oil based diet supplemented with 0 or 2 mg boron/kg and 50% of the requirement for thiamine (TM), riboflavin (RF), pantothenic acid (PA) or pyridoxine (PX); 0% for folic acid (FA) or nicotinic acid (NA). All vitamins were supplemented in adequate amounts in the control diet. At 8 weeks of age, the TM dietary treatment was the one most affected by supplemental dietary boron (SDB). In rats that were fed 50% TM, SDB increased plasma concentrations of triglyceride (TG) and activity of alanine transaminase (ALT), and the liver to body weight (L/B) ratio. However, in the SDB animals, adequate amounts of TM decreased the means of those variables to near that observed in non-SDB rats fed 50% TM. The findings suggest that an interaction between dietary boron and TM affects lipid metabolism.

  9. Interactions between Artificial Gravity, the Affected Physiological Systems, and Nutrition

    NASA Technical Reports Server (NTRS)

    Heer, Martina; Baecker, Nathalie; Zwart, Sara; Smith, Scott

    2006-01-01

    Malnutrition, either by insufficient supply of some nutrients or by overfeeding, has a profound effect on the health of an organism. Therefore, optimal nutrition is a necessity in normal gravity on Earth, in microgravity, and when applying artificial gravity to the human system. Reduced physical activity, such as observed in microgravity or bed rest, has an effect on many physiological systems, such as the cardiovascular, musculoskeletal, immune, and body fluids regulation systems. There is currently no countermeasure that is effective to counteract both the cardiovascular and musculoskeletal deconditioning when applied for a short duration (see Chapter 1). Artificial gravity therefore seems the simplest physiological approach to keep these systems intact. The application of intermittent daily dose of artificial gravity by means of centrifugation has often been proposed as a potential countermeasure against the physiological deconditioning induced by spaceflight. However, neither the optimal gravity level, nor its optimal duration of exposure have been enough studied to recommend a validated, effective, and efficient artificial gravity application. As discussed in previous chapters, artificial gravity has a very high potential to counteract any changes caused by reduced physical activity. The nutrient supply, which ideally should match the actual needs, will interact with these changes and therefore has also to be taken into account. This chapter reviews the potential interactions between these nutrients (energy intake, vitamins, minerals) and the other physiological systems affected by artificial gravity generated by an on-board short-radius centrifuge.

  10. What Makes Sports Fans Interactive? Identifying Factors Affecting Chat Interactions in Online Sports Viewing

    PubMed Central

    Yeo, Jaeryong; Lee, Juyeong

    2016-01-01

    Sports fans are able to watch games from many locations using TV services while interacting with other fans online. In this paper, we identify the factors that affect sports viewers’ online interactions. Using a large-scale dataset of more than 25 million chat messages from a popular social TV site for baseball, we extract various game-related factors, and investigate the relationships between these factors and fans’ interactions using a series of multiple regression analyses. As a result, we identify several factors that are significantly related to viewer interactions. In addition, we determine that the influence of these factors varies according to the user group; i.e., active vs. less active users, and loyal vs. non-loyal users. PMID:26849568

  11. What Makes Sports Fans Interactive? Identifying Factors Affecting Chat Interactions in Online Sports Viewing.

    PubMed

    Ko, Minsam; Yeo, Jaeryong; Lee, Juyeong; Lee, Uichin; Jang, Young Jae

    2016-01-01

    Sports fans are able to watch games from many locations using TV services while interacting with other fans online. In this paper, we identify the factors that affect sports viewers' online interactions. Using a large-scale dataset of more than 25 million chat messages from a popular social TV site for baseball, we extract various game-related factors, and investigate the relationships between these factors and fans' interactions using a series of multiple regression analyses. As a result, we identify several factors that are significantly related to viewer interactions. In addition, we determine that the influence of these factors varies according to the user group; i.e., active vs. less active users, and loyal vs. non-loyal users.

  12. Effects of nutrient supplementation on host-pathogen dynamics of the amphibian chytrid fungus: a community approach

    PubMed Central

    BUCK, JULIA C.; ROHR, JASON R.; BLAUSTEIN, ANDREW R.

    2016-01-01

    SUMMARY Anthropogenic stressors may influence hosts and their pathogens directly or may alter host–pathogen dynamics indirectly through interactions with other species. For example, in aquatic ecosystems, eutrophication may be associated with increased or decreased disease risk. Conversely, pathogens can influence community structure and function and are increasingly recognised as important members of the ecological communities in which they exist.In outdoor mesocosms, we experimentally manipulated nutrients (nitrogen and phosphorus) and the presence of a fungal pathogen, Batrachochytrium dendrobatidis (Bd), and examined the effects on Bd abundance on larval amphibian hosts (Pseudacris regilla: Hylidae), amphibian traits and community dynamics. We predicted that resource supplementation would mitigate negative effects of Bd on tadpole growth and development and that indirect effects of treatments would propagate through the community.Nutrient additions caused changes in algal growth, which benefitted tadpoles through increased mass, development and survival. Bd-exposed tadpoles metamorphosed sooner than unexposed individuals, but their mass at metamorphosis was not affected by Bd exposure. We detected additive rather than interactive effects of nutrient supplementation and Bd in this experiment.Nutrient supplementation was not a significant predictor of infection load of larval amphibians. However, a structural equation model revealed that resource supplementation and exposure of amphibians to Bd altered the structure of the aquatic community. This is the first demonstration that sublethal effects of Bd on amphibians can alter aquatic community dynamics. PMID:25432573

  13. Interactions of neurons with topographic nano cues affect branching morphology mimicking neuron-neuron interactions.

    PubMed

    Baranes, Koby; Kollmar, Davida; Chejanovsky, Nathan; Sharoni, Amos; Shefi, Orit

    2012-08-01

    We study the effect of topographic nano-cues on neuronal growth-morphology using invertebrate neurons in culture. We use photolithography to fabricate substrates with repeatable line-pattern ridges of nano-scale heights of 10-150 nm. We plate leech neurons atop the patterned-substrates and compare their growth pattern to neurons plated atop non-patterned substrates. The model system allows us the analysis of single neurite-single ridge interactions. The use of high resolution electron microscopy reveals small filopodia processes that attach to the line-pattern ridges. These fine processes, that cannot be detected in light microscopy, add anchoring sites onto the side of the ridges, thus additional physical support. These interactions of the neuronal process dominantly affect the neuronal growth direction. We analyze the response of the entire neuronal branching tree to the patterned substrates and find significant effect on the growth patterns compared to non-patterned substrates. Moreover, interactions with the nano-cues trigger a growth strategy similarly to interactions with other neuronal cells, as reflected in their morphometric parameters. The number of branches and the number of neurites originating from the soma decrease following the interaction demonstrating a tendency to a more simplified neuronal branching tree. The effect of the nano-cues on the neuronal function deserves further investigation and will strengthen our understanding of the interplay between function and form.

  14. Calcite and Picocyanobacteria in Lakes: Factors Affecting Their Interaction

    NASA Astrophysics Data System (ADS)

    Dittrich, M.; Obst, M.; Mavrocordatos, D.

    2003-12-01

    Calcites build large deposits which have been observed in the rock record throughout geological time at various localities around the globe. Carbonate deposits have affected atmospheric carbon dioxide concentration. As it has been generally accepted, inorganic precipitation represents a source of carbon dioxide on short geological time scales and a sink of inorganic carbon at long time scales from millions to thousands of millions years. However, recent research indicates that calcite deposits may result from microbial calcification instead of inorganic precipitation. In this case the process may reduce atmospheric carbon dioxide on geologically short time scales. Thus the effect of carbonate sediment deposition on global carbon cycling depends on the origin of carbonate. Thus it is essential to understand the cause and the key parameters affecting calcite precipitation. The role of algae and bacteria in calcite formation in lakes has not been evaluated in detail. Some evidence, however, exists supporting precipitation of calcium carbonate by microbes as the origin of whiting. Several field studies on lakes have also produced puzzling results: The peaks of algal blooms were often not found at the same time as precipitation events of calcite. We suspect that parts of the discrepancies in the interpretation of field observations are due to the activity of autotrophic picoplankton. The unicellular autotrophic picoplankton (APP) is a ubiquitous component of pelagic ecosystems. But it has often been overlooked due to its small cell size of 0.2 - 2 μ m in diameter. Coccoid picocyanobacteria of the Synechococcus-type dominate the picoplankton community in most oligotrophic systems. Recently, laboratory experiments and field observations suggested that APP may play an important role in calcite precipitation. The aim of this study was to examine the influence of environmental factors such as saturation state, concentration of different dissolved ions and characteristics of

  15. Establishment and Validation of Whole-Cell Based Fluorescence Assays to Identify Anti-Mycobacterial Compounds Using the Acanthamoeba castellanii - Mycobacterium marinum Host-Pathogen System

    PubMed Central

    Kicka, Sébastien; Trofimov, Valentin; Harrison, Christopher; Ouertatani-Sakouhi, Hajer; McKinney, John; Scapozza, Leonardo; Hilbi, Hubert; Cosson, Pierre; Soldati, Thierry

    2014-01-01

    Tuberculosis is considered to be one of the world’s deadliest disease with 2 million deaths each year. The need for new antitubercular drugs is further exacerbated by the emergence of drug-resistance strains. Despite multiple recent efforts, the majority of the hits discovered by traditional target-based screening showed low efficiency in vivo. Therefore, there is heightened demand for whole-cell based approaches directly using host-pathogen systems. The phenotypic host-pathogen assay described here is based on the monitoring of GFP-expressing Mycobacterium marinum during infection of the amoeba Acanthamoeba castellanii. The assay showed straight-forward medium-throughput scalability, robustness and ease of manipulation, demonstrating its qualities as an efficient compound screening system. Validation with a series of known antitubercular compounds highlighted the advantages of the assay in comparison to previously published macrophage-Mycobacterium tuberculosis-based screening systems. Combination with secondary growth assays based on either GFP-expressing D. discoideum or M. marinum allowed us to further fine-tune compound characterization by distinguishing and quantifying growth inhibition, cytotoxic properties and antibiotic activities of the compounds. The simple and relatively low cost system described here is most suitable to detect anti-infective compounds, whether they present antibiotic activities or not, in which case they might exert anti-virulence or host defense boosting activities, both of which are largely overlooked by classical screening approaches. PMID:24498207

  16. The Promise of Interactive Video: An Affective Search.

    ERIC Educational Resources Information Center

    Hon, David

    1983-01-01

    Argues that factors that create a feeling of interactivity in the human situation--response time, spontaneity, lack of distractors--should be included as prime elements in the design of human/machine systems, e.g., computer assisted instruction and interactive video. A computer/videodisc learning system for cardio-pulmonary resuscitation and its…

  17. Vagal Reactivity and Affective Adjustment in Infants during Interaction Challenges.

    ERIC Educational Resources Information Center

    Bazhenova, Olga V.; Plonskaia, Oxana; Porges, Stephen W.

    2001-01-01

    Evaluated respiratory sinus arrhythmia (RSA) and heart period in 5-month-olds during interaction challenges. Found that during object-mediated challenge, RSA increases were uniquely related to positive engagement. During person-mediated challenge, subjects showed more complex integration of autonomic and behavioral responses such that only infants…

  18. Social interactions affecting caste development through physiological actions in termites

    PubMed Central

    Watanabe, Dai; Gotoh, Hiroki; Miura, Toru; Maekawa, Kiyoto

    2014-01-01

    A colony of social insects is not only an aggregation of individuals but also a functional unit. To achieve adaptive social behavior in fluctuating environmental conditions, in addition to coordination of physiological status in each individual, the whole colony is coordinated by interactions among colony members. The study on the regulation of social-insect colonies is termed “social physiology.” Termites, a major group of social insects, exhibit many interesting phenomena related to social physiology, such as mechanisms of caste regulation in a colony. In their colonies, there are different types of individuals, i.e., castes, which show distinctive phenotypes specialized in specific colony tasks. Termite castes comprise reproductives, soldiers and workers, and the caste composition can be altered depending on circumstances. For the regulation of caste compositions, interactions among individuals, i.e., social interactions, are thought to be important. In this article, we review previous studies on the adaptive meanings and those on the proximate mechanisms of the caste regulation in termites, and try to understand those comprehensively in terms of social physiology. Firstly, we summarize classical studies on the social interactions. Secondly, previous studies on the pheromone substances that mediate the caste regulatory mechanisms are overviewed. Then, we discuss the roles of a physiological factor, juvenile hormone (JH) in the regulation of caste differentiation. Finally, we introduce the achievements of molecular studies on the animal sociality (i.e., sociogenomics) in terms of social physiology. By comparing the proximate mechanisms of social physiology in termites with those in hymenopterans, we try to get insights into the general principles of social physiology in social animals. PMID:24782780

  19. Mother-offspring interactions affect natal dispersal in a lizard.

    PubMed Central

    Le Galliard, Jean-François; Ferrière, Régis; Clobert, Jean

    2003-01-01

    Interactions between relatives operate strong selective pressures on dispersal. Recently, a correlative study in the common lizard (Lacerta vivipara) suggested that natal dispersal might respond plastically to mother-offspring interactions. Here, we describe a factorial experiment supporting this observation. Two crossed treatments were applied to experimental patches of the common lizard: (i) presence versus absence of the mother, inducing a difference of kinship in offspring neighbourhoods; and (ii) high versus low patch density, resulting in two levels of conspecific abundance and modulating the effect of mother presence on the average kinship within a patch. Dispersal of the same cohort of offspring was observed at the juvenile and yearling stages. We found a sex-dependent response of offspring dispersal to the removal of the mother at the two stages. During the juvenile stage, higher dispersal was found in females in the presence of the mother, with males unaffected. During the yearling stage, the responses of both sexes to the presence of the mother opposed each other. In addition, we found a negative relationship between dispersal and patch density at the juvenile stage. No interaction between density and the presence of the mother was detected, which suggests that behavioural responses to kinship and density are disconnected and that kinship is assessed at a small social scale. We discuss the role of competition and inbreeding avoidance to explain the observed pattern. PMID:12816655

  20. Host Identity Matters in the Amphibian-Batrachochytrium dendrobatidis System: Fine-Scale Patterns of Variation in Responses to a Multi-Host Pathogen

    PubMed Central

    Gervasi, Stephanie; Gondhalekar, Carmen; Olson, Deanna H.; Blaustein, Andrew R.

    2013-01-01

    Species composition within ecological assemblages can drive disease dynamics including pathogen invasion, spread, and persistence. In multi-host pathogen systems, interspecific variation in responses to infection creates important context dependency when predicting the outcome of disease. Here, we examine the responses of three sympatric host species to a single fungal pathogen, Batrachochytrium dendrobatidis, which is associated with worldwide amphibian population declines and extinctions. Using an experimental approach, we show that amphibian species from three different genera display significant differences in patterns of pathgen-induced mortality as well as the magnitude and temporal dynamics of infection load. We exposed amphibians to one of four inoculation dose treatments at both larval and post- metamorphic stages and quantified infection load on day 8 and day 15 post-inoculation. Of the three species examined, only one (the Pacific treefrog; Pseudacris regilla) displayed “dose-dependent” responses; survival was reduced and infection load was elevated as inoculation dose was increased. We observed a reduction in survival but no differences in infection load across pathogen treatments in Cascades frogs (Rana cascadae). Western toads (Anaxyrus boreas) displayed differences in infection load but no differences in survival across pathogen treatments. Within species, responses to the pathogen varied with life history stage, and the most heavily infected species at the larval stage was different from the most heavily infected species at the post-metamorphic stage. Temporal changes in infection load were species and life history stage-specific. We show that variation in susceptibility to this multi-host pathogen is complex when viewed at a fine-scale and may be mediated through intrinsic host traits. PMID:23382904

  1. Temperature can interact with landscape factors to affect songbird productivity.

    PubMed

    Cox, W Andrew; Thompson, Frank R; Reidy, Jennifer L; Faaborg, John

    2013-04-01

    Increased temperatures and more extreme weather patterns associated with global climate change can interact with other factors that regulate animal populations, but many climate change studies do not incorporate other threats to wildlife in their analyses. We used 20 years of nest-monitoring data from study sites across a gradient of habitat fragmentation in Missouri, USA, to investigate the relative influence of weather variables (temperature and precipitation) and landscape factors (forest cover and edge density) on the number of young produced per nest attempt (i.e., productivity) for three species of songbirds. We detected a strong forest cover × temperature interaction for the Acadian Flycatcher (Empidonax virescens) on productivity. Greater forest cover resulted in greater productivity because of reduced brood parasitism and increased nest survival, whereas greater temperatures reduced productivity in highly forested landscapes because of increased nest predation but had no effect in less forested landscapes. The Indigo Bunting (Passerina cyanea) exhibited a similar pattern, albeit with a marginal forest cover × temperature interaction. By contrast, productivity of the Northern Cardinal (Cardinalis cardinalis) was not influenced by landscape effects or temperature. Our results highlight a potential difficulty of managing wildlife in response to global change such as habitat fragmentation and climate warming, as the habitat associated with the greatest productivity for flycatchers was also that most negatively influenced by high temperatures. The influence of high temperatures on nest predation (and therefore, nest predators) underscores the need to acknowledge the potential complexity of species' responses to climate change by incorporating a more thorough consideration of community ecology in the development of models of climate impacts on wildlife.

  2. Interactions of Metacognition with Motivation and Affect in Self-Regulated Learning: The MASRL Model

    ERIC Educational Resources Information Center

    Efklides, Anastasia

    2011-01-01

    Metacognition, motivation, and affect are components of self-regulated learning (SRL) that interact. The "metacognitive and affective model of self-regulated learning" (the MASRL model) distinguishes two levels of functioning in SRL, namely, the Person level and the Task x Person level. At the Person level interactions between trait-like…

  3. Biogeochemical interactions affecting hepatic trace element levels in aquatic birds

    SciTech Connect

    Moeller, G.

    1996-07-01

    Knowledge of elemental interactions is important to the toxicological assessment of wildlife in the geochemical environment. This study determines the concentrations of Al, As, B, Ba, Be, Cd, Cr, Cu, Fe, Pb, Li, Mg, Mn, Hg, Mo, Ni, Se, Ag, V, and Zn in aquatic bird liver, fish liver, whole bivalves, insects, and waters in several aquatic ecosystems in northern California. There is evidence of strong in vivo and environmental interactions, including the observation of manganese as a possible cofactor or indicator in selenium bioaccumulation. The nearest neighbor selenium correlation in aquatic bird liver tissue that results from this work is Cd-Mn-Se-Hg-As. The correlation of liver selenium to manganese in vivo and the result that the majority of the variance in liver selenium concentration is contained in the manganese term of the regression model relating Se to Cd, Mn, and Hg is new knowledge in the study of aquatic birds. A linear relationship between liver selenium and environmental manganese (water and sediment) is found in the data, suggesting a water chemistry compartmentalization or activation of toxicants. Alternatively, the hepatic concentrations of selenium, manganese, and iron suggest induction of enzymes in response to oxidative stress.

  4. Cryptococcal Cell Morphology Affects Host Cell Interactions and Pathogenicity

    PubMed Central

    Nielsen, Judith N.; Charlier, Caroline; Baltes, Nicholas J.; Chrétien, Fabrice; Heitman, Joseph; Dromer, Françoise; Nielsen, Kirsten

    2010-01-01

    Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 µm. Cell enlargement was observed in vivo, producing cells up to 100 µm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3aΔ pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection. PMID:20585559

  5. Genetic interactions affecting touch sensitivity in Caenorhabditis elegans.

    PubMed

    Gu, G; Caldwell, G A; Chalfie, M

    1996-06-25

    At least 13 genes (mec-1, mec-2, mec-4-10, mec-12, mec-14, mec-15, and mec-18) are needed for the response to gentle touch by 6 touch receptor neurons in the nematode Caenorhabditis elegans. Several, otherwise recessive alleles of some of these genes act as dominant enhancer mutations of temperature-sensitive alleles of mec-4, mec-5, mec-6, mec-12, and mec-15. Screens for additional dominant enhancers of mec-4 and mec-5 yielded mutations in previously known genes. In addition, some mec-7 alleles showed allele-specific, dominant suppression of the mec-15 touch-insensitive (Mec) phenotype. The dominant enhancement and suppression exhibited by these mutations suggest that the products of several touch genes interact. These results are consistent with a model, supported by the known sequences of these genes, that almost all of the touch function genes contribute to the mechanosensory apparatus.

  6. The use of affective interaction design in car user interfaces.

    PubMed

    Gkouskos, Dimitrios; Chen, Fang

    2012-01-01

    Recent developments in the car industry have put Human Machine Interfaces under the spotlight. Developing gratifying human-car interactions has become one of the more prominent areas that car manufacturers want to invest in. However, concepts like emotional design remain foreign to the industry. In this study 12 experts on the field of automobile HMI design were interviewed in order to investigate their needs and opinions of emotional design. Results show that emotional design has yet to be introduced for this context of use. Designers need a tool customized for the intricacies of the car HMI field that can provide them with support and guidance so that they can create emotionally attractive experiences for drivers and passengers alike.

  7. Southwestern Cooperative Educational Laboratory Interaction Observation Schedule (SCIOS): A System for Analyzing Teacher-Pupil Interaction in the Affective Domain.

    ERIC Educational Resources Information Center

    Bemis, Katherine A.; Liberty, Paul G.

    The Southwestern Cooperative Interaction Observation Schedule (SCIOS) is a classroom observation instrument designed to record pupil-teacher interaction. The classification of pupil behavior is based on Krathwohl's (1964) theory of the three lowest levels of the affective domain. The levels are (1) receiving: the learner should be sensitized to…

  8. Food stoichiometry affects the outcome of Daphnia–parasite interaction

    PubMed Central

    Aalto, Sanni L; Pulkkinen, Katja

    2013-01-01

    Phosphorus (P) is an essential nutrient for growth in consumers. P-limitation and parasite infection comprise one of the most common stressor pairs consumers confront in nature. We conducted a life-table study using a Daphnia–microsporidian parasite model, feeding uninfected or infected Daphnia with either P-sufficient or P-limited algae, and assessed the impact of the two stressors on life-history traits of the host. Both infection and P-limitation negatively affected some life-history traits tested. However, under P-limitation, infected animals had higher juvenile growth rate as compared with uninfected animals. All P-limited individuals died before maturation, regardless of infection. The numbers of spore clusters of the microsporidian parasite did not differ in P-limited or P-sufficient hosts. P-limitation, but not infection, decreased body phosphorus content and ingestion rates of Daphnia tested in separate experiments. As parasite spore production did not suffer even under extreme P-limitation, our results suggest that parasite was less limited by P than the host. We discuss possible interpretations concerning the stoichiometrical demands of parasite and suggest that our results are explained by parasite-driven changes in carbon (C) allocation of the hosts. We conclude that the impact of nutrient starvation and parasite infection on consumers depends not only on the stoichiometric demands of host but also those of the parasite. PMID:23762513

  9. Vibration Feedback Latency Affects Material Perception during Rod Tapping Interactions.

    PubMed

    Hachisu, Taku; Kajimoto, Hiroyuki

    2016-11-15

    We investigated the effect of vibration feedback latency on material perception during a tapping interaction using a rod device. When a user taps a surface, the perception of the material can be modulated by providing a decaying sinusoidal vibration at the moment of contact. To achieve this haptic material augmentation on a touchscreen, a system that can measure the approach velocity and provide vibration with low latency is required. To this end, we developed a touchscreen system that is capable of measuring the approach velocity and providing vibration feedback via a rod device with latency of 0.1 ms. Using this system, we experimentally measured the human detection threshold of the vibration feedback latency adopting a psychophysical approach. We further investigated the effect of latency on the perception of the material using a subjective questionnaire. Results show that the threshold was around 5.5 ms and the latency made the user feel that the surface is soft. In addition, users reported bouncing and denting sensations induced by the latency.

  10. Physicochemical properties of quinoa flour as affected by starch interactions.

    PubMed

    Li, Guantian; Zhu, Fan

    2017-04-15

    There has been growing interest in whole grain quinoa flour for new product development due to the unique nutritional benefits. The quality of quinoa flour is much determined by the properties of its major component starch as well as non-starch components. In this study, composition and physicochemical properties of whole grain flour from 7 quinoa samples have been analyzed. Flour properties have been correlated to the flour composition and the properties of isolated quinoa starches through chemometrics. Great variations in chemical composition, swelling power, water soluble index, enzyme susceptibility, pasting, gel texture, and thermal properties of the flour have been observed. Correlation analysis showed that thermal properties and enzyme susceptibility of quinoa flour are highly influenced by the starch. Interactions of starch with non-starch components, including lipids, protein, dietary fibre, phenolics, and minerals, greatly impacted the flour properties. For example, peak gelatinization temperature of the flour is positively correlated to that of the starch (r=0.948, p<0.01) and negatively correlated to the lipid content (r=-0.951, p<0.01). Understanding the roles of starch and other components in physicochemical properties of quinoa flour provides a basis for better utilization of this specialty crop.

  11. Interactions between Artificial Gravity, Affected Physiological Systems, and Nutrition

    NASA Technical Reports Server (NTRS)

    Heer, Martina; Baecker, Natalie; Zwart, Sara; Smith, Scott M.

    2007-01-01

    Malnutrition, either by insufficient supply of some nutrients or by overfeeding has a profound effect on the health of an organism. Therefore, optimal nutrition is mandatory on Earth (1 g), in microgravity and also when applying artificial gravity to the human system. Immobilization like in microgravity or bed rest also has a profound effect on different physiological systems, like body fluid regulation, the cardiovascular, the musculoskeletal, the immunological system and others. Up to now there is no countermeasure available which is effective to counteract cardiovascular deconditioning (rf. Chapter 5) together with maintenance of the musculoskeletal system in a rather short period of time. Gravity seems therefore to be one of the main stimuli to keep these systems and application of certain duration of artificial gravity per day by centrifugation has often been proposed as a very potential countermeasure against the weakening of the physiological systems. Up to now, neither optimal intensity nor optimal length of application of artificial gravity has been studied sufficiently to recommend a certain, effective and efficient protocol. However, as shown in chapter 5 on cardiovascular system, in chapter 6 on the neuromuscular system and chapter 7 (bone and connective system) artificial gravity has a very high potential to counteract any degradation caused by immobilization. But, nutrient supply -which ideally should match the actual needs- will interact with these changes and therefore has also to be taken into account. It is well known that astronauts beside the Skylab missions- were and are still not optimally nourished during their stay in space (Bourland et al. 2000;Heer et al. 1995;Heer et al. 2000b;Smith et al. 1997;Smith & Lane 1999;Smith et al. 2001;Smith et al. 2005). It has also been described anecdotally that astronauts have lower appetites. One possible explanation could be altered taste and smell sensations during space flight, although in some early

  12. Leader charisma and affective team climate: the moderating role of the leader's influence and interaction.

    PubMed

    Hernández Baeza, Ana; Araya Lao, Cristina; García Meneses, Juliana; González Romá, Vicente

    2009-11-01

    In this study, we evaluate the role of leader charisma in fostering positive affective team climate and preventing negative affective climate. The analysis of a longitudinal database of 137 bank branches by means of hierarchical moderated regression shows that leader charisma has a stronger effect on team optimism than on team tension. In addition, the leader's influence and the frequency of leader-team interaction moderate the relationship between charisma and affective climate. However, whereas the leader's influence enhances the relationship between leader charisma and positive affective climate, the frequency of interaction has counterproductive effects.

  13. Infant affective reactions to the resumption of maternal interaction after the still-face.

    PubMed

    Weinberg, M K; Tronick, E Z

    1996-06-01

    To investigate infants' reactions to the Face-to-Face Still-Face Paradigm and in particular the reunion episode, 50 6-month-olds' affective, behavioral, and physiologic reactions were recorded and analyzed. Infants reacted to the still-face with negative affect, a drop in vagal tone, and an increase in heart rate. By contrast, they reacted to the reunion episode with a mixed pattern of positive and negative affect. There was a carryover of negative affect from the still-face, an increase in fussiness and crying, and a rebound of positive affect. During this episode, the infants' heart rate and vagal tone returned to initial levels. The data indicate that infant affective displays are specifically related to different interactive events, but that their physiologic reactions do not show the same level of specificity. The findings also highlight the complexity of the affective and reparatory processes that take place in mother-infant interactions.

  14. Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses.

    PubMed

    de Torres Zabala, Marta; Bennett, Mark H; Truman, William H; Grant, Murray R

    2009-08-01

    The importance of phytohormone balance is increasingly recognized as central to the outcome of plant-pathogen interactions. Recently it has been demonstrated that abscisic acid signalling pathways are utilized by the bacterial phytopathogen Pseudomonas syringae to promote pathogenesis. In this study, we examined the dynamics, inter-relationship and impact of three key acidic phytohormones, salicylic acid, abscisic acid and jasmonic acid, and the bacterial virulence factor, coronatine, during progression of P. syringae infection of Arabidopsis thaliana. We show that levels of SA and ABA, but not JA, appear to play important early roles in determining the outcome of the infection process. SA is required in order to mount a full innate immune responses, while bacterial effectors act rapidly to activate ABA biosynthesis. ABA suppresses inducible innate immune responses by down-regulating SA biosynthesis and SA-mediated defences. Mutant analyses indicated that endogenous ABA levels represent an important reservoir that is necessary for effector suppression of plant-inducible innate defence responses and SA synthesis prior to subsequent pathogen-induced increases in ABA. Enhanced susceptibility due to loss of SA-mediated basal resistance is epistatically dominant over acquired resistance due to ABA deficiency, although ABA also contributes to symptom development. We conclude that pathogen-modulated ABA signalling rapidly antagonizes SA-mediated defences. We predict that hormonal perturbations, either induced or as a result of environmental stress, have a marked impact on pathological outcomes, and we provide a mechanistic basis for understanding priming events in plant defence.

  15. The Dynamic Reactance Interaction - How Vested Interests Affect People's Experience, Behavior, and Cognition in Social Interactions.

    PubMed

    Steindl, Christina; Jonas, Eva

    2015-01-01

    In social interactions, individuals may sometimes pursue their own interests at the expense of their interaction partner. Such self-interested behaviors impose a threat to the interaction partner's freedom to act. The current article investigates this threat in the context of interdependence and reactance theory. We explore how vested interests influence reactance process stages of an advisor-client interaction. We aim to explore the interactional process that evolves. In two studies, participants took the perspective of a doctor (advisor) or a patient (client). In both studies we incorporated a vested interest. In Study 1 (N = 82) we found that in response to a vested interest of their interaction partner, patients indicated a stronger experience of reactance, more aggressive behavioral intentions, and more biased cognitions than doctors. A serial multiple mediation revealed that a vested interest engendered mistrust toward the interaction partner and this mistrust led to an emerging reactance process. Study 2 (N = 207) further demonstrated that doctors expressed their reactance in a subtle way: they revealed a classic confirmation bias when searching for additional information on their preliminary decision preference, indicating stronger defense motivation. We discuss how these findings can help us to understand how social interactions develop dynamically.

  16. Infection of Brachypodium distachyon by formae speciales of Puccinia graminis: early infection events and host-pathogen incompatibility.

    PubMed

    Figueroa, Melania; Alderman, Stephen; Garvin, David F; Pfender, William F

    2013-01-01

    Puccinia graminis causes stem rust, a serious disease of cereals and forage grasses. Important formae speciales of P. graminis and their typical hosts are P. graminis f. sp. tritici (Pg-tr) in wheat and barley, P. graminis f. sp. lolii (Pg-lo) in perennial ryegrass and tall fescue, and P. graminis f. sp. phlei-pratensis (Pg-pp) in timothy grass. Brachypodium distachyon is an emerging genetic model to study fungal disease resistance in cereals and temperate grasses. We characterized the P. graminis-Brachypodium pathosystem to evaluate its potential for investigating incompatibility and non-host resistance to P. graminis. Inoculation of eight Brachypodium inbred lines with Pg-tr, Pg-lo or Pg-pp resulted in sporulating lesions later accompanied by necrosis. Histological analysis of early infection events in one Brachypodium inbred line (Bd1-1) indicated that Pg-lo and Pg-pp were markedly more efficient than Pg-tr at establishing a biotrophic interaction. Formation of appressoria was completed (60-70% of germinated spores) by 12 h post-inoculation (hpi) under dark and wet conditions, and after 4 h of subsequent light exposure fungal penetration structures (penetration peg, substomatal vesicle and primary infection hyphae) had developed. Brachypodium Bd1-1 exhibited pre-haustorial resistance to Pg-tr, i.e. infection usually stopped at appressorial formation. By 68 hpi, only 0.3% and 0.7% of the Pg-tr urediniospores developed haustoria and colonies, respectively. In contrast, development of advanced infection structures by Pg-lo and Pg-pp was significantly more common; however, Brachypodium displayed post-haustorial resistance to these isolates. By 68 hpi the percentage of urediniospores that only develop a haustorium mother cell or haustorium in Pg-lo and Pg-pp reached 8% and 5%, respectively. The formation of colonies reached 14% and 13%, respectively. We conclude that Brachypodium is an apt grass model to study the molecular and genetic components of incompatiblity

  17. Alexithymic characteristics and patient-therapist interaction: a video analysis of facial affect display.

    PubMed

    Rasting, Marcus; Brosig, Burkhard; Beutel, Manfred E

    2005-01-01

    Alexithymia as a disorder of affect regulation entails a patient's reduced ability to process emotional information. The purpose of this study was to evaluate the impact of alexithymia [as measured by the Toronto Alexithymia Scale (TAS)-26, German version] on affective correlates in a dyadic therapeutic interaction (as recorded by the Emotional Facial Action Coding System). Interviews with 12 in-patients with various psychosomatic disorders (anxiety, depression, somatisation) were videotaped and evaluated for facial affect display. The corresponding emotional reactions of the therapists (split screen) were recorded separately. Patients with high alexithymia scores (TAS-26 total score) tended to display less aggressive affects than those with low scores. The therapists' predominant emotional reaction to alexithymic patients was contempt. Our findings underscore the deep-rooted nature of alexithymia as a disorder of affect regulation. Since facial affects play a major role in the regulation of emotional interaction, this disorder may evoke negative reactions of potential caregivers.

  18. Human-Computer Interaction: A Review of the Research on Its Affective and Social Aspects.

    ERIC Educational Resources Information Center

    Deaudelin, Colette; Dussault, Marc; Brodeur, Monique

    2003-01-01

    Discusses a review of 34 qualitative and non-qualitative studies related to affective and social aspects of student-computer interactions. Highlights include the nature of the human-computer interaction (HCI); the interface, comparing graphic and text types; and the relation between variables linked to HCI, mainly trust, locus of control,…

  19. Are they talking to me? Cognitive and affective effects of interactivity in politicians' twitter communication.

    PubMed

    Lee, Eun-Ju; Shin, Soo Yun

    2012-10-01

    The present study investigated when and how the level of interactivity in politicians' Twitter communication affects the public's cognitive and affective reactions. In a Web-based experiment (n=264), participants viewed a high profile male politician's Twitter page, wherein he was either actively responding to his followers' questions (high interactivity) or mostly posting messages on his own (low interactivity). Exposure to the high-interactivity Twitter page induced a stronger sense of direct conversation with the candidate (social presence), but only among less affiliative individuals who usually avoid social interaction. Heightened social presence, in turn, led to more positive overall evaluations of the candidate and a stronger intention to vote for him. Although those in the high-interactivity condition generated more positive thoughts, they had fewer issue-related thoughts and exhibited poorer recognition of the issues mentioned by the candidate.

  20. Host antioxidant enzymes and TLR-2 neutralization modulate intracellular survival of Staphylococcus aureus: Evidence of the effect of redox balance on host pathogen relationship during acute staphylococcal infection.

    PubMed

    Nandi, Ajeya; Bishayi, Biswadev

    2015-12-01

    Staphylococcus aureus is an important pathogen in bone disease and innate immune recognition receptor, TLR-2 is reported to be crucial for inflammatory bone loss. Role of TLR-2 in bacterial clearance and cytokine response to S. aureus infection in murine bone marrow macrophages has been reported but the role of host derived ROS in host-pathogen relationship still remains an obvious question. In the present study, blocking of SOD and catalase in TLR-2 neutralized fresh bone marrow cells (FBMC) with Diethyldithiocarbamic acid (DDC) and 3-Amino-1,2,4-triazole (ATZ), separately, during acute S. aureus infection, produces moderate level of ROS and limits inflammation as compared with only TLR-2 non-neutralized condition and leads to decreased bacterial count compared with only TLR-2 neutralized condition. In summary, host SOD and catalase modulates ROS generation, cytokine levels and TLR-2 expression in FBMCs during acute S. aureus infection which might be useful in the alleviation of S. aureus infection and bone loss.

  1. Probing the protective mechanism of poly-ß-hydroxybutyrate against vibriosis by using gnotobiotic Artemia franciscana and Vibrio campbellii as host-pathogen model.

    PubMed

    Baruah, Kartik; Huy, Tran T; Norouzitallab, Parisa; Niu, Yufeng; Gupta, Sanjay K; De Schryver, Peter; Bossier, Peter

    2015-03-30

    The compound poly-ß-hydroxybutyrate (PHB), a polymer of the short chain fatty acid ß-hydroxybutyrate, was shown to protect experimental animals against a variety of bacterial diseases, (including vibriosis in farmed aquatic animals), albeit through undefined mechanisms. Here we aimed at unraveling the underlying mechanism behind the protective effect of PHB against bacterial disease using gnotobiotically-cultured brine shrimp Artemia franciscana and pathogenic Vibrio campbellii as host-pathogen model. The gnotobiotic model system is crucial for such studies because it eliminates any possible microbial interference (naturally present in any type of aquatic environment) in these mechanistic studies and furthermore facilitates the interpretation of the results in terms of a cause effect relationship. We showed clear evidences indicating that PHB conferred protection to Artemia host against V. campbellii by a mechanism of inducing heat shock protein (Hsp) 70. Additionally, our results also showed that this salutary effect of PHB was associated with the generation of protective innate immune responses, especially the prophenoloxidase and transglutaminase immune systems - phenomena possibly mediated by PHB-induced Hsp70. From overall results, we conclude that PHB induces Hsp70 and this induced Hsp70 might contribute in part to the protection of Artemia against pathogenic V. campbellii.

  2. Probing the protective mechanism of poly-ß-hydroxybutyrate against vibriosis by using gnotobiotic Artemia franciscana and Vibrio campbellii as host-pathogen model

    PubMed Central

    Baruah, Kartik; Huy, Tran T.; Norouzitallab, Parisa; Niu, Yufeng; Gupta, Sanjay K.; De Schryver, Peter; Bossier, Peter

    2015-01-01

    The compound poly-ß-hydroxybutyrate (PHB), a polymer of the short chain fatty acid ß-hydroxybutyrate, was shown to protect experimental animals against a variety of bacterial diseases, (including vibriosis in farmed aquatic animals), albeit through undefined mechanisms. Here we aimed at unraveling the underlying mechanism behind the protective effect of PHB against bacterial disease using gnotobiotically-cultured brine shrimp Artemia franciscana and pathogenic Vibrio campbellii as host-pathogen model. The gnotobiotic model system is crucial for such studies because it eliminates any possible microbial interference (naturally present in any type of aquatic environment) in these mechanistic studies and furthermore facilitates the interpretation of the results in terms of a cause effect relationship. We showed clear evidences indicating that PHB conferred protection to Artemia host against V. campbellii by a mechanism of inducing heat shock protein (Hsp) 70. Additionally, our results also showed that this salutary effect of PHB was associated with the generation of protective innate immune responses, especially the prophenoloxidase and transglutaminase immune systems – phenomena possibly mediated by PHB-induced Hsp70. From overall results, we conclude that PHB induces Hsp70 and this induced Hsp70 might contribute in part to the protection of Artemia against pathogenic V. campbellii. PMID:25822312

  3. Ordinary Social Interaction and the Main Effect Between Perceived Support and Affect.

    PubMed

    Lakey, Brian; Vander Molen, Randy J; Fles, Elizabeth; Andrews, Justin

    2016-10-01

    Relational regulation theory hypothesizes that (a) the main effect between perceived support and mental health primarily reflects ordinary social interaction rather than conversations about stress and how to cope with it, and (b) the extent to which a provider regulates a recipient's mental health primarily reflects the recipient's personal taste (i.e., is relational), rather than the provider's objective supportiveness. In three round-robin studies, participants rated each other on supportiveness and the quality of ordinary social interaction, as well as their own affect when interacting with each other. Samples included marines about to deploy to Afghanistan (N = 100; 150 dyads), students sharing apartments (N = 64; 96 dyads), and strangers (N = 48; 72 dyads). Perceived support and ordinary social interaction were primarily relational, and most of perceived support's main effect on positive affect was redundant with ordinary social interaction. The main effect between perceived support and affect emerged among strangers after brief text conversations, and these links were partially verified by independent observers. Findings for negative affect were less consistent with theory. Ordinary social interaction appears to be able to explain much of the main effect between perceived support and positive affect.

  4. Assessing empathy and managing emotions through interactions with an affective avatar.

    PubMed

    Johnson, Esperanza; Hervás, Ramón; Gutiérrez López de la Franca, Carlos; Mondéjar, Tania; Ochoa, Sergio F; Favela, Jesús

    2016-09-30

    Assistive technologies can improve the quality of life of people diagnosed with different forms of social communication disorders. We report on the design and evaluation of an affective avatar aimed at engaging the user in a social interaction with the purpose of assisting in communication therapies. A human-avatar taxonomy is proposed to assist the design of affective avatars aimed at addressing social communication disorder. The avatar was evaluated with 30 subjects to assess how effectively it conveys the desired emotion and elicits empathy from the user. Results provide evidence that users become used to the avatar after a number of interactions, and they perceive the defined behavior as being logical. The users' interactions with the avatar entail affective reactions, including the mimic emotions that users felt, and establish a preliminary ground truth about prototypic empathic interactions with avatars that is being used to train learning algorithms to support social communication disorder evaluation.

  5. Ascariasis: host-pathogen biology.

    PubMed

    Pawlowski, Z S

    1982-01-01

    Ascaris lumbricoides is one of the most common intestinal parasites in humans. Daily global contamination of the soil by A. lumbricoides eggs is enormous (approximately 9 x 10(14) eggs/day). Physical factors, particularly temperature and moisture, are critical in determining the maturation of eggs to the infective stage and their survival. Transmission of the infection to humans, on the other hand, depends more on various socioeconomic factors. In theory, ascariasis is preventable; it is indeed on the way to disappearing completely in developed societies where there is a high standard of sanitation. Ascariasis remains a problem in developing countries, however, where methods of disposal of human excreta are inadequate. The intensity of invasion is regulated by specific and nonspecific responses of the host to migrating A. lumbricoides larvae. Whether or not ascariasis becomes symptomatic depends on the intensity of the infection, the nutritional and immunologic status of the host, and the possible complications that may arise. Host responses to A. lumbricoides are brisk during the larval migratory stage in which hypersensitivity reactions may become clinically manifest, whereas people are rather tolerant of intestinal infections with adult worms. The role of ascariasis in the prevalence of allergic asthma still remains unclear. Complications due to migration of adult worms into the biliary duct system and to intestinal obstructions are the major causes of acute morbidity and mortality in ascariasis.

  6. Predicting the accuracy of facial affect recognition: the interaction of child maltreatment and intellectual functioning.

    PubMed

    Shenk, Chad E; Putnam, Frank W; Noll, Jennie G

    2013-02-01

    Previous research demonstrates that both child maltreatment and intellectual performance contribute uniquely to the accurate identification of facial affect by children and adolescents. The purpose of this study was to extend this research by examining whether child maltreatment affects the accuracy of facial recognition differently at varying levels of intellectual functioning. A sample of maltreated (n=50) and nonmaltreated (n=56) adolescent females, 14 to 19 years of age, was recruited to participate in this study. Participants completed demographic and study-related questionnaires and interviews to control for potential psychological and psychiatric confounds such as symptoms of posttraumatic stress disorder, negative affect, and difficulties in emotion regulation. Participants also completed an experimental paradigm that recorded responses to facial affect displays starting in a neutral expression and changing into a full expression of one of six emotions: happiness, sadness, anger, disgust, fear, or surprise. Hierarchical multiple regression assessed the incremental advantage of evaluating the interaction between child maltreatment and intellectual functioning. Results indicated that the interaction term accounted for a significant amount of additional variance in the accurate identification of facial affect after controlling for relevant covariates and main effects. Specifically, maltreated females with lower levels of intellectual functioning were least accurate in identifying facial affect displays, whereas those with higher levels of intellectual functioning performed as well as nonmaltreated females. These results suggest that maltreatment and intellectual functioning interact to predict the recognition of facial affect, with potential long-term consequences for the interpersonal functioning of maltreated females.

  7. Knowing your audience affects male-male interactions in Siamese fighting fish (Betta splendens).

    PubMed

    Bertucci, Frédéric; Matos, Ricardo J; Dabelsteen, Torben

    2014-03-01

    Aggressive interactions between animals often occur in the presence of third parties. By observing aggressive signalling interactions, bystanders may eavesdrop and gain relevant information about conspecifics without the costs of interacting. On the other hand, interactants may also adjust their behaviour when an audience is present. This study aimed to test how knowledge about fighting ability of an audience affects aggressive interactions in male Siamese fighting fish. Subjects were positioned between two dyads of non-interacting males and allowed to observe both dyads shortly before the view to one of the dyads was blocked, and the dyads were allowed to interact. Subjects were subsequently exposed to an unknown opponent in the presence of either the winner or the loser of the seen or unseen interaction. The results suggest a complex role of the characteristic of an audience in the agonistic behaviours of a subject engaged in an interaction. The presence of a seen audience elicited more aggressive displays towards the opponent if the audience was a loser. This response was different in the presence of an unseen audience. Subjects then directed a higher aggressiveness against their opponent if the audience was a winner. These results also suggest a potentially more complex and interesting process allowing individuals to gain information about the quality and threat level of an unknown audience while it is interacting with a third party. The importance of information acquisition for an individual to adapt its behaviour and the role of communication networks in shaping social interactions are discussed.

  8. Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction

    PubMed Central

    Pedrini, Nicolás; Ortiz-Urquiza, Almudena; Huarte-Bonnet, Carla; Zhang, Shizhu; Keyhani, Nemat O.

    2013-01-01

    Broad host range entomopathogenic fungi such as Beauveria bassiana attack insect hosts via attachment to cuticular substrata and the production of enzymes for the degradation and penetration of insect cuticle. The outermost epicuticular layer consists of a complex mixture of non-polar lipids including hydrocarbons, fatty acids, and wax esters. Long chain hydrocarbons are major components of the outer waxy layer of diverse insect species, where they serve to protect against desiccation and microbial parasites, and as recognition molecules or as a platform for semiochemicals. Insect pathogenic fungi have evolved mechanisms for overcoming this barrier, likely with sets of lipid degrading enzymes with overlapping substrate specificities. Alkanes and fatty acids are substrates for a specific subset of fungal cytochrome P450 monooxygenases involved in insect hydrocarbon degradation. These enzymes activate alkanes by terminal oxidation to alcohols, which are further oxidized by alcohol and aldehyde dehydrogenases, whose products can enter β-oxidation pathways. B. bassiana contains at least 83 genes coding for cytochrome P450s (CYP), a subset of which are involved in hydrocarbon oxidation, and several of which represent new CYP subfamilies/families. Expression data indicated differential induction by alkanes and insect lipids and four CYP proteins have been partially characterized after heterologous expression in yeast. Gene knockouts revealed a phenotype for only one (cyp52X1) out of six genes examined to date. CYP52X1 oxidizes long chain fatty acids and participates in the degradation of specific epicuticular lipid components needed for breaching the insect waxy layer. Examining the hydrocarbon oxidizing CYP repertoire of pathogens involved in insect epicuticle degradation can lead to the characterization of enzymes with novel substrate specificities. Pathogen targeting may also represent an important co-evolutionary process regarding insect cuticular hydrocarbon synthesis. PMID:23422735

  9. A Network Approach of Gene Co-expression in the Zea mays/Aspergillus flavus Pathosystem to Map Host/Pathogen Interaction Pathways

    PubMed Central

    Musungu, Bryan M.; Bhatnagar, Deepak; Brown, Robert L.; Payne, Gary A.; OBrian, Greg; Fakhoury, Ahmad M.; Geisler, Matt

    2016-01-01

    A gene co-expression network (GEN) was generated using a dual RNA-seq study with the fungal pathogen Aspergillus flavus and its plant host Zea mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network revealed a high degree of connectivity in many of the previously recognized pathways in Z. mays such as jasmonic acid, ethylene, and reactive oxygen species (ROS). For the pathogen A. flavus, a link between aflatoxin production and vesicular transport was identified within the network. There was significant interspecies correlation of expression between Z. mays and A. flavus for a subset of 104 Z. mays, and 1942 A. flavus genes. This resulted in an interspecies subnetwork enriched in multiple Z. mays genes involved in the production of ROS. In addition to the ROS from Z. mays, there was enrichment in the vesicular transport pathways and the aflatoxin pathway for A. flavus. Included in these genes, a key aflatoxin cluster regulator, AflS, was found to be co-regulated with multiple Z. mays ROS producing genes within the network, suggesting AflS may be monitoring host ROS levels. The entire GEN for both host and pathogen, and the subset of interspecies correlations, is presented as a tool for hypothesis generation and discovery for events in the early stages of fungal infection of Z. mays by A. flavus. PMID:27917194

  10. A Network Approach of Gene Co-expression in the Zea mays/Aspergillus flavus Pathosystem to Map Host/Pathogen Interaction Pathways.

    PubMed

    Musungu, Bryan M; Bhatnagar, Deepak; Brown, Robert L; Payne, Gary A; OBrian, Greg; Fakhoury, Ahmad M; Geisler, Matt

    2016-01-01

    A gene co-expression network (GEN) was generated using a dual RNA-seq study with the fungal pathogen Aspergillus flavus and its plant host Zea mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network revealed a high degree of connectivity in many of the previously recognized pathways in Z. mays such as jasmonic acid, ethylene, and reactive oxygen species (ROS). For the pathogen A. flavus, a link between aflatoxin production and vesicular transport was identified within the network. There was significant interspecies correlation of expression between Z. mays and A. flavus for a subset of 104 Z. mays, and 1942 A. flavus genes. This resulted in an interspecies subnetwork enriched in multiple Z. mays genes involved in the production of ROS. In addition to the ROS from Z. mays, there was enrichment in the vesicular transport pathways and the aflatoxin pathway for A. flavus. Included in these genes, a key aflatoxin cluster regulator, AflS, was found to be co-regulated with multiple Z. mays ROS producing genes within the network, suggesting AflS may be monitoring host ROS levels. The entire GEN for both host and pathogen, and the subset of interspecies correlations, is presented as a tool for hypothesis generation and discovery for events in the early stages of fungal infection of Z. mays by A. flavus.

  11. Systems approach to investigating host-pathogen interactions in infections with the biothreat agent Francisella. Constraints-based model of Francisella tularensis

    PubMed Central

    2010-01-01

    Background Francisella tularensis is a prototypic example of a pathogen for which few experimental datasets exist, but for which copious high-throughout data are becoming available because of its re-emerging significance as biothreat agent. The virulence of Francisella tularensis depends on its growth capabilities within a defined environmental niche of the host cell. Results We reconstructed the metabolism of Francisella as a stoichiometric matrix. This systems biology approach demonstrated that changes in carbohydrate utilization and amino acid metabolism play a pivotal role in growth, acid resistance, and energy homeostasis during infection with Francisella. We also show how varying the expression of certain metabolic genes in different environments efficiently controls the metabolic capacity of F. tularensis. Selective gene-expression analysis showed modulation of sugar catabolism by switching from oxidative metabolism (TCA cycle) in the initial stages of infection to fatty acid oxidation and gluconeogenesis later on. Computational analysis with constraints derived from experimental data revealed a limited set of metabolic genes that are operational during infection. Conclusions This integrated systems approach provides an important tool to understand the pathogenesis of an ill-characterized biothreat agent and to identify potential novel drug targets when rapid target identification is required should such microbes be intentionally released or become epidemic. PMID:20731870

  12. Host-pathogen interactions. XXIX. Oligogalacturonides released from sodium polypectate by endopolygalacturonic acid lyase are elicitors of phytoalexins in soybean. [Glycine max L

    SciTech Connect

    Davis, K.R.; Darvill, A.G.; Albersheim, P.; Dell, A.

    1986-02-01

    Recent studies have demonstrated that an apparently homogeneous preparation of an ..cap alpha..-1,4-D-endopolygalacturonic acid lyase (EC 4.2,2.2) isolated from the phytopathogenic bacterium Erwinia carotovora induced phytoalexin accumulation in cotyledons of soybean (Glycine max (L.) Merr. cv Wayne) and that this pectin-degrading enzyme released heat-stable elicitors of phytoalexins from soybean cell walls, citrus pectin, and sodium polypectate. The present paper reports the purification, by anion-exchange chromatography on QAE-Sephadex columns followed by gel-permeation chromatography on a Bio-Gel P-6 column, of the two fractions with highest specific elicitor activity present in a crude elicitor-preparation obtained by lyase treatment of sodium polypectate. Structural analysis of the fraction with highest specific elicitor activity indicated that the major, if not only, component was a decasaccharide of ..cap alpha..-1,4-D-galactosyluronic acid that contained the expected product of lyase cleavage, 4-deoxy-..beta..-L-5-threo-hexopyranos-4-enyluronic acid (4,5-unsaturated galactosyluronic acid), at the nonreducing terminus. This modified decagalacturonide fraction exhibited half-maximum and maximum elicitor activity at 1 microgram/cotyledon (6 micromolar) and 5 micrograms/cotyledon (32 micromolar) galactosyluronic acid equivalents, respectively. Reducing 90 to 95% of the carboxyl groups of the galactosyluronic acid residues abolished the elicitor activity of the decagalacturonide fraction. The second most elicitor-active fraction contained mostly undeca-..cap alpha..-1,4-D-galactosyluronic acid that contained 4,5-unsaturated galactosyluronic acid at the nonreducing termini. This fraction exhibited half-maximum and maximum elicitor activity at approximately 3 micrograms/cotyledon (17 micromolar) and 6 micrograms/cotyledon (34 micromolar) galactosyluronic acid equivalents, respectively.

  13. Uncoupling of the dynamics of host-pathogen interaction uncovers new mechanisms of viral interferon antagonism at the single-cell level.

    PubMed

    Rand, Ulfert; Hillebrand, Upneet; Sievers, Stephanie; Willenberg, Steffi; Köster, Mario; Hauser, Hansjörg; Wirth, Dagmar

    2014-07-01

    Antiviral defence in mammals is mediated through type-I interferons (IFNs). Viruses antagonise this process through expression of IFN antagonist proteins (IAPs). Understanding and modelling of viral escape mechanisms and the dynamics of IAP action has the potential to facilitate the development of specific and safe drugs. Here, we describe the dynamics of interference by selected viral IAPs, NS1 from Influenza A virus and NS3/4A from Hepatitis C virus. We used Tet-inducible IAP gene expression to uncouple this process from virus-driven dynamics. Stochastic activation of the IFN-β gene required the use of single-cell live imaging to define the efficacy of the inhibitors during the virus-induced signalling processes. We found significant correlation between the onset of IAP expression and halted IFN-β expression in cells where IFN-β induction had already occurred. These data indicate that IAPs not only prevent antiviral signalling prior to IFN-β induction, but can also stop the antiviral response even after it has been activated. We found reduced NF-κB activation to be the underlying mechanism by which activated IFN expression can be blocked. This work demonstrates a new mechanism by which viruses can antagonise the IFN response.

  14. Microgravity as a biological tool to examine host-pathogen interactions and to guide development of therapeutics and preventatives that target pathogenic bacteria.

    PubMed

    Higginson, Ellen E; Galen, James E; Levine, Myron M; Tennant, Sharon M

    2016-11-01

    Space exploration programs have long been interested in the effects of spaceflight on biology. This research is important not only in its relevance to future deep space exploration, but also because it has allowed investigators to ask questions about how gravity impacts cell behavior here on Earth. In the 1980s, scientists designed and built the first rotating wall vessel, capable of mimicking the low shear environment found in space. This vessel has since been used to investigate growth of both microorganisms and human tissue cells in low shear modeled microgravity conditions. Bacterial behavior has been shown to be altered both in space and under simulated microgravity conditions. In some cases, bacteria appear attenuated, whereas in others virulence is enhanced. This has consequences not only for manned spaceflight, but poses larger questions about the ability of bacteria to sense the world around them. By using the microgravity environment as a tool, we can exploit this phenomenon in the search for new therapeutics and preventatives against pathogenic bacteria for use both in space and on Earth.

  15. Cold Stress-Induced Disease Resistance(SIDR): Indirect effects of low temperatures on host-pathogen interactions and disease progress in the grapevine powdery mildew pathosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erysiphe necator is an obligate biotroph capable of infecting three genera within the Vitaceae (Vitis, Parthenocissus, and Ampelopsis). The pathogen inhabits a unique niche involving wholly external mycelial growth on the host epidermal cells. This growth habit coupled with its biotrophic reliance ...

  16. A network approach of gene co-expression in the zea mays/Aspergillus flavus pathosystem to map host/pathogen interaction pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A gene co-expression network was generated using a dual RNA-seq study with the fungal pathogen A. flavus and its plant host Z. mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network reveal...

  17. Affective Interaction with a Virtual Character Through an fNIRS Brain-Computer Interface.

    PubMed

    Aranyi, Gabor; Pecune, Florian; Charles, Fred; Pelachaud, Catherine; Cavazza, Marc

    2016-01-01

    Affective brain-computer interfaces (BCI) harness Neuroscience knowledge to develop affective interaction from first principles. In this article, we explore affective engagement with a virtual agent through Neurofeedback (NF). We report an experiment where subjects engage with a virtual agent by expressing positive attitudes towards her under a NF paradigm. We use for affective input the asymmetric activity in the dorsolateral prefrontal cortex (DL-PFC), which has been previously found to be related to the high-level affective-motivational dimension of approach/avoidance. The magnitude of left-asymmetric DL-PFC activity, measured using functional near infrared spectroscopy (fNIRS) and treated as a proxy for approach, is mapped onto a control mechanism for the virtual agent's facial expressions, in which action units (AUs) are activated through a neural network. We carried out an experiment with 18 subjects, which demonstrated that subjects are able to successfully engage with the virtual agent by controlling their mental disposition through NF, and that they perceived the agent's responses as realistic and consistent with their projected mental disposition. This interaction paradigm is particularly relevant in the case of affective BCI as it facilitates the volitional activation of specific areas normally not under conscious control. Overall, our contribution reconciles a model of affect derived from brain metabolic data with an ecologically valid, yet computationally controllable, virtual affective communication environment.

  18. Affective Interaction with a Virtual Character Through an fNIRS Brain-Computer Interface

    PubMed Central

    Aranyi, Gabor; Pecune, Florian; Charles, Fred; Pelachaud, Catherine; Cavazza, Marc

    2016-01-01

    Affective brain-computer interfaces (BCI) harness Neuroscience knowledge to develop affective interaction from first principles. In this article, we explore affective engagement with a virtual agent through Neurofeedback (NF). We report an experiment where subjects engage with a virtual agent by expressing positive attitudes towards her under a NF paradigm. We use for affective input the asymmetric activity in the dorsolateral prefrontal cortex (DL-PFC), which has been previously found to be related to the high-level affective-motivational dimension of approach/avoidance. The magnitude of left-asymmetric DL-PFC activity, measured using functional near infrared spectroscopy (fNIRS) and treated as a proxy for approach, is mapped onto a control mechanism for the virtual agent’s facial expressions, in which action units (AUs) are activated through a neural network. We carried out an experiment with 18 subjects, which demonstrated that subjects are able to successfully engage with the virtual agent by controlling their mental disposition through NF, and that they perceived the agent’s responses as realistic and consistent with their projected mental disposition. This interaction paradigm is particularly relevant in the case of affective BCI as it facilitates the volitional activation of specific areas normally not under conscious control. Overall, our contribution reconciles a model of affect derived from brain metabolic data with an ecologically valid, yet computationally controllable, virtual affective communication environment. PMID:27462216

  19. Duration of Exposure to Elevated Temperature Affects Competitive Interactions in Juvenile Reef Fishes

    PubMed Central

    Warren, Donald T.; Donelson, Jennifer M.; McCormick, Mark I.; Ferrari, Maud C. O.; Munday, Philip L.

    2016-01-01

    Climate change will affect key ecological processes that structure natural communities, but the outcome of interactions between individuals and species will depend on their thermal plasticity. We tested how short- and long-term exposure to projected future temperatures affects intraspecific and interspecific competitive interactions in two species of coral reef damselfishes. In conspecific contests, juvenile Ambon damselfish, Pomacentrus amboinensis, exhibited no change in aggressive interactions after 4d exposure to higher temperatures. However, after 90d of exposure, fish showed a nonadaptive reduction in aggression at elevated temperatures. Conversely, 4d exposure to higher temperature increased aggression towards conspecifics in the lemon damselfish, Pomacentrus moluccensis. 90d exposure began to reduce this pattern, but overall there was little effect of temperature. Aggression in interspecific contests increased with short-term exposure, but was significantly lower after long-term exposure indicative of acclimation. Our results show how the length of exposure to elevated temperature can affect the outcome of competitive interactions. Furthermore, we illustrate that results from intraspecific contests may not accurately predict interspecific interactions, which will challenge our ability to generalise the effects of warming on competitive interactions. PMID:27736924

  20. Elevated CO2 affects predator-prey interactions through altered performance.

    PubMed

    Allan, Bridie J M; Domenici, Paolo; McCormick, Mark I; Watson, Sue-Ann; Munday, Philip L

    2013-01-01

    Recent research has shown that exposure to elevated carbon dioxide (CO2) affects how fishes perceive their environment, affecting behavioral and cognitive processes leading to increased prey mortality. However, it is unclear if increased mortality results from changes in the dynamics of predator-prey interactions or due to prey increasing activity levels. Here we demonstrate that ocean pCO2 projected to occur by 2100 significantly effects the interactions of a predator-prey pair of common reef fish: the planktivorous damselfish Pomacentrus amboinensis and the piscivorous dottyback Pseudochromis fuscus. Prey exposed to elevated CO2 (880 µatm) or a present-day control (440 µatm) interacted with similarly exposed predators in a cross-factored design. Predators had the lowest capture success when exposed to elevated CO2 and interacting with prey exposed to present-day CO2. Prey exposed to elevated CO2 had reduced escape distances and longer reaction distances compared to prey exposed to present-day CO2 conditions, but this was dependent on whether the prey was paired with a CO2 exposed predator or not. This suggests that the dynamics of predator-prey interactions under future CO2 environments will depend on the extent to which the interacting species are affected and can adapt to the adverse effects of elevated CO2.

  1. Elevated CO2 Affects Predator-Prey Interactions through Altered Performance

    PubMed Central

    Allan, Bridie J. M.; Domenici, Paolo; McCormick, Mark I.; Watson, Sue-Ann; Munday, Philip L.

    2013-01-01

    Recent research has shown that exposure to elevated carbon dioxide (CO2) affects how fishes perceive their environment, affecting behavioral and cognitive processes leading to increased prey mortality. However, it is unclear if increased mortality results from changes in the dynamics of predator-prey interactions or due to prey increasing activity levels. Here we demonstrate that ocean pCO2 projected to occur by 2100 significantly effects the interactions of a predator-prey pair of common reef fish: the planktivorous damselfish Pomacentrus amboinensis and the piscivorous dottyback Pseudochromis fuscus. Prey exposed to elevated CO2 (880 µatm) or a present-day control (440 µatm) interacted with similarly exposed predators in a cross-factored design. Predators had the lowest capture success when exposed to elevated CO2 and interacting with prey exposed to present-day CO2. Prey exposed to elevated CO2 had reduced escape distances and longer reaction distances compared to prey exposed to present-day CO2 conditions, but this was dependent on whether the prey was paired with a CO2 exposed predator or not. This suggests that the dynamics of predator-prey interactions under future CO2 environments will depend on the extent to which the interacting species are affected and can adapt to the adverse effects of elevated CO2. PMID:23484032

  2. Interactive effects of emotional and restrained eating on responses to chocolate and affect.

    PubMed

    Macht, Michael; Mueller, Jochen

    2007-12-01

    To examine differences and interactions between emotional and restrained-eating healthy adults (56 women, 53 men) were classified into emotional or restrained eaters, and persons scoring high or low on both dimensions. Participants tasted different types of chocolate (with 30, 70, 85, or 99% cocoa content) and completed questionnaires on affect and attitudes towards chocolate. Emotional eaters reported increased craving for and increased consumption of chocolate, whereas restrained eaters experienced chocolate-related guilt. However, restrained eaters rated plain chocolate (70% and 85% cocoa) as more pleasant than other groups. Persons scoring high on both dimensions showed heightened negative affect and may be prone to disturbances of eating and affect.

  3. Situational Motivation and Perceived Intensity: Their Interaction in Predicting Changes in Positive Affect from Physical Activity

    PubMed Central

    Guérin, Eva; Fortier, Michelle S.

    2012-01-01

    There is evidence that affective experiences surrounding physical activity can contribute to the proper self-regulation of an active lifestyle. Motivation toward physical activity, as portrayed by self-determination theory, has been linked to positive affect, as has the intensity of physical activity, especially of a preferred nature. The purpose of this experimental study was to examine the interaction between situational motivation and intensity [i.e., ratings of perceived exertion (RPE)] in predicting changes in positive affect following an acute bout of preferred physical activity, namely, running. Fourty-one female runners engaged in a 30-minute self-paced treadmill run in a laboratory context. Situational motivation for running, pre- and post-running positive affect, and RPE were assessed via validated self-report questionnaires. Hierarchical regression analyses revealed a significant interaction effect between RPE and introjection (P < .05) but not between RPE and identified regulation or intrinsic motivation. At low levels of introjection, the influence of RPE on the change in positive affect was considerable, with higher RPE ratings being associated with greater increases in positive affect. The implications of the findings in light of SDT principles as well as the potential contingencies between the regulations and RPE in predicting positive affect among women are discussed. PMID:22778914

  4. The role of host microfilaments and microtubules during opsonin-independent interactions of Cryptococcus neoformans with mammalian lung cells.

    PubMed

    Choo, K K; Chong, P P; Ho, A S H; Yong, P V C

    2015-12-01

    The purpose of this investigation was to characterise the interactions of Cryptococcus neoformans with mammalian host alveolar epithelial cells and alveolar macrophages, with emphasis on the roles of the cryptococcal capsule and the host cell cytoskeletons. The adherence and internalisation of C. neoformans into mammalian lung cells and the roles of host cell cytoskeletons in host-pathogen interactions were studied using in vitro models coupled with a differential fluorescence assay, fluorescence staining, immunofluorescence and drug inhibition of actin and microtubule polymerisation. Under conditions devoid of opsonin and macrophage activation, C. neoformans has a high affinity towards MH-S alveolar macrophages, yet associated poorly to A549 alveolar epithelial cells. Acapsular C. neoformans adhered to and internalised into the mammalian cells more effectively compared to encapsulated cryptococci. Acapsular C. neoformans induced prominent actin reorganisation at the host-pathogen interface in MH-S alveolar macrophages, but minimally affected actin reorganisation in A549 alveolar epithelial cells. Acapsular C. neoformans also induced localisation of microtubules to internalised cryptococci in MH-S cells. Drug inhibition of actin and microtubule polymerisation both reduced the association of acapsular C. neoformans to alveolar macrophages. The current study visualises and confirms the interactions of C. neoformans with mammalian alveolar cells during the establishment of infection in the lungs. The acapsular form of C. neoformans effectively adhered to and internalised into alveolar macrophages by inducing localised actin reorganisation, relying on the host's actin and microtubule activities.

  5. Water-triacylglycerol interactions affect oil body structure and seed viability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We are investigating interactions between water and triacylglycerols (TAG) that appear to affect oil body stability and viability of seeds. Dried seeds are usually stored at freezer temperatures (-20oC) for long-term conservation of genetic resources. This globally accepted genebanking practice is...

  6. Interaction between Task Oriented and Affective Information Processing in Cognitive Robotics

    NASA Astrophysics Data System (ADS)

    Haazebroek, Pascal; van Dantzig, Saskia; Hommel, Bernhard

    There is an increasing interest in endowing robots with emotions. Robot control however is still often very task oriented. We present a cognitive architecture that allows the combination of and interaction between task representations and affective information processing. Our model is validated by comparing simulation results with empirical data from experimental psychology.

  7. The Relationship between Affective States and Dialog Patterns during Interactions with AutoTutor

    ERIC Educational Resources Information Center

    Graesser, Arthur C.; D'Mello, Sidney K.; Craig, Scotty D.; Witherspoon, Amy; Sullins, Jeremiah; McDaniel, Bethany; Gholson, Barry

    2008-01-01

    Relations between emotions (affect states) and learning have recently been explored in the context of AutoTutor. AutoTutor is a tutoring system on the Internet that helps learners construct answers to difficult questions by interacting with them in natural language. AutoTutor has an animated conversation agent and a dialog management facility that…

  8. User Experience of Mobile Interactivity: How Do Mobile Websites Affect Attitudes and Relational Outcomes?

    ERIC Educational Resources Information Center

    Dou, Xue

    2013-01-01

    Mobile media offer new opportunities for fostering communications between individuals and companies. Corporate websites are being increasingly accessed via smart phones and companies are scrambling to offer a mobile-friendly user experience on their sites. However, very little is known about how interactivity in the mobile context affects user…

  9. Dopamine D4 receptor polymorphism and sex interact to predict children’s affective knowledge

    PubMed Central

    Ben-Israel, Sharon; Uzefovsky, Florina; Ebstein, Richard P.; Knafo-Noam, Ariel

    2015-01-01

    Affective knowledge, the ability to understand others’ emotional states, is considered to be a fundamental part in efficient social interaction. Affective knowledge can be seen as related to cognitive empathy, and in the framework of theory of mind (ToM) as affective ToM. Previous studies found that cognitive empathy and ToM are heritable, yet little is known regarding the specific genes involved in individual variability in affective knowledge. Investigating the genetic basis of affective knowledge is important for understanding brain mechanisms underlying socio-cognitive abilities. The 7-repeat (7R) allele within the third exon of the dopamine D4 receptor gene (DRD4-III) has been a focus of interest, due to accumulated knowledge regarding its relevance to individual differences in social behavior. A recent study suggests that an interaction between the DRD4-III polymorphism and sex is associated with cognitive empathy among adults. We aimed to examine the same association in two childhood age groups. Children (N = 280, age 3.5 years, N = 283, age 5 years) participated as part of the Longitudinal Israel Study of Twins. Affective knowledge was assessed through children’s responses to an illustrated story describing different emotional situations, told in a laboratory setting. The findings suggest a significant interaction between sex and the DRD4-III polymorphism, replicated in both age groups. Boy carriers of the 7R allele had higher affective knowledge scores than girls, whereas in the absence of the 7R there was no significant sex effect on affective knowledge. The results support the importance of DRD4-III polymorphism and sex differences to social development. Possible explanations for differences from adult findings are discussed, as are pathways for future studies. PMID:26157401

  10. Interactions with heterospecific males do not affect how female Mesocricetus hamsters respond to conspecific males

    PubMed Central

    delBarco-Trillo, Javier; Johnston, Robert E.

    2012-01-01

    Reproductive interference includes any interspecific interaction that reduces the fitness of one or both species involved. There are several types of reproductive interference, but they normally involve the direct cost of interacting or mating with heterospecifics. An indirect cost of interacting with heterospecific individuals is a consequent reduction in successful interactions with conspecifics. We tested the hypothesis that being aggressive towards a heterospecific individual will diminish sexual responses towards conspecifics in later encounters. We used two species of Mesocricetus hamsters (Syrian and Turkish hamsters), whose interspecific interactions have previously been determined. We exposed or both exposed and paired Syrian hamster females with a conspecific or a heterospecific male. Five minutes later, we paired all females with a conspecific male and measured the latency to lordosis, the duration of lordosis and any incidence of aggression. We found that (1) interactions with heterospecific males did not affect how females responded to conspecific males in later encounters and (2) previous pairing of female subjects with either conspecific or heterospecific males promoted a faster sexual response by females in subsequent interactions with conspecific males. Thus, aggressive interactions of Syrian hamster females with heterospecific males, contrary to our initial hypothesis, had a positive effect on subsequent interactions with conspecific males. PMID:23439800

  11. Toward interactive context-aware affective educational recommendations in computer-assisted language learning

    NASA Astrophysics Data System (ADS)

    Santos, Olga C.; Saneiro, Mar; Boticario, Jesus G.; Rodriguez-Sanchez, M. C.

    2016-01-01

    This work explores the benefits of supporting learners affectively in a context-aware learning situation. This features a new challenge in related literature in terms of providing affective educational recommendations that take advantage of ambient intelligence and are delivered through actuators available in the environment, thus going beyond previous approaches which provided computer-based recommendation that present some text or tell aloud the learner what to do. To address this open issue, we have applied TORMES elicitation methodology, which has been used to investigate the potential of ambient intelligence for making more interactive recommendations in an emotionally challenging scenario (i.e. preparing for the oral examination of a second language learning course). Arduino open source electronics prototyping platform is used both to sense changes in the learners' affective state and to deliver the recommendation in a more interactive way through different complementary sensory communication channels (sight, hearing, touch) to cope with a universal design. An Ambient Intelligence Context-aware Affective Recommender Platform (AICARP) has been built to support the whole experience, which represents a progress in the state of the art. In particular, we have come up with what is most likely the first interactive context-aware affective educational recommendation. The value of this contribution lies in discussing methodological and practical issues involved.

  12. Emotion in languaging: languaging as affective, adaptive, and flexible behavior in social interaction

    PubMed Central

    Jensen, Thomas W.

    2014-01-01

    This article argues for a view on languaging as inherently affective. Informed by recent ecological tendencies within cognitive science and distributed language studies a distinction between first order languaging (language as whole-body sense making) and second order language (language as system like constraints) is put forward. Contrary to common assumptions within linguistics and communication studies separating language-as-a-system from language use (resulting in separations between language vs. body-language and verbal vs. non-verbal communication etc.) the first/second order distinction sees language as emanating from behavior making it possible to view emotion and affect as integral parts languaging behavior. Likewise, emotion and affect are studied, not as inner mental states, but as processes of organism-environment interactions. Based on video recordings of interaction between (1) children with special needs, and (2) couple in therapy and the therapist patterns of reciprocal influences between interactants are examined. Through analyzes of affective stance and patterns of inter-affectivity it is exemplified how language and emotion should not be seen as separate phenomena combined in language use, but rather as completely intertwined phenomena in languaging behavior constrained by second order patterns. PMID:25076921

  13. Population variation affects interactions between two California salt marsh plant species more than precipitation.

    PubMed

    Noto, Akana E; Shurin, Jonathan B

    2016-02-01

    Species that occur along broad environmental gradients often vary in phenotypic traits that make them better adapted to local conditions. Variation in species interactions across gradients could therefore be due to either phenotypic differences among populations or environmental conditions that shift the balance between competition and facilitation. To understand how the environment (precipitation) and variation among populations affect species interactions, we conducted a common garden experiment using two common salt marsh plant species, Salicornia pacifica and Jaumea carnosa, from six salt marshes along the California coast encompassing a large precipitation gradient. Plants were grown alone or with an individual of the opposite species from the same site and exposed to one of three precipitation regimes. J. carnosa was negatively affected in the presence of S. pacifica, while S. pacifica was facilitated by J. carnosa. The strength of these interactions varied by site of origin but not by precipitation treatment. These results suggest that phenotypic variation among populations can affect interaction strength more than environment, despite a threefold difference in precipitation. Geographic intraspecific variation may therefore play an important role in determining the strength of interactions in communities.

  14. Residential mobility, self-concept, and positive affect in social interactions.

    PubMed

    Oishi, Shigehiro; Lun, Janetta; Sherman, Gary D

    2007-07-01

    The present research examined (a) the link between personal history of residential mobility and the self-concept and (b) the implications of such a link for positive affect in social interactions. Study 1 showed that the personal self was more central to the self-definition of frequent movers than to that of nonmovers, whereas the collective self was more central to the self-definition of nonmovers than to that of frequent movers. Results from a laboratory and a 2-week event sampling study (Studies 2 and 3) demonstrated that frequent movers felt happier when an interaction partner accurately perceived their personal selves, whereas nonmovers felt happier when a partner accurately perceived their collective selves. These findings present the first direct evidence on how personal history of residential mobility is linked to important individual differences in the self and positive affect in social interactions.

  15. Interactive effects of trait and state affect on top-down control of attention.

    PubMed

    Hur, Juyoen; Miller, Gregory A; McDavitt, Jenika R B; Spielberg, Jeffrey M; Crocker, Laura D; Infantolino, Zachary P; Towers, David N; Warren, Stacie L; Heller, Wendy

    2015-08-01

    Few studies have investigated how attentional control is affected by transient affective states while taking individual differences in affective traits into consideration. In this study, participants completed a color-word Stroop task immediately after undergoing a positive, neutral or negative affective context manipulation (ACM). Behavioral performance was unaffected by any ACM considered in isolation. For individuals high in trait negative affect (NA), performance was impaired by the negative but not the positive or neutral ACM. Neuroimaging results indicate that activity in primarily top-down control regions of the brain (inferior frontal gyrus and dorsal anterior cingulate cortex) was suppressed in the presence of emotional arousal (both negative and positive ACMs). This effect appears to have been exacerbated or offset by co-occurring activity in other top-down control regions (parietal) and emotion processing regions (orbitofrontal cortex, amygdala and nucleus accumbens) as a function of the valence of state affect (positive or negative) and trait affect (trait NA or trait PA). Neuroimaging results are consistent with behavioral findings. In combination, they indicate both additive and interactive influences of trait and state affect on top-down control of attention.

  16. Dimerization between aequorea fluorescent proteins does not affect interaction between tagged estrogen receptors in living cells.

    PubMed

    Kofoed, Eric M; Guerbadot, Martin; Schaufele, Fred

    2008-01-01

    Forster resonance energy transfer (FRET) detection of protein interaction in living cells is commonly measured following the expression of interacting proteins genetically fused to the cyan (CFP) and yellow (YFP) derivatives of the Aequorea victoria fluorescent protein (FP). These FPs can dimerize at mM concentrations, which may introduce artifacts into the measurement of interaction between proteins that are fused with the FPs. Here, FRET analysis of the interaction between estrogen receptors (alpha isoform, ERalpha) labeled with "wild-type" CFP and YFP is compared with that of ERalpha labeled with "monomeric" A206K mutants of CFP and YFP. The intracellular equilibrium dissociation constant for the hormone-induced ERalpha-ERalpha interaction is similar for ERalpha labeled with wild-type or monomeric FPs. However, the measurement of energy transfer measured for ERalpha-ERalpha interaction in each cell is less consistent with the monomeric FPs. Thus, dimerization of the FPs does not affect the kinetics of ERalpha-ERalpha interaction but, when brought close together via ERalpha-ERalpha interaction, FP dimerization modestly improves FRET measurement.

  17. Herbivore and predator diversity interactively affect ecosystem properties in an experimental marine community.

    PubMed

    Douglass, James G; Duffy, J Emmett; Bruno, John F

    2008-06-01

    Interacting changes in predator and prey diversity likely influence ecosystem properties but have rarely been experimentally tested. We manipulated the species richness of herbivores and predators in an experimental benthic marine community and measured their effects on predator, herbivore and primary producer performance. Predator composition and richness strongly affected several community and population responses, mostly via sampling effects. However, some predators survived better in polycultures than in monocultures, suggesting complementarity due to stronger intra- than interspecific interactions. Predator effects also differed between additive and substitutive designs, emphasizing that the relationship between diversity and abundance in an assemblage can strongly influence whether and how diversity effects are realized. Changing herbivore richness and predator richness interacted to influence both total herbivore abundance and predatory crab growth, but these interactive diversity effects were weak. Overall, the presence and richness of predators dominated biotic effects on community and ecosystem properties.

  18. A novel non-contact radar sensor for affective and interactive analysis.

    PubMed

    Lin, Hong-Dun; Lee, Yen-Shien; Shih, Hsiang-Lan; Chuang, Bor-Nian

    2013-01-01

    Currently, many physiological signal sensing techniques have been applied for affective analysis in Human-Computer Interaction applications. Most known maturely developed sensing methods (EEG/ECG/EMG/Temperature/BP etc. al.) replied on contact way to obtain desired physiological information for further data analysis. However, those methods might cause some inconvenient and uncomfortable problems, and not easy to be used for affective analysis in interactive performing. To improve this issue, a novel technology based on low power radar technology (Nanosecond Pulse Near-field Sensing, NPNS) with 300 MHz radio-frequency was proposed to detect humans' pulse signal by the non-contact way for heartbeat signal extraction. In this paper, a modified nonlinear HRV calculated algorithm was also developed and applied on analyzing affective status using extracted Peak-to-Peak Interval (PPI) information from detected pulse signal. The proposed new affective analysis method is designed to continuously collect the humans' physiological signal, and validated in a preliminary experiment with sound, light and motion interactive performance. As a result, the mean bias between PPI (from NPNS) and RRI (from ECG) shows less than 1ms, and the correlation is over than 0.88, respectively.

  19. Cytonuclear interactions affect adaptive traits of the annual plant Arabidopsis thaliana in the field

    PubMed Central

    Roux, Fabrice; Mary-Huard, Tristan; Barillot, Elise; Wenes, Estelle; Botran, Lucy; Durand, Stéphanie; Villoutreix, Romain; Martin-Magniette, Marie-Laure; Camilleri, Christine; Budar, Françoise

    2016-01-01

    Although the contribution of cytonuclear interactions to plant fitness variation is relatively well documented at the interspecific level, the prevalence of cytonuclear interactions at the intraspecific level remains poorly investigated. In this study, we set up a field experiment to explore the range of effects that cytonuclear interactions have on fitness-related traits in Arabidopsis thaliana. To do so, we created a unique series of 56 cytolines resulting from cytoplasmic substitutions among eight natural accessions reflecting within-species genetic diversity. An assessment of these cytolines and their parental lines scored for 28 adaptive whole-organism phenotypes showed that a large proportion of phenotypic traits (23 of 28) were affected by cytonuclear interactions. The effects of these interactions varied from slight but frequent across cytolines to strong in some specific parental pairs. Two parental pairs accounted for half of the significant pairwise interactions. In one parental pair, Ct-1/Sha, we observed symmetrical phenotypic responses between the two nuclear backgrounds when combined with specific cytoplasms, suggesting nuclear differentiation at loci involved in cytonuclear epistasis. In contrast, asymmetrical phenotypic responses were observed in another parental pair, Cvi-0/Sha. In the Cvi-0 nuclear background, fecundity and phenology-related traits were strongly affected by the Sha cytoplasm, leading to a modified reproductive strategy without penalizing total seed production. These results indicate that natural variation in cytoplasmic and nuclear genomes interact to shape integrative traits that contribute to adaptation, thereby suggesting that cytonuclear interactions can play a major role in the evolutionary dynamics of A. thaliana. PMID:26979961

  20. Neural coding of cooperative vs. affective human interactions: 150 ms to code the action's purpose.

    PubMed

    Proverbio, Alice Mado; Riva, Federica; Paganelli, Laura; Cappa, Stefano F; Canessa, Nicola; Perani, Daniela; Zani, Alberto

    2011-01-01

    The timing and neural processing of the understanding of social interactions was investigated by presenting scenes in which 2 people performed cooperative or affective actions. While the role of the human mirror neuron system (MNS) in understanding actions and intentions is widely accepted, little is known about the time course within which these aspects of visual information are automatically extracted. Event-Related Potentials were recorded in 35 university students perceiving 260 pictures of cooperative (e.g., 2 people dragging a box) or affective (e.g., 2 people smiling and holding hands) interactions. The action's goal was automatically discriminated at about 150-170 ms, as reflected by occipito/temporal N170 response. The swLORETA inverse solution revealed the strongest sources in the right posterior cingulate cortex (CC) for affective actions and in the right pSTS for cooperative actions. It was found a right hemispheric asymmetry that involved the fusiform gyrus (BA37), the posterior CC, and the medial frontal gyrus (BA10/11) for the processing of affective interactions, particularly in the 155-175 ms time window. In a later time window (200-250 ms) the processing of cooperative interactions activated the left post-central gyrus (BA3), the left parahippocampal gyrus, the left superior frontal gyrus (BA10), as well as the right premotor cortex (BA6). Women showed a greater response discriminative of the action's goal compared to men at P300 and anterior negativity level (220-500 ms). These findings might be related to a greater responsiveness of the female vs. male MNS. In addition, the discriminative effect was bilateral in women and was smaller and left-sided in men. Evidence was provided that perceptually similar social interactions are discriminated on the basis of the agents' intentions quite early in neural processing, differentially activating regions devoted to face/body/action coding, the limbic system and the MNS.

  1. Risk for Depression and Anxiety in Youth: The Interaction between Negative Affectivity, Effortful Control, and Stressors.

    PubMed

    Gulley, Lauren D; Hankin, Benjamin L; Young, Jami F

    2016-02-01

    Theories of temperament suggest that individual differences in affective reactivity (e.g., negative affectivity) may confer risk for internalizing psychopathology in youth and that self-regulatory aspects of temperament (e.g., effortful control) may protect against the deleterious effects of high negative affective reactivity. However, no study to date has examined how the relationship between temperament and youth internalizing psychopathology may be moderated by stress. The current study used a prospective longitudinal design to test the interaction of temperament (e.g., negative affectivity and effortful control) and stressors as a predictor of youth (ages 7-16; 56 % female; N = 576) depressive and anxious symptoms over a 3-month period. Findings show that at low levels of stress, high levels of effortful control protect against the development of depressive and anxious symptoms among youth with high levels of negative affectivity. However, at high levels of stress, this buffering effect is not observed. Gender and grade did not moderate this relationship. Overall, findings extend current understanding of how the interaction of individual psychosocial vulnerabilities and environmental factors may confer increased or decreased risk for depressive and anxious symptoms.

  2. Risk for Depression and Anxiety in Youth: The Interaction between Negative Affectivity, Effortful Control, and Stressors

    PubMed Central

    Gulley, Lauren D.; Hankin, Benjamin L.; Young, Jami F.

    2015-01-01

    Theories of temperament suggest that individual differences in affective reactivity (e.g., negative affectivity) may confer risk for internalizing psychopathology in youth and that self-regulatory aspects of temperament (e.g., effortful control) may protect against the deleterious effects of high negative affective reactivity. However, no study to date has examined how the relationship between temperament and youth internalizing psychopathology may be moderated by stress. The current study used a prospective longitudinal design to test the interaction of temperament (e.g., negative affectivity and effortful control) and stressors as a predictor of youth (ages 7–16; 56% female; N = 576) depressive and anxious symptoms over a 3-month period. Findings show that at low levels of stress, high levels of effortful control protect against the development of depressive and anxious symptoms among youth with high levels of negative affectivity. However, at high levels of stress, this buffering effect is not observed. Gender and grade did not moderate this relationship. Overall, findings extend current understanding of how the interaction of individual psychosocial vulnerabilities and environmental factors may confer increased or decreased risk for depressive and anxious symptoms. PMID:25870113

  3. Environmental factors and interactions affecting the temporal abundance of juvenile flatfish in the Thames Estuary

    NASA Astrophysics Data System (ADS)

    Power, M.; Attrill, M. J.; Thomas, R. M.

    2000-05-01

    Samples taken regularly from the intake screens of West Thurrock power station between January 1977 and November 1992 were used to investigate the factors controlling flatfish abundance (flounder: Platichthys flesus; dab: Limanda limanda; plaice: Pleuronectes platessa; sole: Solea solea) in the middle Thames estuary. Most sampled fish were age-0. All species followed regular patterns of seasonal occurrence, had distinctive seasonal abundance peaks and demonstrated only minimal temporal overlap. Multiple-regression models were used to study the relationship between physico-chemical variables, physico-chemical variable interactions, trends and seasonal factors on fluctuations in flatfish sample abundance. Flounder abundance was significantly influenced by temperature, suspended solids, oxygen-flow and oxygen-temperature interactions, trend and seasonal variables. Dab abundance was significantly related to suspended solids, oxygen-flow, oxygen-temperature and flow-chlorinity interactions, Crangon crangon abundance and seasonal variables. Sole abundance was controlled only by seasonal variables, whilst plaice abundance could not be adequately explained by the available physico-chemical data. The combination of variables affecting flatfish abundance indicates species using the estuary were affected by a complex set of events within the estuary. The interactions between routinely measured environmental variables further suggest that estuarine monitoring studies must attempt to understand the nature of possible interactions between variables if an improved understanding of the changes in estuarine fish communities resulting from human activity is to be gained.

  4. Phenotypic and evolutionary consequences of social behaviours: interactions among individuals affect direct genetic effects.

    PubMed

    Trubenová, Barbora; Hager, Reinmar

    2012-01-01

    Traditional quantitative genetics assumes that an individual's phenotype is determined by both genetic and environmental factors. For many animals, part of the environment is social and provided by parents and other interacting partners. When expression of genes in social partners affects trait expression in a focal individual, indirect genetic effects occur. In this study, we explore the effects of indirect genetic effects on the magnitude and range of phenotypic values in a focal individual in a multi-member model analyzing three possible classes of interactions between individuals. We show that social interactions may not only cause indirect genetic effects but can also modify direct genetic effects. Furthermore, we demonstrate that both direct and indirect genetic effects substantially alter the range of phenotypic values, particularly when a focal trait can influence its own expression via interactions with traits in other individuals. We derive a function predicting the relative importance of direct versus indirect genetic effects. Our model reveals that both direct and indirect genetic effects can depend to a large extent on both group size and interaction strength, altering group mean phenotype and variance. This may lead to scenarios where between group variation is much higher than within group variation despite similar underlying genetic properties, potentially affecting the level of selection. Our analysis highlights key properties of indirect genetic effects with important consequences for trait evolution, the level of selection and potentially speciation.

  5. Below-ground abiotic and biotic heterogeneity shapes above-ground infection outcomes and spatial divergence in a host-parasite interaction.

    PubMed

    Tack, Ayco J M; Laine, Anna-Liisa; Burdon, Jeremy J; Bissett, Andrew; Thrall, Peter H

    2015-09-01

    We investigated the impact of below-ground and above-ground environmental heterogeneity on the ecology and evolution of a natural plant-pathogen interaction. We combined field measurements and a reciprocal inoculation experiment to investigate the potential for natural variation in abiotic and biotic factors to mediate infection outcomes in the association between the fungal pathogen Melampsora lini and its wild flax host, Linum marginale, where pathogen strains and plant lines originated from two ecologically distinct habitat types that occur in close proximity ('bog' and 'hill'). The two habitat types differed strikingly in soil moisture and soil microbiota. Infection outcomes for different host-pathogen combinations were strongly affected by the habitat of origin of the plant lines and pathogen strains, the soil environment and their interactions. Our results suggested that tradeoffs play a key role in explaining the evolutionary divergence in interaction traits among the two habitat types. Overall, we demonstrate that soil heterogeneity, by mediating infection outcomes and evolutionary divergence, can contribute to the maintenance of variation in resistance and pathogenicity within a natural host-pathogen metapopulation.

  6. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    PubMed

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands.

  7. How affective information from faces and scenes interacts in the brain.

    PubMed

    Van den Stock, Jan; Vandenbulcke, Mathieu; Sinke, Charlotte B A; Goebel, Rainer; de Gelder, Beatrice

    2014-10-01

    Facial expression perception can be influenced by the natural visual context in which the face is perceived. We performed an fMRI experiment presenting participants with fearful or neutral faces against threatening or neutral background scenes. Triangles and scrambled scenes served as control stimuli. The results showed that the valence of the background influences face selective activity in the right anterior parahippocampal place area (PPA) and subgenual anterior cingulate cortex (sgACC) with higher activation for neutral backgrounds compared to threatening backgrounds (controlled for isolated background effects) and that this effect correlated with trait empathy in the sgACC. In addition, the left fusiform gyrus (FG) responds to the affective congruence between face and background scene. The results show that valence of the background modulates face processing and support the hypothesis that empathic processing in sgACC is inhibited when affective information is present in the background. In addition, the findings reveal a pattern of complex scene perception showing a gradient of functional specialization along the posterior-anterior axis: from sensitivity to the affective content of scenes (extrastriate body area: EBA and posterior PPA), over scene emotion-face emotion interaction (left FG) via category-scene interaction (anterior PPA) to scene-category-personality interaction (sgACC).

  8. Relative abundance of an invasive alien plant affects insect-flower interaction networks in Ireland

    NASA Astrophysics Data System (ADS)

    Stout, Jane C.; Casey, Leanne M.

    2014-02-01

    Invasive alien flowering plants may affect native plant pollinator interactions and have knock on impacts on populations of native plants and animals. The magnitude of these impacts, however, may be modified by the relative abundance of the invasive plant and the number of flowers it presents.We tested this by examining the structure of insect-flower interaction networks in six sites with increasing levels of invasion by Rhododendron ponticum in Ireland.Neither flower-visiting insect abundance, species richness nor diversity were related to R. ponticum flower abundance, but the composition of insect communities was. The total number of flowers in a site increased with the relative abundance of R. ponticum flowers but the number of co-flowering native plant species in these sites was low (<6), making interaction networks relatively small.As a result, changes in interaction network properties (connectance, interaction evenness and network level specialisation), which correlated with R. ponticum flower abundance, were a result of the small network size rather than due to changes in the resilience of networks.Overall, we conclude that the impacts of invasive alien plants on native plant-pollinator interactions are not only species specific, but site specific, according to the abundance of flowers produced by both the invasive and the native plants.

  9. The Interactive Effects of Affect Lability, Negative Urgency, and Sensation Seeking on Young Adult Problematic Drinking

    PubMed Central

    Karyadi, Kenny; Coskunpinar, Ayca; Dir, Allyson L.; Cyders, Melissa A.

    2013-01-01

    Prior studies have suggested that affect lability might reduce the risk for problematic drinking among sensation seekers by compensating for their deficiencies in emotional reactivity and among individuals high on negative urgency by disrupting stable negative emotions. Due to the high prevalence of college drinking, this study examined whether affect lability interacted with sensation seeking and negative urgency to influence college student problematic drinking. 414 college drinkers (mean age: 20, 77% female, and 74% Caucasian) from a US Midwestern University completed self-administered questionnaires online. Consistent with our hypotheses, our results indicated that the effects of sensation seeking and negative urgency on problematic drinking weakened at higher levels of affect lability. These findings emphasize the importance of considering specific emotional contexts in understanding how negative urgency and sensation seeking create risk for problematic drinking among college students. These findings might also help us better understand how to reduce problematic drinking among sensation seekers and individuals high on negative urgency. PMID:24826366

  10. The interaction of borderline personality disorder symptoms and relationship satisfaction in predicting affect.

    PubMed

    Kuhlken, Katherine; Robertson, Christopher; Benson, Jessica; Nelson-Gray, Rosemery

    2014-01-01

    Previous research has suggested that stable, marital relationships may have overall prognostic significance for individuals with borderline personality disorder (BPD); however, research focused on the impact of nonmarital, and perhaps short-term, romantic relationships is lacking. Thus, the primary goal of this study was to examine the impact of the interaction of BPD symptoms and relationship satisfaction on state negative affect in college undergraduates. It was predicted that individuals who scored higher on measures of BPD symptoms and who were in a satisfying romantic relationship would report less negative affect than comparable individuals in a less satisfying romantic relationship. Questionnaires assessing BPD symptoms, relationship satisfaction, and negative affect were administered to 111 women, the majority of whom then completed daily measures of relationship satisfaction and negative affect over a 2-week follow-up period. Hierarchical multiple regression and hierarchical linear modeling were used to test the hypotheses. The interaction of BPD symptoms with relationship satisfaction was found to significantly predict anger, as measured at one time point, suggesting that satisfying romantic relationships may be a protective factor for individuals scoring high on measures of BPD symptoms with regard to anger.

  11. Food-web composition affects cross-ecosystem interactions and subsidies.

    PubMed

    Romero, Gustavo Q; Srivastava, Diane S

    2010-09-01

    1. Ecosystems may affect each other through trophic interactions that cross ecosystem boundaries as well as via the transfer of subsidies, but these effects can vary depending on the identity of species involved in the interaction. 2. In this study, we manipulated two terrestrial bromeliad-living spider species (Aglaoctenus castaneus, Corinna gr. rubripes) that have variable hunting modes, to test their individual and combined effects on aquatic invertebrate community structure and ecosystem processes (i.e. decomposition rate and nitrogen cycling). We predicted that these terrestrial predators can affect aquatic invertebrates and nutrient dynamics within water-filled bromeliads. 3. Aglaoctenus spiders reduced the richness, abundance and biomass of aquatic insect larvae via consumptive or non-consumptive effects on ovipositing terrestrial adults, but effects of the two spider species in combination were usually the linear average of their monoculture effects. In contrast, invertebrates with entirely aquatic life cycles were unaffected or facilitated by spiders. Spiders did not affect either net detritivore biomass or the flux of detrital nitrogen to the bromeliad. Instead, Corinna spiders contributed allochthonous nitrogen to bromeliads. 4. Our results provide the novel observations that predators in one ecosystem not only directly reduce taxa whose life cycles cross-ecosystem boundaries, but also indirectly facilitate taxa whose life cycles are entirely within the second ecosystem. This compensatory response between cross-ecosystem and within-ecosystem taxa may have led to an attenuation of top-down effects across ecosystem boundaries. In addition, our results add to a growing consensus that species identity is an important determinant of community structure and ecosystem functioning. Thus, the composition of both terrestrial and aquatic food webs may affect the strength of cross-ecosystem interactions.

  12. Identification of Drosophila Mutants Affecting Defense to an Entomopathogenic Fungus

    PubMed Central

    Lu, Hsiao-Ling; Wang, Jonathan B.; Brown, Markus A.; Euerle, Christopher; St. Leger, Raymond J.

    2015-01-01

    Fungi cause the majority of insect disease. However, to date attempts to model host–fungal interactions with Drosophila have focused on opportunistic human pathogens. Here, we performed a screen of 2,613 mutant Drosophila lines to identify host genes affecting susceptibility to the natural insect pathogen Metarhizium anisopliae (Ma549). Overall, 241 (9.22%) mutant lines had altered resistance to Ma549. Life spans ranged from 3.0 to 6.2 days, with females being more susceptible than males in all lines. Speed of kill correlated with within-host growth and onset of sporulation, but total spore production is decoupled from host genotypes. Results showed that mutations affected the ability of Drosophila to restrain rather than tolerate infections and suggested trade-offs between antifungal and antibacterial genes affecting cuticle and gut structural barriers. Approximately, 13% of mutations where in genes previously associated with host pathogen interactions. These encoded fast-acting immune responses including coagulation, phagocytosis, encapsulation and melanization but not the slow-response induction of anti-fungal peptides. The non-immune genes impact a wide variety of biological functions, including behavioral traits. Many have human orthologs already implicated in human disorders; while others were mutations in protein and non-protein coding genes for which disease resistance was the first biological annotation. PMID:26202798

  13. [Ecosystem service interactions and their affecting factors in Jinghe watershed at county level].

    PubMed

    Pan, Ying; Zhen, Lin; Long, Xin; Cao, Xiao-Chang

    2012-05-01

    Taking the multiple ecosystem services (grain supply, meat supply, fuel-wood supply, water resource conservation and soil retention) as test objects, this paper analyzed the interactions among these services, the interaction modes and the possible affecting factors in 31 counties of Jinghe watershed. At the county level, there existed great differences in the interactions among different pairs of the ecosystem services. The grain supply showed significant positive correlation with meat supply but negative correlation with soil retention, whereas the water resource conservation showed significant positive correlations with fuel-wood supply and soil retention. As for the interaction modes of the ecosystem services, 24 counties were primarily of regulation services, 3 counties were of supply and regulation services in balance, and 4 counties were primarily of grain supply. The total ecosystem service index of the interaction modes in each county varied greatly, with 5.1 times of difference between the maximum (Jingyuan County) and the minimum value (Yanchi County). The total ecosystem service index was significantly positively correlated with precipitation and soil total nitrogen, and negatively correlated with solar hours. The increase of farmland had negative effects, while that of shrub land and grassland had great positive effects on the total ecosystem service index, but the increase of forestland had less effects.

  14. Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater.

    PubMed

    Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda

    2015-11-01

    The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions.

  15. Motion and emotion: depression reduces psychomotor performance and alters affective movements in caregiving interactions

    PubMed Central

    Young, Katherine S.; Parsons, Christine E.; Stein, Alan; Kringelbach, Morten L.

    2015-01-01

    Background: Impaired social functioning is a well-established feature of depression. Evidence to date suggests that disrupted processing of emotional cues may constitute part of this impairment. Beyond processing of emotional cues, fluent social interactions require that people physically move in synchronized, contingent ways. Disruptions to physical movements are a diagnostic feature of depression (psychomotor disturbance) but have not previously been assessed in the context of social functioning. Here we investigated the impact of psychomotor disturbance in depression on physical responsive behavior in both an experimental and observational setting. Methods: In Experiment 1, we examined motor disturbance in depression in response to salient emotional sounds, using a laboratory-based effortful motor task. In Experiment 2, we explored whether psychomotor disturbance was apparent in real-life social interactions. Using mother-infant interactions as a model affective social situation, we compared physical behaviors of mothers with and without postnatal depression (PND). Results: We found impairments in precise, controlled psychomotor performance in adults with depression relative to healthy adults (Experiment 1). Despite this disruption, all adults showed enhanced performance following exposure to highly salient emotional cues (infant cries). Examining real-life interactions, we found differences in physical movements, namely reduced affective touching, in mothers with PND responding to their infants, compared to healthy mothers (Experiment 2). Conclusions: Together, these findings suggest that psychomotor disturbance may be an important feature of depression that can impair social functioning. Future work investigating whether improvements in physical movement in depression could have a positive impact on social interactions would be of much interest. PMID:25741255

  16. Using Bayesian Nonparametric Hidden Semi-Markov Models to Disentangle Affect Processes during Marital Interaction

    PubMed Central

    Griffin, William A.; Li, Xun

    2016-01-01

    Sequential affect dynamics generated during the interaction of intimate dyads, such as married couples, are associated with a cascade of effects—some good and some bad—on each partner, close family members, and other social contacts. Although the effects are well documented, the probabilistic structures associated with micro-social processes connected to the varied outcomes remain enigmatic. Using extant data we developed a method of classifying and subsequently generating couple dynamics using a Hierarchical Dirichlet Process Hidden semi-Markov Model (HDP-HSMM). Our findings indicate that several key aspects of existing models of marital interaction are inadequate: affect state emissions and their durations, along with the expected variability differences between distressed and nondistressed couples are present but highly nuanced; and most surprisingly, heterogeneity among highly satisfied couples necessitate that they be divided into subgroups. We review how this unsupervised learning technique generates plausible dyadic sequences that are sensitive to relationship quality and provide a natural mechanism for computational models of behavioral and affective micro-social processes. PMID:27187319

  17. Seasonal Influences on Ground-Surface Water Interactions in an Arsenic-Affected Aquifer in Cambodia

    NASA Astrophysics Data System (ADS)

    Richards, L. A.; Magnone, D.; Van Dongen, B.; Bryant, C.; Boyce, A.; Ballentine, C. J.; Polya, D. A.

    2015-12-01

    Millions of people in South and Southeast Asia consume drinking water daily which contains dangerous levels of arsenic exceeding health-based recommendations [1]. A key control on arsenic mobilization in aquifers in these areas has been controversially identified as the interaction of 'labile' organic matter contained in surface waters with groundwaters and sediments at depth [2-4], which may trigger the release of arsenic from the solid- to aqueous-phase via reductive dissolution of iron-(hyr)oxide minerals [5]. In a field site in Kandal Province, Cambodia, which is an arsenic-affected area typical to others in the region, there are strong seasonal patterns in groundwater flow direction, which are closely related to monsoonal rains [6] and may contribute to arsenic release in this aquifer. The aim of this study is to explore the implications of the high susceptibility of this aquifer system to seasonal changes on potential ground-surface water interactions. The main objectives are to (i) identify key zones where there are likely ground-surface water interactions, (ii) assess the seasonal impact of such interactions and (iii) quantify the influence of interactions using geochemical parameters (such as As, Fe, NO3, NH4, 14C, 3T/3He, δ18O, δ2H). Identifying the zones, magnitude and seasonal influence of ground-surface water interactions elucidates new information regarding potential locations/pathways of arsenic mobilization and/or transport in affected aquifers and may be important for water management strategies in affected areas. This research is supported by NERC (NE/J023833/1) to DP, BvD and CJB and a NERC PhD studentship (NE/L501591/1) to DM. References: [1] World Health Organization, 2008. [2] Charlet & Polya (2006), Elements, 2, 91-96. [3] Harvey et al. (2002), Science, 298, 1602-1606. [4] Lawson et al. (2013), Env. Sci. Technol. 47, 7085 - 7094. [5] Islam et al. (2004), Nature, 430, 68-71. [6] Benner et al. (2008) Appl. Geochem. 23(11), 3072 - 3087.

  18. Verbal marking of affect by children with Asperger Syndrome and high functioning autism during spontaneous interactions with family members.

    PubMed

    Müller, Eve; Schuler, Adriana

    2006-11-01

    Verbal marking of affect by older children with Asperger Syndrome (AS) and high functioning autism (HFA) during spontaneous interactions is described. Discourse analysis of AS and HFA and typically developing children included frequency of affective utterances, affective initiations, affective labels and affective explanations, attribution of affective responses to self and others, and positive and negative markers of affect. Findings indicate that children with AS and HFA engaged in a higher proportion of affect marking and provided a higher proportion of affective explanations than typically developing children, yet were less likely to initiate affect marking sequences or talk about the affective responses of others. No significant differences were found between groups in terms of the marking of positive and negative affect.

  19. Predator diversity and density affect levels of predation upon strongly interactive species in temperate rocky reefs.

    PubMed

    Guidetti, Paolo

    2007-12-01

    Indirect effects of predators in the classic trophic cascade theory involve the effects of basal species (e.g. primary producers) mediated by predation upon strongly interactive consumers (e.g. grazers). The diversity and density of predators, and the way in which they interact, determine whether and how the effects of different predators on prey combine. Intraguild predation, for instance, was observed to dampen the effects of predators on prey in many ecosystems. In marine systems, species at high trophic levels are particularly susceptible to extinction (at least functionally). The loss of such species, which is mainly attributed to human activities (mostly fishing), is presently decreasing the diversity of marine predators in many areas of the world. Experimental studies that manipulate predator diversity and investigate the effects of this on strongly interactive consumers (i.e. those potentially capable of causing community-wide effects) in marine systems are scant, especially in the rocky sublittoral. I established an experiment that utilised cage enclosures to test whether the diversity and density of fish predators (two sea breams and two wrasses) would affect predation upon juvenile and adult sea urchins, the most important grazers in Mediterranean sublittoral rocky reefs. Changes in species identity (with sea breams producing major effects) and density of predators affected predation upon sea urchins more than changes in species richness per se. Predation upon adult sea urchins decreased in the presence of multiple predators, probably due to interference competition between sea breams and wrasses. This study suggests that factors that influence both fish predator diversity and density in Mediterranean rocky reefs (e.g. fishing and climate change) may have the potential to affect the predators' ability to control sea urchin population density, with possible repercussions for the whole benthic community structure.

  20. The Role of Cognitive and Affective Empathy in Spouses' Support Interactions: An Observational Study

    PubMed Central

    Verhofstadt, Lesley; Devoldre, Inge; Buysse, Ann; Stevens, Michael; Hinnekens, Céline; Ickes, William; Davis, Mark

    2016-01-01

    The present study examined how support providers’ empathic dispositions (dispositional perspective taking, empathic concern, and personal distress) as well as their situational empathic reactions (interaction-based perspective taking, empathic concern, and personal distress) relate to the provision of spousal support during observed support interactions. Forty-five committed couples provided questionnaire data and participated in two ten-minute social support interactions designed to assess behaviors when partners are offering and soliciting social support. A video-review task was used to assess situational forms of perspective taking (e.g., empathic accuracy), empathic concern and personal distress. Data were analyzed by means of the multi-level Actor-Partner Interdependence Model. Results revealed that providers scoring higher on affective empathy (i.e., dispositional empathic concern), provided lower levels of negative support. In addition, for male partners, scoring higher on cognitive empathy (i.e., situational perspective taking) was related to lower levels of negative support provision. For both partners, higher scores on cognitive empathy (i.e., situational perspective taking) correlated with more instrumental support provision. Male providers scoring higher on affective empathy (i.e., situational personal distress) provided higher levels of instrumental support. Dispositional perspective taking was related to higher scores on emotional support provision for male providers. The current study furthers our insight into the empathy-support link, by revealing differential effects (a) for men and women, (b) of both cognitive and affective empathy, and (c) of dispositional as well as situational empathy, on different types of support provision. PMID:26910769

  1. Maternal interaction style in affective disordered, physically ill, and normal women.

    PubMed

    Hamilton, E B; Jones, M; Hammen, C

    1993-09-01

    Affective style (AS) and communication deviance (CD) have been suggested as markers of dysfunctional family environments that may be associated with psychiatric illness. Studies have focused mainly on parental responses during family interactions when an offspring is the identified patient. The present study is unique in examining AS and CD in mothers with unipolar depression, bipolar disorder, or chronic physical illness, and in normal controls. The sample consisted of 64 mothers with children ages 8 to 16. Unipolar mothers were more likely to show negative AS than were any other maternal group. There were no group differences for CD. Chronic stress, few positive life events, and single parenting were associated with AS. CD was associated solely with lower socioeconomic status. Results suggest that dysfunctional interactions are determined not only by maternal psychopathology, but also by an array of contextual factors that are related to the quality of the family environment.

  2. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem

    NASA Astrophysics Data System (ADS)

    Zaller, Johann G.; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-07-01

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services.

  3. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem

    PubMed Central

    Zaller, Johann G.; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-01-01

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services. PMID:25005713

  4. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem.

    PubMed

    Zaller, Johann G; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-07-09

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services.

  5. The smell of change: warming affects species interactions mediated by chemical information.

    PubMed

    Sentis, Arnaud; Ramon-Portugal, Felipe; Brodeur, Jacques; Hemptinne, Jean-Louis

    2015-10-01

    Knowledge of how temperature influences an organism's physiology and behaviour is of paramount importance for understanding and predicting the impacts of climate change on species' interactions. While the behaviour of many organisms is driven by chemical information on which they rely on to detect resources, conspecifics, natural enemies and competitors, the effects of temperature on infochemical-mediated interactions remain largely unexplored. Here, we experimentally show that temperature strongly influences the emission of infochemicals by ladybeetle larvae, which, in turn, modifies the oviposition behaviour of conspecific females. Temperature also directly affects female perception of infochemicals and their oviposition behaviour. Our results suggest that temperature-mediated effects on chemical communication can influence flows across system boundaries (e.g. immigration and emigration) and thus alter the dynamics and stability of ecological networks. We therefore argue that investigating the effects of temperature on chemical communication is a crucial step towards a better understanding of the functioning of ecological communities facing rapid environmental changes.

  6. Social defeat interacts with Disc1 mutations in the mouse to affect behavior.

    PubMed

    Haque, F Nipa; Lipina, Tatiana V; Roder, John C; Wong, Albert H C

    2012-08-01

    DISC1 (Disrupted-in-schizophrenia 1) is a strong candidate susceptibility gene for psychiatric disease that was originally discovered in a family with a chromosomal translocation severing this gene. Although the family members with the translocation had an identical genetic mutation, their clinical diagnosis and presentation varied significantly. Gene-environment interactions have been proposed as a mechanism underlying the complex heritability and variable phenotype of psychiatric disorders such as major depressive disorder and schizophrenia. We hypothesized that gene-environment interactions would affect behavior in a mutant Disc1 mouse model. We examined the effect of chronic social defeat (CSD) as an environmental stressor in two lines of mice carrying different Disc1 point mutations, on behaviors relevant to psychiatric illness: locomotion in a novel open field (OF), pre-pulse inhibition (PPI) of the acoustic startle response, latent inhibition (LI), elevated plus maze (EPM), forced swim test (FST), sucrose consumption (SC), and the social interaction task for sociability and social novelty (SSN). We found that Disc1-L100P +/- and wild-type mice have similar anxiety responses to CSD, while Q31L +/- mice had a very different response. We also found evidence of significant gene-environment interactions in the OF, EPM and SSN.

  7. When sad groups expect to meet again: interactive affective sharing and future interaction expectation as determinants of work groups' analytical and creative task performance.

    PubMed

    Klep, Annefloor H M; Wisse, Barbara; van der Flier, Henk

    2013-12-01

    The present study examines the moderating role of future interaction expectation in the relationship between affective sharing and work groups' task performance. We argue that group affect, a group defining characteristic, becomes more salient to its members when it is interactively shared, and that the anticipation of future interaction may strengthen the effects of group defining characteristics on subsequent group member behaviour. As a consequence, interactive sharing (vs. non-interactive sharing) of negative affect is more likely to influence work group outcomes when group members expect to meet again. Results from a laboratory experiment with 66 three-person work groups indeed show that interactively shared (vs. non-interactively shared) negative affect facilitated work groups' analytical task performance, whereas it inhibited performance on a creative fluency task when groups have expectations of future interaction and not when they do not have such expectations. The discussion focuses on how these results add to theory on group affect and contribute to insights in the effects of future interaction expectation.

  8. Bystanders affect the outcome of mother–infant interactions in rhesus macaques

    PubMed Central

    Semple, Stuart; Gerald, Melissa S.; Suggs, Dianne N.

    2009-01-01

    Animal communication involves the transfer of information between a sender and one or more receivers. However, such interactions do not happen in a social vacuum; third parties are typically present, who can potentially eavesdrop upon or intervene in the interaction. The importance of such bystanders in shaping the outcome of communicative interactions has been widely studied in humans, but has only recently received attention in other animal species. Here, we studied bouts of infant crying among rhesus macaques (Macaca mulatta) in order to investigate how the presence of bystanders may affect the outcome of this signalling interaction between infants and mothers. It was hypothesized that, as crying is acoustically aversive, bystanders may be aggressive to the mother or the infant in order to bring the crying bout to a close. Consequently, it was predicted that mothers should acquiesce more often to crying if in the presence of potentially aggressive animals. In line with this prediction, it was found that mothers gave infants access to the nipple significantly more often when crying occurred in the presence of animals that posed a high risk of aggression towards them. Both mothers and infants tended to receive more aggression from bystanders during crying bouts than outside of this time, although such aggression was extremely rare and was received by less than half of the mothers and infants in the study. Mothers were also found to be significantly more aggressive to their infants while the latter were crying than outside of crying bouts. These results provide new insight into the complex dynamics of mother–offspring conflict, and indicate that bystanders may play an important role in shaping the outcome of signalling interactions between infants and their mothers. PMID:19324744

  9. ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics.

    PubMed

    Gal, Jozsef; Kuang, Lisha; Barnett, Kelly R; Zhu, Brian Z; Shissler, Susannah C; Korotkov, Konstantin V; Hayward, Lawrence J; Kasarskis, Edward J; Zhu, Haining

    2016-10-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Mutations in Cu/Zn superoxide dismutase (SOD1) are responsible for approximately 20 % of the familial ALS cases. ALS-causing SOD1 mutants display a gain-of-toxicity phenotype, but the nature of this toxicity is still not fully understood. The Ras GTPase-activating protein-binding protein G3BP1 plays a critical role in stress granule dynamics. Alterations in the dynamics of stress granules have been reported in several other forms of ALS unrelated to SOD1. To our surprise, the mutant G93A SOD1 transgenic mice exhibited pathological cytoplasmic inclusions that co-localized with G3BP1-positive granules in spinal cord motor neurons. The co-localization was also observed in fibroblast cells derived from familial ALS patient carrying SOD1 mutation L144F. Mutant SOD1, unlike wild-type SOD1, interacted with G3BP1 in an RNA-independent manner. Moreover, the interaction is specific for G3BP1 since mutant SOD1 showed little interaction with four other RNA-binding proteins implicated in ALS. The RNA-binding RRM domain of G3BP1 and two particular phenylalanine residues (F380 and F382) are critical for this interaction. Mutant SOD1 delayed the formation of G3BP1- and TIA1-positive stress granules in response to hyperosmolar shock and arsenite treatment in N2A cells. In summary, the aberrant mutant SOD1-G3BP1 interaction affects stress granule dynamics, suggesting a potential link between pathogenic SOD1 mutations and RNA metabolism alterations in ALS.

  10. Imaging Imageability: Behavioral Effects and Neural Correlates of Its Interaction with Affect and Context

    PubMed Central

    Westbury, Chris F.; Cribben, Ivor; Cummine, Jacqueline

    2016-01-01

    The construct of imageability refers to the extent to which a word evokes a tangible sensation. Previous research (Westbury et al., 2013) suggests that the behavioral effects attributed to a word's imageability can be largely or wholly explained by two objective constructs, contextual density and estimated affect. Here, we extend these previous findings in two ways. First, we show that closely matched stimuli on the three measures of contextual density, estimated affect, and human-judged imageability show a three-way interaction in explaining variance in LD RTs, but that imagebility accounts for no additional variance after contextual density and estimated affect are entered first. Secondly, we demonstrate that the loci and functional connectivity (via graphical models) of the brain regions implicated in processing the three variables during that task are largely over-lapping and similar. These two lines of evidence support the conclusion that the effect usually attributed to human-judged imageability is largely or entirely due to the effects of other correlated measures that are directly computable. PMID:27471455

  11. Affect cues in vocalizations of the bat, Megaderma lyra, during agonistic interactions.

    PubMed

    Bastian, Anna; Schmidt, Sabine

    2008-07-01

    Some features of emotional prosody in human speech may be traced back to affect cues in mammalian vocalizations. The present study addresses the question whether affect intensity, as expressed by the intensity of behavioral displays, is encoded in vocal cues, i.e., changes in the structure of associated calls, in bats, a group evolutionarily remote from primates. A frame-by-frame video analysis of 109 dyadic agonistic interactions recorded in approach situations was performed to categorize displays into two intensity levels based on a cost-benefit estimate. M. lyra showed graded visual displays accompanied by specific calls and response calls of the second bat. A sound analysis revealed systematic changes of call sequence parameters with display level. At the high intensity level, total call duration, number of syllables within a call, and the number of calls within a sequence were increased, while intervals between call syllables were decreased for both call types. In addition, the latency of the response call was shorter, and its main syllable-type durations and fundamental frequency were increased. These systematic changes of vocal parameters with affect intensity correspond to prosodic changes in human speech, suggesting that emotion-related acoustic cues are a common feature of vocal communication in mammals.

  12. Climate warming affects biological invasions by shifting interactions of plants and herbivores.

    PubMed

    Lu, Xinmin; Siemann, Evan; Shao, Xu; Wei, Hui; Ding, Jianqing

    2013-08-01

    Plants and herbivorous insects can each be dramatically affected by temperature. Climate warming may impact plant invasion success directly but also indirectly through changes in their natural enemies. To date, however, there are no tests of how climate warming shifts the interactions among invasive plants and their natural enemies to affect invasion success. Field surveys covering the full latitudinal range of invasive Alternanthera philoxeroides in China showed that a beetle introduced for biocontrol was rare or absent at higher latitudes. In contrast, plant cover and mass increased with latitude. In a 2-year field experiment near the northern limit of beetle distribution, we found the beetle sustained populations across years under elevated temperature, dramatically decreasing A. philoxeroides growth, but it failed to overwinter in ambient temperature. Together, these results suggest that warming will allow the natural enemy to expand its range, potentially benefiting biocontrol in regions that are currently too cold for the natural enemy. However, the invader may also expand its range further north in response to warming. In such cases where plants tolerate cold better than their natural enemies, the geographical gap between plant and herbivorous insect ranges may not disappear but will shift to higher latitudes, leading to a new zone of enemy release. Therefore, warming will not only affect plant invasions directly but also drive either enemy release or increase that will result in contrasting effects on invasive plants. The findings are also critical for future management of invasive species under climate change.

  13. Phosphorylation by casein kinase II affects the interaction of caldesmon with smooth muscle myosin and tropomyosin.

    PubMed Central

    Bogatcheva, N V; Vorotnikov, A V; Birukov, K G; Shirinsky, V P; Gusev, N B

    1993-01-01

    Smooth muscle caldesmon was phosphorylated by casein kinase II, and the effects of phosphorylation on the interaction of caldesmon and its chymotryptic peptides with myosin and tropomyosin were investigated. The N-terminal chymotryptic peptide of caldesmon of molecular mass 27 kDa interacted with myosin. Phosphorylation of Ser-73 catalysed by casein kinase II resulted in a 2-fold decrease in the affinity of the native caldesmon (or its 27 kDa N-terminal peptide) for smooth muscle myosin. At low ionic strength, caldesmon and its N-terminal peptides of molecular masses 25 and 27 kDa were retarded on a column of immobilized tropomyosin. Phosphorylation of Ser-73 led to a 2-4-fold decrease in the affinity of caldesmon (or its N-terminal peptides) for tropomyosin. Thus phosphorylation of Ser-73 catalysed by casein kinase II affects the interaction of caldesmon with both smooth muscle myosin and tropomyosin. Images Figure 1 Figure 2 Figure 3 PMID:8452532

  14. Chemical interactions and gel properties of black carp actomyosin affected by MTGase and their relationships.

    PubMed

    Jia, Dan; Huang, Qilin; Xiong, Shanbai

    2016-04-01

    Partial least squares regression (PLSR) was applied to evaluate and correlate chemical interactions (-NH2 content, S-S bonds, four non-covalent interactions) with gel properties (dynamic rheological properties and cooking loss (CL)) of black carp actomyosin affected by microbial transglutaminase (MTGase) at suwari and kamaboko stages. The G' and CL were significantly enhanced by MTGase and their values in kamaboko gels were higher than those in suwari gels at the same MTGase concentration. The γ-carboxyamide and amino cross-links, catalyzed by MTGase, were constructed at suwari stage and contributed to the network formation, while disulfide bonds were formed not only in suwari gels but also in kamaboko gels, further enhancing the gel network. PLSR analysis revealed that 86.6-90.3% of the variation of G' and 91.8-94.4% of the variation of CL were best explained by chemical interactions. G' mainly depended on covalent cross-links and gave positive correlation. CL was positively correlated with covalent cross-links, but negatively related to non-covalent bonds, indicating that covalent bonds promoted water extrusion, whereas non-covalent bonds were beneficial for water-holding.

  15. Modeling physicochemical interactions affecting in vitro cellular dosimetry of engineered nanomaterials: application to nanosilver

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dwaipayan; Leo, Bey Fen; Royce, Steven G.; Porter, Alexandra E.; Ryan, Mary P.; Schwander, Stephan; Chung, Kian Fan; Tetley, Teresa D.; Zhang, Junfeng; Georgopoulos, Panos G.

    2014-10-01

    Engineered nanomaterials (ENMs) possess unique characteristics affecting their interactions in biological media and biological tissues. Systematic investigation of the effects of particle properties on biological toxicity requires a comprehensive modeling framework which can be used to predict ENM particokinetics in a variety of media. The Agglomeration-diffusion-sedimentation-reaction model (ADSRM) described here is stochastic, using a direct simulation Monte Carlo method to study the evolution of nanoparticles in biological media, as they interact with each other and with the media over time. Nanoparticle diffusion, gravitational settling, agglomeration, and dissolution are treated in a mechanistic manner with focus on silver ENMs (AgNPs). The ADSRM model utilizes particle properties such as size, density, zeta potential, and coating material, along with medium properties like density, viscosity, ionic strength, and pH, to model evolving patterns in a population of ENMs along with their interaction with associated ions and molecules. The model predictions for agglomeration and dissolution are compared with in vitro measurements for various types of ENMs, coating materials, and incubation media, and are found to be overall consistent with measurements. The model has been implemented for an in vitro case in cell culture systems to inform in vitro dosimetry for toxicology studies, and can be directly extended to other biological systems, including in vivo tissue sub-systems by suitably modifying system geometry.

  16. Multiple Trans-Sensing Interactions Affect Meiotically Heritable Epigenetic States at the Maize pl1 Locus

    PubMed Central

    Gross, Stephen M.; Hollick, Jay B.

    2007-01-01

    Interactions between specific maize purple plant1 (pl1) alleles result in heritable changes of gene regulation that are manifested as differences in anthocyanin pigmentation. Transcriptionally repressed states of Pl1-Rhoades alleles (termed Pl′) are remarkably stable and invariably facilitate heritable changes of highly expressed states (termed Pl-Rh) in Pl′/Pl-Rh plants. However, Pl′ can revert to Pl-Rh when hemizygous, when heterozygous with pl1 alleles other than Pl1-Rhoades, or in the absence of trans-acting factors required to maintain repressed states. Cis-linked features of Pl1-Rhoades responsible for these trans-sensing behaviors remain unknown. Here, genetic tests of a pl1 allelic series identify two potentially separate cis-linked features: one facilitating repression of Pl-Rh and another stabilizing Pl′ in trans. Neither function is affected in ethyl-methanesulfonate-induced Pl1-Rhoades derivatives that produce truncated PL1 peptides, indicating that PL1 is unlikely to mediate trans interactions. Both functions, however, are impaired in a spontaneous Pl1-Rhoades derivative that fails to produce detectable pl1 RNA. Pl′-like states can also repress expression of a pl1-W22 allele, but this repression is not meiotically heritable. As the Pl′ state is not associated with unique small RNA species representing the pl1-coding region, the available data suggest that interactions between elements required for transcription underlie Pl1-Rhoades epigenetic behaviors. PMID:17435245

  17. The Interaction of Affective States and Cognitive Vulnerabilities in the Prediction of Non-Suicidal Self-Injury

    PubMed Central

    Cohen, Jonah N.; Stange, Jonathan P.; Hamilton, Jessica L.; Burke, Taylor; Jenkins, Abigail; Ong, Mian-Li; Heimberg, Richard G.; Abramson, Lyn Y.; Alloy, Lauren B.

    2014-01-01

    Non-suicidal self-injury (NSSI) is a serious public health concern and remains poorly understood. This study sought to identify both cognitive and affective vulnerabilities to NSSI and examine their interaction in the prediction of NSSI. A series of regressions indicated that low levels of positive affect moderated the relationships between self-criticism and brooding and NSSI. The associations of self-criticism and brooding with greater frequency of NSSI were attenuated by higher levels of positive affect. The interaction of cognitive and affective vulnerabilities is discussed within the context of current NSSI theory. PMID:24853872

  18. Multifunctionality is affected by interactions between green roof plant species, substrate depth, and substrate type.

    PubMed

    Dusza, Yann; Barot, Sébastien; Kraepiel, Yvan; Lata, Jean-Christophe; Abbadie, Luc; Raynaud, Xavier

    2017-04-01

    Green roofs provide ecosystem services through evapotranspiration and nutrient cycling that depend, among others, on plant species, substrate type, and substrate depth. However, no study has assessed thoroughly how interactions between these factors alter ecosystem functions and multifunctionality of green roofs. We simulated some green roof conditions in a pot experiment. We planted 20 plant species from 10 genera and five families (Asteraceae, Caryophyllaceae, Crassulaceae, Fabaceae, and Poaceae) on two substrate types (natural vs. artificial) and two substrate depths (10 cm vs. 30 cm). As indicators of major ecosystem functions, we measured aboveground and belowground biomasses, foliar nitrogen and carbon content, foliar transpiration, substrate water retention, and dissolved organic carbon and nitrates in leachates. Interactions between substrate type and depth strongly affected ecosystem functions. Biomass production was increased in the artificial substrate and deeper substrates, as was water retention in most cases. In contrast, dissolved organic carbon leaching was higher in the artificial substrates. Except for the Fabaceae species, nitrate leaching was reduced in deep, natural soils. The highest transpiration rates were associated with natural soils. All functions were modulated by plant families or species. Plant effects differed according to the observed function and the type and depth of the substrate. Fabaceae species grown on natural soils had the most noticeable patterns, allowing high biomass production and high water retention but also high nitrate leaching from deep pots. No single combination of factors enhanced simultaneously all studied ecosystem functions, highlighting that soil-plant interactions induce trade-offs between ecosystem functions. Substrate type and depth interactions are major drivers for green roof multifunctionality.

  19. Self-Construal, Affective Valence of the Encounter, and Quality of Social Interactions: within and Cross-Culture Examination.

    PubMed

    Kafetsios, Konstantinos; Hess, Ursula; Nezlek, John B

    2017-03-15

    In two samples, one from Greece and another from Germany, we examined relationships between self-construal, emotional experience, and the quality of social interactions. In Greece, a more collectivistic culture, the negative affect people experienced in social interactions was more weakly related to the quality of social interactions for those higher in interdependent self-construal than it was for those lower in interdependent self-construal. In Germany, a more independent culture, a contrasting pattern was observed such that the positive affect people experienced in social interaction was more strongly related to the quality of social interactions for those higher in independent self-construal than it was for those lower in independent self-construal. These findings suggest that positive and negative affect in social encounters can have different effects for persons with independent and interdependent cultural orientations within different cultural settings.

  20. Connecting plant-microbial interactions above and belowground: a fungal endophyte affects decomposition.

    PubMed

    Lemons, Alisha; Clay, Keith; Rudgers, Jennifer A

    2005-10-01

    Mutualisms can strongly affect the structure of communities, but their influence on ecosystem processes is not well resolved. Here we show that a plant-microbial mutualism affects the rate of leaf litter decomposition using the widespread interaction between tall fescue grass (Lolium arundinaceum) and the fungal endophyte Neotyphodium coenophialum. In grasses, fungal endophytes live symbiotically in the aboveground tissues, where the fungi gain protection and nutrients from their host and often protect host plants from biotic and abiotic stress. In a field experiment, decomposition rate depended on a complex interaction between the litter source (collected from endophyte-infected or endophyte-free plots), the decomposition microenvironment (endophyte-infected or endophyte-free plots), and the presence of mesoinvertebrates (manipulated by the mesh size of litter bags). Over all treatments, decomposition was slower for endophyte-infected fescue litter than for endophyte-free litter. When mesoinvertebrates were excluded using fine mesh and litter was placed in a microenvironment with the endophyte, the difference between endophyte-infected and endophyte-free litter was strongest. In the presence of mesoinvertebrates, endophyte-infected litter decomposed faster in microenvironments with the endophyte than in microenvironments lacking the endophyte, suggesting that plots differ in the detritivore assemblage. Indeed, the presence of the endophyte in plots shifted the composition of Collembola, with more Hypogastruridae in the presence of the endophyte and more Isotomidae in endophyte-free plots. In a separate outdoor pot experiment, we did not find strong effects of the litter source or the soil microbial/microinvertebrate community on decomposition, which may reflect differences between pot and field conditions or other differences in methodology. Our work is among the first to demonstrate an effect of plant-endophyte mutualisms on ecosystem processes under field

  1. The Interaction between Selection, Demography and Selfing and How It Affects Population Viability

    PubMed Central

    Awad, Diala Abu; Gallina, Sophie; Bonamy, Cyrille; Billiard, Sylvain

    2014-01-01

    Population extinction due to the accumulation of deleterious mutations has only been considered to occur at small population sizes, large sexual populations being expected to efficiently purge these mutations. However, little is known about how the mutation load generated by segregating mutations affects population size and, eventually, population extinction. We propose a simple analytical model that takes into account both the demographic and genetic evolution of populations, linking population size, density dependence, the mutation load, and self-fertilisation. Analytical predictions were found to be relatively good predictors of population size and probability of population viability when verified using an explicit individual based stochastic model. We show that initially large populations do not always reach mutation-selection balance and can go extinct due to the accumulation of segregating deleterious mutations. Population survival depends not only on the relative fitness and demographic stochasticity, but also on the interaction between the two. When deleterious mutations are recessive, self-fertilisation affects viability non-monotonically and genomic cold-spots could favour the viability of outcrossing populations. PMID:24465911

  2. Does the DFT Self-Interaction Error Affect Energies Calculated in Proteins with Large QM Systems?

    PubMed

    Fouda, Adam; Ryde, Ulf

    2016-11-08

    We have examined how the self-interaction error in density-functional theory (DFT) calculations affects energies calculated on large systems (600-1000 atoms) involving several charged groups. We employ 18 different quantum mechanical (QM) methods, including Hartree-Fock, as well as pure, hybrid, and range-separated DFT methods. They are used to calculate reaction and activation energies for three different protein models in vacuum, in a point-charge surrounding, or with a continuum-solvent model. We show that pure DFT functionals give rise to a significant delocalization of the charges in charged groups in the protein, typically by ∼0.1 e, as evidenced from the Mulliken charges. This has a clear effect on how the surroundings affect calculated reaction and activation energies, indicating that these methods should be avoided for DFT calculations on large systems. Fortunately, methods such as CAM-B3LYP, BHLYP, and M06-2X give results that agree within a few kilojoules per mole, especially when the calculations are performed in a point-charge surrounding. Therefore, we recommend these methods to estimate the effect of the surroundings with large QM systems (but other QM methods may be used to study the intrinsic reaction and activation energies).

  3. Ecological Interactions Affecting the Efficacy of Aphidius colemani in Greenhouse Crops

    PubMed Central

    Prado, Sara G.; Jandricic, Sarah E.; Frank, Steven D.

    2015-01-01

    Aphidius colemani Viereck (Hymenoptera: Braconidae) is a solitary endoparasitoid used for biological control of many economically important pest aphids. Given its widespread use, a vast array of literature on this natural enemy exists. Though often highly effective for aphid suppression, the literature reveals that A. colemani efficacy within greenhouse production systems can be reduced by many stressors, both biotic (plants, aphid hosts, other natural enemies) and abiotic (climate and lighting). For example, effects from 3rd and 4th trophic levels (fungal-based control products, hyperparasitoids) can suddenly decimate A. colemani populations. But, the most chronic negative effects (reduced parasitoid foraging efficiency, fitness) seem to be from stressors at the first trophic level. Negative effects from the 1st trophic level are difficult to mediate since growers are usually constrained to particular plant varieties due to market demands. Major research gaps identified by our review include determining how plants, aphid hosts, and A. colemani interact to affect the net aphid population, and how production conditions such as temperature, humidity and lighting affect both the population growth rate of A. colemani and its target pest. Decades of research have made A. colemani an essential part of biological control programs in greenhouse crops. Future gains in A. colemani efficacy and aphid biological control will require an interdisciplinary, systems approach that considers plant production and climate effects at all trophic levels. PMID:26463203

  4. Factors affecting virus dynamics and microbial host-virus interactions in marine environments.

    PubMed

    Mojica, Kristina D A; Brussaard, Corina P D

    2014-09-01

    Marine microorganisms constitute the largest percentage of living biomass and serve as the major driving force behind nutrient and energy cycles. While viruses only comprise a small percentage of this biomass (i.e., 5%), they dominate in numerical abundance and genetic diversity. Through host infection and mortality, viruses affect microbial population dynamics, community composition, genetic evolution, and biogeochemical cycling. However, the field of marine viral ecology is currently limited by a lack of data regarding how different environmental factors regulate virus dynamics and host-virus interactions. The goal of the present minireview was to contribute to the evolution of marine viral ecology, through the assimilation of available data regarding the manner and degree to which environmental factors affect viral decay and infectivity as well as influence latent period and production. Considering the ecological importance of viruses in the marine ecosystem and the increasing pressure from anthropogenic activity and global climate change on marine systems, a synthesis of existing information provides a timely framework for future research initiatives in viral ecology.

  5. Catechol-O-methyltransferase val(158)met Polymorphism Interacts with Sex to Affect Face Recognition Ability.

    PubMed

    Lamb, Yvette N; McKay, Nicole S; Singh, Shrimal S; Waldie, Karen E; Kirk, Ian J

    2016-01-01

    The catechol-O-methyltransferase (COMT) val158met polymorphism affects the breakdown of synaptic dopamine. Consequently, this polymorphism has been associated with a variety of neurophysiological and behavioral outcomes. Some of the effects have been found to be sex-specific and it appears estrogen may act to down-regulate the activity of the COMT enzyme. The dopaminergic system has been implicated in face recognition, a form of cognition for which a female advantage has typically been reported. This study aimed to investigate potential joint effects of sex and COMT genotype on face recognition. A sample of 142 university students was genotyped and assessed using the Faces I subtest of the Wechsler Memory Scale - Third Edition (WMS-III). A significant two-way interaction between sex and COMT genotype on face recognition performance was found. Of the male participants, COMT val homozygotes and heterozygotes had significantly lower scores than met homozygotes. Scores did not differ between genotypes for female participants. While male val homozygotes had significantly lower scores than female val homozygotes, no sex differences were observed in the heterozygotes and met homozygotes. This study contributes to the accumulating literature documenting sex-specific effects of the COMT polymorphism by demonstrating a COMT-sex interaction for face recognition, and is consistent with a role for dopamine in face recognition.

  6. Ultrasonic excitation affects friction interactions between food materials and cutting tools.

    PubMed

    Schneider, Yvonne; Zahn, Susann; Schindler, Claudia; Rohm, Harald

    2009-06-01

    In the food industry, ultrasonic cutting is used to improve separation by a reduction of the cutting force. This reduction can be attributed to the modification of tool-workpiece interactions at the cutting edge and along the tool flanks because of the superposition of the cutting movement with ultrasonic vibration of the cutting tool. In this study, model experiments were used to analyze friction between the flanks of a cutting tool and the material to be cut. Friction force at a commercial cutting sonotrode was quantified using combined cutting-friction experiments, and sliding friction tests were carried out by adapting a standard draw-off assembly and using an ultrasonic welding sonotrode as sliding surface. The impact of material parameters, ultrasonic amplitude, and the texture of the contacting food surface on friction force was investigated. The results show that ultrasonic vibration significantly reduces the sliding friction force. While the amplitude showed no influence within the tested range, the texture of the contact surface of the food affects the intensity of ultrasonic transportation effects. These effects are a result of mechanical interactions and of changes in material properties of the contact layer, which are induced by the deformation of contact points, friction heating and absorption heating because of the dissipation of mechanical vibration energy.

  7. Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations.

    PubMed Central

    Léveillard, T; Andera, L; Bissonnette, N; Schaeffer, L; Bracco, L; Egly, J M; Wasylyk, B

    1996-01-01

    The p53 tumour suppressor is mutated in the majority of human tumours. p53's proposed role as the guardian of the genome is reflected in its multiple effects on transcription genome stability, cell growth and survival. We show that p53 interacts both physically and functionally with the TFIIH complex. There are multiple protein-protein contacts, involving two regions of p53 and three subunits of TFIIH, ERCC2 (XPD), ERCC3 (XPB) and p62. p53 and its C-terminus (amino acids 320-393) inhibit both of the TFIIH helicases and in vitro transcription in the absence of TFIIH. Transcription inhibition is overcome by TFIIH. The N-terminal region of p53 (1-320), lacking the C-terminus, is inactive on its own, yet apparently affects the activity of the C-terminus in the native protein. Interestingly, mutant p53s that are frequently found in tumours are less efficient inhibitors of the helicases and transcription. We hypothesize that the interactions provide an immediate and direct link for p53 to the multiple functions of TFIIH in transcription, DNA repair and possibly the cell cycle. Images PMID:8612585

  8. Use of multiple correspondence analysis (MCA) to identify interactive meteorological conditions affecting relative throughfall

    NASA Astrophysics Data System (ADS)

    Van Stan, John T.; Gay, Trent E.; Lewis, Elliott S.

    2016-02-01

    Forest canopies alter rainfall reaching the surface by redistributing it as throughfall. Throughfall supplies water and nutrients to a variety of ecohydrological components (soil microbial communities, stream water discharge/chemistry, and stormflow pathways) and is controlled by canopy structural interactions with meteorological conditions across temporal scales. This work introduces and applies multiple correspondence analyses (MCAs) to a range of meteorological thresholds (median intensity, median absolute deviation (MAD) of intensity, median wind-driven droplet inclination angle, and MAD of wind speed) for an example throughfall problem: identification of interacting storm conditions corresponding to temporal concentration in relative throughfall beyond the median observation (⩾73% of rain). MCA results from the example show that equalling or exceeding rain intensity thresholds (median and MAD) corresponded with temporal concentration of relative throughfall across all storms. Under these intensity conditions, two wind mechanisms produced significant correspondences: (1) high, steady wind-driven droplet inclination angles increased surface wetting; and (2) sporadic winds shook entrained droplets from surfaces. A discussion is provided showing that these example MCA findings agree well with previous work relying on more historically common methods (e.g., multiple regression and analytical models). Meteorological threshold correspondences to temporal concentration of relative throughfall at our site may be a function of heavy Tillandsia usneoides coverage. Applications of MCA within other forests may provide useful insights to how temporal throughfall dynamics are affected for drainage pathways dependent on different structures (leaves, twigs, branches, etc.).

  9. Disrupted trophic interactions affect recruitment of boreal deciduous and coniferous trees in northern Europe.

    PubMed

    Angelstam, Per; Manton, Michael; Pedersen, Simen; Elbakidze, Marine

    2017-01-23

    Loss of large carnivore populations may lead to increased population densities of large herbivores, and subsequent cascading effects on the composition, structure, and function of ecosystems. Using a macroecological approach based on studies in multiple boreal forest landscapes in the Baltic Sea region and Russia, we tested the hypothesis that disrupted trophic interactions among large carnivores and large herbivores affect the recruitment of both ecologically and economically valuable tree species. We measured damage levels on young trees and large herbivore density in 10 local landscapes representing a gradient from extinct to extant populations of both large carnivores and large herbivores. We also tested the alternative hypothesis that forest management intensity is correlated to reduced recruitment of these tree species. At the macroecological scale there was an inverse relationship between the number of large carnivores and large herbivores. This coincided with a steep gradient in browsing damage on the ecologically important aspen, rowan and sallow as hosts for specialized species, as well as the economically important Scots pine. In one landscape hunting had replaced the presence of carnivores. Mean damage levels of these four tree species were correlated with large herbivore abundance, but not with forest management intensity. We discuss the pros and cons of this macroecological approach, as well as the challenge of governing and managing trophic interactions at multiple scales.

  10. How Bonding in Manganous Phosphates Affects their Mn(II)-(31)P Hyperfine Interactions.

    PubMed

    Un, Sun; Bruch, Eduardo M

    2015-11-02

    Manganous phosphates have been postulated to play an important role in cells as antioxidants. In situ Mn(II) electron-nuclear double resonance (ENDOR) spectroscopy has been used to measure their speciation in cells. The analyses of such ENDOR spectra and the quantification of cellular Mn(II) phosphates has been based on comparisons to in vitro model complexes and heuristic modeling. In order to put such analyses on a more physical and theoretical footing, the Mn(II)-(31)P hyperfine interactions of various Mn(II) phosphate complexes have been measured by 95 GHz ENDOR spectroscopy. The dipolar components of these interactions remained relatively constant as a function of pH, esterification, and phosphate chain length, while the isotropic contributions were significantly affected. Counterintuitively, although the manganese-phosphate bonds are weakened by protonation and esterification, they lead to larger isotropic values, indicating higher unpaired-electron spin densities at the phosphorus nuclei. By comparison, extending the phosphate chain with additional phosphate groups lowers the spin density. Density functional theory calculations of model complexes quantitatively reproduced the measured hyperfine couplings and provided detailed insights into how bonding in Mn(II) phosphate complexes modulates the electron-spin polarization and consequently their isotropic hyperfine couplings. These results show that various classes of phosphates can be identified by their ENDOR spectra and provide a theoretical framework for understanding the in situ (31)P ENDOR spectra of cellular Mn(II) complexes.

  11. Catechol-O-methyltransferase val158met Polymorphism Interacts with Sex to Affect Face Recognition Ability

    PubMed Central

    Lamb, Yvette N.; McKay, Nicole S.; Singh, Shrimal S.; Waldie, Karen E.; Kirk, Ian J.

    2016-01-01

    The catechol-O-methyltransferase (COMT) val158met polymorphism affects the breakdown of synaptic dopamine. Consequently, this polymorphism has been associated with a variety of neurophysiological and behavioral outcomes. Some of the effects have been found to be sex-specific and it appears estrogen may act to down-regulate the activity of the COMT enzyme. The dopaminergic system has been implicated in face recognition, a form of cognition for which a female advantage has typically been reported. This study aimed to investigate potential joint effects of sex and COMT genotype on face recognition. A sample of 142 university students was genotyped and assessed using the Faces I subtest of the Wechsler Memory Scale – Third Edition (WMS-III). A significant two-way interaction between sex and COMT genotype on face recognition performance was found. Of the male participants, COMT val homozygotes and heterozygotes had significantly lower scores than met homozygotes. Scores did not differ between genotypes for female participants. While male val homozygotes had significantly lower scores than female val homozygotes, no sex differences were observed in the heterozygotes and met homozygotes. This study contributes to the accumulating literature documenting sex-specific effects of the COMT polymorphism by demonstrating a COMT-sex interaction for face recognition, and is consistent with a role for dopamine in face recognition. PMID:27445927

  12. Interaction between parental environment and genotype affects plant and seed performance in Arabidopsis

    PubMed Central

    He, Hanzi; de Souza Vidigal, Deborah; Snoek, L. Basten; Schnabel, Sabine; Nijveen, Harm; Hilhorst, Henk; Bentsink, Leónie

    2014-01-01

    Seed performance after dispersal is highly dependent on parental environmental cues, especially during seed formation and maturation. Here we examine which environmental factors are the most dominant in this respect and whether their effects are dependent on the genotypes under investigation. We studied the influence of light intensity, photoperiod, temperature, nitrate, and phosphate during seed development on five plant attributes and thirteen seed attributes, using 12 Arabidopsis genotypes that have been reported to be affected in seed traits. As expected, the various environments during seed development resulted in changed plant and/or seed performances. Comparative analysis clearly indicated that, overall, temperature plays the most dominant role in both plant and seed performance, whereas light has a prominent impact on plant traits. In comparison to temperature and light, nitrate mildly affected some of the plant and seed traits while phosphate had even less influence on those traits. Moreover, clear genotype-by-environment interactions were identified. This was shown by the fact that individual genotypes responded differentially to the environmental conditions. Low temperature significantly increased seed dormancy and decreased seed longevity of NILDOG1 and cyp707a1-1, whereas low light intensity increased seed dormancy and decreased seed longevity of NILDOG3 and NILDOG6. This also indicates that different genetic and molecular pathways are involved in the plant and seed responses. By identifying environmental conditions that affect the dormancy vs longevity correlation in the same way as previously identified naturally occurring loci, we have identified selective forces that probably shaped evolution for these important seed traits. PMID:25240065

  13. Interaction between parental environment and genotype affects plant and seed performance in Arabidopsis.

    PubMed

    He, Hanzi; de Souza Vidigal, Deborah; Snoek, L Basten; Schnabel, Sabine; Nijveen, Harm; Hilhorst, Henk; Bentsink, Leónie

    2014-12-01

    Seed performance after dispersal is highly dependent on parental environmental cues, especially during seed formation and maturation. Here we examine which environmental factors are the most dominant in this respect and whether their effects are dependent on the genotypes under investigation. We studied the influence of light intensity, photoperiod, temperature, nitrate, and phosphate during seed development on five plant attributes and thirteen seed attributes, using 12 Arabidopsis genotypes that have been reported to be affected in seed traits. As expected, the various environments during seed development resulted in changed plant and/or seed performances. Comparative analysis clearly indicated that, overall, temperature plays the most dominant role in both plant and seed performance, whereas light has a prominent impact on plant traits. In comparison to temperature and light, nitrate mildly affected some of the plant and seed traits while phosphate had even less influence on those traits. Moreover, clear genotype-by-environment interactions were identified. This was shown by the fact that individual genotypes responded differentially to the environmental conditions. Low temperature significantly increased seed dormancy and decreased seed longevity of NILDOG1 and cyp707a1-1, whereas low light intensity increased seed dormancy and decreased seed longevity of NILDOG3 and NILDOG6. This also indicates that different genetic and molecular pathways are involved in the plant and seed responses. By identifying environmental conditions that affect the dormancy vs longevity correlation in the same way as previously identified naturally occurring loci, we have identified selective forces that probably shaped evolution for these important seed traits.

  14. Diversity and Moral Reasoning: How Negative Diverse Peer Interactions Affect the Development of Moral Reasoning in Undergraduate Students

    ERIC Educational Resources Information Center

    Mayhew, Matthew J.; Engberg, Mark E.

    2010-01-01

    How do interactions with diverse peers affect moral reasoning development? Results from a longitudinal study of 171 students enrolled in an Intergroup Dialogue or Introduction to Sociology course indicate that students who experience more negative interactions with diverse peers report lower developmental gains in moral reasoning, although the…

  15. Do multiple fires interact to affect vegetation structure in temperate eucalypt forests?

    PubMed

    Haslem, Angie; Leonard, Steve W J; Bruce, Matthew J; Christie, Fiona; Holland, Greg J; Kelly, Luke T; MacHunter, Josephine; Bennett, Andrew F; Clarke, Michael F; York, Alan

    2016-12-01

    Fire plays an important role in structuring vegetation in fire-prone regions worldwide. Progress has been made towards documenting the effects of individual fire events and fire regimes on vegetation structure; less is known of how different fire history attributes (e.g., time since fire, fire frequency) interact to affect vegetation. Using the temperate eucalypt foothill forests of southeastern Australia as a case study system, we examine two hypotheses about such interactions: (1) post-fire vegetation succession (e.g., time-since-fire effects) is influenced by other fire regime attributes and (2) the severity of the most recent fire overrides the effect of preceding fires on vegetation structure. Empirical data on vegetation structure were collected from 540 sites distributed across central and eastern Victoria, Australia. Linear mixed models were used to examine these hypotheses and determine the relative influence of fire and environmental attributes on vegetation structure. Fire history measures, particularly time since fire, affected several vegetation attributes including ground and canopy strata; others such as low and sub-canopy vegetation were more strongly influenced by environmental characteristics like rainfall. There was little support for the hypothesis that post-fire succession is influenced by fire history attributes other than time since fire; only canopy regeneration was influenced by another variable (fire type, representing severity). Our capacity to detect an overriding effect of the severity of the most recent fire was limited by a consistently weak effect of preceding fires on vegetation structure. Overall, results suggest the primary way that fire affects vegetation structure in foothill forests is via attributes of the most recent fire, both its severity and time since its occurrence; other attributes of fire regimes (e.g., fire interval, frequency) have less influence. The strong effect of environmental drivers, such as rainfall and

  16. Thermoregulatory behaviour affects prevalence of chytrid fungal infection in a wild population of Panamanian golden frogs.

    PubMed

    Richards-Zawacki, Corinne L

    2010-02-22

    Predicting how climate change will affect disease dynamics requires an understanding of how the environment affects host-pathogen interactions. For amphibians, global declines and extinctions have been linked to a pathogenic chytrid fungus, Batrachochytrium dendrobatidis. Using a combination of body temperature measurements and disease assays conducted before and after the arrival of B. dendrobatidis, this study tested the hypothesis that body temperature affects the prevalence of infection in a wild population of Panamanian golden frogs (Atelopus zeteki). The timing of first detection of the fungus was consistent with that of a wave of epidemic infections spreading south and eastward through Central America. During the epidemic, many golden frogs modified their thermoregulatory behaviour, raising body temperatures above their normal set point. Odds of infection decreased with increasing body temperature, demonstrating that even slight environmental or behavioural changes have the potential to affect an individual's vulnerability to infection. The thermal dependency of the relationship between B. dendrobatidis and its amphibian hosts demonstrates how the progression of an epidemic can be influenced by complex interactions between host and pathogen phenotypes and the environments in which they are found.

  17. The interaction of affective states and cognitive vulnerabilities in the prediction of non-suicidal self-injury.

    PubMed

    Cohen, Jonah N; Stange, Jonathan P; Hamilton, Jessica L; Burke, Taylor A; Jenkins, Abigail; Ong, Mian-Li; Heimberg, Richard G; Abramson, Lyn Y; Alloy, Lauren B

    2015-01-01

    Non-suicidal self-injury (NSSI) is a serious public health concern and remains poorly understood. This study sought to identify both cognitive and affective vulnerabilities to NSSI and examine their interaction in the prediction of NSSI. A series of regressions indicated that low levels of positive affect (PA) moderated the relationships between self-criticism and brooding and NSSI. The associations of self-criticism and brooding with greater frequency of NSSI were attenuated by higher levels of PA. The interaction of cognitive and affective vulnerabilities is discussed within the context of current NSSI theory.

  18. Interactions between benthic predators and zooplanktonic prey are affected by turbulent waves.

    PubMed

    Robinson, H E; Finelli, C M; Koehl, M A R

    2013-11-01

    Predators capture prey in complex and variable environments. In the ocean, bottom-dwelling (benthic) organisms are subjected to water currents, waves, and turbulent eddies. For benthic predators that feed on small animals carried in the water (zooplankton), flow not only delivers prey, but can also shape predator-prey interactions. Benthic passive suspension feeders collect prey delivered by movement of ambient water onto capture-surfaces, whereas motile benthic predators, such as burrow-dwelling fish, dart out to catch passing zooplankton. How does the flow of ambient water affect these contrasting modes of predation by benthic zooplanktivores? We studied the effects of turbulent, wavy flow on the encounter, capture, and retention of motile zooplanktonic prey (copepods, Acartia spp.) by passive benthic suspension feeders (sea anemones, Anthopleura elegantissima). Predator-prey interactions were video-recorded in a wave-generating flume under two regimes of oscillating flow with different peak wave velocities and levels of turbulent kinetic energy ("weak" and "strong" waves). Rates of encounter (number of prey passing through a sea anemone's capture zone per time), capture (prey contacting and sticking to tentacles per time), and retention (prey retained on tentacles, without struggling free or washing off, per time) were measured at both strengths of waves. Strong waves enhanced encounter rates both for dead copepods and for actively swimming copepods, but there was so much variability in the behavior of the live prey that the effect of wave strength on encounter rates was not significant. Trapping efficiency (number of prey retained per number encountered) was the same in both flow regimes because, although fewer prey executed maneuvers to escape capture in strong waves, more of the captured prey was washed off the predators' tentacles. Although peak water velocities and turbulence of waves did not affect feeding rates of passive suspension-feeding sea anemones

  19. Earthworm-mycorrhiza interactions can affect the diversity, structure and functioning of establishing model grassland communities.

    PubMed

    Zaller, Johann G; Heigl, Florian; Grabmaier, Andrea; Lichtenegger, Claudia; Piller, Katja; Allabashi, Roza; Frank, Thomas; Drapela, Thomas

    2011-01-01

    Both earthworms and arbuscular mycorrhizal fungi (AMF) are important ecosystem engineers co-occurring in temperate grasslands. However, their combined impacts during grassland establishment are poorly understood and have never been studied. We used large mesocosms to study the effects of different functional groups of earthworms (i.e., vertically burrowing anecics vs. horizontally burrowing endogeics) and a mix of four AMF taxa on the establishment, diversity and productivity of plant communities after a simulated seed rain of 18 grassland species comprising grasses, non-leguminous forbs and legumes. Moreover, effects of earthworms and/or AMF on water infiltration and leaching of ammonium, nitrate and phosphate were determined after a simulated extreme rainfall event (40 l m(-2)). AMF colonisation of all three plant functional groups was altered by earthworms. Seedling emergence and diversity was reduced by anecic earthworms, however only when AMF were present. Plant density was decreased in AMF-free mesocosms when both anecic and endogeic earthworms were active; with AMF also anecics reduced plant density. Plant shoot and root biomass was only affected by earthworms in AMF-free mesocosms: shoot biomass increased due to the activity of either anecics or endogeics; root biomass increased only when anecics were active. Water infiltration increased when earthworms were present in the mesocosms but remained unaffected by AMF. Ammonium leaching was increased only when anecics or a mixed earthworm community was active but was unaffected by AMF; nitrate and phosphate leaching was neither affected by earthworms nor AMF. Ammonium leaching decreased with increasing plant density, nitrate leaching decreased with increasing plant diversity and density. In order to understand the underlying processes of these interactions further investigations possibly under field conditions using more diverse belowground communities are required. Nevertheless, this study demonstrates that

  20. Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry.

    PubMed

    Habran, Aude; Commisso, Mauro; Helwi, Pierre; Hilbert, Ghislaine; Negri, Stefano; Ollat, Nathalie; Gomès, Eric; van Leeuwen, Cornelis; Guzzo, Flavia; Delrot, Serge

    2016-01-01

    The present work investigates the interactions between soil content, rootstock, and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS) and Pinot Noir (PN) varieties were grafted either on Riparia Gloire de Montpellier (RGM) or 110 Richter (110R) rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake by the plants, and N content both in vegetative and reproductory organs. Rootstock, variety and year affected berry weight at harvest, while nitrogen did not affect significantly this parameter. Grafting on RGM consistently increased berry weight compared to 110R. PN consistently produced bigger berries than CS. CS berries were heavier in 2014 than in 2013, but the year effect was less marked for PN berries. The berries were collected between veraison and maturity, separated in skin and pulp, and their content was analyzed by conventional analytical procedures and untargeted metabolomics. For anthocyanins, the relative quantitation was fairly comparable with both LC-MS determination and HPLC-DAD, which is a fully quantitative technique. The data show complex responses of the metabolite content (sugars, organic acids, amino acids, anthocyanins, flavonols, flavan-3-ols/procyanidins, stilbenes, hydroxycinnamic, and hydroxybenzoic acids) that depend on the rootstock, the scion, the vintage, the nitrogen level, the berry compartment. This opens a wide range of possibilities to adjust the content of these compounds through the choice of the roostock, variety and nitrogen fertilization.

  1. Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry

    PubMed Central

    Habran, Aude; Commisso, Mauro; Helwi, Pierre; Hilbert, Ghislaine; Negri, Stefano; Ollat, Nathalie; Gomès, Eric; van Leeuwen, Cornelis; Guzzo, Flavia; Delrot, Serge

    2016-01-01

    The present work investigates the interactions between soil content, rootstock, and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS) and Pinot Noir (PN) varieties were grafted either on Riparia Gloire de Montpellier (RGM) or 110 Richter (110R) rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake by the plants, and N content both in vegetative and reproductory organs. Rootstock, variety and year affected berry weight at harvest, while nitrogen did not affect significantly this parameter. Grafting on RGM consistently increased berry weight compared to 110R. PN consistently produced bigger berries than CS. CS berries were heavier in 2014 than in 2013, but the year effect was less marked for PN berries. The berries were collected between veraison and maturity, separated in skin and pulp, and their content was analyzed by conventional analytical procedures and untargeted metabolomics. For anthocyanins, the relative quantitation was fairly comparable with both LC-MS determination and HPLC-DAD, which is a fully quantitative technique. The data show complex responses of the metabolite content (sugars, organic acids, amino acids, anthocyanins, flavonols, flavan-3-ols/procyanidins, stilbenes, hydroxycinnamic, and hydroxybenzoic acids) that depend on the rootstock, the scion, the vintage, the nitrogen level, the berry compartment. This opens a wide range of possibilities to adjust the content of these compounds through the choice of the roostock, variety and nitrogen fertilization. PMID:27555847

  2. Interacting with Nature Improves Cognition and Affect for Individuals with Depression

    PubMed Central

    Berman, Marc G.; Kross, Ethan; Krpan, Katherine M.; Askren, Mary K.; Burson, Aleah; Deldin, Patricia J.; Kaplan, Stephen; Sherdell, Lindsey; Gotlib, Ian H.; Jonides, John

    2012-01-01

    Background This study aimed to explore whether walking in nature may be beneficial for individuals with major depressive disorder (MDD). Healthy adults demonstrate significant cognitive gains after nature walks, but it was unclear whether those same benefits would be achieved in a depressed sample as walking alone in nature might induce rumination, thereby worsening memory and mood. Methods Twenty individuals diagnosed with MDD participated in this study. At baseline, mood and short term memory span were assessed using the PANAS and the backwards digit span (BDS) task, respectively. Participants were then asked to think about an unresolved negative autobiographical event to prime rumination, prior to taking a 50 minute walk in either a natural or urban setting. After the walk, mood and short-term memory span were reassessed. The following week, participants returned to the lab and repeated the entire procedure, but walked in the location not visited in the first session (i.e., a counterbalanced within-subjects design). Results Participants exhibited significant increases in memory span after the nature walk relative to the urban walk, p < .001, ηp2= .53 (a large effect-size). Participants also showed increases in mood, but the mood effects did not correlate with the memory effects, suggesting separable mechanisms and replicating previous work. Limitations Sample size and participants’ motivation. Conclusions These findings extend earlier work demonstrating the cognitive and affective benefits of interacting with nature to individuals with MDD. Therefore, interacting with nature may be useful clinically as a supplement to existing treatments for MDD. PMID:22464936

  3. Macrofauna assemblage composition and soil moisture interact to affect soil ecosystem functions

    NASA Astrophysics Data System (ADS)

    Collison, E. J.; Riutta, T.; Slade, E. M.

    2013-02-01

    Changing climatic conditions and habitat fragmentation are predicted to alter the soil moisture conditions of temperate forests. It is not well understood how the soil macrofauna community will respond to changes in soil moisture, and how changes to species diversity and community composition may affect ecosystem functions, such as litter decomposition and soil fluxes. Moreover, few studies have considered the interactions between the abiotic and biotic factors that regulate soil processes. Here we attempt to disentangle the interactive effects of two of the main factors that regulate soil processes at small scales - moisture and macrofauna assemblage composition. The response of assemblages of three common temperate soil invertebrates (Glomeris marginata Villers, Porcellio scaber Latreille and Philoscia muscorum Scopoli) to two contrasting soil moisture levels was examined in a series of laboratory mesocosm experiments. The contribution of the invertebrates to the leaf litter mass loss of two common temperate tree species of contrasting litter quality (easily decomposing Fraxinus excelsior L. and recalcitrant Quercus robur L.) and to soil CO2 fluxes were measured. Both moisture conditions and litter type influenced the functioning of the invertebrate assemblages, which was greater in high moisture conditions compared with low moisture conditions and on good quality vs. recalcitrant litter. In high moisture conditions, all macrofauna assemblages functioned at equal rates, whereas in low moisture conditions there were pronounced differences in litter mass loss among the assemblages. This indicates that species identity and assemblage composition are more important when moisture is limited. We suggest that complementarity between macrofauna species may mitigate the reduced functioning of some species, highlighting the importance of maintaining macrofauna species richness.

  4. Keeper-Animal Interactions: Differences between the Behaviour of Zoo Animals Affect Stockmanship

    PubMed Central

    Ward, Samantha J.; Melfi, Vicky

    2015-01-01

    Stockmanship is a term used to describe the management of animals with a good stockperson someone who does this in a in a safe, effective, and low-stress manner for both the stock-keeper and animals involved. Although impacts of unfamiliar zoo visitors on animal behaviour have been extensively studied, the impact of stockmanship i.e familiar zoo keepers is a new area of research; which could reveal significant ramifications for zoo animal behaviour and welfare. It is likely that different relationships are formed dependant on the unique keeper-animal dyad (human-animal interaction, HAI). The aims of this study were to (1) investigate if unique keeper-animal dyads were formed in zoos, (2) determine whether keepers differed in their interactions towards animals regarding their attitude, animal knowledge and experience and (3) explore what factors affect keeper-animal dyads and ultimately influence animal behaviour and welfare. Eight black rhinoceros (Diceros bicornis), eleven Chapman’s zebra (Equus burchellii), and twelve Sulawesi crested black macaques (Macaca nigra) were studied in 6 zoos across the UK and USA. Subtle cues and commands directed by keepers towards animals were identified. The animals latency to respond and the respective behavioural response (cue-response) was recorded per keeper-animal dyad (n = 93). A questionnaire was constructed following a five-point Likert Scale design to record keeper demographic information and assess the job satisfaction of keepers, their attitude towards the animals and their perceived relationship with them. There was a significant difference in the animals’ latency to appropriately respond after cues and commands from different keepers, indicating unique keeper-animal dyads were formed. Stockmanship style was also different between keepers; two main components contributed equally towards this: “attitude towards the animals” and “knowledge and experience of the animals”. In this novel study, data demonstrated

  5. Morphine decreases social interaction of adult male rats, while THC does not affect it.

    PubMed

    Šlamberová, R; Mikulecká, A; Macúchová, E; Hrebíčková, I; Ševčíková, M; Nohejlová, K; Pometlová, M

    2016-12-22

    The aim of the present study was to compare effect of three low doses of morphine (MOR) and delta9-tetrahydrocannabinol (THC) on social behavior tested in Social interaction test (SIT). 45 min prior to testing adult male rats received one of the drugs or solvents: MOR (1; 2.5; 5 mg/kg); saline as a solvent for MOR; THC (0.5; 1; 2 mg/kg); ethanol as a solvent for THC. Occurrence and time spent in specific patterns of social interactions (SI) and non-social activities (locomotion and rearing) was video-recorded for 5 min and then analyzed. MOR in doses of 1 and 2.5 mg/kg displayed decreased SI in total. Detailed analysis of specific patterns of SI revealed decrease in mutual sniffing and allo-grooming after all doses of MOR. The highest dose (5 mg/kg) of MOR decreased following and increased genital investigation. Rearing activity was increased by lower doses of MOR (1 and 2.5 mg/kg). THC, in each of the tested doses, did not induce any specific changes when compared to matching control group (ethanol). However, an additional statistical analysis showed differences between all THC groups and their ethanol control group when compared to saline controls. There was lower SI in total, lower mutual sniffing and allo-grooming, but higher rearing in THC and ethanol groups than in saline control group. Thus, changes seen in THC and ethanol groups are seemed to be attributed mainly to the effect of the ethanol. Based on the present results we can assume that opioids affect SI more than cannabinoid.

  6. Keeper-Animal Interactions: Differences between the Behaviour of Zoo Animals Affect Stockmanship.

    PubMed

    Ward, Samantha J; Melfi, Vicky

    2015-01-01

    Stockmanship is a term used to describe the management of animals with a good stockperson someone who does this in a in a safe, effective, and low-stress manner for both the stock-keeper and animals involved. Although impacts of unfamiliar zoo visitors on animal behaviour have been extensively studied, the impact of stockmanship i.e familiar zoo keepers is a new area of research; which could reveal significant ramifications for zoo animal behaviour and welfare. It is likely that different relationships are formed dependant on the unique keeper-animal dyad (human-animal interaction, HAI). The aims of this study were to (1) investigate if unique keeper-animal dyads were formed in zoos, (2) determine whether keepers differed in their interactions towards animals regarding their attitude, animal knowledge and experience and (3) explore what factors affect keeper-animal dyads and ultimately influence animal behaviour and welfare. Eight black rhinoceros (Diceros bicornis), eleven Chapman's zebra (Equus burchellii), and twelve Sulawesi crested black macaques (Macaca nigra) were studied in 6 zoos across the UK and USA. Subtle cues and commands directed by keepers towards animals were identified. The animals latency to respond and the respective behavioural response (cue-response) was recorded per keeper-animal dyad (n = 93). A questionnaire was constructed following a five-point Likert Scale design to record keeper demographic information and assess the job satisfaction of keepers, their attitude towards the animals and their perceived relationship with them. There was a significant difference in the animals' latency to appropriately respond after cues and commands from different keepers, indicating unique keeper-animal dyads were formed. Stockmanship style was also different between keepers; two main components contributed equally towards this: "attitude towards the animals" and "knowledge and experience of the animals". In this novel study, data demonstrated unique dyads

  7. Production of hydrogen peroxide and expression of ROS generating genes in peach flower petals in response to host and non-host pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reactive oxygen species (ROS) play dual roles in plant-microbe interactions in that they can either stimulate host resistance or benefit pathogen virulence. Accumulation of ROS was determined in peach petals in response to Monilinia fructicola (a compatible pathogen) and Penicillium digitatum (an i...

  8. The Dynamic Reactance Interaction – How Vested Interests Affect People’s Experience, Behavior, and Cognition in Social Interactions

    PubMed Central

    Steindl, Christina; Jonas, Eva

    2015-01-01

    In social interactions, individuals may sometimes pursue their own interests at the expense of their interaction partner. Such self-interested behaviors impose a threat to the interaction partner’s freedom to act. The current article investigates this threat in the context of interdependence and reactance theory. We explore how vested interests influence reactance process stages of an advisor–client interaction. We aim to explore the interactional process that evolves. In two studies, participants took the perspective of a doctor (advisor) or a patient (client). In both studies we incorporated a vested interest. In Study 1 (N = 82) we found that in response to a vested interest of their interaction partner, patients indicated a stronger experience of reactance, more aggressive behavioral intentions, and more biased cognitions than doctors. A serial multiple mediation revealed that a vested interest engendered mistrust toward the interaction partner and this mistrust led to an emerging reactance process. Study 2 (N = 207) further demonstrated that doctors expressed their reactance in a subtle way: they revealed a classic confirmation bias when searching for additional information on their preliminary decision preference, indicating stronger defense motivation. We discuss how these findings can help us to understand how social interactions develop dynamically. PMID:26640444

  9. The Age of Cortical Neural Networks Affects Their Interactions with Magnetic Nanoparticles.

    PubMed

    Tay, Andy; Kunze, Anja; Jun, Dukwoo; Hoek, Eric; Di Carlo, Dino

    2016-07-01

    Despite increasing use of nanotechnology in neuroscience, the characterization of interactions between magnetic nanoparticles (MNPs) and primary cortical neural networks remains underdeveloped. In particular, how the age of primary neural networks affects MNP uptake and endocytosis is critical when considering MNP-based therapies for age-related diseases. Here, primary cortical neural networks are cultured up to 4 weeks and with CCL11/eotaxin, an age-inducing chemokine, to create aged neural networks. As the neural networks are aged, their association with membrane-bound starch-coated ferromagnetic nanoparticles (fMNPs) increases while their endocytic mechanisms are impaired, resulting in reduced internalization of chitosan-coated fMNPs. The age of the neurons also negates the neuroprotective effects of chitosan coatings on fMNPs, attributing to decreased intracellular trafficking and increased colocalization of MNPs with lysosomes. These findings demonstrate the importance of age and developmental stage of primary neural cells when developing in vitro models for fMNP therapeutics targeting age-related diseases.

  10. Interacting Physical and Biological Processes Affecting Nutrient Transport Through Human Dominated Landscapes

    NASA Astrophysics Data System (ADS)

    Finlay, J. C.

    2015-12-01

    Human activities increasingly dominate biogeochemical cycles of limiting nutrients on Earth. Urban and agricultural landscapes represent the largest sources of excess nutrients that drive water quality degradation. The physical structure of both urban and agricultural watersheds has been extensively modified, and these changes have large impacts on water and nutrient transport. Despite strong physical controls over nutrient transport in human dominated landscapes, biological processes play important roles in determining the fates of both nitrogen and phosphorus. This talk uses examples from research in urban and agricultural watersheds in the Midwestern USA to illustrate interactions of physical and biological controls over nutrient cycles that have shifted nitrogen (N) and phosphorus (P) sources and cycling in unexpected ways in response to management changes. In urban watersheds, efforts to improve water quality have been hindered by legacy sources of phosphorus added to storm water through transport to drainage systems by vegetation. Similarly, reductions in field erosion in agricultural watersheds have not led to major reductions in phosphorus transport, because of continued release of biological sources of P. Where management of phosphorus has been most effective in reducing eutrophication of lakes, decreases in N removal processes have led to long term increases in N concentration and transport. Together, these examples show important roles for biological processes affecting nutrient movement in highly modified landscapes. Consideration of the downstream physical and biological responses of management changes are thus critical toward identification of actions that will most effectively reduce excess nutrients watersheds and coastal zones.

  11. Disruption of Adult Neurogenesis in the Olfactory Bulb Affects Social Interaction but not Maternal Behavior

    PubMed Central

    Feierstein, Claudia E.; Lazarini, Françoise; Wagner, Sebastien; Gabellec, Marie-Madeleine; de Chaumont, Fabrice; Olivo-Marin, Jean-Christophe; Boussin, François D.; Lledo, Pierre-Marie; Gheusi, Gilles

    2010-01-01

    Adult-born neurons arrive to the olfactory bulb (OB) and integrate into the existing circuit throughout life. Despite the prevalence of this phenomenon, its functional impact is still poorly understood. Recent studies point to the importance of newly generated neurons to olfactory learning and memory. Adult neurogenesis is regulated by a variety of factors, notably by instances related to reproductive behavior, such as exposure to mating partners, pregnancy and lactation, and exposure to offspring. To study the contribution of olfactory neurogenesis to maternal behavior and social recognition, here we selectively disrupted OB neurogenesis using focal irradiation of the subventricular zone in adult female mice. We show that reduction of olfactory neurogenesis results in an abnormal social interaction pattern with male, but not female, conspecifics; we suggest that this effect could result from the inability to detect or discriminate male odors and could therefore have implications for the recognition of potential mating partners. Disruption of OB neurogenesis, however, neither impaired maternal-related behaviors, nor did it affect the ability of mothers to discriminate their own progeny from others. PMID:21160552

  12. How Levels of Interactivity in Tutorials Affect Students' Learning of Modeling Transportation Problems in a Spreadsheet

    ERIC Educational Resources Information Center

    Seal, Kala Chand; Przasnyski, Zbigniew H.; Leon, Linda A.

    2010-01-01

    Do students learn to model OR/MS problems better by using computer-based interactive tutorials and, if so, does increased interactivity in the tutorials lead to better learning? In order to determine the effect of different levels of interactivity on student learning, we used screen capture technology to design interactive support materials for…

  13. Nutrient demand interacts with forage family to affect digestion responses in dairy cows.

    PubMed

    Kammes, K L; Allen, M S

    2012-06-01

    Effects of forage family on dry matter intake (DMI), milk production, ruminal pool sizes, digestion and passage kinetics, and chewing activity and the relationship of these effects with preliminary DMI (pDMI), an index of nutrient demand, were evaluated using 13 ruminally and duodenally cannulated Holstein cows in a crossover design with a 14-d preliminary period and two 18-d treatment periods. During the preliminary period, pDMI of individual cows ranged from 19.6 to 29.5 kg/d (mean=25.9 kg/d) and 3.5% fat-corrected milk yield ranged from 24.3 to 60.3 kg/d (mean=42.1 kg/d). Experimental treatments were diets containing either a) alfalfa silage (AL) or b) orchardgrass silage (OG) as the sole forage. Alfalfa and orchardgrass contained 42.3 and 58.2% neutral detergent fiber (NDF) and 22.5 and 11.4% crude protein, respectively. Forage:concentrate ratios were 60:40 and 43:57 for AL and OG, respectively; both diets contained approximately 25% forage NDF and 30% total NDF. Preliminary DMI was determined during the last 4 d of the preliminary period when cows were fed a common diet and used as a covariate. Main effects of forage family and their interaction with pDMI were tested by ANOVA. Forage family and its interaction with pDMI did not affect feed intake, milk yield, or milk composition. The AL diet increased indigestible NDF (iNDF) intake and decreased potentially digestible NDF (pdNDF) intake compared with OG. The AL diet increased ruminal pH, digestion rates of pdNDF and starch, and passage rates of pdNDF and iNDF compared with OG, which affected ruminal digestibility. Passage rate of iNDF was related to pDMI; AL increased iNDF passage rate and OG decreased it as pDMI increased. The AL diet decreased ruminal pool sizes of pdNDF, starch, organic matter, dry matter, and rumen digesta wet weight and volume compared with OG. The AL diet decreased ruminating time per unit of forage NDF consumed compared with OG, indicating that alfalfa provided less physically effective

  14. Using pooled data to estimate variance components and breeding values for traits affected by social interactions

    PubMed Central

    2013-01-01

    Background Through social interactions, individuals affect one another’s phenotype. In such cases, an individual’s phenotype is affected by the direct (genetic) effect of the individual itself and the indirect (genetic) effects of the group mates. Using data on individual phenotypes, direct and indirect genetic (co)variances can be estimated. Together, they compose the total genetic variance that determines a population’s potential to respond to selection. However, it can be difficult or expensive to obtain individual phenotypes. Phenotypes on traits such as egg production and feed intake are, therefore, often collected on group level. In this study, we investigated whether direct, indirect and total genetic variances, and breeding values can be estimated from pooled data (pooled by group). In addition, we determined the optimal group composition, i.e. the optimal number of families represented in a group to minimise the standard error of the estimates. Methods This study was performed in three steps. First, all research questions were answered by theoretical derivations. Second, a simulation study was conducted to investigate the estimation of variance components and optimal group composition. Third, individual and pooled survival records on 12 944 purebred laying hens were analysed to investigate the estimation of breeding values and response to selection. Results Through theoretical derivations and simulations, we showed that the total genetic variance can be estimated from pooled data, but the underlying direct and indirect genetic (co)variances cannot. Moreover, we showed that the most accurate estimates are obtained when group members belong to the same family. Additional theoretical derivations and data analyses on survival records showed that the total genetic variance and breeding values can be estimated from pooled data. Moreover, the correlation between the estimated total breeding values obtained from individual and pooled data was surprisingly

  15. Affiliation and control in marital interaction: interpersonal complementarity is present but is not associated with affect or relationship quality.

    PubMed

    Cundiff, Jenny M; Smith, Timothy W; Butner, Jonathan; Critchfield, Kenneth L; Nealey-Moore, Jill

    2015-01-01

    The principle of complementarity in interpersonal theory states that an actor's behavior tends to "pull, elicit, invite, or evoke" responses from interaction partners who are similar in affiliation (i.e., warmth vs. hostility) and opposite in control (i.e., dominance vs. submissiveness). Furthermore, complementary interactions are proposed to evoke less negative affect and promote greater relationship satisfaction. These predictions were examined in two studies of married couples. Results suggest that complementarity in affiliation describes a robust general pattern of marital interaction, but complementarity in control varies across contexts. Consistent with behavioral models of marital interaction, greater levels of affiliation and lower control by partners-not complementarity in affiliation or control-were associated with less anger and anxiety and greater relationship quality. Partners' levels of affiliation and control combined in ways other than complementarity-mostly additively, but sometimes synergistically-to predict negative affect and relationship satisfaction.

  16. Interactive effect of negative affectivity and anxiety sensitivity in terms of mental health among Latinos in primary care.

    PubMed

    Zvolensky, Michael J; Paulus, Daniel J; Bakhshaie, Jafar; Garza, Monica; Ochoa-Perez, Melissa; Medvedeva, Angela; Bogiaizian, Daniel; Robles, Zuzuky; Manning, Kara; Schmidt, Norman B

    2016-09-30

    From a public health perspective, primary care medical settings represent a strategic location to address mental health disapirty among Latinos. Yet, there is little empirical work that addresses affective vulnerability processes for mental health problems in such settings. To help address this gap in knowledge, the present investigation examined an interactive model of negative affectivity (tendency to experience negative mood states) and anxiety sensitivity (fear of the negative consequences of aversive sensations) among a Latino sample in primary care in terms of a relatively wide range of anxiety/depression indices. Participants included 390 Latino adults (Mage=38.7, SD=11.3; 86.9% female; 95.6% reported Spanish as first language) from a primary care health clinic. Primary dependent measures included depressive, suicidal, social anxiety, and anxious arousal symptoms, number of mood and anxiety disorders, and disability. Consistent with prediction, the interaction between negative affectivity and anxiety sensitivity was significantly related to suicidal, social anxiety, and anxious arousal symptoms, as well as number of mood/anxiety diagnoses and disability among the primary care Latino sample. The form of the interactions indicated a synergistic effect, such that the greatest levels of each outcome were found among those with high negative affectivity and high anxiety sensitivity. There was a trending interaction for depressive symptoms. Overall, these data provide novel empirical evidence suggesting that there is a clinically-relevant interplay between anxiety sensitivity and negative affectivity in regard to the expression of anxiety and depressive symptoms among a Latino primary care sample.

  17. Potential electrostatic interactions in multiple regions affect human metapneumovirus F-mediated membrane fusion.

    PubMed

    Chang, Andres; Hackett, Brent A; Winter, Christine C; Buchholz, Ursula J; Dutch, Rebecca Ellis

    2012-09-01

    The recently identified human metapneumovirus (HMPV) is a worldwide respiratory virus affecting all age groups and causing pneumonia and bronchiolitis in severe cases. Despite its clinical significance, no specific antiviral agents have been approved for treatment of HMPV infection. Unlike the case for most paramyxoviruses, the fusion proteins (F) of a number of strains, including the clinical isolate CAN97-83, can be triggered by low pH. We recently reported that residue H435 in the HRB linker domain acts as a pH sensor for HMPV CAN97-83 F, likely through electrostatic repulsion forces between a protonated H435 and its surrounding basic residues, K295, R396, and K438, at low pH. Through site-directed mutagenesis, we demonstrated that a positive charge at position 435 is required but not sufficient for F-mediated membrane fusion. Arginine or lysine substitution at position 435 resulted in a hyperfusogenic F protein, while replacement with aspartate or glutamate abolished fusion activity. Studies with recombinant viruses carrying mutations in this region confirmed its importance. Furthermore, a second region within the F(2) domain identified as being rich in charged residues was found to modulate fusion activity of HMPV F. Loss of charge at residues E51, D54, and E56 altered local folding and overall stability of the F protein, with dramatic consequences for fusion activity. As a whole, these studies implicate charged residues and potential electrostatic interactions in function, pH sensing, and overall stability of HMPV F.

  18. Ecological interactions affecting population-level responses to chemical stress in Mesocyclops leuckarti.

    PubMed

    Kulkarni, Devdutt; Hommen, Udo; Schäffer, Andreas; Preuss, Thomas G

    2014-10-01

    Higher tiers of ecological risk assessment (ERA) consider population and community-level endpoints. At the population level, the phenomenon of density dependence is one of the most important ecological processes that influence population dynamics. In this study, we investigated how different mechanisms of density dependence would influence population-level ERA of the cyclopoid copepod Mesocyclops leuckarti under toxicant exposure. We used a combined approach of laboratory experiments and individual-based modelling. An individual-based model was developed for M. leuckarti to simulate population dynamics under triphenyltin exposure based on individual-level ecological and toxicological data from laboratory experiments. The study primarily aimed to-(1) determine which life-cycle processes, based on feeding strategies, are most significant in determining density dependence (2) explore how these mechanisms of density dependence affect extrapolation from individual-level effects to the population level under toxicant exposure. Model simulations showed that cannibalism of nauplii that were already stressed by TPT exposure contributed to synergistic effects of biotic and abiotic factors and led to a twofold stress being exerted on the nauplii, thereby resulting in a higher population vulnerability compared to the scenario without cannibalism. Our results suggest that in population-level risk assessment, it is easy to underestimate toxicity unless underlying ecological interactions including mechanisms of population-level density regulation are considered. This study is an example of how a combined approach of experiments and mechanistic modelling can lead to a thorough understanding of ecological processes in ecotoxicology and enable a more realistic ERA.

  19. A Comparison of Video-Based and Interaction-Based Affect Detectors in Physics Playground

    ERIC Educational Resources Information Center

    Kai, Shiming; Paquette, Luc; Baker, Ryan S.; Bosch, Nigel; D'Mello, Sidney; Ocumpaugh, Jaclyn; Shute, Valerie; Ventura, Matthew

    2015-01-01

    Increased attention to the relationships between affect and learning has led to the development of machine-learned models that are able to identify students' affective states in computerized learning environments. Data for these affect detectors have been collected from multiple modalities including physical sensors, dialogue logs, and logs of…

  20. Affect recognition and the quality of mother-infant interaction: understanding parenting difficulties in mothers with schizophrenia.

    PubMed

    Healy, Sarah J; Lewin, Jona; Butler, Stephen; Vaillancourt, Kyla; Seth-Smith, Fiona

    2016-02-01

    This study investigated the quality of mother-infant interaction and maternal ability to recognise adult affect in three study groups consisting of mothers with a diagnosis of schizophrenia, mothers with depression and healthy controls. Sixty-four mothers were recruited from a Mother and Baby Unit and local children's centres. A 5-min mother-infant interaction was coded on a number of caregiving variables. Affect recognition and discrimination abilities were tested via a series of computerised tasks. Group differences were found both in measures of affect recognition and in the mother-infant interaction. Mothers with schizophrenia showed consistent impairments across most of the parenting measures and all measures of affect recognition and discrimination. Mothers with depression fell between the mothers with schizophrenia and healthy controls on most measures. However, depressed women's parenting was not significantly poorer than controls on any of the measures, and only showed trends for differences with mothers with schizophrenia on a few measures. Regression analyses found impairments in affect recognition and a diagnosis of schizophrenia to predict the occurrence of odd or unusual speech in the mother-infant interaction. Results add to the growing body of knowledge on the mother-infant interaction in mothers with schizophrenia and mothers with depression compared to healthy controls, suggesting a need for parenting interventions aimed at mothers with these conditions. While affect recognition impairments were not found to fully explain differences in parenting among women with schizophrenia, further research is needed to understand the psychopathology of parenting disturbances within this clinical group.

  1. Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: lessons from the first 15 years of amphibian chytridiomycosis research.

    PubMed

    James, Timothy Y; Toledo, L Felipe; Rödder, Dennis; da Silva Leite, Domingos; Belasen, Anat M; Betancourt-Román, Clarisse M; Jenkinson, Thomas S; Soto-Azat, Claudio; Lambertini, Carolina; Longo, Ana V; Ruggeri, Joice; Collins, James P; Burrowes, Patricia A; Lips, Karen R; Zamudio, Kelly R; Longcore, Joyce E

    2015-09-01

    The amphibian fungal disease chytridiomycosis, which affects species across all continents, recently emerged as one of the greatest threats to biodiversity. Yet, many aspects of the basic biology and epidemiology of the pathogen, Batrachochytrium dendrobatidis (Bd), are still unknown, such as when and from where did Bd emerge and what is its true ecological niche? Here, we review the ecology and evolution of Bd in the Americas and highlight controversies that make this disease so enigmatic. We explore factors associated with variance in severity of epizootics focusing on the disease triangle of host susceptibility, pathogen virulence, and environment. Reevaluating the causes of the panzootic is timely given the wealth of data on Bd prevalence across hosts and communities and the recent discoveries suggesting co-evolutionary potential of hosts and Bd. We generate a new species distribution model for Bd in the Americas based on over 30,000 records and suggest a novel future research agenda. Instead of focusing on pathogen "hot spots," we need to identify pathogen "cold spots" so that we can better understand what limits the pathogen's distribution. Finally, we introduce the concept of "the Ghost of Epizootics Past" to discuss expected patterns in postepizootic host communities.

  2. The EU FP6 EpiGenChlamydia Consortium: contribution of molecular epidemiology and host-pathogen genomics to understanding Chlamydia trachomatis-related disease.

    PubMed

    Morré, S A; Ouburg, S; Peña, A S; Brand, A

    2009-11-01

    Chlamydia trachomatis infections are responsible for the world's leading cause of blindness (trachoma) and its most prevalent sexually transmitted disease, which is strongly associated with pelvic inflammatory disease, ectopic pregnancy and tubal infertility. Twin study-based findings of members of EpiGenChlamydia Consortium estimate that there is a 40% genetic predisposition to C. trachomatis infections. It is likely that the advances in human genomics will help to unravel the genetic predisposition at the gene level and will help to define a genetic fingerprint that can be used as a marker for this predisposition. The information gathered to date suggests that this predisposition and the factors contributing to prognosis are multifactorial. The EpiGenChlamydia Consortium aims to structure transnational research to such a degree that comparative genomics and genetic epidemiology can be performed in large numbers of unrelated individuals. Biobanking and data-warehouse building are the most central deliverables of the Coordination Action of the Consortium in Functional Genomics Research. In addition, the collective synergy acquired in this Coordination Action will allow for the generation of scientific knowledge on the C. trachomatis-host interaction, knowledge on the genetic predisposition to C. trachomatis infection and the development of tools for early detection of a predisposition to C. trachomatis infection and its complications. This review summarizes the consortium aims and progress, and future perspectives and directions.

  3. The Multigenerational Workforce within Two-Year Public Community Colleges: A Study of Generational Factors Affecting Employee Learning and Interaction

    ERIC Educational Resources Information Center

    Starks, Florida Elizabeth

    2014-01-01

    The purpose of this quantitative study is to broaden multigenerational workforce research involving factors affecting employee learning and interaction by using a population of Baby Boomer, Generation X, and Millennial faculty and staff age cohorts employed at two-year public community college organizations. Researchers have studied…

  4. Do Core Interpersonal and Affective Traits of PCL-R Psychopathy Interact with Antisocial Behavior and Disinhibition to Predict Violence?

    ERIC Educational Resources Information Center

    Kennealy, Patrick J.; Skeem, Jennifer L.; Walters, Glenn D.; Camp, Jacqueline

    2010-01-01

    The utility of psychopathy measures in predicting violence is largely explained by their assessment of social deviance (e.g., antisocial behavior; disinhibition). A key question is whether social deviance "interacts" with the core interpersonal-affective traits of psychopathy to predict violence. Do core psychopathic traits multiply the (already…

  5. Do core interpersonal and affective traits of PCL-R psychopathy interact with antisocial behavior and disinhibition to predict violence?

    PubMed

    Kennealy, Patrick J; Skeem, Jennifer L; Walters, Glenn D; Camp, Jacqueline

    2010-09-01

    The utility of psychopathy measures in predicting violence is largely explained by their assessment of social deviance (e.g., antisocial behavior; disinhibition). A key question is whether social deviance interacts with the core interpersonal-affective traits of psychopathy to predict violence. Do core psychopathic traits multiply the (already high) risk of violence among disinhibited individuals with a dense history of misbehavior? This meta-analysis of 32 effect sizes (N = 10,555) tested whether an interaction between the Psychopathy Checklist-Revised (PCL-R; R. D. Hare, 2003) Interpersonal-Affective and Social Deviance scales predicted violence beyond the simple additive effects of each scale. Results indicate that Social Deviance is more uniquely predictive of violence (d = .40) than Interpersonal-Affective traits (d = .11), and these two scales do not interact (d = .00) to increase power in predicting violence. In fact, Social Deviance alone would predict better than the Interpersonal-Affective scale and any interaction in 81% and 96% of studies, respectively. These findings have fundamental practical implications for risk assessment and theoretical implications for some conceptualizations of psychopathy.

  6. Factors affecting interactions between sulphonate-terminated dendrimers and proteins: A three case study.

    PubMed

    González-García, Estefanía; Maly, Marek; de la Mata, Francisco Javier; Gómez, Rafael; Marina, María Luisa; García, María Concepción

    2017-01-01

    This work proposes a deep study on the interactions between sulphonate-terminated carbosilane dendrimers and proteins. Three different proteins with different molecular weights and isoelectric points were employed and different pHs, dendrimer concentrations and generations were tested. Variations in fluorescence intensity and emission wavelength were used as protein-dendrimer interaction probes. Interaction between dendrimers and proteins greatly depended on the protein itself and pH. Other important issues were the dendrimer concentration and generation. Protein-dendrimer interactions were favored under acidic working conditions when proteins were positively charged. Moreover, in general, high dendrimer generations promoted these interactions. Modeling of protein-dendrimer interactions allowed to understand the different behaviors observed for every protein.

  7. Bacterial Hypoxic Responses Revealed as Critical Determinants of the Host-Pathogen Outcome by TnSeq Analysis of Staphylococcus aureus Invasive Infection

    PubMed Central

    Wilde, Aimee D.; Snyder, Daniel J.; Putnam, Nicole E.; Valentino, Michael D.; Hammer, Neal D.; Lonergan, Zachery R.; Hinger, Scott A.; Aysanoa, Esar E.; Blanchard, Catlyn; Dunman, Paul M.; Wasserman, Gregory A.; Chen, John; Shopsin, Bo; Gilmore, Michael S.; Skaar, Eric P.; Cassat, James E.

    2015-01-01

    Staphylococcus aureus is capable of infecting nearly every organ in the human body. In order to infiltrate and thrive in such diverse host tissues, staphylococci must possess remarkable flexibility in both metabolic and virulence programs. To investigate the genetic requirements for bacterial survival during invasive infection, we performed a transposon sequencing (TnSeq) analysis of S. aureus during experimental osteomyelitis. TnSeq identified 65 genes essential for staphylococcal survival in infected bone and an additional 148 mutants with compromised fitness in vivo. Among the loci essential for in vivo survival was SrrAB, a staphylococcal two-component system previously reported to coordinate hypoxic and nitrosative stress responses in vitro. Healthy bone is intrinsically hypoxic, and intravital oxygen monitoring revealed further decreases in skeletal oxygen concentrations upon S. aureus infection. The fitness of an srrAB mutant during osteomyelitis was significantly increased by depletion of neutrophils, suggesting that neutrophils impose hypoxic and/or nitrosative stresses on invading bacteria. To more globally evaluate staphylococcal responses to changing oxygenation, we examined quorum sensing and virulence factor production in staphylococci grown under aerobic or hypoxic conditions. Hypoxic growth resulted in a profound increase in quorum sensing-dependent toxin production, and a concomitant increase in cytotoxicity toward mammalian cells. Moreover, aerobic growth limited quorum sensing and cytotoxicity in an SrrAB-dependent manner, suggesting a mechanism by which S. aureus modulates quorum sensing and toxin production in response to environmental oxygenation. Collectively, our results demonstrate that bacterial hypoxic responses are key determinants of the staphylococcal-host interaction. PMID:26684646

  8. Simultaneous Host-Pathogen Transcriptome Analysis during Granulibacter bethesdensis Infection of Neutrophils from Healthy Subjects and Patients with Chronic Granulomatous Disease

    PubMed Central

    Greenberg, David E.; Sturdevant, Daniel E.; Marshall-Batty, Kimberly R.; Chu, Jessica; Pettinato, Anthony M.; Virtaneva, Kimmo; Lane, John; Geller, Bruce L.; Porcella, Stephen F.; Gallin, John I.; Holland, Steven M.

    2015-01-01

    Polymorphonuclear leukocytes (PMN) from patients with chronic granulomatous disease (CGD) fail to produce microbicidal concentrations of reactive oxygen species (ROS) due to mutations in NOX2. Patients with CGD suffer from severe, life-threatening infections and inflammatory complications. Granulibacter bethesdensis is an emerging Gram-negative pathogen in CGD that resists killing by PMN of CGD patients (CGD PMN) and inhibits PMN apoptosis through unknown mechanisms. Microarray analysis was used to study mRNA expression in PMN from healthy subjects (normal PMN) and CGD PMN during incubation with G. bethesdensis and, simultaneously, in G. bethesdensis with normal and CGD PMN. We detected upregulation of antiapoptotic genes (e.g., XIAP and GADD45B) and downregulation of proapoptotic genes (e.g., CASP8 and APAF1) in infected PMN. Transcript and protein levels of inflammation- and immunity-related genes were also altered. Upon interaction with PMN, G. bethesdensis altered the expression of ROS resistance genes in the presence of normal but not CGD PMN. Levels of bacterial stress response genes, including the ClpB gene, increased during phagocytosis by both normal and CGD PMN demonstrating responses to oxygen-independent PMN antimicrobial systems. Antisense knockdown demonstrated that ClpB is dispensable for extracellular growth but is essential for bacterial resistance to both normal and CGD PMN. Metabolic adaptation of Granulibacter growth in PMN included the upregulation of pyruvate dehydrogenase. Pharmacological inhibition of pyruvate dehydrogenase by triphenylbismuthdichloride was lethal to Granulibacter. This study expands knowledge of microbial pathogenesis of Granulibacter in cells from permissive (CGD) and nonpermissive (normal) hosts and identifies potentially druggable microbial factors, such as pyruvate dehydrogenase and ClpB, to help combat this antibiotic-resistant pathogen. PMID:26283340

  9. Structural properties and interaction energies affecting drug design. An approach combining molecular simulations, statistics, interaction energies and neural networks.

    PubMed

    Ioannidis, Dimitris; Papadopoulos, Georgios E; Anastassopoulos, Georgios; Kortsaris, Alexandros; Anagnostopoulos, Konstantinos

    2015-06-01

    In order to elucidate some basic principles for protein-ligand interactions, a subset of 87 structures of human proteins with their ligands was obtained from the PDB databank. After a short molecular dynamics simulation (to ensure structure stability), a variety of interaction energies and structural parameters were extracted. Linear regression was performed to determine which of these parameters have a potentially significant contribution to the protein-ligand interaction. The parameters exhibiting relatively high correlation coefficients were selected. Important factors seem to be the number of ligand atoms, the ratio of N, O and S atoms to total ligand atoms, the hydrophobic/polar aminoacid ratio and the ratio of cavity size to the sum of ligand plus water atoms in the cavity. An important factor also seems to be the immobile water molecules in the cavity. Nine of these parameters were used as known inputs to train a neural network in the prediction of seven other. Eight structures were left out of the training to test the quality of the predictions. After optimization of the neural network, the predictions were fairly accurate given the relatively small number of structures, especially in the prediction of the number of nitrogen and sulfur atoms of the ligand.

  10. Predicting the Accuracy of Facial Affect Recognition: The Interaction of Child Maltreatment and Intellectual Functioning

    ERIC Educational Resources Information Center

    Shenk, Chad E.; Putnam, Frank W.; Noll, Jennie G.

    2013-01-01

    Previous research demonstrates that both child maltreatment and intellectual performance contribute uniquely to the accurate identification of facial affect by children and adolescents. The purpose of this study was to extend this research by examining whether child maltreatment affects the accuracy of facial recognition differently at varying…

  11. The shock-vortex interaction patterns affected by vortex flow regime and vortex models

    NASA Astrophysics Data System (ADS)

    Chang, Keun-Shik; Barik, Hrushikesh; Chang, Se-Myong

    2009-08-01

    We have used a third-order essentially non-oscillatory method to obtain numerical shadowgraphs for investigation of shock-vortex interaction patterns. To search different interaction patterns, we have tested two vortex models (the composite vortex model and the Taylor vortex model) and as many as 47 parametric data sets. By shock-vortex interaction, the impinging shock is deformed to a S-shape with leading and lagging parts of the shock. The vortex flow is locally accelerated by the leading shock and locally decelerated by the lagging shock, having a severely elongated vortex core with two vertices. When the leading shock escapes the vortex, implosion effect creates a high pressure in the vertex area where the flow had been most expanded. This compressed region spreads in time with two frontal waves, an induced expansion wave and an induced compression wave. They are subsonic waves when the shock-vortex interaction is weak but become supersonic waves for strong interactions. Under a intermediate interaction, however, an induced shock wave is first developed where flow speed is supersonic but is dissipated where the incoming flow is subsonic. We have identified three different interaction patterns that depend on the vortex flow regime characterized by the shock-vortex interaction.

  12. Is Infant Initiation of Joint Attention by Pointing Affected by Type of Interaction?

    ERIC Educational Resources Information Center

    Franco, Fabia; Perucchini, Paola; March, Barbara

    2009-01-01

    This article reports the results of two experiments studying the effects of type of interaction on infant production of declarative pointing. In Experiment 1, intensity of social presence was manipulated in adult-infant interaction with 12-19-month-olds (no social presence; adult responding only; adult also initiating joint attentional bids).…

  13. Bottom-up and top-down human impacts interact to affect a protected coastal Chilean marsh.

    PubMed

    Fariña, José M; He, Qiang; Silliman, Brian R; Bertness, Mark D

    2016-03-01

    Many ecosystems, even in protected areas, experience multiple anthropogenic impacts. While anthropogenic modification of bottom-up (e.g., eutrophication) and top-down (e.g., livestock grazing) forcing often co-occurs, whether these factors counteract or have additive or synergistic effects on ecosystems is poorly understood. In a Chilean bio-reserve, we examined the interactive impacts of eutrophication and illegal livestock grazing on plant growth with a 4-yr fertilization by cattle exclusion experiment. Cattle grazing generally decreased plant biomass, but had synergistic, additive, and antagonistic interactions with fertilization in the low, middle, and high marsh zones, respectively. In the low marsh, fertilization increased plant biomass by 112%, cattle grazing decreased it by 96%, and together they decreased plant biomass by 77%. In the middle marsh, fertilization increased plant biomass by 47%, cattle grazing decreased it by 37%, and together they did not affect plant biomass. In the high marsh, fertilization and cattle grazing decreased plant biomass by 81% and 92%, respectively, but together they increased plant biomass by 42%. These interactions were also found to be species specific. Different responses of plants to fertilization and cattle grazing were likely responsible for these variable interactions. Thus, common bottom-up and top-down human impacts can interact in different ways to affect communities even within a single ecosystem. Incorporating this knowledge into conservation actions will improve ecosystem management in a time when ecosystems are increasingly challenged by multiple interacting human impacts.

  14. PARO robot affects diverse interaction modalities in group sensory therapy for older adults with dementia.

    PubMed

    Šabanović, Selma; Bennett, Casey C; Chang, Wan-Ling; Huber, Lesa

    2013-06-01

    We evaluated the seal-like robot PARO in the context of multi-sensory behavioral therapy in a local nursing home. Participants were 10 elderly nursing home residents with varying levels of dementia. We report three principle findings from our observations of interactions between the residents, PARO, and a therapist during seven weekly therapy sessions. Firstly, we show PARO provides indirect benefits for users by increasing their activity in particular modalities of social interaction, including visual, verbal, and physical interaction, which vary between primary and non-primary interactors. Secondly, PARO's positive effects on older adults' activity levels show steady growth over the duration of our study, suggesting they are not due to short-term "novelty effects." Finally, we show a variety of ways in which individual participants interacted with PARO and relate this to the "interpretive flexibility" of its design.

  15. Affect-modulated startle: interactive influence of catechol-O-methyltransferase Val158Met genotype and childhood trauma.

    PubMed

    Klauke, Benedikt; Winter, Bernward; Gajewska, Agnes; Zwanzger, Peter; Reif, Andreas; Herrmann, Martin J; Dlugos, Andrea; Warrings, Bodo; Jacob, Christian; Mühlberger, Andreas; Arolt, Volker; Pauli, Paul; Deckert, Jürgen; Domschke, Katharina

    2012-01-01

    The etiology of emotion-related disorders such as anxiety or affective disorders is considered to be complex with an interaction of biological and environmental factors. Particular evidence has accumulated for alterations in the dopaminergic and noradrenergic system--partly conferred by catechol-O-methyltransferase (COMT) gene variation--for the adenosinergic system as well as for early life trauma to constitute risk factors for those conditions. Applying a multi-level approach, in a sample of 95 healthy adults, we investigated effects of the functional COMT Val158Met polymorphism, caffeine as an adenosine A2A receptor antagonist (300 mg in a placebo-controlled intervention design) and childhood maltreatment (CTQ) as well as their interaction on the affect-modulated startle response as a neurobiologically founded defensive reflex potentially related to fear- and distress-related disorders. COMT val/val genotype significantly increased startle magnitude in response to unpleasant stimuli, while met/met homozygotes showed a blunted startle response to aversive pictures. Furthermore, significant gene-environment interaction of COMT Val158Met genotype with CTQ was discerned with more maltreatment being associated with higher startle potentiation in val/val subjects but not in met carriers. No main effect of or interaction effects with caffeine were observed. Results indicate a main as well as a GxE effect of the COMT Val158Met variant and childhood maltreatment on the affect-modulated startle reflex, supporting a complex pathogenetic model of the affect-modulated startle reflex as a basic neurobiological defensive reflex potentially related to anxiety and affective disorders.

  16. Social Interaction Affects Neural Outcomes of Sign Language Learning As a Foreign Language in Adults

    PubMed Central

    Yusa, Noriaki; Kim, Jungho; Koizumi, Masatoshi; Sugiura, Motoaki; Kawashima, Ryuta

    2017-01-01

    Children naturally acquire a language in social contexts where they interact with their caregivers. Indeed, research shows that social interaction facilitates lexical and phonological development at the early stages of child language acquisition. It is not clear, however, whether the relationship between social interaction and learning applies to adult second language acquisition of syntactic rules. Does learning second language syntactic rules through social interactions with a native speaker or without such interactions impact behavior and the brain? The current study aims to answer this question. Adult Japanese participants learned a new foreign language, Japanese sign language (JSL), either through a native deaf signer or via DVDs. Neural correlates of acquiring new linguistic knowledge were investigated using functional magnetic resonance imaging (fMRI). The participants in each group were indistinguishable in terms of their behavioral data after the instruction. The fMRI data, however, revealed significant differences in the neural activities between two groups. Significant activations in the left inferior frontal gyrus (IFG) were found for the participants who learned JSL through interactions with the native signer. In contrast, no cortical activation change in the left IFG was found for the group who experienced the same visual input for the same duration via the DVD presentation. Given that the left IFG is involved in the syntactic processing of language, spoken or signed, learning through social interactions resulted in an fMRI signature typical of native speakers: activation of the left IFG. Thus, broadly speaking, availability of communicative interaction is necessary for second language acquisition and this results in observed changes in the brain.

  17. Oligomerization affects the kinetics and thermodynamics of the interaction of a Bowman-Birk inhibitor with proteases.

    PubMed

    Brand, G D; Pires, D A T; Furtado, J R; Cooper, A; Freitas, S M; Bloch, C

    2017-03-15

    The black-eyed pea trypsin/chymotrypsin inhibitor (BTCI) forms concentration dependent homomultimers, as previously demonstrated by Light scattering and Atomic Force Microscopy. Considering that these self-aggregates might influence their binding to cognate enzymes, we investigated the interaction of BTCI at picomolar concentrations using surface immobilized Chymotrypsin (α-CT) and Trypsin (T) by Surface Plasmon Resonance. Our results indicate that BTCI has subnanomolar affinity to both immobilized enzymes, which is approximately two orders of magnitude higher than previously reported. Moreover, we probed the influence of temperature on protein binding equilibria in order to investigate their interaction energetics. While the BTCI/T interaction concurs with the canonical entropy-driven mechanism described for BBI interactions with serine proteinases, the BTCI/α-CT interaction does not. Our measurements indicate that bimolecular BTCI/α-CT complexes form with a negative enthalpy change and a moderate entropic increase. Direct calorimetric evaluation is in accord with the van't Hoff approximation obtained by SPR. We demonstrate that as protein concentrations increase to the micromolar range, secondary endothermic events become prevalent and affect both the kinetics and thermodynamics of protein associations. Our study reinforces that BBI interactions with serine proteinases should be studied in dilute solutions to abridge often neglected secondary interactions.

  18. Disrupting GluA2-GAPDH Interaction Affects Axon and Dendrite Development

    PubMed Central

    Lee, Frankie Hang Fung; Su, Ping; Xie, Yu-Feng; Wang, Kyle Ethan; Wan, Qi; Liu, Fang

    2016-01-01

    GluA2-containing AMPA receptors (AMPARs) play a critical role in various aspects of neurodevelopment. However, the molecular mechanisms underlying these processes are largely unknown. We report here that the interaction between GluA2 and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is necessary for neuron and cortical development. Using an interfering peptide (GluA2-G-Gpep) that specifically disrupts this interaction, we found that primary neuron cultures with peptide treatment displayed growth cone development deficits, impairment of axon formation, less dendritic arborization and lower spine protrusion density. Consistently, in vivo data with mouse brains from pregnant dams injected with GluA2-G-Gpep daily during embryonic day 8 to 19 revealed a reduction of cortical tract axon integrity and neuronal density in post-natal day 1 offspring. Disruption of GluA2-GAPDH interaction also impairs the GluA2-Plexin A4 interaction and reduces p53 acetylation in mice, both of which are possible mechanisms leading to the observed neurodevelopmental abnormalities. Furthermore, electrophysiological experiments indicate altered long-term potentiation (LTP) in hippocampal slices of offspring mice. Our results provide novel evidence that AMPARs, specifically the GluA2 subunit via its interaction with GAPDH, play a critical role in cortical neurodevelopment. PMID:27461448

  19. Genetic interactions affecting human gene expression identified by variance association mapping

    PubMed Central

    Brown, Andrew Anand; Buil, Alfonso; Viñuela, Ana; Lappalainen, Tuuli; Zheng, Hou-Feng; Richards, J Brent; Small, Kerrin S; Spector, Timothy D; Dermitzakis, Emmanouil T; Durbin, Richard

    2014-01-01

    Non-additive interaction between genetic variants, or epistasis, is a possible explanation for the gap between heritability of complex traits and the variation explained by identified genetic loci. Interactions give rise to genotype dependent variance, and therefore the identification of variance quantitative trait loci can be an intermediate step to discover both epistasis and gene by environment effects (GxE). Using RNA-sequence data from lymphoblastoid cell lines (LCLs) from the TwinsUK cohort, we identify a candidate set of 508 variance associated SNPs. Exploiting the twin design we show that GxE plays a role in ∼70% of these associations. Further investigation of these loci reveals 57 epistatic interactions that replicated in a smaller dataset, explaining on average 4.3% of phenotypic variance. In 24 cases, more variance is explained by the interaction than their additive contributions. Using molecular phenotypes in this way may provide a route to uncovering genetic interactions underlying more complex traits. DOI: http://dx.doi.org/10.7554/eLife.01381.001 PMID:24771767

  20. Mutation-induced protein interaction kinetics changes affect apoptotic network dynamic properties and facilitate oncogenesis.

    PubMed

    Zhao, Linjie; Sun, Tanlin; Pei, Jianfeng; Ouyang, Qi

    2015-07-28

    It has been a consensus in cancer research that cancer is a disease caused primarily by genomic alterations, especially somatic mutations. However, the mechanism of mutation-induced oncogenesis is not fully understood. Here, we used the mitochondrial apoptotic pathway as a case study and performed a systematic analysis of integrating pathway dynamics with protein interaction kinetics to quantitatively investigate the causal molecular mechanism of mutation-induced oncogenesis. A mathematical model of the regulatory network was constructed to establish the functional role of dynamic bifurcation in the apoptotic process. The oncogenic mutation enrichment of each of the protein functional domains involved was found strongly correlated with the parameter sensitivity of the bifurcation point. We further dissected the causal mechanism underlying this correlation by evaluating the mutational influence on protein interaction kinetics using molecular dynamics simulation. We analyzed 29 matched mutant-wild-type and 16 matched SNP--wild-type protein systems. We found that the binding kinetics changes reflected by the changes of free energy changes induced by protein interaction mutations, which induce variations in the sensitive parameters of the bifurcation point, were a major cause of apoptosis pathway dysfunction, and mutations involved in sensitive interaction domains show high oncogenic potential. Our analysis provided a molecular basis for connecting protein mutations, protein interaction kinetics, network dynamics properties, and physiological function of a regulatory network. These insights provide a framework for coupling mutation genotype to tumorigenesis phenotype and help elucidate the logic of cancer initiation.

  1. Mutation-induced protein interaction kinetics changes affect apoptotic network dynamic properties and facilitate oncogenesis

    PubMed Central

    Zhao, Linjie; Sun, Tanlin; Pei, Jianfeng; Ouyang, Qi

    2015-01-01

    It has been a consensus in cancer research that cancer is a disease caused primarily by genomic alterations, especially somatic mutations. However, the mechanism of mutation-induced oncogenesis is not fully understood. Here, we used the mitochondrial apoptotic pathway as a case study and performed a systematic analysis of integrating pathway dynamics with protein interaction kinetics to quantitatively investigate the causal molecular mechanism of mutation-induced oncogenesis. A mathematical model of the regulatory network was constructed to establish the functional role of dynamic bifurcation in the apoptotic process. The oncogenic mutation enrichment of each of the protein functional domains involved was found strongly correlated with the parameter sensitivity of the bifurcation point. We further dissected the causal mechanism underlying this correlation by evaluating the mutational influence on protein interaction kinetics using molecular dynamics simulation. We analyzed 29 matched mutant–wild-type and 16 matched SNP—wild-type protein systems. We found that the binding kinetics changes reflected by the changes of free energy changes induced by protein interaction mutations, which induce variations in the sensitive parameters of the bifurcation point, were a major cause of apoptosis pathway dysfunction, and mutations involved in sensitive interaction domains show high oncogenic potential. Our analysis provided a molecular basis for connecting protein mutations, protein interaction kinetics, network dynamics properties, and physiological function of a regulatory network. These insights provide a framework for coupling mutation genotype to tumorigenesis phenotype and help elucidate the logic of cancer initiation. PMID:26170328

  2. From facilitation to competition: temperature-driven shift in dominant plant interactions affects population dynamics in seminatural grasslands.

    PubMed

    Olsen, Siri L; Töpper, Joachim P; Skarpaas, Olav; Vandvik, Vigdis; Klanderud, Kari

    2016-05-01

    Biotic interactions are often ignored in assessments of climate change impacts. However, climate-related changes in species interactions, often mediated through increased dominance of certain species or functional groups, may have important implications for how species respond to climate warming and altered precipitation patterns. We examined how a dominant plant functional group affected the population dynamics of four co-occurring forb species by experimentally removing graminoids in seminatural grasslands. Specifically, we explored how the interaction between dominants and subordinates varied with climate by replicating the removal experiment across a climate grid consisting of 12 field sites spanning broad-scale temperature and precipitation gradients in southern Norway. Biotic interactions affected population growth rates of all study species, and the net outcome of interactions between dominants and subordinates switched from facilitation to competition with increasing temperature along the temperature gradient. The impacts of competitive interactions on subordinates in the warmer sites could primarily be attributed to reduced plant survival. Whereas the response to dominant removal varied with temperature, there was no overall effect of precipitation on the balance between competition and facilitation. Our findings suggest that global warming may increase the relative importance of competitive interactions in seminatural grasslands across a wide range of precipitation levels, thereby favouring highly competitive dominant species over subordinate species. As a result, seminatural grasslands may become increasingly dependent on disturbance (i.e. traditional management such as grazing and mowing) to maintain viable populations of subordinate species and thereby biodiversity under future climates. Our study highlights the importance of population-level studies replicated under different climatic conditions for understanding the underlying mechanisms of climate

  3. [Maternal affect regulation of mothers with a history of abuse in mother-infant-interaction].

    PubMed

    Kress, Sandra; Cierpka, Manfred; Möhler, Eva; Resch, Franz

    2012-01-01

    Maternal intuitive skills can be threatened as a result of severe deprivation or unresolved trauma in the own childhood and can even be inaccessible to the mother. A mother's own childhood experience of abuse maybe a risk factor for repeated child abuse. As a follow-up study to assess the emotional availability of abused mothers it was investigated how a physical or sexual abuse appears in the mother-child interaction and communication in the context of "cycle of abuse" and whether it could give effect to it. Interactions of mothers with abuse experience were compared with those of mothers without an abuse experience and evaluated five months postpartum with the Munich clinical communication scale (MKK). The results suggest that maltreatment experienced mothers show less emotion tuning to their child in a standardized interaction sequence.

  4. Interaction of epithelium with mesenchyme affects global features of lung architecture: a computer model of development.

    PubMed

    Tebockhorst, Seth; Lee, Dongyoub; Wexler, Anthony S; Oldham, Michael J

    2007-01-01

    Lung airway morphogenesis is simulated in a simplified diffusing environment that simulates the mesenchyme to explore the role of morphogens in airway architecture development. Simple rules govern local branching morphogenesis. Morphogen gradients are modeled by four pairs of sources and their diffusion through the mesenchyme. Sensitivity to lobar architecture and mesenchymal morphogen are explored. Even if the model accurately represents observed patterns of local development, it could not produce realistic global patterns of lung architecture if interaction with its environment was not taken into account, implying that reciprocal interaction between airway growth and morphogens in the mesenchyme plays a critical role in producing realistic global features of lung architecture.

  5. Interactive Software System Developed to Study How Icing Affects Airfoil Performance (Phase 1 Results)

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Vickerman, Mary B.

    2000-01-01

    SmaggIce (Surface Modeling and Grid Generation for Iced Airfoils), which is being developed at the NASA Glenn Research Center at Lewis Field, is an interactive software system for data probing, boundary smoothing, domain decomposition, and structured grid generation and refinement. All these steps are required for aerodynamic performance prediction using structured, grid-based computational fluid dynamics (CFD), as illustrated in the following figure. SmaggIce provides the underlying computations to perform these functions, as well as a graphical user interface to control and interact with them, and graphics to display the results.

  6. Narrative Centrality and Negative Affectivity: Independent and Interactive Contributors to Stress Reactions

    PubMed Central

    Rubin, David C.; Boals, Adriel; Hoyle, Rick H.

    2014-01-01

    Reactions to stressful negative events have long been studied using approaches based on either the narrative interpretation of the event or the traits of the individual. Here, we integrate these two approaches by using individual differences measures of both the narrative interpretation of the stressful event as central to one’s life and the personality characteristic of negative affectivity. We show that they each have independent contributions to stress reactions, and that high levels on both produce greater than additive effects. The effects on posttraumatic stress symptoms are substantial for both undergraduates (Study 1, n = 2,296; Study 3, n = 488) and veterans (Study 2, n = 104), with mean levels for participants low on both measures near floor on posttraumatic stress symptoms and those high on both measures scoring at or above diagnostic thresholds. Study 3 included three measures of narrative centrality and three of negative affectivity to demonstrate that the effects were not limited to a single measure. In Study 4 (n = 987), measures associated with symptoms of posttraumatic stress correlated substantially with either with measures of narrative centrality or measures of negative affectivity. The concepts of narrative centrality and negative affectivity and the results are consistent with findings from clinical populations using similar measures and with current approaches to therapy. In broad non-clinical populations, such as those used here, the results suggest that we might be able to substantially increase our ability to account for the severity of stress response by including both concepts. PMID:24294867

  7. Depressed Mothers' Touching Increases Infants' Positive Affect and Attention in Still-Face Interactions.

    ERIC Educational Resources Information Center

    Pelaez-Nogueras, Martha; And Others

    1996-01-01

    Investigated effects of depressed mothers' touching on their infants' behavior during still-face situation. Subjects were 48 mothers and their 3-month-old infants. Findings suggested that by providing touch stimulation for their infants, depressed mothers can increase infants' positive affect and compensate for negative effects often resulting…

  8. Narrative centrality and negative affectivity: independent and interactive contributors to stress reactions.

    PubMed

    Rubin, David C; Boals, Adriel; Hoyle, Rick H

    2014-06-01

    Reactions to stressful negative events have long been studied using approaches based on either the narrative interpretation of the event or the traits of the individual. Here, we integrate these 2 approaches by using individual-differences measures of both the narrative interpretation of the stressful event as central to one's life and the personality characteristic of negative affectivity. We show that they each have independent contributions to stress reactions and that high levels on both produce greater than additive effects. The effects on posttraumatic stress symptoms are substantial for both undergraduates (Study 1, n = 2,296; Study 3, n = 488) and veterans (Study 2, n = 104), with mean levels for participants low on both measures near floor on posttraumatic stress symptoms and those high on both measures scoring at or above diagnostic thresholds. Study 3 included 3 measures of narrative centrality and 3 of negative affectivity to demonstrate that the effects were not limited to a single measure. In Study 4 (n = 987), measures associated with symptoms of posttraumatic stress correlated substantially with either measures of narrative centrality or measures of negative affectivity. The concepts of narrative centrality and negative affectivity and the results are consistent with findings from clinical populations using similar measures and with current approaches to therapy. In broad nonclinical populations, such as those used here, the results suggest that we might be able to substantially increase our ability to account for the severity of stress response by including both concepts.

  9. Genotype-environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana.

    PubMed Central

    Ungerer, Mark C; Halldorsdottir, Solveig S; Purugganan, Michael D; Mackay, Trudy F C

    2003-01-01

    Phenotypic plasticity and genotype-environment interactions (GEI) play a prominent role in plant morphological diversity and in the potential functional capacities of plant life-history traits. The genetic basis of plasticity and GEI, however, is poorly understood in most organisms. In this report, inflorescence development patterns in Arabidopsis thaliana were examined under different, ecologically relevant photoperiod environments for two recombinant inbred mapping populations (Ler x Col and Cvi x Ler) using a combination of quantitative genetics and quantitative trait locus (QTL) mapping. Plasticity and GEI were regularly observed for the majority of 13 inflorescence traits. These observations can be attributable (at least partly) to variable effects of specific QTL. Pooled across traits, 12/44 (27.3%) and 32/62 (51.6%) of QTL exhibited significant QTL x environment interactions in the Ler x Col and Cvi x Ler lines, respectively. These interactions were attributable to changes in magnitude of effect of QTL more often than to changes in rank order (sign) of effect. Multiple QTL x environment interactions (in Cvi x Ler) clustered in two genomic regions on chromosomes 1 and 5, indicating a disproportionate contribution of these regions to the phenotypic patterns observed. High-resolution mapping will be necessary to distinguish between the alternative explanations of pleiotropy and tight linkage among multiple genes. PMID:14504242

  10. Genotype-environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana.

    PubMed

    Ungerer, Mark C; Halldorsdottir, Solveig S; Purugganan, Michael D; Mackay, Trudy F C

    2003-09-01

    Phenotypic plasticity and genotype-environment interactions (GEI) play a prominent role in plant morphological diversity and in the potential functional capacities of plant life-history traits. The genetic basis of plasticity and GEI, however, is poorly understood in most organisms. In this report, inflorescence development patterns in Arabidopsis thaliana were examined under different, ecologically relevant photoperiod environments for two recombinant inbred mapping populations (Ler x Col and Cvi x Ler) using a combination of quantitative genetics and quantitative trait locus (QTL) mapping. Plasticity and GEI were regularly observed for the majority of 13 inflorescence traits. These observations can be attributable (at least partly) to variable effects of specific QTL. Pooled across traits, 12/44 (27.3%) and 32/62 (51.6%) of QTL exhibited significant QTL x environment interactions in the Ler x Col and Cvi x Ler lines, respectively. These interactions were attributable to changes in magnitude of effect of QTL more often than to changes in rank order (sign) of effect. Multiple QTL x environment interactions (in Cvi x Ler) clustered in two genomic regions on chromosomes 1 and 5, indicating a disproportionate contribution of these regions to the phenotypic patterns observed. High-resolution mapping will be necessary to distinguish between the alternative explanations of pleiotropy and tight linkage among multiple genes.

  11. How Gene-Environment Interaction Affects Children's Anxious and Fearful Behavior. Science Briefs

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2007

    2007-01-01

    "Science Briefs" summarize the findings and implications of a recent study in basic science or clinical research. This brief reports on the study "Evidence for a Gene-Environment Interaction in Predicting Behavioral Inhibition in Middle Childhood" (N. A. Fox, K E. Nichols, H. A. Henderson, K. Rubin, L. Schmidt, D. Hamer, M. Ernst, and D. S.…

  12. Interactivity of Visual Mathematical Representations: Factors Affecting Learning and Cognitive Processes

    ERIC Educational Resources Information Center

    Sedig, Kamran; Liang, Hai-Ning

    2006-01-01

    Computer-based mathematical cognitive tools (MCTs) are a category of external aids intended to support and enhance learning and cognitive processes of learners. MCTs often contain interactive visual mathematical representations (VMRs), where VMRs are graphical representations that encode properties and relationships of mathematical concepts. In…

  13. "Prejudiced" behavior without prejudice? Beliefs about the malleability of prejudice affect interracial interactions.

    PubMed

    Carr, Priyanka B; Dweck, Carol S; Pauker, Kristin

    2012-09-01

    Prejudiced behavior is typically seen as emanating from prejudiced attitudes. Eight studies showed that majority-group members' beliefs about prejudice can create seemingly "prejudiced" behaviors above and beyond prejudice measured explicitly (Study 1b) and implicitly (Study 2). Those who believed prejudice was relatively fixed, rather than malleable, were less interested in interracial interactions (Studies 1a-1d), race- or diversity-related activities (Study 1a), and activities to reduce their prejudice (Study 3). They were also more uncomfortable in interracial, but not same-race, interactions (Study 2). Study 4 manipulated beliefs about prejudice and found that a fixed belief, by heightening concerns about revealing prejudice to oneself and others, depressed interest in interracial interactions. Further, though Whites who were taught a fixed belief were more anxious and unfriendly in an interaction with a Black compared with a White individual, Whites who were taught a malleable belief were not (Study 5). Implications for reducing prejudice and improving intergroup relations are discussed.

  14. Higher-order interaction between molluscs and sheep affecting seedling numbers in grassland

    NASA Astrophysics Data System (ADS)

    Clear Hill, B. H.; Silvertown, J.

    Vertebrate and invertebrate herbivores are both important in mesotrophic grasslands and these two different classes of herbivore potentially interact in their effect upon plant populations. We used two field experiments to test for higher order interactions (HOIs) among sheep, slugs and seedlings, using the mechanistic definition that an HOI occurs when the presence of one species modifies the interaction between two others. In each experiment slug addition and slug-removal treatments were nested inside treatments that altered sheep grazing intensity and timing, and the emergence, of seedlings from experimentally sown seeds was monitored. In Experiment 1, seedling numbers of Cerastium fontanum were increased by intense summer grazing by sheep in both slug-addition and slugremoval treatment, but winter grazing by sheep only increased seedling emergence if slugs were removed. In Experiment 2, winter grazing by sheep significantly reduced total seedling emergence of four species sown ( Lotus corniculatus, Plantago lanceolata, Leucanthemum vulgare, Achillea millefolium), but the effect was only seen where slugs were removed. Though the experimental system is a relatively simple one with only four components (sheep, slugs, seedlings and the matrix vegetation), higher order interactions, a combination of direct and indirect effects and possible switching behaviour by slugs are all suggested by our results.

  15. How Interactive Video (ITV) Web-Enhanced Format Affects Instructional Strategy and Instructor Satisfaction

    ERIC Educational Resources Information Center

    Moody, Catrina V.

    2013-01-01

    This qualitative study explored the quality of technology associated with interactive video (ITV) classes in distance education programs and the resulting satisfaction of the instructors teaching this format. The participants were full time instructors of a rural community college that used the ITV format. Community college ITV instructors are…

  16. Factors affecting drug and gene delivery: effects of interaction with blood components.

    PubMed

    Opanasopit, Praneet; Nishikawa, Makiya; Hashida, Mitsuru

    2002-01-01

    Targeted drug delivery systems have been used extensively to improve the pharmacological and therapeutic activities of a wide variety of drugs and genes. In this article, we summarize the factors determining the tissue disposition of delivery systems: the physicochemical and biological characteristics of the delivery system and the anatomic and physiological characteristics of the tissues. There are several modes of drug and gene targeting, ranging from passive to active targeting, and each of these can be achieved by optimizing the design of the delivery system to suit a specific aim. After entering the systemic circulation, either by an intravascular injection or through absorption from an administration site, however, a delivery system encounters a variety of blood components, including blood cells and a range of serum proteins. These components are by no means inert as far as interaction with the delivery system is concerned, and they can sometimes markedly effect its tissue disposition. The interaction with blood components is known to occur with particulate delivery systems, such as liposomes, or with cationic charge-mediated delivery systems for genes. In addition to these rather nonspecific ones, interactions via the targeting ligand of the delivery system can occur. We recently found that mannosylated carriers interact with serum mannan binding protein, greatly altering their tissue disposition in a number of ways that depend on the properties of the carriers involved.

  17. Maternal and Adolescent Temperament as Predictors of Maternal Affective Behavior during Mother-Adolescent Interactions

    ERIC Educational Resources Information Center

    Davenport, Emily; Yap, Marie B. H.; Simmons, Julian G.; Sheeber, Lisa B.; Allen, Nicholas B.

    2011-01-01

    This study examined maternal and early adolescent temperament dimensions as predictors of maternal emotional behavior during mother-adolescent interactions. The sample comprised 151 early adolescents (aged 11-13) and their mothers (aged 29-57). Adolescent- and mother-reports of adolescent temperament and self-reports of maternal temperament were…

  18. Pin1-dependent signalling negatively affects GABAergic transmission by modulating neuroligin2/gephyrin interaction

    PubMed Central

    Antonelli, Roberta; Pizzarelli, Rocco; Pedroni, Andrea; Fritschy, Jean-Marc; Del Sal, Giannino; Cherubini, Enrico; Zacchi, Paola

    2014-01-01

    The cell adhesion molecule Neuroligin2 (NL2) is localized selectively at GABAergic synapses, where it interacts with the scaffolding protein gephyrin in the post-synaptic density. However, the role of this interaction for formation and plasticity of GABAergic synapses is unclear. Here, we demonstrate that endogenous NL2 undergoes proline-directed phosphorylation at its unique S714-P consensus site, leading to the recruitment of the peptidyl-prolyl cis–trans isomerase Pin1. This signalling cascade negatively regulates NL2’s ability to interact with gephyrin at GABAergic post-synaptic sites. As a consequence, enhanced accumulation of NL2, gephyrin and GABAA receptors was detected at GABAergic synapses in the hippocampus of Pin1-knockout mice (Pin1−/−) associated with an increase in amplitude of spontaneous GABAA-mediated post-synaptic currents. Our results suggest that Pin1-dependent signalling represents a mechanism to modulate GABAergic transmission by regulating NL2/gephyrin interaction. PMID:25297980

  19. Acute intrastriatal administration of quinolinic acid affects the expression of the coat protein AP-2 and its interaction with membranes.

    PubMed

    Borgonovo, Janina; Seltzer, Alicia; Sosa, Miguel Angel

    2009-10-01

    Clathrin-coated vesicle endocytosis is thought to be crucial for the maintenance of synaptic transmission and for the cell plasticity at the nervous system. In this study, we demonstrated that acute intrastriatal administration of quinolinic acid (QUIN), an agonist of the N-methyl-D: -aspartate receptor, induces a decrease of the coat protein AP-2 expression and affects their interaction with membranes. By western blot analysis we observed that at 24 h after QUIN intrastriatal injection, alpha1 subunit of AP-2 and alpha2, at lesser extent, were reduced in the striatal membranes. The decrease of both subunits expression was extended to 48 h after treatment, although the soluble proteins were mostly affected. Other areas of the brain were not affected by the treatment, except the cerebellum, where a significant increase of soluble AP-2 (both subunits) was observed at 48 h after injection. Another coat protein, as the phosphoprotein AP-180, was not affected by the injection of QUIN. We also confirmed that QUIN injection causes increasing loss of striatal neurons after the administration of the toxin. We concluded that QUIN may affect the endocytotic machinery of the striatum, by inducing changes in the AP-2 behaviour. Consequently, the internalization of NMDAR and/or AMPAR may be affected, by QUIN, contributing to the excitotoxic effect of the drug.

  20. [Affective behavioural responses by dogs to tactile human-dog interactions].

    PubMed

    Kuhne, Franziska; Hössler, Johanna C; Struwe, Rainer

    2012-01-01

    The communication of dogs is based on complex, subtle body postures and facial expressions. Some social interaction between dogs includes physical contact. Humans generally use both verbal and tactile signals to communicate with dogs. Hence, interaction between humans and dogs might lead to conflicts because the behavioural responses of dogs to human-dog interaction may be misinterpreted and wrongly assessed. The behavioural responses of dogs to tactile human-dog interactions and human gestures are the focus of this study. The participating dogs (n = 47) were privately owned pets.They were of varying breed and gender.The test consisted of nine randomised test sequences (e. g. petting the dog's head or chest). A test sequence was performed for a period of 30 seconds. The inter-trial interval was set at 60 seconds and the test-retest interval was set at 10 minutes. The frequency and duration of the dogs'behavioural responses were recorded using INTERACT. To examine the behavioural responses of the dogs, a two-way analysis of variance within the linear mixed models procedure of IBM SPSS Statistics 19 was conducted. A significant influence of the test-sequenc order on the dogs' behaviour could be analysed for appeasement gestures (F8,137 = 2.42; p = 0.018), redirected behaviour (F8,161 = 6.31; p = 0.012) and socio-positive behaviour (F8,148 = 6.28; p = 0.012). The behavioural responses of the dogs, which were considered as displacement activities (F8,109 = 2.5; p = 0.014) differed significantly among the test sequences. The response of the dogs, measured as gestures of appeasement, redirected behaviours, and displacement activities, was most obvious during petting around the head and near the paws.The results of this study conspicuously indicate that dogs respond to tactile human-dog interactions with gestures of appeasement and displacement activities. Redirected behaviours, socio-positive behaviours as well displacement activities are behavioural responses which dogs

  1. Interactions between active pharmaceutical ingredients and excipients affecting bioavailability: impact on bioequivalence.

    PubMed

    García-Arieta, Alfredo

    2014-12-18

    The aim of the present paper is to illustrate the impact that excipients may have on the bioavailability of drugs and to review existing US-FDA, WHO and EMA regulatory guidelines on this topic. The first examples illustrate that small amounts of sorbitol (7, 50 or 60mg) affect the bioavailability of risperidone, a class I drug, oral solution, in contrast to what is stated in the US-FDA guidance. Another example suggests, in contrast to what is stated in the US-FDA BCS biowaivers guideline, that a small amount of sodium lauryl sulphate (SLS) (3.64mg) affects the bioavailability of risperidone tablets, although the reference product also includes SLS in an amount within the normal range for that type of dosage form. These factors are considered sufficient to ensure that excipients do not affect bioavailability according to the WHO guideline. The alternative criterion, defined in the WHO guideline and used in the FIP BCS biowaivers monographs, that asserts that excipients present in generic products of the ICH countries do not affect bioavailability if used in normal amounts, is shown to be incorrect with an example of alendronate (a class III drug) tablets, where 4mg of SLS increases bioavailability more than 5-fold, although a generic product in the USA contains SLS. Finally, another example illustrates that a 2mg difference in SLS may affect bioavailability of a generic product of a class II drug, even if SLS is contained in the comparator product, and in all cases its amount was within the normal range. Therefore, waivers of in vivo bioequivalence studies (e.g., BCS biowaivers, waivers of certain dosage forms in solution at the time of administration and variations in the excipient composition) should be assessed more cautiously.

  2. The interaction of early life experiences with COMT val158met affects anxiety sensitivity.

    PubMed

    Baumann, C; Klauke, B; Weber, H; Domschke, K; Zwanzger, P; Pauli, P; Deckert, J; Reif, A

    2013-11-01

    The pathogenesis of anxiety disorders is considered to be multifactorial with a complex interaction of genetic factors and individual environmental factors. Therefore, the aim of this study was to examine gene-by-environment interactions of the genes coding for catechol-O-methyltransferase (COMT) and monoamine oxidase A (MAOA) with life events on measures related to anxiety. A sample of healthy subjects (N = 782; thereof 531 women; mean age M = 24.79, SD = 6.02) was genotyped for COMT rs4680 and MAOA-uVNTR (upstream variable number of tandem repeats), and was assessed for childhood adversities [Childhood Trauma Questionnaire (CTQ)], anxiety sensitivity [Anxiety Sensitivity Index (ASI)] and anxious apprehension [Penn State Worry Questionnaire (PSWQ)]. Main and interaction effects of genotype, environment and gender on measures related to anxiety were assessed by means of regression analyses. Association analysis showed no main gene effect on either questionnaire score. A significant interactive effect of childhood adversities and COMT genotype was observed: Homozygosity for the low-active met allele and high CTQ scores was associated with a significant increment of explained ASI variance [R(2) = 0.040, false discovery rate (FDR) corrected P = 0.04]. A borderline interactive effect with respect to MAOA-uVNTR was restricted to the male subgroup. Carriers of the low-active MAOA allele who reported more aversive experiences in childhood exhibited a trend for enhanced anxious apprehension (R(2) = 0.077, FDR corrected P = 0.10). Early aversive life experiences therefore might increase the vulnerability to anxiety disorders in the presence of homozygosity for the COMT 158met allele or low-active MAOA-uVNTR alleles.

  3. Origins of antisocial behavior. Negative reinforcement and affect dysregulation of behavior as socialization mechanisms in family interaction.

    PubMed

    Snyder, J; Schrepferman, L; St Peter, C

    1997-04-01

    Theoretical models specifying the contribution of two social-familial mechanisms, negative reinforcement and affect dysregulation, to the development of child antisocial behavior were tested using a sample of 57 8- to 13-year-old boys referred for treatment of conduct problems. Negative reinforcement of boys' aggressive behavior and boys' affect dysregulation were found to covary with the boys' irritability toward parents and siblings and were reliable predictors of a composite measure of child antisocial behavior, defined by out-of-home placement, arrests, and school discipline incidents 2 years later. Reinforcement of aggression and affect dysregulation during family interaction may play complementary roles in the development of antisocial behavior by fostering the use of coercive means of dealing with social conflict. The findings are discussed in terms of research strategies for identifying social mechanisms contributing to child psychopathology and of implications for modification of current family interventions targeting child antisocial behavior.

  4. Predator functional response and prey survival: Direct and indirect interactions affecting a marked prey population

    USGS Publications Warehouse

    Miller, David A.; Grand, J.B.; Fondell, T.F.; Anthony, M.

    2006-01-01

    1. Predation plays an integral role in many community interactions, with the number of predators and the rate at which they consume prey (i.e. their functional response) determining interaction strengths. Owing to the difficulty of directly observing predation events, attempts to determine the functional response of predators in natural systems are limited. Determining the forms that predator functional responses take in complex systems is important in advancing understanding of community interactions. 2. Prey survival has a direct relationship to the functional response of their predators. We employed this relationship to estimate the functional response for bald eagle Haliaeetus leucocepalus predation of Canada goose Branta canadensis nests. We compared models that incorporated eagle abundance, nest abundance and alternative prey presence to determine the form of the functional response that best predicted intra-annual variation in survival of goose nests. 3. Eagle abundance, nest abundance and the availability of alternative prey were all related to predation rates of goose nests by eagles. There was a sigmoidal relationship between predation rate and prey abundance and prey switching occurred when alternative prey was present. In addition, predation by individual eagles increased as eagle abundance increased. 4. A complex set of interactions among the three species examined in this study determined survival rates of goose nests. Results show that eagle predation had both prey- and predator-dependent components with no support for ratio dependence. In addition, indirect interactions resulting from the availability of alternative prey had an important role in mediating the rate at which eagles depredated nests. As a result, much of the within-season variation in nest survival was due to changing availability of alternative prey consumed by eagles. 5. Empirical relationships drawn from ecological theory can be directly integrated into the estimation process to

  5. Predator functional response and prey survival: direct and indirect interactions affecting a marked prey population.

    PubMed

    Miller, David A; Grand, James B; Fondell, Thomas F; Anthony, Michael

    2006-01-01

    1. Predation plays an integral role in many community interactions, with the number of predators and the rate at which they consume prey (i.e. their functional response) determining interaction strengths. Owing to the difficulty of directly observing predation events, attempts to determine the functional response of predators in natural systems are limited. Determining the forms that predator functional responses take in complex systems is important in advancing understanding of community interactions. 2. Prey survival has a direct relationship to the functional response of their predators. We employed this relationship to estimate the functional response for bald eagle Haliaeetus leucocepalus predation of Canada goose Branta canadensis nests. We compared models that incorporated eagle abundance, nest abundance and alternative prey presence to determine the form of the functional response that best predicted intra-annual variation in survival of goose nests. 3. Eagle abundance, nest abundance and the availability of alternative prey were all related to predation rates of goose nests by eagles. There was a sigmoidal relationship between predation rate and prey abundance and prey switching occurred when alternative prey was present. In addition, predation by individual eagles increased as eagle abundance increased. 4. A complex set of interactions among the three species examined in this study determined survival rates of goose nests. Results show that eagle predation had both prey- and predator-dependent components with no support for ratio dependence. In addition, indirect interactions resulting from the availability of alternative prey had an important role in mediating the rate at which eagles depredated nests. As a result, much of the within-season variation in nest survival was due to changing availability of alternative prey consumed by eagles. 5. Empirical relationships drawn from ecological theory can be directly integrated into the estimation process to

  6. Affective and instrumental communication in primary care interactions: predicting the satisfaction of nursing staff and patients.

    PubMed

    Haskard, Kelly B; DiMatteo, M Robin; Heritage, John

    2009-01-01

    Verbal and nonverbal communication between nursing staff and patients has received scant research attention. This study examined patients' and nursing staff members' global affective and instrumental communication, mutual influence, and relationship to postvisit satisfaction. This study employed ratings of videotaped primary care visits of 81 nursing staff members with 235 patients, and assessed communication in 2 channels: nonverbal visual and speech including vocal tone. Communication channel differences and prediction of patient satisfaction were examined. The visual and vocal communication of nursing staff members and patients robustly predicted each other's satisfaction and reflected their own satisfaction with the dyadic visit. Affect was communicated more clearly through the speech with vocal tone channel, whereas instrumental communication was stronger in visual nonverbal behavior. Patients' and nursing staff members' behaviors of pleasantness and involvement frequently co-occurred.

  7. How parental dietary behavior and food parenting practices affect children's dietary behavior. Interacting sources of influence?

    PubMed

    Larsen, Junilla K; Hermans, Roel C J; Sleddens, Ester F C; Engels, Rutger C M E; Fisher, Jennifer O; Kremers, Stef P J

    2015-06-01

    Until now, the literatures on the effects of food parenting practices and parents' own dietary behavior on children's dietary behavior have largely been independent from one another. Integrating findings across these areas could provide insight on simultaneous and interacting influences on children's food intake. In this narrative review, we provide a conceptual model that bridges the gap between both literatures and consists of three main hypotheses. First, parental dietary behavior and food parenting practices are important interactive sources of influence on children's dietary behavior and Body Mass Index (BMI). Second, parental influences are importantly mediated by changes in the child's home food environment. Third, parenting context (i.e., parenting styles and differential parental treatment) moderates effects of food parenting practices, whereas child characteristics (i.e., temperament and appetitive traits) mainly moderate effects of the home food environment. Future studies testing (parts of) this conceptual model are needed to inform effective parent-child overweight preventive interventions.

  8. Herbivory and competition interact to affect reproductive traits and mating system expression in Impatiens capensis.

    PubMed

    Steets, Janette A; Salla, Rhiannon; Ashman, Tia-Lynn

    2006-04-01

    As a step toward understanding how community context shapes mating system evolution, we investigated the combined role of two plant antagonisms, vegetative herbivory and intraspecific competition, for reproduction and mating system expression (relative production of selfing, cleistogamous and facultatively outcrossing, chasmogamous flowers and fruits) of Impatiens capensis. In a survey of I. capensis populations, we found that vegetative herbivory and intraspecific competition were positively correlated. In a greenhouse experiment where leaf damage and plant density were manipulated, multispecies interactions had dramatic effects on reproductive and mating system traits. Despite having additive effects on growth, herbivory and competition had nonadditive effects for mating system expression, chasmogamous fruit production, flower number and size, and cleistogamous flower production. Our results demonstrate that competitive interactions influence the effect of herbivory (and vice versa) on fitness components and mating system, and thus antagonisms may have unforeseen consequences for mating system evolution, population genetic diversity, and persistence.

  9. Coordination and crystallization molecules: their interactions affecting the dimensionality of metalloporphyrinic SCFs.

    PubMed

    Fidalgo-Marijuan, Arkaitz; Amayuelas, Eder; Barandika, Gotzone; Bazán, Begoña; Urtiaga, Miren Karmele; Arriortua, María Isabel

    2015-04-15

    Synthetic metalloporphyrin complexes are often used as analogues of natural systems, and they can be used for the preparation of new Solid Coordination Frameworks (SCFs). In this work, a series of six metalloporphyrinic compounds constructed from different meso substituted metalloporphyrins (phenyl, carboxyphenyl and sulfonatophenyl) have been structurally characterized by means of single crystal X-ray diffraction, IR spectroscopy and elemental analysis. The compounds were classified considering the dimensionality of the crystal array, referred just to coordination bonds, into 0D, 1D and 2D compounds. This way, the structural features and relationships of those crystal structures were analyzed, in order to extract conclusions not only about the dimensionality of the networks but also about possible applications of the as-obtained compounds, focusing the interest on the interactions of coordination and crystallization molecules. These interactions provide the coordination bonds and the cohesion forces which produce SCFs with different dimensionalities.

  10. Interaction of gold nanoparticles and nickel(II) sulfate affects dendritic cell maturation.

    PubMed

    Deville, Sarah; Baré, Birgit; Piella, Jordi; Tirez, Kristof; Hoet, Peter; Monopoli, Marco P; Dawson, Kenneth A; Puntes, Victor F; Nelissen, Inge

    2016-12-01

    Despite many investigations have focused on the pristine toxicity of gold nanoparticles (GNPs), little is known about the outcome of co-exposure and interaction of GNPs with heavy metals which can possibly detoxify or potentiate them. Here, the combined exposure of nickel (II) sulfate (NiSO4) and GNPs on the maturation response of dendritic cells (DCs) was explored. Exposure to GNPs or NiSO4 separately induced cell activation. When cells were exposed to a mixture of both, however, the observed cell activation pattern indicated a competitive rather than an additive effect of both inducers with levels similar to those induced by NiSO4 alone. Quantification of the GNP uptake by DCs demonstrated a significant decrease in intracellular gold content during co-incubation with NiSO4. An extensive physiochemical characterization was performed to determine the interaction between GNPs and NiSO4 in the complex physiological media using nanoparticle tracking analyses, disc centrifugation, UV-visible spectroscopy, ICP-MS analyses, zeta potential measurements, electron microscopy, and proteomics. Although GNPs and NiSO4 did not directly interact with each other, the presence of NiSO4 in the physiological media resulted in changes in GNPs' charge and their associated protein corona (content and composition), which may contribute to a decreased cellular uptake of GNPs and sustaining the nickel-induced DC maturation. The presented results provide new insights in the interaction of heavy metals and NPs in complex physiological media. Moreover, this study highlights the necessity of mixture toxicology, since these combined exposures are highly relevant for human subjection to NPs and risk assessment of nanomaterials.

  11. Host protein Snapin interacts with human cytomegalovirus pUL130 and affects viral DNA replication.

    PubMed

    Wang, Guili; Ren, Gaowei; Cui, Xin; Lu, Zhitao; Ma, Yanpin; Qi, Ying; Huang, Yujing; Liu, Zhongyang; Sun, Zhengrong; Ruan, Qiang

    2016-06-01

    The interplay between the host and Human cytomegalovirus (HCMV) plays a pivotal role in the outcome of an infection. HCMV growth in endothelial and epithelial cells requires expression of viral proteins UL128, UL130, and UL131 proteins (UL128-131), of which UL130 is the largest gene and the only one that is not interrupted by introns.Mutation of the C terminus of the UL130 protein causes reduced tropism of endothelial cells (EC). However, very few host factors have been identified that interact with the UL130 protein. In this study, HCMV UL130 protein was shown to directly interact with the human protein Snapin in human embryonic kidney HEK293 cells by Yeast two-hybrid screening, in vitro glutathione S-transferase (GST) pull-down, and co-immunoprecipitation. Additionally, heterologous expression of protein UL130 revealed co-localization with Snapin in the cell membrane and cytoplasm of HEK293 cells using fluorescence confocal microscopy. Furthermore, decreasing the level of Snapin via specific small interfering RNAs decreased the number of viral DNA copies and titer inHCMV-infected U373-S cells. Taken together, these results suggest that Snapin, the pUL130 interacting protein, has a role in modulating HCMV DNA synthesis.

  12. Interspecific interactions between primates, birds, bats, and squirrels may affect community composition on Borneo.

    PubMed

    Beaudrot, Lydia; Struebig, Matthew J; Meijaard, Erik; van Balen, Sebastianus; Husson, Simon; Young, Carson F; Marshall, Andrew J

    2013-02-01

    For several decades, primatologists have been interested in understanding how sympatric primate species are able to coexist. Most of our understanding of primate community ecology derives from the assumption that these animals interact predominantly with other primates. In this study, we investigate to what extent multiple community assembly hypotheses consistent with this assumption are supported when tested with communities of primates in isolation versus with communities of primates, birds, bats, and squirrels together. We focus on vertebrate communities on the island of Borneo, where we examine the determinants of presence or absence of species, and how these communities are structured. We test for checkerboard distributions, guild proportionality, and Fox's assembly rule for favored states, and predict that statistical signals reflecting interactions between ecologically similar species will be stronger when nonprimate taxa are included in analyses. We found strong support for checkerboard distributions in several communities, particularly when taxonomic groups were combined, and after controlling for habitat effects. We found evidence of guild proportionality in some communities, but did not find significant support for Fox's assembly rule in any of the communities examined. These results demonstrate the presence of vertebrate community structure that is ecologically determined rather than randomly generated, which is a finding consistent with the interpretation that interactions within and between these taxonomic groups may have shaped species composition in these communities. This research highlights the importance of considering the broader vertebrate communities with which primates co-occur, and so we urge primatologists to explicitly consider nonprimate taxa in the study of primate ecology.

  13. LES of shock wave/turbulent boundary layer interaction affected by microramp vortex generators

    NASA Astrophysics Data System (ADS)

    Joly, Laurent; Grebert, Arnaud; Jamme, Stéphane; Bodart, Julien; Aerodynamics, Energetics; Propulsion Dep. Team

    2016-11-01

    At large Mach numbers, the interaction of an oblique shock wave with a turbulent boundary layer (SWTBLI) developing over a flat plate gives rise to a separation bubble known to exhibit low-frequency streamwise oscillations around StL = 0 . 03 (a Strouhal number based on the separated region length). Because these oscillations yield wall pressure or load fluctuations, efforts are made to reduce their amplitude. We perform large eddy simulations to reproduce the experiments by Wang etal (2012) where a rake of microramp vortex generators (MVGs) were inserted upstream the SWTBLI with consequences yet to be fully understood. There is no consensus on the flow structure downstream MVGs and this is first clarified in the case of MVGs protruding by 0 . 47 δ in a TBL at Mach number M = 2 . 7 and Reynolds number Reθ = 3600 . Large-scale vortices intermittently shed downstream the MVGs are characterized by a streamwise period close to twice the TBL thickness and a frequency f 0 . 5Ue / δ , two orders of magnitude higher than the one of the uncontrolled SWTBLI. We then characterize the interaction between the unsteady wake of the MVGs with the SWTBLI resulting in the reduction of the interaction length and the high-frequency modulation of the shock feet motions.

  14. Rationale for ibuprofen co-administration with antacids: potential interaction mechanisms affecting drug absorption.

    PubMed

    Parojcić, Jelena; Corrigan, Owen I

    2008-06-01

    Ibuprofen is a widely used NSAID which is often co-administered with antacids because of its gastro-irritant effects. Literature data suggest that antacid interactions may increase or decrease the drug's absorption rate and onset of action and that the interaction may be formulation specific. In the present study, literature data on ibuprofen absorption were evaluated in order to gain insight into the nature of the in vivo effect. Solubility determinations in reactive media containing magnesium or aluminium and dissolution studies in the presence of antacid suspension were performed in an attempt to simulate in vitro the effects observed in vivo. The results obtained indicate that magnesium hydroxide enhances ibuprofen solubility, dissolution and bioavailability, while aluminium hydroxide has a retarding effect. Solubility studies indicated formation of a soluble solid ibuprofen phase in the presence of Mg2+, in contrast, an insoluble ibuprofen salt was formed with Al3+. The introduction of magnesium based antacid suspension into the dissolution media resulted in a formulation specific increase in drug dissolution rate with the most pronounced effect observed for the slowest release tablet formulation. The results obtained indicate the potential for in vitro studies to predict physicochemical interactions that are likely to influence drug absorption rate in vivo.

  15. Telomere-interactive agents affect proliferation rates and induce chromosomal destabilization in sea urchin embryos.

    PubMed

    Izbicka, E; Nishioka, D; Marcell, V; Raymond, E; Davidson, K K; Lawrence, R A; Wheelhouse, R T; Hurley, L H; Wu, R S; Von Hoff, D D

    1999-08-01

    Cationic porphyrins, which interact with guanine quadruplex (G4) telomeric folds, inhibit telomerase activity in human tumor cells. In this study, we have further examined effects of porphyrins and other telomere- and telomerase-interactive agents on proliferation rates and chromosome stability in a novel in vivo model, developing sea urchin embryos. We studied two porphyrins: (i) TMPyP4, a potent telomerase inhibitor; and (ii) TMPyP2, an isomer of TMPyP4 and an inefficient telomerase inhibitor, azidothymine (AZT), the reverse transcriptase inhibitor, antisense phosphorothioate oligonucleotide to telomerase RNA (TAG6) and a control scrambled sequence (ODN). TMPyP4, AZT and TAG6 (but not TMPyP2 or ODN) decreased the rates of cell proliferation and increased the percentage of cells trapped in mitosis. Nuclear localization of TAG6, but not of ODN, was demonstrated with 5'-fluoresceinated analogs of TAG6 and ODN. Formation of elongated chromosomes incapable of separating in anaphase, induced by TMPyP4, AZT and TAG6, closely resembled phenotypes resulting from telomerase template mutation or dominant negative TRF2 allele. Our data suggest that G4-interactive agents exert their antiproliferative effects via chromosomal destabilization and warrant their further development as valuable anticancer tools.

  16. Micellar lipid composition affects micelle interaction with class B scavenger receptor extracellular loops.

    PubMed

    Goncalves, Aurélie; Gontero, Brigitte; Nowicki, Marion; Margier, Marielle; Masset, Gabriel; Amiot, Marie-Josèphe; Reboul, Emmanuelle

    2015-06-01

    Scavenger receptors (SRs) like cluster determinant 36 (CD36) and SR class B type I (SR-BI) play a debated role in lipid transport across the intestinal brush border membrane. We used surface plasmon resonance to analyze real-time interactions between the extracellular protein loops and various ligands ranging from single lipid molecules to mixed micelles. Micelles mimicking physiological structures were necessary for optimal binding to both the extracellular loop of CD36 (lCD36) and the extracellular loop of SR-BI (lSR-BI). Cholesterol, phospholipid, and fatty acid micellar content significantly modulated micelle binding to and dissociation from the transporters. In particular, high phospholipid micellar concentrations inhibited micelle binding to both receptors (-53.8 and -74.4% binding at 0.32 mM compared with 0.04 mM for lCD36 and lSR-BI, respectively, P < 0.05). The presence of fatty acids was crucial for micelle interactions with both proteins (94.4 and 81.3% binding with oleic acid for lCD36 and lSR-BI, respectively, P < 0.05) and fatty acid type substitution within the micelles was the component that most impacted micelle binding to the transporters. These effects were partly due to subsequent modifications in micellar size and surface electric charge, and could be correlated to micellar vitamin D uptake by Caco-2 cells. Our findings show for the first time that micellar lipid composition and micellar properties are key factors governing micelle interactions with SRs.

  17. Intraspecific variation in a predator affects community structure and cascading trophic interactions.

    PubMed

    Post, David M; Palkovacs, Eric P; Schielke, Erika G; Dodson, Stanley I

    2008-07-01

    Intraspecific phenotypic variation in ecologically important traits is widespread and important for evolutionary processes, but its effects on community and ecosystem processes are poorly understood. We use life history differences among populations of alewives, Alosa pseudoharengus, to test the effects of intraspecific phenotypic variation in a predator on pelagic zooplankton community structure and the strength of cascading trophic interactions. We focus on the effects of differences in (1) the duration of residence in fresh water (either seasonal or year-round) and (2) differences in foraging morphology, both of which may strongly influence interactions between alewives and their prey. We measured zooplankton community structure, algal biomass, and spring total phosphorus in lakes that contained landlocked, anadromous, or no alewives. Both the duration of residence and the intraspecific variation in foraging morphology strongly influenced zooplankton community structure. Lakes with landlocked alewives had small-bodied zooplankton year-round, and lakes with no alewives had large-bodied zooplankton year-round. In contrast, zooplankton communities in lakes with anadromous alewives cycled between large-bodied zooplankton in the winter and spring and small-bodied zooplankton in the summer. In summer, differences in feeding morphology of alewives caused zooplankton biomass to be lower and body size to be smaller in lakes with anadromous alewives than in lakes with landlocked alewives. Furthermore, intraspecific variation altered the strength of the trophic cascade caused by alewives. Our results demonstrate that intraspecific phenotypic variation of predators can regulate community structure and ecosystem processes by modifying the form and strength of complex trophic interactions.

  18. The town Crepis and the country Crepis: How does fragmentation affect a plant-pollinator interaction?

    NASA Astrophysics Data System (ADS)

    Andrieu, Emilie; Dornier, Antoine; Rouifed, Soraya; Schatz, Bertrand; Cheptou, Pierre-Olivier

    2009-01-01

    In fragmented habitats, one cause of the decrease of plant diversity and abundance is the disruption of plant-animal interactions, and in particular plant-pollinator interactions. Since habitat fragmentation acts both on pollinator behaviour and plant reproduction, its consequences for the stability of such interactions are complex. An extreme case of habitat fragmentation occurs in urbanised areas where suitable habitat (in the present study small patches around ornamental trees) is embedded in a highly unsuitable environment (concrete matrix). Based on simple experiments, we ask whether pollinators can adapt their foraging behaviour in response to the amount of available resources (flowers) in the fragments and their isolation, as predicted by the optimal foraging theory. To do so we analysed the effect of fragmentation on the behaviour of pollinators visiting Crepis sancta (L.) Bornm. (Asteraceae), which forms large populations in the countryside and patchy populations in urban environments. More precisely we studied pollinator visitation rates, capitulum visit durations, capitulum search durations and capitulum size choice. Pollinators chose larger capitula in both types of populations and their foraging behaviour differed between the two population types in three ways: (1) pollinator visits were lower in urban fragmented populations, perhaps due to the lower accessibility of urban patches; (2) capitulum visit durations were longer in urban fragmented populations, a possible compensation of energy lost during flights among patches; and (3) capitulum search durations where longer in urban fragmented populations, which may represent an increase in capitulum prospecting effort. We discuss the possible impacts of such differences for plant population functioning in the two types of populations.

  19. Phosphocreatine interacts with phospholipids, affects membrane properties and exerts membrane-protective effects.

    PubMed

    Tokarska-Schlattner, Malgorzata; Epand, Raquel F; Meiler, Flurina; Zandomeneghi, Giorgia; Neumann, Dietbert; Widmer, Hans R; Meier, Beat H; Epand, Richard M; Saks, Valdur; Wallimann, Theo; Schlattner, Uwe

    2012-01-01

    A broad spectrum of beneficial effects has been ascribed to creatine (Cr), phosphocreatine (PCr) and their cyclic analogues cyclo-(cCr) and phospho-cyclocreatine (PcCr). Cr is widely used as nutritional supplement in sports and increasingly also as adjuvant treatment for pathologies such as myopathies and a plethora of neurodegenerative diseases. Additionally, Cr and its cyclic analogues have been proposed for anti-cancer treatment. The mechanisms involved in these pleiotropic effects are still controversial and far from being understood. The reversible conversion of Cr and ATP into PCr and ADP by creatine kinase, generating highly diffusible PCr energy reserves, is certainly an important element. However, some protective effects of Cr and analogues cannot be satisfactorily explained solely by effects on the cellular energy state. Here we used mainly liposome model systems to provide evidence for interaction of PCr and PcCr with different zwitterionic phospholipids by applying four independent, complementary biochemical and biophysical assays: (i) chemical binding assay, (ii) surface plasmon resonance spectroscopy (SPR), (iii) solid-state (31)P-NMR, and (iv) differential scanning calorimetry (DSC). SPR revealed low affinity PCr/phospholipid interaction that additionally induced changes in liposome shape as indicated by NMR and SPR. Additionally, DSC revealed evidence for membrane packing effects by PCr, as seen by altered lipid phase transition. Finally, PCr efficiently protected against membrane permeabilization in two different model systems: liposome-permeabilization by the membrane-active peptide melittin, and erythrocyte hemolysis by the oxidative drug doxorubicin, hypoosmotic stress or the mild detergent saponin. These findings suggest a new molecular basis for non-energy related functions of PCr and its cyclic analogue. PCr/phospholipid interaction and alteration of membrane structure may not only protect cellular membranes against various insults, but could

  20. Double trouble. Trait food craving and impulsivity interactively predict food-cue affected behavioral inhibition.

    PubMed

    Meule, Adrian; Kübler, Andrea

    2014-08-01

    Impulsivity and food craving have both been implicated in overeating. Recent results suggest that both processes may interactively predict increased food intake. In the present study, female participants performed a Go/No-go task with pictures of high- and low-calorie foods. They were instructed to press a button in response to the respective target category, but withhold responses to the other category. Target category was switched after every other block, thereby creating blocks in which stimulus-response mapping was the same as in the previous block (nonshift blocks) and blocks in which it was reversed (shift blocks). The Food Cravings Questionnaires and the Barratt Impulsiveness Scale were used to assess trait and state food craving and attentional, motor, and nonplanning impulsivity. Participants had slower reaction times and more omission errors (OE) in high-calorie than in low-calorie blocks. Number of commission errors (CE) and OE was higher in shift blocks than in nonshift blocks. Trait impulsivity was positively correlated with CE in shift blocks while trait food craving was positively correlated with CE in high-calorie blocks. Importantly, CE in high-calorie-shift blocks were predicted by an interaction of food craving × impulsivity such that the relationship between food craving and CE was particularly strong at high levels of impulsivity, but vanished at low levels of impulsivity. Thus, impulsive reactions to high-calorie food-cues are particularly pronounced when both trait impulsivity and food craving is high, but low levels of impulsivity can compensate for high levels of trait food craving. Results support models of self-regulation which assume that interactive effects of low top-down control and strong reward sensitive, bottom-up mechanisms may determine eating-related disinhibition, ultimately leading to increased food intake.

  1. Interaction of Silver Nanoparticles with Serum Proteins Affects Their Antimicrobial Activity In Vivo

    PubMed Central

    Gnanadhas, Divya Prakash; Ben Thomas, Midhun; Thomas, Rony; Raichur, Ashok M.

    2013-01-01

    The emergence of multidrug-resistant bacteria is a global threat for human society. There exist recorded data that silver was used as an antimicrobial agent by the ancient Greeks and Romans during the 8th century. Silver nanoparticles (AgNPs) are of potential interest because of their effective antibacterial and antiviral activities, with minimal cytotoxic effects on the cells. However, very few reports have shown the usage of AgNPs for antibacterial therapy in vivo. In this study, we deciphered the importance of the chosen methods for synthesis and capping of AgNPs for their improved activity in vivo. The interaction of AgNPs with serum albumin has a significant effect on their antibacterial activity. It was observed that uncapped AgNPs exhibited no antibacterial activity in the presence of serum proteins, due to the interaction with bovine serum albumin (BSA), which was confirmed by UV-Vis spectroscopy. However, capped AgNPs [with citrate or poly(vinylpyrrolidone)] exhibited antibacterial properties due to minimized interactions with serum proteins. The damage in the bacterial membrane was assessed by flow cytometry, which also showed that only capped AgNPs exhibited antibacterial properties, even in the presence of BSA. In order to understand the in vivo relevance of the antibacterial activities of different AgNPs, a murine salmonellosis model was used. It was conclusively proved that AgNPs capped with citrate or PVP exhibited significant antibacterial activities in vivo against Salmonella infection compared to uncapped AgNPs. These results clearly demonstrate the importance of capping agents and the synthesis method for AgNPs in their use as antimicrobial agents for therapeutic purposes. PMID:23877702

  2. Protein-Binding RNA Aptamers Affect Molecular Interactions Distantly from Their Binding Sites

    PubMed Central

    Dupont, Daniel M.; Thuesen, Cathrine K.; Bøtkjær, Kenneth A.; Behrens, Manja A.; Dam, Karen; Sørensen, Hans P.; Pedersen, Jan S.; Ploug, Michael; Jensen, Jan K.; Andreasen, Peter A.

    2015-01-01

    Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126) with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA). We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A) controlling uPA activities. One of the aptamers (upanap-126) binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12) binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site. PMID:25793507

  3. Micellar lipid composition affects micelle interaction with class B scavenger receptor extracellular loops

    PubMed Central

    Goncalves, Aurélie; Gontero, Brigitte; Nowicki, Marion; Margier, Marielle; Masset, Gabriel; Amiot, Marie-Josèphe; Reboul, Emmanuelle

    2015-01-01

    Scavenger receptors (SRs) like cluster determinant 36 (CD36) and SR class B type I (SR-BI) play a debated role in lipid transport across the intestinal brush border membrane. We used surface plasmon resonance to analyze real-time interactions between the extracellular protein loops and various ligands ranging from single lipid molecules to mixed micelles. Micelles mimicking physiological structures were necessary for optimal binding to both the extracellular loop of CD36 (lCD36) and the extracellular loop of SR-BI (lSR-BI). Cholesterol, phospholipid, and fatty acid micellar content significantly modulated micelle binding to and dissociation from the transporters. In particular, high phospholipid micellar concentrations inhibited micelle binding to both receptors (−53.8 and −74.4% binding at 0.32 mM compared with 0.04 mM for lCD36 and lSR-BI, respectively, P < 0.05). The presence of fatty acids was crucial for micelle interactions with both proteins (94.4 and 81.3% binding with oleic acid for lCD36 and lSR-BI, respectively, P < 0.05) and fatty acid type substitution within the micelles was the component that most impacted micelle binding to the transporters. These effects were partly due to subsequent modifications in micellar size and surface electric charge, and could be correlated to micellar vitamin D uptake by Caco-2 cells. Our findings show for the first time that micellar lipid composition and micellar properties are key factors governing micelle interactions with SRs. PMID:25833688

  4. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance

    PubMed Central

    Allen, Jessica L.; Chown, Steven L.; Janion-Scheepers, Charlene; Clusella-Trullas, Susana

    2016-01-01

    Critical thermal limits form an increasing component of the estimation of impacts of global change on ectotherms. Whether any consistent patterns exist in the interactive effects of rates of temperature change (or experimental ramping rates) and acclimation on critical thermal limits and warming tolerance (one way of assessing sensitivity to climate change) is, however, far from clear. Here, we examine the interacting effects of ramping rate and acclimation on the critical thermal maxima (CTmax) and minima (CTmin) and warming tolerance of six species of springtails from sub-tropical, temperate and polar regions. We also provide microhabitat temperatures from 26 sites spanning 5 years in order to benchmark environmentally relevant rates of temperature change. Ramping rate has larger effects than acclimation on CTmax, but the converse is true for CTmin. Responses to rate and acclimation effects are more consistent among species for CTmax than for CTmin. In the latter case, interactions among ramping rate and acclimation are typical of polar species, less marked for temperate ones, and reduced in species from the sub-tropics. Ramping rate and acclimation have substantial effects on estimates of warming tolerance, with the former being more marked. At the fastest ramping rates (>1.0°C/min), tropical species have estimated warming tolerances similar to their temperate counterparts, whereas at slow ramping rates (<0.4°C/min) the warming tolerance is much reduced in tropical species. Rates of temperate change in microhabitats relevant to the springtails are typically <0.05°C/min, with rare maxima of 0.3–0.5°C/min depending on the site. These findings emphasize the need to consider the environmental setting and experimental conditions when assessing species’ vulnerability to climate change using a warming tolerance approach. PMID:27933165

  5. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance.

    PubMed

    Allen, Jessica L; Chown, Steven L; Janion-Scheepers, Charlene; Clusella-Trullas, Susana

    2016-01-01

    Critical thermal limits form an increasing component of the estimation of impacts of global change on ectotherms. Whether any consistent patterns exist in the interactive effects of rates of temperature change (or experimental ramping rates) and acclimation on critical thermal limits and warming tolerance (one way of assessing sensitivity to climate change) is, however, far from clear. Here, we examine the interacting effects of ramping rate and acclimation on the critical thermal maxima (CTmax) and minima (CTmin) and warming tolerance of six species of springtails from sub-tropical, temperate and polar regions. We also provide microhabitat temperatures from 26 sites spanning 5 years in order to benchmark environmentally relevant rates of temperature change. Ramping rate has larger effects than acclimation on CTmax, but the converse is true for CTmin. Responses to rate and acclimation effects are more consistent among species for CTmax than for CTmin. In the latter case, interactions among ramping rate and acclimation are typical of polar species, less marked for temperate ones, and reduced in species from the sub-tropics. Ramping rate and acclimation have substantial effects on estimates of warming tolerance, with the former being more marked. At the fastest ramping rates (>1.0°C/min), tropical species have estimated warming tolerances similar to their temperate counterparts, whereas at slow ramping rates (<0.4°C/min) the warming tolerance is much reduced in tropical species. Rates of temperate change in microhabitats relevant to the springtails are typically <0.05°C/min, with rare maxima of 0.3-0.5°C/min depending on the site. These findings emphasize the need to consider the environmental setting and experimental conditions when assessing species' vulnerability to climate change using a warming tolerance approach.

  6. Divalent Ion Parameterization Strongly Affects Conformation and Interactions of an Anionic Biomimetic Polymer

    SciTech Connect

    Daily, Michael D.; Baer, Marcel D.; Mundy, Christopher J.

    2016-03-10

    The description of peptides and the use of molecular dynamics simulations to refine structures and investigate the dynamics on an atomistic scale are well developed. Through a consensus in this community over multiple decades, parameters were developed for molecular interactions that only require the sequence of amino-acids and an initial guess for the three-dimensional structure. The recent discovery of peptoids will require a retooling of the currently available interaction potentials in order to have the same level of confidence in the predicted structures and pathways as there is presently in the peptide counterparts. Here we present modeling of peptoids using a combination of ab initio molecular dynamics (AIMD) and atomistic resolution classical forcefield (FF) to span the relevant time and length scales. To properly account for the dominant forces that stabilize ordered structures of peptoids, namely steric-, electrostatic, and hydrophobic interactions mediated through sidechain-sidechain interactions in the FF model, those have to be first mapped out using high fidelity atomistic representations. A key feature here is not only to use gas phase quantum chemistry tools, but also account for solvation effects in the condensed phase through AIMD. One major challenge is to elucidate ion binding to charged or polar regions of the peptoid and its concomitant role in the creation of local order. Here, similar to proteins, a specific ion effect is observed suggesting that both the net charge and the precise chemical nature of the ion will need to be described. MDD was supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative at Pacific Northwest National Laboratory. Research was funded by the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory. MDB acknowledges support from US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Material & Engineering. CJM acknowledges

  7. High prevalence of potential drug interactions affecting mycophenolic acid pharmacokinetics in nonmyeloablative hematopoietic stem cell transplant recipients

    PubMed Central

    Jaklič, Alenka; Collins, Carol J.; Mrhar, Aleš; Sorror, Mohamed L.; Sandmaier, Brenda M.; Bemer, Meagan J.; Locatelli, Igor; McCune, Jeannine S.

    2013-01-01

    Objective: Mycophenolic acid (MPA) exposure is associated with clinical outcomes in hematopoietic cell transplant (HCT) recipients. Various drug interaction studies, predominantly in healthy volunteers or solid organ transplant recipients, have identified medications which impact MPA pharmacokinetics. Recipients of nonmyeloablative HCT, however, have an increased burden of comorbidities, potentially increasing the number of concomitant medications and potential drug interactions (PDI) affecting MPA exposure. Thus, we sought to be the first to characterize these PDI in nonmyeloablative HCT recipients. Materials and methods: We compiled PDI affecting MPA pharmacokinetics and characterized the prevalence of PDI in nonmyeloablative HCT recipients. A comprehensive literature evaluation of four databases and PubMed was conducted to identify medications with PDI affecting MPA pharmacokinetics. Subsequently, a retrospective medication review was conducted to characterize the cumulative PDI burden, defined as the number of PDI for an individual patient over the first 21 days after allogeneic graft infusion, in 84 nonmyeloablative HCT recipients. Results: Of the 187 concomitant medications, 11 (5.9%) had a PDI affecting MPA pharmacokinetics. 87% of 84 patients had one PDI, with a median cumulative PDI burden of 2 (range 0 – 4). The most common PDI, in descending order, were cyclosporine, omeprazole and pantoprazole. Conclusion: Only a minority of medications (5.9%) have a PDI affecting MPA pharmacokinetics. However, the majority of nonmyeloablative HCT recipients had a PDI, with cyclosporine and the proton pump inhibitors being the most common. A better understanding of PDI and their management should lead to safer medication regimens for nonmyeloablative HCT recipients. PMID:23782584

  8. Pharmacokinetic interactions between glimepiride and rosuvastatin in healthy Korean subjects: does the SLCO1B1 or CYP2C9 genetic polymorphism affect these drug interactions?

    PubMed Central

    Kim, Choon Ok; Oh, Eun Sil; Kim, Hohyun; Park, Min Soo

    2017-01-01

    To improve cardiovascular outcomes, dyslipidemia in patients with diabetes needs to be treated. Thus, these patients are likely to take glimepiride and rosuvastatin concomitantly. Therefore, this study aimed to evaluate the pharmacokinetic (PK) interactions between these two drugs in healthy males and to explore the effect of SLCO1B1 and CYP2C9 polymorphisms on their interactions in two randomized, open-label crossover studies. Glimepiride was studied in part 1 and rosuvastatin in part 2. Twenty-four participants were randomly assigned to each part. All subjects (n=24) completed part 1, and 22 subjects completed part 2. A total of 38 subjects among the participants of the PK interaction studies were enrolled in the genotype study to analyze their SLCO1B1 and CYP2C9 polymorphisms retrospectively (n=22 in part 1, n=16 in part 2). Comparison of the PK and safety of each drug alone with those of the drugs in combination showed that both glimepiride and rosuvastatin did not interact with each other and had tolerable safety profiles in all subjects. However, with regard to glimepiride PK, the SLCO1B1 521TC group had a significantly higher maximum plasma concentration (Cmax,ss) and area under the plasma concentration–time curve during the dose interval at steady state (AUCτ,ss) for glimepiride in combination with rosuvastatin than those for glimepiride alone. However, other significant effects of the SLCO1B1 or CYP2C9 polymorphism on the interaction between the two drugs were not observed. In conclusion, there were no significant PK interactions between the two drugs; however, the exposure to glimepiride could be affected by rosuvastatin in the presence of the SLCO1B1 polymorphism. PMID:28260863

  9. Complex inter-Kingdom interactions: carnivorous plants affect growth of an aquatic vertebrate.

    PubMed

    Davenport, Jon M; Riley, Alex W

    2017-05-01

    Coexistence of organisms in nature is more likely when phenotypic similarities of individuals are reduced. Despite the lack of similarity, distantly related taxa still compete intensely for shared resources. No larger difference between organisms that share a common prey could exist than between carnivorous plants and animals. However, few studies have considered inter-Kingdom competition among carnivorous plants and animals. In order to evaluate interactions between a carnivorous plant (greater bladderwort, Utricularia vulgaris) and a vertebrate (bluegill, Lepomis macrochirus) on a shared prey (zooplankton), we conducted a mesocosm experiment. We deployed two levels of bladderwort presence (functional and crushed) and measured bluegill responses (survival and growth). Zooplankton abundance was reduced the greatest in bluegill and functional bladderwort treatments. Bluegill survival did not differ among treatments, but growth was greatest with crushed bladderwort. Thus, bluegill growth was facilitated by reducing interference competition in the presence of crushed bladderwort. The facilitating effect was dampened, however, when functional bladderwort removed a shared prey. To our knowledge, this is one of the first studies to experimentally demonstrate interactions between a carnivorous plant and a fish. Our data suggest that carnivorous plants may actively promote or reduce animal co-occurrence from some ecosystems via facilitation or competition.

  10. Neuronal nitric oxide synthase (NOS1) polymorphisms interact with financial hardship to affect depression risk.

    PubMed

    Sarginson, Jane E; Deakin, J F William; Anderson, Ian M; Downey, Darragh; Thomas, Emma; Elliott, Rebecca; Juhasz, Gabriella

    2014-11-01

    There is increasing evidence that genetic factors have a role in differential susceptibility to depression in response to severe or chronic adversity. Studies in animals suggest that nitric oxide (NO) signalling has a key role in depression-like behavioural responses to stress. This study investigated whether genetic variation in the brain-expressed nitric oxide synthase gene NOS1 modifies the relationship between psychosocial stress and current depression score. We recruited a population sample of 1222 individuals who provided DNA and questionnaire data on symptoms and stress. Scores on the List of Life-Threatening Experiences (LTE) questionnaire for the last year and self-rated current financial hardship were used as measures of recent/ongoing psychosocial stress. Twenty SNPs were genotyped. Significant associations between eight NOS1 SNPs, comprising two regional haplotypes, and current depression score were identified that survived correction for multiple testing when current financial hardship was used as the interaction term. A smaller three-SNP haplotypes (rs10507279, rs1004356 and rs3782218) located in a regulatory region of NOS1 showed one of the strongest effects, with the A-C-T haplotype associating with higher depression scores at low adversity levels but lower depression scores at higher adversity levels (p=2.3E-05). These results suggest that NOS1 SNPs interact with exposure to economic and psychosocial stressors to alter individual's susceptibility to depression.

  11. Molecular analyses of nuclear-cytoplasmic interactions affecting plant growth and yield. Final technical report

    SciTech Connect

    Newton, K.J.

    1998-11-01

    Mitochondria have a central role in the production of cellular energy. The biogenesis and functioning of mitochondria depends on the expression of both mitochondrial and nuclear genes. One approach to investigating the role of nuclear-mitochondrial cooperation in plant growth and development is to identify combinations of nuclear and mitochondrial genomes that result in altered but sublethal phenotypes. Plants that have certain maize nuclear genotypes in combination with cytoplasmic genomes from more distantly-related teosintes can exhibit incompatible phenotypes, such as reduced plant growth and yield and cytoplasmic male sterility, as well as altered mitochondrial gene expression. The characterization of these nuclear-cytoplasmic interactions was the focus of this grant. The authors were investigating the effects of two maize nuclear genes, RcmI and Mct, on mitochondrial function and gene expression. Plants with the teosinte cytoplasms and homozygous for the recessive rcm allele are small (miniature) and-slow-growing and the kernels are reduced in size. The authors mapped this locus to molecular markers on chromosome 7 and attempted to clone this locus by transposon tagging. The effects of the nuclear-cytoplasmic interaction on mitochondrial function and mitochondrial protein profiles were also studied.

  12. Food availability affects the strength of mutualistic host-microbiota interactions in Daphnia magna.

    PubMed

    Callens, Martijn; Macke, Emilie; Muylaert, Koenraad; Bossier, Peter; Lievens, Bart; Waud, Michael; Decaestecker, Ellen

    2016-04-01

    The symbiotic gut microbial community is generally known to have a strong impact on the fitness of its host. Nevertheless, it is less clear how the impact of symbiotic interactions on the hosts' fitness varies according to environmental circumstances such as changes in the diet. This study aims to get a better understanding of host-microbiota interactions under different levels of food availability. We conducted experiments with the invertebrate, experimental model organism Daphnia magna and compared growth, survival and reproduction of conventionalized symbiotic Daphnia with germ-free individuals given varying quantities of food. Our experiments revealed that the relative importance of the microbiota for the hosts' fitness varied according to dietary conditions. The presence of the microbiota had strong positive effects on Daphnia when food was sufficient or abundant, but had weaker effects under food limitation. Our results indicate that the microbiota can be a potentially important factor in determining host responses to changes in dietary conditions. Characterization of the host-associated microbiota further showed that Aeromonas sp. was the most prevalent taxon in the digestive tract of Daphnia.

  13. Saprotrophic basidiomycete mycelia and their interspecific interactions affect the spatial distribution of extracellular enzymes in soil.

    PubMed

    Snajdr, Jaroslav; Dobiášová, Petra; Větrovský, Tomáš; Valášková, Vendula; Alawi, Alaa; Boddy, Lynne; Baldrian, Petr

    2011-10-01

    Saprotrophic cord-forming basidiomycetes are important decomposers of lignocellulosic substrates in soil. The production of extracellular hydrolytic enzymes was studied during the growth of two saprotrophic basidiomycetes, Hypholoma fasciculare and Phanerochaete velutina, across the surface of nonsterile soil microcosms, along with the effects of these basidiomycetes on fungi and bacteria within the soil. Higher activities of α-glucosidase, β-glucosidase, cellobiohydrolase, β-xylosidase, phosphomonoesterase and phosphodiesterase, but not of arylsulphatase, were recorded beneath the mycelia. Despite the fact that H. fasciculare, with exploitative hyphal growth, produced much denser hyphal cover on the soil surface than P. velutina, with explorative growth, both fungi produced similar amounts of extracellular enzymes. In the areas where the mycelia of H. fasciculare and P. velutina interacted, the activities of N-acetylglucosaminidase, α-glucosidase and phosphomonoesterase, the enzymes potentially involved in hyphal cell wall damage, and the utilization of compounds released from damaged hyphae of interacting fungi, were particularly increased. No significant differences in fungal biomass were observed between basidiomycete-colonized and noncolonized soil, but bacterial biomass was reduced in soil with H. fasciculare. The increases in the activities of β-xylosidase, β-glucosidase, phosphomonoesterase and cellobiohydrolase with increasing fungal:bacterial biomass ratio indicate the positive effects of fungal enzymes on nutrient release and bacterial abundance, which is reflected in the positive correlation of bacterial and fungal biomass content.

  14. Radiative and Physiological Effects of Increased CO2: How Does This Interaction Affect Climate?

    NASA Technical Reports Server (NTRS)

    Bounoua, Lahouari

    2011-01-01

    Several climate models indicate that in a 2xCO2 environment, temperature and precipitation would increase and runoff would increase faster than precipitation. These models, however, did not allow the vegetation to increase its leaf density as a response to the physiological effects of increased CO2 and consequent changes in climate. Other assessments included these interactions but did not account for the vegetation downregulation to reduce plant's photosynthetic activity and as such resulted in a weak vegetation negative response. When we combine these interactions in climate simulations with 2xCO2, the associated increase in precipitation contributes primarily to increase evapotranspiration rather than surface runoff, consistent with observations, and results in an additional cooling effect not fully accounted for in previous 2xCO2 simulations. By accelerating the water cycle, this feedback slows but does not alleviate the projected warming, reducing the land surface warming by 0.6 C. Compared to previous studies, these results imply that long term negative feedback from CO2-induced increases in vegetation density could reduce temperature following a stabilization of CO2 concentration.

  15. Inhibition of polyamine oxidase activity affects tumor development during the maize-Ustilago maydis interaction.

    PubMed

    Jasso-Robles, Francisco Ignacio; Jiménez-Bremont, Juan Francisco; Becerra-Flora, Alicia; Juárez-Montiel, Margarita; Gonzalez, María Elisa; Pieckenstain, Fernando Luis; García de la Cruz, Ramón Fernando; Rodríguez-Kessler, Margarita

    2016-05-01

    Ustilago maydis is a biotrophic plant pathogenic fungus that leads to tumor development in the aerial tissues of its host, Zea mays. These tumors are the result of cell hypertrophy and hyperplasia, and are accompanied by the reprograming of primary and secondary metabolism of infected plants. Up to now, little is known regarding key plant actors and their role in tumor development during the interaction with U. maydis. Polyamines are small aliphatic amines that regulate plant growth, development and stress responses. In a previous study, we found substantial increases of polyamine levels in tumors. In the present work, we describe the maize polyamine oxidase (PAO) gene family, its contribution to hydrogen peroxide (H2O2) production and its possible role in tumor development induced by U. maydis. Histochemical analysis revealed that chlorotic lesions and maize tumors induced by U. maydis accumulate H2O2 to significant levels. Maize plants inoculated with U. maydis and treated with the PAO inhibitor 1,8-diaminooctane exhibit a notable reduction of H2O2 accumulation in infected tissues and a significant drop in PAO activity. This treatment also reduced disease symptoms in infected plants. Finally, among six maize PAO genes only the ZmPAO1, which encodes an extracellular enzyme, is up-regulated in tumors. Our data suggest that H2O2 produced through PA catabolism by ZmPAO1 plays an important role in tumor development during the maize-U. maydis interaction.

  16. Two homologous host proteins interact with potato virus X RNAs and CPs and affect viral replication and movement.

    PubMed

    Choi, Hoseong; Cho, Won Kyong; Kim, Kook-Hyung

    2016-06-29

    Because viruses encode only a small number of proteins, all steps of virus infection rely on specific interactions between viruses and hosts. We previously screened several Nicotiana benthamiana (Nb) proteins that interact with the stem-loop 1 (SL1) RNA structure located at the 5' end of the potato virus X (PVX) genome. In this study, we characterized two of these proteins (NbCPIP2a and NbCPIP2b), which are homologous and are induced upon PVX infection. Electrophoretic mobility shift assay confirmed that both proteins bind to either SL1(+) or SL1(-) RNAs of PVX. The two proteins also interact with the PVX capsid protein (CP) in planta. Overexpression of NbCPIP2a positively regulated systemic movement of PVX in N. benthamiana, whereas NbCPIP2b overexpression did not affect systemic movement of PVX. Transient overexpression and silencing experiments demonstrated that NbCPIP2a and NbCPIP2b are positive regulators of PVX replication and that the effect on replication was greater for NbCPIP2a than for NbCPIP2b. Although these two host proteins are associated with plasma membranes, PVX infection did not affect their subcellular localization. Taken together, these results indicate that NbCPIP2a and NbCPIP2b specifically bind to PVX SL1 RNAs as well as to CP and enhance PVX replication and movement.

  17. Interactions between major chlorogenic acid isomers and chemical changes in coffee brew that affect antioxidant activities.

    PubMed

    Liang, Ningjian; Xue, Wei; Kennepohl, Pierre; Kitts, David D

    2016-12-15

    Coffee bean source and roasting conditions significantly (p<0.05) affected the content of chlorogenic acid (CGA) isomers, several indices of browning and subsequent antioxidant values. Principal component analysis was used to interpret the correlations between physiochemical and antioxidant parameters of coffee. CGA isomer content was positively correlated (p<0.001) to capacity of coffee to reduce nitric oxide and scavenge Frémy's salt. Indices of browning in roasted coffee were positively correlated (p<0.001) to ABTS and TEMPO radical scavenging capacity, respectively. Only the CGA content of coffee corresponded to intracellular antioxidant capacity measured in Caco-2 intestinal cells. This study concluded that the intracellular antioxidant capacity that best describes potential health benefits of coffee positively corresponds best with CGA content.

  18. ceRNA crosstalk stabilizes protein expression and affects the correlation pattern of interacting proteins.

    PubMed

    Martirosyan, Araks; De Martino, Andrea; Pagnani, Andrea; Marinari, Enzo

    2017-03-07

    Gene expression is a noisy process and several mechanisms, both transcriptional and post-transcriptional, can stabilize protein levels in cells. Much work has focused on the role of miRNAs, showing in particular that miRNA-mediated regulation can buffer expression noise for lowly expressed genes. Here, using in silico simulations and mathematical modeling, we demonstrate that miRNAs can exert a much broader influence on protein levels by orchestrating competition-induced crosstalk between mRNAs. Most notably, we find that miRNA-mediated cross-talk (i) can stabilize protein levels across the full range of gene expression rates, and (ii) modifies the correlation pattern of co-regulated interacting proteins, changing the sign of correlations from negative to positive. The latter feature may constitute a potentially robust signature of the existence of RNA crosstalk induced by endogenous competition for miRNAs in standard cellular conditions.

  19. ceRNA crosstalk stabilizes protein expression and affects the correlation pattern of interacting proteins

    PubMed Central

    Martirosyan, Araks; De Martino, Andrea; Pagnani, Andrea; Marinari, Enzo

    2017-01-01

    Gene expression is a noisy process and several mechanisms, both transcriptional and post-transcriptional, can stabilize protein levels in cells. Much work has focused on the role of miRNAs, showing in particular that miRNA-mediated regulation can buffer expression noise for lowly expressed genes. Here, using in silico simulations and mathematical modeling, we demonstrate that miRNAs can exert a much broader influence on protein levels by orchestrating competition-induced crosstalk between mRNAs. Most notably, we find that miRNA-mediated cross-talk (i) can stabilize protein levels across the full range of gene expression rates, and (ii) modifies the correlation pattern of co-regulated interacting proteins, changing the sign of correlations from negative to positive. The latter feature may constitute a potentially robust signature of the existence of RNA crosstalk induced by endogenous competition for miRNAs in standard cellular conditions. PMID:28266541

  20. Variable gene dispersal conditions and spatial deforestation patterns can interact to affect tropical tree conservation outcomes.

    PubMed

    Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H

    2015-01-01

    Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with 'Near' distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal

  1. Landscape composition, patch size, and distance to edges: Interactions affecting duck reproductive success

    USGS Publications Warehouse

    Horn, David Joseph; Phillips, Michael L.; Koford, Rolf R.; Clark, William R.; Sovada, Marsha A.; Greenwood, Raymond J.

    2005-01-01

    Prairies and other North American grasslands, although highly fragmented, provide breeding habitat for a diverse array of species, including species of tremendous economic and ecological importance. Conservation and management of these species requires some understanding of how reproductive success is affected by edge effects, patch size, and characteristics of the landscape. We examined how differences in the percentage of grassland in the landscape influenced the relationships between the success of nests of upland-nesting ducks and (1) field size and (2) distance to nearest field and wetland edges. We collected data on study areas composed of 15–20% grassland and areas composed of 45–55% grassland in central North Dakota, USA during the 1996 and 1997 nesting seasons. Daily survival rates (DSRs) of duck nests were greater in study areas with 45–55% grassland than with 15–20% grassland. Within study areas, we detected a curvilinear relationship between DSR and field size: DSRs were highest in small and large fields and lowest in moderately sized fields. In study areas with 15–20% grassland, there was no relationship between probability of hatching and distance to nearest field edge, whereas in study areas with 45–55% grassland, there was a positive relationship between these two variables. Results of this study support the conclusion that both landscape composition and configuration affect reproductive success of ground-nesting birds. We are prompted to question conservation strategies that favor clustering moderately sized patches of nesting habitat within agricultural landscapes because our results show that such patches would have low nest success, most likely caused by predation. Understanding the pattern of nest success, and the predator–prey mechanisms that produce the pattern, will enable design of patch configurations that are most conducive to meeting conservation goals.

  2. Variable Gene Dispersal Conditions and Spatial Deforestation Patterns Can Interact to Affect Tropical Tree Conservation Outcomes

    PubMed Central

    Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H.

    2015-01-01

    Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with ‘Near’ distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal

  3. Muecas: a multi-sensor robotic head for affective human robot interaction and imitation.

    PubMed

    Cid, Felipe; Moreno, Jose; Bustos, Pablo; Núñez, Pedro

    2014-04-28

    This paper presents a multi-sensor humanoid robotic head for human robot interaction. The design of the robotic head, Muecas, is based on ongoing research on the mechanisms of perception and imitation of human expressions and emotions. These mechanisms allow direct interaction between the robot and its human companion through the different natural language modalities: speech, body language and facial expressions. The robotic head has 12 degrees of freedom, in a human-like configuration, including eyes, eyebrows, mouth and neck, and has been designed and built entirely by IADeX (Engineering, Automation and Design of Extremadura) and RoboLab. A detailed description of its kinematics is provided along with the design of the most complex controllers. Muecas can be directly controlled by FACS (Facial Action Coding System), the de facto standard for facial expression recognition and synthesis. This feature facilitates its use by third party platforms and encourages the development of imitation and of goal-based systems. Imitation systems learn from the user, while goal-based ones use planning techniques to drive the user towards a final desired state. To show the flexibility and reliability of the robotic head, the paper presents a software architecture that is able to detect, recognize, classify and generate facial expressions in real time using FACS. This system has been implemented using the robotics framework, RoboComp, which provides hardware-independent access to the sensors in the head. Finally, the paper presents experimental results showing the real-time functioning of the whole system, including recognition and imitation of human facial expressions.

  4. Waves affect predator-prey interactions between fish and benthic invertebrates.

    PubMed

    Gabel, Friederike; Stoll, Stefan; Fischer, Philipp; Pusch, Martin T; Garcia, Xavier-François

    2011-01-01

    Little is known about the effects of waves on predator-prey interactions in the littoral zones of freshwaters. We conducted a set of mesocosm experiments to study the differential effects of ship- and wind-induced waves on the foraging success of littoral fish on benthic invertebrates. Experiments were conducted in a wave tank with amphipods (Gammarus roeseli) as prey, and age-0 bream (Abramis brama, B0), age-0 and age-1 dace (Leuciscus leuciscus, D0 and D1) as predators. The number of gammarids suspended in the water column was higher in the wave treatments compared to a no-wave control treatment, especially during pulse waves mimicking ship-induced waves in comparison to continuous waves mimicking wind-induced waves. The resulting higher prey accessibility in the water column was differently exploited by the three types of predatory fish. D0 and D1 showed significantly higher foraging success in the pulse wave treatment than in the continuous and control treatments. The foraging success of D0 appears to be achieved more easily, since significantly higher swimming activity and more foraging attempts were recorded only for D1 under the wave treatments. In contrast, B0 consumed significantly fewer gammarids in both wave treatments than in the control. Hence, waves influenced predator-prey interactions differently depending on wave type and fish type. It is expected that regular exposure to ship-induced waves can alter littoral invertebrate and fish assemblages by increasing the predation risk for benthic invertebrates that are suspended in the water column, and by shifting fish community compositions towards species that benefit from waves.

  5. Muecas: A Multi-Sensor Robotic Head for Affective Human Robot Interaction and Imitation

    PubMed Central

    Cid, Felipe; Moreno, Jose; Bustos, Pablo; Núñez, Pedro

    2014-01-01

    This paper presents a multi-sensor humanoid robotic head for human robot interaction. The design of the robotic head, Muecas, is based on ongoing research on the mechanisms of perception and imitation of human expressions and emotions. These mechanisms allow direct interaction between the robot and its human companion through the different natural language modalities: speech, body language and facial expressions. The robotic head has 12 degrees of freedom, in a human-like configuration, including eyes, eyebrows, mouth and neck, and has been designed and built entirely by IADeX (Engineering, Automation and Design of Extremadura) and RoboLab. A detailed description of its kinematics is provided along with the design of the most complex controllers. Muecas can be directly controlled by FACS (Facial Action Coding System), the de facto standard for facial expression recognition and synthesis. This feature facilitates its use by third party platforms and encourages the development of imitation and of goal-based systems. Imitation systems learn from the user, while goal-based ones use planning techniques to drive the user towards a final desired state. To show the flexibility and reliability of the robotic head, the paper presents a software architecture that is able to detect, recognize, classify and generate facial expressions in real time using FACS. This system has been implemented using the robotics framework, RoboComp, which provides hardware-independent access to the sensors in the head. Finally, the paper presents experimental results showing the real-time functioning of the whole system, including recognition and imitation of human facial expressions. PMID:24787636

  6. Osmolyte trimethylamine-N-oxide does not affect the strength of hydrophobic interactions: origin of osmolyte compatibility.

    PubMed

    Athawale, Manoj V; Dordick, Jonathan S; Garde, Shekhar

    2005-08-01

    Osmolytes are small organic solutes accumulated at high concentrations by cells/tissues in response to osmotic stress. Osmolytes increase thermodynamic stability of folded proteins and provide protection against denaturing stresses. The mechanism of osmolyte compatibility and osmolyte-induced stability has, therefore, attracted considerable attention in recent years. However, to our knowledge, no quantitative study of osmolyte effects on the strength of hydrophobic interactions has been reported. Here, we present a detailed molecular dynamics simulation study of the effect of the osmolyte trimethylamine-N-oxide (TMAO) on hydrophobic phenomena at molecular and nanoscopic length scales. Specifically, we investigate the effects of TMAO on the thermodynamics of hydrophobic hydration and interactions of small solutes as well as on the folding-unfolding conformational equilibrium of a hydrophobic polymer in water. The major conclusion of our study is that TMAO has almost no effect either on the thermodynamics of hydration of small nonpolar solutes or on the hydrophobic interactions at the pair and many-body level. We propose that this neutrality of TMAO toward hydrophobic interactions-one of the primary driving forces in protein folding-is at least partially responsible for making TMAO a "compatible" osmolyte. That is, TMAO can be tolerated at high concentrations in organisms without affecting nonspecific hydrophobic effects. Our study implies that protein stabilization by TMAO occurs through other mechanisms, such as unfavorable water-mediated interaction of TMAO with the protein backbone, as suggested by recent experimental studies. We complement the above calculations with analysis of TMAO hydration and changes in water structure in the presence of TMAO molecules. TMAO is an amphiphilic molecule containing both hydrophobic and hydrophilic parts. The precise balance of the effects of hydrophobic and hydrophilic segments of the molecule appears to explain the virtual

  7. Abrupt or not abrupt - biodiversity affects climate-vegetation interaction at the end of the African Humid Period

    NASA Astrophysics Data System (ADS)

    Claussen, Martin; Bathiany, Sebastian; Brovkin, Victor; Kleinen, Thomas

    2014-05-01

    Palaeo-climate and ecosystem data derived from the sediment record from Lake Yoa (Ounianga Kebir, North-East Tchad) have been interpreted as support for a weak interaction between climate and vegetation without abrupt changes in precipitation climate and vegetation coverage over the last 6000 years. However, interpretation of these data has neglected potential effects of plant diversity on the stability of the climate - vegetation system. Here, we use a conceptual model that represents plant diversity in terms of moisture requirement; some plant types are sensitive to changes in precipitation thereby leading to an unstable system with the possibility of abrupt changes, while other plant types are more resilient with gradual system changes. We demonstrate that plant diversity tends to attenuate the instability of the interaction between climate and sensitive plant types, while it reduces the stability of the interaction between climate and less sensitive plant types. Hence, despite large sensitivities of individual plant types to precipitation, a gradual decline in precipitation and mean vegetation cover can occur. The present study offers a new interpretation for reconstructed shifts in vegetation and climate in northern Africa at the end of the African Humid Period. It focusses on the ecosystems in semi-arid climate, but the principle that plant diversity can affect the stability of climate-vegetation interaction may generally apply.

  8. Influences of a Socially Interactive Robot on the Affective Behavior of Young Children with Disabilities. Social Robots Research Reports, Number 3

    ERIC Educational Resources Information Center

    Dunst, Carl J.; Prior, Jeremy; Hamby, Deborah W.; Trivette, Carol M.

    2013-01-01

    Findings from two studies of 11 young children with autism, Down syndrome, or attention deficit disorders investigating the effects of Popchilla, a socially interactive robot, on the children's affective behavior are reported. The children were observed under two conditions, child-toy interactions and child-robot interactions, and ratings of child…

  9. Ecology of conflict: marine food supply affects human-wildlife interactions on land

    PubMed Central

    Artelle, Kyle A.; Anderson, Sean C.; Reynolds, John D.; Cooper, Andrew B.; Paquet, Paul C.; Darimont, Chris T.

    2016-01-01

    Human-wildlife conflicts impose considerable costs to people and wildlife worldwide. Most research focuses on proximate causes, offering limited generalizable understanding of ultimate drivers. We tested three competing hypotheses (problem individuals, regional population saturation, limited food supply) that relate to underlying processes of human-grizzly bear (Ursus arctos horribilis) conflict, using data from British Columbia, Canada, between 1960–2014. We found most support for the limited food supply hypothesis: in bear populations that feed on spawning salmon (Oncorhynchus spp.), the annual number of bears/km2 killed due to conflicts with humans increased by an average of 20% (6–32% [95% CI]) for each 50% decrease in annual salmon biomass. Furthermore, we found that across all bear populations (with or without access to salmon), 81% of attacks on humans and 82% of conflict kills occurred after the approximate onset of hyperphagia (July 1st), a period of intense caloric demand. Contrary to practices by many management agencies, conflict frequency was not reduced by hunting or removal of problem individuals. Our finding that a marine resource affects terrestrial conflict suggests that evidence-based policy for reducing harm to wildlife and humans requires not only insight into ultimate drivers of conflict, but also management that spans ecosystem and jurisdictional boundaries. PMID:27185189

  10. The blues of adolescent romance: observed affective interactions in adolescent romantic relationships associated with depressive symptoms.

    PubMed

    Ha, Thao; Dishion, Thomas J; Overbeek, Geertjan; Burk, William J; Engels, Rutger C M E

    2014-05-01

    We examined the associations between observed expressions of positive and negative emotions during conflict discussions and depressive symptoms during a 2-year period in a sample of 160 adolescents in 80 romantic relationships (M age = 15.48, SD = 1.16). Conflict discussions were coded using the 10-code Specific Affect Coding System. Depressive symptoms were assessed at the time of the observed conflict discussions (Time 1) and 2 years later (Time 2). Data were analyzed using actor-partner interdependence models. Girls' expression of both positive and negative emotions at T1 was related to their own depressive symptoms at T2 (actor effect). Boys' positive emotions and negative emotions (actor effect) and girls' negative emotions (partner effect) were related to boys' depressive symptoms at T2. Contrary to expectation, relationship break-up and relationship satisfaction were unrelated to changes in depressive symptoms or expression of negative or positive emotion during conflict discussion. These findings underscore the unique quality of adolescent romantic relationships and suggest new directions in the study of the link between mental health and romantic involvement in adolescence.

  11. Some factors affecting the dynamics of a plasma-wall interaction simulator

    NASA Astrophysics Data System (ADS)

    Clausing, R. E.; Heatherly, L.; Emerson, L. C.

    1982-12-01

    Isotope mixing and thermal desorption from samples exposed in a glow discharge apparatus were used to study the factors affecting hydrogen recycle and wall inventory. Conditions were chosen to be similar to those expected at the walls in today's experimental fusion devices. The size and nature of the hydrogen reservoir in the wall after plasma pulses was investigated by thermal desorption techniques. Large amounts of deuterium, i.e., 5 × 10 15 D cm -2 remain in the sample 4 min after a single 200 ms plasma pulse. While this result may be explained by a model using bulk diffusion and traps, it is suggested that either a spectrum of desorption energies, or a concentration dependent recombination coefficient, may also be useful in describing the thermal desorption processes. Experiments with various pumping conditions show that readsorption of molecular hydrogen isotopes on the wall should be considered in modeling hydrogen recycle and isotope changeover processes. HD formation without plasmas confirms the role readsorption plays.

  12. Interacting disturbances: wildfire severity affected by stage of forest disease invasion.

    PubMed

    Metz, Margaret R; Frangioso, Kerri M; Meentemeyer, Ross K; Rizzo, David M

    2011-03-01

    Sudden oak death (SOD) is an emerging forest disease causing extensive tree mortality in coastal California forests. Recent California wildfires provided an opportunity to test a major assumption underlying discussions of SOD and land management: SOD mortality will increase fire severity. We examined prefire fuels from host species in a forest monitoring plot network in Big Sur, California (USA), to understand the interactions between disease-caused mortality and wildfire severity during the 2008 Basin Complex wildfire. Detailed measurements of standing dead woody stems and downed woody debris 1-2 years prior to the Basin fire provided a rare picture of the increased fuels attributable to SOD mortality. Despite great differences in host fuel abundance, we found no significant difference in burn severity between infested and uninfested plots. Instead, the relationship between SOD and fire reflected the changing nature of the disease impacts over time. Increased SOD mortality contributed to overstory burn severity only in areas where the pathogen had recently invaded. Where longer-term disease establishment allowed dead material to fall and accumulate, increasing log volumes led to increased substrate burn severity. These patterns help inform forest management decisions regarding fire, both in Big Sur and in other areas of California as the pathogen continues to expand throughout coastal forests.

  13. Kelch Domain of Gigaxonin Interacts with Intermediate Filament Proteins Affected in Giant Axonal Neuropathy

    PubMed Central

    Johnson-Kerner, Bethany L.; Garcia Diaz, Alejandro; Ekins, Sean; Wichterle, Hynek

    2015-01-01

    Patients with giant axonal neuropathy (GAN) show progressive loss of motor and sensory function starting in childhood and typically live for less than 30 years. GAN is caused by autosomal recessive mutations leading to low levels of gigaxonin (GIG), a ubiquitously-expressed BTB/Kelch cytoplasmic protein believed to be an E3 ligase substrate adaptor. GAN pathology is characterized by aggregates of intermediate filaments (IFs) in multiple tissues. To delineate the molecular pathway between GIG deficiency and IF pathology, we undertook a proteomic screen to identify the normal binding partners of GIG. Prominent among them were several classes of IFs, including the neurofilament subunits whose accumulation leads to the axonal swellings for which GAN is named. We showed these interactions were dependent on the Kelch domain of GIG. Furthermore, we identified the E3 ligase MYCBP2 and the heat shock proteins HSP90AA1/AB1 as interactors with the BTB domain that may result in the ubiquitination and subsequent degradation of intermediate filaments. Our open-ended proteomic screen provides support to GIG’s role as an adaptor protein, linking IF proteins through its Kelch domain to the ubiquitin pathway proteins via its BTB domain, and points to future approaches for reversing the phenotype in human patients. PMID:26460568

  14. Interactions between Soil Habitat and Geographic Range Location Affect Plant Fitness

    PubMed Central

    Stanton-Geddes, John; Shaw, Ruth G.; Tiffin, Peter

    2012-01-01

    Populations are often found on different habitats at different geographic locations. This habitat shift may be due to biased dispersal, physiological tolerances or biotic interactions. To explore how fitness of the native plant Chamaecrista fasciculata depends on habitat within, at and beyond its range edge, we planted seeds from five populations in two soil substrates at these geographic locations. We found that with reduced competition, lifetime fitness was always greater or equivalent in one habitat type, loam soils, though early-season survival was greater on sand soils. At the range edge, natural populations are typically found on sand soil habitats, which are also less competitive environments. Early-season survival and fitness differed among source populations, and when transplanted beyond the range edge, range edge populations had greater fitness than interior populations. Our results indicate that even when the optimal soil substrate for a species does not change with geographic range location, the realized niche of a species may be restricted to sub-optimal habitats at the range edge because of the combined effects of differences in abiotic and biotic effects (e.g. competitors) between substrates. PMID:22615745

  15. Interactions between soil habitat and geographic range location affect plant fitness.

    PubMed

    Stanton-Geddes, John; Shaw, Ruth G; Tiffin, Peter

    2012-01-01

    Populations are often found on different habitats at different geographic locations. This habitat shift may be due to biased dispersal, physiological tolerances or biotic interactions. To explore how fitness of the native plant Chamaecrista fasciculata depends on habitat within, at and beyond its range edge, we planted seeds from five populations in two soil substrates at these geographic locations. We found that with reduced competition, lifetime fitness was always greater or equivalent in one habitat type, loam soils, though early-season survival was greater on sand soils. At the range edge, natural populations are typically found on sand soil habitats, which are also less competitive environments. Early-season survival and fitness differed among source populations, and when transplanted beyond the range edge, range edge populations had greater fitness than interior populations. Our results indicate that even when the optimal soil substrate for a species does not change with geographic range location, the realized niche of a species may be restricted to sub-optimal habitats at the range edge because of the combined effects of differences in abiotic and biotic effects (e.g. competitors) between substrates.

  16. The interactive effects of affect and shopping goal on information search and product evaluations.

    PubMed

    Chen, Fangyuan; Wyer, Robert S; Shen, Hao

    2015-12-01

    Although shoppers often want to evaluate products to make a purchase decision, they can also shop for enjoyment. In each case, the amount of time they spend on shopping and the number of options they consider can depend on the mood they happen to be in. We predicted that mood can signal whether the goal has been attained and when people should stop processing information. When people are primarily motivated to purchase a particular type of product, positive mood signals that they have done enough. Thus, they consider less information if they are happy than if they are unhappy. When people shop for enjoyment, however, positive mood signals that they are still having fun. Thus, they consider more information when they are happy than when they are not. Four experiments among university students (N = 827) examined these possibilities. Experiment 1 provided initial evidence for the interactive effects of mood and goals on search behavior and product evaluation. Other studies examined the implications of this conceptualization for different domains: (a) the relative impact of brand and attribute information on judgments (Experiment 2), (b) gender differences in shopping behavior (Experiment 3), and (c) the number of options that people review in an actual online shopping website (Experiment 4).

  17. Nutrient Deprivation Affects Salmonella Invasion and Its Interaction with the Gastrointestinal Microbiota

    PubMed Central

    Yurist-Doutsch, Sophie; Arrieta, Marie-Claire; Tupin, Audrey; Valdez, Yanet; Antunes, L. Caetano M.; Yen, Ryan; Finlay, B. Brett

    2016-01-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a foodborne enteric pathogen and a major cause of gastroenteritis in humans. It is known that molecules derived from the human fecal microbiota downregulate S. Typhimurium virulence gene expression and induce a starvation-like response. In this study, S. Typhimurium was cultured in minimal media to mimic starvation conditions such as that experienced by S. Typhimurium in the human intestinal tract, and the pathogen’s virulence in vitro and in vivo was measured. S. Typhimurium cultured in minimal media displayed a reduced ability to invade human epithelial cells in a manner that was at least partially independent of the Salmonella Pathogenicity Island 1 (SPI-1) type III secretion system. Nutrient deprivation did not, however, alter the ability of S. Typhimurium to replicate and survive inside epithelial cells. In a murine model of S. Typhimurium-induced gastroenteritis, prior cultivation in minimal media did not alter the pathogen’s ability to colonize mice, nor did it affect levels of gastrointestinal inflammation. Upon examining the post-infection fecal gastrointestinal microbiota, we found that specifically in the 129Sv/ImJ murine strain S. Typhimurium cultured in minimal media induced differential microbiota compositional shifts compared to that of S. Typhimurium cultured in rich media. Together these findings demonstrate that S. Typhimurium remains a potent pathogen even in the face of nutritional deprivation, but nevertheless that nutrient deprivation encountered in this environment elicits significant changes in the bacterium genetic programme, as well as its capacity to alter host microbiota composition. PMID:27437699

  18. Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions.

    PubMed

    Jassey, Vincent E J; Chiapusio, Geneviève; Binet, Philippe; Buttler, Alexandre; Laggoun-Défarge, Fatima; Delarue, Frédéric; Bernard, Nadine; Mitchell, Edward A D; Toussaint, Marie-Laure; Francez, André-Jean; Gilbert, Daniel

    2013-03-01

    Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above- and belowground linkages that regulate soil organic carbon dynamics and C-balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top-predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum-polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above- and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatlands.

  19. Snowpack, fire, and forest disturbance: interactions affect montane invasions by non-native shrubs.

    PubMed

    Stevens, Jens T; Latimer, Andrew M

    2015-06-01

    Montane regions worldwide have experienced relatively low plant invasion rates, a trend attributed to increased climatic severity, low rates of disturbance, and reduced propagule pressure relative to lowlands. Manipulative experiments at elevations above the invasive range of non-native species can clarify the relative contributions of these mechanisms to montane invasion resistance, yet such experiments are rare. Furthermore, global climate change and land use changes are expected to cause decreases in snowpack and increases in disturbance by fire and forest thinning in montane forests. We examined the importance of these factors in limiting montane invasions using a field transplant experiment above the invasive range of two non-native lowland shrubs, Scotch broom (Cytisus scoparius) and Spanish broom (Spartium junceum), in the rain-snow transition zone of the Sierra Nevada of California. We tested the effects of canopy closure, prescribed fire, and winter snow depth on demographic transitions of each species. Establishment of both species was most likely at intermediate levels of canopy disturbance, but at this intermediate canopy level, snow depth had negative effects on winter survival of seedlings. We used matrix population models to show that an 86% reduction in winter snowfall would cause a 2.8-fold increase in population growth rates in Scotch broom and a 3.5-fold increase in Spanish broom. Fall prescribed fire increased germination rates, but decreased overall population growth rates by reducing plant survival. However, at longer fire return intervals, population recovery between fires is likely to keep growth rates high, especially under low snowpack conditions. Many treatment combinations had positive growth rates despite being above the current invasive range, indicating that propagule pressure, disturbance, and climate can all strongly affect plant invasions in montane regions. We conclude that projected reductions in winter snowpack and increases in

  20. Family history of alcoholism interacts with alcohol to affect brain regions involved in behavioral inhibition

    PubMed Central

    Kareken, David A.; Dzemidzic, Mario; Wetherill, Leah; Eiler, William; Oberlin, Brandon G.; Harezlak, Jaroslaw; Wang, Yang; O’Connor, Sean J.

    2013-01-01

    Rationale Impulsive behavior is associated with both alcohol use disorders and a family history of alcoholism (FHA). One operational definition of impulsive behavior is the stop signal task (SST), which measures the time needed to stop a ballistic hand movement. Objective Employ functional magnetic resonance imaging (fMRI) to study right frontal responses to stop signals in heavy drinking subjects with and without FHA, and as a function of alcohol exposure. Methods Twenty two family history positive (FHP; age = 22.7 years, SD= 1.9) and 18 family history negative (FHN; age = 23.7, SD= 1.8) subjects performed the SST in fMRI in two randomized visits: once during intravenous infusion of alcohol, clamped at a steady-state breath alcohol (BrAC) concentration of 60mg%, and once during infusion of placebo saline. An independent reference group (n= 13, age= 23.7, SD= 1.8) was used to identify a priori right prefrontal regions activated by successful inhibition (Inh) trials, relative to ‘Go’ trials that carried no need for inhibition (Inh > Go). Results FHA interacted with alcohol exposure in right prefrontal cortex, where alcohol reduced [Inh > Go] activation in FHN subjects, but not in FHP subjects. Within this right frontal cortical region, stop signal reaction time (SSRT) also correlated negatively with [Inh > Go] activation, suggesting that the [Inh > Go] activity was related to inhibitory behavior. Conclusions The results are consistent with the low level of response theory (Schuckit, 1980; Quinn & Fromme, 2011), with FHP being less sensitive to alcohol’s effects. PMID:23468100

  1. Disturbace events affect interactions amoung four different hydrolytic enzymes in arid soils

    NASA Astrophysics Data System (ADS)

    Warnock, D.; Litvak, M. E.; Sinsabaugh, R. L.

    2014-12-01

    Global change processes are significantly altering key ecosystem processes in arid ecosystems. Such phenomena are also likely to influence the functional behaviors of resident soil microbial communities, and the magnitude of biogeochemical processes, including, soil organic matter turnover, soil nutrient cycling and soil carbon storage. To assess the aggregate influences of tree mortality, woody plant encroachment, fire, and drought, on soil microbial community activity and functionality, we collected soil samples from beneath plant canopies, and from adjacent bare soils. We sampled from two different piñon-juniper woodland sites. One had many dead piñons, while the other did not, a burned and an unburned grassland, a shrub site, a shrub/grass ecotone, and a juniper savannah. We analyzed eleven soil physicochemical properties, none of which showed any significant trends across our different sampling locations, fungal biomass, and the activities of alanine aminopeptidase, alkaline phosphatase, β-D-glucosidase, and β-N-acetyl glucosaminidase (NAGase). One-wayANOVA results showed that enzyme activity patterns were largely consistent across field sites, while multivariate analyses showed a variety of interactive responses by individual enzymes,with respect to disturbance events. For example, at the burned grassland, all four enzymes activities were strongly correlated, while at the unburned grassland, relationships between peptidase:NAGase and peptidase:β-D-glucosidase were weak, with both R2 ≤ 0.08. Additionally in the shrub-grass ecotone, the correlation among enzyme activities and soil nutrient availabilities were up to 8x stronger than those observed at either grassland site. These results show that disturbance alters the number of functional dimensions needed to describe enzymatic C, N and P acquisition, which may be an indication of shifts in microbial community organization.

  2. Benthic Trophic Interactions in an Antarctic Shallow Water Ecosystem Affected by Recent Glacier Retreat

    PubMed Central

    Pasotti, Francesca; Saravia, Leonardo Ariel; De Troch, Marleen; Tarantelli, Maria Soledad; Sahade, Ricardo; Vanreusel, Ann

    2015-01-01

    The western Antarctic Peninsula is experiencing strong environmental changes as a consequence of ongoing regional warming. Glaciers in the area are retreating rapidly and increased sediment-laden meltwater runoff threatens the benthic biodiversity at shallow depths. We identified three sites with a distinct glacier-retreat related history and different levels of glacial influence in the inner part of Potter Cove (King George Island, South Shetland Islands), a fjord-like embayment impacted since the 1950s by a tidewater glacier retreat. We compared the soft sediment meio- and macrofauna isotopic niche widths (δ13C and δ15N stable isotope analysis) at the three sites to investigate possible glacier retreat-related influences on benthic trophic interactions. The isotopic niches were locally shaped by the different degrees of glacier retreat-related disturbance within the Cove. Wider isotopic niche widths were found at the site that has become ice-free most recently, and narrower niches at the older ice-free sites. At an intermediate state of glacier retreat-related disturbance (e.g. via ice-growler scouring) species with different strategies could settle. The site at the earliest stage of post-retreat development was characterized by an assemblage with lower trophic redundancy. Generally, the isotopic niche widths increased with increasing size spectra of organisms within the community, excepting the youngest assemblage, where the pioneer colonizer meiofauna size class displayed the highest isotopic niche width. Meiofauna at all sites generally occupied positions in the isotopic space that suggested a detrital-pool food source and/or the presence of predatory taxa. In general ice scour and glacial impact appeared to play a two-fold role within the Cove: i) either stimulating trophic diversity by allowing continuous re-colonization of meiofaunal species or, ii) over time driving the benthic assemblages into a more compact trophic structure with increased

  3. Benthic Trophic Interactions in an Antarctic Shallow Water Ecosystem Affected by Recent Glacier Retreat.

    PubMed

    Pasotti, Francesca; Saravia, Leonardo Ariel; De Troch, Marleen; Tarantelli, Maria Soledad; Sahade, Ricardo; Vanreusel, Ann

    2015-01-01

    The western Antarctic Peninsula is experiencing strong environmental changes as a consequence of ongoing regional warming. Glaciers in the area are retreating rapidly and increased sediment-laden meltwater runoff threatens the benthic biodiversity at shallow depths. We identified three sites with a distinct glacier-retreat related history and different levels of glacial influence in the inner part of Potter Cove (King George Island, South Shetland Islands), a fjord-like embayment impacted since the 1950s by a tidewater glacier retreat. We compared the soft sediment meio- and macrofauna isotopic niche widths (δ13C and δ15N stable isotope analysis) at the three sites to investigate possible glacier retreat-related influences on benthic trophic interactions. The isotopic niches were locally shaped by the different degrees of glacier retreat-related disturbance within the Cove. Wider isotopic niche widths were found at the site that has become ice-free most recently, and narrower niches at the older ice-free sites. At an intermediate state of glacier retreat-related disturbance (e.g. via ice-growler scouring) species with different strategies could settle. The site at the earliest stage of post-retreat development was characterized by an assemblage with lower trophic redundancy. Generally, the isotopic niche widths increased with increasing size spectra of organisms within the community, excepting the youngest assemblage, where the pioneer colonizer meiofauna size class displayed the highest isotopic niche width. Meiofauna at all sites generally occupied positions in the isotopic space that suggested a detrital-pool food source and/or the presence of predatory taxa. In general ice scour and glacial impact appeared to play a two-fold role within the Cove: i) either stimulating trophic diversity by allowing continuous re-colonization of meiofaunal species or, ii) over time driving the benthic assemblages into a more compact trophic structure with increased

  4. Intracellular sodium affects ouabain interaction with the Na/K pump in cultured chick cardiac myocytes

    PubMed Central

    1990-01-01

    Whether a given dose of ouabain will produce inotropic or toxic effects depends on factors that affect the apparent affinity (K0.5) of the Na/K pump for ouabain. To accurately resolve these factors, especially the effect of intracellular Na concentration (Nai), we have applied three complementary techniques for measuring the K0.5 for ouabain in cultured embryonic chick cardiac myocytes. Under control conditions with 5.4 mM Ko, the value of the K0.5 for ouabain was 20.6 +/- 1.2, 12.3 +/- 1.7, and 6.6 +/- 0.4 microM, measured by voltage-clamp, Na-selective microelectrode, and equilibrium [3H]ouabain-binding techniques, respectively. A significant difference in the three techniques was the time of exposure to ouabain (30 s-30 min). Since increased duration of exposure to ouabain would increase Nai, monensin was used to raise Nai to investigate what effect Nai might have on the apparent affinity of block by ouabain. Monensin enhanced the rise in Na content induced by 1 microM ouabain. In the presence of 1 microM [3H]ouabain, total binding was found to be a saturating function of Na content. Using the voltage- clamp method, we found that the value of the K0.5 for ouabain was lowered by nearly an order of magnitude in the presence of 3 microM monensin to 2.4 +/- 0.2 microM and the magnitude of the Na/K pump current was increased about threefold. Modeling the Na/K pump as a cyclic sequence of states with a single state having high affinity for ouabain shows that changes in Nai alone are sufficient to cause a 10- fold change in K0.5. These results suggest that Nai reduces the value of the apparent affinity of the Na/K pump for ouabain in 5.4 mM Ko by increasing its turnover rate, thus increasing the availability of the conformation of the Na/K pump that binds ouabain with high affinity. PMID:2299333

  5. Sediment-water interactions affecting dissolved-mercury distributions in Camp Far West Reservoir, California

    USGS Publications Warehouse

    Kuwabara, James S.; Alpers, Charles N.; Marvin-DiPasquale, Mark; Topping, Brent R.; Carter, James L.; Stewart, A. Robin; Fend, Steven V.; Parcheso, Francis; Moon, Gerald E.; Krabbenhoft, David P.

    2003-01-01

    Field and laboratory studies were conducted in April and November 2002 to provide the first direct measurements of the benthic flux of dissolved (0.2-micrometer filtered) mercury species (total and methylated forms) between the bottom sediment and water column at three sampling locations within Camp Far West Reservoir, California: one near the Bear River inlet to the reservoir, a second at a mid-reservoir site of comparable depth to the inlet site, and the third at the deepest position in the reservoir near the dam (herein referred to as the inlet, midreservoir and near-dam sites, respectively; Background, Fig. 1). Because of interest in the effects of historic hydraulic mining and ore processing in the Sierra Nevada foothills just upstream of the reservoir, dissolved-mercury species and predominant ligands that often control the mercury speciation (represented by dissolved organic carbon, and sulfides) were the solutes of primary interest. Benthic flux, sometimes referred to as internal recycling, represents the transport of dissolved chemical species between the water column and the underlying sediment. Because of the affinity of mercury to adsorb onto particle surfaces and to form insoluble precipitates (particularly with sulfides), the mass transport of mercury in mining-affected watersheds is typically particle dominated. As these enriched particles accumulate at depositional sites such as reservoirs, benthic processes facilitate the repartitioning, transformation, and transport of mercury in dissolved, biologically reactive forms (dissolved methylmercury being the most bioavailable for trophic transfer). These are the forms of mercury examined in this study. In contrast to typical scientific manuscripts, this report is formatted in a pyramid-like structure to serve the needs of diverse groups who may be interested in reviewing or acquiring information at various levels of technical detail (Appendix 1). The report enables quick transitions between the initial

  6. Scion-rootstock interaction affects the physiology and fruit quality of sweet cherry.

    PubMed

    Gonçalves, Berta; Moutinho-Pereira, José; Santos, Alberto; Silva, Ana Paula; Bacelar, Eunice; Correia, Carlos; Rosa, Eduardo

    2006-01-01

    Water relations, leaf gas exchange, chlorophyll a fluorescence, light canopy transmittance, leaf photosynthetic pigments and metabolites and fruit quality indices of cherry cultivars 'Burlat', 'Summit' and 'Van' growing on five rootstocks with differing size-controlling potentials that decrease in the order: Prunus avium L. > CAB 11E > Maxma 14 > Gisela 5 > Edabriz, were studied during 2002 and 2003. Rootstock genotype affected all physiological parameters. Cherry cultivars grafted on invigorating rootstocks had higher values of midday stem water potential (Psi(MD)), net CO(2) assimilation rate (A), stomatal conductance (g(s)), intercellular CO(2) concentration (C(i)) and maximum photochemical efficiency of photosystem II (PSII) (F(v)/F(m)) than cultivars grafted on dwarfing rootstocks. The Psi(MD) was positively correlated with A, g(s) and C(i). Moreover, A was positively correlated with g(s), and the slopes of the linear regression increased from invigorating to dwarfing rootstocks, indicating a stronger regulation of photosynthesis by stomatal aperture in trees on dwarfing Edabriz and Gisela 5. The effect of rootstock genotype was also statistically significant for leaf photosynthetic pigments, whereas metabolite concentrations and fruit physicochemical characteristics were more dependent on cultivar genotype. Among cultivars, 'Burlat' leaves had the lowest concentrations of photosynthetic pigments, but were richest in total soluble sugars, starch and total phenols. Compared with the other cultivars, 'Summit' had heavier fruits, independent of the rootstock. 'Burlat' cherries were less firm and had lower concentrations of soluble sugars and a lower titratable acidity than 'Van' cherries. Nevertheless, 'Van' cherries had lower lightness, chroma and hue angle, representing redder and darker cherries, compared with 'Summit' fruits. In general, Psi(MD) was positively correlated with fruit mass and A was negatively correlated with lightness and chroma. These results

  7. KIR/HLA interactions negatively affect rituximab- but not GA101 (obinutuzumab)-induced antibody-dependent cellular cytotoxicity.

    PubMed

    Terszowski, Grzegorz; Klein, Christian; Stern, Martin

    2014-06-15

    Ab-dependent cellular cytotoxicity (ADCC) mediated by NK cells is regulated by inhibitory killer cell Ig-like receptors (KIRs), which interact with target cell HLA class I. We analyzed how KIR/HLA interactions influence ADCC induced by rituximab and by GA101, a novel type II CD20 Ab glycoengineered for increased FcgRIII binding and ADCC capacity. We found that KIR/HLA interactions strongly and selectively inhibit rituximab-induced in vitro ADCC toward target cells expressing cognate HLA KIR ligands. NK cells of donors carrying all three ligands to inhibitory KIR showed weak activation and target cell depletion capacity when incubated with rituximab and KIR-ligand matched target B cells. In contrast, NK cells from individuals missing one or more KIR ligands activated more strongly and depleted KIR ligand-matched target B cells more efficiently in the presence of rituximab. NK cells expressing a KIR for which the ligand was absent were the main effectors of ADCC in these donors. Notably, the influence of KIR/HLA interactions on NK cell activation was synergistic with the effect of the V158F FCGR3A single nucleotide polymorphism. In contrast, GA101 induced activation of NK cells irrespective of inhibitory KIR expression, and efficiency of target cell depletion was not negatively affected by KIR/HLA interactions. These data show that modification of the Fc fragment to enhance ADCC can be an effective strategy to augment the efficacy of therapeutic mAbs by recruiting NK cells irrespective of their inhibitory KIR expression.

  8. Visualization of Host-Polerovirus Interaction Topologies Using Protein Interaction Reporter Technology

    PubMed Central

    DeBlasio, Stacy L.; Chavez, Juan D.; Alexander, Mariko M.; Ramsey, John; Eng, Jimmy K.; Mahoney, Jaclyn; Gray, Stewart M.; Bruce, James E.

    2015-01-01

    ABSTRACT Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. Most protein interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll virus [PLRV]) and protein interaction reporter (PIR), a revolutionary technology that couples a mass spectrometric-cleavable chemical cross-linker with high-resolution mass spectrometry, we provide the first report of a host-pathogen protein interaction network that includes data-derived, topological features for every cross-linked site that was identified. We show that PLRV virions have hot spots of protein interaction and multifunctional surface topologies, revealing how these plant viruses maximize their use of binding interfaces. Modeling data, guided by cross-linking constraints, suggest asymmetric packing of the major capsid protein in the virion, which supports previous epitope mapping studies. Protein interaction topologies are conserved with other species in the Luteoviridae and with unrelated viruses in the Herpesviridae and Adenoviridae. Functional analysis of three PLRV-interacting host proteins in planta using a reverse-genetics approach revealed a complex, molecular tug-of-war between host and virus. Structural mimicry and diversifying selection—hallmarks of host-pathogen interactions—were identified within host and viral binding interfaces predicted by our models. These results illuminate the functional diversity of the PLRV-host protein interaction network and demonstrate the usefulness of PIR technology for precision mapping of functional host-pathogen protein interaction topologies. IMPORTANCE The exterior shape of a plant virus and its interacting host and insect vector proteins determine whether a virus will be transmitted by an insect or infect a specific host. Gaining this information is difficult and requires years of experimentation. We used

  9. Deviation from niche optima affects the nature of plant-plant interactions along a soil acidity gradient.

    PubMed

    He, Lei; Cheng, Lulu; Hu, Liangliang; Tang, Jianjun; Chen, Xin

    2016-01-01

    There is increasing recognition of the importance of niche optima in the shift of plant-plant interactions along environmental stress gradients. Here, we investigate whether deviation from niche optima would affect the outcome of plant-plant interactions along a soil acidity gradient (pH = 3.1, 4.1, 5.5 and 6.1) in a pot experiment. We used the acid-tolerant species Lespedeza formosa Koehne as the neighbouring plant and the acid-tolerant species Indigofera pseudotinctoria Mats. or acid-sensitive species Medicago sativa L. as the target plants. Biomass was used to determine the optimal pH and to calculate the relative interaction index (RII). We found that the relationships between RII and the deviation of soil pH from the target's optimal pH were linear for both target species. Both targets were increasingly promoted by the neighbour as pH values deviated from their optima; neighbours benefitted target plants by promoting soil symbiotic arbuscular mycorrhizal fungi, increasing soil organic matter or reducing soil exchangeable aluminium. Our results suggest that the shape of the curve describing the relationship between soil pH and facilitation/competition depends on the soil pH optima of the particular species.

  10. Genotype–environment interactions affecting preflowering physiological and morphological traits of Brassica rapa grown in two watering regimes

    PubMed Central

    Aarts, Mark G. M.

    2014-01-01

    Plant growth and productivity are greatly affected by drought, which is likely to become more threatening with the predicted global temperature increase. Understanding the genetic architecture of complex quantitative traits and their interaction with water availability may lead to improved crop adaptation to a wide range of environments. Here, the genetic basis of 20 physiological and morphological traits is explored by describing plant performance and growth in a Brassica rapa recombinant inbred line (RIL) population grown on a sandy substrate supplemented with nutrient solution, under control and drought conditions. Altogether, 54 quantitative trait loci (QTL) were identified, of which many colocated in 11 QTL clusters. Seventeen QTL showed significant QTL–environment interaction (Q×E), indicating genetic variation for phenotypic plasticity. Of the measured traits, only hypocotyl length did not show significant genotype–environment interaction (G×E) in both environments in all experiments. Correlation analysis showed that, in the control environment, stomatal conductance was positively correlated with total leaf dry weight (DW) and aboveground DW, whereas in the drought environment, stomatal conductance showed a significant negative correlation with total leaf DW and aboveground DW. This correlation was explained by antagonistic fitness effects in the drought environment, controlled by a QTL cluster on chromosome A7. These results demonstrate that Q×E is an important component of the genetic variance and can play a great role in improving drought tolerance in future breeding programmes. PMID:24474811

  11. Genotype-environment interactions affecting preflowering physiological and morphological traits of Brassica rapa grown in two watering regimes.

    PubMed

    El-Soda, Mohamed; Boer, Martin P; Bagheri, Hedayat; Hanhart, Corrie J; Koornneef, Maarten; Aarts, Mark G M

    2014-02-01

    Plant growth and productivity are greatly affected by drought, which is likely to become more threatening with the predicted global temperature increase. Understanding the genetic architecture of complex quantitative traits and their interaction with water availability may lead to improved crop adaptation to a wide range of environments. Here, the genetic basis of 20 physiological and morphological traits is explored by describing plant performance and growth in a Brassica rapa recombinant inbred line (RIL) population grown on a sandy substrate supplemented with nutrient solution, under control and drought conditions. Altogether, 54 quantitative trait loci (QTL) were identified, of which many colocated in 11 QTL clusters. Seventeen QTL showed significant QTL-environment interaction (Q×E), indicating genetic variation for phenotypic plasticity. Of the measured traits, only hypocotyl length did not show significant genotype-environment interaction (G×E) in both environments in all experiments. Correlation analysis showed that, in the control environment, stomatal conductance was positively correlated with total leaf dry weight (DW) and aboveground DW, whereas in the drought environment, stomatal conductance showed a significant negative correlation with total leaf DW and aboveground DW. This correlation was explained by antagonistic fitness effects in the drought environment, controlled by a QTL cluster on chromosome A7. These results demonstrate that Q×E is an important component of the genetic variance and can play a great role in improving drought tolerance in future breeding programmes.

  12. How the interaction of Listeria monocytogenes and Acanthamoeba spp. affects growth and distribution of the food borne pathogen.

    PubMed

    Schuppler, Markus

    2014-04-01

    Listeria monocytogenes is a foodborne opportunistic pathogen capable to switch from an environmental saprophyte to a potentially fatal human pathogen. The fact that the pathogen maintains the genes suitable for an elaborate infectious process indicates that these genes are required to survive in the environment. However, no environmental host reservoir for L. monocytogenes has been identified so far. The similarity of free-living, bacteria-scavenging amoebae to macrophages led to the hypothesis that protozoa may represent the missing link in the ecology and pathology of L. monocytogenes. Consequently, numerous studies have been published reporting on the potential of Acanthamoeba spp. to serve as host for a variety of pathogenic bacteria. However, the data on the interaction of L. monocytogenes with Acanthamoeba spp. are inconsistent and relatively little information on the impact of this interaction on growth and distribution of the foodborne pathogen is currently available. Hence, this review focuses on the interaction of L. monocytogenes and Acanthamoeba spp. affecting survival and growth of the foodborne pathogen in natural and man-made environments, in order to highlight the potential impact of this interplay on food safety and human health.

  13. Dopamine transporter DAT and receptor DRD2 variants affect risk of lethal cocaine abuse: a gene–gene–environment interaction

    PubMed Central

    Sullivan, D; Pinsonneault, J K; Papp, A C; Zhu, H; Lemeshow, S; Mash, D C; Sadee, W

    2013-01-01

    Epistatic gene–gene interactions could contribute to the heritability of complex multigenic disorders, but few examples have been reported. Here, we focus on the role of aberrant dopaminergic signaling, involving the dopamine transporter DAT, a cocaine target, and the dopamine D2 receptor, which physically interacts with DAT. Splicing polymorphism rs2283265 of DRD2, encoding D2 receptors, were shown to confer risk of cocaine overdose/death (odds ratio ∼3) in subjects and controls from the Miami Dade County Brain Bank.1 Risk of cocaine-related death attributable to the minor allele of rs2283265 was significantly enhanced to OR=7.5 (P=0.0008) in homozygous carriers of the main 6-repeat allele of DAT rs3836790, a regulatory VNTR in intron8 lacking significant effect itself. In contrast, carriers of the minor 5-repeat DAT allele showed no significant risk (OR=1.1, P=0.84). DAT rs3836790 and DRD2 rs2283265 also interacted by modulating DAT protein activity in the ventral putamen of cocaine abusers. In high-linkage disequilibrium with the VNTR, DAT rs6347 in exon9 yielded similar results. Assessing the impact of DAT alone, a rare DAT haplotype formed by the minor alleles of rs3836790 and rs27072, a regulatory DAT variant in the 3′-UTR, occurred in nearly one-third of the cocaine abusers but was absent in African American controls, apparently conferring strong risk. These results demonstrate gene–gene–drug interaction affecting risk of fatal cocaine intoxication. PMID:23340505

  14. Analysis of genetic association and epistasis interactions between circadian clock genes and symptom dimensions of bipolar affective disorder.

    PubMed

    Maciukiewicz, Malgorzata; Dmitrzak-Weglarz, Monika; Pawlak, Joanna; Leszczynska-Rodziewicz, Anna; Zaremba, Dorota; Skibinska, Maria; Hauser, Joanna

    2014-07-01

    Bipolar affective disorder (BD) is a severe psychiatric disorder characterized by periodic changes in mood from depression to mania. Disruptions of biological rhythms increase risk of mood disorders. Because clinical representation of disease is heterogeneous, homogenous sets of patients are suggested to use in the association analyses. In our study, we aimed to apply previously computed structure of bipolar disorder symptom dimension for analyses of genetic association. We based quantitative trait on: main depression, sleep disturbances, appetite disturbances, excitement and psychotic dimensions consisted of OPCRIT checklist items. We genotyped 42 polymorphisms from circadian clock genes: PER3, ARNTL, CLOCK and TIMELSSS from 511 patients BD (n = 292 women and n = 219 men). As quantitative trait we used clinical dimensions, described above. Genetic associations between alleles and quantitative trait were performed using applied regression models applied in PLINK. In addition, we used the Kruskal-Wallis test to look for associations between genotypes and quantitative trait. During second stage of our analyses, we used multidimensional scaling (multifactor dimensionality reduction) for quantitative trait to compute pairwise epistatic interactions between circadian gene variants. We found association between ARNTL variant rs11022778 main depression (p = 0.00047) and appetite disturbances (p = 0.004). In epistatic interaction analyses, we observed two locus interactions between sleep disturbances (p = 0.007; rs11824092 of ARNTL and rs11932595 of CLOCK) as well as interactions of subdimension in main depression and ARNTL variants (p = 0.0011; rs3789327, rs10766075) and appetite disturbances in depression and ARNTL polymorphism (p = 7 × 10(-4); rs11022778, rs156243).

  15. Reciprocity in computer-human interaction: source-based, norm-based, and affect-based explanations.

    PubMed

    Lee, Seungcheol Austin; Liang, Yuhua Jake

    2015-04-01

    Individuals often apply social rules when they interact with computers, and this is known as the Computers Are Social Actors (CASA) effect. Following previous work, one approach to understand the mechanism responsible for CASA is to utilize computer agents and have the agents attempt to gain human compliance (e.g., completing a pattern recognition task). The current study focuses on three key factors frequently cited to influence traditional notions of compliance: evaluations toward the source (competence and warmth), normative influence (reciprocity), and affective influence (mood). Structural equation modeling assessed the effects of these factors on human compliance with computer request. The final model shows that norm-based influence (reciprocity) increased the likelihood of compliance, while evaluations toward the computer agent did not significantly influence compliance.

  16. Postnatal Infections and Immunology Affecting Chronic Lung Disease of Prematurity

    PubMed Central

    Pryhuber, Gloria S.

    2015-01-01

    Synopsis Premature infants suffer significant respiratory morbidity during infancy with long-term negative consequences on health, quality of life, and health care costs. Enhanced susceptibility to a variety of infections and inflammation play a large role in early and prolonged lung disease following premature birth, though the mechanisms of susceptibility and immune dysregulation are active areas of research. This chapter will review aspects of host-pathogen interactions and immune responses that are altered by preterm birth and that impact chronic respiratory morbidity in these children. PMID:26593074

  17. Novel Genes Affecting the Interaction between the Cabbage Whitefly and Arabidopsis Uncovered by Genome-Wide Association Mapping.

    PubMed

    Broekgaarden, Colette; Bucher, Johan; Bac-Molenaar, Johanna; Keurentjes, Joost J B; Kruijer, Willem; Voorrips, Roeland E; Vosman, Ben

    2015-01-01

    Plants have evolved a variety of ways to defend themselves against biotic attackers. This has resulted in the presence of substantial variation in defense mechanisms among plants, even within a species. Genome-wide association (GWA) mapping is a useful tool to study the genetic architecture of traits, but has so far only had limited exploitation in studies of plant defense. Here, we study the genetic architecture of defense against the phloem-feeding insect cabbage whitefly (Aleyrodes proletella) in Arabidopsis thaliana. We determined whitefly performance, i.e. the survival and reproduction of whitefly females, on 360 worldwide selected natural accessions and subsequently performed GWA mapping using 214,051 SNPs. Substantial variation for whitefly adult survival and oviposition rate (number of eggs laid per female per day) was observed between the accessions. We identified 39 candidate SNPs for either whitefly adult survival or oviposition rate, all with relatively small effects, underpinning the complex architecture of defense traits. Among the corresponding candidate genes, i.e. genes in linkage disequilibrium (LD) with candidate SNPs, none have previously been identified as a gene playing a role in the interaction between plants and phloem-feeding insects. Whitefly performance on knock-out mutants of a number of candidate genes was significantly affected, validating the potential of GWA mapping for novel gene discovery in plant-insect interactions. Our results show that GWA analysis is a very useful tool to gain insight into the genetic architecture of plant defense against herbivorous insects, i.e. we identified and validated several genes affecting whitefly performance that have not previously been related to plant defense against herbivorous insects.

  18. Novel Genes Affecting the Interaction between the Cabbage Whitefly and Arabidopsis Uncovered by Genome-Wide Association Mapping

    PubMed Central

    Broekgaarden, Colette; Bucher, Johan; Bac-Molenaar, Johanna; Keurentjes, Joost J. B.; Kruijer, Willem; Voorrips, Roeland E.; Vosman, Ben

    2015-01-01

    Plants have evolved a variety of ways to defend themselves against biotic attackers. This has resulted in the presence of substantial variation in defense mechanisms among plants, even within a species. Genome-wide association (GWA) mapping is a useful tool to study the genetic architecture of traits, but has so far only had limited exploitation in studies of plant defense. Here, we study the genetic architecture of defense against the phloem-feeding insect cabbage whitefly (Aleyrodes proletella) in Arabidopsis thaliana. We determined whitefly performance, i.e. the survival and reproduction of whitefly females, on 360 worldwide selected natural accessions and subsequently performed GWA mapping using 214,051 SNPs. Substantial variation for whitefly adult survival and oviposition rate (number of eggs laid per female per day) was observed between the accessions. We identified 39 candidate SNPs for either whitefly adult survival or oviposition rate, all with relatively small effects, underpinning the complex architecture of defense traits. Among the corresponding candidate genes, i.e. genes in linkage disequilibrium (LD) with candidate SNPs, none have previously been identified as a gene playing a role in the interaction between plants and phloem-feeding insects. Whitefly performance on knock-out mutants of a number of candidate genes was significantly affected, validating the potential of GWA mapping for novel gene discovery in plant-insect interactions. Our results show that GWA analysis is a very useful tool to gain insight into the genetic architecture of plant defense against herbivorous insects, i.e. we identified and validated several genes affecting whitefly performance that have not previously been related to plant defense against herbivorous insects. PMID:26699853

  19. Intermonomer Interactions in Hemagglutinin Subunits HA1 and HA2 Affecting Hemagglutinin Stability and Influenza Virus Infectivity

    PubMed Central

    DeFeo, Christopher J.; Alvarado-Facundo, Esmeralda; Vassell, Russell

    2015-01-01

    ABSTRACT Influenza virus hemagglutinin (HA) mediates virus entry by binding to cell surface receptors and fusing the viral and endosomal membranes following uptake by endocytosis. The acidic environment of endosomes triggers a large-scale conformational change in the transmembrane subunit of HA (HA2) involving a loop (B loop)-to-helix transition, which releases the fusion peptide at the HA2 N terminus from an interior pocket within the HA trimer. Subsequent insertion of the fusion peptide into the endosomal membrane initiates fusion. The acid stability of HA is influenced by residues in the fusion peptide, fusion peptide pocket, coiled-coil regions of HA2, and interactions between the surface (HA1) and HA2 subunits, but details are not fully understood and vary among strains. Current evidence suggests that the HA from the circulating pandemic 2009 H1N1 influenza A virus [A(H1N1)pdm09] is less stable than the HAs from other seasonal influenza virus strains. Here we show that residue 205 in HA1 and residue 399 in the B loop of HA2 (residue 72, HA2 numbering) in different monomers of the trimeric A(H1N1)pdm09 HA are involved in functionally important intermolecular interactions and that a conserved histidine in this pair helps regulate HA stability. An arginine-lysine pair at this location destabilizes HA at acidic pH and mediates fusion at a higher pH, while a glutamate-lysine pair enhances HA stability and requires a lower pH to induce fusion. Our findings identify key residues in HA1 and HA2 that interact to help regulate H1N1 HA stability and virus infectivity. IMPORTANCE Influenza virus hemagglutinin (HA) is the principal antigen in inactivated influenza vaccines and the target of protective antibodies. However, the influenza A virus HA is highly variable, necessitating frequent vaccine changes to match circulating strains. Sequence changes in HA affect not only antigenicity but also HA stability, which has important implications for vaccine production, as well

  20. Arabidopsis thaliana DOF6 negatively affects germination in non-after-ripened seeds and interacts with TCP14

    PubMed Central

    Rueda-Romero, Paloma; Barrero-Sicilia, Cristina; Gómez-Cadenas, Aurelio; Carbonero, Pilar; Oñate-Sánchez, Luis

    2012-01-01

    Seed dormancy prevents seeds from germinating under environmental conditions unfavourable for plant growth and development and constitutes an evolutionary advantage. Dry storage, also known as after-ripening, gradually decreases seed dormancy by mechanisms not well understood. An Arabidopsis thaliana DOF transcription factor gene (DOF6) affecting seed germination has been characterized. The transcript levels of this gene accumulate in dry seeds and decay gradually during after-ripening and also upon seed imbibition. While constitutive over-expression of DOF6 produced aberrant growth and sterility in the plant, its over-expression induced upon seed imbibition triggered delayed germination, abscisic acid (ABA)-hypersensitive phenotypes and increased expression of the ABA biosynthetic gene ABA1 and ABA-related stress genes. Wild-type germination and gene expression were gradually restored during seed after-ripening, despite of DOF6-induced over-expression. DOF6 was found to interact in a yeast two-hybrid system and in planta with TCP14, a previously described positive regulator of seed germination. The expression of ABA1 and ABA-related stress genes was also enhanced in tcp14 knock-out mutants. Taken together, these results indicate that DOF6 negatively affects seed germination and opposes TCP14 function in the regulation of a specific set of ABA-related genes. PMID:22155632

  1. Sexual competition and N supply interactively affect the dimorphism and competiveness of opposite sexes in Populus cathayana.

    PubMed

    Chen, Juan; Dong, Tingfa; Duan, Baoli; Korpelainen, Helena; Niinemets, Ülo; Li, Chunyang

    2015-07-01

    Several important dioecious species show sexual spatial segregation (SSS) along environmental gradients that have significant ecological effect on terrestrial ecosystem. However, little attention has been paid to understanding of how males and females respond to environmental gradients and sexual competition. We compared eco-physiological parameters of males and females of Populus cathayana under different sexual competition patterns and nitrogen (N) supply levels. We found that males and females interacting with the same or opposite sex showed significant differences in biomass partition, photosynthetic capacity, carbon (C) and N metabolism, and leaf ultrastructure, and that the sexual differences to competition were importantly driven by N supply. The intersexual competition was enhanced under high N, while the intrasexual competition among females was amplified under low N. Under high N, the intersexual competition stimulated the growth of the females and negatively affected the males. In contrast, under low N, the males exposed to intrasexual competition had the highest tolerance, whereas females exposed to intrasexual competition showed the lowest adaptation among all competition patterns. Sexual competition patterns and N supply levels significantly affected the sexual dimorphism and competitiveness, which may play an important role in spatial segregation of P. cathayana populations.

  2. NMR spectral mapping of Lipid A molecular patterns affected by interaction with the innate immune receptor CD14

    SciTech Connect

    Albright, Seth; Agrawal, Prashansa; Jain, Nitin U.

    2009-01-23

    Soluble CD14 (sCD14) is a serum glycoprotein that binds to the Lipid A moiety of lipopolysaccharides (LPS) with high affinity as part of the innate immune response to bacterial endotoxins. In order to investigate structural interactions of Lipid A with sCD14, we have prepared an isotopically labeled form of a fully active and chemically defined endotoxin, Kdo{sub 2}-Lipid A, which allowed us to carry out detailed NMR spectral mapping of this agonist ligand bound to sCD14 and identify for the first time structural regions that are strongly affected during complex formation with sCD14. These map to two adjacent areas comprising the lower portions of the sugar headgroup and upper half of the acyl chains I, III, and V, which are spatially proximal to the 1- and 4'-phosphate ends. Additionally, we have detected for the first time, presence of differential dynamic behavior for the affected resonances, suggesting a likely role for dynamics in the mechanism of Lipid A pattern recognition by sCD14.

  3. Arabidopsis thaliana DOF6 negatively affects germination in non-after-ripened seeds and interacts with TCP14.

    PubMed

    Rueda-Romero, Paloma; Barrero-Sicilia, Cristina; Gómez-Cadenas, Aurelio; Carbonero, Pilar; Oñate-Sánchez, Luis

    2012-03-01

    Seed dormancy prevents seeds from germinating under environmental conditions unfavourable for plant growth and development and constitutes an evolutionary advantage. Dry storage, also known as after-ripening, gradually decreases seed dormancy by mechanisms not well understood. An Arabidopsis thaliana DOF transcription factor gene (DOF6) affecting seed germination has been characterized. The transcript levels of this gene accumulate in dry seeds and decay gradually during after-ripening and also upon seed imbibition. While constitutive over-expression of DOF6 produced aberrant growth and sterility in the plant, its over-expression induced upon seed imbibition triggered delayed germination, abscisic acid (ABA)-hypersensitive phenotypes and increased expression of the ABA biosynthetic gene ABA1 and ABA-related stress genes. Wild-type germination and gene expression were gradually restored during seed after-ripening, despite of DOF6-induced over-expression. DOF6 was found to interact in a yeast two-hybrid system and in planta with TCP14, a previously described positive regulator of seed germination. The expression of ABA1 and ABA-related stress genes was also enhanced in tcp14 knock-out mutants. Taken together, these results indicate that DOF6 negatively affects seed germination and opposes TCP14 function in the regulation of a specific set of ABA-related genes.

  4. Emotion affects action: Midcingulate cortex as a pivotal node of interaction between negative emotion and motor signals.

    PubMed

    Pereira, Mirtes Garcia; de Oliveira, Letícia; Erthal, Fátima Smith; Joffily, Mateus; Mocaiber, Izabela F; Volchan, Eliane; Pessoa, Luiz

    2010-03-01

    Affective pictures drive the activity of brain networks and impact behavior. We showed previously that viewing unpleasant pictures interfered in the performance of a basic nonemotional visual detection task. In the present study, we employed functional magnetic resonance imaging to test the hypothesis that behavioral interference may result from the interaction between negatively valenced and motor-related signals in the brain. As in our previous study (Pereira et al., 2006), participants performed a simple target detection task that followed the presentation of unpleasant or neutral pictures. Our results revealed that an unpleasant emotional context modulated evoked responses in several regions engaged by the simple target detection task. In particular, the midcingulate cortex was recruited when participants performed target detection trials during the unpleasant context, and signal responses in this region closely mirrored the pattern of behavioral interference (as revealed via reaction time). Our findings suggest that the midcingulate cortex may be an important site for the interaction between negatively valenced signals and motor signals in the brain and that it may be involved in the implementation of defensive responses, such as freezing.

  5. Emotion affects action: Midcingulate cortex as a pivotal node of interaction between negative emotion and motor signals

    PubMed Central

    Pereira, M.G.; Oliveira, L; Erthal, FS; Joffily, M; Mocaiber, I.F.; Volchan, E.; Pessoa, L.

    2010-01-01

    Affective pictures drive the activity of brain networks and impact behavior. We showed previously that viewing unpleasant pictures interfered in the performance of a basic non-emotional visual detection task. In the present study, we employed functional magnetic resonance imaging to test the hypothesis that behavioral interference may result from the interaction between negatively valenced and motor-related signals in the brain. As in our previous study, subjects performed a simple target-detection task that followed the presentation of unpleasant or neutral pictures. Our results revealed that an unpleasant emotional context modulated evoked responses in several regions engaged by the simple target-detection task. In particular, the midcingulate cortex was recruited when participants performed target-detection trials during the unpleasant context and signal responses in this region closely mirrored the pattern of behavioral interference (as revealed via reaction time). Our findings suggest that the midcingulate cortex may be an important site for the interaction between negatively valenced and motor signals in the brain, and that it may be involved in the implementation of defensive responses, such as freezing. PMID:20233958

  6. Temperature and resource availability may interactively affect over-wintering success of juvenile fish in a changing climate.

    PubMed

    Brodersen, Jakob; Rodriguez-Gil, José Luis; Jönsson, Mikael; Hansson, Lars-Anders; Brönmark, Christer; Nilsson, P Anders; Nicolle, Alice; Berglund, Olof

    2011-01-01

    The predicted global warming may affect freshwater systems at several organizational levels, from organism to ecosystem. Specifically, in temperate regions, the projected increase of winter temperatures may have important effects on the over-winter biology of a range of organisms and especially for fish and other ectothermic animals. However, temperature effects on organisms may be directed strongly by resource availability. Here, we investigated whether over-winter loss of biomass and lipid content of juvenile roach (Rutilus rutilus) was affected by the physiologically relatively small (2-5 °C) changes of winter temperatures predicted by the Intergovernmental Panel on Climate Change (IPCC), under both natural and experimental conditions. This was investigated in combination with the effects of food availability. Finally, we explored the potential for a correlation between lake temperature and resource levels for planktivorous fish, i.e., zooplankton biomass, during five consecutive winters in a south Swedish lake. We show that small increases in temperature (+2 °C) affected fish biomass loss in both presence and absence of food, but negatively and positively respectively. Temperature alone explained only a minor part of the variation when food availability was not taken into account. In contrast to other studies, lipid analyses of experimental fish suggest that critical somatic condition rather than critical lipid content determined starvation induced mortality. Our results illustrate the importance of considering not only changes in temperature when predicting organism response to climate change but also food-web interactions, such as resource availability and predation. However, as exemplified by our finding that zooplankton over-winter biomass in the lake was not related to over-winter temperature, this may not be a straightforward task.

  7. Temperature and Resource Availability May Interactively Affect Over-Wintering Success of Juvenile Fish in a Changing Climate

    PubMed Central

    Brodersen, Jakob; Rodriguez-Gil, José Luis; Jönsson, Mikael; Hansson, Lars-Anders; Brönmark, Christer; Nilsson, P. Anders; Nicolle, Alice; Berglund, Olof

    2011-01-01

    The predicted global warming may affect freshwater systems at several organizational levels, from organism to ecosystem. Specifically, in temperate regions, the projected increase of winter temperatures may have important effects on the over-winter biology of a range of organisms and especially for fish and other ectothermic animals. However, temperature effects on organisms may be directed strongly by resource availability. Here, we investigated whether over-winter loss of biomass and lipid content of juvenile roach (Rutilus rutilus) was affected by the physiologically relatively small (2-5°C) changes of winter temperatures predicted by the Intergovernmental Panel on Climate Change (IPCC), under both natural and experimental conditions. This was investigated in combination with the effects of food availability. Finally, we explored the potential for a correlation between lake temperature and resource levels for planktivorous fish, i.e., zooplankton biomass, during five consecutive winters in a south Swedish lake. We show that small increases in temperature (+2°C) affected fish biomass loss in both presence and absence of food, but negatively and positively respectively. Temperature alone explained only a minor part of the variation when food availability was not taken into account. In contrast to other studies, lipid analyses of experimental fish suggest that critical somatic condition rather than critical lipid content determined starvation induced mortality. Our results illustrate the importance of considering not only changes in temperature when predicting organism response to climate change but also food-web interactions, such as resource availability and predation. However, as exemplified by our finding that zooplankton over-winter biomass in the lake was not related to over-winter temperature, this may not be a straightforward task. PMID:21998627

  8. Seed trait-mediated selection by rodents affects mutualistic interactions and seedling recruitment of co-occurring tree species.

    PubMed

    Zhang, Hongmao; Yan, Chuan; Chang, Gang; Zhang, Zhibin

    2016-02-01

    As mutualists, seed dispersers may significantly affect mutualistic interactions and seedling recruitment of sympatric plants that share similar seed dispersers, but studies are rare. Here, we compared seed dispersal fitness in two co-occurring plant species (Armeniaca sibirica and Amygdalus davidiana) that inhabit warm temperate deciduous forest in northern China. We tested the hypothesis that seed trait-mediated selection by rodents may influence mutualistic interactions with rodents and then seedling establishment of co-occurring plant species. A. davidiana seeds are larger and harder (thick endocarps) than A. sibirica seeds, but they have similar levels of nutrients (crude fat, crude protein), caloric value and tannin. More A. sibirica seedlings are found in the field. Semi-natural enclosure tests indicated that the two seed species were both harvested by the same six rodent species, but that A. sibirica had mutualistic interactions (scatter hoarding) with four rodent species (Apodemus peninsulae, A. agrarius, Sciurotamias davidianus, Tamias sibiricus), and A. davidiana with only one (S. davidianus). Tagged seed dispersal experiments in the field indicated that more A. sibirica seeds were scatter-hoarded by rodents, and more A. sibirica seeds survived to the next spring and became seedlings. A. sibirica seeds derive more benefit from seed dispersal by rodents than A. davidiana seeds, particularly in years with limited seed dispersers, which well explained the higher seedling recruitment of A. sibirica compared with that of A. davidiana under natural conditions. Our results suggest that seed dispersers may play a significant role in seedling recruitment and indirect competition between co-occurring plant species.

  9. Enhancing User Experience through Emotional Interaction: Determining Users' Interests in Online Art Collections Using AMARA (Affective Museum of Art Resource Agent)

    ERIC Educational Resources Information Center

    Park, S. Joon

    2013-01-01

    The need for emotional interaction has already influenced various disciplines and industries, and online museums represent a domain where providing emotional interactions could have a significant impact. Today, online museums lack the appropriate affective and hedonic values necessary to engage art enthusiasts on an emotional level. To address…

  10. Nutrient demand interacts with grass particle length to affect digestion responses and chewing activity in dairy cows.

    PubMed

    Kammes, K L; Allen, M S

    2012-02-01

    Effects of grass particle length on dry matter intake (DMI), milk production, ruminal fermentation and pool sizes, digestion and passage kinetics, and chewing activity and the relationship of these effects with preliminary DMI (pDMI) were evaluated using 15 ruminally and duodenally cannulated Holstein cows in a crossover design with a 14-d preliminary period and two 18-d treatment periods. During the preliminary period, pDMI of individual cows ranged from 22.6 to 29.8 kg/d (mean=25.8 kg/d) and 3.5% fat-corrected milk yield ranged from 29.2 to 56.9 kg/d (mean=41.9 kg/d). Experimental treatments were diets containing orchardgrass silage chopped to either (a) 19-mm (long) or (b) 10-mm (short) theoretical length of cut as the sole forage. Grass silages contained approximately 46% neutral detergent fiber (NDF); diets contained 50% forage, 23% forage NDF, and 28% total NDF. Preliminary DMI, an index of nutrient demand, was determined during the last 4 d of the preliminary period when cows were fed a common diet and used as a covariate. Main effects of grass particle length and their interaction with pDMI were tested by ANOVA. Grass particle length and its interaction with pDMI did not affect milk yield, milk composition, or rumen pH. Long particle length tended to decrease DMI compared with short particle length, which might have been limited by rumen fill or chewing time, or both. Passage rates of feed fractions did not differ between long and short particle lengths and were not related to level of intake. As pDMI increased, long particles decreased ruminal digestion rate of potentially digestible NDF at a faster rate than short particles. As a result, long particles decreased or tended to decrease rates of ruminal turnover for NDF, organic matter, and dry matter and increased their rumen pools compared with short particles for cows with high pDMI. Long particles increased eating time, which affected cows with high intake to the greatest extent, and total chewing time

  11. Nutrient demand interacts with grass maturity to affect milk fat concentration and digestion responses in dairy cows.

    PubMed

    Kammes, K L; Allen, M S

    2012-09-01

    Effects of grass maturity on dry matter intake (DMI), milk production, ruminal fermentation and pool sizes, digestion and passage kinetics, and chewing activity and the relationship of these effects with preliminary DMI (pDMI) were evaluated using 13 ruminally and duodenally cannulated Holstein cows in a crossover design with a 14-d preliminary period and two 18-d treatment periods. During the preliminary period, pDMI of individual cows ranged from 23.5 to 28.2 kg/d (mean=26.1 kg/d) and 3.5% fat-corrected milk (FCM) yield ranged from 30.8 to 57.2 kg/d (mean=43.7 kg/d). Experimental treatments were diets containing orchardgrass silage harvested either (1) early-cut, less mature (EC) or (2) late-cut, more mature (LC) as the sole forage. Early- and late-cut orchardgrass contained 44.9 and 54.4% neutral detergent fiber (NDF) and 20.1 and 15.3% crude protein, respectively. Forage:concentrate ratio was 58:42 and 46:54 for EC and LC, respectively; both diets contained approximately 25% forage NDF and 30% total NDF. Preliminary DMI, an index of nutrient demand, was determined during the last 4d of the preliminary period when cows were fed a common diet and used as a covariate. Main effects of grass maturity and their interaction with pDMI were tested by ANOVA. The EC diet decreased milk yield and increased milk fat concentration compared with the LC diet. Grass maturity and its interaction with pDMI did not affect FCM yield, DMI, rumen pH, or microbial efficiency. The EC diet increased rates of ruminal digestion of potentially digestible NDF and passage of indigestible NDF (iNDF) compared with the LC diet. The lower concentration and faster passage rate of iNDF for EC resulted in lower rumen pools of iNDF, total NDF, organic matter, and dry matter for EC than LC. Ruminal passage rates of potentially digestible NDF and starch were related to level of intake (quadratic and linear interactions, respectively) and subsequently affected ruminal digestibility of these nutrients

  12. A whole-genome RNA interference screen for human cell factors affecting myxoma virus replication.

    PubMed

    Teferi, Wondimagegnehu M; Dodd, Kristopher; Maranchuk, Rob; Favis, Nicole; Evans, David H

    2013-04-01

    Myxoma virus (MYXV) provides an important model for investigating host-pathogen interactions. Recent studies have also highlighted how mutations in transformed human cells can expand the host range of this rabbit virus. Although virus growth depends upon interactions between virus and host proteins, the nature of these interactions is poorly understood. To address this matter, we performed small interfering RNA (siRNA) screens for genes affecting MYXV growth in human MDA-MB-231 cells. By using siRNAs targeting the whole human genome (21,585 genes), a subset of human phosphatases and kinases (986 genes), and also a custom siRNA library targeting selected statistically significant genes ("hits") and nonsignificant genes ("nonhits") of the whole human genome screens (88 genes), we identified 711 siRNA pools that promoted MYXV growth and 333 that were inhibitory. Another 32 siRNA pools (mostly targeting the proteasome) were toxic. The overall overlap in the results was about 25% for the hits and 75% for the nonhits. These pro- and antiviral genes can be clustered into pathways and related groups, including well-established inflammatory and mitogen-activated protein kinase pathways, as well as clusters relating to β-catenin and the Wnt signaling cascade, the cell cycle, and cellular metabolism. The validity of a subset of these hits was independently confirmed. For example, treating cells with siRNAs that might stabilize cells in G(1), or inhibit passage into S phase, stimulated MYXV growth, and these effects were reproduced by trapping cells at the G(1)/S boundary with an inhibitor of cyclin-dependent kinases 4/6. By using 2-deoxy-D-glucose and plasmids carrying the gene for phosphofructokinase, we also confirmed that infection is favored by aerobic glycolytic metabolism. These studies provide insights into how the growth state and structure of cells affect MYXV growth and how these factors might be manipulated to advantage in oncolytic virus therapy.

  13. BIMOLECULAR FLUORESCENCE COMPLEMENTATION ANALYSIS OF INDUCIBLE PROTEIN INTERACTIONS: EFFECTS OF FACTORS AFFECTING PROTEIN FOLDING ON FLUORESCENT PROTEIN FRAGMENT ASSOCIATION

    PubMed Central

    Robida, Aaron M; Kerppola, Tom K

    2009-01-01

    adaptation to protein folding stress. In summary, BiFC analysis enables detection of protein interactions within minutes after complex formation in living cells, but does not allow detection of complex dissociation. Conditional BiFC complex formation depends on the folding efficiencies of fluorescent protein fragments and can be affected by the cellular protein folding environment. PMID:19733184

  14. Nanoscale physicochemical properties of chain- and step-growth polymerized PEG hydrogels affect cell-material interactions.

    PubMed

    Vats, Kanika; Marsh, Graham; Harding, Kristen; Zampetakis, Ioannis; Waugh, Richard E; Benoit, Danielle S W

    2017-04-01

    Poly(ethylene glycol) (PEG) hydrogels provide a versatile platform to develop cell instructive materials through incorporation of a variety of cell adhesive ligands and degradable chemistries. Synthesis of PEG gels can be accomplished via two mechanisms: chain and step growth polymerizations. The mechanism dramatically impacts hydrogel nanostructure, whereby chain polymerized hydrogels are highly heterogeneous and step growth networks exhibit more uniform structures. Underpinning these alterations in nanostructure of chain polymerized hydrogels are densely-packed hydrophobic poly(methyl methacrylate) or poly(acrylate) kinetic chains between hydrophilic PEG crosslinkers. As cell-material interactions, such as those mediated by integrins, occur at the nanoscale and affect cell behavior, it is important to understand how different modes of polymerization translate into nanoscale mechanical and hydrophobic heterogeneities of hydrogels. Therefore, chain- and step-growth polymerized PEG hydrogels with macroscopically similar macromers and compliance (for example, methacrylate-functionalized PEG (PEGDM), MW  = 10 kDa and norbornene-functionalized 4-arm PEG (PEGnorb), MW  = 10 kDa) were used to examine potential nanoscale differences in hydrogel mechanics and hydrophobicity using atomic force microscopy (AFM). It was found that chain-growth polymerized network yielded greater heterogeneities in both stiffness and hydrophobicity as compared to step-growth polymerized networks. These nanoscale heterogeneities impact cell-material interactions, particularly human mesenchymal stem cell (hMSC) adhesion and spreading, which has implications in use of these hydrogels for tissue engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1112-1122, 2017.

  15. Impact Depth and the Interaction with Impact Speed Affect the Severity of Contusion Spinal Cord Injury in Rats

    PubMed Central

    Lam, Cameron J.; Assinck, Peggy; Liu, Jie; Tetzlaff, Wolfram

    2014-01-01

    Abstract Spinal cord injury (SCI) biomechanics suggest that the mechanical factors of impact depth and speed affect the severity of contusion injury, but their interaction is not well understood. The primary aim of this work was to examine both the individual and combined effects of impact depth and speed in contusion SCI on the cervical spinal cord. Spinal cord contusions between C5 and C6 were produced in anesthetized rats at impact speeds of 8, 80, or 800 mm/s with displacements of 0.9 or 1.5 mm (n=8/group). After 7 days postinjury, rats were assessed for open-field behavior, euthanized, and spinal cords were harvested. Spinal cord tissue sections were stained for demyelination (myelin-based protein) and tissue sparing (Luxol fast blue). In parallel, a finite element model of rat spinal cord was used to examine the resulting maximum principal strain in the spinal cord during impact. Increasing impact depth from 0.9 to 1.5 mm reduced open-field scores (p<0.01) above 80 mm/s, reduced gray (GM) and white matter (WM) sparing (p<0.01), and increased the amount of demyelination (p<0.01). Increasing impact speed showed similar results at the 1.5-mm impact depth, but not the 0.9-mm impact depth. Linear correlation analysis with finite element analysis strain showed correlations (p<0.001) with nerve fiber damage in the ventral (R2=0.86) and lateral (R2=0.74) regions of the spinal cord and with WM (R2=0.90) and GM (R2=0.76) sparing. The results demonstrate that impact depth is more important in determining the severity of SCI and that threshold interactions exist between impact depth and speed. PMID:24945364

  16. CO2, Temperature, and Soil Moisture Interactions Affect NDVI and Reproductive Phenology in Old-Field Plant Communities

    NASA Astrophysics Data System (ADS)

    Engel, C.; Weltzin, J.; Norby, R.

    2004-12-01

    Plant community composition and ecosystem function may be altered by global atmospheric and climate change, including increased atmospheric [CO2], temperature, and varying precipitation regimes. We are conducting an experiment at Oak Ridge National Laboratory (ORNL) utilizing open-top chambers to administer experimental treatments of elevated CO2 (+300 ppm), warming (+ 3 degrees Celsius), and varying soil moisture availability to experimental plant communities constructed of seven common old-field species, including C3 and C4 grasses, forbs, and legumes. During 2004 we monitored plant community phenology (NDVI) and plant reproductive phenology. Early in the year, NDVI was greater in wet treatment plots, and was unaffected by main effects of temperature or CO2. This result suggests that early in the season warming is insufficient to affect early canopy development. Differences in soil moisture sustained throughout the winter and into early spring may constitute an important control on early canopy greenup. Elevated CO2 alleviated detrimental effects of warming on NDVI, but only early in the season. As ambient temperatures increased, elevated temperatures negatively impacted NDVI only in the dry plots. Wetter conditions ameliorate the effects of warming on canopy greenness during the warmer seasons of the year. Warming increased rates of bolting, number of inflorescences, and time to reproductive maturity for Andropogon virginicus (a C4 bunchgrass). Solidago Canadensis (a C3 late-season forb) also produced flowers earlier in elevated temperatures. Conversely, none of the C3 grasses and forbs that bolt or flower in late spring or early summer responded to temperature or CO2. Results indicate that warming and drought may impact plant community phenology, and plant species reproductive phenology. Clearly community phenology is driven by complex interactions among temperature, water, and CO2 that change throughout the season. Our data stresses the importance of

  17. Inducible offences affect predator-prey interactions and life-history plasticity in both predators and prey.

    PubMed

    Kishida, Osamu; Costa, Zacharia; Tezuka, Ayumi; Michimae, Hirofumi

    2014-07-01

    Phenotypic plasticity can have strong impacts on predator-prey interactions. Although much work has examined the effects of inducible defences, less understood is how inducible offences in predators affect predator-prey interactions and predator and prey phenotypes. Here, we examine the impacts of an inducible offence on the interactions and life histories of a cohort of predatory Hynobius retardatus salamander larvae and their prey, Rana pirica tadpoles. We examined larval (duration, survival) and post-metamorphic (size) traits of both species after manipulating the presence/absence of tadpoles and salamanders with offensive (broadened gape width)