Science.gov

Sample records for affect image quality

  1. Factors Affecting Image Quality in Near-field Ultra-wideband Radar Imaging for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Curtis, Charlotte

    Near-field ultra-wideband radar imaging has potential as a new breast imaging modality. While a number of reconstruction algorithms have been published with the goal of reducing undesired responses or clutter, an in-depth analysis of the dominant sources of clutter has not been conducted. In this thesis, time domain radar image reconstruction is demonstrated to be equivalent to frequency domain synthetic aperture radar. This reveals several assumptions inherent to the reconstruction algorithm related to radial spreading, point source antennas, and the independent summation of point scatterers. Each of these assumptions is examined in turn to determine which has the greatest impact on the resulting image quality and interpretation. In addition, issues related to heterogeneous and dispersive media are addressed. Variations in imaging parameters are tested by observing their influence on the system point spread function. Results are then confirmed by testing on simple and detailed simulation models, followed by data acquired from human volunteers. Recommended parameters are combined into a new imaging operator that is demonstrated to generate results comparable to a more accurate signal model, but with a 50 fold improvement in computational efficiency. Finally, the most significant factor affecting image quality is determined to be the estimate of tissue properties used to form the image.

  2. Factors affecting computed tomography image quality for assessment of mechanical aortic valves.

    PubMed

    Suh, Young Joo; Kim, Young Jin; Hong, Yoo Jin; Lee, Hye-Jeong; Hur, Jin; Hong, Sae Rom; Im, Dong Jin; Kim, Yun Jung; Choi, Byoung Wook

    2016-06-01

    Evaluating mechanical valves with computed tomography (CT) can be problematic because artifacts from the metallic components of valves can hamper image quality. The purpose of this study was to determine factors affecting the image quality of cardiac CT to improve assessment of mechanical aortic valves. A total of 144 patients who underwent aortic valve replacement with mechanical valves (ten different types) and who underwent cardiac CT were included. Using a four-point grading system, the image quality of the CT scans was assessed for visibility of the valve leaflets and the subvalvular regions. Data regarding the type of mechanical valve, tube voltage, average heart rate (HR), and HR variability during CT scanning were compared between the non-diagnostic (overall image quality score ≤2) and diagnostic (overall image quality score >2) image quality groups. Logistic regression analyses were performed to identify predictors of non-diagnostic image quality. The percentage of valve types that incorporated a cobalt-chrome component (two types in total) and HR variability were significantly higher in the non-diagnostic image group than in the diagnostic group (P < 0.001 and P = 0.013, respectively). The average HR and tube voltage were not significantly different between the two groups (P > 0.05). Valve type was the only independent predictor of non-diagnostic quality. The CT image quality for patients with mechanical aortic valves differed significantly depending on the type of mechanical valve used and on the degree of HR variability.

  3. Simulation of the imaging quality of ground-based telescopes affected by atmospheric disturbances

    NASA Astrophysics Data System (ADS)

    Ren, Yubin; Kou, Songfeng; Gu, Bozhong

    2014-08-01

    Ground-based telescope imaging model is developed in this paper, the relationship between the atmospheric disturbances and the ground-based telescope image quality is studied. Simulation of the wave-front distortions caused by atmospheric turbulences has long been an important method in the study of the propagation of light through the atmosphere. The phase of the starlight wave-front is changed over time, but in an appropriate short exposure time, the atmospheric disturbances can be considered as "frozen". In accordance with Kolmogorov turbulence theory, simulating atmospheric disturbances of image model based on the phase screen distorted by atmospheric turbulences is achieved by the fast Fourier transform (FFT). Geiger mode avalanche photodiode array (APD arrays) model is used for atmospheric wave-front detection, the image is achieved by inversion method of photon counting after the target starlight goes through phase screens and ground-based telescopes. Ground-based telescope imaging model is established in this paper can accurately achieve the relationship between the quality of telescope imaging and monolayer or multilayer atmosphere disturbances, and it is great significance for the wave-front detection and optical correction in a Multi-conjugate Adaptive Optics system (MCAO).

  4. Does Body Image Affect Quality of Life?: A Population Based Study.

    PubMed

    Nayir, Tufan; Uskun, Ersin; Yürekli, Mustafa Volkan; Devran, Hacer; Çelik, Ayşe; Okyay, Ramazan Azim

    2016-01-01

    Body image (BI) can be described as the assessment of both positive and negative emotion for one's own body parts and their characteristics by himself or herself. Current research has concentrated mostly on the status of negative BI as a risk factor for mental health problems rather than as a public health problem, thereby little is known about the effects of BI on quality of life. Thus, the purpose of this study was to assess the BI and Quality of Life (QoL) of individuals and to investigate the relationship between the two. Individuals over 15 living in Isparta city center constitute the universe of this cross-sectional analytical study, carried out in 2014. The BI of individuals was measured by the Body Image Scale and The QoL of individuals was measured using the World Health Organization (WHO) Quality of Life Scale Short Form. The mean age of the participants was 31.9 ± 13.0 and 56.0% were female, 36.8% were married and 81.7% had education above high school. 25.7% had at least one chronic disease and 17.7% received medication regularly. Having good-very good health perception, having higher income than expenses, making regular exercises were predictors in enhancing the quality of life in certain aspects, however having a good body image came out as a predictor enhancing the quality of life in all sub-domains. BI was found closely related with QoL in all sub-domains. Our findings suggest that greater attention should be to be given to BI as a strong predictor of QoL. PMID:27649389

  5. Does Body Image Affect Quality of Life?: A Population Based Study

    PubMed Central

    Nayir, Tufan; Uskun, Ersin; Yürekli, Mustafa Volkan; Devran, Hacer; Çelik, Ayşe; Okyay, Ramazan Azim

    2016-01-01

    Body image (BI) can be described as the assessment of both positive and negative emotion for one’s own body parts and their characteristics by himself or herself. Current research has concentrated mostly on the status of negative BI as a risk factor for mental health problems rather than as a public health problem, thereby little is known about the effects of BI on quality of life. Thus, the purpose of this study was to assess the BI and Quality of Life (QoL) of individuals and to investigate the relationship between the two. Individuals over 15 living in Isparta city center constitute the universe of this cross-sectional analytical study, carried out in 2014. The BI of individuals was measured by the Body Image Scale and The QoL of individuals was measured using the World Health Organization (WHO) Quality of Life Scale Short Form. The mean age of the participants was 31.9 ± 13.0 and 56.0% were female, 36.8% were married and 81.7% had education above high school. 25.7% had at least one chronic disease and 17.7% received medication regularly. Having good-very good health perception, having higher income than expenses, making regular exercises were predictors in enhancing the quality of life in certain aspects, however having a good body image came out as a predictor enhancing the quality of life in all sub-domains. BI was found closely related with QoL in all sub-domains. Our findings suggest that greater attention should be to be given to BI as a strong predictor of QoL. PMID:27649389

  6. Female Genital Dialogues: Female Genital Self-Image, Sexual Dysfunction, and Quality of Life in Patients With Vitiligo With and Without Genital Affection.

    PubMed

    Sarhan, Deena; Mohammed, Ghada F A; Gomaa, Amal H A; Eyada, Moustafa M K

    2016-01-01

    Vitiligo has a major effect on sexual health because of the disfiguring skin lesions affecting self-image and self-esteem. However, this topic has not explored. This article aimed to assess the effect of vitiligo on genital self-image, sexual function, and quality of life in female patients. This cross-sectional study included 50 sexually active women with vitiligo and 25 women without vitiligo. All participants subjected to full history taking and examination. Extent of vitiligo was assessed with the Vitiligo Area Scoring Index score, sexual function with the Female Sexual Function Index, genital self-image with Female Genital Self-Image Score and quality of life with the Dermatology Life Quality Index questionnaires. The main outcome measures were correlation between Vitiligo Area Scoring Index, Female Genital Self-Image Score, Female Sexual Function Index, and Dermatology Life Quality Index domains was determined using t test and Pearson correlation. This study revealed a negative correlation between the Vitiligo Area Scoring Index score and sexual satisfaction. Vitiligo Area Scoring Index and Dermatology Life Quality Index score was significantly correlated with Arabic Version of the Female Genital Self-Image Score alone and with Arabic Version of the Female Sexual Functioning Index alone and with both the Arabic Version of the Female Genital Self-Image Score and the Arabic Version of the Female Sexual Functioning Index (p <.05). Sexual and psychological assessment of patients with vitiligo is imperative to improve outcomes and increase patients' compliance with treatment.

  7. Image quality analyzer

    NASA Astrophysics Data System (ADS)

    Lukin, V. P.; Botugina, N. N.; Emaleev, O. N.; Antoshkin, L. V.; Konyaev, P. A.

    2012-07-01

    Image quality analyzer (IQA) which used as device for efficiency analysis of adaptive optics application is described. In analyzer marketed possibility estimations quality of images on three different criterions of quality images: contrast, sharpnesses and the spectral criterion. At present given analyzer is introduced on Big Solar Vacuum Telescope in stale work that allows at observations to conduct the choice of the most contrasting images of Sun. Is it hereinafter planned use the analyzer in composition of the ANGARA adaptive correction system.

  8. Retention of 99mTc-DMSA(III) and 99mTc-nanocolloid in different syringes affects imaging quality.

    PubMed

    Bauwens, Matthias; Pooters, Ivo; van der Pol, Jochen; Mottaghy, Felix M; van Kroonenburgh, Marinus

    2014-04-01

    (99m)Tc-dimercaptosuccinic acid [DMSA(III)] and colloidal human serum albumin ((99m)Tc-nanocolloid) are widely used radiopharmaceuticals. Recently, in our institution we encountered image quality problems in DMSA scans after changing the brand of syringes we were using, which triggered us to look into the adsorption properties of syringes from different brands for (99m)Tc-DMSA(III) and (99m)Tc-nanocolloid. We also describe a clinical case in which adsorption of (99m)Tc-DMSA(III) caused inferior imaging quality. DMSA and nanocolloid were labeled with (99m)Tc following manufacturer guidelines. After synthesis, syringes with (99m)Tc-DMSA(III) and (99m)Tc-nanocolloid were stored for 15, 30, 60, and 120 min. We evaluated Luer Lock syringes manufactured by different brands such as Artsana, Henke-Sass-Wolf, B. Braun Medical N.V., CODAN Medizinische Geräte GmbH & Co KG, Becton Dickinson and Company, and Terumo Europe. Adsorption of (99m)Tc-DMSA(III) and (99m)Tc-nanocolloid was acceptably low for all syringes (<13%), except for two brands with (99m)Tc-DMSA(III) adsorption rates of 36 and 30%, respectively, and for one brand with a (99m)Tc-nanocolloid adsorption rate of 27%. Adsorption of (99m)Tc-DMSA(III) and (99m)Tc-nanocolloid reaches critical levels in syringes produced by two brands, potentially causing poor image quality--for example, in DMSA scans using pediatric radiopharmaceutical doses. It is advised to check the compatibility of any radiopharmaceutical with syringes as an integral part of the quality assurance program.

  9. Image Enhancement, Image Quality, and Noise

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.; Hines, Glenn D.

    2005-01-01

    The Multiscale Retinex With Color Restoration (MSRCR) is a non-linear image enhancement algorithm that provides simultaneous dynamic range compression, color constancy and rendition. The overall impact is to brighten up areas of poor contrast/lightness but not at the expense of saturating areas of good contrast/brightness. The downside is that with the poor signal-to-noise ratio that most image acquisition devices have in dark regions, noise can also be greatly enhanced thus affecting overall image quality. In this paper, we will discuss the impact of the MSRCR on the overall quality of an enhanced image as a function of the strength of shadows in an image, and as a function of the root-mean-square (RMS) signal-to-noise (SNR) ratio of the image.

  10. Factors Affecting Medical Service Quality

    PubMed Central

    MOSADEGHRAD, Ali Mohammad

    2014-01-01

    Abstract Background A better understanding of factors influencing quality of medical service can pinpoint better strategies for quality assurance in medical services. This study aimed to identify factors affecting the quality of medical services provided by Iranian physicians. Methods Exploratory in-depth individual interviews were conducted with sixty-four physicians working in various medical institutions in Iran. Results Individual, organizational and environmental factors enhance or inhibit the quality of medical services. Quality of medical services depends on the personal factors of the physician and patient, and factors pertaining to the healthcare setting and the broader environment. Conclusion Differences in internal and external factors such as availability of resources, patient cooperation and collaboration among providers affect the quality of medical services and patient outcomes. Supportive leadership, proper planning, education and training and effective management of resources and processes improve the quality of medical services. This article contributes to healthcare theory and practice by developing a conceptual framework for understanding factors that influence medical services quality. PMID:26060745

  11. Social image quality

    NASA Astrophysics Data System (ADS)

    Qiu, Guoping; Kheiri, Ahmed

    2011-01-01

    Current subjective image quality assessments have been developed in the laboratory environments, under controlledconditions, and are dependent on the participation of limited numbers of observers. In this research, with the help of Web 2.0 and social media technology, a new method for building a subjective image quality metric has been developed where the observers are the Internet users. A website with a simple user interface that enables Internet users from anywhere at any time to vote for a better quality version of a pair of the same image has been constructed. Users' votes are recorded and used to rank the images according to their perceived visual qualities. We have developed three rank aggregation algorithms to process the recorded pair comparison data, the first uses a naive approach, the second employs a Condorcet method, and the third uses the Dykstra's extension of Bradley-Terry method. The website has been collecting data for about three months and has accumulated over 10,000 votes at the time of writing this paper. Results show that the Internet and its allied technologies such as crowdsourcing offer a promising new paradigm for image and video quality assessment where hundreds of thousands of Internet users can contribute to building more robust image quality metrics. We have made Internet user generated social image quality (SIQ) data of a public image database available online (http://www.hdri.cs.nott.ac.uk/siq/) to provide the image quality research community with a new source of ground truth data. The website continues to collect votes and will include more public image databases and will also be extended to include videos to collect social video quality (SVQ) data. All data will be public available on the website in due course.

  12. SU-E-J-28: Gantry Speed Significantly Affects Image Quality and Imaging Dose for 4D Cone-Beam Computed Tomography On the Varian Edge Platform

    SciTech Connect

    Santoso, A; Song, K; Gardner, S; Chetty, I; Wen, N

    2015-06-15

    Purpose: 4D-CBCT facilitates assessment of tumor motion at treatment position. We investigated the effect of gantry speed on 4D-CBCT image quality and dose using the Varian Edge On-Board Imager (OBI). Methods: A thoracic protocol was designed using a 125 kVp spectrum. Image quality parameters were obtained via 4D acquisition using a Catphan phantom with a gating system. A sinusoidal waveform was executed with a five second period and superior-inferior motion. 4D-CBCT scans were sorted into 4 and 10 phases. Image quality metrics included spatial resolution, contrast-to-noise ratio (CNR), uniformity index (UI), Hounsfield unit (HU) sensitivity, and RMS error (RMSE) of motion amplitude. Dosimetry was accomplished using Gafchromic XR-QA2 films within a CIRS Thorax phantom. This was placed on the gating phantom using the same motion waveform. Results: High contrast resolution decreased linearly from 5.93 to 4.18 lp/cm, 6.54 to 4.18 lp/cm, and 5.19 to 3.91 lp/cm for averaged, 4 phase, and 10 phase 4DCBCT volumes respectively as gantry speed increased from 1.0 to 6.0 degs/sec. CNRs decreased linearly from 4.80 to 1.82 as the gantry speed increased from 1.0 to 6.0 degs/sec, respectively. No significant variations in UIs, HU sensitivities, or RMSEs were observed with variable gantry speed. Ion chamber measurements compared to film yielded small percent differences in plastic water regions (0.1–9.6%), larger percent differences in lung equivalent regions (7.5–34.8%), and significantly larger percent differences in bone equivalent regions (119.1–137.3%). Ion chamber measurements decreased from 17.29 to 2.89 cGy with increasing gantry speed from 1.0 to 6.0 degs/sec. Conclusion: Maintaining technique factors while changing gantry speed changes the number of projections used for reconstruction. Increasing the number of projections by decreasing gantry speed decreases noise, however, dose is increased. The future of 4DCBCT’s clinical utility relies on further

  13. JPEG2000 still image coding quality.

    PubMed

    Chen, Tzong-Jer; Lin, Sheng-Chieh; Lin, You-Chen; Cheng, Ren-Gui; Lin, Li-Hui; Wu, Wei

    2013-10-01

    This work demonstrates the image qualities between two popular JPEG2000 programs. Two medical image compression algorithms are both coded using JPEG2000, but they are different regarding the interface, convenience, speed of computation, and their characteristic options influenced by the encoder, quantization, tiling, etc. The differences in image quality and compression ratio are also affected by the modality and compression algorithm implementation. Do they provide the same quality? The qualities of compressed medical images from two image compression programs named Apollo and JJ2000 were evaluated extensively using objective metrics. These algorithms were applied to three medical image modalities at various compression ratios ranging from 10:1 to 100:1. Following that, the quality of the reconstructed images was evaluated using five objective metrics. The Spearman rank correlation coefficients were measured under every metric in the two programs. We found that JJ2000 and Apollo exhibited indistinguishable image quality for all images evaluated using the above five metrics (r > 0.98, p < 0.001). It can be concluded that the image quality of the JJ2000 and Apollo algorithms is statistically equivalent for medical image compression. PMID:23589187

  14. Optimization of synthetic aperture image quality

    NASA Astrophysics Data System (ADS)

    Moshavegh, Ramin; Jensen, Jonas; Villagomez-Hoyos, Carlos A.; Stuart, Matthias B.; Hemmsen, Martin Christian; Jensen, Jørgen Arendt

    2016-04-01

    Synthetic Aperture (SA) imaging produces high-quality images and velocity estimates of both slow and fast flow at high frame rates. However, grating lobe artifacts can appear both in transmission and reception. These affect the image quality and the frame rate. Therefore optimization of parameters effecting the image quality of SA is of great importance, and this paper proposes an advanced procedure for optimizing the parameters essential for acquiring an optimal image quality, while generating high resolution SA images. Optimization of the image quality is mainly performed based on measures such as F-number, number of emissions and the aperture size. They are considered to be the most contributing acquisition factors in the quality of the high resolution images in SA. Therefore, the performance of image quality is quantified in terms of full-width at half maximum (FWHM) and the cystic resolution (CTR). The results of the study showed that SA imaging with only 32 emissions and maximum sweep angle of 22 degrees yields a very good image quality compared with using 256 emissions and the full aperture size. Therefore the number of emissions and the maximum sweep angle in the SA can be optimized to reach a reasonably good performance, and to increase the frame rate by lowering the required number of emissions. All the measurements are performed using the experimental SARUS scanner connected to a λ/2-pitch transducer. A wire phantom and a tissue mimicking phantom containing anechoic cysts are scanned using the optimized parameters for the transducer. Measurements coincide with simulations.

  15. Retinal Image Quality During Accommodation

    PubMed Central

    López-Gil, N.; Martin, J.; Liu, T.; Bradley, A.; Díaz-Muñoz, D.; Thibos, L.

    2013-01-01

    Purpose We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Methods Subjects viewed a monochromatic (552nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Results Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Conclusions Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye’s higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced

  16. Quality assessment for hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Chen, Yuheng; Chen, Xinhua; Zhou, Jiankang; Shen, Weimin

    2014-11-01

    Image quality assessment is an essential value judgement approach for many applications. Multi & hyper spectral imaging has more judging essentials than grey scale or RGB imaging and its image quality assessment job has to cover up all-around evaluating factors. This paper presents an integrating spectral imaging quality assessment project, in which spectral-based, radiometric-based and spatial-based statistical behavior for three hyperspectral imagers are jointly executed. Spectral response function is worked out based on discrete illumination images and its spectral performance is deduced according to its FWHM and spectral excursion value. Radiometric response ability of different spectral channel under both on-ground and airborne imaging condition is judged by SNR computing based upon local RMS extraction and statistics method. Spatial response evaluation of the spectral imaging instrument is worked out by MTF computing with slanted edge analysis method. Reported pioneering systemic work in hyperspectral imaging quality assessment is carried out with the help of several domestic dominating work units, which not only has significance in the development of on-ground and in-orbit instrument performance evaluation technique but also takes on reference value for index demonstration and design optimization for instrument development.

  17. Factors affecting enhanced video quality preferences

    PubMed Central

    Satgunam, PremNandhini; Woods, Russell L; Bronstad, P Matthew; Peli, Eli

    2013-01-01

    The development of video quality metrics requires methods for measuring perceived video quality. Most such metrics are designed and tested using databases of images degraded by compression and scored using opinion ratings. We studied video quality preferences for enhanced images of normally-sighted participants using the method of paired comparisons with a thorough statistical analysis. Participants (n=40) made pair-wise comparisons of high definition (HD) video clips enhanced at four different levels using a commercially available enhancement device. Perceptual scales were computed with binary logistic regression to estimate preferences for each level and to provide statistical inference of the differences among levels and the impact of other variables. While moderate preference for enhanced videos was found, two unexpected effects were also uncovered: (1) Participants could be broadly classified into two groups: those who preferred enhancement ("Sharp") and those who disliked enhancement ("Smooth"). (2) Enhancement preferences depended on video content, particularly for human faces to be enhanced less. The results suggest that algorithms to evaluate image quality (at least for enhancement) may need to be adjusted or applied differentially based on video content and viewer preferences. The possible impact of similar effects on image quality of compressed video needs to be evaluated. PMID:24107400

  18. Quality management in cardiopulmonary imaging.

    PubMed

    Kanne, Jeffrey P

    2011-02-01

    Increased scrutiny of the practice of medicine by government, insurance providers, and individual patients has led to a rapid growth of quality management programs in health care. Radiology is no exception to this trend, and quality management has become an important issue for individual radiologists as well as their respective practices. Quality control has been a mainstay of the practice of radiology for many years, with quality assurance and quality improvement both relative newcomers. This article provides an overview of quality management in the context of cardiopulmonary imaging and describes specific areas of cardiopulmonary radiology in which the components of a quality management program can be integrated. Specific quality components are discussed, and examples of quality initiatives are provided.

  19. Watermelon quality traits as affected by ploidy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growers offering high quality watermelons [Citrullus lanatus (Thumb.), Matsum & Nakai] that are also high in phytonutrients will have stronger market opportunities. In order to offer highly nutritious fruit, the industry must understand the nature of phytonutrient accumulation as it is affected by ...

  20. Factors Affecting the Quality of Staff Development.

    ERIC Educational Resources Information Center

    Purcell, Larry O.

    A review of the literature concerning the effectiveness and quality of staff development programs focuses on factors that affect the success of such programs. These factors include: individual concerns, training activities, applications, qualifications of consultants, scheduling, strategies, facilities, feedback, collaboration, and outcomes. It is…

  1. Visual Limits To Image Quality

    NASA Astrophysics Data System (ADS)

    Granger, Edward M.

    1985-07-01

    Today's high speed computers, large and inexpensive memory devices and high definition displays have opened up the area of electronic image processing. Computers are being used to compress,enhance,and geometrically correct a wide range of image related data. It is necessary to develop Image Quality Merit Factors (IOW) that can be used to evaluate, compare, and specify imaging systems. A meaningful IQMF will have to include both the effects of the transfer function of the system and the noise introduced by the system. Most of the methods used to date have utilized linear system techniques to describe performance. In our work on the IOMF, we have found that it may be necessary to imitate the eye-brain combination in order to best describe the performance of an imaging system. This paper presents the idea that understanding the organization of and the rivalry between visual mechanisms may lead to new ways of considering photographic and electronic system image quality and the loss in image quality due to grain, halftones, and pixel noise.

  2. Factors affecting water quality in Cherokee Reservoir

    SciTech Connect

    Iwanski, M.L.; Higgins, J.M.; Kim, B.R.; Young, R.C.

    1980-07-01

    The purpose was to: (1) define reservoir problems related to water quality conditions; (2) identify the probable causes of these problems; and (3) recommend procedures for achieving needed reservoir water quality improvements. This report presents the project findings to date and suggests steps for upgrading the quality of Cherokee Reservoir. Section II presents background information on the characteristics of the basin, the reservoir, and the beneficial uses of the reservoir. Section III identifies the impacts of existing reservoir water quality on uses of the reservoir for water supply, fishery resources, recreation, and waste assimilation. Section IV presents an assessment of cause-effect relationships. The factors affecting water quality addressed in Section IV are: (1) reservoir thermal stratification and hydrodynamics; (2) dissolved oxygen depletion; (3) eutrophication; (4) toxic substances; and (5) reservoir fisheries. Section V presents a preliminary evaluation of alternatives for improving the quality of Cherokee Reservoir. Section VI presents preliminary conclusions and recommendations for developing and implementing a reservoir water quality management plan. 7 references, 22 figures, 21 tables.

  3. Image quality (IQ) guided multispectral image compression

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik

    2016-05-01

    Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.

  4. Fovea based image quality assessment

    NASA Astrophysics Data System (ADS)

    Guo, Anan; Zhao, Debin; Liu, Shaohui; Cao, Guangyao

    2010-07-01

    Humans are the ultimate receivers of the visual information contained in an image, so the reasonable method of image quality assessment (IQA) should follow the properties of the human visual system (HVS). In recent years, IQA methods based on HVS-models are slowly replacing classical schemes, such as mean squared error (MSE) and Peak Signal-to-Noise Ratio (PSNR). IQA-structural similarity (SSIM) regarded as one of the most popular HVS-based methods of full reference IQA has apparent improvements in performance compared with traditional metrics in nature, however, it performs not very well when the images' structure is destroyed seriously or masked by noise. In this paper, a new efficient fovea based structure similarity image quality assessment (FSSIM) is proposed. It enlarges the distortions in the concerned positions adaptively and changes the importances of the three components in SSIM. FSSIM predicts the quality of an image through three steps. First, it computes the luminance, contrast and structure comparison terms; second, it computes the saliency map by extracting the fovea information from the reference image with the features of HVS; third, it pools the above three terms according to the processed saliency map. Finally, a commonly experimental database LIVE IQA is used for evaluating the performance of the FSSIM. Experimental results indicate that the consistency and relevance between FSSIM and mean opinion score (MOS) are both better than SSIM and PSNR clearly.

  5. Can Supersaturation Affect Protein Crystal Quality?

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar

    2013-01-01

    In quiescent environments (microgravity, capillary tubes, gels) formation of a depletion zone is to be expected, due either to limited sedimentation, density driven convection or a combination of both. The formation of a depletion zone can: Modify solution supersaturation near crystal; Give rise to impurity partitioning. It is conjectured that both supersaturation and impurity partitioning affect protein crystal quality and size. Further detailed investigations on various proteins are needed to assess above hypothesis.

  6. Landsat image data quality studies

    NASA Technical Reports Server (NTRS)

    Schueler, C. F.; Salomonson, V. V.

    1985-01-01

    Preliminary results of the Landsat-4 Image Data Quality Analysis (LIDQA) program to characterize the data obtained using the Thematic Mapper (TM) instrument on board the Landsat-4 and Landsat-5 satellites are reported. TM design specifications were compared to the obtained data with respect to four criteria, including spatial resolution; geometric fidelity; information content; and image relativity to Multispectral Scanner (MSS) data. The overall performance of the TM was rated excellent despite minor instabilities and radiometric anomalies in the data. Spatial performance of the TM exceeded design specifications in terms of both image sharpness and geometric accuracy, and the image utility of the TM data was at least twice as high as MSS data. The separability of alfalfa and sugar beet fields in a TM image is demonstrated.

  7. WFC3 UVIS Image Quality

    NASA Astrophysics Data System (ADS)

    Dressel, Linda

    2009-07-01

    The UVIS imaging performance over the detector will be assessed periodically {every 4 months} in two passbands {F275W and F621M} to check for image stability. The field around star 58 in the open cluster NGC188 is the chosen target because it is sufficiently dense to provide good sampling over the FOV while providing enough isolated stars to permit accurate PSF {point spread function} measurement. It is available year-round and used previously for ACS image quality assessment. The field is astrometric, and astrometric guide stars will be used, so that the plate scale and image orientation may also be determined if necessary {as in SMOV proposals 11436 and 11442}. Full frame images will be obtained at each of 4 POSTARG offset positions designed to improve sampling over the detector.This proposal is a periodic repeat {once every 4 months} of visits similar to those in SMOV proposal 11436 {activity ID WFC3-23}. The data will be analyzed using the code and techniques described in ISR WFC3 2008-40 {Hartig}. Profiles of encircled energy will be monitored and presented in an ISR. If an update to the SIAF is needed, {V2,V3} locations of stars will be obtained from the Flight Ops Sensors and Calibrations group at GSFC, the {V2,V3} of the reference pixel and the orientation of the detector will be determined by the WFC3 group, and the Telescopes group will update and deliver the SIAF to the PRDB branch.The specific PSF metrics to be examined are encircled energy for aperture diameter 0.15, 0.20, 0.25, and 0.35 arcsec, FWHM, and sharpness. {See ISR WFC3 2008-40 tables 2 and 3 and preceding text.} about 20 stars distributed over the detector will be measured in each exposure for each filter. The mean, rms, and rms of the mean will be determined for each metric. The values determined from each of the 4 exposures per filter within a visit will be compared to each other to see to what extent they are affected by "breathing". Values will be compared from visit to visit, starting

  8. WFC3 IR Image Quality

    NASA Astrophysics Data System (ADS)

    Dressel, Linda

    2009-07-01

    The IR imaging performance over the detector will be assessed periodically {every 4 months} in two passbands to check for image stability. The field around star 58 in the open cluster NGC188 is the chosen target because it is sufficiently dense to provide good sampling over the FOV while providing enough isolated stars to permit accurate PSF {point spread function} measurement. It is available year-round and used previously for ACS image quality assessment. The field is astrometric, and astrometric guide stars will be used, so that the plate scale and image orientation may also be determined if necessary {as in SMOV proposals 11437 and 11443}. Full frame images will be obtained at each of 4 POSTARG offset positions designed to improve sampling over the detector in F098M, F105W, and F160W. The PSFs will be sampled at 4 positions with subpixel shifts in filters F164N and F127M.This proposal is a periodic repeat {once every 4 months} of the visits in SMOV proposal 11437 {activity ID WFC3-24}. The data will be analyzed using the code and techniques described in ISR WFC3 2008-41 {Hartig}. Profiles of encircled energy will be monitored and presented in an ISR. If an update to the SIAF is needed, {V2,V3} locations of stars will be obtained from the Flight Ops Sensors and Calibrations group at GSFC, the {V2,V3} of the reference pixel and the orientation of the detector will be determined by the WFC3 group, and the Telescopes group will update and deliver the SIAF to the PRDB branch.The specific PSF metrics to be examined are encircled energy for aperture diameter 0.25, 0.37, and 0.60 arcsec, FWHM, and sharpness. {See ISR WFC3 2008-41 tables 2 and 3 and preceding text.} 20 stars distributed over the detector will be measured in each exposure for each filter. The mean, rms, and rms of the mean will be determined for each metric. The values determined from each of the 4 exposures per filter within a visit will be compared to each other to see to what extent they are affected

  9. Can Solution Supersaturation Affect Protein Crystal Quality?

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar

    2013-01-01

    The formation of large protein crystals of "high quality" is considered a characteristic manifestation of microgravity. The physical processes that predict the formation of large, high quality protein crystals in the microgravity environment of space are considered rooted in the existence of a "depletion zone" in the vicinity of crystal. Namely, it is considered reasonable that crystal quality suffers in earth-grown crystals as a result of the incorporation of large aggregates, micro-crystals and/or large molecular weight "impurities", processes which are aided by density driven convective flow or mixing at the crystal-liquid interface. Sedimentation and density driven convection produce unfavorable solution conditions in the vicinity of the crystal surface, which promotes rapid crystal growth to the detriment of crystal size and quality. In this effort, we shall further present the hypothesis that the solution supersaturatoin at the crystal surface determines the growth mechanism, or mode, by which protein crystals grow. It is further hypothesized that protein crystal quality is affected by the mechanism or mode of crystal growth. Hence the formation of a depletion zone in microgravity environment is beneficial due to inhibition of impurity incorporatoin as well as preventing a kinetic roughening transition. It should be noted that for many proteins the magnitude of neither protein crystal growth rates nor solution supersaturation are predictors of a kinetic roughening transition. That is, the kinetic roughening transition supersaturation must be dtermined for each individual protein.

  10. Using short-wave infrared imaging for fruit quality evaluation

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Lee, Dah-Jye; Desai, Alok

    2013-12-01

    Quality evaluation of agricultural and food products is important for processing, inventory control, and marketing. Fruit size and surface quality are two important quality factors for high-quality fruit such as Medjool dates. Fruit size is usually measured by length that can be done easily by simple image processing techniques. Surface quality evaluation on the other hand requires more complicated design, both in image acquisition and image processing. Skin delamination is considered a major factor that affects fruit quality and its value. This paper presents an efficient histogram analysis and image processing technique that is designed specifically for real-time surface quality evaluation of Medjool dates. This approach, based on short-wave infrared imaging, provides excellent image contrast between the fruit surface and delaminated skin, which allows significant simplification of image processing algorithm and reduction of computational power requirements. The proposed quality grading method requires very simple training procedure to obtain a gray scale image histogram for each quality level. Using histogram comparison, each date is assigned to one of the four quality levels and an optimal threshold is calculated for segmenting skin delamination areas from the fruit surface. The percentage of the fruit surface that has skin delamination can then be calculated for quality evaluation. This method has been implemented and used for commercial production and proven to be efficient and accurate.

  11. [Factors that affect inpatients' quality of sleep].

    PubMed

    da Costa, Shíntia Viana; Ceolim, Maria Filomena

    2013-02-01

    The aim of this study was to identify factors that interfere with the sleep quality of patients admitted to a university hospital in a city in the state of São Paulo, Brazil. This was an exploratory, cross sectional study using non-probability sampling. Participants were 117 patients (59% men, mean age 48.0 years, standard deviation 16.9) hospitalized for at least 72 hours in stable clinical condition. The data were collected with an identification questionnaire and the Factors Affecting Sleep Quality (FASQ) questionnaire. Data processing was performed with descriptive statistics; each item of the FASQ underwent a test and a retest. The factors most often reported were waking up early (55.6%), disrupted sleep (52.1%), excessive lighting (34.2%), receipt of care by nursing staff (33.3%) and organic disorders such as pain and fatigue (26.5%). It is suggested that nurses should plan interventions to modify factors that require intense noise and lighting at night in order to reduce disruption and, consequently, sleep deprivation among patients. PMID:23515802

  12. Assessing product image quality for online shopping

    NASA Astrophysics Data System (ADS)

    Goswami, Anjan; Chung, Sung H.; Chittar, Naren; Islam, Atiq

    2012-01-01

    Assessing product-image quality is important in the context of online shopping. A high quality image that conveys more information about a product can boost the buyer's confidence and can get more attention. However, the notion of image quality for product-images is not the same as that in other domains. The perception of quality of product-images depends not only on various photographic quality features but also on various high level features such as clarity of the foreground or goodness of the background etc. In this paper, we define a notion of product-image quality based on various such features. We conduct a crowd-sourced experiment to collect user judgments on thousands of eBay's images. We formulate a multi-class classification problem for modeling image quality by classifying images into good, fair and poor quality based on the guided perceptual notions from the judges. We also conduct experiments with regression using average crowd-sourced human judgments as target. We compute a pseudo-regression score with expected average of predicted classes and also compute a score from the regression technique. We design many experiments with various sampling and voting schemes with crowd-sourced data and construct various experimental image quality models. Most of our models have reasonable accuracies (greater or equal to 70%) on test data set. We observe that our computed image quality score has a high (0.66) rank correlation with average votes from the crowd sourced human judgments.

  13. Undernutrition affects embryo quality of superovulated ewes.

    PubMed

    Abecia, J A; Forcada, F; Palacín, I; Sánchez-Prieto, L; Sosa, C; Fernández-Foren, A; Meikle, A

    2015-02-01

    To determine the effect of undernutrition on embryo production and quality in superovulated sheep, 45 ewes were allocated into two groups to be fed diets that provided 1.5 (control, C; n = 20) or 0.5 (low nutrition, L; n = 25) times daily requirements for maintenance, from oestrous synchronization with intravaginal sponges to embryo collection. Embryos were collected 7 days after the onset of oestrus (day 0). Low nutrition resulted in lower live weight and body condition at embryo collection (P < 0.05). Diet (P < 0.01) and day of sampling (P < 0.001) significantly affected plasma non-esterified fatty acid (NEFA) and insulin concentrations. Plasma leptin concentrations decreased on day 7 only in L ewes. A significant effect of dietary treatment (P < 0.05) and day (P < 0.0001) was observed on plasma insulin-like growth factor (IGF)-I concentrations. The number of recovered oocytes and embryos did not differ between the groups (L: 15.4 ± 0.4; C: 12.4 ± 0.4). Recovery rate was lower (P < 0.05) in the L (60%) than in the C group (73%). The total number of embryos and number of viable-transferable embryos (5.0 ± 0.3 and 3.4 ± 0.3 embryos, respectively) of the L group were lower (P < 0.1) when compared with controls (8.4 ± 0.4 and 6.2 ± 0.4 embryos, respectively). Undernutrition during the period of superovulation and early embryonic development reduced total and viable number of embryos. These effects might be mediated by disruption of endocrine homeostasis, oviduct environment and/or oocyte quality.

  14. The study of surgical image quality evaluation system by subjective quality factor method

    NASA Astrophysics Data System (ADS)

    Zhang, Jian J.; Xuan, Jason R.; Yang, Xirong; Yu, Honggang; Koullick, Edouard

    2016-03-01

    GreenLightTM procedure is an effective and economical way of treatment of benign prostate hyperplasia (BPH); there are almost a million of patients treated with GreenLightTM worldwide. During the surgical procedure, the surgeon or physician will rely on the monitoring video system to survey and confirm the surgical progress. There are a few obstructions that could greatly affect the image quality of the monitoring video, like laser glare by the tissue and body fluid, air bubbles and debris generated by tissue evaporation, and bleeding, just to name a few. In order to improve the physician's visual experience of a laser surgical procedure, the system performance parameter related to image quality needs to be well defined. However, since image quality is the integrated set of perceptions of the overall degree of excellence of an image, or in other words, image quality is the perceptually weighted combination of significant attributes (contrast, graininess …) of an image when considered in its marketplace or application, there is no standard definition on overall image or video quality especially for the no-reference case (without a standard chart as reference). In this study, Subjective Quality Factor (SQF) and acutance are used for no-reference image quality evaluation. Basic image quality parameters, like sharpness, color accuracy, size of obstruction and transmission of obstruction, are used as subparameter to define the rating scale for image quality evaluation or comparison. Sample image groups were evaluated by human observers according to the rating scale. Surveys of physician groups were also conducted with lab generated sample videos. The study shows that human subjective perception is a trustworthy way of image quality evaluation. More systematic investigation on the relationship between video quality and image quality of each frame will be conducted as a future study.

  15. An Underwater Color Image Quality Evaluation Metric.

    PubMed

    Yang, Miao; Sowmya, Arcot

    2015-12-01

    Quality evaluation of underwater images is a key goal of underwater video image retrieval and intelligent processing. To date, no metric has been proposed for underwater color image quality evaluation (UCIQE). The special absorption and scattering characteristics of the water medium do not allow direct application of natural color image quality metrics especially to different underwater environments. In this paper, subjective testing for underwater image quality has been organized. The statistical distribution of the underwater image pixels in the CIELab color space related to subjective evaluation indicates the sharpness and colorful factors correlate well with subjective image quality perception. Based on these, a new UCIQE metric, which is a linear combination of chroma, saturation, and contrast, is proposed to quantify the non-uniform color cast, blurring, and low-contrast that characterize underwater engineering and monitoring images. Experiments are conducted to illustrate the performance of the proposed UCIQE metric and its capability to measure the underwater image enhancement results. They show that the proposed metric has comparable performance to the leading natural color image quality metrics and the underwater grayscale image quality metrics available in the literature, and can predict with higher accuracy the relative amount of degradation with similar image content in underwater environments. Importantly, UCIQE is a simple and fast solution for real-time underwater video processing. The effectiveness of the presented measure is also demonstrated by subjective evaluation. The results show better correlation between the UCIQE and the subjective mean opinion score.

  16. Improving the Quality of Imaging in the Emergency Department.

    PubMed

    Blackmore, C Craig; Castro, Alexandra

    2015-12-01

    Imaging is critical for the care of emergency department (ED) patients. However, much of the imaging performed for acute care today is overutilization, creating substantial cost without significant benefit. Further, the value of imaging is not easily defined, as imaging only affects outcomes indirectly, through interaction with treatment. Improving the quality, including appropriateness, of emergency imaging requires understanding of how imaging contributes to patient care. The six-tier efficacy hierarchy of Fryback and Thornbury enables understanding of the value of imaging on multiple levels, ranging from technical efficacy to medical decision-making and higher-level patient and societal outcomes. The imaging efficacy hierarchy also allows definition of imaging quality through the Institute of Medicine (IOM)'s quality domains of safety, effectiveness, patient-centeredness, timeliness, efficiency, and equitability and provides a foundation for quality improvement. In this article, the authors elucidate the Fryback and Thornbury framework to define the value of imaging in the ED and to relate emergency imaging to the IOM quality domains.

  17. Enhancement and quality control of GOES images

    NASA Astrophysics Data System (ADS)

    Jentoft-Nilsen, Marit; Palaniappan, Kannappan; Hasler, A. Frederick; Chesters, Dennis

    1996-10-01

    The new generation of Geostationary Operational Environmental Satellites (GOES) have an imager instrument with five multispectral bands of high spatial resolution,and very high dynamic range radiance measurements with 10-bit precision. A wide variety of environmental processes can be observed at unprecedented time scales using the new imager instrument. Quality assurance and feedback to the GOES project office is performed using rapid animation at high magnification, examining differences between successive frames, and applying radiometric and geometric correction algorithms. Missing or corrupted scanline data occur unpredictably due to noise in the ground based receiving system. Smooth high resolution noise-free animations can be recovered using automatic techniques even from scanline scratches affecting more than 25 percent of the dataset. Radiometric correction using the local solar zenith angle was applied to the visible channel to compensate for time- of-day illumination variations to produce gain-compensated movies that appear well-lit from dawn to dusk and extend the interval of useful image observations by more than two hours. A time series of brightness histograms displays some subtle quality control problems in the GOES channels related to rebinning of the radiance measurements. The human visual system is sensitive to only about half of the measured 10- bit dynamic range in intensity variations, at a given point in a monochrome image. In order to effectively use the additional bits of precision and handle the high data rate, new enhancement techniques and visualization tools were developed. We have implemented interactive image enhancement techniques to selectively emphasize different subranges of the 10-bits of intensity levels. Improving navigational accuracy using registration techniques and geometric correction of scanline interleaving errors is a more difficult problem that is currently being investigated.

  18. Automatic no-reference image quality assessment.

    PubMed

    Li, Hongjun; Hu, Wei; Xu, Zi-Neng

    2016-01-01

    No-reference image quality assessment aims to predict the visual quality of distorted images without examining the original image as a reference. Most no-reference image quality metrics which have been already proposed are designed for one or a set of predefined specific distortion types and are unlikely to generalize for evaluating images degraded with other types of distortion. There is a strong need of no-reference image quality assessment methods which are applicable to various distortions. In this paper, the authors proposed a no-reference image quality assessment method based on a natural image statistic model in the wavelet transform domain. A generalized Gaussian density model is employed to summarize the marginal distribution of wavelet coefficients of the test images, so that correlative parameters are needed for the evaluation of image quality. The proposed algorithm is tested on three large-scale benchmark databases. Experimental results demonstrate that the proposed algorithm is easy to implement and computational efficient. Furthermore, our method can be applied to many well-known types of image distortions, and achieves a good quality of prediction performance. PMID:27468398

  19. Image quality scaling of electrophotographic prints

    NASA Astrophysics Data System (ADS)

    Johnson, Garrett M.; Patil, Rohit A.; Montag, Ethan D.; Fairchild, Mark D.

    2003-12-01

    Two psychophysical experiments were performed scaling overall image quality of black-and-white electrophotographic (EP) images. Six different printers were used to generate the images. There were six different scenes included in the experiment, representing photographs, business graphics, and test-targets. The two experiments were split into a paired-comparison experiment examining overall image quality, and a triad experiment judging overall similarity and dissimilarity of the printed images. The paired-comparison experiment was analyzed using Thurstone's Law, to generate an interval scale of quality, and with dual scaling, to determine the independent dimensions used for categorical scaling. The triad experiment was analyzed using multidimensional scaling to generate a psychological stimulus space. The psychophysical results indicated that the image quality was judged mainly along one dimension and that the relationships among the images can be described with a single dimension in most cases. Regression of various physical measurements of the images to the paired comparison results showed that a small number of physical attributes of the images could be correlated with the psychophysical scale of image quality. However, global image difference metrics did not correlate well with image quality.

  20. Perceived quality of wood images influenced by the skewness of image histogram

    NASA Astrophysics Data System (ADS)

    Katsura, Shigehito; Mizokami, Yoko; Yaguchi, Hirohisa

    2015-08-01

    The shape of image luminance histograms is related to material perception. We investigated how the luminance histogram contributed to improvements in the perceived quality of wood images by examining various natural wood and adhesive vinyl sheets with printed wood grain. In the first experiment, we visually evaluated the perceived quality of wood samples. In addition, we measured the colorimetric parameters of the wood samples and calculated statistics of image luminance. The relationship between visual evaluation scores and image statistics suggested that skewness and kurtosis affected the perceived quality of wood. In the second experiment, we evaluated the perceived quality of wood images with altered luminance skewness and kurtosis using a paired comparison method. Our result suggests that wood images are more realistic if the skewness of the luminance histogram is slightly negative.

  1. Combined terahertz imaging system for enhanced imaging quality

    NASA Astrophysics Data System (ADS)

    Dolganova, Irina N.; Zaytsev, Kirill I.; Metelkina, Anna A.; Yakovlev, Egor V.; Karasik, Valeriy E.; Yurchenko, Stanislav O.

    2016-06-01

    An improved terahertz (THz) imaging system is proposed for enhancing image quality. Imaging scheme includes THz source and detection system operated in active mode as well as in passive one. In order to homogeneously illuminate the object plane the THz reshaper is proposed. The form and internal structure of the reshaper were studied by the numerical simulation. Using different test-objects we compare imaging quality in active and passive THz imaging modes. Imaging contrast and modulation transfer functions in active and passive imaging modes show drawbacks of them in high and low spatial frequencies, respectively. The experimental results confirm the benefit of combining both imaging modes into hybrid one. The proposed algorithm of making hybrid THz image is an effective approach of retrieving maximum information about the remote object.

  2. Factors Affecting School Quality in Florida

    ERIC Educational Resources Information Center

    Thornton, Barry; Arbogast, Gordon

    2014-01-01

    This paper examines the factors that are theorized to be determinants of school quality in the 67 counties of Florida from 2000 to 2011. The model constructed for this purpose is comprised of a mix of independent variables that include county educational attainment (number of high school graduates and State University System enrollees) and…

  3. Improving high resolution retinal image quality using speckle illumination HiLo imaging

    PubMed Central

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2014-01-01

    Retinal image quality from flood illumination adaptive optics (AO) ophthalmoscopes is adversely affected by out-of-focus light scatter due to the lack of confocality. This effect is more pronounced in small eyes, such as that of rodents, because the requisite high optical power confers a large dioptric thickness to the retina. A recently-developed structured illumination microscopy (SIM) technique called HiLo imaging has been shown to reduce the effect of out-of-focus light scatter in flood illumination microscopes and produce pseudo-confocal images with significantly improved image quality. In this work, we adopted the HiLo technique to a flood AO ophthalmoscope and performed AO imaging in both (physical) model and live rat eyes. The improvement in image quality from HiLo imaging is shown both qualitatively and quantitatively by using spatial spectral analysis. PMID:25136486

  4. Affective Quality of Family Relations and Adolescent Identity Exploration.

    ERIC Educational Resources Information Center

    Papini, Dennis R.; And Others

    1989-01-01

    Examined relationship between adolescent pubertal status, the affective quality of family relations, and the early adolescent's exploration of a sense of ego identity in families (N=51) with seventh-grade adolescents. Results revealed that affective quality of parent-child relationships and pubertal status of adolescent appeared to influence…

  5. Automatic quality assessment of planetary images

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, P.; Muller, J.-P.

    2015-10-01

    A significant fraction of planetary images are corrupted beyond the point that much scientific meaning can be extracted. For example, transmission errors result in missing data which is unrecoverable. The available planetary image datasets include many such "bad data", which both occupy valuable scientific storage resources and create false impressions about planetary image availability for specific planetary objects or target areas. In this work, we demonstrate a pipeline that we have developed to automatically assess the quality of planetary images. Additionally, this method discriminates between different types of image degradation, such as low-quality originating from camera flaws or low-quality triggered by atmospheric conditions, etc. Examples of quality assessment results for Viking Orbiter imagery will be also presented.

  6. Image Quality Ranking Method for Microscopy

    PubMed Central

    Koho, Sami; Fazeli, Elnaz; Eriksson, John E.; Hänninen, Pekka E.

    2016-01-01

    Automated analysis of microscope images is necessitated by the increased need for high-resolution follow up of events in time. Manually finding the right images to be analyzed, or eliminated from data analysis are common day-to-day problems in microscopy research today, and the constantly growing size of image datasets does not help the matter. We propose a simple method and a software tool for sorting images within a dataset, according to their relative quality. We demonstrate the applicability of our method in finding good quality images in a STED microscope sample preparation optimization image dataset. The results are validated by comparisons to subjective opinion scores, as well as five state-of-the-art blind image quality assessment methods. We also show how our method can be applied to eliminate useless out-of-focus images in a High-Content-Screening experiment. We further evaluate the ability of our image quality ranking method to detect out-of-focus images, by extensive simulations, and by comparing its performance against previously published, well-established microscopy autofocus metrics. PMID:27364703

  7. Image Quality Ranking Method for Microscopy

    NASA Astrophysics Data System (ADS)

    Koho, Sami; Fazeli, Elnaz; Eriksson, John E.; Hänninen, Pekka E.

    2016-07-01

    Automated analysis of microscope images is necessitated by the increased need for high-resolution follow up of events in time. Manually finding the right images to be analyzed, or eliminated from data analysis are common day-to-day problems in microscopy research today, and the constantly growing size of image datasets does not help the matter. We propose a simple method and a software tool for sorting images within a dataset, according to their relative quality. We demonstrate the applicability of our method in finding good quality images in a STED microscope sample preparation optimization image dataset. The results are validated by comparisons to subjective opinion scores, as well as five state-of-the-art blind image quality assessment methods. We also show how our method can be applied to eliminate useless out-of-focus images in a High-Content-Screening experiment. We further evaluate the ability of our image quality ranking method to detect out-of-focus images, by extensive simulations, and by comparing its performance against previously published, well-established microscopy autofocus metrics.

  8. End-to-end image quality assessment

    NASA Astrophysics Data System (ADS)

    Raventos, Joaquin

    2012-05-01

    An innovative computerized benchmarking approach (US Patent pending Sep 2011) based on extensive application of photometry, geometrical optics, and digital media using a randomized target, for a standard observer to assess the image quality of video imaging systems, at different day time, and low-light luminance levels. It takes into account, the target's contrast and color characteristics, as well as the observer's visual acuity and dynamic response. This includes human vision as part of the "extended video imaging system" (EVIS), and allows image quality assessment by several standard observers simultaneously.

  9. Mind Wandering, Sleep Quality, Affect and Chronotype: An Exploratory Study

    PubMed Central

    Carciofo, Richard; Du, Feng; Song, Nan; Zhang, Kan

    2014-01-01

    Poor sleep quality impairs cognition, including executive functions and concentration, but there has been little direct research on the relationships between sleep quality and mind wandering or daydreaming. Evening chronotype is associated with poor sleep quality, more mind wandering and more daydreaming; negative affect is also a mutual correlate. This exploratory study investigated how mind wandering and daydreaming are related to different aspects of sleep quality, and whether sleep quality influences the relationships between mind wandering/daydreaming and negative affect, and mind wandering/daydreaming and chronotype. Three surveys (Ns = 213; 190; 270) were completed with Chinese adults aged 18–50, including measures of sleep quality, daytime sleepiness, mind wandering, daydreaming, chronotype and affect (positive and negative). Higher frequencies of mind wandering and daydreaming were associated with poorer sleep quality, in particular with poor subjective sleep quality and increased sleep latency, night-time disturbance, daytime dysfunction and daytime sleepiness. Poor sleep quality was found to partially mediate the relationships between daydreaming and negative affect, and mind wandering and negative affect. Additionally, low positive affect and poor sleep quality, in conjunction, fully mediated the relationships between chronotype and mind wandering, and chronotype and daydreaming. The relationships between mind wandering/daydreaming and positive affect were also moderated by chronotype, being weaker in those with a morning preference. Finally, while daytime sleepiness was positively correlated with daydream frequency, it was negatively correlated with a measure of problem-solving daydreams, indicating that more refined distinctions between different forms of daydreaming or mind wandering are warranted. Overall, the evidence is suggestive of a bi-directional relationship between poor sleep quality and mind wandering/daydreaming, which may be

  10. Cartographic quality of ERTS-1 images

    NASA Technical Reports Server (NTRS)

    Welch, R. I.

    1973-01-01

    Analyses of simulated and operational ERTS images have provided initial estimates of resolution, ground resolution, detectability thresholds and other measures of image quality of interest to earth scientists and cartographers. Based on these values, including an approximate ground resolution of 250 meters for both RBV and MSS systems, the ERTS-1 images appear suited to the production and/or revision of planimetric and photo maps of 1:500,000 scale and smaller for which map accuracy standards are compatible with the imaged detail. Thematic mapping, although less constrained by map accuracy standards, will be influenced by measurement thresholds and errors which have yet to be accurately determined for ERTS images. This study also indicates the desirability of establishing a quantitative relationship between image quality values and map products which will permit both engineers and cartographers/earth scientists to contribute to the design requirements of future satellite imaging systems.

  11. Continuous assessment of perceptual image quality

    NASA Astrophysics Data System (ADS)

    Hamberg, Roelof; de Ridder, Huib

    1995-12-01

    The study addresses whether subjects are able to assess the perceived quality of an image sequence continuously. To this end, a new method for assessing time-varying perceptual image quality is presented by which subjects continuously indicate the perceived strength of image quality by moving a slider along a graphical scale. The slider's position on this scale is sampled every second. In this way, temporal variations in quality can be monitored quantitatively, and a means is provided by which differences between, for example, alternative transmission systems can be analyzed in an informative way. The usability of this method is illustrated by an experiment in which, for a period of 815 s, subjects assessed the quality of still pictures comprising time-varying degrees of sharpness. Copyright (c) 1995 Optical Society of America

  12. Rendered virtual view image objective quality assessment

    NASA Astrophysics Data System (ADS)

    Lu, Gang; Li, Xiangchun; Zhang, Yi; Peng, Kai

    2013-08-01

    The research on rendered virtual view image (RVVI) objective quality assessment is important for integrated imaging system and image quality assessment (IQA). Traditional IQA algorithms cannot be applied directly on the system receiver-side due to interview displacement and the absence of original reference. This study proposed a block-based neighbor reference (NbR) IQA framework for RVVI IQA. Neighbor views used for rendering are employed for quality assessment in the proposed framework. A symphonious factor handling noise and interview displacement is defined and applied to evaluate the contribution of the obtained quality index in each block pair. A three-stage experiment scheme is also presented to testify the proposed framework and evaluate its homogeneity performance when comparing to full reference IQA. Experimental results show the proposed framework is useful in RVVI objective quality assessment at system receiver-side and benchmarking different rendering algorithms.

  13. Tradeoffs between image quality and dose.

    PubMed

    Seibert, J Anthony

    2004-10-01

    Image quality takes on different perspectives and meanings when associated with the concept of as low as reasonably achievable (ALARA), which is chiefly focused on radiation dose delivered as a result of a medical imaging procedure. ALARA is important because of the increased radiosensitivity of children to ionizing radiation and the desire to keep the radiation dose low. By the same token, however, image quality is also important because of the need to provide the necessary information in a radiograph in order to make an accurate diagnosis. Thus, there are tradeoffs to be considered between image quality and radiation dose, which is the main topic of this article. ALARA does not necessarily mean the lowest radiation dose, nor, when implemented, does it result in the least desirable radiographic images. With the recent widespread implementation of digital radiographic detectors and displays, a new level of flexibility and complexity confronts the technologist, physicist, and radiologist in optimizing the pediatric radiography exam. This is due to the separation of the acquisition, display, and archiving events that were previously combined by the screen-film detector, which allows for compensation for under- and overexposures, image processing, and on-line image manipulation. As explained in the article, different concepts must be introduced for a better understanding of the tradeoffs encountered when dealing with digital radiography and ALARA. In addition, there are many instances during the image acquisition/display/interpretation process in which image quality and associated dose can be compromised. This requires continuous diligence to quality control and feedback mechanisms to verify that the goals of image quality, dose and ALARA are achieved.

  14. Image Acquisition and Quality in Digital Radiography.

    PubMed

    Alexander, Shannon

    2016-09-01

    Medical imaging has undergone dramatic changes and technological breakthroughs since the introduction of digital radiography. This article presents information on the development of digital radiography and types of digital radiography systems. Aspects of image quality and radiation exposure control are highlighted as well. In addition, the article includes related workplace changes and medicolegal considerations in the digital radiography environment. PMID:27601691

  15. Validation of no-reference image quality index for the assessment of digital mammographic images

    NASA Astrophysics Data System (ADS)

    de Oliveira, Helder C. R.; Barufaldi, Bruno; Borges, Lucas R.; Gabarda, Salvador; Bakic, Predrag R.; Maidment, Andrew D. A.; Schiabel, Homero; Vieira, Marcelo A. C.

    2016-03-01

    To ensure optimal clinical performance of digital mammography, it is necessary to obtain images with high spatial resolution and low noise, keeping radiation exposure as low as possible. These requirements directly affect the interpretation of radiologists. The quality of a digital image should be assessed using objective measurements. In general, these methods measure the similarity between a degraded image and an ideal image without degradation (ground-truth), used as a reference. These methods are called Full-Reference Image Quality Assessment (FR-IQA). However, for digital mammography, an image without degradation is not available in clinical practice; thus, an objective method to assess the quality of mammograms must be performed without reference. The purpose of this study is to present a Normalized Anisotropic Quality Index (NAQI), based on the Rényi entropy in the pseudo-Wigner domain, to assess mammography images in terms of spatial resolution and noise without any reference. The method was validated using synthetic images acquired through an anthropomorphic breast software phantom, and the clinical exposures on anthropomorphic breast physical phantoms and patient's mammograms. The results reported by this noreference index follow the same behavior as other well-established full-reference metrics, e.g., the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Reductions of 50% on the radiation dose in phantom images were translated as a decrease of 4dB on the PSNR, 25% on the SSIM and 33% on the NAQI, evidencing that the proposed metric is sensitive to the noise resulted from dose reduction. The clinical results showed that images reduced to 53% and 30% of the standard radiation dose reported reductions of 15% and 25% on the NAQI, respectively. Thus, this index may be used in clinical practice as an image quality indicator to improve the quality assurance programs in mammography; hence, the proposed method reduces the subjectivity

  16. Image quality and automatic color equalization

    NASA Astrophysics Data System (ADS)

    Chambah, M.; Rizzi, A.; Saint Jean, C.

    2007-01-01

    In the professional movie field, image quality is mainly judged visually. In fact, experts and technicians judge and determine the quality of the film images during the calibration (post production) process. As a consequence, the quality of a restored movie is also estimated subjectively by experts [26,27]. On the other hand, objective quality metrics do not necessarily correlate well with perceived quality [28]. Moreover, some measures assume that there exists a reference in the form of an "original" to compare to, which prevents their use in digital restoration field, where often there is no reference to compare to. That is why subjective evaluation is the most used and most efficient approach up to now. But subjective assessment is expensive, time consuming and does not respond, hence, to the economic requirements of the field [29,25]. Thus, reliable automatic methods for visual quality assessment are needed in the field of digital film restoration. Ideally, a quality assessment system would perceive and measure image or video impairments just like a human being. The ACE method, for Automatic Color Equalization [1,2], is an algorithm for digital images unsupervised enhancement. Like our vision system ACE is able to adapt to widely varying lighting conditions, and to extract visual information from the environment efficaciously. We present in this paper is the use of ACE as a basis of a reference free image quality metric. ACE output is an estimate of our visual perception of a scene. The assumption, tested in other papers [3,4], is that ACE enhancing images is in the way our vision system will perceive them, increases their overall perceived quality. The basic idea proposed in this paper, is that ACE output can differ from the input more or less according to the visual quality of the input image In other word, an image appears good if it is near to the visual appearance we (estimate to) have of it. Reversely bad quality images will need "more filtering". Test

  17. Holographic projection with higher image quality.

    PubMed

    Qu, Weidong; Gu, Huarong; Tan, Qiaofeng

    2016-08-22

    The spatial resolution limited by the size of the spatial light modulator (SLM) in the holographic projection can hardly be increased, and speckle noise always appears to induce the degradation of image quality. In this paper, the holographic projection with higher image quality is presented. The spatial resolution of the reconstructed image is 2 times of that of the existing holographic projection, and speckles are suppressed well at the same time. Finally, the effectiveness of the holographic projection is verified in experiments. PMID:27557197

  18. Perceptual image quality and telescope performance ranking

    NASA Astrophysics Data System (ADS)

    Lentz, Joshua K.; Harvey, James E.; Marshall, Kenneth H.; Salg, Joseph; Houston, Joseph B.

    2010-08-01

    Launch Vehicle Imaging Telescopes (LVIT) are expensive, high quality devices intended for improving the safety of vehicle personnel, ground support, civilians, and physical assets during launch activities. If allowed to degrade from the combination of wear, environmental factors, and ineffective or inadequate maintenance, these devices lose their ability to provide adequate quality imagery to analysts to prevent catastrophic events such as the NASA Space Shuttle, Challenger, accident in 1986 and the Columbia disaster of 2003. A software tool incorporating aberrations and diffraction that was developed for maintenance evaluation and modeling of telescope imagery is presented. This tool provides MTF-based image quality metric outputs which are correlated to ascent imagery analysts' perception of image quality, allowing a prediction of usefulness of imagery which would be produced by a telescope under different simulated conditions.

  19. Measurement and control of color image quality

    NASA Astrophysics Data System (ADS)

    Schneider, Eric; Johnson, Kate; Wolin, David

    1998-12-01

    Color hardcopy output is subject to many of the same image quality concerns as monochrome hardcopy output. Line and dot quality, uniformity, halftone quality, the presence of bands, spots or deletions are just a few by both color and monochrome output. Although measurement of color requires the use of specialized instrumentation, the techniques used to assess color-dependent image quality attributes on color hardcopy output are based on many of the same techniques as those used in monochrome image quality quantification. In this paper we will be presenting several different aspects of color quality assessment in both R and D and production environments. As well as present several examples of color quality measurements that are similar to those currently being used at Hewlett-Packard to characterize color devices and to verify system performance. We will then discuss some important considerations for choosing appropriate color quality measurement equipment for use in either R and D or production environments. Finally, we will discuss the critical relationship between objective measurements and human perception.

  20. A database for spectral image quality

    NASA Astrophysics Data System (ADS)

    Le Moan, Steven; George, Sony; Pedersen, Marius; Blahová, Jana; Hardeberg, Jon Yngve

    2015-01-01

    We introduce a new image database dedicated to multi-/hyperspectral image quality assessment. A total of nine scenes representing pseudo-at surfaces of different materials (textile, wood, skin. . . ) were captured by means of a 160 band hyperspectral system with a spectral range between 410 and 1000nm. Five spectral distortions were designed, applied to the spectral images and subsequently compared in a psychometric experiment, in order to provide a basis for applications such as the evaluation of spectral image difference measures. The database can be downloaded freely from http://www.colourlab.no/cid.

  1. Monotonic correlation analysis of image quality measures for image fusion

    NASA Astrophysics Data System (ADS)

    Kaplan, Lance M.; Burks, Stephen D.; Moore, Richard K.; Nguyen, Quang

    2008-04-01

    The next generation of night vision goggles will fuse image intensified and long wave infra-red to create a hybrid image that will enable soldiers to better interpret their surroundings during nighttime missions. Paramount to the development of such goggles is the exploitation of image quality (IQ) measures to automatically determine the best image fusion algorithm for a particular task. This work introduces a novel monotonic correlation coefficient to investigate how well possible IQ features correlate to actual human performance, which is measured by a perception study. The paper will demonstrate how monotonic correlation can identify worthy features that could be overlooked by traditional correlation values.

  2. Effects of task and image properties on visual-attention deployment in image-quality assessment

    NASA Astrophysics Data System (ADS)

    Alers, Hani; Redi, Judith; Liu, Hantao; Heynderickx, Ingrid

    2015-03-01

    It is important to understand how humans view images and how their behavior is affected by changes in the properties of the viewed images and the task they are given, particularly the task of scoring the image quality (IQ). This is a complex behavior that holds great importance for the field of image-quality research. This work builds upon 4 years of research work spanning three databases studying image-viewing behavior. Using eye-tracking equipment, it was possible to collect information on human viewing behavior of different kinds of stimuli and under different experimental settings. This work performs a cross-analysis on the results from all these databases using state-of-the-art similarity measures. The results strongly show that asking the viewers to score the IQ significantly changes their viewing behavior. Also muting the color saturation seems to affect the saliency of the images. However, a change in IQ was not consistently found to modify visual attention deployment, neither under free looking nor during scoring. These results are helpful in gaining a better understanding of image viewing behavior under different conditions. They also have important implications on work that collects subjective image-quality scores from human observers.

  3. Affective imaging: psychological and physiological reactions to individually chosen images

    NASA Astrophysics Data System (ADS)

    Fedorovskaya, Elena A.; Miller, Paige; Prabhu, Girish; Horwitz, Cecelia; Matraszek, Tomasz; Parks, Peter; Blazey, Richard; Endrikhovski, Serguei

    2001-06-01

    In a series of experiments, observers' cognitive and psychophysiological responses to pictorial stimuli were evaluated. In the first experiment, subjects were viewing a set of randomly presented images. After each image presentation, they rates every image on a number of cognitive scales. In the second experiment, images producing certain physiological effects - deactivating, neutral, or activating - were individually selected based on the results of the first experiment and shown to the subjects again. Psychophysiological measurements included electrocardiogram, hand temperature, muscle tension, eye movements, blood oxygen, respiration, and galvanic skin response. Our result indicate that images produced significant emotional changes based on verbal and physiological assessment. The changes were in agreement with the predictions derived from the metric that we developed in a number of cases that exceeded the change level. The direction of changes corresponded to previous findings reported elsewhere.

  4. Maximising image quality in small spaces.

    PubMed

    Alford, Arezoo; Brinkworth, Simon

    2015-06-01

    A Medical Illustration Department may need to set up a studio in a space that is not designed for that purpose. This joint paper describes the attempts of two separate trusts, University Hospitals Bristol NHS Foundation Trust (UHB) and Norfolk & Norwich University Hospitals (NNUH), to refurbish unusually small studio spaces of 4m × 2m. Each trust had a substantially different project budget and faced separate obstacles, but both had a shared aim; to maximise the limited studio space and enhance the quality of images produced. The outcome at both Trusts is a significant improvement in image quality.

  5. Subjective matters: from image quality to image psychology

    NASA Astrophysics Data System (ADS)

    Fedorovskaya, Elena A.; De Ridder, Huib

    2013-03-01

    From the advent of digital imaging through several decades of studies, the human vision research community systematically focused on perceived image quality and digital artifacts due to resolution, compression, gamma, dynamic range, capture and reproduction noise, blur, etc., to help overcome existing technological challenges and shortcomings. Technological advances made digital images and digital multimedia nearly flawless in quality, and ubiquitous and pervasive in usage, provide us with the exciting but at the same time demanding possibility to turn to the domain of human experience including higher psychological functions, such as cognition, emotion, awareness, social interaction, consciousness and Self. In this paper we will outline the evolution of human centered multidisciplinary studies related to imaging and propose steps and potential foci of future research.

  6. Quantification of image quality using information theory.

    PubMed

    Niimi, Takanaga; Maeda, Hisatoshi; Ikeda, Mitsuru; Imai, Kuniharu

    2011-12-01

    Aims of present study were to examine usefulness of information theory in visual assessment of image quality. We applied first order approximation of the Shannon's information theory to compute information losses (IL). Images of a contrast-detail mammography (CDMAM) phantom were acquired with computed radiographies for various radiation doses. Information content was defined as the entropy Σp( i )log(1/p ( i )), in which detection probabilities p ( i ) were calculated from distribution of detection rate of the CDMAM. IL was defined as the difference between information content and information obtained. IL decreased with increases in the disk diameters (P < 0.0001, ANOVA) and in the radiation doses (P < 0.002, F-test). Sums of IL, which we call total information losses (TIL), were closely correlated with the image quality figures (r = 0.985). TIL was dependent on the distribution of image reading ability of each examinee, even when average reading ratio was the same in the group. TIL was shown to be sensitive to the observers' distribution of image readings and was expected to improve the evaluation of image quality.

  7. Characteristic functionals in imaging and image-quality assessment: tutorial.

    PubMed

    Clarkson, Eric; Barrett, Harrison H

    2016-08-01

    Characteristic functionals are one of the main analytical tools used to quantify the statistical properties of random fields and generalized random fields. The viewpoint taken here is that a random field is the correct model for the ensemble of objects being imaged by a given imaging system. In modern digital imaging systems, random fields are not used to model the reconstructed images themselves since these are necessarily finite dimensional. After a brief introduction to the general theory of characteristic functionals, many examples relevant to imaging applications are presented. The propagation of characteristic functionals through both a binned and list-mode imaging system is also discussed. Methods for using characteristic functionals and image data to estimate population parameters and classify populations of objects are given. These methods are based on maximum likelihood and maximum a posteriori techniques in spaces generated by sampling the relevant characteristic functionals through the imaging operator. It is also shown how to calculate a Fisher information matrix in this space. These estimators and classifiers, and the Fisher information matrix, can then be used for image quality assessment of imaging systems.

  8. No-reference remote sensing image quality assessment using a comprehensive evaluation factor

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Wang, Xu; Li, Xiao; Shao, Xiaopeng

    2014-05-01

    The conventional image quality assessment algorithm, such as Peak Signal to Noise Ratio (PSNR), Mean Square Error(MSE) and structural similarity (SSIM), needs the original image as a reference. It's not applicable to the remote sensing image for which the original image cannot be assumed to be available. In this paper, a No-reference Image Quality Assessment (NRIQA) algorithm is presented to evaluate the quality of remote sensing image. Since blur and noise (including the stripe noise) are the common distortion factors affecting remote sensing image quality, a comprehensive evaluation factor is modeled to assess the blur and noise by analyzing the image visual properties for different incentives combined with SSIM based on human visual system (HVS), and also to assess the stripe noise by using Phase Congruency (PC). The experiment results show this algorithm is an accurate and reliable method for Remote Sensing Image Quality Assessment.

  9. Factors affecting water quality in the releases from hydropower reservoirs

    SciTech Connect

    Ruane, R.J.; Hauser, G.E. )

    1990-01-01

    Typical water quality concerns with releases from hydropower reservoirs include low dissolved oxygen, inappropriate temperature for downstream uses, supersaturation of total dissolved gases, and water quality constituents associated with low dissolved oxygen. Except for supersaturation of total dissolved gases, which is usually caused by by-passing turbines and spilling water, all of these concerns are related to the limnology of the upstream reservoir. Various limnological factors affect water quality, particularly dissolved oxygen (DO) in turbine releases. This paper describes three groups of reservoirs, thermal stratification characteristics for each group, DO effects for each group, the main factors that affect DO in TVA turbine releases, and other water quality constituents that are related to low DO.

  10. Does resolution really increase image quality?

    NASA Astrophysics Data System (ADS)

    Tisse, Christel-Loïc; Guichard, Frédéric; Cao, Frédéric

    2008-02-01

    A general trend in the CMOS image sensor market is for increasing resolution (by having a larger number of pixels) while keeping a small form factor by shrinking photosite size. This article discusses the impact of this trend on some of the main attributes of image quality. The first example is image sharpness. A smaller pitch theoretically allows a larger limiting resolution which is derived from the Modulation Transfer Function (MTF). But recent sensor technologies (1.75μm, and soon 1.45μm) with typical aperture f/2.8 are clearly reaching the size of the diffraction blur spot. A second example is the impact on pixel light sensitivity and image sensor noise. For photonic noise, the Signal-to-Noise-Ratio (SNR) is typically a decreasing function of the resolution. To evaluate whether shrinking pixel size could be beneficial to the image quality, the tradeoff between spatial resolution and light sensitivity is examined by comparing the image information capacity of sensors with varying pixel size. A theoretical analysis that takes into consideration measured and predictive models of pixel performance degradation and improvement associated with CMOS imager technology scaling, is presented. This analysis is completed by a benchmarking of recent commercial sensors with different pixel technologies.

  11. Image Quality Indicator for Infrared Inspections

    NASA Technical Reports Server (NTRS)

    Burke, Eric

    2011-01-01

    The quality of images generated during an infrared thermal inspection depends on many system variables, settings, and parameters to include the focal length setting of the IR camera lens. If any relevant parameter is incorrect or sub-optimal, the resulting IR images will usually exhibit inherent unsharpness and lack of resolution. Traditional reference standards and image quality indicators (IQIs) are made of representative hardware samples and contain representative flaws of concern. These standards are used to verify that representative flaws can be detected with the current IR system settings. However, these traditional standards do not enable the operator to quantify the quality limitations of the resulting images, i.e. determine the inherent maximum image sensitivity and image resolution. As a result, the operator does not have the ability to optimize the IR inspection system prior to data acquisition. The innovative IQI described here eliminates this limitation and enables the operator to objectively quantify and optimize the relevant variables of the IR inspection system, resulting in enhanced image quality with consistency and repeatability in the inspection application. The IR IQI consists of various copper foil features of known sizes that are printed on a dielectric non-conductive board. The significant difference in thermal conductivity between the two materials ensures that each appears with a distinct grayscale or brightness in the resulting IR image. Therefore, the IR image of the IQI exhibits high contrast between the copper features and the underlying dielectric board, which is required to detect the edges of the various copper features. The copper features consist of individual elements of various shapes and sizes, or of element-pairs of known shapes and sizes and with known spacing between the elements creating the pair. For example, filled copper circles with various diameters can be used as individual elements to quantify the image sensitivity

  12. Quality evaluation of fruit by hyperspectral imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter presents new applications of hyperspectral imaging for measuring the optical properties of fruits and assessing their quality attributes. A brief overview is given of current techniques for measuring optical properties of turbid and opaque biological materials. Then a detailed descripti...

  13. Scene reduction for subjective image quality assessment

    NASA Astrophysics Data System (ADS)

    Lewandowska (Tomaszewska), Anna

    2016-01-01

    Evaluation of image quality is important for many image processing systems, such as those used for acquisition, compression, restoration, enhancement, or reproduction. Its measurement is often accompanied by user studies, in which a group of observers rank or rate results of several algorithms. Such user studies, known as subjective image quality assessment experiments, can be very time consuming and do not guarantee conclusive results. This paper is intended to help design an efficient and rigorous quality assessment experiment. We propose a method of limiting the number of scenes that need to be tested, which can significantly reduce the experimental effort and still capture relevant scene-dependent effects. To achieve it, we employ a clustering technique and evaluate it on the basis of compactness and separation criteria. The correlation between the results obtained from a set of images in an initial database and the results received from reduced experiment are analyzed. Finally, we propose a procedure for reducing the initial scenes number. Four different assessment techniques were tested: single stimulus, double stimulus, forced choice, and similarity judgments. We conclude that in most cases, 9 to 12 judgments per evaluated algorithm for a large scene collection is sufficient to reduce the initial set of images.

  14. Compressed image quality metric based on perceptually weighted distortion.

    PubMed

    Hu, Sudeng; Jin, Lina; Wang, Hanli; Zhang, Yun; Kwong, Sam; Kuo, C-C Jay

    2015-12-01

    Objective quality assessment for compressed images is critical to various image compression systems that are essential in image delivery and storage. Although the mean squared error (MSE) is computationally simple, it may not be accurate to reflect the perceptual quality of compressed images, which is also affected dramatically by the characteristics of human visual system (HVS), such as masking effect. In this paper, an image quality metric (IQM) is proposed based on perceptually weighted distortion in terms of the MSE. To capture the characteristics of HVS, a randomness map is proposed to measure the masking effect and a preprocessing scheme is proposed to simulate the processing that occurs in the initial part of HVS. Since the masking effect highly depends on the structural randomness, the prediction error from neighborhood with a statistical model is used to measure the significance of masking. Meanwhile, the imperceptible signal with high frequency could be removed by preprocessing with low-pass filters. The relation is investigated between the distortions before and after masking effect, and a masking modulation model is proposed to simulate the masking effect after preprocessing. The performance of the proposed IQM is validated on six image databases with various compression distortions. The experimental results show that the proposed algorithm outperforms other benchmark IQMs. PMID:26415170

  15. Prediction of Viking lander camera image quality

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Burcher, E. E.; Jobson, D. J.; Wall, S. D.

    1976-01-01

    Formulations are presented that permit prediction of image quality as a function of camera performance, surface radiance properties, and lighting and viewing geometry. Predictions made for a wide range of surface radiance properties reveal that image quality depends strongly on proper camera dynamic range command and on favorable lighting and viewing geometry. Proper camera dynamic range commands depend mostly on the surface albedo that will be encountered. Favorable lighting and viewing geometries depend mostly on lander orientation with respect to the diurnal sun path over the landing site, and tend to be independent of surface albedo and illumination scattering function. Side lighting with low sun elevation angles (10 to 30 deg) is generally favorable for imaging spatial details and slopes, whereas high sun elevation angles are favorable for measuring spectral reflectances.

  16. Affecting the Affective: Affective Outcomes in the Context of School Effectiveness, School Improvement and Quality Schools

    ERIC Educational Resources Information Center

    Leonard, Carl; Bourke, Sid; Schofield, Neville

    2004-01-01

    The late 20th Century saw the rapid rise of quality assurance and effectiveness measures in most industries and organisations. These trends were very much reflected in education at all levels. An associated emergent trend in primary and secondary education in Australia was growth in the use of standardised measures of student achievement that…

  17. Body image quality of life in eating disorders

    PubMed Central

    Jáuregui Lobera, Ignacio; Bolaños Ríos, Patricia

    2011-01-01

    Purpose: The objective was to examine how body image affects quality of life in an eating-disorder (ED) clinical sample, a non-ED clinical sample, and a nonclinical sample. We hypothesized that ED patients would show the worst body image quality of life. We also hypothesized that body image quality of life would have a stronger negative association with specific ED-related variables than with other psychological and psychopathological variables, mainly among ED patients. On the basis of previous studies, the influence of gender on the results was explored, too. Patients and methods: The final sample comprised 70 ED patients (mean age 22.65 ± 7.76 years; 59 women and 11 men); 106 were patients with other psychiatric disorders (mean age 28.20 ± 6.52; 67 women and 39 men), and 135 were university students (mean age 21.57 ± 2.58; 81 women and 54 men), with no psychiatric history. After having obtained informed consent, the following questionnaires were administered: Body Image Quality of Life Inventory-Spanish version (BIQLI-SP), Eating Disorders Inventory-2 (EDI-2), Perceived Stress Questionnaire (PSQ), Self-Esteem Scale (SES), and Symptom Checklist-90-Revised (SCL-90-R). Results: The ED patients’ ratings on the BIQLI-SP were the lowest and negatively scored (BIQLI-SP means: +20.18, +5.14, and −6.18, in the student group, the non-ED patient group, and the ED group, respectively). The effect of body image on quality of life was more negative in the ED group in all items of the BIQLI-SP. Body image quality of life was negatively associated with specific ED-related variables, more than with other psychological and psychopathological variables, but not especially among ED patients. Conclusion: Body image quality of life was affected not only by specific pathologies related to body image disturbances, but also by other psychopathological syndromes. Nevertheless, the greatest effect was related to ED, and seemed to be more negative among men. This finding is the

  18. Physical measures of image quality in mammography

    NASA Astrophysics Data System (ADS)

    Chakraborty, Dev P.

    1996-04-01

    A recently introduced method for quantitative analysis of images of the American College of Radiology (ACR) mammography accreditation phantom has been extended to include signal- to-noise-ratio (SNR) measurements, and has been applied to survey the image quality of 54 mammography machines from 17 hospitals. Participants sent us phantom images to be evaluated for each mammography machine at their hospital. Each phantom was loaned to us for obtaining images of the wax insert plate on a reference machine at our institution. The images were digitized and analyzed to yield indices that quantified the image quality of the machines precisely. We have developed methods for normalizing for the variation of the individual speck sizes between different ACR phantoms, for the variation of the speck sizes within a microcalcification group, and for variations in overall speeds of the mammography systems. In terms of the microcalcification SNR, the variability of the x-ray machines was 40.5% when no allowance was made for phantom or mAs variations. This dropped to 17.1% when phantom variability was accounted for, and to 12.7% when mAs variability was also allowed for. Our work shows the feasibility of practical, low-cost, objective and accurate evaluations, as a useful adjunct to the present ACR method.

  19. The Affective Consequences of Minimizing Women's Body Image Concerns

    ERIC Educational Resources Information Center

    Bosson, Jennifer K.; Pinel, Elizabeth C.; Thompson, J. Kevin

    2008-01-01

    We propose that women regularly anticipate and receive messages from others that trivialize the severity of their body image concerns. Moreover, we suggest that these minimizing messages can heighten women's negative affective reactions to body image threats, particularly if they internalize them. Two studies provided support for these ideas. In…

  20. Medical Imaging Image Quality Assessment with Monte Carlo Methods

    NASA Astrophysics Data System (ADS)

    Michail, C. M.; Karpetas, G. E.; Fountos, G. P.; Kalyvas, N. I.; Martini, Niki; Koukou, Vaia; Valais, I. G.; Kandarakis, I. S.

    2015-09-01

    The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction, with cluster computing. The PET scanner simulated in this study was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the Modulation Transfer Function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL algorithm. OSMAPOSL reconstruction was assessed by using various subsets (3 to 21) and iterations (1 to 20), as well as by using various beta (hyper) parameter values. MTF values were found to increase up to the 12th iteration whereas remain almost constant thereafter. MTF improves by using lower beta values. The simulated PET evaluation method based on the TLC plane source can be also useful in research for the further development of PET and SPECT scanners though GATE simulations.

  1. Detection of image quality metamers based on the metric for unified image quality

    NASA Astrophysics Data System (ADS)

    Miyata, Kimiyoshi; Tsumura, Norimichi

    2012-01-01

    In this paper, we introduce a concept of the image quality metamerism as an expanded version of the metamerism defined in the color science. The concept is used to unify different image quality attributes, and applied to introduce a metric showing the degree of image quality metamerism to analyze a cultural property. Our global goal is to build a metric to evaluate total quality of images acquired by different imaging systems and observed under different viewing conditions. As the basic step to the global goal, the metric is consisted of color, spectral and texture information in this research, and applied to detect image quality metamers to investigate the cultural property. The property investigated is the oldest extant version of folding screen paintings that depict the thriving city of Kyoto designated as a nationally important cultural property in Japan. Gold colored areas painted by using high granularity colorants compared with other color areas in the property are evaluated based on the metric, then the metric is visualized as a map showing the possibility of the image quality metamer to the reference pixel.

  2. Neighborhood Perceptions Affect Dietary Behaviors and Diet Quality

    ERIC Educational Resources Information Center

    Keita, Akilah Dulin; Casazza, Krista; Thomas, Olivia; Fernandez, Jose R.

    2011-01-01

    Objective: The primary purpose of this study was to determine if perceived neighborhood disorder affected dietary quality within a multiethnic sample of children. Design: Children were recruited through the use of fliers, wide-distribution mailers, parent magazines, and school presentations from June 2005 to December 2008. Setting:…

  3. Quality of Affectional Bonding, Learned Helplessness, and Clinical Depression.

    ERIC Educational Resources Information Center

    Kessler, Ronald P.

    John Bowlby's theory of affectional bonding and the reformulated learned helplessness theory of depression were integrated into a multivariate model in order to expand the breadth of current attributional theories of depression. This retrospective study focused upon the quality of parent-child relations, the types of discipline parents employed,…

  4. Factors Affecting Quality Enhancement Procedures for E-Learning Courses

    ERIC Educational Resources Information Center

    Jara, Magdalena; Mellar, Harvey

    2009-01-01

    Purpose: This paper reports on an empirical study exploring the way in which campus-based higher education institutions (HEIs) in the UK apply their internal quality assurance and enhancement (QA/QE) procedures to their e-learning courses. The purpose of this paper is to identify those characteristics of e-learning courses which affected the…

  5. High Image Quality Laser Color Printer

    NASA Astrophysics Data System (ADS)

    Nagao, Kimitoshi; Morimoto, Yoshinori

    1989-07-01

    A laser color printer has been developed to depict continuous tone color images on a photographic color film or color paper with high resolution and fidelity. We have used three lasers, He-Cd (441.6 nm), Ar4+ (514.5 nm), and He-Ne (632.8 nm) for blue, green, and red exposures. We have employed a drum scanner for two dimensional scanning. The maximum resolution of our system is 40 c/mm (80 lines/mm) and the accuracy of density reproduction is within 1.0 when measured in color difference, where most observers can not distinguish the difference. The scanning artifacts and noise are diminished to a visually negligible level. The image quality of output images compares well to that of actual color photographs, and is suitable for photographic image simulations.

  6. Blind image quality assessment via deep learning.

    PubMed

    Hou, Weilong; Gao, Xinbo; Tao, Dacheng; Li, Xuelong

    2015-06-01

    This paper investigates how to blindly evaluate the visual quality of an image by learning rules from linguistic descriptions. Extensive psychological evidence shows that humans prefer to conduct evaluations qualitatively rather than numerically. The qualitative evaluations are then converted into the numerical scores to fairly benchmark objective image quality assessment (IQA) metrics. Recently, lots of learning-based IQA models are proposed by analyzing the mapping from the images to numerical ratings. However, the learnt mapping can hardly be accurate enough because some information has been lost in such an irreversible conversion from the linguistic descriptions to numerical scores. In this paper, we propose a blind IQA model, which learns qualitative evaluations directly and outputs numerical scores for general utilization and fair comparison. Images are represented by natural scene statistics features. A discriminative deep model is trained to classify the features into five grades, corresponding to five explicit mental concepts, i.e., excellent, good, fair, poor, and bad. A newly designed quality pooling is then applied to convert the qualitative labels into scores. The classification framework is not only much more natural than the regression-based models, but also robust to the small sample size problem. Thorough experiments are conducted on popular databases to verify the model's effectiveness, efficiency, and robustness. PMID:25122842

  7. Blind image quality assessment via deep learning.

    PubMed

    Hou, Weilong; Gao, Xinbo; Tao, Dacheng; Li, Xuelong

    2015-06-01

    This paper investigates how to blindly evaluate the visual quality of an image by learning rules from linguistic descriptions. Extensive psychological evidence shows that humans prefer to conduct evaluations qualitatively rather than numerically. The qualitative evaluations are then converted into the numerical scores to fairly benchmark objective image quality assessment (IQA) metrics. Recently, lots of learning-based IQA models are proposed by analyzing the mapping from the images to numerical ratings. However, the learnt mapping can hardly be accurate enough because some information has been lost in such an irreversible conversion from the linguistic descriptions to numerical scores. In this paper, we propose a blind IQA model, which learns qualitative evaluations directly and outputs numerical scores for general utilization and fair comparison. Images are represented by natural scene statistics features. A discriminative deep model is trained to classify the features into five grades, corresponding to five explicit mental concepts, i.e., excellent, good, fair, poor, and bad. A newly designed quality pooling is then applied to convert the qualitative labels into scores. The classification framework is not only much more natural than the regression-based models, but also robust to the small sample size problem. Thorough experiments are conducted on popular databases to verify the model's effectiveness, efficiency, and robustness.

  8. Image-Word Pairing-Congruity Effect on Affective Responses

    NASA Astrophysics Data System (ADS)

    Sanabria Z., Jorge C.; Cho, Youngil; Sambai, Ami; Yamanaka, Toshimasa

    The present study explores the effects of familiarity on affective responses (pleasure and arousal) to Japanese ad elements, based on the schema incongruity theory. Print ads showing natural scenes (landscapes) were used to create the stimuli (images and words). An empirical study was conducted to measure subjects' affective responses to image-word combinations that varied in terms of incongruity. The level of incongruity was based on familiarity levels, and was statistically determined by a variable called ‘pairing-congruity status’. The tested hypothesis proposed that even highly familiar image-word combinations, when combined incongruously, would elicit strong affective responses. Subjects assessed the stimuli using bipolar scales. The study was effective in tracing interactions between familiarity, pleasure and arousal, although the incongruous image-word combinations did not elicit the predicted strong effects on pleasure and arousal. The results suggest a need for further research incorporating kansei (i.e., creativity) into the process of stimuli selection.

  9. Dried fruits quality assessment by hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Serranti, Silvia; Gargiulo, Aldo; Bonifazi, Giuseppe

    2012-05-01

    Dried fruits products present different market values according to their quality. Such a quality is usually quantified in terms of freshness of the products, as well as presence of contaminants (pieces of shell, husk, and small stones), defects, mould and decays. The combination of these parameters, in terms of relative presence, represent a fundamental set of attributes conditioning dried fruits humans-senses-detectable-attributes (visual appearance, organolectic properties, etc.) and their overall quality in terms of marketable products. Sorting-selection strategies exist but sometimes they fail when a higher degree of detection is required especially if addressed to discriminate between dried fruits of relatively small dimensions and when aiming to perform an "early detection" of pathogen agents responsible of future moulds and decays development. Surface characteristics of dried fruits can be investigated by hyperspectral imaging (HSI). In this paper, specific and "ad hoc" applications addressed to propose quality detection logics, adopting a hyperspectral imaging (HSI) based approach, are described, compared and critically evaluated. Reflectance spectra of selected dried fruits (hazelnuts) of different quality and characterized by the presence of different contaminants and defects have been acquired by a laboratory device equipped with two HSI systems working in two different spectral ranges: visible-near infrared field (400-1000 nm) and near infrared field (1000-1700 nm). The spectra have been processed and results evaluated adopting both a simple and fast wavelength band ratio approach and a more sophisticated classification logic based on principal component (PCA) analysis.

  10. Metal artifact reduction and image quality evaluation of lumbar spine CT images using metal sinogram segmentation.

    PubMed

    Kaewlek, Titipong; Koolpiruck, Diew; Thongvigitmanee, Saowapak; Mongkolsuk, Manus; Thammakittiphan, Sastrawut; Tritrakarn, Siri-on; Chiewvit, Pipat

    2015-01-01

    Metal artifacts often appear in the images of computed tomography (CT) imaging. In the case of lumbar spine CT images, artifacts disturb the images of critical organs. These artifacts can affect the diagnosis, treatment, and follow up care of the patient. One approach to metal artifact reduction is the sinogram completion method. A mixed-variable thresholding (MixVT) technique to identify the suitable metal sinogram is proposed. This technique consists of four steps: 1) identify the metal objects in the image by using k-mean clustering with the soft cluster assignment, 2) transform the image by separating it into two sinograms, one of which is the sinogram of the metal object, with the surrounding tissue shown in the second sinogram. The boundary of the metal sinogram is then found by the MixVT technique, 3) estimate the new value of the missing data in the metal sinogram by linear interpolation from the surrounding tissue sinogram, 4) reconstruct a modified sinogram by using filtered back-projection and complete the image by adding back the image of the metal object into the reconstructed image to form the complete image. The quantitative and clinical image quality evaluation of our proposed technique demonstrated a significant improvement in image clarity and detail, which enhances the effectiveness of diagnosis and treatment.

  11. Objective assessment of image quality VI: imaging in radiation therapy

    NASA Astrophysics Data System (ADS)

    Barrett, Harrison H.; Kupinski, Matthew A.; Müeller, Stefan; Halpern, Howard J.; Morris, John C., III; Dwyer, Roisin

    2013-11-01

    Earlier work on objective assessment of image quality (OAIQ) focused largely on estimation or classification tasks in which the desired outcome of imaging is accurate diagnosis. This paper develops a general framework for assessing imaging quality on the basis of therapeutic outcomes rather than diagnostic performance. By analogy to receiver operating characteristic (ROC) curves and their variants as used in diagnostic OAIQ, the method proposed here utilizes the therapy operating characteristic or TOC curves, which are plots of the probability of tumor control versus the probability of normal-tissue complications as the overall dose level of a radiotherapy treatment is varied. The proposed figure of merit is the area under the TOC curve, denoted AUTOC. This paper reviews an earlier exposition of the theory of TOC and AUTOC, which was specific to the assessment of image-segmentation algorithms, and extends it to other applications of imaging in external-beam radiation treatment as well as in treatment with internal radioactive sources. For each application, a methodology for computing the TOC is presented. A key difference between ROC and TOC is that the latter can be defined for a single patient rather than a population of patients.

  12. Colored plastic mulch microclimates affect strawberry fruit yield and quality.

    PubMed

    Shiukhy, Saeid; Raeini-Sarjaz, Mahmoud; Chalavi, Vida

    2015-08-01

    Significant reduction of strawberry (Fragaria × ananassa, Duch.) fruit yield and quality, as a consequence of conventional cultivation method, is common in the Caspian Sea region, Iran. Recently, growers started using plastic mulches to overcome these shortcomings. Plastic mulches have different thermal and radiation properties and could affect strawberry fruit yield and quality. In the present study, the effect of different colored plastic mulches (black, red, and white) along with conventional practice was tested on yield and quality of strawberry Camarosa cultivar, in a completely randomized block design. Colored plastic mulches had highly significant effect on fruit weight, size, and phytochemical contents. In the most harvest times, mean fruit weight was significantly higher in red plastic relative to white and control treatments. Total fruit weight of plastic mulches was not significantly different, while all were statistically higher than that of control. Fruit size significantly increased over red plastic mulch. Total fruit numbers over plastic mulches were significantly higher than that of control treatment. The content of phenolic compounds was similar between treatments, while anthocyanin content, IC(50) value, and flavonoid content significantly were affected by colored plastics. In conclusion, colored plastic mulches could affect strawberry fruit weight and quality through altering strawberry thermal and radiation environment. PMID:25348886

  13. Colored plastic mulch microclimates affect strawberry fruit yield and quality

    NASA Astrophysics Data System (ADS)

    Shiukhy, Saeid; Raeini-Sarjaz, Mahmoud; Chalavi, Vida

    2015-08-01

    Significant reduction of strawberry ( Fragaria × ananassa, Duch.) fruit yield and quality, as a consequence of conventional cultivation method, is common in the Caspian Sea region, Iran. Recently, growers started using plastic mulches to overcome these shortcomings. Plastic mulches have different thermal and radiation properties and could affect strawberry fruit yield and quality. In the present study, the effect of different colored plastic mulches (black, red, and white) along with conventional practice was tested on yield and quality of strawberry Camarosa cultivar, in a completely randomized block design. Colored plastic mulches had highly significant effect on fruit weight, size, and phytochemical contents. In the most harvest times, mean fruit weight was significantly higher in red plastic relative to white and control treatments. Total fruit weight of plastic mulches was not significantly different, while all were statistically higher than that of control. Fruit size significantly increased over red plastic mulch. Total fruit numbers over plastic mulches were significantly higher than that of control treatment. The content of phenolic compounds was similar between treatments, while anthocyanin content, IC50 value, and flavonoid content significantly were affected by colored plastics. In conclusion, colored plastic mulches could affect strawberry fruit weight and quality through altering strawberry thermal and radiation environment.

  14. Colored plastic mulch microclimates affect strawberry fruit yield and quality.

    PubMed

    Shiukhy, Saeid; Raeini-Sarjaz, Mahmoud; Chalavi, Vida

    2015-08-01

    Significant reduction of strawberry (Fragaria × ananassa, Duch.) fruit yield and quality, as a consequence of conventional cultivation method, is common in the Caspian Sea region, Iran. Recently, growers started using plastic mulches to overcome these shortcomings. Plastic mulches have different thermal and radiation properties and could affect strawberry fruit yield and quality. In the present study, the effect of different colored plastic mulches (black, red, and white) along with conventional practice was tested on yield and quality of strawberry Camarosa cultivar, in a completely randomized block design. Colored plastic mulches had highly significant effect on fruit weight, size, and phytochemical contents. In the most harvest times, mean fruit weight was significantly higher in red plastic relative to white and control treatments. Total fruit weight of plastic mulches was not significantly different, while all were statistically higher than that of control. Fruit size significantly increased over red plastic mulch. Total fruit numbers over plastic mulches were significantly higher than that of control treatment. The content of phenolic compounds was similar between treatments, while anthocyanin content, IC(50) value, and flavonoid content significantly were affected by colored plastics. In conclusion, colored plastic mulches could affect strawberry fruit weight and quality through altering strawberry thermal and radiation environment.

  15. Optimization of exposure in panoramic radiography while maintaining image quality using adaptive filtering.

    PubMed

    Svenson, Björn; Larsson, Lars; Båth, Magnus

    2016-01-01

    Objective The purpose of the present study was to investigate the potential of using advanced external adaptive image processing for maintaining image quality while reducing exposure in dental panoramic storage phosphor plate (SPP) radiography. Materials and methods Thirty-seven SPP radiographs of a skull phantom were acquired using a Scanora panoramic X-ray machine with various tube load, tube voltage, SPP sensitivity and filtration settings. The radiographs were processed using General Operator Processor (GOP) technology. Fifteen dentists, all within the dental radiology field, compared the structural image quality of each radiograph with a reference image on a 5-point rating scale in a visual grading characteristics (VGC) study. The reference image was acquired with the acquisition parameters commonly used in daily operation (70 kVp, 150 mAs and sensitivity class 200) and processed using the standard process parameters supplied by the modality vendor. Results All GOP-processed images with similar (or higher) dose as the reference image resulted in higher image quality than the reference. All GOP-processed images with similar image quality as the reference image were acquired at a lower dose than the reference. This indicates that the external image processing improved the image quality compared with the standard processing. Regarding acquisition parameters, no strong dependency of the image quality on the radiation quality was seen and the image quality was mainly affected by the dose. Conclusions The present study indicates that advanced external adaptive image processing may be beneficial in panoramic radiography for increasing the image quality of SPP radiographs or for reducing the exposure while maintaining image quality. PMID:26478956

  16. Factors affecting quality and safety of fresh-cut produce.

    PubMed

    Francis, G A; Gallone, A; Nychas, G J; Sofos, J N; Colelli, G; Amodio, M L; Spano, G

    2012-01-01

    The quality of fresh-cut fruit and vegetable products includes a combination of attributes, such as appearance, texture, and flavor, as well as nutritional and safety aspects that determine their value to the consumer. Nutritionally, fruit and vegetables represent a good source of vitamins, minerals, and dietary fiber, and fresh-cut produce satisfies consumer demand for freshly prepared, convenient, healthy food. However, fresh-cut produce deteriorates faster than corresponding intact produce, as a result of damage caused by minimal processing, which accelerates many physiological changes that lead to a reduction in produce quality and shelf-life. The symptoms of produce deterioration include discoloration, increased oxidative browning at cut surfaces, flaccidity as a result of loss of water, and decreased nutritional value. Damaged plant tissues also represent a better substrate for growth of microorganisms, including spoilage microorganisms and foodborne pathogens. The risk of pathogen contamination and growth is one of the main safety concerns associated with fresh-cut produce, as highlighted by the increasing number of produce-linked foodborne outbreaks in recent years. The pathogens of major concern in fresh-cut produce are Listeria monocytogenes, pathogenic Escherichia coli mainly O157:H7, and Salmonella spp. This article describes the quality of fresh-cut produce, factors affecting quality, and various techniques for evaluating quality. In addition, the microbiological safety of fresh-cut produce and factors affecting pathogen survival and growth on fresh-cut produce are discussed in detail.

  17. Data-Driven Affective Filtering for Images and Videos.

    PubMed

    Li, Teng; Ni, Bingbing; Xu, Mengdi; Wang, Meng; Gao, Qingwei; Yan, Shuicheng

    2015-10-01

    In this paper, a novel system is developed for synthesizing user-specified emotions onto arbitrary input images or videos. Other than defining the visual affective model based on empirical knowledge, a data-driven learning framework is proposed to extract the emotion-related knowledge from a set of emotion-annotated images. In a divide-and-conquer manner, the images are clustered into several emotion-specific scene subgroups for model learning. The visual affection is modeled with Gaussian mixture models based on color features of local image patches. For the purpose of affective filtering, the feature distribution of the target is aligned to the statistical model constructed from the emotion-specific scene subgroup, through a piecewise linear transformation. The transformation is derived through a learning algorithm, which is developed with the incorporation of a regularization term enforcing spatial smoothness, edge preservation, and temporal smoothness for the derived image or video transformation. Optimization of the objective function is sought via standard nonlinear method. Intensive experimental results and user studies demonstrate that the proposed affective filtering framework can yield effective and natural effects for images and videos. PMID:25675469

  18. Improving secondary ion mass spectrometry image quality with image fusion.

    PubMed

    Tarolli, Jay G; Jackson, Lauren M; Winograd, Nicholas

    2014-12-01

    The spatial resolution of chemical images acquired with cluster secondary ion mass spectrometry (SIMS) is limited not only by the size of the probe utilized to create the images but also by detection sensitivity. As the probe size is reduced to below 1 μm, for example, a low signal in each pixel limits lateral resolution because of counting statistics considerations. Although it can be useful to implement numerical methods to mitigate this problem, here we investigate the use of image fusion to combine information from scanning electron microscope (SEM) data with chemically resolved SIMS images. The advantage of this approach is that the higher intensity and, hence, spatial resolution of the electron images can help to improve the quality of the SIMS images without sacrificing chemical specificity. Using a pan-sharpening algorithm, the method is illustrated using synthetic data, experimental data acquired from a metallic grid sample, and experimental data acquired from a lawn of algae cells. The results show that up to an order of magnitude increase in spatial resolution is possible to achieve. A cross-correlation metric is utilized for evaluating the reliability of the procedure.

  19. Improving secondary ion mass spectrometry image quality with image fusion.

    PubMed

    Tarolli, Jay G; Jackson, Lauren M; Winograd, Nicholas

    2014-12-01

    The spatial resolution of chemical images acquired with cluster secondary ion mass spectrometry (SIMS) is limited not only by the size of the probe utilized to create the images but also by detection sensitivity. As the probe size is reduced to below 1 μm, for example, a low signal in each pixel limits lateral resolution because of counting statistics considerations. Although it can be useful to implement numerical methods to mitigate this problem, here we investigate the use of image fusion to combine information from scanning electron microscope (SEM) data with chemically resolved SIMS images. The advantage of this approach is that the higher intensity and, hence, spatial resolution of the electron images can help to improve the quality of the SIMS images without sacrificing chemical specificity. Using a pan-sharpening algorithm, the method is illustrated using synthetic data, experimental data acquired from a metallic grid sample, and experimental data acquired from a lawn of algae cells. The results show that up to an order of magnitude increase in spatial resolution is possible to achieve. A cross-correlation metric is utilized for evaluating the reliability of the procedure. PMID:24912432

  20. Visual pattern degradation based image quality assessment

    NASA Astrophysics Data System (ADS)

    Wu, Jinjian; Li, Leida; Shi, Guangming; Lin, Weisi; Wan, Wenfei

    2015-08-01

    In this paper, we introduce a visual pattern degradation based full-reference (FR) image quality assessment (IQA) method. Researches on visual recognition indicate that the human visual system (HVS) is highly adaptive to extract visual structures for scene understanding. Existing structure degradation based IQA methods mainly take local luminance contrast to represent structure, and measure quality as degradation on luminance contrast. In this paper, we suggest that structure includes not only luminance contrast but also orientation information. Therefore, we analyze the orientation characteristic for structure description. Inspired by the orientation selectivity mechanism in the primary visual cortex, we introduce a novel visual pattern to represent the structure of a local region. Then, the quality is measured as the degradations on both luminance contrast and visual pattern. Experimental results on Five benchmark databases demonstrate that the proposed visual pattern can effectively represent visual structure and the proposed IQA method performs better than the existing IQA metrics.

  1. Reproducibility of Mammography Units, Film Processing and Quality Imaging

    NASA Astrophysics Data System (ADS)

    Gaona, Enrique

    2003-09-01

    The purpose of this study was to carry out an exploratory survey of the problems of quality control in mammography and processors units as a diagnosis of the current situation of mammography facilities. Measurements of reproducibility, optical density, optical difference and gamma index are included. Breast cancer is the most frequently diagnosed cancer and is the second leading cause of cancer death among women in the Mexican Republic. Mammography is a radiographic examination specially designed for detecting breast pathology. We found that the problems of reproducibility of AEC are smaller than the problems of processors units because almost all processors fall outside of the acceptable variation limits and they can affect the mammography quality image and the dose to breast. Only four mammography units agree with the minimum score established by ACR and FDA for the phantom image.

  2. Model-based quantification of image quality

    NASA Technical Reports Server (NTRS)

    Hazra, Rajeeb; Miller, Keith W.; Park, Stephen K.

    1989-01-01

    In 1982, Park and Schowengerdt published an end-to-end analysis of a digital imaging system quantifying three principal degradation components: (1) image blur - blurring caused by the acquisition system, (2) aliasing - caused by insufficient sampling, and (3) reconstruction blur - blurring caused by the imperfect interpolative reconstruction. This analysis, which measures degradation as the square of the radiometric error, includes the sample-scene phase as an explicit random parameter and characterizes the image degradation caused by imperfect acquisition and reconstruction together with the effects of undersampling and random sample-scene phases. In a recent paper Mitchell and Netravelli displayed the visual effects of the above mentioned degradations and presented subjective analysis about their relative importance in determining image quality. The primary aim of the research is to use the analysis of Park and Schowengerdt to correlate their mathematical criteria for measuring image degradations with subjective visual criteria. Insight gained from this research can be exploited in the end-to-end design of optical systems, so that system parameters (transfer functions of the acquisition and display systems) can be designed relative to each other, to obtain the best possible results using quantitative measurements.

  3. Influence of slice overlap on positron emission tomography image quality

    NASA Astrophysics Data System (ADS)

    McKeown, Clare; Gillen, Gerry; Dempsey, Mary Frances; Findlay, Caroline

    2016-02-01

    PET scans use overlapping acquisition beds to correct for reduced sensitivity at bed edges. The optimum overlap size for the General Electric (GE) Discovery 690 has not been established. This study assesses how image quality is affected by slice overlap. Efficacy of 23% overlaps (recommended by GE) and 49% overlaps (maximum possible overlap) were specifically assessed. European Association of Nuclear Medicine (EANM) guidelines for calculating minimum injected activities based on overlap size were also reviewed. A uniform flood phantom was used to assess noise (coefficient of variation, (COV)) and voxel accuracy (activity concentrations, Bq ml-1). A NEMA (National Electrical Manufacturers Association) body phantom with hot/cold spheres in a background activity was used to assess contrast recovery coefficients (CRCs) and signal to noise ratios (SNR). Different overlap sizes and sphere-to-background ratios were assessed. COVs for 49% and 23% overlaps were 9% and 13% respectively. This increased noise was difficult to visualise on the 23% overlap images. Mean voxel activity concentrations were not affected by overlap size. No clinically significant differences in CRCs were observed. However, visibility and SNR of small, low contrast spheres (⩽13 mm diameter, 2:1 sphere to background ratio) may be affected by overlap size in low count studies if they are located in the overlap area. There was minimal detectable influence on image quality in terms of noise, mean activity concentrations or mean CRCs when comparing 23% overlap with 49% overlap. Detectability of small, low contrast lesions may be affected in low count studies—however, this is a worst-case scenario. The marginal benefits of increasing overlap from 23% to 49% are likely to be offset by increased patient scan times. A 23% overlap is therefore appropriate for clinical use. An amendment to EANM guidelines for calculating injected activities is also proposed which better reflects the effect overlap size has

  4. Optimizing 3D image quality and performance for stereoscopic gaming

    NASA Astrophysics Data System (ADS)

    Flack, Julien; Sanderson, Hugh; Pegg, Steven; Kwok, Simon; Paterson, Daniel

    2009-02-01

    The successful introduction of stereoscopic TV systems, such as Samsung's 3D Ready Plasma, requires high quality 3D content to be commercially available to the consumer. Console and PC games provide the most readily accessible source of high quality 3D content. This paper describes innovative developments in a generic, PC-based game driver architecture that addresses the two key issues affecting 3D gaming: quality and speed. At the heart of the quality issue are the same considerations that studios face producing stereoscopic renders from CG movies: how best to perform the mapping from a geometric CG environment into the stereoscopic display volume. The major difference being that for game drivers this mapping cannot be choreographed by hand but must be automatically calculated in real-time without significant impact on performance. Performance is a critical issue when dealing with gaming. Stereoscopic gaming has traditionally meant rendering the scene twice with the associated performance overhead. An alternative approach is to render the scene from one virtual camera position and use information from the z-buffer to generate a stereo pair using Depth-Image-Based Rendering (DIBR). We analyze this trade-off in more detail and provide some results relating to both 3D image quality and render performance.

  5. On pictures and stuff: image quality and material appearance

    NASA Astrophysics Data System (ADS)

    Ferwerda, James A.

    2014-02-01

    Realistic images are a puzzle because they serve as visual representations of objects while also being objects themselves. When we look at an image we are able to perceive both the properties of the image and the properties of the objects represented by the image. Research on image quality has typically focused improving image properties (resolution, dynamic range, frame rate, etc.) while ignoring the issue of whether images are serving their role as visual representations. In this paper we describe a series of experiments that investigate how well images of different quality convey information about the properties of the objects they represent. In the experiments we focus on the effects that two image properties (contrast and sharpness) have on the ability of images to represent the gloss of depicted objects. We found that different experimental methods produced differing results. Specifically, when the stimulus images were presented using simultaneous pair comparison, observers were influenced by the surface properties of the images and conflated changes in image contrast and sharpness with changes in object gloss. On the other hand, when the stimulus images were presented sequentially, observers were able to disregard the image plane properties and more accurately match the gloss of the objects represented by the different quality images. These findings suggest that in understanding image quality it is useful to distinguish between quality of the imaging medium and the quality of the visual information represented by that medium.

  6. Influential sources affecting Bangkok adolescent body image perceptions.

    PubMed

    Thianthai, Chulanee

    2006-01-01

    The study of body image-related problems in non-Western countries is still very limited. Thus, this study aims to identify the main influential sources and show how they affect the body image perceptions of Bangkok adolescents. The researcher recruited 400 Thai male and female adolescents in Bangkok, attending high school to freshmen level, ranging from 16-19 years, to participate in this study. Survey questionnaires were distributed to every student and follow-up interviews conducted with 40 students. The findings showed that there are eight main influential sources respectively ranked from the most influential to the least influential: magazines, television, peer group, familial, fashion trend, the opposite gender, self-realization and health knowledge. Similar to those studies conducted in Western countries, more than half of the total percentage was the influence of mass media and peer groups. Bangkok adolescents also internalized Western ideal beauty through these mass media channels. Alike studies conducted in the West, there was similarities in the process of how these influential sources affect Bangkok adolescent body image perception, with the exception of familial source. In conclusion, taking the approach of identifying the main influential sources and understanding how they affect adolescent body image perceptions can help prevent adolescents from having unhealthy views and taking risky measures toward their bodies. More studies conducted in non-Western countries are needed in order to build a cultural sensitive program, catered to the body image problems occurring in adolescents within that particular society. PMID:17340854

  7. Resource quality affects carbon cycling in deep-sea sediments

    PubMed Central

    Mayor, Daniel J; Thornton, Barry; Hay, Steve; Zuur, Alain F; Nicol, Graeme W; McWilliam, Jenna M; Witte, Ursula F M

    2012-01-01

    Deep-sea sediments cover ∼70% of Earth's surface and represent the largest interface between the biological and geological cycles of carbon. Diatoms and zooplankton faecal pellets naturally transport organic material from the upper ocean down to the deep seabed, but how these qualitatively different substrates affect the fate of carbon in this permanently cold environment remains unknown. We added equal quantities of 13C-labelled diatoms and faecal pellets to a cold water (−0.7 °C) sediment community retrieved from 1080 m in the Faroe-Shetland Channel, Northeast Atlantic, and quantified carbon mineralization and uptake by the resident bacteria and macrofauna over a 6-day period. High-quality, diatom-derived carbon was mineralized >300% faster than that from low-quality faecal pellets, demonstrating that qualitative differences in organic matter drive major changes in the residence time of carbon at the deep seabed. Benthic bacteria dominated biological carbon processing in our experiments, yet showed no evidence of resource quality-limited growth; they displayed lower growth efficiencies when respiring diatoms. These effects were consistent in contrasting months. We contend that respiration and growth in the resident sediment microbial communities were substrate and temperature limited, respectively. Our study has important implications for how future changes in the biochemical makeup of exported organic matter will affect the balance between mineralization and sequestration of organic carbon in the largest ecosystem on Earth. PMID:22378534

  8. Resource quality affects carbon cycling in deep-sea sediments.

    PubMed

    Mayor, Daniel J; Thornton, Barry; Hay, Steve; Zuur, Alain F; Nicol, Graeme W; McWilliam, Jenna M; Witte, Ursula F M

    2012-09-01

    Deep-sea sediments cover ~70% of Earth's surface and represent the largest interface between the biological and geological cycles of carbon. Diatoms and zooplankton faecal pellets naturally transport organic material from the upper ocean down to the deep seabed, but how these qualitatively different substrates affect the fate of carbon in this permanently cold environment remains unknown. We added equal quantities of (13)C-labelled diatoms and faecal pellets to a cold water (-0.7 °C) sediment community retrieved from 1080 m in the Faroe-Shetland Channel, Northeast Atlantic, and quantified carbon mineralization and uptake by the resident bacteria and macrofauna over a 6-day period. High-quality, diatom-derived carbon was mineralized >300% faster than that from low-quality faecal pellets, demonstrating that qualitative differences in organic matter drive major changes in the residence time of carbon at the deep seabed. Benthic bacteria dominated biological carbon processing in our experiments, yet showed no evidence of resource quality-limited growth; they displayed lower growth efficiencies when respiring diatoms. These effects were consistent in contrasting months. We contend that respiration and growth in the resident sediment microbial communities were substrate and temperature limited, respectively. Our study has important implications for how future changes in the biochemical makeup of exported organic matter will affect the balance between mineralization and sequestration of organic carbon in the largest ecosystem on Earth. PMID:22378534

  9. Image analysis for dental bone quality assessment using CBCT imaging

    NASA Astrophysics Data System (ADS)

    Suprijanto; Epsilawati, L.; Hajarini, M. S.; Juliastuti, E.; Susanti, H.

    2016-03-01

    Cone beam computerized tomography (CBCT) is one of X-ray imaging modalities that are applied in dentistry. Its modality can visualize the oral region in 3D and in a high resolution. CBCT jaw image has potential information for the assessment of bone quality that often used for pre-operative implant planning. We propose comparison method based on normalized histogram (NH) on the region of inter-dental septum and premolar teeth. Furthermore, the NH characteristic from normal and abnormal bone condition are compared and analyzed. Four test parameters are proposed, i.e. the difference between teeth and bone average intensity (s), the ratio between bone and teeth average intensity (n) of NH, the difference between teeth and bone peak value (Δp) of NH, and the ratio between teeth and bone of NH range (r). The results showed that n, s, and Δp have potential to be the classification parameters of dental calcium density.

  10. Neighborhood Perceptions Affect Dietary Behaviors and Diet Quality

    PubMed Central

    Keita, Akilah Dulin; Casazza, Krista; Thomas, Olivia; Fernandez, Jose R.

    2009-01-01

    Objective The primary purpose of this study was to determine if perceived neighborhood disorder affected dietary quality within a multiethnic sample of children. Design Children were recruited through the use of fliers, wide-distribution mailers, parent magazines, and school presentations from June 2005 to December 2008. Setting Birmingham-Hoover, Alabama metropolitan area. Participants Sample of 100 children aged 7 to 12. Main Outcome Measure Dietary quality was assessed using the average of two 24 hour recalls and analyzed using the Nutrition Data System for Research. Analysis Multivariate linear regression analyses were conducted to assess the relationship between neighborhood disorder and dietary quality. Results Perceived neighborhood disorder was associated with increased iron intake (P = .031) and lower potassium levels (P = .041). Perceived neighborhood disorder was marginally associated with increased energy intake (P = .074) and increased sodium intake (P = .078). Conclusions and Implications Perceived neighborhood disorder was significantly related to differences in dietary quality. This indicates that subjective neighborhood characteristics may pose barriers to healthful eating behaviors for children. Future research efforts and policy should address sociostructural factors and ways to manipulate and improve food environments and individual’s perceptions of their neighborhoods. PMID:20880752

  11. Rotation of Boar Semen Doses During Storage Affects Sperm Quality.

    PubMed

    Schulze, M; Rüdiger, K; Waberski, D

    2015-08-01

    It is common practice to rotate boar semen doses during storage for prevention of sperm sedimentation. In this study, the effect of rotation of boar semen doses during storage on sperm quality was investigated. Manual turning twice daily and automatic rotation five times per hour resulted in the following effects: alkalinization of the BTS-extender, loss of membrane integrity at day 3, and loss of motility and changes in sperm kinematics during a thermoresistance test at day 5. Using a pH-stabilized variant of BTS extender, sperm motility and velocity decreased in continuously rotated samples, whereas membrane integrity and mitochondrial activity remain unaffected. It is concluded that rotation of semen samples adversely affects sperm quality and, therefore, should no longer be recommended for AI practice. PMID:25974759

  12. Factors affecting quality of dried low-rank coals

    SciTech Connect

    Karthikeyan, M.; Kuma, J.V.M.; Hoe, C.S.; Ngo, D.L.Y.

    2007-07-01

    The chemical and physical properties of coal are strongly affected by the upgrading process employed. For high-moisture coals, upgrading involves thermal dehydration to improve the calorific value of the coal on mass basis. This study evaluates the feasibility of upgrading a low-rank/grade coal using the oven drying method. The objective of this research work is to study the drying characteristics of low-rank coals and to understand the factors affecting the quality of dried low-rank coals. This article describes laboratory experiments conducted on the characterization of the low-rank coals before and after the drying process. The results on drying kinetics, re-absorption of coal samples, and proximate analysis of coal samples before and after drying are discussed. It was found that the upgrading process produced coal with better heating value and combustion characteristics than those of the raw coal samples.

  13. Application of ultrasound processed images in space: assessing diffuse affectations

    NASA Astrophysics Data System (ADS)

    Pérez-Poch, A.; Bru, C.; Nicolau, C.

    The purpose of this study was to evaluate diffuse affectations in the liver using texture image processing techniques. Ultrasound diagnose equipments are the election of choice to be used in space environments as they are free from hazardous effects on health. However, due to the need for highly trained radiologists to assess the images, this imaging method is mainly applied on focal lesions rather than on non-focal ones. We have conducted a clinical study on 72 patients with different degrees of chronic hepatopaties and a group of control of 18 individuals. All subjects' clinical reports and results of biopsies were compared to the degree of affectation calculated by our computer system , thus validating the method. Full statistical results are given in the present paper showing a good correlation (r=0.61) between pathologist's report and analysis of the heterogenicity of the processed images from the liver. This computer system to analyze diffuse affectations may be used in-situ or via telemedicine to the ground.

  14. Focal Length Affects Depicted Shape and Perception of Facial Images.

    PubMed

    Třebický, Vít; Fialová, Jitka; Kleisner, Karel; Havlíček, Jan

    2016-01-01

    Static photographs are currently the most often employed stimuli in research on social perception. The method of photograph acquisition might affect the depicted subject's facial appearance and thus also the impression of such stimuli. An important factor influencing the resulting photograph is focal length, as different focal lengths produce various levels of image distortion. Here we tested whether different focal lengths (50, 85, 105 mm) affect depicted shape and perception of female and male faces. We collected three portrait photographs of 45 (22 females, 23 males) participants under standardized conditions and camera setting varying only in the focal length. Subsequently, the three photographs from each individual were shown on screen in a randomized order using a 3-alternative forced-choice paradigm. The images were judged for attractiveness, dominance, and femininity/masculinity by 369 raters (193 females, 176 males). Facial width-to-height ratio (fWHR) was measured from each photograph and overall facial shape was analysed employing geometric morphometric methods (GMM). Our results showed that photographs taken with 50 mm focal length were rated as significantly less feminine/masculine, attractive, and dominant compared to the images taken with longer focal lengths. Further, shorter focal lengths produced faces with smaller fWHR. Subsequent GMM revealed focal length significantly affected overall facial shape of the photographed subjects. Thus methodology of photograph acquisition, focal length in this case, can significantly affect results of studies using photographic stimuli perhaps due to different levels of perspective distortion that influence shapes and proportions of morphological traits.

  15. Image quality characteristics of handheld display devices for medical imaging.

    PubMed

    Yamazaki, Asumi; Liu, Peter; Cheng, Wei-Chung; Badano, Aldo

    2013-01-01

    Handheld devices such as mobile phones and tablet computers have become widespread with thousands of available software applications. Recently, handhelds are being proposed as part of medical imaging solutions, especially in emergency medicine, where immediate consultation is required. However, handheld devices differ significantly from medical workstation displays in terms of display characteristics. Moreover, the characteristics vary significantly among device types. We investigate the image quality characteristics of various handheld devices with respect to luminance response, spatial resolution, spatial noise, and reflectance. We show that the luminance characteristics of the handheld displays are different from those of workstation displays complying with grayscale standard target response suggesting that luminance calibration might be needed. Our results also demonstrate that the spatial characteristics of handhelds can surpass those of medical workstation displays particularly for recent generation devices. While a 5 mega-pixel monochrome workstation display has horizontal and vertical modulation transfer factors of 0.52 and 0.47 at the Nyquist frequency, the handheld displays released after 2011 can have values higher than 0.63 at the respective Nyquist frequencies. The noise power spectra for workstation displays are higher than 1.2 × 10(-5) mm(2) at 1 mm(-1), while handheld displays have values lower than 3.7 × 10(-6) mm(2). Reflectance measurements on some of the handheld displays are consistent with measurements for workstation displays with, in some cases, low specular and diffuse reflectance coefficients. The variability of the characterization results among devices due to the different technological features indicates that image quality varies greatly among handheld display devices. PMID:24236113

  16. Image Quality Characteristics of Handheld Display Devices for Medical Imaging

    PubMed Central

    Yamazaki, Asumi; Liu, Peter; Cheng, Wei-Chung; Badano, Aldo

    2013-01-01

    Handheld devices such as mobile phones and tablet computers have become widespread with thousands of available software applications. Recently, handhelds are being proposed as part of medical imaging solutions, especially in emergency medicine, where immediate consultation is required. However, handheld devices differ significantly from medical workstation displays in terms of display characteristics. Moreover, the characteristics vary significantly among device types. We investigate the image quality characteristics of various handheld devices with respect to luminance response, spatial resolution, spatial noise, and reflectance. We show that the luminance characteristics of the handheld displays are different from those of workstation displays complying with grayscale standard target response suggesting that luminance calibration might be needed. Our results also demonstrate that the spatial characteristics of handhelds can surpass those of medical workstation displays particularly for recent generation devices. While a 5 mega-pixel monochrome workstation display has horizontal and vertical modulation transfer factors of 0.52 and 0.47 at the Nyquist frequency, the handheld displays released after 2011 can have values higher than 0.63 at the respective Nyquist frequencies. The noise power spectra for workstation displays are higher than 1.2×10−5 mm2 at 1 mm−1, while handheld displays have values lower than 3.7×10−6 mm2. Reflectance measurements on some of the handheld displays are consistent with measurements for workstation displays with, in some cases, low specular and diffuse reflectance coefficients. The variability of the characterization results among devices due to the different technological features indicates that image quality varies greatly among handheld display devices. PMID:24236113

  17. The influence of statistical variations on image quality

    NASA Astrophysics Data System (ADS)

    Hultgren, Bror; Hertel, Dirk; Bullitt, Julian

    2006-01-01

    For more than thirty years imaging scientists have constructed metrics to predict psychovisually perceived image quality. Such metrics are based on a set of objectively measurable basis functions such as Noise Power Spectrum (NPS), Modulation Transfer Function (MTF), and characteristic curves of tone and color reproduction. Although these basis functions constitute a set of primitives that fully describe an imaging system from the standpoint of information theory, we found that in practical imaging systems the basis functions themselves are determined by system-specific primitives, i.e. technology parameters. In the example of a printer, MTF and NPS are largely determined by dot structure. In addition MTF is determined by color registration, and NPS by streaking and banding. Since any given imaging system is only a single representation of a class of more or less identical systems, the family of imaging systems and the single system are not described by a unique set of image primitives. For an image produced by a given imaging system, the set of image primitives describing that particular image will be a singular instantiation of the underlying statistical distribution of that primitive. If we know precisely the set of imaging primitives that describe the given image we should be able to predict its image quality. Since only the distributions are known, we can only predict the distribution in image quality for a given image as produced by the larger class of 'identical systems'. We will demonstrate the combinatorial effect of the underlying statistical variations in the image primitives on the objectively measured image quality of a population of printers as well as on the perceived image quality of a set of test images. We also will discuss the choice of test image sets and impact of scene content on the distribution of perceived image quality.

  18. Evaluation of scatter effects on image quality for breast tomosynthesis

    SciTech Connect

    Wu Gang; Mainprize, James G.; Boone, John M.; Yaffe, Martin J.

    2009-10-15

    Digital breast tomosynthesis uses a limited number (typically 10-20) of low-dose x-ray projections to produce a pseudo-three-dimensional volume tomographic reconstruction of the breast. The purpose of this investigation was to characterize and evaluate the effect of scattered radiation on the image quality for breast tomosynthesis. In a simulation, scatter point spread functions generated by a Monte Carlo simulation method were convolved over the breast projection to estimate the distribution of scatter for each angle of tomosynthesis projection. The results demonstrate that in the absence of scatter reduction techniques, images will be affected by cupping artifacts, and there will be reduced accuracy of attenuation values inferred from the reconstructed images. The effect of x-ray scatter on the contrast, noise, and lesion signal-difference-to-noise ratio (SDNR) in tomosynthesis reconstruction was measured as a function of the tumor size. When a with-scatter reconstruction was compared to one without scatter for a 5 cm compressed breast, the following results were observed. The contrast in the reconstructed central slice image of a tumorlike mass (14 mm in diameter) was reduced by 30%, the voxel value (inferred attenuation coefficient) was reduced by 28%, and the SDNR fell by 60%. The authors have quantified the degree to which scatter degrades the image quality over a wide range of parameters relevant to breast tomosynthesis, including x-ray beam energy, breast thickness, breast diameter, and breast composition. They also demonstrate, though, that even without a scatter rejection device, the contrast and SDNR in the reconstructed tomosynthesis slice are higher than those of conventional mammographic projection images acquired with a grid at an equivalent total exposure.

  19. Improving the Blanco Telescope's delivered image quality

    NASA Astrophysics Data System (ADS)

    Abbott, Timothy M. C.; Montane, Andrés; Tighe, Roberto; Walker, Alistair R.; Gregory, Brooke; Smith, R. Christopher; Cisternas, Alfonso

    2010-07-01

    The V. M. Blanco 4-m telescope at Cerro Tololo Inter-American Observatory is undergoing a number of improvements in preparation for the delivery of the Dark Energy Camera. The program includes upgrades having potential to deliver gains in image quality and stability. To this end, we have renovated the support structure of the primary mirror, incorporating innovations to improve both the radial support performance and the registration of the mirror and telescope top end. The resulting opto-mechanical condition of the telescope is described. We also describe some improvements to the environmental control. Upgrades to the telescope control system and measurements of the dome environment are described in separate papers in this conference.

  20. TU-F-9A-01: Balancing Image Quality and Dose in Radiography

    SciTech Connect

    Peck, D; Pasciak, A

    2014-06-15

    Emphasis is often placed on minimizing radiation dose in diagnostic imaging without a complete consideration of the effect on image quality, especially those that affect diagnostic accuracy. This session will include a patient image-based review of diagnostic quantities important to radiologists in conventional radiography, including the effects of body habitus, age, positioning, and the clinical indication of the exam. The relationships between image quality, radiation dose, and radiation risk will be discussed, specifically addressing how these factors are affected by image protocols and acquisition parameters and techniques. This session will also discuss some of the actual and perceived radiation risk associated with diagnostic imaging. Regardless if the probability for radiation-induced cancer is small, the fear associated with radiation persists. Also when a risk has a benefit to an individual or to society, the risk may be justified with respect to the benefit. But how do you convey the risks and the benefits to people? This requires knowledge of how people perceive risk and how to communicate the risk and the benefit to different populations. In this presentation the sources of errors in estimating risk from radiation and some methods used to convey risks are reviewed. Learning Objectives: Understand the image quality metrics that are clinically relevant to radiologists. Understand how acquisition parameters and techniques affect image quality and radiation dose in conventional radiology. Understand the uncertainties in estimates of radiation risk from imaging exams. Learn some methods for effectively communicating radiation risk to the public.

  1. Food quality assessment by NIR hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Whitworth, Martin B.; Millar, Samuel J.; Chau, Astor

    2010-04-01

    Near infrared reflectance (NIR) spectroscopy is well established in the food industry for rapid compositional analysis of bulk samples. NIR hyperspectral imaging provides new opportunities to measure the spatial distribution of components such as moisture and fat, and to identify and measure specific regions of composite samples. An NIR hyperspectral imaging system has been constructed for food research applications, incorporating a SWIR camera with a cooled 14 bit HgCdTe detector and N25E spectrograph (Specim Ltd, Finland). Samples are scanned in a pushbroom mode using a motorised stage. The system has a spectral resolution of 256 pixels covering a range of 970-2500 nm and a spatial resolution of 320 pixels covering a swathe adjustable from 8 to 300 mm. Images are acquired at a rate of up to 100 lines s-1, enabling samples to be scanned within a few seconds. Data are captured using SpectralCube software (Specim) and analysed using ENVI and IDL (ITT Visual Information Solutions). Several food applications are presented. The strength of individual absorbance bands enables the distribution of particular components to be assessed. Examples are shown for detection of added gluten in wheat flour and to study the effect of processing conditions on fat distribution in chips/French fries. More detailed quantitative calibrations have been developed to study evolution of the moisture distribution in baguettes during storage at different humidities, to assess freshness of fish using measurements of whole cod and fillets, and for prediction of beef quality by identification and separate measurement of lean and fat regions.

  2. The physical and psychological factors governing sound-image quality

    NASA Astrophysics Data System (ADS)

    Kurozumi, K.; Ohgushi, K.

    1984-03-01

    One of the most important psychological impressions produced by a conventional two-loudspeakers reproduction-system is a localization of the sound image in the horizontal plane. The sound image is localized to some degree by varying the level and the time differences of the two acoustic signals. Even if the sound image was localized in the same direction, different impressions - for example, a feeling of the width of the sound image - are sometimes produced. These different impressions are explained by the phrase sound-image quality. The purpose is to find out the psychological and physical factors governing sound-image quality. To begin with, the effect on sound-image quality of varying the cross-correlation coefficient for white noise is investigated. A number of studies were performed in which the relationship between the cross-correlation coefficient and the sound-image quality were investigated.

  3. Reduced-reference image quality assessment using moment method

    NASA Astrophysics Data System (ADS)

    Yang, Diwei; Shen, Yuantong; Shen, Yongluo; Li, Hongwei

    2016-10-01

    Reduced-reference image quality assessment (RR IQA) aims to evaluate the perceptual quality of a distorted image through partial information of the corresponding reference image. In this paper, a novel RR IQA metric is proposed by using the moment method. We claim that the first and second moments of wavelet coefficients of natural images can have approximate and regular change that are disturbed by different types of distortions, and that this disturbance can be relevant to human perceptions of quality. We measure the difference of these statistical parameters between reference and distorted image to predict the visual quality degradation. The introduced IQA metric is suitable for implementation and has relatively low computational complexity. The experimental results on Laboratory for Image and Video Engineering (LIVE) and Tampere Image Database (TID) image databases indicate that the proposed metric has a good predictive performance.

  4. Mechanisms affecting water quality in an intermittent piped water supply.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2014-01-01

    Drinking water distribution systems throughout the world supply water intermittently, leaving pipes without pressure between supply cycles. Understanding the multiple mechanisms that affect contamination in these intermittent water supplies (IWS) can be used to develop strategies to improve water quality. To study these effects, we tested water quality in an IWS system with infrequent and short water delivery periods in Hubli-Dharwad, India. We continuously measured pressure and physicochemical parameters and periodically collected grab samples to test for total coliform and E. coli throughout supply cycles at 11 sites. When the supply was first turned on, water with elevated turbidity and high concentrations of indicator bacteria was flushed out of pipes. At low pressures (<10 psi), elevated indicator bacteria were frequently detected even when there was a chlorine residual, suggesting persistent contamination had occurred through intrusion or backflow. At pressures between 10 and 17 psi, evidence of periodic contamination suggested that transient intrusion, backflow, release of particulates, or sloughing of biofilms from pipe walls had occurred. Few total coliform and no E. coli were detected when water was delivered with a chlorine residual and at pressures >17 psi.

  5. Parameters affecting greywater quality and its safety for reuse.

    PubMed

    Maimon, Adi; Friedler, Eran; Gross, Amit

    2014-07-15

    Reusing greywater (GW) for on-site irrigation is becoming a common practice worldwide. Alongside its benefits, GW reuse might pose health and environmental risks. The current study assesses the risks associated with on-site GW reuse and the main factors affecting them. GW from 34 households in Israel was analyzed for physicochemical parameters, Escherichia coli (as an indicator for rotavirus), Pseudomonas aeruginosa and Staphylococcus aureus. Each participating household filled out a questionnaire about their GW sources, treatment and usages. Quantitative microbial risk assessment (QMRA) was performed based on the measured microbial quality, and on exposure scenarios derived from the questionnaires and literature data. The type of treatment was found to have a significant effect on the quality of the treated GW. The average E. coli counts in GW (which exclude kitchen effluent) treated by professionally-designed system resulted in acceptable risk under all exposure scenarios while the risk from inadequately-treated GW was above the accepted level as set by the WHO. In conclusion, safe GW reuse requires a suitable and well-designed treatment system. A risk-assessment approach should be used to adjust the current regulations/guidelines and to assess the performance of GW treatment and reuse systems.

  6. Focal Length Affects Depicted Shape and Perception of Facial Images.

    PubMed

    Třebický, Vít; Fialová, Jitka; Kleisner, Karel; Havlíček, Jan

    2016-01-01

    Static photographs are currently the most often employed stimuli in research on social perception. The method of photograph acquisition might affect the depicted subject's facial appearance and thus also the impression of such stimuli. An important factor influencing the resulting photograph is focal length, as different focal lengths produce various levels of image distortion. Here we tested whether different focal lengths (50, 85, 105 mm) affect depicted shape and perception of female and male faces. We collected three portrait photographs of 45 (22 females, 23 males) participants under standardized conditions and camera setting varying only in the focal length. Subsequently, the three photographs from each individual were shown on screen in a randomized order using a 3-alternative forced-choice paradigm. The images were judged for attractiveness, dominance, and femininity/masculinity by 369 raters (193 females, 176 males). Facial width-to-height ratio (fWHR) was measured from each photograph and overall facial shape was analysed employing geometric morphometric methods (GMM). Our results showed that photographs taken with 50 mm focal length were rated as significantly less feminine/masculine, attractive, and dominant compared to the images taken with longer focal lengths. Further, shorter focal lengths produced faces with smaller fWHR. Subsequent GMM revealed focal length significantly affected overall facial shape of the photographed subjects. Thus methodology of photograph acquisition, focal length in this case, can significantly affect results of studies using photographic stimuli perhaps due to different levels of perspective distortion that influence shapes and proportions of morphological traits. PMID:26894832

  7. Focal Length Affects Depicted Shape and Perception of Facial Images

    PubMed Central

    Třebický, Vít; Fialová, Jitka; Kleisner, Karel; Havlíček, Jan

    2016-01-01

    Static photographs are currently the most often employed stimuli in research on social perception. The method of photograph acquisition might affect the depicted subject’s facial appearance and thus also the impression of such stimuli. An important factor influencing the resulting photograph is focal length, as different focal lengths produce various levels of image distortion. Here we tested whether different focal lengths (50, 85, 105 mm) affect depicted shape and perception of female and male faces. We collected three portrait photographs of 45 (22 females, 23 males) participants under standardized conditions and camera setting varying only in the focal length. Subsequently, the three photographs from each individual were shown on screen in a randomized order using a 3-alternative forced-choice paradigm. The images were judged for attractiveness, dominance, and femininity/masculinity by 369 raters (193 females, 176 males). Facial width-to-height ratio (fWHR) was measured from each photograph and overall facial shape was analysed employing geometric morphometric methods (GMM). Our results showed that photographs taken with 50 mm focal length were rated as significantly less feminine/masculine, attractive, and dominant compared to the images taken with longer focal lengths. Further, shorter focal lengths produced faces with smaller fWHR. Subsequent GMM revealed focal length significantly affected overall facial shape of the photographed subjects. Thus methodology of photograph acquisition, focal length in this case, can significantly affect results of studies using photographic stimuli perhaps due to different levels of perspective distortion that influence shapes and proportions of morphological traits. PMID:26894832

  8. Quantitative image quality evaluation for cardiac CT reconstructions

    NASA Astrophysics Data System (ADS)

    Tseng, Hsin-Wu; Fan, Jiahua; Kupinski, Matthew A.; Balhorn, William; Okerlund, Darin R.

    2016-03-01

    Maintaining image quality in the presence of motion is always desirable and challenging in clinical Cardiac CT imaging. Different image-reconstruction algorithms are available on current commercial CT systems that attempt to achieve this goal. It is widely accepted that image-quality assessment should be task-based and involve specific tasks, observers, and associated figures of merits. In this work, we developed an observer model that performed the task of estimating the percentage of plaque in a vessel from CT images. We compared task performance of Cardiac CT image data reconstructed using a conventional FBP reconstruction algorithm and the SnapShot Freeze (SSF) algorithm, each at default and optimal reconstruction cardiac phases. The purpose of this work is to design an approach for quantitative image-quality evaluation of temporal resolution for Cardiac CT systems. To simulate heart motion, a moving coronary type phantom synchronized with an ECG signal was used. Three different percentage plaques embedded in a 3 mm vessel phantom were imaged multiple times under motion free, 60 bpm, and 80 bpm heart rates. Static (motion free) images of this phantom were taken as reference images for image template generation. Independent ROIs from the 60 bpm and 80 bpm images were generated by vessel tracking. The observer performed estimation tasks using these ROIs. Ensemble mean square error (EMSE) was used as the figure of merit. Results suggest that the quality of SSF images is superior to the quality of FBP images in higher heart-rate scans.

  9. Contemporary Quality of Life Issues Affecting Gynecologic Cancer Survivors

    PubMed Central

    Carter, Jeanne; Penson, Richard; Barakat, Richard; Wenzel, Lari

    2015-01-01

    Gynecologic cancers account for approximately 11% of the newly diagnosed cancers in women in the United States and 18% in the world.1 The most common gynecologic malignancies occur in the uterus and endometrium (53%), ovary (25%), and cervix (14%).2 Cervical cancer is most prevalent in premenopausal women, during their childbearing years, whereas uterine and ovarian cancers tend to present in the perimenopausal or menopausal period. Vaginal and vulvar cancers and malignancies arising from gestation, or gestational trophoblastic neoplasms, occur to a lesser extent. Regardless of cancer origin or age of onset, the disease and its treatment can produce short- and long-term sequelae (ie, sexual dysfunction, infertility, or lymphedema) that adversely affect quality of life (QOL). This article outlines the primary contemporary issues or concerns that may affect QOL and offers strategies to offset or mitigate QOL disruption. These contemporary issues are identified within the domains of sexual functioning, reproductive issues, lymphedema, and the contribution of health-related QOL (HRQOL) in influential gynecologic cancer clinical trials. PMID:22244668

  10. Fast T2-weighted MR imaging: impact of variation in pulse sequence parameters on image quality and artifacts.

    PubMed

    Li, Tao; Mirowitz, Scott A

    2003-09-01

    The purpose of this study was to quantitatively evaluate in a phantom model the practical impact of alteration of key imaging parameters on image quality and artifacts for the most commonly used fast T(2)-weighted MR sequences. These include fast spin-echo (FSE), single shot fast spin-echo (SSFSE), and spin-echo echo-planar imaging (EPI) pulse sequences. We developed a composite phantom with different T1 and T2 values, which was evaluated while stationary as well as during periodic motion. Experiments involved controlled variations in key parameters including effective TE, TR, echo spacing (ESP), receive bandwidth (BW), echo train length (ETL), and shot number (SN). Quantitative analysis consisted of signal-to-noise ratio (SNR), image nonuniformity, full-width-at-half-maximum (i.e., blurring or geometric distortion) and ghosting ratio. Among the fast T(2)-weighted sequences, EPI was most sensitive to alterations in imaging parameters. Among imaging parameters that we tested, effective TE, ETL, and shot number most prominently affected image quality and artifacts. Short T(2) objects were more sensitive to alterations in imaging parameters in terms of image quality and artifacts. Optimal clinical application of these fast T(2)-weighted imaging pulse sequences requires careful attention to selection of imaging parameters.

  11. Clinical factors affecting quality of life of patients with asthma

    PubMed Central

    Uchmanowicz, Bartosz; Panaszek, Bernard; Uchmanowicz, Izabella; Rosińczuk, Joanna

    2016-01-01

    Background In recent years, there has been increased interest in the subjective quality of life (QoL) of patients with bronchial asthma. QoL is a significant indicator guiding the efforts of professionals caring for patients, especially chronically ill ones. The identification of factors affecting the QoL reported by patients, despite their existing condition, is important and useful to provide multidisciplinary care for these patients. Aim To investigate the clinical factors affecting asthma patients’ QoL. Methods The study comprised 100 patients (73 female, 27 male) aged 18–84 years (mean age was 45.7) treated in the Allergy Clinic of the Wroclaw Medical University Department and Clinic of Internal Diseases, Geriatrics and Allergology. All asthma patients meeting the inclusion criteria were invited to participate. Data on sociodemographic and clinical variables were collected. In this study, we used medical record analysis and two questionnaires: the Asthma Quality of Life Questionnaire (AQLQ) to assess the QoL of patients with asthma and the Asthma Control Test to measure asthma control. Results Active smokers were shown to have a significantly lower QoL in the “Symptoms” domain than nonsmokers (P=0.006). QoL was also demonstrated to decrease significantly as the frequency of asthma exacerbations increased (R=−0.231, P=0.022). QoL in the domain “Activity limitation” was shown to increase significantly along with the number of years of smoking (R=0.404; P=0.004). Time from onset and the dominant symptom of asthma significantly negatively affected QoL in the “Activity limitation” domain of the AQLQ (R=−0.316, P=0.001; P=0.029, respectively). QoL scores in the “Emotional function” and “Environmental stimuli” subscale of the AQLQ decreased significantly as time from onset increased (R=−0.200, P=0.046; R=−0.328, P=0.001, respectively). Conclusion Patients exhibiting better symptom control have higher QoL scores. Asthma patients’ Qo

  12. Research iris serial images quality assessment method based on HVS

    NASA Astrophysics Data System (ADS)

    Li, Zhi-hui; Zhang, Chang-hai; Ming, Xing; Zhao, Yong-hua

    2006-01-01

    Iris recognition can be widely used in security and customs, and it provides superiority security than other human feature recognition such as fingerprint, face and so on. The iris image quality is crucial to recognition effect. Accordingly reliable image quality assessments are necessary for evaluating iris image quality. However, there haven't uniformly criterion to Image quality assessment. Image quality assessment have Objective and Subjective Evaluation methods, In practice, However Subjective Evaluation method is fussy and doesn't effective on iris recognition. Objective Evaluation method should be used in iris recognition. According to human visual system model (HVS) Multi-scale and selectivity characteristic, it presents a new iris Image quality assessment method. In the paper, ROI is found and wavelet transform zero-crossing is used to find Multi-scale edge, and Multi-scale fusion measure is used to assess iris image quality. In experiment, Objective and Subjective Evaluation methods are used to assess iris images. From the results, the method is effectively to iris image quality assessment.

  13. Limitations to adaptive optics image quality in rodent eyes.

    PubMed

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2012-08-01

    Adaptive optics (AO) retinal image quality of rodent eyes is inferior to that of human eyes, despite the promise of greater numerical aperture. This paradox challenges several assumptions commonly made in AO imaging, assumptions which may be invalidated by the very high power and dioptric thickness of the rodent retina. We used optical modeling to compare the performance of rat and human eyes under conditions that tested the validity of these assumptions. Results showed that AO image quality in the human eye is robust to positioning errors of the AO corrector and to differences in imaging depth and wavelength compared to the wavefront beacon. In contrast, image quality in the rat eye declines sharply with each of these manipulations, especially when imaging off-axis. However, some latitude does exist to offset these manipulations against each other to produce good image quality.

  14. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality

    NASA Astrophysics Data System (ADS)

    Vano, E.; Geiger, B.; Schreiner, A.; Back, C.; Beissel, J.

    2005-12-01

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 µGy/frame (cine) and 5 and 95 mGy min-1 (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  15. Can pictorial images communicate the quality of pain successfully?

    PubMed Central

    Knapp, Peter; Morley, Stephen; Stones, Catherine

    2015-01-01

    Chronic pain is common and difficult for patients to communicate to health professionals. It may include neuropathic elements which require specialised treatment. A little used approach to communicating the quality of pain is through the use of images. This study aimed to test the ability of a set of 12 images depicting different sensory pain qualities to successfully communicate those qualities. Images were presented to 25 student nurses and 38 design students. Students were asked to write down words or phrases describing the quality of pain they felt was being communicated by each image. They were asked to provide as many or as few as occurred to them. The images were extremely heterogeneous in their ability to convey qualities of pain accurately. Only 2 of the 12 images were correctly interpreted by more than 70% of the sample. There was a significant difference between the two student groups, with nurses being significantly better at interpreting the images than the design students. Clearly, attention needs to be given not only to the content of images designed to depict the sensory qualities of pain but also to the differing audiences who may use them. Education, verbal ability, ethnicity and a multiplicity of other factors may influence the understanding and use of such images. Considerable work is needed to develop a set of images which is sufficiently culturally appropriate and effective for general use. PMID:26516574

  16. Biosolids applications affect runoff water quality following forest fire.

    PubMed

    Meyer, V F; Redente, E F; Barbarick, K A; Brobst, R

    2001-01-01

    Soil erosion and nutrient losses are great concerns following forest wildfires. Biosolids application might enhance revegetation efforts while reducing soil erodibility. Consequently, we applied Denver Metro Wastewater District composted biosolids at rates of 0, 40, and 80 Mg ha(-1) to a severely burned, previously forested site near Buffalo Creek, CO to increase plant cover and growth. Soils were classified as Ustorthents, Ustochrepts, and Haploborols. Simulated rainfall was applied for 30 min at a rate of 100 mm h(-1) to 3- x 10-m paired plots. Biosolids application rates did not significantly affect mean total runoff (p < 0.05). Sediment concentrations were significantly greater (p < 0.05) from the control plots compared with the plots that had received the 80 Mg biosolids ha(-1) rate. Biosolids application rate had mixed effects on water-quality constituents; however, concentrations of all runoff constituents for all treatment rates were below levels recommended for drinking water standards, except Pb. Biosolids application to this site increased plant cover, which should provide erosion control.

  17. Image quality assessment for CT used on small animals

    NASA Astrophysics Data System (ADS)

    Cisneros, Isabela Paredes; Agulles-Pedrós, Luis

    2016-07-01

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters using an acrylic phantom and then, using the computational tool MatLab, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.

  18. Quaternion structural similarity: a new quality index for color images.

    PubMed

    Kolaman, Amir; Yadid-Pecht, Orly

    2012-04-01

    One of the most important issues for researchers developing image processing algorithms is image quality. Methodical quality evaluation, by showing images to several human observers, is slow, expensive, and highly subjective. On the other hand, a visual quality matrix (VQM) is a fast, cheap, and objective tool for evaluating image quality. Although most VQMs are good in predicting the quality of an image degraded by a single degradation, they poorly perform for a combination of two degradations. An example for such degradation is the color crosstalk (CTK) effect, which introduces blur with desaturation. CTK is expected to become a bigger issue in image quality as the industry moves toward smaller sensors. In this paper, we will develop a VQM that will be able to better evaluate the quality of an image degraded by a combined blur/desaturation degradation and perform as well as other VQMs on single degradations such as blur, compression, and noise. We show why standard scalar techniques are insufficient to measure a combined blur/desaturation degradation and explain why a vectorial approach is better suited. We introduce quaternion image processing (QIP), which is a true vectorial approach and has many uses in the fields of physics and engineering. Our new VQM is a vectorial expansion of structure similarity using QIP, which gave it its name-Quaternion Structural SIMilarity (QSSIM). We built a new database of a combined blur/desaturation degradation and conducted a quality survey with human subjects. An extensive comparison between QSSIM and other VQMs on several image quality databases-including our new database-shows the superiority of this new approach in predicting visual quality of color images.

  19. Effect of image quality on calcification detection in digital mammography

    PubMed Central

    Warren, Lucy M.; Mackenzie, Alistair; Cooke, Julie; Given-Wilson, Rosalind M.; Wallis, Matthew G.; Chakraborty, Dev P.; Dance, David R.; Bosmans, Hilde; Young, Kenneth C.

    2012-01-01

    Purpose: This study aims to investigate if microcalcification detection varies significantly when mammographic images are acquired using different image qualities, including: different detectors, dose levels, and different image processing algorithms. An additional aim was to determine how the standard European method of measuring image quality using threshold gold thickness measured with a CDMAM phantom and the associated limits in current EU guidelines relate to calcification detection. Methods: One hundred and sixty two normal breast images were acquired on an amorphous selenium direct digital (DR) system. Microcalcification clusters extracted from magnified images of slices of mastectomies were electronically inserted into half of the images. The calcification clusters had a subtle appearance. All images were adjusted using a validated mathematical method to simulate the appearance of images from a computed radiography (CR) imaging system at the same dose, from both systems at half this dose, and from the DR system at quarter this dose. The original 162 images were processed with both Hologic and Agfa (Musica-2) image processing. All other image qualities were processed with Agfa (Musica-2) image processing only. Seven experienced observers marked and rated any identified suspicious regions. Free response operating characteristic (FROC) and ROC analyses were performed on the data. The lesion sensitivity at a nonlesion localization fraction (NLF) of 0.1 was also calculated. Images of the CDMAM mammographic test phantom were acquired using the automatic setting on the DR system. These images were modified to the additional image qualities used in the observer study. The images were analyzed using automated software. In order to assess the relationship between threshold gold thickness and calcification detection a power law was fitted to the data. Results: There was a significant reduction in calcification detection using CR compared with DR: the alternative FROC

  20. Effect of image quality on calcification detection in digital mammography

    SciTech Connect

    Warren, Lucy M.; Mackenzie, Alistair; Cooke, Julie; Given-Wilson, Rosalind M.; Wallis, Matthew G.; Chakraborty, Dev P.; Dance, David R.; Bosmans, Hilde; Young, Kenneth C.

    2012-06-15

    Purpose: This study aims to investigate if microcalcification detection varies significantly when mammographic images are acquired using different image qualities, including: different detectors, dose levels, and different image processing algorithms. An additional aim was to determine how the standard European method of measuring image quality using threshold gold thickness measured with a CDMAM phantom and the associated limits in current EU guidelines relate to calcification detection. Methods: One hundred and sixty two normal breast images were acquired on an amorphous selenium direct digital (DR) system. Microcalcification clusters extracted from magnified images of slices of mastectomies were electronically inserted into half of the images. The calcification clusters had a subtle appearance. All images were adjusted using a validated mathematical method to simulate the appearance of images from a computed radiography (CR) imaging system at the same dose, from both systems at half this dose, and from the DR system at quarter this dose. The original 162 images were processed with both Hologic and Agfa (Musica-2) image processing. All other image qualities were processed with Agfa (Musica-2) image processing only. Seven experienced observers marked and rated any identified suspicious regions. Free response operating characteristic (FROC) and ROC analyses were performed on the data. The lesion sensitivity at a nonlesion localization fraction (NLF) of 0.1 was also calculated. Images of the CDMAM mammographic test phantom were acquired using the automatic setting on the DR system. These images were modified to the additional image qualities used in the observer study. The images were analyzed using automated software. In order to assess the relationship between threshold gold thickness and calcification detection a power law was fitted to the data. Results: There was a significant reduction in calcification detection using CR compared with DR: the alternative FROC

  1. A new assessment method for image fusion quality

    NASA Astrophysics Data System (ADS)

    Li, Liu; Jiang, Wanying; Li, Jing; Yuchi, Ming; Ding, Mingyue; Zhang, Xuming

    2013-03-01

    Image fusion quality assessment plays a critically important role in the field of medical imaging. To evaluate image fusion quality effectively, a lot of assessment methods have been proposed. Examples include mutual information (MI), root mean square error (RMSE), and universal image quality index (UIQI). These image fusion assessment methods could not reflect the human visual inspection effectively. To address this problem, we have proposed a novel image fusion assessment method which combines the nonsubsampled contourlet transform (NSCT) with the regional mutual information in this paper. In this proposed method, the source medical images are firstly decomposed into different levels by the NSCT. Then the maximum NSCT coefficients of the decomposed directional images at each level are obtained to compute the regional mutual information (RMI). Finally, multi-channel RMI is computed by the weighted sum of the obtained RMI values at the various levels of NSCT. The advantage of the proposed method lies in the fact that the NSCT can represent image information using multidirections and multi-scales and therefore it conforms to the multi-channel characteristic of human visual system, leading to its outstanding image assessment performance. The experimental results using CT and MRI images demonstrate that the proposed assessment method outperforms such assessment methods as MI and UIQI based measure in evaluating image fusion quality and it can provide consistent results with human visual assessment.

  2. Damage and quality assessment in wheat by NIR hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Delwiche, Stephen R.; Kim, Moon S.; Dong, Yanhong

    2010-04-01

    Fusarium head blight is a fungal disease that affects the world's small grains, such as wheat and barley. Attacking the spikelets during development, the fungus causes a reduction of yield and grain of poorer processing quality. It also is a health concern because of the secondary metabolite, deoxynivalenol, which often accompanies the fungus. While chemical methods exist to measure the concentration of the mycotoxin and manual visual inspection is used to ascertain the level of Fusarium damage, research has been active in developing fast, optically based techniques that can assess this form of damage. In the current study a near-infrared (1000-1700 nm) hyperspectral image system was assembled and applied to Fusarium-damaged kernel recognition. With anticipation of an eventual multispectral imaging system design, 5 wavelengths were manually selected from a pool of 146 images as the most promising, such that when combined in pairs or triplets, Fusarium damage could be identified. We present the results of two pairs of wavelengths [(1199, 1474 nm) and (1315, 1474 nm)] whose reflectance values produced adequate separation of kernels of healthy appearance (i.e., asymptomatic condition) from kernels possessing Fusarium damage.

  3. The effect of image sharpness on quantitative eye movement data and on image quality evaluation while viewing natural images

    NASA Astrophysics Data System (ADS)

    Vuori, Tero; Olkkonen, Maria

    2006-01-01

    The aim of the study is to test both customer image quality rating (subjective image quality) and physical measurement of user behavior (eye movements tracking) to find customer satisfaction differences in imaging technologies. Methodological aim is to find out whether eye movements could be quantitatively used in image quality preference studies. In general, we want to map objective or physically measurable image quality to subjective evaluations and eye movement data. We conducted a series of image quality tests, in which the test subjects evaluated image quality while we recorded their eye movements. Results show that eye movement parameters consistently change according to the instructions given to the user, and according to physical image quality, e.g. saccade duration increased with increasing blur. Results indicate that eye movement tracking could be used to differentiate image quality evaluation strategies that the users have. Results also show that eye movements would help mapping between technological and subjective image quality. Furthermore, these results give some empirical emphasis to top-down perception processes in image quality perception and evaluation by showing differences between perceptual processes in situations when cognitive task varies.

  4. Image processing system performance prediction and product quality evaluation

    NASA Technical Reports Server (NTRS)

    Stein, E. K.; Hammill, H. B. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. A new technique for image processing system performance prediction and product quality evaluation was developed. It was entirely objective, quantitative, and general, and should prove useful in system design and quality control. The technique and its application to determination of quality control procedures for the Earth Resources Technology Satellite NASA Data Processing Facility are described.

  5. How Does Premarital Cohabitation Affect Trajectories of Marital Quality?

    ERIC Educational Resources Information Center

    Tach, Laura; Halpern-Meekin, Sarah

    2009-01-01

    We investigate the link between premarital cohabitation and trajectories of subsequent marital quality using random effects growth curve models and repeated measures of marital quality from married women in the NLSY-79 (N = 3,598). We find that premarital cohabitors experience lower quality marital relationships on average, but this is driven by…

  6. Automated quality assessment in three-dimensional breast ultrasound images.

    PubMed

    Schwaab, Julia; Diez, Yago; Oliver, Arnau; Martí, Robert; van Zelst, Jan; Gubern-Mérida, Albert; Mourri, Ahmed Bensouda; Gregori, Johannes; Günther, Matthias

    2016-04-01

    Automated three-dimensional breast ultrasound (ABUS) is a valuable adjunct to x-ray mammography for breast cancer screening of women with dense breasts. High image quality is essential for proper diagnostics and computer-aided detection. We propose an automated image quality assessment system for ABUS images that detects artifacts at the time of acquisition. Therefore, we study three aspects that can corrupt ABUS images: the nipple position relative to the rest of the breast, the shadow caused by the nipple, and the shape of the breast contour on the image. Image processing and machine learning algorithms are combined to detect these artifacts based on 368 clinical ABUS images that have been rated manually by two experienced clinicians. At a specificity of 0.99, 55% of the images that were rated as low quality are detected by the proposed algorithms. The areas under the ROC curves of the single classifiers are 0.99 for the nipple position, 0.84 for the nipple shadow, and 0.89 for the breast contour shape. The proposed algorithms work fast and reliably, which makes them adequate for online evaluation of image quality during acquisition. The presented concept may be extended to further image modalities and quality aspects. PMID:27158633

  7. Impact of Computed Tomography Image Quality on Image-Guided Radiation Therapy Based on Soft Tissue Registration

    SciTech Connect

    Morrow, Natalya V.; Lawton, Colleen A.; Qi, X. Sharon; Li, X. Allen

    2012-04-01

    Purpose: In image-guided radiation therapy (IGRT), different computed tomography (CT) modalities with varying image quality are being used to correct for interfractional variations in patient set-up and anatomy changes, thereby reducing clinical target volume to the planning target volume (CTV-to-PTV) margins. We explore how CT image quality affects patient repositioning and CTV-to-PTV margins in soft tissue registration-based IGRT for prostate cancer patients. Methods and Materials: Four CT-based IGRT modalities used for prostate RT were considered in this study: MV fan beam CT (MVFBCT) (Tomotherapy), MV cone beam CT (MVCBCT) (MVision; Siemens), kV fan beam CT (kVFBCT) (CTVision, Siemens), and kV cone beam CT (kVCBCT) (Synergy; Elekta). Daily shifts were determined by manual registration to achieve the best soft tissue agreement. Effect of image quality on patient repositioning was determined by statistical analysis of daily shifts for 136 patients (34 per modality). Inter- and intraobserver variability of soft tissue registration was evaluated based on the registration of a representative scan for each CT modality with its corresponding planning scan. Results: Superior image quality with the kVFBCT resulted in reduced uncertainty in soft tissue registration during IGRT compared with other image modalities for IGRT. The largest interobserver variations of soft tissue registration were 1.1 mm, 2.5 mm, 2.6 mm, and 3.2 mm for kVFBCT, kVCBCT, MVFBCT, and MVCBCT, respectively. Conclusions: Image quality adversely affects the reproducibility of soft tissue-based registration for IGRT and necessitates a careful consideration of residual uncertainties in determining different CTV-to-PTV margins for IGRT using different image modalities.

  8. Testing scanners for the quality of output images

    NASA Astrophysics Data System (ADS)

    Concepcion, Vicente P.; Nadel, Lawrence D.; D'Amato, Donald P.

    1995-01-01

    Document scanning is the means through which documents are converted to their digital image representation for electronic storage or distribution. Among the types of documents being scanned by government agencies are tax forms, patent documents, office correspondence, mail pieces, engineering drawings, microfilm, archived historical papers, and fingerprint cards. Increasingly, the resulting digital images are used as the input for further automated processing including: conversion to a full-text-searchable representation via machine printed or handwritten (optical) character recognition (OCR), postal zone identification, raster-to-vector conversion, and fingerprint matching. These diverse document images may be bi-tonal, gray scale, or color. Spatial sampling frequencies range from about 200 pixels per inch to over 1,000. The quality of the digital images can have a major effect on the accuracy and speed of any subsequent automated processing, as well as on any human-based processing which may be required. During imaging system design, there is, therefore, a need to specify the criteria by which image quality will be judged and, prior to system acceptance, to measure the quality of images produced. Unfortunately, there are few, if any, agreed-upon techniques for measuring document image quality objectively. In the output images, it is difficult to distinguish image degradation caused by the poor quality of the input paper or microfilm from that caused by the scanning system. We propose several document image quality criteria and have developed techniques for their measurement. These criteria include spatial resolution, geometric image accuracy, (distortion), gray scale resolution and linearity, and temporal and spatial uniformity. The measurement of these criteria requires scanning one or more test targets along with computer-based analyses of the test target images.

  9. No-reference visual quality assessment for image inpainting

    NASA Astrophysics Data System (ADS)

    Voronin, V. V.; Frantc, V. A.; Marchuk, V. I.; Sherstobitov, A. I.; Egiazarian, K.

    2015-03-01

    Inpainting has received a lot of attention in recent years and quality assessment is an important task to evaluate different image reconstruction approaches. In many cases inpainting methods introduce a blur in sharp transitions in image and image contours in the recovery of large areas with missing pixels and often fail to recover curvy boundary edges. Quantitative metrics of inpainting results currently do not exist and researchers use human comparisons to evaluate their methodologies and techniques. Most objective quality assessment methods rely on a reference image, which is often not available in inpainting applications. Usually researchers use subjective quality assessment by human observers. It is difficult and time consuming procedure. This paper focuses on a machine learning approach for no-reference visual quality assessment for image inpainting based on the human visual property. Our method is based on observation that Local Binary Patterns well describe local structural information of the image. We use a support vector regression learned on assessed by human images to predict perceived quality of inpainted images. We demonstrate how our predicted quality value correlates with qualitative opinion in a human observer study. Results are shown on a human-scored dataset for different inpainting methods.

  10. Optimization of image quality in breast tomosynthesis using lumpectomy and mastectomy specimens

    NASA Astrophysics Data System (ADS)

    Timberg, Pontus; Ruschin, Mark; Båth, Magnus; Hemdal, Bengt; Andersson, Ingvar; Svahn, Tony; Mattsson, Sören; Tingberg, Anders

    2007-03-01

    The purpose of this study was to determine how image quality in breast tomosynthesis (BT) is affected when acquisition modes are varied, using human breast specimens containing malignant tumors and/or microcalcifications. Images of thirty-one breast lumpectomy and mastectomy specimens were acquired on a BT prototype based on a Mammomat Novation (Siemens) full-field digital mammography system. BT image acquisitions of the same specimens were performed varying the number of projections, angular range, and detector signal collection mode (binned and nonbinned in the scan direction). An enhanced filtered back projection reconstruction method was applied with constant settings of spectral and slice thickness filters. The quality of these images was evaluated via relative visual grading analysis (VGA) human observer performance experiments using image quality criteria. Results from the relative VGA study indicate that image quality increases with number of projections and angular range. A binned detector collecting mode results in less noise, but reduced resolution of structures. Human breast specimens seem to be suitable for comparing image sets in BT with image quality criteria.

  11. Image quality assessment by preprocessing and full reference model combination

    NASA Astrophysics Data System (ADS)

    Bianco, S.; Ciocca, G.; Marini, F.; Schettini, R.

    2009-01-01

    This paper focuses on full-reference image quality assessment and presents different computational strategies aimed to improve the robustness and accuracy of some well known and widely used state of the art models, namely the Structural Similarity approach (SSIM) by Wang and Bovik and the S-CIELAB spatial-color model by Zhang and Wandell. We investigate the hypothesis that combining error images with a visual attention model could allow a better fit of the psycho-visual data of the LIVE Image Quality assessment Database Release 2. We show that the proposed quality assessment metric better correlates with the experimental data.

  12. Method and tool for generating and managing image quality allocations through the design and development process

    NASA Astrophysics Data System (ADS)

    Sparks, Andrew W.; Olson, Craig; Theisen, Michael J.; Addiego, Chris J.; Hutchins, Tiffany G.; Goodman, Timothy D.

    2016-05-01

    Performance models for infrared imaging systems require image quality parameters; optical design engineers need image quality design goals; systems engineers develop image quality allocations to test imaging systems against. It is a challenge to maintain consistency and traceability amongst the various expressions of image quality. We present a method and parametric tool for generating and managing expressions of image quality during the system modeling, requirements specification, design, and testing phases of an imaging system design and development project.

  13. Feature maps driven no-reference image quality prediction of authentically distorted images

    NASA Astrophysics Data System (ADS)

    Ghadiyaram, Deepti; Bovik, Alan C.

    2015-03-01

    Current blind image quality prediction models rely on benchmark databases comprised of singly and synthetically distorted images, thereby learning image features that are only adequate to predict human perceived visual quality on such inauthentic distortions. However, real world images often contain complex mixtures of multiple distortions. Rather than a) discounting the effect of these mixtures of distortions on an image's perceptual quality and considering only the dominant distortion or b) using features that are only proven to be efficient for singly distorted images, we deeply study the natural scene statistics of authentically distorted images, in different color spaces and transform domains. We propose a feature-maps-driven statistical approach which avoids any latent assumptions about the type of distortion(s) contained in an image, and focuses instead on modeling the remarkable consistencies in the scene statistics of real world images in the absence of distortions. We design a deep belief network that takes model-based statistical image features derived from a very large database of authentically distorted images as input and discovers good feature representations by generalizing over different distortion types, mixtures, and severities, which are later used to learn a regressor for quality prediction. We demonstrate the remarkable competence of our features for improving automatic perceptual quality prediction on a benchmark database and on the newly designed LIVE Authentic Image Quality Challenge Database and show that our approach of combining robust statistical features and the deep belief network dramatically outperforms the state-of-the-art.

  14. Elevated atmospheric carbon dioxide in agroecosystems affects groundwater quality

    SciTech Connect

    Torbert, H.A.; Prior, S.A.; Rogers, H.H.; Schlesinger, W.H.; Mullins, G.L.; Runion, G.B.

    1996-07-01

    Increasing atmospheric carbon dioxide (CO{sub 2}) concentration has led to concerns about global changes to the environment. One area of global change that has not been addressed is the effect of elevated atmospheric CO{sub 2} on groundwater quality below agroecosystems. Elevated CO{sub 2} concentration alterations of plant growth and C/N ratios may modify C and N cycling in soil and affect nitrate (NO{sub 3}{sup {minus}}) leaching to groundwater. This study was conducted to examine the effects of a legume (soybean [Glycine max (L.) Merr.]) and a nonlegume (grain sorghum [Sorghum bicolor (L.) Moench]) CO{sub 2}-enriched agroecosystems on NO{sub 3}{sup {minus}} movement below the root zone in a Blanton loamy sand (loamy siliceous, thermic, Grossarenic Paleudults). The study was a split-plot design replicated three times with plant species (soybean and grain sorghum) as the main plots and CO{sub 2} concentration ({approximately}360 and {approximately}720 {mu}L L{sup {minus}1} CO{sub 2}) as subplots using open-top field chambers. Fertilizer application was made with {sup 15}N-depleted NH{sub 4}NO{sub 3} to act as a fertilizer tracer. Soil solution samples were collected weekly at 90-cm depth for a 2-yr period and monitored for NO{sub 3}{sup {minus}}-N concentrations. Isotope analysis of soil solution indicated that the decomposition of organic matter was the primary source of No{sub 3}{sup {minus}}-N in soil solution below the root zone through most of the monitoring period. Significant differences were observed for NO{sub 3}{sup {minus}}-N concentrations between soybean and grain sorghum, with soybean having the higher NO{sub 3}{sup {minus}}-N concentration. Elevated CO{sub 2} increased total dry weight, total N content, and C/N ratio of residue returned to soil in both years. Elevated CO{sub 2} significantly decreased NO{sub 3}{sup {minus}}-N concentrations below the root zone in both soybean and grain sorghum. 37 refs., 2 figs., 2 tabs.

  15. Imaging Imageability: Behavioral Effects and Neural Correlates of Its Interaction with Affect and Context.

    PubMed

    Westbury, Chris F; Cribben, Ivor; Cummine, Jacqueline

    2016-01-01

    The construct of imageability refers to the extent to which a word evokes a tangible sensation. Previous research (Westbury et al., 2013) suggests that the behavioral effects attributed to a word's imageability can be largely or wholly explained by two objective constructs, contextual density and estimated affect. Here, we extend these previous findings in two ways. First, we show that closely matched stimuli on the three measures of contextual density, estimated affect, and human-judged imageability show a three-way interaction in explaining variance in LD RTs, but that imagebility accounts for no additional variance after contextual density and estimated affect are entered first. Secondly, we demonstrate that the loci and functional connectivity (via graphical models) of the brain regions implicated in processing the three variables during that task are largely over-lapping and similar. These two lines of evidence support the conclusion that the effect usually attributed to human-judged imageability is largely or entirely due to the effects of other correlated measures that are directly computable. PMID:27471455

  16. Imaging Imageability: Behavioral Effects and Neural Correlates of Its Interaction with Affect and Context

    PubMed Central

    Westbury, Chris F.; Cribben, Ivor; Cummine, Jacqueline

    2016-01-01

    The construct of imageability refers to the extent to which a word evokes a tangible sensation. Previous research (Westbury et al., 2013) suggests that the behavioral effects attributed to a word's imageability can be largely or wholly explained by two objective constructs, contextual density and estimated affect. Here, we extend these previous findings in two ways. First, we show that closely matched stimuli on the three measures of contextual density, estimated affect, and human-judged imageability show a three-way interaction in explaining variance in LD RTs, but that imagebility accounts for no additional variance after contextual density and estimated affect are entered first. Secondly, we demonstrate that the loci and functional connectivity (via graphical models) of the brain regions implicated in processing the three variables during that task are largely over-lapping and similar. These two lines of evidence support the conclusion that the effect usually attributed to human-judged imageability is largely or entirely due to the effects of other correlated measures that are directly computable. PMID:27471455

  17. Interplay between JPEG-2000 image coding and quality estimation

    NASA Astrophysics Data System (ADS)

    Pinto, Guilherme O.; Hemami, Sheila S.

    2013-03-01

    Image quality and utility estimators aspire to quantify the perceptual resemblance and the usefulness of a distorted image when compared to a reference natural image, respectively. Image-coders, such as JPEG-2000, traditionally aspire to allocate the available bits to maximize the perceptual resemblance of the compressed image when compared to a reference uncompressed natural image. Specifically, this can be accomplished by allocating the available bits to minimize the overall distortion, as computed by a given quality estimator. This paper applies five image quality and utility estimators, SSIM, VIF, MSE, NICE and GMSE, within a JPEG-2000 encoder for rate-distortion optimization to obtain new insights on how to improve JPEG-2000 image coding for quality and utility applications, as well as to improve the understanding about the quality and utility estimators used in this work. This work develops a rate-allocation algorithm for arbitrary quality and utility estimators within the Post- Compression Rate-Distortion Optimization (PCRD-opt) framework in JPEG-2000 image coding. Performance of the JPEG-2000 image coder when used with a variety of utility and quality estimators is then assessed. The estimators fall into two broad classes, magnitude-dependent (MSE, GMSE and NICE) and magnitudeindependent (SSIM and VIF). They further differ on their use of the low-frequency image content in computing their estimates. The impact of these computational differences is analyzed across a range of images and bit rates. In general, performance of the JPEG-2000 coder below 1.6 bits/pixel with any of these estimators is highly content dependent, with the most relevant content being the amount of texture in an image and whether the strongest gradients in an image correspond to the main contours of the scene. Above 1.6 bits/pixel, all estimators produce visually equivalent images. As a result, the MSE estimator provides the most consistent performance across all images, while specific

  18. A quantitative method for visual phantom image quality evaluation

    NASA Astrophysics Data System (ADS)

    Chakraborty, Dev P.; Liu, Xiong; O'Shea, Michael; Toto, Lawrence C.

    2000-04-01

    This work presents an image quality evaluation technique for uniform-background target-object phantom images. The Degradation-Comparison-Threshold (DCT) method involves degrading the image quality of a target-containing region with a blocking processing and comparing the resulting image to a similarly degraded target-free region. The threshold degradation needed for 92% correct detection of the target region is the image quality measure of the target. Images of American College of Radiology (ACR) mammography accreditation program phantom were acquired under varying x-ray conditions on a digital mammography machine. Five observers performed ACR and DCT evaluations of the images. A figure-of-merit (FOM) of an evaluation method was defined which takes into account measurement noise and the change of the measure as a function of x-ray exposure to the phantom. The FOM of the DCT method was 4.1 times that of the ACR method for the specks, 2.7 times better for the fibers and 1.4 times better for the masses. For the specks, inter-reader correlations on the same image set increased significantly from 87% for the ACR method to 97% for the DCT method. The viewing time per target for the DCT method was 3 - 5 minutes. The observed greater sensitivity of the DCT method could lead to more precise Quality Control (QC) testing of digital images, which should improve the sensitivity of the QC process to genuine image quality variations. Another benefit of the method is that it can measure the image quality of high detectability target objects, which is impractical by existing methods.

  19. Perceived no reference image quality measurement for chromatic aberration

    NASA Astrophysics Data System (ADS)

    Lamb, Anupama B.; Khambete, Madhuri

    2016-03-01

    Today there is need for no reference (NR) objective perceived image quality measurement techniques as conducting subjective experiments and making reference image available is a very difficult task. Very few NR perceived image quality measurement algorithms are available for color distortions like chromatic aberration (CA), color quantization with dither, and color saturation. We proposed NR image quality assessment (NR-IQA) algorithms for images distorted with CA. CA is mostly observed in images taken with digital cameras, having higher sensor resolution with inexpensive lenses. We compared our metric performance with two state-of-the-art NR blur techniques, one full reference IQA technique and three general-purpose NR-IQA techniques, although they are not tailored for CA. We used a CA dataset in the TID-2013 color image database to evaluate performance. Proposed algorithms give comparable performance with state-of-the-art techniques in terms of performance parameters and outperform them in terms of monotonicity and computational complexity. We have also discovered that the proposed CA algorithm best predicts perceived image quality of images distorted with realistic CA.

  20. Figure of Image Quality and Information Capacity in Digital Mammography

    PubMed Central

    Michail, Christos M.; Kalyvas, Nektarios E.; Valais, Ioannis G.; Fudos, Ioannis P.; Fountos, George P.; Dimitropoulos, Nikos; Kandarakis, Ioannis S.

    2014-01-01

    Objectives. In this work, a simple technique to assess the image quality characteristics of the postprocessed image is developed and an easy to use figure of image quality (FIQ) is introduced. This FIQ characterizes images in terms of resolution and noise. In addition information capacity, defined within the context of Shannon's information theory, was used as an overall image quality index. Materials and Methods. A digital mammographic image was postprocessed with three digital filters. Resolution and noise were calculated via the Modulation Transfer Function (MTF), the coefficient of variation, and the figure of image quality. In addition, frequency dependent parameters such as the noise power spectrum (NPS) and noise equivalent quanta (NEQ) were estimated and used to assess information capacity. Results. FIQs for the “raw image” data and the image processed with the “sharpen edges” filter were found 907.3 and 1906.1, correspondingly. The information capacity values were 60.86 × 103 and 78.96 × 103 bits/mm2. Conclusion. It was found that, after the application of the postprocessing techniques (even commercial nondedicated software) on the raw digital mammograms, MTF, NPS, and NEQ are improved for medium to high spatial frequencies leading to resolving smaller structures in the final image. PMID:24895593

  1. Dosimetry and image quality assessment in a direct radiography system

    PubMed Central

    Oliveira, Bruno Beraldo; de Oliveira, Marcio Alves; Paixão, Lucas; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro

    2014-01-01

    Objective To evaluate the mean glandular dose with a solid state detector and the image quality in a direct radiography system, utilizing phantoms. Materials and Methods Irradiations were performed with automatic exposure control and polymethyl methacrylate slabs with different thicknesses to calculate glandular dose values. The image quality was evaluated by means of the structures visualized on the images of the phantoms. Results Considering the uncertainty of the measurements, the mean glandular dose results are in agreement with the values provided by the equipment and with internationally adopted reference levels. Results obtained from images of the phantoms were in agreement with the reference values. Conclusion The present study contributes to verify the equipment conformity as regards dose values and image quality. PMID:25741119

  2. Image quality evaluation and control of computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Hiroshi; Yamaguchi, Takeshi; Uetake, Hiroki

    2016-03-01

    Image quality of the computer-generated holograms are usually evaluated subjectively. For example, the re- constructed image from the hologram is compared with other holograms, or evaluated by the double-stimulus impairment scale method to compare with the original image. This paper proposes an objective image quality evaluation of a computer-generated hologram by evaluating both diffraction efficiency and peak signal-to-noise ratio. Theory and numerical experimental results are shown on Fourier transform transmission hologram of both amplitude and phase modulation. Results without the optimized random phase show that the amplitude transmission hologram gives better peak signal-to noise ratio, but the phase transmission hologram provides about 10 times higher diffraction efficiency to the amplitude type. As an optimized phase hologram, Kinoform is evaluated. In addition, we investigate to control image quality by non-linear operation.

  3. Effect of masking phase-only holograms on the quality of reconstructed images.

    PubMed

    Deng, Yuanbo; Chu, Daping

    2016-04-20

    A phase-only hologram modulates the phase of the incident light and diffracts it efficiently with low energy loss because of the minimum absorption. Much research attention has been focused on how to generate phase-only holograms, and little work has been done to understand the effect and limitation of their partial implementation, possibly due to physical defects and constraints, in particular as in the practical situations where a phase-only hologram is confined or needs to be sliced or tiled. The present study simulates the effect of masking phase-only holograms on the quality of reconstructed images in three different scenarios with different filling factors, filling positions, and illumination intensity profiles. Quantitative analysis confirms that the width of the image point spread function becomes wider and the image quality decreases, as expected, when the filling factor decreases, and the image quality remains the same for different filling positions as well. The width of the image point spread function as derived from different filling factors shows a consistent behavior to that as measured directly from the reconstructed image, especially as the filling factor becomes small. Finally, mask profiles of different shapes and intensity distributions are shown to have more complicated effects on the image point spread function, which in turn affects the quality and textures of the reconstructed image. PMID:27140082

  4. Applying image quality in cell phone cameras: lens distortion

    NASA Astrophysics Data System (ADS)

    Baxter, Donald; Goma, Sergio R.; Aleksic, Milivoje

    2009-01-01

    This paper describes the framework used in one of the pilot studies run under the I3A CPIQ initiative to quantify overall image quality in cell-phone cameras. The framework is based on a multivariate formalism which tries to predict overall image quality from individual image quality attributes and was validated in a CPIQ pilot program. The pilot study focuses on image quality distortions introduced in the optical path of a cell-phone camera, which may or may not be corrected in the image processing path. The assumption is that the captured image used is JPEG compressed and the cellphone camera is set to 'auto' mode. As the used framework requires that the individual attributes to be relatively perceptually orthogonal, in the pilot study, the attributes used are lens geometric distortion (LGD) and lateral chromatic aberrations (LCA). The goal of this paper is to present the framework of this pilot project starting with the definition of the individual attributes, up to their quantification in JNDs of quality, a requirement of the multivariate formalism, therefore both objective and subjective evaluations were used. A major distinction in the objective part from the 'DSC imaging world' is that the LCA/LGD distortions found in cell-phone cameras, rarely exhibit radial behavior, therefore a radial mapping/modeling cannot be used in this case.

  5. Effects of sparse sampling schemes on image quality in low-dose CT

    SciTech Connect

    Abbas, Sajid; Lee, Taewon; Cho, Seungryong; Shin, Sukyoung; Lee, Rena

    2013-11-15

    Purpose: Various scanning methods and image reconstruction algorithms are actively investigated for low-dose computed tomography (CT) that can potentially reduce a health-risk related to radiation dose. Particularly, compressive-sensing (CS) based algorithms have been successfully developed for reconstructing images from sparsely sampled data. Although these algorithms have shown promises in low-dose CT, it has not been studied how sparse sampling schemes affect image quality in CS-based image reconstruction. In this work, the authors present several sparse-sampling schemes for low-dose CT, quantitatively analyze their data property, and compare effects of the sampling schemes on the image quality.Methods: Data properties of several sampling schemes are analyzed with respect to the CS-based image reconstruction using two measures: sampling density and data incoherence. The authors present five different sparse sampling schemes, and simulated those schemes to achieve a targeted dose reduction. Dose reduction factors of about 75% and 87.5%, compared to a conventional scan, were tested. A fully sampled circular cone-beam CT data set was used as a reference, and sparse sampling has been realized numerically based on the CBCT data.Results: It is found that both sampling density and data incoherence affect the image quality in the CS-based reconstruction. Among the sampling schemes the authors investigated, the sparse-view, many-view undersampling (MVUS)-fine, and MVUS-moving cases have shown promising results. These sampling schemes produced images with similar image quality compared to the reference image and their structure similarity index values were higher than 0.92 in the mouse head scan with 75% dose reduction.Conclusions: The authors found that in CS-based image reconstructions both sampling density and data incoherence affect the image quality, and suggest that a sampling scheme should be devised and optimized by use of these indicators. With this strategic

  6. Subjective image quality comparison between two digital dental radiographic systems and conventional dental film

    PubMed Central

    Ajmal, Muhammed; Elshinawy, Mohamed I.

    2014-01-01

    Objectives Digital radiography has become an integral part of dentistry. Digital radiography does not require film or dark rooms, reduces X-ray doses, and instantly generates images. The aim of our study was to compare the subjective image quality of two digital dental radiographic systems with conventional dental film. Materials & methods A direct digital (DD) ‘Digital’ system by Sirona, a semi-direct (SD) digital system by Vista-scan, and Kodak ‘E’ speed dental X-ray films were selected for the study. Endodontically-treated extracted teeth (n = 25) were used in the study. Details of enamel, dentin, dentino-enamel junction, root canal filling (gutta percha), and simulated apical pathology were investigated with the three radiographic systems. The data were subjected to statistical analyzes to reveal differences in subjective image quality. Results Conventional dental X-ray film was superior to the digital systems. For digital systems, DD imaging was superior to SD imaging. Conclusion Conventional film yielded superior image quality that was statistically significant in almost all aspects of comparison. Conventional film was followed in image quality by DD, and SD provided the lowest quality images. Conventional film is still considered the gold standard to diagnose diseases affecting the jawbone. Recommendations Improved software and hardware for digital imaging systems are now available and these improvements may now yield images that are comparable in quality to conventional film. However, we recommend that studies still use more observers and other statistical methods to produce ideal results. PMID:25382946

  7. Determinants of image quality of rotational angiography for on-line assessment of frame geometry after transcatheter aortic valve implantation.

    PubMed

    Rodríguez-Olivares, Ramón; El Faquir, Nahid; Rahhab, Zouhair; Maugenest, Anne-Marie; Van Mieghem, Nicolas M; Schultz, Carl; Lauritsch, Guenter; de Jaegere, Peter P T

    2016-07-01

    To study the determinants of image quality of rotational angiography using dedicated research prototype software for motion compensation without rapid ventricular pacing after the implantation of four commercially available catheter-based valves. Prospective observational study including 179 consecutive patients who underwent transcatheter aortic valve implantation (TAVI) with either the Medtronic CoreValve (MCS), Edward-SAPIEN Valve (ESV), Boston Sadra Lotus (BSL) or Saint-Jude Portico Valve (SJP) in whom rotational angiography (R-angio) with motion compensation 3D image reconstruction was performed. Image quality was evaluated from grade 1 (excellent image quality) to grade 5 (strongly degraded). Distinction was made between good (grades 1, 2) and poor image quality (grades 3-5). Clinical (gender, body mass index, Agatston score, heart rate and rhythm, artifacts), procedural (valve type) and technical variables (isocentricity) were related with the image quality assessment. Image quality was good in 128 (72 %) and poor in 51 (28 %) patients. By univariable analysis only valve type (BSL) and the presence of an artefact negatively affected image quality. By multivariate analysis (in which BMI was forced into the model) BSL valve (Odds 3.5, 95 % CI [1.3-9.6], p = 0.02), presence of an artifact (Odds 2.5, 95 % CI [1.2-5.4], p = 0.02) and BMI (Odds 1.1, 95 % CI [1.0-1.2], p = 0.04) were independent predictors of poor image quality. Rotational angiography with motion compensation 3D image reconstruction using a dedicated research prototype software offers good image quality for the evaluation of frame geometry after TAVI in the majority of patients. Valve type, presence of artifacts and higher BMI negatively affect image quality.

  8. Determinants of image quality of rotational angiography for on-line assessment of frame geometry after transcatheter aortic valve implantation.

    PubMed

    Rodríguez-Olivares, Ramón; El Faquir, Nahid; Rahhab, Zouhair; Maugenest, Anne-Marie; Van Mieghem, Nicolas M; Schultz, Carl; Lauritsch, Guenter; de Jaegere, Peter P T

    2016-07-01

    To study the determinants of image quality of rotational angiography using dedicated research prototype software for motion compensation without rapid ventricular pacing after the implantation of four commercially available catheter-based valves. Prospective observational study including 179 consecutive patients who underwent transcatheter aortic valve implantation (TAVI) with either the Medtronic CoreValve (MCS), Edward-SAPIEN Valve (ESV), Boston Sadra Lotus (BSL) or Saint-Jude Portico Valve (SJP) in whom rotational angiography (R-angio) with motion compensation 3D image reconstruction was performed. Image quality was evaluated from grade 1 (excellent image quality) to grade 5 (strongly degraded). Distinction was made between good (grades 1, 2) and poor image quality (grades 3-5). Clinical (gender, body mass index, Agatston score, heart rate and rhythm, artifacts), procedural (valve type) and technical variables (isocentricity) were related with the image quality assessment. Image quality was good in 128 (72 %) and poor in 51 (28 %) patients. By univariable analysis only valve type (BSL) and the presence of an artefact negatively affected image quality. By multivariate analysis (in which BMI was forced into the model) BSL valve (Odds 3.5, 95 % CI [1.3-9.6], p = 0.02), presence of an artifact (Odds 2.5, 95 % CI [1.2-5.4], p = 0.02) and BMI (Odds 1.1, 95 % CI [1.0-1.2], p = 0.04) were independent predictors of poor image quality. Rotational angiography with motion compensation 3D image reconstruction using a dedicated research prototype software offers good image quality for the evaluation of frame geometry after TAVI in the majority of patients. Valve type, presence of artifacts and higher BMI negatively affect image quality. PMID:27139459

  9. Refractive Errors Affect the Vividness of Visual Mental Images

    PubMed Central

    Palermo, Liana; Nori, Raffaella; Piccardi, Laura; Zeri, Fabrizio; Babino, Antonio; Giusberti, Fiorella; Guariglia, Cecilia

    2013-01-01

    The hypothesis that visual perception and mental imagery are equivalent has never been explored in individuals with vision defects not preventing the visual perception of the world, such as refractive errors. Refractive error (i.e., myopia, hyperopia or astigmatism) is a condition where the refracting system of the eye fails to focus objects sharply on the retina. As a consequence refractive errors cause blurred vision. We subdivided 84 individuals according to their spherical equivalent refraction into Emmetropes (control individuals without refractive errors) and Ametropes (individuals with refractive errors). Participants performed a vividness task and completed a questionnaire that explored their cognitive style of thinking before their vision was checked by an ophthalmologist. Although results showed that Ametropes had less vivid mental images than Emmetropes this did not affect the development of their cognitive style of thinking; in fact, Ametropes were able to use both verbal and visual strategies to acquire and retrieve information. Present data are consistent with the hypothesis of equivalence between imagery and perception. PMID:23755186

  10. A feature-enriched completely blind image quality evaluator.

    PubMed

    Lin Zhang; Lei Zhang; Bovik, Alan C

    2015-08-01

    Existing blind image quality assessment (BIQA) methods are mostly opinion-aware. They learn regression models from training images with associated human subjective scores to predict the perceptual quality of test images. Such opinion-aware methods, however, require a large amount of training samples with associated human subjective scores and of a variety of distortion types. The BIQA models learned by opinion-aware methods often have weak generalization capability, hereby limiting their usability in practice. By comparison, opinion-unaware methods do not need human subjective scores for training, and thus have greater potential for good generalization capability. Unfortunately, thus far no opinion-unaware BIQA method has shown consistently better quality prediction accuracy than the opinion-aware methods. Here, we aim to develop an opinion-unaware BIQA method that can compete with, and perhaps outperform, the existing opinion-aware methods. By integrating the features of natural image statistics derived from multiple cues, we learn a multivariate Gaussian model of image patches from a collection of pristine natural images. Using the learned multivariate Gaussian model, a Bhattacharyya-like distance is used to measure the quality of each image patch, and then an overall quality score is obtained by average pooling. The proposed BIQA method does not need any distorted sample images nor subjective quality scores for training, yet extensive experiments demonstrate its superior quality-prediction performance to the state-of-the-art opinion-aware BIQA methods. The MATLAB source code of our algorithm is publicly available at www.comp.polyu.edu.hk/~cslzhang/IQA/ILNIQE/ILNIQE.htm.

  11. A feature-enriched completely blind image quality evaluator.

    PubMed

    Lin Zhang; Lei Zhang; Bovik, Alan C

    2015-08-01

    Existing blind image quality assessment (BIQA) methods are mostly opinion-aware. They learn regression models from training images with associated human subjective scores to predict the perceptual quality of test images. Such opinion-aware methods, however, require a large amount of training samples with associated human subjective scores and of a variety of distortion types. The BIQA models learned by opinion-aware methods often have weak generalization capability, hereby limiting their usability in practice. By comparison, opinion-unaware methods do not need human subjective scores for training, and thus have greater potential for good generalization capability. Unfortunately, thus far no opinion-unaware BIQA method has shown consistently better quality prediction accuracy than the opinion-aware methods. Here, we aim to develop an opinion-unaware BIQA method that can compete with, and perhaps outperform, the existing opinion-aware methods. By integrating the features of natural image statistics derived from multiple cues, we learn a multivariate Gaussian model of image patches from a collection of pristine natural images. Using the learned multivariate Gaussian model, a Bhattacharyya-like distance is used to measure the quality of each image patch, and then an overall quality score is obtained by average pooling. The proposed BIQA method does not need any distorted sample images nor subjective quality scores for training, yet extensive experiments demonstrate its superior quality-prediction performance to the state-of-the-art opinion-aware BIQA methods. The MATLAB source code of our algorithm is publicly available at www.comp.polyu.edu.hk/~cslzhang/IQA/ILNIQE/ILNIQE.htm. PMID:25915960

  12. Image forgery detection by means of no-reference quality metrics

    NASA Astrophysics Data System (ADS)

    Battisti, F.; Carli, M.; Neri, A.

    2012-03-01

    In this paper a methodology for digital image forgery detection by means of an unconventional use of image quality assessment is addressed. In particular, the presence of differences in quality degradations impairing the images is adopted to reveal the mixture of different source patches. The ratio behind this work is in the hypothesis that any image may be affected by artifacts, visible or not, caused by the processing steps: acquisition (i.e., lens distortion, acquisition sensors imperfections, analog to digital conversion, single sensor to color pattern interpolation), processing (i.e., quantization, storing, jpeg compression, sharpening, deblurring, enhancement), and rendering (i.e., image decoding, color/size adjustment). These defects are generally spatially localized and their strength strictly depends on the content. For these reasons they can be considered as a fingerprint of each digital image. The proposed approach relies on a combination of image quality assessment systems. The adopted no-reference metric does not require any information about the original image, thus allowing an efficient and stand-alone blind system for image forgery detection. The experimental results show the effectiveness of the proposed scheme.

  13. Optimization and image quality assessment of the alpha-image reconstruction algorithm: iterative reconstruction with well-defined image quality metrics

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergej; Sawall, Stefan; Kuchenbecker, Stefan; Faby, Sebastian; Knaup, Michael; Kachelrieß, Marc

    2015-03-01

    The reconstruction of CT images with low noise and highest spatial resolution is a challenging task. Usually, a trade-off between at least these two demands has to be found or several reconstructions with mutually exclusive properties, i.e. either low noise or high spatial resolution, have to be performed. Iterative reconstruction methods might be suitable tools to overcome these limitations and provide images of highest diagnostic quality with formerly mutually exclusive image properties. While image quality metrics like the modulation transfer function (MTF) or the point spread function (PSF) are well-defined in case of standard reconstructions, e.g. filtered backprojection, the iterative algorithms lack these metrics. To overcome this issue alternate methodologies like the model observers have been proposed recently to allow a quantification of a usually task-dependent image quality metric.1 As an alternative we recently proposed an iterative reconstruction method, the alpha-image reconstruction (AIR), providing well-defined image quality metrics on a per-voxel basis.2 In particular, the AIR algorithm seeks to find weighting images, the alpha-images, that are used to blend between basis images with mutually exclusive image properties. The result is an image with highest diagnostic quality that provides a high spatial resolution and a low noise level. As the estimation of the alpha-images is computationally demanding we herein aim at optimizing this process and highlight the favorable properties of AIR using patient measurements.

  14. Pre-analytic process control: projecting a quality image.

    PubMed

    Serafin, Mark D

    2006-01-01

    Within the health-care system, the term "ancillary department" often describes the laboratory. Thus, laboratories may find it difficult to define their image and with it, customer perception of department quality. Regulatory requirements give laboratories who so desire an elegant way to address image and perception issues--a comprehensive pre-analytic system solution. Since large laboratories use such systems--laboratory service manuals--I describe and illustrate the process for the benefit of smaller facilities. There exist resources to help even small laboratories produce a professional service manual--an elegant solution to image and customer perception of quality. PMID:17005095

  15. The effect of image quality and forensic expertise in facial image comparisons.

    PubMed

    Norell, Kristin; Läthén, Klas Brorsson; Bergström, Peter; Rice, Allyson; Natu, Vaidehi; O'Toole, Alice

    2015-03-01

    Images of perpetrators in surveillance video footage are often used as evidence in court. In this study, identification accuracy was compared for forensic experts and untrained persons in facial image comparisons as well as the impact of image quality. Participants viewed thirty image pairs and were asked to rate the level of support garnered from their observations for concluding whether or not the two images showed the same person. Forensic experts reached their conclusions with significantly fewer errors than did untrained participants. They were also better than novices at determining when two high-quality images depicted the same person. Notably, lower image quality led to more careful conclusions by experts, but not for untrained participants. In summary, the untrained participants had more false negatives and false positives than experts, which in the latter case could lead to a higher risk of an innocent person being convicted for an untrained witness. PMID:25537273

  16. Investigation of factors affecting the quality of americium electroplating.

    PubMed

    Trdin, M; Benedik, L; Samardžija, Z; Pihlar, B

    2012-09-01

    Four different electrolyte solutions were used in the electrodeposition of americium and their influences on the quality of the thin layer of deposited americium isotopes in combination with three different cathode disc materials were investigated. The relations between alpha spectral resolution and disc surface properties were established.

  17. How Do Our Actions Affect Water Quantity and Quality?

    ERIC Educational Resources Information Center

    Gordon, Jessica

    2008-01-01

    Water is an essential resource for all living things. How we live on our watershed can impact water quantity and quality. It is important to recognize how humans alter watershed dynamics, but students often find it challenging to visualize watershed processes and understand how decisions that they make as individuals and together as a community…

  18. RICE BREAD QUALITY AS AFFECTED BY YEAST AND BRAN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole rice bread (WRB) has been developed in our laboratory for people suffering from Celiac disease and other food allergies. The WRB has texture and related qualities comparable with white or whole wheat breads. This paper reports the results of three levels of yeast, defatted rice bran on the t...

  19. Magnitude of genotype x environment interactions affecting tomato fruit quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a growing interest by consumers to purchase fresh tomato with improved quality traits including lycopene, total soluble solids (TSS), vitamin C and titratable acid (TA) content. Therefore, there are considerable efforts by tomato breeders to improve tomato for these traits. However, suitabl...

  20. Image integrity and aesthetics: towards a more encompassing definition of visual quality

    NASA Astrophysics Data System (ADS)

    Redi, Judith A.; Heynderickx, Ingrid

    2012-03-01

    Visual quality is a multifaceted quantity that depends on multiple attributes of the image/video. According to Keelan's definition, artifactual attributes concern features of the image that when visible, are annoying and compromise the integrity of the image. Aesthetic attributes instead depend on the observer's personal taste. Both types of attributes have been studied in the literature in relation to visual quality, but never in conjunction with each other. In this paper we perform a psychometric experiment to investigate how artifactual and aesthetic attributes interact, and how they affect the viewing behavior. In particular, we studied to what extent the appearance of artifacts impacts the aesthetic quality of images. Our results indicate that indeed image integrity somehow influences the aesthetic quality scores. By means of an eye-tracker, we also recorded and analyzed the viewing behavior of our participants while scoring aesthetic quality. Results reveal that, when scoring aesthetic quality, viewing behavior significantly departs from the natural free looking, as well as from the viewing behavior observed for integrity scoring.

  1. APQ-102 imaging radar digital image quality study

    NASA Technical Reports Server (NTRS)

    Griffin, C. R.; Estes, J. M.

    1982-01-01

    A modified APQ-102 sidelooking radar collected synthetic aperture radar (SAR) data which was digitized and recorded on wideband magnetic tape. These tapes were then ground processed into computer compatible tapes (CCT's). The CCT's may then be processed into high resolution radar images by software on the CYBER computer.

  2. Peripheral Aberrations and Image Quality for Contact Lens Correction

    PubMed Central

    Shen, Jie; Thibos, Larry N.

    2011-01-01

    Purpose Contact lenses reduced the degree of hyperopic field curvature present in myopic eyes and rigid contact lenses reduced sphero-cylindrical image blur on the peripheral retina, but their effect on higher order aberrations and overall optical quality of the eye in the peripheral visual field is still unknown. The purpose of our study was to evaluate peripheral wavefront aberrations and image quality across the visual field before and after contact lens correction. Methods A commercial Hartmann-Shack aberrometer was used to measure ocular wavefront errors in 5° steps out to 30° of eccentricity along the horizontal meridian in uncorrected eyes and when the same eyes are corrected with soft or rigid contact lenses. Wavefront aberrations and image quality were determined for the full elliptical pupil encountered in off-axis measurements. Results Ocular higher-order aberrations increase away from fovea in the uncorrected eye. Third-order aberrations are larger and increase faster with eccentricity compared to the other higher-order aberrations. Contact lenses increase all higher-order aberrations except 3rd-order Zernike terms. Nevertheless, a net increase in image quality across the horizontal visual field for objects located at the foveal far point is achieved with rigid lenses, whereas soft contact lenses reduce image quality. Conclusions Second order aberrations limit image quality more than higher-order aberrations in the periphery. Although second-order aberrations are reduced by contact lenses, the resulting gain in image quality is partially offset by increased amounts of higher-order aberrations. To fully realize the benefits of correcting higher-order aberrations in the peripheral field requires improved correction of second-order aberrations as well. PMID:21873925

  3. The influence of software filtering in digital mammography image quality

    NASA Astrophysics Data System (ADS)

    Michail, C.; Spyropoulou, V.; Kalyvas, N.; Valais, I.; Dimitropoulos, N.; Fountos, G.; Kandarakis, I.; Panayiotakis, G.

    2009-05-01

    Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.

  4. Thematic Mapper image quality: Preliminary results

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C.; Card, D. H.; Hlavka, C. A.; Likens, W. C.; Mertz, F. C.; Hall, J. R.

    1983-01-01

    Based on images analyzed so far, the band to band registration accuracy of the thematic mapper is very good. For bands within the same focal plane, the mean misregistrations are well within the specification, 0.2 pixels. For bands between the cooled and uncooled focal planes, there is a consistent mean misregistration of 0.5 pixels along-scan and 0.2-0.3 pixels across-scan. It exceeds the permitted 0.3 pixels for registration of bands between focal planes. If the mean misregistrations were removed by the data processing software, an analysis of the standard deviation of the misregistration indicates all band combinations would meet the registration specifications except for those including the thermal band. Analysis of the periodic noise in one image indicates a noise component in band 1 with a spatial frequency equivalent to 3.2 pixels in the along-scan direction.

  5. Natural and anthropogenic factors affecting the groundwater quality in Serbia.

    PubMed

    Devic, Gordana; Djordjevic, Dragana; Sakan, Sanja

    2014-01-15

    Various chemometric techniques were used to analyze the quality of groundwater data sets. Seventeen water quality parameters: the cations Na, K, Ca, Mg, the anions Cl, SO4, NO3, HCO3 and nine trace elements Pb, As, Mn, Ni, Cu, Cd, Fe, Zn and Cr were measured at 66 different key sampling sites in ten representative areas (low land-Northern Autonomous Province of Serbia, Vojvodina and central Serbia) for the summer period of 2009. HCA grouped the sample sites into four clusters based on the similarities of the characteristics of the groundwater quality. DA showed two parameters, HCO3 and Zn, affording more than 90% correct assignments in the spatial analysis of four/three different regions in Serbia. Factor analysis was applied on the log-transformed data sets and allowed the identification of a reduced number of factors with hydrochemical meaning. The results showed severe pollution with Mn, As, NO3, Ni, Pb whereby anthropogenic origin of these contaminants was indicated. The pollution comes from both scattered point sources (industrial and urban effluent) and diffuse source agricultural activity. These samples may not be suitable for human consumption; the water quality belongs to class III/IV (contaminated). The Fe anomalies (7.1mg/L) in the water from the Vetrnica site can be attributed to natural sources, such as the dissolution of rock masses and rock fragments. The serious groundwater contamination with As (25.7-137.8 μg/L) in the area of Banat (Northern Autonomous Province of Serbia, Vojvodina) and a sample No. 9 at the Great Morava River requires urgent attention.

  6. Natural and anthropogenic factors affecting the groundwater quality in Serbia.

    PubMed

    Devic, Gordana; Djordjevic, Dragana; Sakan, Sanja

    2014-01-15

    Various chemometric techniques were used to analyze the quality of groundwater data sets. Seventeen water quality parameters: the cations Na, K, Ca, Mg, the anions Cl, SO4, NO3, HCO3 and nine trace elements Pb, As, Mn, Ni, Cu, Cd, Fe, Zn and Cr were measured at 66 different key sampling sites in ten representative areas (low land-Northern Autonomous Province of Serbia, Vojvodina and central Serbia) for the summer period of 2009. HCA grouped the sample sites into four clusters based on the similarities of the characteristics of the groundwater quality. DA showed two parameters, HCO3 and Zn, affording more than 90% correct assignments in the spatial analysis of four/three different regions in Serbia. Factor analysis was applied on the log-transformed data sets and allowed the identification of a reduced number of factors with hydrochemical meaning. The results showed severe pollution with Mn, As, NO3, Ni, Pb whereby anthropogenic origin of these contaminants was indicated. The pollution comes from both scattered point sources (industrial and urban effluent) and diffuse source agricultural activity. These samples may not be suitable for human consumption; the water quality belongs to class III/IV (contaminated). The Fe anomalies (7.1mg/L) in the water from the Vetrnica site can be attributed to natural sources, such as the dissolution of rock masses and rock fragments. The serious groundwater contamination with As (25.7-137.8 μg/L) in the area of Banat (Northern Autonomous Province of Serbia, Vojvodina) and a sample No. 9 at the Great Morava River requires urgent attention. PMID:24080418

  7. Characterization of the image quality in neutron radioscopy

    NASA Astrophysics Data System (ADS)

    Brunner, J.; Engelhardt, M.; Frei, G.; Gildemeister, A.; Lehmann, E.; Hillenbach, A.; Schillinger, B.

    2005-04-01

    Neutron radioscopy, or dynamic neutron radiography, is a non-destructive testing method, which has made big steps in the last years. Depending on the neutron flux, the object and the detector, for single events a time resolution down to a few milliseconds is possible. In the case of repetitive processes the object can be synchronized with the detector and better statistics in the image can be reached by adding radiographies of the same phase with a time resolution down to 100 μs. By stepwise delaying the trigger signal a radiography movie can be composed. Radiography images of a combustion engine and an injection nozzle were evaluated quantitatively by different methods trying to characterize the image quality of an imaging system. The main factors which influence the image quality are listed and discussed.

  8. Predicted image quality of a CMOS APS X-ray detector across a range of mammographic beam qualities

    NASA Astrophysics Data System (ADS)

    Konstantinidis, A.

    2015-09-01

    Digital X-ray detectors based on Complementary Metal-Oxide- Semiconductor (CMOS) Active Pixel Sensor (APS) technology have been introduced in the early 2000s in medical imaging applications. In a previous study the X-ray performance (i.e. presampling Modulation Transfer Function (pMTF), Normalized Noise Power Spectrum (NNPS), Signal-to-Noise Ratio (SNR) and Detective Quantum Efficiency (DQE)) of the Dexela 2923MAM CMOS APS X-ray detector was evaluated within the mammographic energy range using monochromatic synchrotron radiation (i.e. 17-35 keV). In this study image simulation was used to predict how the mammographic beam quality affects image quality. In particular, the experimentally measured monochromatic pMTF, NNPS and SNR parameters were combined with various mammographic spectral shapes (i.e. Molybdenum/Molybdenum (Mo/Mo), Rhodium/Rhodium (Rh/Rh), Tungsten/Aluminium (W/Al) and Tungsten/Rhodium (W/Rh) anode/filtration combinations at 28 kV). The image quality was measured in terms of Contrast-to-Noise Ratio (CNR) using a synthetic breast phantom (4 cm thick with 50% glandularity). The results can be used to optimize the imaging conditions in order to minimize patient's Mean Glandular Dose (MGD).

  9. Method for image quality monitoring on digital television networks

    NASA Astrophysics Data System (ADS)

    Bretillon, Pierre; Baina, Jamal; Jourlin, Michel; Goudezeune, Gabriel

    1999-11-01

    This paper presents a method designed to monitor image quality. The emphasis is given here to the monitoring in digital television broadcasting networks, in order for the providers to ensure a 'user-oriented' Quality of Service. Most objective image quality assessment methods are technically very difficult to apply in this context because of bandwidth limitations. We propose a parametric, reduced reference method that relies on the evaluation of characteristic coding and transmission impairments with a set of features. We show that quality can be predicted with a satisfying correlation to a subjective evaluation by the combination of several impairment features in an appropriate model. The method has been implemented and tested in a range of situations on simulated and real DVB networks. This allows to conclude on the usefulness of the approach and our future developments for quality of service monitoring in digital television.

  10. Average glandular dose and phantom image quality in mammography

    NASA Astrophysics Data System (ADS)

    Oliveira, M.; Nogueira, M. S.; Guedes, E.; Andrade, M. C.; Peixoto, J. E.; Joana, G. S.; Castro, J. G.

    2007-09-01

    Doses in mammography should be maintained as low as possible without reducing the high image quality needed for early detection of the breast cancer. The breast is composed of tissues with very close composition and densities. It increases the difficulty to detect small changes in the normal anatomical structures which may be associated with breast cancer. To achieve the standards of definition and contrast for mammography, the quality and intensity of the X-ray beam, the breast positioning and compression, the film-screen system, and the film processing have to be in optimal operational conditions. This study sought to evaluate average glandular dose (AGD) and image quality on a standard phantom in 134 mammography units in the state of Minas Gerais, Brazil, between December 2004 and May 2006. AGDs were obtained by means of entrance kerma measured with TL LiF100 dosimeters on phantom surface. Phantom images were obtained with automatic exposure technique, fixed 28 kV and molybdenum anode-filter combination. The phantom used contained structures simulating tumoral masses, microcalcifications, fibers and low contrast areas. High-resolution metallic meshes to assess image definition and a stepwedge to measure image contrast index were also inserted in the phantom. The visualization of simulated structures, the mean optical density and the contrast index allowed to classify the phantom image quality in a seven-point scale. The results showed that 54.5% of the facilities did not achieve the minimum performance level for image quality. It is mainly due to insufficient film processing observed in 61.2% of the units. AGD varied from 0.41 to 2.73 mGy with a mean value of 1.32±0.44 mGy. In all optimal quality phantom images, AGDs were in this range. Additionally, in 7.3% of the mammography units, the AGD constraint of 2 mGy was exceeded. One may conclude that dose level to patient and image quality are not in conformity to regulations in most of the facilities. This

  11. Quality of Visual Cue Affects Visual Reweighting in Quiet Standing

    PubMed Central

    Moraes, Renato; de Freitas, Paulo Barbosa; Razuk, Milena; Barela, José Angelo

    2016-01-01

    Sensory reweighting is a characteristic of postural control functioning adopted to accommodate environmental changes. The use of mono or binocular cues induces visual reduction/increment of moving room influences on postural sway, suggesting a visual reweighting due to the quality of available sensory cues. Because in our previous study visual conditions were set before each trial, participants could adjust the weight of the different sensory systems in an anticipatory manner based upon the reduction in quality of the visual information. Nevertheless, in daily situations this adjustment is a dynamical process and occurs during ongoing movement. The purpose of this study was to examine the effect of visual transitions in the coupling between visual information and body sway in two different distances from the front wall of a moving room. Eleven young adults stood upright inside of a moving room in two distances (75 and 150 cm) wearing a liquid crystal lenses goggles, which allow individual lenses transition from opaque to transparent and vice-versa. Participants stood still during five minutes for each trial and the lenses status changed every one minute (no vision to binocular vision, no vision to monocular vision, binocular vision to monocular vision, and vice-versa). Results showed that farther distance and monocular vision reduced the effect of visual manipulation on postural sway. The effect of visual transition was condition dependent, with a stronger effect when transitions involved binocular vision than monocular vision. Based upon these results, we conclude that the increased distance from the front wall of the room reduced the effect of visual manipulation on postural sway and that sensory reweighting is stimulus quality dependent, with binocular vision producing a much stronger down/up-weighting than monocular vision. PMID:26939058

  12. Toward the development of an image quality tool for active millimeter wave imaging systems

    NASA Astrophysics Data System (ADS)

    Barber, Jeffrey; Weatherall, James C.; Greca, Joseph; Smith, Barry T.

    2015-05-01

    Preliminary design considerations for an image quality tool to complement millimeter wave imaging systems are presented. The tool is planned for use in confirming operating parameters; confirmation of continuity for imaging component design changes, and analysis of new components and detection algorithms. Potential embodiments of an image quality tool may contain materials that mimic human skin in order to provide a realistic signal return for testing, which may also help reduce or eliminate the need for mock passengers for developmental testing. Two candidate materials, a dielectric liquid and an iron-loaded epoxy, have been identified and reflection measurements have been performed using laboratory systems in the range 18 - 40 GHz. Results show good agreement with both laboratory and literature data on human skin, particularly in the range of operation of two commercially available millimeter wave imaging systems. Issues related to the practical use of liquids and magnetic materials for image quality tools are discussed.

  13. Body image and quality of life in a Spanish population

    PubMed Central

    Lobera, Ignacio Jáuregui; Ríos, Patricia Bolaños

    2011-01-01

    Purpose The aim of the current study was to analyze the psychometric properties, factor structure, and internal consistency of the Spanish version of the Body Image Quality of Life Inventory (BIQLI-SP) as well as its test–retest reliability. Further objectives were to analyze different relationships with key dimensions of psychosocial functioning (ie, self-esteem, presence of psychopathological symptoms, eating and body image-related problems, and perceived stress) and to evaluate differences in body image quality of life due to gender. Patients and methods The sample comprised 417 students without any psychiatric history, recruited from the Pablo de Olavide University and the University of Seville. There were 140 men (33.57%) and 277 women (66.43%), and the mean age was 21.62 years (standard deviation = 5.12). After obtaining informed consent from all participants, the following questionnaires were administered: BIQLI, Eating Disorder Inventory-2 (EDI-2), Perceived Stress Questionnaire (PSQ), Self-Esteem Scale (SES), and Symptom Checklist-90-Revised (SCL-90-R). Results The BIQLI-SP shows adequate psychometric properties, and it may be useful to determine the body image quality of life in different physical conditions. A more positive body image quality of life is associated with better self-esteem, better psychological wellbeing, and fewer eating-related dysfunctional attitudes, this being more evident among women. Conclusion The BIQLI-SP may be useful to determine the body image quality of life in different contexts with regard to dermatology, cosmetic and reconstructive surgery, and endocrinology, among others. In these fields of study, a new trend has emerged to assess body image-related quality of life. PMID:21403794

  14. Evaluation of image quality in computed radiography based mammography systems

    NASA Astrophysics Data System (ADS)

    Singh, Abhinav; Bhwaria, Vipin; Valentino, Daniel J.

    2011-03-01

    Mammography is the most widely accepted procedure for the early detection of breast cancer and Computed Radiography (CR) is a cost-effective technology for digital mammography. We have demonstrated that CR mammography image quality is viable for Digital Mammography. The image quality of mammograms acquired using Computed Radiography technology was evaluated using the Modulation Transfer Function (MTF), Noise Power Spectrum (NPS) and Detective Quantum Efficiency (DQE). The measurements were made using a 28 kVp beam (RQA M-II) using 2 mm of Al as a filter and a target/filter combination of Mo/Mo. The acquired image bit depth was 16 bits and the pixel pitch for scanning was 50 microns. A Step-Wedge phantom (to measure the Contrast-to-noise ratio (CNR)) and the CDMAM 3.4 Contrast Detail phantom were also used to assess the image quality. The CNR values were observed at varying thickness of PMMA. The CDMAM 3.4 phantom results were plotted and compared to the EUREF acceptable and achievable values. The effect on image quality was measured using the physics metrics. A lower DQE was observed even with a higher MTF. This could be possibly due to a higher noise component present due to the way the scanner was configured. The CDMAM phantom scores demonstrated a contrast-detail comparable to the EUREF values. A cost-effective CR machine was optimized for high-resolution and high-contrast imaging.

  15. Analysis of image quality for laser display scanner test

    NASA Astrophysics Data System (ADS)

    Specht, H.; Kurth, S.; Billep, D.; Gessner, T.

    2009-02-01

    The scanning laser display technology is one of the most promising technologies for highly integrated projection display applications (e. g. in PDAs, mobile phones or head mounted displays) due to its advantages regarding image quality, miniaturization level and low cost potential. As a couple of research teams found during their investigations on laser scanning projections systems, the image quality of such systems is - beside from laser source and video signal processing - crucially determined by the scan engine, including MEMS scanner, driving electronics, scanning regime and synchronization. Even though a number of technical parameters can be measured with high accuracy, the test procedure is challenging because the influence of these parameters on image quality is often insufficiently understood. Thus, in many cases it is not clear how to define limiting values for characteristic parameters. In this paper the relationship between parameters characterizing the scan engine and their influence on image quality will be discussed. Those include scanner topography, geometry of the path of light as well as trajectory parameters. Understanding this enables a new methodology for testing and characterization of the scan engine, based on evaluation of one or a series of projected test images. Due to the fact that the evaluation process can be easily automated by digital image processing this methodology has the potential to become integrated into the production process of laser displays.

  16. Wind resource quality affected by high levels of renewables

    DOE PAGES

    Diakov, Victor

    2015-06-17

    For solar photovoltaic (PV) and wind resources, the capacity factor is an important parameter describing the quality of the resource. As the share of variable renewable resources (such as PV and wind) on the electric system is increasing, so does curtailment (and the fraction of time when it cannot be avoided). At high levels of renewable generation, curtailments effectively change the practical measure of resource quality from capacity factor to the incremental capacity factor. The latter accounts only for generation during hours of no curtailment and is directly connected with the marginal capital cost of renewable generators for a givenmore » level of renewable generation during the year. The Western U.S. wind generation is analyzed hourly for a system with 75% of annual generation from wind, and it is found that the value for the system of resources with equal capacity factors can vary by a factor of 2, which highlights the importance of using the incremental capacity factor instead. Finally, the effect is expected to be more pronounced in smaller geographic areas (or when transmission limitations imposed) and less pronounced at lower levels of renewable energy in the system with less curtailment.« less

  17. Wind resource quality affected by high levels of renewables

    SciTech Connect

    Diakov, Victor

    2015-06-17

    For solar photovoltaic (PV) and wind resources, the capacity factor is an important parameter describing the quality of the resource. As the share of variable renewable resources (such as PV and wind) on the electric system is increasing, so does curtailment (and the fraction of time when it cannot be avoided). At high levels of renewable generation, curtailments effectively change the practical measure of resource quality from capacity factor to the incremental capacity factor. The latter accounts only for generation during hours of no curtailment and is directly connected with the marginal capital cost of renewable generators for a given level of renewable generation during the year. The Western U.S. wind generation is analyzed hourly for a system with 75% of annual generation from wind, and it is found that the value for the system of resources with equal capacity factors can vary by a factor of 2, which highlights the importance of using the incremental capacity factor instead. Finally, the effect is expected to be more pronounced in smaller geographic areas (or when transmission limitations imposed) and less pronounced at lower levels of renewable energy in the system with less curtailment.

  18. Evaluating the impact of x-ray spectral shape on image quality in flat-panel CT breast imaging

    SciTech Connect

    Glick, Stephen J.; Thacker, Samta; Gong Xing; Liu, Bob

    2007-01-15

    In recent years, there has been an increasing interest in exploring the feasibility of dedicated computed tomography (CT) breast imaging using a flat-panel digital detector in a truncated cone-beam imaging geometry. Preliminary results are promising and it appears as if three-dimensional tomographic imaging of the breast has great potential for reducing the masking effect of superimposed parenchymal structure typically observed with conventional mammography. In this study, a mathematical framework used for determining optimal design and acquisition parameters for such a CT breast imaging system is described. The ideal observer signal-to-noise ratio (SNR) is used as a figure of merit, under the assumptions that the imaging system is linear and shift invariant. Computation of the ideal observer SNR used a parallel-cascade model to predict signal and noise propagation through the detector, as well as a realistic model of the lesion detection task in breast imaging. For all evaluations, the total mean glandular dose for a CT breast imaging study was constrained to be approximately equivalent to that of a two-view conventional mammography study. The framework presented was used to explore the effect of x-ray spectral shape across an extensive range of kVp settings, filter material types, and filter thicknesses. The results give an indication of how spectral shape can affect image quality in flat-panel CT breast imaging.

  19. Faster, higher quality volume visualization for 3D medical imaging

    NASA Astrophysics Data System (ADS)

    Kalvin, Alan D.; Laine, Andrew F.; Song, Ting

    2008-03-01

    The two major volume visualization methods used in biomedical applications are Maximum Intensity Projection (MIP) and Volume Rendering (VR), both of which involve the process of creating sets of 2D projections from 3D images. We have developed a new method for very fast, high-quality volume visualization of 3D biomedical images, based on the fact that the inverse of this process (transforming 2D projections into a 3D image) is essentially equivalent to tomographic image reconstruction. This new method uses the 2D projections acquired by the scanner, thereby obviating the need for the two computationally expensive steps currently required in the complete process of biomedical visualization, that is, (i) reconstructing the 3D image from 2D projection data, and (ii) computing the set of 2D projections from the reconstructed 3D image As well as improvements in computation speed, this method also results in improvements in visualization quality, and in the case of x-ray CT we can exploit this quality improvement to reduce radiation dosage. In this paper, demonstrate the benefits of developing biomedical visualization techniques by directly processing the sensor data acquired by body scanners, rather than by processing the image data reconstructed from the sensor data. We show results of using this approach for volume visualization for tomographic modalities, like x-ray CT, and as well as for MRI.

  20. An approach for quantitative image quality analysis for CT

    NASA Astrophysics Data System (ADS)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  1. Real-time computer treatment of THz passive device images with the high image quality

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2012-06-01

    We demonstrate real-time computer code improving significantly the quality of images captured by the passive THz imaging system. The code is not only designed for a THz passive device: it can be applied to any kind of such devices and active THz imaging systems as well. We applied our code for computer processing of images captured by four passive THz imaging devices manufactured by different companies. It should be stressed that computer processing of images produced by different companies requires using the different spatial filters usually. The performance of current version of the computer code is greater than one image per second for a THz image having more than 5000 pixels and 24 bit number representation. Processing of THz single image produces about 20 images simultaneously corresponding to various spatial filters. The computer code allows increasing the number of pixels for processed images without noticeable reduction of image quality. The performance of the computer code can be increased many times using parallel algorithms for processing the image. We develop original spatial filters which allow one to see objects with sizes less than 2 cm. The imagery is produced by passive THz imaging devices which captured the images of objects hidden under opaque clothes. For images with high noise we develop an approach which results in suppression of the noise after using the computer processing and we obtain the good quality image. With the aim of illustrating the efficiency of the developed approach we demonstrate the detection of the liquid explosive, ordinary explosive, knife, pistol, metal plate, CD, ceramics, chocolate and other objects hidden under opaque clothes. The results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem.

  2. The influence of noise on image quality in phase-diverse coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Wittler, H. P. A.; van Riessen, G. A.; Jones, M. W. M.

    2016-02-01

    Phase-diverse coherent diffraction imaging provides a route to high sensitivity and resolution with low radiation dose. To take full advantage of this, the characteristics and tolerable limits of measurement noise for high quality images must be understood. In this work we show the artefacts that manifest in images recovered from simulated data with noise of various characteristics in the illumination and diffraction pattern. We explore the limits at which images of acceptable quality can be obtained and suggest qualitative guidelines that would allow for faster data acquisition and minimize radiation dose.

  3. Domestic cooking methods affect the nutritional quality of red cabbage.

    PubMed

    Xu, Feng; Zheng, Yonghua; Yang, Zhenfeng; Cao, Shifeng; Shao, Xingfeng; Wang, Hongfei

    2014-10-15

    The aim of this work is to investigate the effects of domestic cooking methods, including steaming, microwave heating, boiling and stir-frying on the nutritional quality of red cabbage. Compared with fresh-cut red cabbage, all cooking methods were found to cause significant reduction in anthocyanin and total glucosinolates contents. Moreover, steaming resulted in significantly greater retention of vitamin C and DPPH radical-scavenging activity, while stir-frying and boiling, two popular Chinese cooking methods, led to significant losses of total phenolic, vitamin C, DPPH radical-scavenging activity, and total soluble sugar as well as reducing sugars. Normally, red cabbage consumed fresh in salads could maintain the highest nutrition. However, considering the habits of Asian cuisine, it is recommended to use less water and less cooking time, such as steaming based on our present results, so as to retain the optimum benefits of the health-promoting compounds.

  4. Exploratory survey of image quality on CR digital mammography imaging systems in Mexico.

    PubMed

    Gaona, E; Rivera, T; Arreola, M; Franco, J; Molina, N; Alvarez, B; Azorín, C G; Casian, G

    2014-01-01

    The purpose of this study was to assess the current status of image quality and dose in computed radiographic digital mammography (CRDM) systems. Studies included CRDM systems of various models and manufacturers which dose and image quality comparisons were performed. Due to the recent rise in the use of digital radiographic systems in Mexico, CRDM systems are rapidly replacing conventional film-screen systems without any regard to quality control or image quality standards. Study was conducted in 65 mammography facilities which use CRDM systems in the Mexico City and surrounding States. The systems were tested as used clinically. This means that the dose and beam qualities were selected using the automatic beam selection and photo-timed features. All systems surveyed generate laser film hardcopies for the radiologist to read on a scope or mammographic high luminance light box. It was found that 51 of CRDM systems presented a variety of image artefacts and non-uniformities arising from inadequate acquisition and processing, as well as from the laser printer itself. Undisciplined alteration of image processing settings by the technologist was found to be a serious prevalent problem in 42 facilities. Only four of them showed an image QC program which is periodically monitored by a medical physicist. The Average Glandular Dose (AGD) in the surveyed systems was estimated to have a mean value of 2.4 mGy. To improve image quality in mammography and make more efficient screening mammographic in early detection of breast cancer is required new legislation.

  5. Exploratory survey of image quality on CR digital mammography imaging systems in Mexico.

    PubMed

    Gaona, E; Rivera, T; Arreola, M; Franco, J; Molina, N; Alvarez, B; Azorín, C G; Casian, G

    2014-01-01

    The purpose of this study was to assess the current status of image quality and dose in computed radiographic digital mammography (CRDM) systems. Studies included CRDM systems of various models and manufacturers which dose and image quality comparisons were performed. Due to the recent rise in the use of digital radiographic systems in Mexico, CRDM systems are rapidly replacing conventional film-screen systems without any regard to quality control or image quality standards. Study was conducted in 65 mammography facilities which use CRDM systems in the Mexico City and surrounding States. The systems were tested as used clinically. This means that the dose and beam qualities were selected using the automatic beam selection and photo-timed features. All systems surveyed generate laser film hardcopies for the radiologist to read on a scope or mammographic high luminance light box. It was found that 51 of CRDM systems presented a variety of image artefacts and non-uniformities arising from inadequate acquisition and processing, as well as from the laser printer itself. Undisciplined alteration of image processing settings by the technologist was found to be a serious prevalent problem in 42 facilities. Only four of them showed an image QC program which is periodically monitored by a medical physicist. The Average Glandular Dose (AGD) in the surveyed systems was estimated to have a mean value of 2.4 mGy. To improve image quality in mammography and make more efficient screening mammographic in early detection of breast cancer is required new legislation. PMID:23938078

  6. Does image reduction affect the diagnostic accuracy of digital mammograms?

    NASA Astrophysics Data System (ADS)

    Takane, Yumi; Kawasumi, Yusuke; Horie, Tsunemitsu; Ishibashi, Tadashi

    2013-03-01

    We aimed to evaluate the influence of image reduction using a bi-cubic interpolation method on the accuracy of detection of clustered microcalcifications (MCLs) and masses on digital mammograms. Digital mammograms (n=194) of 97 subjects were selected retrospectively, comprising 47 patients with clustered MCLs or masses and 52 controls. Images were acquired in the craniocaudal view by phase-contrast mammography (PCM). Original PCM images comprised 25-μm pixels. The reduced images converted from the originals by bi-cubic interpolation were of 50-μm pixel size. Five observers independently interpreted all images, and rated their confidence concerning the presence of lesions on a continuous 0-100 scale. Receiver-operating characteristic (ROC) analysis was performed using the jackknife method and LABMRMC program. Differences in areas under the curve (AUC) values based on 95% confidence intervals were evaluated. The average AUC values for detection of masses were 0.8435 and 0.8646 for the original and reduced images, respectively. The difference between the average AUC values was not statistically significant (p=0.5855). Average AUC values for clustered MCLs detection were 0.9273 and 0.9574 for the original and reduced images, respectively. This difference was not statistically significant (p=0.1949). Detection of masses and clustered MCLs on digital mammograms was unaffected by bi-cubic interpolation image reduction.

  7. No-reference image quality assessment for horizontal-path imaging scenarios

    NASA Astrophysics Data System (ADS)

    Rios, Carlos; Gladysz, Szymon

    2013-05-01

    There exist several image-enhancement algorithms and tasks associated with imaging through turbulence that depend on defining the quality of an image. Examples include: "lucky imaging", choosing the width of the inverse filter for image reconstruction, or stopping iterative deconvolution. We collected a number of image quality metrics found in the literature. Particularly interesting are the blind, "no-reference" metrics. We discuss ways of evaluating the usefulness of these metrics, even when a fully objective comparison is impossible because of the lack of a reference image. Metrics are tested on simulated and real data. Field data comes from experiments performed by the NATO SET 165 research group over a 7 km distance in Dayton, Ohio.

  8. Perceived Image Quality Improvements from the Application of Image Deconvolution to Retinal Images from an Adaptive Optics Fundus Imager

    NASA Astrophysics Data System (ADS)

    Soliz, P.; Nemeth, S. C.; Erry, G. R. G.; Otten, L. J.; Yang, S. Y.

    Aim: The objective of this project was to apply an image restoration methodology based on wavefront measurements obtained with a Shack-Hartmann sensor and evaluating the restored image quality based on medical criteria.Methods: Implementing an adaptive optics (AO) technique, a fundus imager was used to achieve low-order correction to images of the retina. The high-order correction was provided by deconvolution. A Shack-Hartmann wavefront sensor measures aberrations. The wavefront measurement is the basis for activating a deformable mirror. Image restoration to remove remaining aberrations is achieved by direct deconvolution using the point spread function (PSF) or a blind deconvolution. The PSF is estimated using measured wavefront aberrations. Direct application of classical deconvolution methods such as inverse filtering, Wiener filtering or iterative blind deconvolution (IBD) to the AO retinal images obtained from the adaptive optical imaging system is not satisfactory because of the very large image size, dificulty in modeling the system noise, and inaccuracy in PSF estimation. Our approach combines direct and blind deconvolution to exploit available system information, avoid non-convergence, and time-consuming iterative processes. Results: The deconvolution was applied to human subject data and resulting restored images compared by a trained ophthalmic researcher. Qualitative analysis showed significant improvements. Neovascularization can be visualized with the adaptive optics device that cannot be resolved with the standard fundus camera. The individual nerve fiber bundles are easily resolved as are melanin structures in the choroid. Conclusion: This project demonstrated that computer-enhanced, adaptive optic images have greater detail of anatomical and pathological structures.

  9. Reduced Height (Rht) Alleles Affect Wheat Grain Quality.

    PubMed

    Casebow, Richard; Hadley, Caroline; Uppal, Rajneet; Addisu, Molla; Loddo, Stefano; Kowalski, Ania; Griffiths, Simon; Gooding, Mike

    2016-01-01

    The effects of dwarfing alleles (reduced height, Rht) in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c) as well as those that retained GA-sensitivity (rht(tall), Rht8, Rht8 + Ppd-D1a, Rht12). Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0-450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (P<0.05) reduced grain nitrogen concentration in the absence of an effect on yield, and in the remaining experiment the GA-sensitive Rht8 significantly reduced both grain yield and grain nitrogen concentration simultaneously. When Rht alleles diluted grain nitrogen concentration, N:S ratios and SDS-sedimentation volumes were often improved. Hagberg falling number (HFN) was negatively related to crop height but benefits from dwarfing were only seen for GA-insensitive alleles. For HFN, therefore, there was the

  10. Reduced Height (Rht) Alleles Affect Wheat Grain Quality

    PubMed Central

    Casebow, Richard; Hadley, Caroline; Uppal, Rajneet; Addisu, Molla; Loddo, Stefano; Kowalski, Ania; Griffiths, Simon; Gooding, Mike

    2016-01-01

    The effects of dwarfing alleles (reduced height, Rht) in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c) as well as those that retained GA-sensitivity (rht(tall), Rht8, Rht8 + Ppd-D1a, Rht12). Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0–450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (P<0.05) reduced grain nitrogen concentration in the absence of an effect on yield, and in the remaining experiment the GA-sensitive Rht8 significantly reduced both grain yield and grain nitrogen concentration simultaneously. When Rht alleles diluted grain nitrogen concentration, N:S ratios and SDS-sedimentation volumes were often improved. Hagberg falling number (HFN) was negatively related to crop height but benefits from dwarfing were only seen for GA-insensitive alleles. For HFN, therefore, there was the

  11. Evaluating the real-world predictive validity of the Body Image Quality of Life Inventory using Ecological Momentary Assessment.

    PubMed

    Heron, Kristin E; Mason, Tyler B; Sutton, Tiphanie G; Myers, Taryn A

    2015-09-01

    Perceptions of physical appearance, or body image, can affect psychosocial functioning and quality of life (QOL). The present study evaluated the real-world predictive validity of the Body Image Quality of Life Inventory (BIQLI) using Ecological Momentary Assessment (EMA). College women reporting subclinical disordered eating/body dissatisfaction (N=131) completed the BIQLI and related measures. For one week they then completed five daily EMA surveys of mood, social interactions, stress, and eating behaviors on palmtop computers. Results showed better body image QOL was associated with less negative affect, less overwhelming emotions, more positive affect, more pleasant social interactions, and higher self-efficacy for handling stress. Lower body image QOL was marginally related to less overeating and lower loss of control over eating in daily life. To our knowledge, this is the first study to support the real-world predictive validity of the BIQLI by identifying social, affective, and behavioral correlates in everyday life using EMA. PMID:26302376

  12. Evaluation of cassette-based digital radiography detectors using standardized image quality metrics: AAPM TG-150 Draft Image Detector Tests.

    PubMed

    Li, Guang; Greene, Travis C; Nishino, Thomas K; Willis, Charles E

    2016-09-08

    The purpose of this study was to evaluate several of the standardized image quality metrics proposed by the American Association of Physics in Medicine (AAPM) Task Group 150. The task group suggested region-of-interest (ROI)-based techniques to measure nonuniformity, minimum signal-to-noise ratio (SNR), number of anomalous pixels, and modulation transfer function (MTF). This study evaluated the effects of ROI size and layout on the image metrics by using four different ROI sets, assessed result uncertainty by repeating measurements, and compared results with two commercially available quality control tools, namely the Carestream DIRECTVIEW Total Quality Tool (TQT) and the GE Healthcare Quality Assurance Process (QAP). Seven Carestream DRX-1C (CsI) detectors on mobile DR systems and four GE FlashPad detectors in radiographic rooms were tested. Images were analyzed using MATLAB software that had been previously validated and reported. Our values for signal and SNR nonuniformity and MTF agree with values published by other investigators. Our results show that ROI size affects nonuniformity and minimum SNR measurements, but not detection of anomalous pixels. Exposure geometry affects all tested image metrics except for the MTF. TG-150 metrics in general agree with the TQT, but agree with the QAP only for local and global signal nonuniformity. The difference in SNR nonuniformity and MTF values between the TG-150 and QAP may be explained by differences in the calculation of noise and acquisition beam quality, respectively. TG-150's SNR nonuniformity metrics are also more sensitive to detector nonuniformity compared to the QAP. Our results suggest that fixed ROI size should be used for consistency because nonuniformity metrics depend on ROI size. Ideally, detector tests should be performed at the exact calibration position. If not feasible, a baseline should be established from the mean of several repeated measurements. Our study indicates that the TG-150 tests can be

  13. Evaluation of cassette-based digital radiography detectors using standardized image quality metrics: AAPM TG-150 Draft Image Detector Tests.

    PubMed

    Li, Guang; Greene, Travis C; Nishino, Thomas K; Willis, Charles E

    2016-01-01

    The purpose of this study was to evaluate several of the standardized image quality metrics proposed by the American Association of Physics in Medicine (AAPM) Task Group 150. The task group suggested region-of-interest (ROI)-based techniques to measure nonuniformity, minimum signal-to-noise ratio (SNR), number of anomalous pixels, and modulation transfer function (MTF). This study evaluated the effects of ROI size and layout on the image metrics by using four different ROI sets, assessed result uncertainty by repeating measurements, and compared results with two commercially available quality control tools, namely the Carestream DIRECTVIEW Total Quality Tool (TQT) and the GE Healthcare Quality Assurance Process (QAP). Seven Carestream DRX-1C (CsI) detectors on mobile DR systems and four GE FlashPad detectors in radiographic rooms were tested. Images were analyzed using MATLAB software that had been previously validated and reported. Our values for signal and SNR nonuniformity and MTF agree with values published by other investigators. Our results show that ROI size affects nonuniformity and minimum SNR measurements, but not detection of anomalous pixels. Exposure geometry affects all tested image metrics except for the MTF. TG-150 metrics in general agree with the TQT, but agree with the QAP only for local and global signal nonuniformity. The difference in SNR nonuniformity and MTF values between the TG-150 and QAP may be explained by differences in the calculation of noise and acquisition beam quality, respectively. TG-150's SNR nonuniformity metrics are also more sensitive to detector nonuniformity compared to the QAP. Our results suggest that fixed ROI size should be used for consistency because nonuniformity metrics depend on ROI size. Ideally, detector tests should be performed at the exact calibration position. If not feasible, a baseline should be established from the mean of several repeated measurements. Our study indicates that the TG-150 tests can be

  14. Radiation dose and image quality for paediatric interventional cardiology

    NASA Astrophysics Data System (ADS)

    Vano, E.; Ubeda, C.; Leyton, F.; Miranda, P.

    2008-08-01

    Radiation dose and image quality for paediatric protocols in a biplane x-ray system used for interventional cardiology have been evaluated. Entrance surface air kerma (ESAK) and image quality using a test object and polymethyl methacrylate (PMMA) phantoms have been measured for the typical paediatric patient thicknesses (4-20 cm of PMMA). Images from fluoroscopy (low, medium and high) and cine modes have been archived in digital imaging and communications in medicine (DICOM) format. Signal-to-noise ratio (SNR), figure of merit (FOM), contrast (CO), contrast-to-noise ratio (CNR) and high contrast spatial resolution (HCSR) have been computed from the images. Data on dose transferred to the DICOM header have been used to test the values of the dosimetric display at the interventional reference point. ESAK for fluoroscopy modes ranges from 0.15 to 36.60 µGy/frame when moving from 4 to 20 cm PMMA. For cine, these values range from 2.80 to 161.10 µGy/frame. SNR, FOM, CO, CNR and HCSR are improved for high fluoroscopy and cine modes and maintained roughly constant for the different thicknesses. Cumulative dose at the interventional reference point resulted 25-45% higher than the skin dose for the vertical C-arm (depending of the phantom thickness). ESAK and numerical image quality parameters allow the verification of the proper setting of the x-ray system. Knowing the increases in dose per frame when increasing phantom thicknesses together with the image quality parameters will help cardiologists in the good management of patient dose and allow them to select the best imaging acquisition mode during clinical procedures.

  15. Determination of pasture quality using airborne hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Pullanagari, R. R.; Kereszturi, G.; Yule, Ian J.; Irwin, M. E.

    2015-10-01

    Pasture quality is a critical determinant which influences animal performance (live weight gain, milk and meat production) and animal health. Assessment of pasture quality is therefore required to assist farmers with grazing planning and management, benchmarking between seasons and years. Traditionally, pasture quality is determined by field sampling which is laborious, expensive and time consuming, and the information is not available in real-time. Hyperspectral remote sensing has potential to accurately quantify biochemical composition of pasture over wide areas in great spatial detail. In this study an airborne imaging spectrometer (AisaFENIX, Specim) was used with a spectral range of 380-2500 nm with 448 spectral bands. A case study of a 600 ha hill country farm in New Zealand is used to illustrate the use of the system. Radiometric and atmospheric corrections, along with automatized georectification of the imagery using Digital Elevation Model (DEM), were applied to the raw images to convert into geocoded reflectance images. Then a multivariate statistical method, partial least squares (PLS), was applied to estimate pasture quality such as crude protein (CP) and metabolisable energy (ME) from canopy reflectance. The results from this study revealed that estimates of CP and ME had a R2 of 0.77 and 0.79, and RMSECV of 2.97 and 0.81 respectively. By utilizing these regression models, spatial maps were created over the imaged area. These pasture quality maps can be used for adopting precision agriculture practices which improves farm profitability and environmental sustainability.

  16. Achieving quality in cardiovascular imaging: proceedings from the American College of Cardiology-Duke University Medical Center Think Tank on Quality in Cardiovascular Imaging.

    PubMed

    Douglas, Pamela; Iskandrian, Ami E; Krumholz, Harlan M; Gillam, Linda; Hendel, Robert; Jollis, James; Peterson, Eric; Chen, Jersey; Masoudi, Frederick; Mohler, Emile; McNamara, Robert L; Patel, Manesh R; Spertus, John

    2006-11-21

    Cardiovascular imaging has enjoyed both rapid technological advances and sustained growth, yet less attention has been focused on quality than in other areas of cardiovascular medicine. To address this deficit, representatives from cardiovascular imaging societies, private payers, government agencies, the medical imaging industry, and experts in quality measurement met, and this report provides an overview of the discussions. A consensus definition of quality in imaging and a convergence of opinion on quality measures across imaging modalities was achieved and are intended to be the start of a process culminating in the development, dissemination, and adoption of quality measures for all cardiovascular imaging modalities.

  17. Dose and diagnostic image quality in digital tomosynthesis imaging of facial bones in pediatrics

    NASA Astrophysics Data System (ADS)

    King, J. M.; Hickling, S.; Elbakri, I. A.; Reed, M.; Wrogemann, J.

    2011-03-01

    The purpose of this study was to evaluate the use of digital tomosynthesis (DT) for pediatric facial bone imaging. We compared the eye lens dose and diagnostic image quality of DT facial bone exams relative to digital radiography (DR) and computed tomography (CT), and investigated whether we could modify our current DT imaging protocol to reduce patient dose while maintaining sufficient diagnostic image quality. We measured the dose to the eye lens for all three modalities using high-sensitivity thermoluminescent dosimeters (TLDs) and an anthropomorphic skull phantom. To assess the diagnostic image quality of DT compared to the corresponding DR and CT images, we performed an observer study where the visibility of anatomical structures in the DT phantom images were rated on a four-point scale. We then acquired DT images at lower doses and had radiologists indicate whether the visibility of each structure was adequate for diagnostic purposes. For typical facial bone exams, we measured eye lens doses of 0.1-0.4 mGy for DR, 0.3-3.7 mGy for DT, and 26 mGy for CT. In general, facial bone structures were visualized better with DT then DR, and the majority of structures were visualized well enough to avoid the need for CT. DT imaging provides high quality diagnostic images of the facial bones while delivering significantly lower doses to the lens of the eye compared to CT. In addition, we found that by adjusting the imaging parameters, the DT effective dose can be reduced by up to 50% while maintaining sufficient image quality.

  18. Presence capture cameras - a new challenge to the image quality

    NASA Astrophysics Data System (ADS)

    Peltoketo, Veli-Tapani

    2016-04-01

    Commercial presence capture cameras are coming to the markets and a new era of visual entertainment starts to get its shape. Since the true presence capturing is still a very new technology, the real technical solutions are just passed a prototyping phase and they vary a lot. Presence capture cameras have still the same quality issues to tackle as previous phases of digital imaging but also numerous new ones. This work concentrates to the quality challenges of presence capture cameras. A camera system which can record 3D audio-visual reality as it is has to have several camera modules, several microphones and especially technology which can synchronize output of several sources to a seamless and smooth virtual reality experience. Several traditional quality features are still valid in presence capture cameras. Features like color fidelity, noise removal, resolution and dynamic range create the base of virtual reality stream quality. However, co-operation of several cameras brings a new dimension for these quality factors. Also new quality features can be validated. For example, how the camera streams should be stitched together with 3D experience without noticeable errors and how to validate the stitching? The work describes quality factors which are still valid in the presence capture cameras and defines the importance of those. Moreover, new challenges of presence capture cameras are investigated in image and video quality point of view. The work contains considerations how well current measurement methods can be used in presence capture cameras.

  19. Gastroesophageal Reflux Affects Sleep Quality in Snoring Obese Children

    PubMed Central

    Woodley, Frederick W; Skaggs, Beth; Di Lorenzo, Carlo; Eneli, Ihuoma; Splaingard, Mark; Mousa, Hayat

    2016-01-01

    Purpose This study was performed to evaluate the quality of sleep in snoring obese children without obstructive sleep apnea (OSA); and to study the possible relationship between sleep interruption and gastroesophageal reflux (GER) in snoring obese children. Methods Study subjects included 13 snoring obese children who were referred to our sleep lab for possible sleep-disordered breathing. Patients underwent multichannel intraluminal impedance and esophageal pH monitoring with simultaneous polysomnography. Exclusion criteria included history of fundoplication, cystic fibrosis, and infants under the age of 2 years. Significant association between arousals and awakenings with previous reflux were defined by symptom-association probability using 2-minute intervals. Results Sleep efficiency ranged from 67-97% (median 81%). A total of 111 reflux episodes (90% acidic) were detected during sleep, but there were more episodes per hour during awake periods after sleep onset than during sleep (median 2.3 vs. 0.6, p=0.04). There were 279 total awakenings during the sleep study; 56 (20.1%) of them in 9 patients (69.2%) were preceded by reflux episodes (55 acid, 1 non-acid). In 5 patients (38.5%), awakenings were significantly associated with reflux. Conclusion The data suggest that acid GER causes sleep interruptions in obese children who have symptoms of snoring or restless sleep and without evidence of OSA. PMID:27066445

  20. Flattening filter removal for improved image quality of megavoltage fluoroscopy

    SciTech Connect

    Christensen, James D.; Kirichenko, Alexander; Gayou, Olivier

    2013-08-15

    Purpose: Removal of the linear accelerator (linac) flattening filter enables a high rate of dose deposition with reduced treatment time. When used for megavoltage imaging, an unflat beam has reduced primary beam scatter resulting in sharper images. In fluoroscopic imaging mode, the unflat beam has higher photon count per image frame yielding higher contrast-to-noise ratio. The authors’ goal was to quantify the effects of an unflat beam on the image quality of megavoltage portal and fluoroscopic images.Methods: 6 MV projection images were acquired in fluoroscopic and portal modes using an electronic flat-panel imager. The effects of the flattening filter on the relative modulation transfer function (MTF) and contrast-to-noise ratio were quantified using the QC3 phantom. The impact of FF removal on the contrast-to-noise ratio of gold fiducial markers also was studied under various scatter conditions.Results: The unflat beam had improved contrast resolution, up to 40% increase in MTF contrast at the highest frequency measured (0.75 line pairs/mm). The contrast-to-noise ratio was increased as expected from the increased photon flux. The visualization of fiducial markers was markedly better using the unflat beam under all scatter conditions, enabling visualization of thin gold fiducial markers, the thinnest of which was not visible using the unflat beam.Conclusions: The removal of the flattening filter from a clinical linac leads to quantifiable improvements in the image quality of megavoltage projection images. These gains enable observers to more easily visualize thin fiducial markers and track their motion on fluoroscopic images.

  1. Image-Processing Techniques for the Creation of Presentation-Quality Astronomical Images

    NASA Astrophysics Data System (ADS)

    Rector, Travis A.; Levay, Zoltan G.; Frattare, Lisa M.; English, Jayanne; Pu'uohau-Pummill, Kirk

    2007-02-01

    The quality of modern astronomical data and the agility of current image-processing software enable the visualization of data in a way that exceeds the traditional definition of an astronomical image. Two developments in particular have led to a fundamental change in how astronomical images can be assembled. First, the availability of high-quality multiwavelength and narrowband data allow for images that do not correspond to the wavelength sensitivity of the human eye, thereby introducing ambiguity in the usage and interpretation of color. Second, many image-processing software packages now use a layering metaphor that allows for any number of astronomical data sets to be combined into a color image. With this technique, images with as many as eight data sets have been produced. Each data set is intensity-scaled and colorized independently, creating an immense parameter space that can be used to assemble the image. Since such images are intended for data visualization, scaling and color schemes must be chosen that best illustrate the science. A practical guide is presented on how to use the layering metaphor to generate publication-ready astronomical images from as many data sets as desired. A methodology is also given on how to use intensity scaling, color, and composition to create contrasts in an image that highlight the scientific detail. Examples of image creation are discussed.

  2. Image quality testing of assembled IR camera modules

    NASA Astrophysics Data System (ADS)

    Winters, Daniel; Erichsen, Patrik

    2013-10-01

    Infrared (IR) camera modules for the LWIR (8-12_m) that combine IR imaging optics with microbolometer focal plane array (FPA) sensors with readout electronics are becoming more and more a mass market product. At the same time, steady improvements in sensor resolution in the higher priced markets raise the requirement for imaging performance of objectives and the proper alignment between objective and FPA. This puts pressure on camera manufacturers and system integrators to assess the image quality of finished camera modules in a cost-efficient and automated way for quality control or during end-of-line testing. In this paper we present recent development work done in the field of image quality testing of IR camera modules. This technology provides a wealth of additional information in contrast to the more traditional test methods like minimum resolvable temperature difference (MRTD) which give only a subjective overall test result. Parameters that can be measured are image quality via the modulation transfer function (MTF) for broadband or with various bandpass filters on- and off-axis and optical parameters like e.g. effective focal length (EFL) and distortion. If the camera module allows for refocusing the optics, additional parameters like best focus plane, image plane tilt, auto-focus quality, chief ray angle etc. can be characterized. Additionally, the homogeneity and response of the sensor with the optics can be characterized in order to calculate the appropriate tables for non-uniformity correction (NUC). The technology can also be used to control active alignment methods during mechanical assembly of optics to high resolution sensors. Other important points that are discussed are the flexibility of the technology to test IR modules with different form factors, electrical interfaces and last but not least the suitability for fully automated measurements in mass production.

  3. Image quality-based adaptive illumination normalisation for face recognition

    NASA Astrophysics Data System (ADS)

    Sellahewa, Harin; Jassim, Sabah A.

    2009-05-01

    Automatic face recognition is a challenging task due to intra-class variations. Changes in lighting conditions during enrolment and identification stages contribute significantly to these intra-class variations. A common approach to address the effects such of varying conditions is to pre-process the biometric samples in order normalise intra-class variations. Histogram equalisation is a widely used illumination normalisation technique in face recognition. However, a recent study has shown that applying histogram equalisation on well-lit face images could lead to a decrease in recognition accuracy. This paper presents a dynamic approach to illumination normalisation, based on face image quality. The quality of a given face image is measured in terms of its luminance distortion by comparing this image against a known reference face image. Histogram equalisation is applied to a probe image if its luminance distortion is higher than a predefined threshold. We tested the proposed adaptive illumination normalisation method on the widely used Extended Yale Face Database B. Identification results demonstrate that our adaptive normalisation produces better identification accuracy compared to the conventional approach where every image is normalised, irrespective of the lighting condition they were acquired.

  4. Quality assurance methodology and applications to abdominal imaging PQI.

    PubMed

    Paushter, David M; Thomas, Stephen

    2016-03-01

    Quality assurance has increasingly become an integral part of medicine, with tandem goals of increasing patient safety and procedural quality, improving efficiency, lowering cost, and ultimately improving patient outcomes. This article reviews quality assurance methodology, ranging from the PDSA cycle to the application of lean techniques, aimed at operational efficiency, to continually evaluate and revise the health care environment. Alignment of goals for practices, hospitals, and healthcare organizations is critical, requiring clear objectives, adequate resources, and transparent reporting. In addition, there is a significant role played by regulatory bodies and oversight organizations in determining external benchmarks of quality, practice, and individual certification and reimbursement. Finally, practical application of quality principles to practice improvement projects in abdominal imaging will be presented.

  5. VSI: a visual saliency-induced index for perceptual image quality assessment.

    PubMed

    Zhang, Lin; Shen, Ying; Li, Hongyu

    2014-10-01

    Perceptual image quality assessment (IQA) aims to use computational models to measure the image quality in consistent with subjective evaluations. Visual saliency (VS) has been widely studied by psychologists, neurobiologists, and computer scientists during the last decade to investigate, which areas of an image will attract the most attention of the human visual system. Intuitively, VS is closely related to IQA in that suprathreshold distortions can largely affect VS maps of images. With this consideration, we propose a simple but very effective full reference IQA method using VS. In our proposed IQA model, the role of VS is twofold. First, VS is used as a feature when computing the local quality map of the distorted image. Second, when pooling the quality score, VS is employed as a weighting function to reflect the importance of a local region. The proposed IQA index is called visual saliency-based index (VSI). Several prominent computational VS models have been investigated in the context of IQA and the best one is chosen for VSI. Extensive experiments performed on four large-scale benchmark databases demonstrate that the proposed IQA index VSI works better in terms of the prediction accuracy than all state-of-the-art IQA indices we can find while maintaining a moderate computational complexity. The MATLAB source code of VSI and the evaluation results are publicly available online at http://sse.tongji.edu.cn/linzhang/IQA/VSI/VSI.htm. PMID:25122572

  6. Mammography in New Zealand: radiation dose and image quality.

    PubMed

    Poletti, J L; Williamson, B D; Mitchell, A W

    1991-06-01

    The mean glandular doses to the breast, image quality and machine performance have been determined for all mammographic x-ray facilities in New Zealand, during 1988-89. For 30 mm and 45 mm phantoms the mean doses per film were 1.03 +/- 0.56 mGy and 1.97 +/- 1.06 mGy. These doses are within international guide-lines. Image quality (detection of simulated microcalcifications, and contrast-detail performance) was found to depend on focal spot size/FFD combination, breast thickness, and film processing. The best machines could resolve 0.2 mm aluminium oxide specks with the contact technique. The use of a grid improved image quality as did magnification. Extended cycle film processing reduced doses, but the claimed improvement in image quality was not apparent from our data. The machine calibration parameters kVp, HVL and timer accuracy were in general within accepted tolerances. Automatic exposure controls in some cases gave poor control of film density with changing breast thickness. PMID:1747087

  7. SCID: full reference spatial color image quality metric

    NASA Astrophysics Data System (ADS)

    Ouni, S.; Chambah, M.; Herbin, M.; Zagrouba, E.

    2009-01-01

    The most used full reference image quality assessments are error-based methods. Thus, these measures are performed by pixel based difference metrics like Delta E ( E), MSE, PSNR, etc. Therefore, a local fidelity of the color is defined. However, these metrics does not correlate well with the perceived image quality. Indeed, they omit the properties of the HVS. Thus, they cannot be a reliable predictor of the perceived visual quality. All this metrics compute the differences pixel to pixel. Therefore, a local fidelity of the color is defined. However, the human visual system is rather sensitive to a global quality. In this paper, we present a novel full reference color metric that is based on characteristics of the human visual system by considering the notion of adjacency. This metric called SCID for Spatial Color Image Difference, is more perceptually correlated than other color differences such as Delta E. The suggested full reference metric is generic and independent of image distortion type. It can be used in different application such as: compression, restoration, etc.

  8. Image quality, space-qualified UV interference filters

    NASA Technical Reports Server (NTRS)

    Mooney, Thomas A.

    1992-01-01

    The progress during the contract period is described. The project involved fabrication of image quality, space-qualified bandpass filters in the 200-350 nm spectral region. Ion-assisted deposition (IAD) was applied to produce stable, reasonably durable filter coatings on space compatible UV substrates. Thin film materials and UV transmitting substrates were tested for resistance to simulated space effects.

  9. Visual relevance of display image quality testing by photometric methods

    NASA Astrophysics Data System (ADS)

    Andren, Boerje; Breidne, Magnus; Hansson, L. A.; Persson, Bo

    1993-09-01

    The two major international test methods for evaluation of the image quality of video display terminals are the ISO 9241-3 international standard and the MPR test. In this paper we make an attempt to compare the visual relevance of these two test methods.

  10. HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW

    EPA Science Inventory

    The study evaluates heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). Various literature sources and methods for characterizing HVAC emission sources are reviewed. Available methods include in situ test...

  11. Analysis of imaging quality under the systematic parameters for thermal imaging system

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Jin, Weiqi

    2009-07-01

    The integration of thermal imaging system and radar system could increase the range of target identification as well as strengthen the accuracy and reliability of detection, which is a state-of-the-art and mainstream integrated system to search any invasive target and guard homeland security. When it works, there is, however, one defect existing of what the thermal imaging system would produce affected images which could cause serious consequences when searching and detecting. In this paper, we study and reveal the reason why and how the affected images would occur utilizing the principle of lightwave before establishing mathematical imaging model which could meet the course of ray transmitting. In the further analysis, we give special attentions to the systematic parameters of the model, and analyse in detail all parameters which could possibly affect the imaging process and the function how it does respectively. With comprehensive research, we obtain detailed information about the regulation of diffractive phenomena shaped by these parameters. Analytical results have been convinced through the comparison between experimental images and MATLAB simulated images, while simulated images based on the parameters we revised to judge our expectation have good comparability with images acquired in reality.

  12. Simultaneous Analysis and Quality Assurance for Diffusion Tensor Imaging

    PubMed Central

    Lauzon, Carolyn B.; Asman, Andrew J.; Esparza, Michael L.; Burns, Scott S.; Fan, Qiuyun; Gao, Yurui; Anderson, Adam W.; Davis, Nicole; Cutting, Laurie E.; Landman, Bennett A.

    2013-01-01

    Diffusion tensor imaging (DTI) enables non-invasive, cyto-architectural mapping of in vivo tissue microarchitecture through voxel-wise mathematical modeling of multiple magnetic resonance imaging (MRI) acquisitions, each differently sensitized to water diffusion. DTI computations are fundamentally estimation processes and are sensitive to noise and artifacts. Despite widespread adoption in the neuroimaging community, maintaining consistent DTI data quality remains challenging given the propensity for patient motion, artifacts associated with fast imaging techniques, and the possibility of hardware changes/failures. Furthermore, the quantity of data acquired per voxel, the non-linear estimation process, and numerous potential use cases complicate traditional visual data inspection approaches. Currently, quality inspection of DTI data has relied on visual inspection and individual processing in DTI analysis software programs (e.g. DTIPrep, DTI-studio). However, recent advances in applied statistical methods have yielded several different metrics to assess noise level, artifact propensity, quality of tensor fit, variance of estimated measures, and bias in estimated measures. To date, these metrics have been largely studied in isolation. Herein, we select complementary metrics for integration into an automatic DTI analysis and quality assurance pipeline. The pipeline completes in 24 hours, stores statistical outputs, and produces a graphical summary quality analysis (QA) report. We assess the utility of this streamlined approach for empirical quality assessment on 608 DTI datasets from pediatric neuroimaging studies. The efficiency and accuracy of quality analysis using the proposed pipeline is compared with quality analysis based on visual inspection. The unified pipeline is found to save a statistically significant amount of time (over 70%) while improving the consistency of QA between a DTI expert and a pool of research associates. Projection of QA metrics to a low

  13. Imaging through turbid media via sparse representation: imaging quality comparison of three projection matrices

    NASA Astrophysics Data System (ADS)

    Shao, Xiaopeng; Li, Huijuan; Wu, Tengfei; Dai, Weijia; Bi, Xiangli

    2015-05-01

    The incident light will be scattered away due to the inhomogeneity of the refractive index in many materials which will greatly reduce the imaging depth and degrade the imaging quality. Many exciting methods have been presented in recent years for solving this problem and realizing imaging through a highly scattering medium, such as the wavefront modulation technique and reconstruction technique. The imaging method based on compressed sensing (CS) theory can decrease the computational complexity because it doesn't require the whole speckle pattern to realize reconstruction. One of the key premises of this method is that the object is sparse or can be sparse representation. However, choosing a proper projection matrix is very important to the imaging quality. In this paper, we analyzed that the transmission matrix (TM) of a scattering medium obeys circular Gaussian distribution, which makes it possible that a scattering medium can be used as the measurement matrix in the CS theory. In order to verify the performance of this method, a whole optical system is simulated. Various projection matrices are introduced to make the object sparse, including the fast Fourier transform (FFT) basis, the discrete cosine transform (DCT) basis and the discrete wavelet transform (DWT) basis, the imaging performances of each of which are compared comprehensively. Simulation results show that for most targets, applying the discrete wavelet transform basis will obtain an image in good quality. This work can be applied to biomedical imaging and used to develop real-time imaging through highly scattering media.

  14. Television Images: Exploring How They Affect People's View of Self and Others

    ERIC Educational Resources Information Center

    Alexandrin, Julie R.

    2009-01-01

    Through television, many different images of ethnic, cultural, and ability groups are presented. Different people perceive these images in different ways. These perceptions affect how people value themselves and judge and interact with others. This article first summaries research on TV images and people's meaning and reaction to them. Second, it…

  15. A study of image quality for radar image processing. [synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    King, R. W.; Kaupp, V. H.; Waite, W. P.; Macdonald, H. C.

    1982-01-01

    Methods developed for image quality metrics are reviewed with focus on basic interpretation or recognition elements including: tone or color; shape; pattern; size; shadow; texture; site; association or context; and resolution. Seven metrics are believed to show promise as a way of characterizing the quality of an image: (1) the dynamic range of intensities in the displayed image; (2) the system signal-to-noise ratio; (3) the system spatial bandwidth or bandpass; (4) the system resolution or acutance; (5) the normalized-mean-square-error as a measure of geometric fidelity; (6) the perceptual mean square error; and (7) the radar threshold quality factor. Selective levels of degradation are being applied to simulated synthetic radar images to test the validity of these metrics.

  16. Full-Reference Image Quality Assessment with Linear Combination of Genetically Selected Quality Measures

    PubMed Central

    2016-01-01

    Information carried by an image can be distorted due to different image processing steps introduced by different electronic means of storage and communication. Therefore, development of algorithms which can automatically assess a quality of the image in a way that is consistent with human evaluation is important. In this paper, an approach to image quality assessment (IQA) is proposed in which the quality of a given image is evaluated jointly by several IQA approaches. At first, in order to obtain such joint models, an optimisation problem of IQA measures aggregation is defined, where a weighted sum of their outputs, i.e., objective scores, is used as the aggregation operator. Then, the weight of each measure is considered as a decision variable in a problem of minimisation of root mean square error between obtained objective scores and subjective scores. Subjective scores reflect ground-truth and involve evaluation of images by human observers. The optimisation problem is solved using a genetic algorithm, which also selects suitable measures used in aggregation. Obtained multimeasures are evaluated on four largest widely used image benchmarks and compared against state-of-the-art full-reference IQA approaches. Results of comparison reveal that the proposed approach outperforms other competing measures. PMID:27341493

  17. Full-Reference Image Quality Assessment with Linear Combination of Genetically Selected Quality Measures.

    PubMed

    Oszust, Mariusz

    2016-01-01

    Information carried by an image can be distorted due to different image processing steps introduced by different electronic means of storage and communication. Therefore, development of algorithms which can automatically assess a quality of the image in a way that is consistent with human evaluation is important. In this paper, an approach to image quality assessment (IQA) is proposed in which the quality of a given image is evaluated jointly by several IQA approaches. At first, in order to obtain such joint models, an optimisation problem of IQA measures aggregation is defined, where a weighted sum of their outputs, i.e., objective scores, is used as the aggregation operator. Then, the weight of each measure is considered as a decision variable in a problem of minimisation of root mean square error between obtained objective scores and subjective scores. Subjective scores reflect ground-truth and involve evaluation of images by human observers. The optimisation problem is solved using a genetic algorithm, which also selects suitable measures used in aggregation. Obtained multimeasures are evaluated on four largest widely used image benchmarks and compared against state-of-the-art full-reference IQA approaches. Results of comparison reveal that the proposed approach outperforms other competing measures. PMID:27341493

  18. Image quality specification and maintenance for airborne SAR

    NASA Astrophysics Data System (ADS)

    Clinard, Mark S.

    2004-08-01

    Specification, verification, and maintenance of image quality over the lifecycle of an operational airborne SAR begin with the specification for the system itself. Verification of image quality-oriented specification compliance can be enhanced by including a specification requirement that a vendor provide appropriate imagery at the various phases of the system life cycle. The nature and content of the imagery appropriate for each stage of the process depends on the nature of the test, the economics of collection, and the availability of techniques to extract the desired information from the data. At the earliest lifecycle stages, Concept and Technology Development (CTD) and System Development and Demonstration (SDD), the test set could include simulated imagery to demonstrate the mathematical and engineering concepts being implemented thus allowing demonstration of compliance, in part, through simulation. For Initial Operational Test and Evaluation (IOT&E), imagery collected from precisely instrumented test ranges and targets of opportunity consisting of a priori or a posteriori ground-truthed cultural and natural features are of value to the analysis of product quality compliance. Regular monitoring of image quality is possible using operational imagery and automated metrics; more precise measurements can be performed with imagery of instrumented scenes, when available. A survey of image quality measurement techniques is presented along with a discussion of the challenges of managing an airborne SAR program with the scarce resources of time, money, and ground-truthed data. Recommendations are provided that should allow an improvement in the product quality specification and maintenance process with a minimal increase in resource demands on the customer, the vendor, the operational personnel, and the asset itself.

  19. Evaluation of image quality of a new CCD-based system for chest imaging

    NASA Astrophysics Data System (ADS)

    Sund, Patrik; Kheddache, Susanne; Mansson, Lars G.; Bath, Magnus; Tylen, Ulf

    2000-04-01

    The Imix radiography system (Qy Imix Ab, Finland)consists of an intensifying screen, optics, and a CCD camera. An upgrade of this system (Imix 2000) with a red-emitting screen and new optics has recently been released. The image quality of Imix (original version), Imix 200, and two storage-phosphor systems, Fuji FCR 9501 and Agfa ADC70 was evaluated in physical terms (DQE) and with visual grading of the visibility of anatomical structures in clinical images (141 kV). PA chest images of 50 healthy volunteers were evaluated by experienced radiologists. All images were evaluated on Siemens Simomed monitors, using the European Quality Criteria. The maximum DQE values for Imix, Imix 2000, Agfa and Fuji were 11%, 14%, 17% and 19%, respectively (141kV, 5μGy). Using the visual grading, the observers rated the systems in the following descending order. Fuji, Imix 2000, Agfa, and Imix. Thus, the upgrade to Imix 2000 resulted in higher DQE values and a significant improvement in clinical image quality. The visual grading agrees reasonably well with the DQE results; however, Imix 2000 received a better score than what could be expected from the DQE measurements. Keywords: CCD Technique, Chest Imaging, Digital Radiography, DQE, Image Quality, Visual Grading Analysis

  20. Comprehensive quality assurance phantom for cardiovascular imaging systems

    NASA Astrophysics Data System (ADS)

    Lin, Pei-Jan P.

    1998-07-01

    With the advent of high heat loading capacity x-ray tubes, high frequency inverter type generators, and the use of spectral shaping filters, the automatic brightness/exposure control (ABC) circuit logic employed in the new generation of angiographic imaging equipment has been significantly reprogrammed. These new angiographic imaging systems are designed to take advantage of the power train capabilities to yield higher contrast images while maintaining, or lower, the patient exposure. Since the emphasis of the imaging system design has been significantly altered, the system performance parameters one is interested and the phantoms employed for the quality assurance must also change in order to properly evaluate the imaging capability of the cardiovascular imaging systems. A quality assurance (QA) phantom has been under development in this institution and was submitted to various interested organizations such as American Association of Physicists in Medicine (AAPM), Society for Cardiac Angiography & Interventions (SCA&I), and National Electrical Manufacturers Association (NEMA) for their review and input. At the same time, in an effort to establish a unified standard phantom design for the cardiac catheterization laboratories (CCL), SCA&I and NEMA have formed a joint work group in early 1997 to develop a suitable phantom. The initial QA phantom design has since been accepted to serve as the base phantom by the SCA&I- NEMA Joint Work Group (JWG) from which a comprehensive QA Phantom is being developed.

  1. Image-quality metrics for characterizing adaptive optics system performance.

    PubMed

    Brigantic, R T; Roggemann, M C; Bauer, K W; Welsh, B M

    1997-09-10

    Adaptive optics system (AOS) performance is a function of the system design, seeing conditions, and light level of the wave-front beacon. It is desirable to optimize the controllable parameters in an AOS to maximize some measure of performance. For this optimization to be useful, it is necessary that a set of image-quality metrics be developed that vary monotonically with the AOS performance under a wide variety of imaging environments. Accordingly, as conditions change, one can be confident that the computed metrics dictate appropriate system settings that will optimize performance. Three such candidate metrics are presented. The first is the Strehl ratio; the second is a novel metric that modifies the Strehl ratio by integration of the modulus of the average system optical transfer function to a noise-effective cutoff frequency at which some specified image spectrum signal-to-noise ratio level is attained; and the third is simply the cutoff frequency just mentioned. It is shown that all three metrics are correlated with the rms error (RMSE) between the measured image and the associated diffraction-limited image. Of these, the Strehl ratio and the modified Strehl ratio exhibit consistently high correlations with the RMSE across a broad range of conditions and system settings. Furthermore, under conditions that yield a constant average system optical transfer function, the modified Strehl ratio can still be used to delineate image quality, whereas the Strehl ratio cannot.

  2. Underwater image quality enhancement through composition of dual-intensity images and Rayleigh-stretching.

    PubMed

    Abdul Ghani, Ahmad Shahrizan; Mat Isa, Nor Ashidi

    2014-01-01

    The quality of underwater image is poor due to the properties of water and its impurities. The properties of water cause attenuation of light travels through the water medium, resulting in low contrast, blur, inhomogeneous lighting, and color diminishing of the underwater images. This paper proposes a method of enhancing the quality of underwater image. The proposed method consists of two stages. At the first stage, the contrast correction technique is applied to the image, where the image is applied with the modified Von Kries hypothesis and stretching the image into two different intensity images at the average value with respects to Rayleigh distribution. At the second stage, the color correction technique is applied to the image where the image is first converted into hue-saturation-value (HSV) color model. The modification of the color component increases the image color performance. Qualitative and quantitative analyses indicate that the proposed method outperforms other state-of-the-art methods in terms of contrast, details, and noise reduction.

  3. Underwater image quality enhancement through composition of dual-intensity images and Rayleigh-stretching.

    PubMed

    Abdul Ghani, Ahmad Shahrizan; Mat Isa, Nor Ashidi

    2014-01-01

    The quality of underwater image is poor due to the properties of water and its impurities. The properties of water cause attenuation of light travels through the water medium, resulting in low contrast, blur, inhomogeneous lighting, and color diminishing of the underwater images. This paper proposes a method of enhancing the quality of underwater image. The proposed method consists of two stages. At the first stage, the contrast correction technique is applied to the image, where the image is applied with the modified Von Kries hypothesis and stretching the image into two different intensity images at the average value with respects to Rayleigh distribution. At the second stage, the color correction technique is applied to the image where the image is first converted into hue-saturation-value (HSV) color model. The modification of the color component increases the image color performance. Qualitative and quantitative analyses indicate that the proposed method outperforms other state-of-the-art methods in terms of contrast, details, and noise reduction. PMID:25674483

  4. An evaluation of image quality metrics aiming to validate long term stability and the performance of NUC methods

    NASA Astrophysics Data System (ADS)

    Svensson, Thomas

    2013-06-01

    Spatial noise added to temporal noise will affect both the detection and the classification ability of staring image sensors. The spatial noise is due to non-uniform pixels and is also called fixed pattern noise (FPN), though it is not totally static but varies slowly in time, which is due to sensor drift. The sensor drift is mainly due to variability in the ambient temperature and hence the temperature of camera elements, which may be a concern in field trials and the subsequent analysis of the image data. The performance of a non-uniformity correction (NUC) depends on the characteristics of the spatial noise in the image data, in addition to the correction method. In this paper six different quality metrics are studied, aiming to quantify the non-uniformity in collected image data and to validate the performance of a set of NUC methods. The set of methods has been applied on various kinds of real image data recorded with three different imaging sensors in the infrared spectral region, where image data may be severely distorted by fixed pattern noise. Calculated image quality metrics for image data have been compared with results from a visual evaluation. A conclusion is that image quality metrics are useful tools that enable an objective rating of image quality.

  5. Soil moisture affects fatty acids and oil quality parameters in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought affects yield of peanut, but its effect on oleic and linoleic acids that influence its oil quality of peanut genotypes with different levels of drought resistance has not been clearly investigated. Therefore, the aims of this research were to determine whether soil water levels could affect...

  6. High Fidelity Images--How They Affect Learning.

    ERIC Educational Resources Information Center

    Kwinn, Ann

    1997-01-01

    Discusses the use of graphics in instruction and concludes that cosmetic and motivational graphics can be more realistic and detailed for affective goals, while schematic graphics may be best for the more cognitive functions of focusing attention and presenting actual content. Domains of learning, mental models, and visualization are examined.…

  7. How much image noise can be added in cardiac x-ray imaging without loss in perceived image quality?

    NASA Astrophysics Data System (ADS)

    Gislason-Lee, Amber J.; Kumcu, Asli; Kengyelics, Stephen M.; Rhodes, Laura A.; Davies, Andrew G.

    2015-03-01

    Dynamic X-ray imaging systems are used for interventional cardiac procedures to treat coronary heart disease. X-ray settings are controlled automatically by specially-designed X-ray dose control mechanisms whose role is to ensure an adequate level of image quality is maintained with an acceptable radiation dose to the patient. Current commonplace dose control designs quantify image quality by performing a simple technical measurement directly from the image. However, the utility of cardiac X-ray images is in their interpretation by a cardiologist during an interventional procedure, rather than in a technical measurement. With the long term goal of devising a clinically-relevant image quality metric for an intelligent dose control system, we aim to investigate the relationship of image noise with clinical professionals' perception of dynamic image sequences. Computer-generated noise was added, in incremental amounts, to angiograms of five different patients selected to represent the range of adult cardiac patient sizes. A two alternative forced choice staircase experiment was used to determine the amount of noise which can be added to a patient image sequences without changing image quality as perceived by clinical professionals. Twenty-five viewing sessions (five for each patient) were completed by thirteen observers. Results demonstrated scope to increase the noise of cardiac X-ray images by up to 21% +/- 8% before it is noticeable by clinical professionals. This indicates a potential for 21% radiation dose reduction since X-ray image noise and radiation dose are directly related; this would be beneficial to both patients and personnel.

  8. Improvement of material decomposition and image quality in dual-energy radiography by reducing image noise

    NASA Astrophysics Data System (ADS)

    Lee, D.; Kim, Y.-s.; Choi, S.; Lee, H.; Choi, S.; Jo, B. D.; Jeon, P.-H.; Kim, H.; Kim, D.; Kim, H.; Kim, H.-J.

    2016-08-01

    Although digital radiography has been widely used for screening human anatomical structures in clinical situations, it has several limitations due to anatomical overlapping. To resolve this problem, dual-energy imaging techniques, which provide a method for decomposing overlying anatomical structures, have been suggested as alternative imaging techniques. Previous studies have reported several dual-energy techniques, each resulting in different image qualities. In this study, we compared three dual-energy techniques: simple log subtraction (SLS), simple smoothing of a high-energy image (SSH), and anti-correlated noise reduction (ACNR) with respect to material thickness quantification and image quality. To evaluate dual-energy radiography, we conducted Monte Carlo simulation and experimental phantom studies. The Geant 4 Application for Tomographic Emission (GATE) v 6.0 and tungsten anode spectral model using interpolation polynomials (TASMIP) codes were used for simulation studies and digital radiography, and human chest phantoms were used for experimental studies. The results of the simulation study showed improved image contrast-to-noise ratio (CNR) and coefficient of variation (COV) values and bone thickness estimation accuracy by applying the ACNR and SSH methods. Furthermore, the chest phantom images showed better image quality with the SSH and ACNR methods compared to the SLS method. In particular, the bone texture characteristics were well-described by applying the SSH and ACNR methods. In conclusion, the SSH and ACNR methods improved the accuracy of material quantification and image quality in dual-energy radiography compared to SLS. Our results can contribute to better diagnostic capabilities of dual-energy images and accurate material quantification in various clinical situations.

  9. Effect of exercise supplementation on dipyridamole thallium-201 image quality

    SciTech Connect

    Stern, S.; Greenberg, I.D.; Corne, R. )

    1991-08-01

    To determine the effect of different types of exercise supplementation on dipyridamole thallium image quality, 78 patients were prospectively randomized to one of three protocols: dipyridamole infusion alone, dipyridamole supplemented with isometric handgrip, and dipyridamole with low-level treadmill exercise. Heart-to-lung, heart-to-liver, and heart-to-adjacent infradiaphragmatic activity ratios were generated from anterior images acquired immediately following the test. Additionally, heart-to-total infradiaphragmatic activity was graded semiquantitatively. Results showed a significantly higher ratio of heart to subdiaphragmatic activity in the treadmill group as compared with dipyridamole alone (p less than 0.001) and dipyridamole supplemented with isometric handgrip exercise (p less than 0.001). No significant difference was observed between patients receiving the dipyridamole infusion, and dipyridamole supplemented with isometric handgrip exercise. The authors conclude that low-level treadmill exercise supplementation of dipyridamole infusion is an effective means of improving image quality. Supplementation with isometric handgrip does not improve image quality over dipyridamole alone.

  10. Image Quality of Coronary Computed Tomography Angiography with 320-Row Area Detector Computed Tomography in Children with Congenital Heart Disease.

    PubMed

    Tada, Akihiro; Sato, Shuhei; Kanie, Yuichiro; Tanaka, Takashi; Inai, Ryota; Akagi, Noriaki; Morimitsu, Yusuke; Kanazawa, Susumu

    2016-03-01

    The objective of this study was to assess factors affecting image quality of 320-row computed tomography angiography (CTA) of coronary arteries in children with congenital heart disease (CHD). We retrospectively reviewed 28 children up to 3 years of age with CHD who underwent prospective electrocardiography (ECG)-gated 320-row CTA with iterative reconstruction. We assessed image quality of proximal coronary artery segments using a five-point scale. Age, body weight, average heart rate, and heart rate variability were recorded and compared between two groups: patients with good diagnostic image quality in all four coronary artery segments and patients with at least one coronary artery segment with nondiagnostic image quality. Altogether, 96 of 112 segments (85.7 %) had diagnostic-quality images. Patients with nondiagnostic segments were significantly younger (10.0 ± 11.6 months) and had lower body weight (5.9 ± 2.9 kg) (each p < 0.05) than patients with diagnostic image quality of all four segments (20.6 ± 13.8 months and 8.4 ± 2.5 kg, respectively; each p < 0.05). Differences in heart rate and heart rate variability between the two imaging groups were not significant. Receiver operating characteristic analyses for predicting patients with nondiagnostic image quality revealed an optimal body weight cutoff of ≤5.6 kg and an optimal age cutoff of ≤12.5 months. Prospective ECG-gated 320-row CTA with iterative reconstruction provided feasible image quality of coronary arteries in children with CHD. Younger age and lower body weight were factors that led to poorer image quality of coronary arteries.

  11. Negative affect improves the quality of memories: trading capacity for precision in sensory and working memory.

    PubMed

    Spachtholz, Philipp; Kuhbandner, Christof; Pekrun, Reinhard

    2014-08-01

    Research has shown that negative affect reduces working memory capacity. Commonly, this effect has been attributed to an allocation of resources to task-irrelevant thoughts, suggesting that negative affect has detrimental consequences for working memory performance. However, rather than simply being a detrimental effect, the affect-induced capacity reduction may reflect a trading of capacity for precision of stored representations. To test this hypothesis, we induced neutral or negative affect and concurrently measured the number and precision of representations stored in sensory and working memory. Compared with neutral affect, negative affect reduced the capacity of both sensory and working memory. However, in both memory systems, this decrease in capacity was accompanied by an increase in precision. These findings demonstrate that observers unintentionally trade capacity for precision as a function of affective state and indicate that negative affect can be beneficial for the quality of memories.

  12. Image Quality Analysis of Various Gastrointestinal Endoscopes: Why Image Quality Is a Prerequisite for Proper Diagnostic and Therapeutic Endoscopy.

    PubMed

    Ko, Weon Jin; An, Pyeong; Ko, Kwang Hyun; Hahm, Ki Baik; Hong, Sung Pyo; Cho, Joo Young

    2015-09-01

    Arising from human curiosity in terms of the desire to look within the human body, endoscopy has undergone significant advances in modern medicine. Direct visualization of the gastrointestinal (GI) tract by traditional endoscopy was first introduced over 50 years ago, after which fairly rapid advancement from rigid esophagogastric scopes to flexible scopes and high definition videoscopes has occurred. In an effort towards early detection of precancerous lesions in the GI tract, several high-technology imaging scopes have been developed, including narrow band imaging, autofocus imaging, magnified endoscopy, and confocal microendoscopy. However, these modern developments have resulted in fundamental imaging technology being skewed towards red-green-blue and this technology has obscured the advantages of other endoscope techniques. In this review article, we have described the importance of image quality analysis using a survey to consider the diversity of endoscope system selection in order to better achieve diagnostic and therapeutic goals. The ultimate aims can be achieved through the adoption of modern endoscopy systems that obtain high image quality.

  13. Image Quality Analysis of Various Gastrointestinal Endoscopes: Why Image Quality Is a Prerequisite for Proper Diagnostic and Therapeutic Endoscopy

    PubMed Central

    Ko, Weon Jin; An, Pyeong; Ko, Kwang Hyun; Hahm, Ki Baik; Hong, Sung Pyo

    2015-01-01

    Arising from human curiosity in terms of the desire to look within the human body, endoscopy has undergone significant advances in modern medicine. Direct visualization of the gastrointestinal (GI) tract by traditional endoscopy was first introduced over 50 years ago, after which fairly rapid advancement from rigid esophagogastric scopes to flexible scopes and high definition videoscopes has occurred. In an effort towards early detection of precancerous lesions in the GI tract, several high-technology imaging scopes have been developed, including narrow band imaging, autofocus imaging, magnified endoscopy, and confocal microendoscopy. However, these modern developments have resulted in fundamental imaging technology being skewed towards red-green-blue and this technology has obscured the advantages of other endoscope techniques. In this review article, we have described the importance of image quality analysis using a survey to consider the diversity of endoscope system selection in order to better achieve diagnostic and therapeutic goals. The ultimate aims can be achieved through the adoption of modern endoscopy systems that obtain high image quality. PMID:26473119

  14. Spread spectrum image watermarking based on perceptual quality metric.

    PubMed

    Zhang, Fan; Liu, Wenyu; Lin, Weisi; Ngan, King Ngi

    2011-11-01

    Efficient image watermarking calls for full exploitation of the perceptual distortion constraint. Second-order statistics of visual stimuli are regarded as critical features for perception. This paper proposes a second-order statistics (SOS)-based image quality metric, which considers the texture masking effect and the contrast sensitivity in Karhunen-Loève transform domain. Compared with the state-of-the-art metrics, the quality prediction by SOS better correlates with several subjectively rated image databases, in which the images are impaired by the typical coding and watermarking artifacts. With the explicit metric definition, spread spectrum watermarking is posed as an optimization problem: we search for a watermark to minimize the distortion of the watermarked image and to maximize the correlation between the watermark pattern and the spread spectrum carrier. The simple metric guarantees the optimal watermark a closed-form solution and a fast implementation. The experiments show that the proposed watermarking scheme can take full advantage of the distortion constraint and improve the robustness in return.

  15. Quality assessment of butter cookies applying multispectral imaging.

    PubMed

    Andresen, Mette S; Dissing, Bjørn S; Løje, Hanne

    2013-07-01

    A method for characterization of butter cookie quality by assessing the surface browning and water content using multispectral images is presented. Based on evaluations of the browning of butter cookies, cookies were manually divided into groups. From this categorization, reference values were calculated for a statistical prediction model correlating multispectral images with a browning score. The browning score is calculated as a function of oven temperature and baking time. It is presented as a quadratic response surface. The investigated process window was the intervals 4-16 min and 160-200°C in a forced convection electrically heated oven. In addition to the browning score, a model for predicting the average water content based on the same images is presented. This shows how multispectral images of butter cookies may be used for the assessment of different quality parameters. Statistical analysis showed that the most significant wavelengths for browning predictions were in the interval 400-700 nm and the wavelengths significant for water prediction were primarily located in the near-infrared spectrum. The water prediction model was found to correctly estimate the average water content with an absolute error of 0.22%. From the images it was also possible to follow the browning and drying propagation from the cookie edge toward the center.

  16. Study on classification of pork quality using hyperspectral imaging technique

    NASA Astrophysics Data System (ADS)

    Zeng, Shan; Bai, Jun; Wang, Haibin

    2015-12-01

    The relative problems' research of chilled meat, thawed meat and spoiled meat discrimination by hyperspectral image technique were proposed, such the section of feature wavelengths, et al. First, based on 400 ~ 1000nm range hyperspectral image data of testing pork samples, by K-medoids clustering algorithm based on manifold distance, we select 30 important wavelengths from 753 wavelengths, and thus select 8 feature wavelengths (454.4, 477.5, 529.3, 546.8, 568.4, 580.3, 589.9 and 781.2nm) based on the discrimination value. Then 8 texture features of each image under 8 feature wavelengths were respectively extracted by two-dimensional Gabor wavelets transform as pork quality feature. Finally, we build a pork quality classification model using the fuzzy C-mean clustering algorithm. Through the experiment of extracting feature wavelengths, we found that although the hyperspectral images between adjacent bands have a strong linear correlation, they show a significant non-linear manifold relationship from the entire band. K-medoids clustering algorithm based on manifold distance used in this paper for selecting the characteristic wavelengths, which is more reasonable than traditional principal component analysis (PCA). Through the classification result, we conclude that hyperspectral imaging technology can distinguish among chilled meat, thawed meat and spoiled meat accurately.

  17. Image-based Tissue Distribution Modeling for Skeletal Muscle Quality Characterization

    PubMed Central

    Fishbein, K. W.; Moore, A. Z.; Spencer, R. G.; Ferrucci, L.

    2016-01-01

    The identification and characterization of regional body tissues is essential to understand changes that occur with aging and age-related metabolic diseases such as diabetes and obesity and how these diseases affect trajectories of health and functional status. Imaging technologies are frequently used to derive volumetric, area, and density measurements of different tissues. Despite the significance and direct applicability of automated tissue quantification and characterization techniques, these topics have remained relatively under-explored in the medical image analysis literature. We present a method for identification and characterization of muscle and adipose tissue in the mid-thigh region using MRI. We propose an image-based muscle quality prediction technique that estimates tissue-specific probability density models and their eigenstructures in the joint domain of water- and fat-suppressed voxel signal intensities along with volumetric and intensity-based tissue characteristics computed during the quantification stage. We evaluated the predictive capability of our approach against reference biomechanical muscle quality measurements using statistical tests and classification performance experiments. The reference standard for muscle quality is defined as the ratio of muscle strength to muscle mass. The results show promise for the development of non-invasive image-based muscle quality descriptors. PMID:26336111

  18. Characterization of image quality and image-guidance performance of a preclinical microirradiator

    SciTech Connect

    Clarkson, R.; Lindsay, P. E.; Ansell, S.; Wilson, G.; Jelveh, S.; Hill, R. P.; Jaffray, D. A.

    2011-02-15

    Purpose: To assess image quality and image-guidance capabilities of a cone-beam CT based small-animal image-guided irradiation unit (micro-IGRT). Methods: A micro-IGRT system has been developed in collaboration with the authors' laboratory as a means to study the radiobiological effects of conformal radiation dose distributions in small animals. The system, the X-Rad 225Cx, consists of a 225 kVp x-ray tube and a flat-panel amorphous silicon detector mounted on a rotational C-arm gantry and is capable of both fluoroscopic x-ray and cone-beam CT imaging, as well as image-guided placement of the radiation beams. Image quality (voxel noise, modulation transfer, CT number accuracy, and geometric accuracy characteristics) was assessed using water cylinder and micro-CT test phantoms. Image guidance was tested by analyzing the dose delivered to radiochromic films fixed to BB's through the end-to-end process of imaging, targeting the center of the BB, and irradiation of the film/BB in order to compare the offset between the center of the field and the center of the BB. Image quality and geometric studies were repeated over a 5-7 month period to assess stability. Results: CT numbers reported were found to be linear (R{sup 2}{>=}0.998) and the noise for images of homogeneous water phantom was 30 HU at imaging doses of approximately 1 cGy (to water). The presampled MTF at 50% and 10% reached 0.64 and 1.35 mm{sup -1}, respectively. Targeting accuracy by means of film irradiations was shown to have a mean displacement error of [{Delta}x,{Delta}y,{Delta}z]=[-0.12,-0.05,-0.02] mm, with standard deviations of [0.02, 0.20, 0.17] mm. The system has proven to be stable over time, with both the image quality and image-guidance performance being reproducible for the duration of the studies. Conclusions: The micro-IGRT unit provides soft-tissue imaging of small-animal anatomy at acceptable imaging doses ({<=}1 cGy). The geometric accuracy and targeting systems permit dose placement with

  19. Characterization of image quality and image-guidance performance of a preclinical microirradiator

    PubMed Central

    Clarkson, R.; Lindsay, P. E.; Ansell, S.; Wilson, G.; Jelveh, S.; Hill, R. P.; Jaffray, D. A.

    2011-01-01

    Purpose: To assess image quality and image-guidance capabilities of a cone-beam CT based small-animal image-guided irradiation unit (micro-IGRT). Methods: A micro-IGRT system has been developed in collaboration with the authors’ laboratory as a means to study the radiobiological effects of conformal radiation dose distributions in small animals. The system, the X-Rad 225Cx, consists of a 225 kVp x-ray tube and a flat-panel amorphous silicon detector mounted on a rotational C-arm gantry and is capable of both fluoroscopic x-ray and cone-beam CT imaging, as well as image-guided placement of the radiation beams. Image quality (voxel noise, modulation transfer, CT number accuracy, and geometric accuracy characteristics) was assessed using water cylinder and micro-CT test phantoms. Image guidance was tested by analyzing the dose delivered to radiochromic films fixed to BB’s through the end-to-end process of imaging, targeting the center of the BB, and irradiation of the film∕BB in order to compare the offset between the center of the field and the center of the BB. Image quality and geometric studies were repeated over a 5–7 month period to assess stability. Results: CT numbers reported were found to be linear (R2≥0.998) and the noise for images of homogeneous water phantom was 30 HU at imaging doses of approximately 1 cGy (to water). The presampled MTF at 50% and 10% reached 0.64 and 1.35 mm−1, respectively. Targeting accuracy by means of film irradiations was shown to have a mean displacement error of [Δx,Δy,Δz]=[−0.12,−0.05,−0.02] mm, with standard deviations of [0.02, 0.20, 0.17] mm. The system has proven to be stable over time, with both the image quality and image-guidance performance being reproducible for the duration of the studies. Conclusions: The micro-IGRT unit provides soft-tissue imaging of small-animal anatomy at acceptable imaging doses (≤1 cGy). The geometric accuracy and targeting systems permit dose placement with submillimeter

  20. Impact of contact lens zone geometry and ocular optics on bifocal retinal image quality

    PubMed Central

    Bradley, Arthur; Nam, Jayoung; Xu, Renfeng; Harman, Leslie; Thibos, Larry

    2014-01-01

    Purpose To examine the separate and combined influences of zone geometry, pupil size, diffraction, apodisation and spherical aberration on the optical performance of concentric zonal bifocals. Methods Zonal bifocal pupil functions representing eye + ophthalmic correction were defined by interleaving wavefronts from separate optical zones of the bifocal. A two-zone design (a central circular inner zone surrounded by an annular outer-zone which is bounded by the pupil) and a five-zone design (a central small circular zone surrounded by four concentric annuli) were configured with programmable zone geometry, wavefront phase and pupil transmission characteristics. Using computational methods, we examined the effects of diffraction, Stiles Crawford apodisation, pupil size and spherical aberration on optical transfer functions for different target distances. Results Apodisation alters the relative weighting of each zone, and thus the balance of near and distance optical quality. When spherical aberration is included, the effective distance correction, add power and image quality depend on zone-geometry and Stiles Crawford Effect apodisation. When the outer zone width is narrow, diffraction limits the available image contrast when focused, but as pupil dilates and outer zone width increases, aberrations will limit the best achievable image quality. With two-zone designs, balancing near and distance image quality is not achieved with equal area inner and outer zones. With significant levels of spherical aberration, multi-zone designs effectively become multifocals. Conclusion Wave optics and pupil varying ocular optics significantly affect the imaging capabilities of different optical zones of concentric bifocals. With two-zone bifocal designs, diffraction, pupil apodisation spherical aberration, and zone size influence both the effective add power and the pupil size required to balance near and distance image quality. Five-zone bifocal designs achieve a high degree of

  1. DES exposure checker: Dark Energy Survey image quality control crowdsourcer

    NASA Astrophysics Data System (ADS)

    Melchior, Peter; Sheldon, Erin; Drlica-Wagner, Alex; Rykoff, Eli S.

    2015-11-01

    DES exposure checker renders science-grade images directly to a web browser and allows users to mark problematic features from a set of predefined classes, thus allowing image quality control for the Dark Energy Survey to be crowdsourced through its web application. Users can also generate custom labels to help identify previously unknown problem classes; generated reports are fed back to hardware and software experts to help mitigate and eliminate recognized issues. These problem reports allow rapid correction of artifacts that otherwise may be too subtle or infrequent to be recognized.

  2. Positive affect modulates activity in the visual cortex to images of high calorie foods.

    PubMed

    Killgore, William D S; Yurgelun-Todd, Deborah A

    2007-05-01

    Activity within the visual cortex can be influenced by the emotional salience of a stimulus, but it is not clear whether such cortical activity is modulated by the affective status of the individual. This study used functional magnetic resonance imaging (fMRI) to examine the relationship between affect ratings on the Positive and Negative Affect Schedule and activity within the occipital cortex of 13 normal-weight women while viewing images of high calorie and low calorie foods. Regression analyses revealed that when participants viewed high calorie foods, Positive Affect correlated significantly with activity within the lingual gyrus and calcarine cortex, whereas Negative Affect was unrelated to visual cortex activity. In contrast, during presentations of low calorie foods, affect ratings, regardless of valence, were unrelated to occipital cortex activity. These findings suggest a mechanism whereby positive affective state may affect the early stages of sensory processing, possibly influencing subsequent perceptual experience of a stimulus. PMID:17464782

  3. A technique for multi-dimensional optimization of radiation dose, contrast dose, and image quality in CT imaging

    NASA Astrophysics Data System (ADS)

    Sahbaee, Pooyan; Abadi, Ehsan; Sanders, Jeremiah; Becchetti, Marc; Zhang, Yakun; Agasthya, Greeshma; Segars, Paul; Samei, Ehsan

    2016-03-01

    The purpose of this study was to substantiate the interdependency of image quality, radiation dose, and contrast material dose in CT towards the patient-specific optimization of the imaging protocols. The study deployed two phantom platforms. First, a variable sized phantom containing an iodinated insert was imaged on a representative CT scanner at multiple CTDI values. The contrast and noise were measured from the reconstructed images for each phantom diameter. Linearly related to iodine-concentration, contrast to noise ratio (CNR), was calculated for different iodine-concentration levels. Second, the analysis was extended to a recently developed suit of 58 virtual human models (5D-XCAT) with added contrast dynamics. Emulating a contrast-enhanced abdominal image procedure and targeting a peak-enhancement in aorta, each XCAT phantom was "imaged" using a CT simulation platform. 3D surfaces for each patient/size established the relationship between iodine-concentration, dose, and CNR. The Sensitivity of Ratio (SR), defined as ratio of change in iodine-concentration versus dose to yield a constant change in CNR was calculated and compared at high and low radiation dose for both phantom platforms. The results show that sensitivity of CNR to iodine concentration is larger at high radiation dose (up to 73%). The SR results were highly affected by radiation dose metric; CTDI or organ dose. Furthermore, results showed that the presence of contrast material could have a profound impact on optimization results (up to 45%).

  4. Exploring V1 by modeling the perceptual quality of images.

    PubMed

    Zhang, Fan; Jiang, Wenfei; Autrusseau, Florent; Lin, Weisi

    2014-01-24

    We propose an image quality model based on phase and amplitude differences between a reference and a distorted image. The proposed model is motivated by the fact that polar representations can separate visual information in a more independent and efficient manner than Cartesian representations in the primary visual cortex (V1). We subsequently estimate the model parameters from a large subjective data set using maximum likelihood methods. By comparing the various model hypotheses on the functional form about the phase and amplitude, we find that: (a) discrimination of visual orientation is important for quality assessment and yet a coarse level of such discrimination seems sufficient; and (b) a product-based amplitude-phase combination before pooling is effective, suggesting an interesting viewpoint about the functional structure of the simple cells and complex cells in V1.

  5. A virtual image chain for perceived image quality of medical display

    NASA Astrophysics Data System (ADS)

    Marchessoux, Cédric; Jung, Jürgen

    2006-03-01

    This paper describes a virtual image chain for medical display (project VICTOR: granted in the 5th framework program by European commission). The chain starts from raw data of an image digitizer (CR, DR) or synthetic patterns and covers image enhancement (MUSICA by Agfa) and both display possibilities, hardcopy (film on viewing box) and softcopy (monitor). Key feature of the chain is a complete image wise approach. A first prototype is implemented in an object-oriented software platform. The display chain consists of several modules. Raw images are either taken from scanners (CR-DR) or from a pattern generator, in which characteristics of DR- CR systems are introduced by their MTF and their dose-dependent Poisson noise. The image undergoes image enhancement and comes to display. For soft display, color and monochrome monitors are used in the simulation. The image is down-sampled. The non-linear response of a color monitor is taken into account by the GOG or S-curve model, whereas the Standard Gray-Scale-Display-Function (DICOM) is used for monochrome display. The MTF of the monitor is applied on the image in intensity levels. For hardcopy display, the combination of film, printer, lightbox and viewing condition is modeled. The image is up-sampled and the DICOM-GSDF or a Kanamori Look-Up-Table is applied. An anisotropic model for the MTF of the printer is applied on the image in intensity levels. The density-dependent color (XYZ) of the hardcopy film is introduced by Look-Up-tables. Finally a Human Visual System Model is applied to the intensity images (XYZ in terms of cd/m2) in order to eliminate nonvisible differences. Comparison leads to visible differences, which are quantified by higher order image quality metrics. A specific image viewer is used for the visualization of the intensity image and the visual difference maps.

  6. Factors Affecting Parent's Perception on Air Quality-From the Individual to the Community Level.

    PubMed

    Guo, Yulin; Liu, Fengfeng; Lu, Yuanan; Mao, Zongfu; Lu, Hanson; Wu, Yanyan; Chu, Yuanyuan; Yu, Lichen; Liu, Yisi; Ren, Meng; Li, Na; Chen, Xi; Xiang, Hao

    2016-01-01

    The perception of air quality significantly affects the acceptance of the public of the government's environmental policies. The aim of this research is to explore the relationship between the perception of the air quality of parents and scientific monitoring data and to analyze the factors that affect parents' perceptions. Scientific data of air quality were obtained from Wuhan's environmental condition reports. One thousand parents were investigated for their knowledge and perception of air quality. Scientific data show that the air quality of Wuhan follows an improving trend in general, while most participants believed that the air quality of Wuhan has deteriorated, which indicates a significant difference between public perception and reality. On the individual level, respondents with an age of 40 or above (40 or above: OR = 3.252; 95% CI: 1.170-9.040), a higher educational level (college and above: OR = 7.598; 95% CI: 2.244-25.732) or children with poor healthy conditions (poor: OR = 6.864; 95% CI: 2.212-21.302) have much more negative perception of air quality. On the community level, industrial facilities, vehicles and city construction have major effects on parents' perception of air quality. Our investigation provides baseline information for environmental policy researchers and makers regarding the public's perception and expectation of air quality and the benefits to the environmental policy completing and enforcing.

  7. Factors Affecting Parent's Perception on Air Quality-From the Individual to the Community Level.

    PubMed

    Guo, Yulin; Liu, Fengfeng; Lu, Yuanan; Mao, Zongfu; Lu, Hanson; Wu, Yanyan; Chu, Yuanyuan; Yu, Lichen; Liu, Yisi; Ren, Meng; Li, Na; Chen, Xi; Xiang, Hao

    2016-01-01

    The perception of air quality significantly affects the acceptance of the public of the government's environmental policies. The aim of this research is to explore the relationship between the perception of the air quality of parents and scientific monitoring data and to analyze the factors that affect parents' perceptions. Scientific data of air quality were obtained from Wuhan's environmental condition reports. One thousand parents were investigated for their knowledge and perception of air quality. Scientific data show that the air quality of Wuhan follows an improving trend in general, while most participants believed that the air quality of Wuhan has deteriorated, which indicates a significant difference between public perception and reality. On the individual level, respondents with an age of 40 or above (40 or above: OR = 3.252; 95% CI: 1.170-9.040), a higher educational level (college and above: OR = 7.598; 95% CI: 2.244-25.732) or children with poor healthy conditions (poor: OR = 6.864; 95% CI: 2.212-21.302) have much more negative perception of air quality. On the community level, industrial facilities, vehicles and city construction have major effects on parents' perception of air quality. Our investigation provides baseline information for environmental policy researchers and makers regarding the public's perception and expectation of air quality and the benefits to the environmental policy completing and enforcing. PMID:27187432

  8. A quality assurance program for image quality of cone-beam CT guidance in radiation therapy

    SciTech Connect

    Bissonnette, Jean-Pierre; Moseley, Douglas J.; Jaffray, David A.

    2008-05-15

    The clinical introduction of volumetric x-ray image-guided radiotherapy systems necessitates formal commissioning of the hardware and image-guided processes to be used and drafts quality assurance (QA) for both hardware and processes. Satisfying both requirements provides confidence on the system's ability to manage geometric variations in patient setup and internal organ motion. As these systems become a routine clinical modality, the authors present data from their QA program tracking the image quality performance of ten volumetric systems over a period of 3 years. These data are subsequently used to establish evidence-based tolerances for a QA program. The volumetric imaging systems used in this work combines a linear accelerator with conventional x-ray tube and an amorphous silicon flat-panel detector mounted orthogonally from the accelerator central beam axis, in a cone-beam computed tomography (CBCT) configuration. In the spirit of the AAPM Report No. 74, the present work presents the image quality portion of their QA program; the aspects of the QA protocol addressing imaging geometry have been presented elsewhere. Specifically, the authors are presenting data demonstrating the high linearity of CT numbers, the uniformity of axial reconstructions, and the high contrast spatial resolution of ten CBCT systems (1-2 mm) from two commercial vendors. They are also presenting data accumulated over the period of several months demonstrating the long-term stability of the flat-panel detector and of the distances measured on reconstructed volumetric images. Their tests demonstrate that each specific CBCT system has unique performance. In addition, scattered x rays are shown to influence the imaging performance in terms of spatial resolution, axial reconstruction uniformity, and the linearity of CT numbers.

  9. Digital TV image quality improvement considering distributions of edge characteristic

    NASA Astrophysics Data System (ADS)

    Hong, Sang-Gi; Kim, Jae-Chul; Park, Jong-Hyun

    2003-12-01

    Sharpness enhancement is widely used technique for improving the perceptual quality of an image by emphasizing its high-frequency component. In this paper, a psychophysical experiment is conducted by the 20 observers with simple linear unsharp masking for sharpness enhancement. The experimental result is extracted using z-score analysis and linear regression. Finally using this result we suggest observer preferable sharpness enhancement method for digital television.

  10. Incorporating detection tasks into the assessment of CT image quality

    NASA Astrophysics Data System (ADS)

    Scalzetti, E. M.; Huda, W.; Ogden, K. M.; Khan, M.; Roskopf, M. L.; Ogden, D.

    2006-03-01

    The purpose of this study was to compare traditional and task dependent assessments of CT image quality. Chest CT examinations were obtained with a standard protocol for subjects participating in a lung cancer-screening project. Images were selected for patients whose weight ranged from 45 kg to 159 kg. Six ABR certified radiologists subjectively ranked these images using a traditional six-point ranking scheme that ranged from 1 (inadequate) to 6 (excellent). Three subtle diagnostic tasks were identified: (1) a lung section containing a sub-centimeter nodule of ground-glass opacity in an upper lung (2) a mediastinal section with a lymph node of soft tissue density in the mediastinum; (3) a liver section with a rounded low attenuation lesion in the liver periphery. Each observer was asked to estimate the probability of detecting each type of lesion in the appropriate CT section using a six-point scale ranging from 1 (< 10%) to 6 (> 90%). Traditional and task dependent measures of image quality were plotted as a function of patient weight. For the lung section, task dependent evaluations were very similar to those obtained using the traditional scoring scheme, but with larger inter-observer differences. Task dependent evaluations for the mediastinal section showed no obvious trend with subject weight, whereas there the traditional score decreased from ~4.9 for smaller subjects to ~3.3 for the larger subjects. Task dependent evaluations for the liver section showed a decreasing trend from ~4.1 for the smaller subjects to ~1.9 for the larger subjects, whereas the traditional evaluation had a markedly narrower range of scores. A task-dependent method of assessing CT image quality can be implemented with relative ease, and is likely to be more meaningful in the clinical setting.

  11. Image quality criteria for wide-field x-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Thompson, Patrick L.; Harvey, James E.

    1999-10-01

    For staring, wide-field applications, such as a solar x-ray imager, the severe off-axis aberrations of the classical Wolter Type-I grazing incidence x-ray telescope design drastically limits the 'resolution' near the solar limb. A specification upon on-axis fractional encircled energy is thus not an appropriate image quality criterion for such wide-angle applications. A more meaningful image quality criterion would be a field-weighted-average measure of 'resolution.' Since surface scattering effects from residual optical fabrication errors are always substantial at these very short wavelengths, the field-weighted-average half- power radius is a far more appropriate measure of aerial resolution. If an ideal mosaic detector array is being used in the focal plane, the finite pixel size provides a practical limit to this system performance. Thus, the total number of aerial resolution elements enclosed by the operational field-of-view, expressed as a percentage of the n umber of ideal detector pixels, is a further improved image quality criterion. In this paper we describe the development of an image quality criterion for wide-field applications of grazing incidence x-ray telescopes which leads to a new class of grazing incidence designs described in a following companion paper.

  12. Beef quality parameters estimation using ultrasound and color images

    PubMed Central

    2015-01-01

    Background Beef quality measurement is a complex task with high economic impact. There is high interest in obtaining an automatic quality parameters estimation in live cattle or post mortem. In this paper we set out to obtain beef quality estimates from the analysis of ultrasound (in vivo) and color images (post mortem), with the measurement of various parameters related to tenderness and amount of meat: rib eye area, percentage of intramuscular fat and backfat thickness or subcutaneous fat. Proposal An algorithm based on curve evolution is implemented to calculate the rib eye area. The backfat thickness is estimated from the profile of distances between two curves that limit the steak and the rib eye, previously detected. A model base in Support Vector Regression (SVR) is trained to estimate the intramuscular fat percentage. A series of features extracted on a region of interest, previously detected in both ultrasound and color images, were proposed. In all cases, a complete evaluation was performed with different databases including: color and ultrasound images acquired by a beef industry expert, intramuscular fat estimation obtained by an expert using a commercial software, and chemical analysis. Conclusions The proposed algorithms show good results to calculate the rib eye area and the backfat thickness measure and profile. They are also promising in predicting the percentage of intramuscular fat. PMID:25734452

  13. The North Atlantic Oscillation affects the quality of Cava (Spanish sparkling wine).

    PubMed

    Real, Raimundo; Báez, José Carlos

    2013-05-01

    This study explores the possible effects of the North Atlantic Oscillation (NAO) on the quality of Spanish Cava. We found a significant negative relationship between the mean NAO for the months of March through August of each year between 1970 and 2008 and the probability of obtaining a top quality Cava. The NAO is associated with temperature and rainfall variations in the Cava region, which affect vine physiological processes during grape maturity. The probability of obtaining a top quality Cava was highest when the mean value of the NAO was negative, which causes the mean temperature in the Cava area to decrease, with positive consequences on Cava quality. Although the overall discrimination capacity and explanatory power of the model were low, 80% of clearly favorable years were classified correctly as corresponding to top quality Cava, and 70% of clearly unfavorable years were classified correctly as non top quality Cava.

  14. Objective assessment of image quality. IV. Application to adaptive optics

    PubMed Central

    Barrett, Harrison H.; Myers, Kyle J.; Devaney, Nicholas; Dainty, Christopher

    2008-01-01

    The methodology of objective assessment, which defines image quality in terms of the performance of specific observers on specific tasks of interest, is extended to temporal sequences of images with random point spread functions and applied to adaptive imaging in astronomy. The tasks considered include both detection and estimation, and the observers are the optimal linear discriminant (Hotelling observer) and the optimal linear estimator (Wiener). A general theory of first- and second-order spatiotemporal statistics in adaptive optics is developed. It is shown that the covariance matrix can be rigorously decomposed into three terms representing the effect of measurement noise, random point spread function, and random nature of the astronomical scene. Figures of merit are developed, and computational methods are discussed. PMID:17106464

  15. Effects of characteristics of image quality in an immersive environment

    NASA Technical Reports Server (NTRS)

    Duh, Henry Been-Lirn; Lin, James J W.; Kenyon, Robert V.; Parker, Donald E.; Furness, Thomas A.

    2002-01-01

    Image quality issues such as field of view (FOV) and resolution are important for evaluating "presence" and simulator sickness (SS) in virtual environments (VEs). This research examined effects on postural stability of varying FOV, image resolution, and scene content in an immersive visual display. Two different scenes (a photograph of a fountain and a simple radial pattern) at two different resolutions were tested using six FOVs (30, 60, 90, 120, 150, and 180 deg.). Both postural stability, recorded by force plates, and subjective difficulty ratings varied as a function of FOV, scene content, and image resolution. Subjects exhibited more balance disturbance and reported more difficulty in maintaining posture in the wide-FOV, high-resolution, and natural scene conditions.

  16. ECG-synchronized DSA exposure control: improved cervicothoracic image quality

    SciTech Connect

    Kelly, W.M.; Gould, R.; Norman, D.; Brant-Zawadzki, M.; Cox, L.

    1984-10-01

    An electrocardiogram (ECG)-synchronized x-ray exposure sequence was used to acquire digital subtraction angiographic (DSA) images during 13 arterial injection studies of the aortic arch or carotid bifurcations. These gated images were compared with matched ungated DSA images acquired using the same technical factors, contrast material volume, and patient positioning. Subjective assessments by five experienced observers of edge definition, vessel conspicuousness, and overall diagnostic quality showed overall preference for one of the two acquisition methods in 69% of cases studied. Of these, the ECG-synchronized exposure series were rated superior in 76%. These results, as well as the relatively simple and inexpensive modifications required, suggest that routine use of ECG exposure control can facilitate improved arterial DSA evaluations of suspected cervicothoracic vascular disease.

  17. Objective assessment of image quality. IV. Application to adaptive optics.

    PubMed

    Barrett, Harrison H; Myers, Kyle J; Devaney, Nicholas; Dainty, Christopher

    2006-12-01

    The methodology of objective assessment, which defines image quality in terms of the performance of specific observers on specific tasks of interest, is extended to temporal sequences of images with random point spread functions and applied to adaptive imaging in astronomy. The tasks considered include both detection and estimation, and the observers are the optimal linear discriminant (Hotelling observer) and the optimal linear estimator (Wiener). A general theory of first- and second-order spatiotemporal statistics in adaptive optics is developed. It is shown that the covariance matrix can be rigorously decomposed into three terms representing the effect of measurement noise, random point spread function, and random nature of the astronomical scene. Figures of merit are developed, and computational methods are discussed.

  18. Objective assessment of image quality. IV. Application to adaptive optics.

    PubMed

    Barrett, Harrison H; Myers, Kyle J; Devaney, Nicholas; Dainty, Christopher

    2006-12-01

    The methodology of objective assessment, which defines image quality in terms of the performance of specific observers on specific tasks of interest, is extended to temporal sequences of images with random point spread functions and applied to adaptive imaging in astronomy. The tasks considered include both detection and estimation, and the observers are the optimal linear discriminant (Hotelling observer) and the optimal linear estimator (Wiener). A general theory of first- and second-order spatiotemporal statistics in adaptive optics is developed. It is shown that the covariance matrix can be rigorously decomposed into three terms representing the effect of measurement noise, random point spread function, and random nature of the astronomical scene. Figures of merit are developed, and computational methods are discussed. PMID:17106464

  19. Image gathering and digital restoration for fidelity and visual quality

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur

    1991-01-01

    The fidelity and resolution of the traditional Wiener restorations given in the prevalent digital processing literature can be significantly improved when the transformations between the continuous and discrete representations in image gathering and display are accounted for. However, the visual quality of these improved restorations also is more sensitive to the defects caused by aliasing artifacts, colored noise, and ringing near sharp edges. In this paper, these visual defects are characterized, and methods for suppressing them are presented. It is demonstrated how the visual quality of fidelity-maximized images can be improved when (1) the image-gathering system is specifically designed to enhance the performance of the image-restoration algorithm, and (2) the Wiener filter is combined with interactive Gaussian smoothing, synthetic high edge enhancement, and nonlinear tone-scale transformation. The nonlinear transformation is used primarily to enhance the spatial details that are often obscurred when the normally wide dynamic range of natural radiance fields is compressed into the relatively narrow dynamic range of film and other displays.

  20. Characterization of image quality for 3D scatter-corrected breast CT images

    NASA Astrophysics Data System (ADS)

    Pachon, Jan H.; Shah, Jainil; Tornai, Martin P.

    2011-03-01

    The goal of this study was to characterize the image quality of our dedicated, quasi-monochromatic spectrum, cone beam breast imaging system under scatter corrected and non-scatter corrected conditions for a variety of breast compositions. CT projections were acquired of a breast phantom containing two concentric sets of acrylic spheres that varied in size (1-8mm) based on their polar position. The breast phantom was filled with 3 different concentrations of methanol and water, simulating a range of breast densities (0.79-1.0g/cc); acrylic yarn was sometimes included to simulate connective tissue of a breast. For each phantom condition, 2D scatter was measured for all projection angles. Scatter-corrected and uncorrected projections were then reconstructed with an iterative ordered subsets convex algorithm. Reconstructed image quality was characterized using SNR and contrast analysis, and followed by a human observer detection task for the spheres in the different concentric rings. Results show that scatter correction effectively reduces the cupping artifact and improves image contrast and SNR. Results from the observer study indicate that there was no statistical difference in the number or sizes of lesions observed in the scatter versus non-scatter corrected images for all densities. Nonetheless, applying scatter correction for differing breast conditions improves overall image quality.

  1. TU-B-19A-01: Image Registration II: TG132-Quality Assurance for Image Registration

    SciTech Connect

    Brock, K; Mutic, S

    2014-06-15

    AAPM Task Group 132 was charged with a review of the current approaches and solutions for image registration in radiotherapy and to provide recommendations for quality assurance and quality control of these clinical processes. As the results of image registration are always used as the input of another process for planning or delivery, it is important for the user to understand and document the uncertainty associate with the algorithm in general and the Result of a specific registration. The recommendations of this task group, which at the time of abstract submission are currently being reviewed by the AAPM, include the following components. The user should understand the basic image registration techniques and methods of visualizing image fusion. The disclosure of basic components of the image registration by commercial vendors is critical in this respect. The physicists should perform end-to-end tests of imaging, registration, and planning/treatment systems if image registration is performed on a stand-alone system. A comprehensive commissioning process should be performed and documented by the physicist prior to clinical use of the system. As documentation is important to the safe implementation of this process, a request and report system should be integrated into the clinical workflow. Finally, a patient specific QA practice should be established for efficient evaluation of image registration results. The implementation of these recommendations will be described and illustrated during this educational session. Learning Objectives: Highlight the importance of understanding the image registration techniques used in their clinic. Describe the end-to-end tests needed for stand-alone registration systems. Illustrate a comprehensive commissioning program using both phantom data and clinical images. Describe a request and report system to ensure communication and documentation. Demonstrate an clinically-efficient patient QA practice for efficient evaluation of image

  2. SU-E-J-36: Comparison of CBCT Image Quality for Manufacturer Default Imaging Modes

    SciTech Connect

    Nelson, G

    2015-06-15

    Purpose CBCT is being increasingly used in patient setup for radiotherapy. Often the manufacturer default scan modes are used for performing these CBCT scans with the assumption that they are the best options. To quantitatively assess the image quality of these scan modes, all of the scan modes were tested as well as options with the reconstruction algorithm. Methods A CatPhan 504 phantom was scanned on a TrueBeam Linear Accelerator using the manufacturer scan modes (FSRT Head, Head, Image Gently, Pelvis, Pelvis Obese, Spotlight, & Thorax). The Head mode scan was then reconstructed multiple times with all filter options (Smooth, Standard, Sharp, & Ultra Sharp) and all Ring Suppression options (Disabled, Weak, Medium, & Strong). An open source ImageJ tool was created for analyzing the CatPhan 504 images. Results The MTF curve was primarily dictated by the voxel size and the filter used in the reconstruction algorithm. The filters also impact the image noise. The CNR was worst for the Image Gently mode, followed by FSRT Head and Head. The sharper the filter, the worse the CNR. HU varied significantly between scan modes. Pelvis Obese had lower than expected HU values than most while the Image Gently mode had higher than expected HU values. If a therapist tried to use preset window and level settings, they would not show the desired tissue for some scan modes. Conclusion Knowing the image quality of the set scan modes, will enable users to better optimize their setup CBCT. Evaluation of the scan mode image quality could improve setup efficiency and lead to better treatment outcomes.

  3. Image Quality of the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO)

    NASA Technical Reports Server (NTRS)

    Wachter, R.; Schou, Jesper; Rabello-Soares, M. C.; Miles, J. W.; Duvall, T. L., Jr.; Bush, R. I.

    2011-01-01

    We describe the imaging quality of the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) as measured during the ground calibration of the instrument. We describe the calibration techniques and report our results for the final configuration of HMI. We present the distortion, modulation transfer function, stray light,image shifts introduced by moving parts of the instrument, best focus, field curvature, and the relative alignment of the two cameras. We investigate the gain and linearity of the cameras, and present the measured flat field.

  4. The pupil's response to affective pictures: Role of image duration, habituation, and viewing mode.

    PubMed

    Snowden, Robert J; O'Farrell, Katherine R; Burley, Daniel; Erichsen, Jonathan T; Newton, Naomi V; Gray, Nicola S

    2016-08-01

    The pupil has been shown to be sensitive to the emotional content of stimuli. We examined this phenomenon by comparing fearful and neutral images carefully matched in the domains of luminance, image contrast, image color, and complexity of content. The pupil was more dilated after viewing affective pictures, and this effect was (a) shown to be independent of the presentation time of the images (from 100-3,000 ms), (b) not diminished by repeated presentations of the images, and (c) not affected by actively naming the emotion of the stimuli in comparison to passive viewing. Our results show that the emotional modulation of the pupil is present over a range of variables that typically vary from study to study (image duration, number of trials, free viewing vs. task), and encourages the use of pupillometry as a measure of emotional processing in populations where alternative techniques may not be appropriate.

  5. The pupil's response to affective pictures: Role of image duration, habituation, and viewing mode

    PubMed Central

    O'Farrell, Katherine R.; Burley, Daniel; Erichsen, Jonathan T.; Newton, Naomi V.; Gray, Nicola S.

    2016-01-01

    Abstract The pupil has been shown to be sensitive to the emotional content of stimuli. We examined this phenomenon by comparing fearful and neutral images carefully matched in the domains of luminance, image contrast, image color, and complexity of content. The pupil was more dilated after viewing affective pictures, and this effect was (a) shown to be independent of the presentation time of the images (from 100–3,000 ms), (b) not diminished by repeated presentations of the images, and (c) not affected by actively naming the emotion of the stimuli in comparison to passive viewing. Our results show that the emotional modulation of the pupil is present over a range of variables that typically vary from study to study (image duration, number of trials, free viewing vs. task), and encourages the use of pupillometry as a measure of emotional processing in populations where alternative techniques may not be appropriate. PMID:27172997

  6. The pupil's response to affective pictures: Role of image duration, habituation, and viewing mode.

    PubMed

    Snowden, Robert J; O'Farrell, Katherine R; Burley, Daniel; Erichsen, Jonathan T; Newton, Naomi V; Gray, Nicola S

    2016-08-01

    The pupil has been shown to be sensitive to the emotional content of stimuli. We examined this phenomenon by comparing fearful and neutral images carefully matched in the domains of luminance, image contrast, image color, and complexity of content. The pupil was more dilated after viewing affective pictures, and this effect was (a) shown to be independent of the presentation time of the images (from 100-3,000 ms), (b) not diminished by repeated presentations of the images, and (c) not affected by actively naming the emotion of the stimuli in comparison to passive viewing. Our results show that the emotional modulation of the pupil is present over a range of variables that typically vary from study to study (image duration, number of trials, free viewing vs. task), and encourages the use of pupillometry as a measure of emotional processing in populations where alternative techniques may not be appropriate. PMID:27172997

  7. Restoration of images degraded by underwater turbulence using structure tensor oriented image quality (STOIQ) metric.

    PubMed

    Kanaev, A V; Hou, W; Restaino, S R; Matt, S; Gładysz, S

    2015-06-29

    Recent advances in image processing for atmospheric propagation have provided a foundation for tackling the similar but perhaps more complex problem of underwater imaging, which is impaired by scattering and optical turbulence. As a result of these impairments underwater imagery suffers from excessive noise, blur, and distortion. Underwater turbulence impact on light propagation becomes critical at longer distances as well as near thermocline and mixing layers. In this work, we demonstrate a method for restoration of underwater images that are severely degraded by underwater turbulence. The key element of the approach is derivation of a structure tensor oriented image quality metric, which is subsequently incorporated into a lucky patch image processing framework. The utility of the proposed image quality measure guided by local edge strength and orientation is emphasized by comparing the restoration results to an unsuccessful restoration obtained with equivalent processing utilizing a standard isotropic metric. Advantages of the proposed approach versus three other state-of-the-art image restoration techniques are demonstrated using the data obtained in the laboratory water tank and in a natural environment underwater experiment. Quantitative comparison of the restoration results is performed via structural similarity index measure and normalized mutual information metric.

  8. Restoration of images degraded by underwater turbulence using structure tensor oriented image quality (STOIQ) metric.

    PubMed

    Kanaev, A V; Hou, W; Restaino, S R; Matt, S; Gładysz, S

    2015-06-29

    Recent advances in image processing for atmospheric propagation have provided a foundation for tackling the similar but perhaps more complex problem of underwater imaging, which is impaired by scattering and optical turbulence. As a result of these impairments underwater imagery suffers from excessive noise, blur, and distortion. Underwater turbulence impact on light propagation becomes critical at longer distances as well as near thermocline and mixing layers. In this work, we demonstrate a method for restoration of underwater images that are severely degraded by underwater turbulence. The key element of the approach is derivation of a structure tensor oriented image quality metric, which is subsequently incorporated into a lucky patch image processing framework. The utility of the proposed image quality measure guided by local edge strength and orientation is emphasized by comparing the restoration results to an unsuccessful restoration obtained with equivalent processing utilizing a standard isotropic metric. Advantages of the proposed approach versus three other state-of-the-art image restoration techniques are demonstrated using the data obtained in the laboratory water tank and in a natural environment underwater experiment. Quantitative comparison of the restoration results is performed via structural similarity index measure and normalized mutual information metric. PMID:26191716

  9. Affective Responses by Adults with Autism Are Reduced to Social Images but Elevated to Images Related to Circumscribed Interests

    PubMed Central

    Bodfish, James W.

    2012-01-01

    Individuals with autism spectrum disorders (ASD) demonstrate increased visual attention and elevated brain reward circuitry responses to images related to circumscribed interests (CI), suggesting that a heightened affective response to CI may underlie their disproportionate salience and reward value in ASD. To determine if individuals with ASD differ from typically developing (TD) adults in their subjective emotional experience of CI object images, non-CI object images and social images, 213 TD adults and 56 adults with ASD provided arousal ratings (sensation of being energized varying along a dimension from calm to excited) and valence ratings (emotionality varying along dimension of approach to withdrawal) for a series of 114 images derived from previous research on CI. The groups did not differ on arousal ratings for any image type, but ASD adults provided higher valence ratings than TD adults for CI-related images, and lower valence ratings for social images. Even after co-varying the effects of sex, the ASD group, but not the TD group, gave higher valence ratings to CI images than social images. These findings provide additional evidence that ASD is characterized by a preference for certain categories of non-social objects and a reduced preference for social stimuli, and support the dissemination of this image set for examining aspects of the circumscribed interest phenotype in ASD. PMID:22870328

  10. Moderating role of marital quality in older adults' depressed affect: beyond the main-effects model.

    PubMed

    Bookwala, Jamila; Franks, Melissa M

    2005-11-01

    We examine the role of three indicators of marital quality (marital disagreement, marital happiness, and time spent together) as moderators of the association between physical disability and depressed affect among married older individuals (N=1,044). We found support for the moderating role of marital disagreement wherein the detrimental effect of disability on depressed affect was significantly heightened among older adults with more disagreements with their spouse; a moderating effect was not detected for marital happiness or time spent together. We conclude that, in addition to its main effect on older adults' depressed affect, marital quality (as indicated by marital disagreement) plays a significant stress-moderating role in the physical disability-depressed affect link.

  11. Color image quality in projection displays: a case study

    NASA Astrophysics Data System (ADS)

    Strand, Monica; Hardeberg, Jon Y.; Nussbaum, Peter

    2005-01-01

    Recently the use of projection displays has increased dramatically in different applications such as digital cinema, home theatre, and business and educational presentations. Even if the color image quality of these devices has improved significantly over the years, it is still a common situation for users of projection displays that the projected colors differ significantly from the intended ones. This study presented in this paper attempts to analyze the color image quality of a large set of projection display devices, particularly investigating the variations in color reproduction. As a case study, a set of 14 projectors (LCD and DLP technology) at Gjovik University College have been tested under four different conditions: dark and light room, with and without using an ICC-profile. To find out more about the importance of the illumination conditions in a room, and the degree of improvement when using an ICC-profile, the results from the measurements was processed and analyzed. Eye-One Beamer from GretagMacbeth was used to make the profiles. The color image quality was evaluated both visually and by color difference calculations. The results from the analysis indicated large visual and colorimetric differences between the projectors. Our DLP projectors have generally smaller color gamut than LCD projectors. The color gamuts of older projectors are significantly smaller than that of newer ones. The amount of ambient light reaching the screen is of great importance for the visual impression. If too much reflections and other ambient light reaches the screen, the projected image gets pale and has low contrast. When using a profile, the differences in colors between the projectors gets smaller and the colors appears more correct. For one device, the average ΔE*ab color difference when compared to a relative white reference was reduced from 22 to 11, for another from 13 to 6. Blue colors have the largest variations among the projection displays and makes them

  12. Color image quality in projection displays: a case study

    NASA Astrophysics Data System (ADS)

    Strand, Monica; Hardeberg, Jon Y.; Nussbaum, Peter

    2004-10-01

    Recently the use of projection displays has increased dramatically in different applications such as digital cinema, home theatre, and business and educational presentations. Even if the color image quality of these devices has improved significantly over the years, it is still a common situation for users of projection displays that the projected colors differ significantly from the intended ones. This study presented in this paper attempts to analyze the color image quality of a large set of projection display devices, particularly investigating the variations in color reproduction. As a case study, a set of 14 projectors (LCD and DLP technology) at Gjøvik University College have been tested under four different conditions: dark and light room, with and without using an ICC-profile. To find out more about the importance of the illumination conditions in a room, and the degree of improvement when using an ICC-profile, the results from the measurements was processed and analyzed. Eye-One Beamer from GretagMacbeth was used to make the profiles. The color image quality was evaluated both visually and by color difference calculations. The results from the analysis indicated large visual and colorimetric differences between the projectors. Our DLP projectors have generally smaller color gamut than LCD projectors. The color gamuts of older projectors are significantly smaller than that of newer ones. The amount of ambient light reaching the screen is of great importance for the visual impression. If too much reflections and other ambient light reaches the screen, the projected image gets pale and has low contrast. When using a profile, the differences in colors between the projectors gets smaller and the colors appears more correct. For one device, the average ΔE*ab color difference when compared to a relative white reference was reduced from 22 to 11, for another from 13 to 6. Blue colors have the largest variations among the projection displays and makes them

  13. Patient dose and image quality from mega-voltage cone beam computed tomography imaging.

    PubMed

    Gayou, Olivier; Parda, David S; Johnson, Mark; Miften, Moyed

    2007-02-01

    The evolution of ever more conformal radiation delivery techniques makes the subject of accurate localization of increasing importance in radiotherapy. Several systems can be utilized including kilo-voltage and mega-voltage cone-beam computed tomography (MV-CBCT), CT on rail or helical tomography. One of the attractive aspects of mega-voltage cone-beam CT is that it uses the therapy beam along with an electronic portal imaging device to image the patient prior to the delivery of treatment. However, the use of a photon beam energy in the mega-voltage range for volumetric imaging degrades the image quality and increases the patient radiation dose. To optimize image quality and patient dose in MV-CBCT imaging procedures, a series of dose measurements in cylindrical and anthropomorphic phantoms using an ionization chamber, radiographic films, and thermoluminescent dosimeters was performed. Furthermore, the dependence of the contrast to noise ratio and spatial resolution of the image upon the dose delivered for a 20-cm-diam cylindrical phantom was evaluated. Depending on the anatomical site and patient thickness, we found that the minimum dose deposited in the irradiated volume was 5-9 cGy and the maximum dose was between 9 and 17 cGy for our clinical MV-CBCT imaging protocols. Results also demonstrated that for high contrast areas such as bony anatomy, low doses are sufficient for image registration and visualization of the three-dimensional boundaries between soft tissue and bony structures. However, as the difference in tissue density decreased, the dose required to identify soft tissue boundaries increased. Finally, the dose delivered by MV-CBCT was simulated using a treatment planning system (TPS), thereby allowing the incorporation of MV-CBCT dose in the treatment planning process. The TPS-calculated doses agreed well with measurements for a wide range of imaging protocols.

  14. Universal blind image quality assessment metrics via natural scene statistics and multiple kernel learning.

    PubMed

    Gao, Xinbo; Gao, Fei; Tao, Dacheng; Li, Xuelong

    2013-12-01

    Universal blind image quality assessment (IQA) metrics that can work for various distortions are of great importance for image processing systems, because neither ground truths are available nor the distortion types are aware all the time in practice. Existing state-of-the-art universal blind IQA algorithms are developed based on natural scene statistics (NSS). Although NSS-based metrics obtained promising performance, they have some limitations: 1) they use either the Gaussian scale mixture model or generalized Gaussian density to predict the nonGaussian marginal distribution of wavelet, Gabor, or discrete cosine transform coefficients. The prediction error makes the extracted features unable to reflect the change in nonGaussianity (NG) accurately. The existing algorithms use the joint statistical model and structural similarity to model the local dependency (LD). Although this LD essentially encodes the information redundancy in natural images, these models do not use information divergence to measure the LD. Although the exponential decay characteristic (EDC) represents the property of natural images that large/small wavelet coefficient magnitudes tend to be persistent across scales, which is highly correlated with image degradations, it has not been applied to the universal blind IQA metrics; and 2) all the universal blind IQA metrics use the same similarity measure for different features for learning the universal blind IQA metrics, though these features have different properties. To address the aforementioned problems, we propose to construct new universal blind quality indicators using all the three types of NSS, i.e., the NG, LD, and EDC, and incorporating the heterogeneous property of multiple kernel learning (MKL). By analyzing how different distortions affect these statistical properties, we present two universal blind quality assessment models, NSS global scheme and NSS two-step scheme. In the proposed metrics: 1) we exploit the NG of natural images

  15. Using full-reference image quality metrics for automatic image sharpening

    NASA Astrophysics Data System (ADS)

    Krasula, Lukas; Fliegel, Karel; Le Callet, Patrick; Klíma, Miloš

    2014-05-01

    Image sharpening is a post-processing technique employed for the artificial enhancement of the perceived sharpness by shortening the transitions between luminance levels or increasing the contrast on the edges. The greatest challenge in this area is to determine the level of perceived sharpness which is optimal for human observers. This task is complex because the enhancement is gained only until the certain threshold. After reaching it, the quality of the resulting image drops due to the presence of annoying artifacts. Despite the effort dedicated to the automatic sharpness estimation, none of the existing metrics is designed for localization of this threshold. Nevertheless, it is a very important step towards the automatic image sharpening. In this work, possible usage of full-reference image quality metrics for finding the optimal amount of sharpening is proposed and investigated. The intentionally over-sharpened "anchor image" was included to the calculation as the "anti-reference" and the final metric score was computed from the differences between reference, processed, and anchor versions of the scene. Quality scores obtained from the subjective experiment were used to determine the optimal combination of partial metric values. Five popular fidelity metrics - SSIM, MS-SSIM, IW-SSIM, VIF, and FSIM - were tested. The performance of the proposed approach was then verified in the subjective experiment.

  16. Effect of nonlinear three-dimensional optimized reconstruction algorithm filter on image quality and radiation dose: validation on phantoms.

    PubMed

    Bai, Mei; Chen, Jiuhong; Raupach, Rainer; Suess, Christoph; Tao, Ying; Peng, Mingchen

    2009-01-01

    A new technique called the nonlinear three-dimensional optimized reconstruction algorithm filter (3D ORA filter) is currently used to improve CT image quality and reduce radiation dose. This technical note describes the comparison of image noise, slice sensitivity profile (SSP), contrast-to-noise ratio, and modulation transfer function (MTF) on phantom images processed with and without the 3D ORA filter, and the effect of the 3D ORA filter on CT images at a reduced dose. For CT head scans the noise reduction was up to 54% with typical bone reconstruction algorithms (H70) and a 0.6 mm slice thickness; for liver CT scans the noise reduction was up to 30% with typical high-resolution reconstruction algorithms (B70) and a 0.6 mm slice thickness. MTF and SSP did not change significantly with the application of 3D ORA filtering (P > 0.05), whereas noise was reduced (P < 0.05). The low contrast detectability and MTF of images obtained at a reduced dose and filtered by the 3D ORA were equivalent to those of standard dose CT images; there was no significant difference in image noise of scans taken at a reduced dose, filtered using 3D ORA and standard dose CT (P > 0.05). The 3D ORA filter shows good potential for reducing image noise without affecting image quality attributes such as sharpness. By applying this approach, the same image quality can be achieved whilst gaining a marked dose reduction.

  17. Effect of nonlinear three-dimensional optimized reconstruction algorithm filter on image quality and radiation dose: Validation on phantoms

    SciTech Connect

    Bai Mei; Chen Jiuhong; Raupach, Rainer; Suess, Christoph; Tao Ying; Peng Mingchen

    2009-01-15

    A new technique called the nonlinear three-dimensional optimized reconstruction algorithm filter (3D ORA filter) is currently used to improve CT image quality and reduce radiation dose. This technical note describes the comparison of image noise, slice sensitivity profile (SSP), contrast-to-noise ratio, and modulation transfer function (MTF) on phantom images processed with and without the 3D ORA filter, and the effect of the 3D ORA filter on CT images at a reduced dose. For CT head scans the noise reduction was up to 54% with typical bone reconstruction algorithms (H70) and a 0.6 mm slice thickness; for liver CT scans the noise reduction was up to 30% with typical high-resolution reconstruction algorithms (B70) and a 0.6 mm slice thickness. MTF and SSP did not change significantly with the application of 3D ORA filtering (P>0.05), whereas noise was reduced (P<0.05). The low contrast detectability and MTF of images obtained at a reduced dose and filtered by the 3D ORA were equivalent to those of standard dose CT images; there was no significant difference in image noise of scans taken at a reduced dose, filtered using 3D ORA and standard dose CT (P>0.05). The 3D ORA filter shows good potential for reducing image noise without affecting image quality attributes such as sharpness. By applying this approach, the same image quality can be achieved whilst gaining a marked dose reduction.

  18. Image quality evaluation of breast tomosynthesis with synchrotron radiation

    SciTech Connect

    Malliori, A.; Bliznakova, K.; Speller, R. D.; Horrocks, J. A.; Rigon, L.; Tromba, G.; Pallikarakis, N.

    2012-09-15

    Purpose: This study investigates the image quality of tomosynthesis slices obtained from several acquisition sets with synchrotron radiation using a breast phantom incorporating details that mimic various breast lesions, in a heterogeneous background. Methods: A complex Breast phantom (MAMMAX) with a heterogeneous background and thickness that corresponds to 4.5 cm compressed breast with an average composition of 50% adipose and 50% glandular tissue was assembled using two commercial phantoms. Projection images using acquisition arcs of 24 Degree-Sign , 32 Degree-Sign , 40 Degree-Sign , 48 Degree-Sign , and 56 Degree-Sign at incident energy of 17 keV were obtained from the phantom with the synchrotron radiation for medical physics beamline at ELETTRA Synchrotron Light Laboratory. The total mean glandular dose was set equal to 2.5 mGy. Tomograms were reconstructed with simple multiple projection algorithm (MPA) and filtered MPA. In the latter case, a median filter, a sinc filter, and a combination of those two filters were applied on the experimental data prior to MPA reconstruction. Visual inspection, contrast to noise ratio, contrast, and artifact spread function were the figures of merit used in the evaluation of the visualisation and detection of low- and high-contrast breast features, as a function of the reconstruction algorithm and acquisition arc. To study the benefits of using monochromatic beams, single projection images at incident energies ranging from 14 to 27 keV were acquired with the same phantom and weighted to synthesize polychromatic images at a typical incident x-ray spectrum with W target. Results: Filters were optimised to reconstruct features with different attenuation characteristics and dimensions. In the case of 6 mm low-contrast details, improved visual appearance as well as higher contrast to noise ratio and contrast values were observed for the two filtered MPA algorithms that exploit the sinc filter. These features are better visualized

  19. Association between seasonal affective disorder and subjective quality of the sleep/wake cycle in adolescents.

    PubMed

    Tonetti, Lorenzo; Fabbri, Marco; Erbacci, Alex; Martoni, Monica; Natale, Vincenzo

    2014-03-30

    The relationship between seasonal affective disorder (SAD) and subjective quality of sleep/wake cycle in adolescents was explored. The Seasonal Pattern Assessment Questionnaire for Children and Adolescents (SPAQ-CA) and Mini Sleep Questionnaire (MSQ) were administered to 345 adolescents living in the city of Cesena (Emilia-Romagna region, Italy) (299 females; age range: 14-18 years), to determine SAD and perceived quality of the sleep/wake cycle. The response rate was 92% for females and 90.2% for males. The MSQ includes two factors, sleep and wake, with lower scores corresponding to a lower quality of sleep and wake. The MSQ includes cut-off criteria to detect a good or bad sleep and wake quality. Adolescents with SAD (16 ± 5.7) scored significantly lower than those not affected on wake factor (19.5 ± 4.3), while no effect has been observed on sleep factor. SAD was the only one significant predictor of good/bad wake quality, while it did not reach significant level with reference to good/bad sleep quality. Present results are indications of a possible influence of SAD on wake quality and further studies are necessary to confirm them.

  20. A hyperspectral imaging prototype for online quality evaluation of pickling cucumbers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A hyperspectral imaging prototype was developed for online evaluation of external and internal quality of pickling cucumbers. The prototype had several new, unique features including simultaneous reflectance and transmittance imaging and inline, real time calibration of hyperspectral images of each ...

  1. [Research on application of fluorescence spectrum imaging method in Banlangen granule quality evaluation].

    PubMed

    He, Qing; Liang, Lan; Chen, Zhen-Qiang; Pang, Qi-Chang; Zhao, Jing; Ma, Ji

    2013-11-01

    The curative effect of Banlangen granule is directly affected by its quality, so it is very important to choose a kind of effective method for testing it. The chemical treatment is needed as a pre-treatment for the quality testing by using common method at present, which will change or destroy the sample. For dealing with this problem, in the present paper, a fluorescence spectrum imaging experimental system based on LCTF (liquid crystal tunable filter) is set up to detect the characteristics fluorescence spectrum of Banlangen granules. The characteristic fluorescence spectrum curve of Banlangen standard material provided by Chinese Food Drugs Examination Research Institute is used as a reference substance for a comparison with other Banlangen granules. By normalizing the corresponding characteristic fluorescence spectrum of Banlangen granules of different raw materials, different manufacturers and different batches, the relationship between the characteristic fluorescence spectrum curve and the quality of Banlangen granule is discussed by using the method of comparative and cluster analysis. The experimental results show that the qualities of Banlangen granules are quite different from different manufacturers, which are basically reflected by the change in the intensity of fluorescence and peak position. All of these indicate that fluorescence spectrum imaging technology is a simple, rapid and nondestructive detection method for the quality control of Banlangen granule.

  2. Image quality of a cone beam O-arm 3D imaging system

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Weir, Victor; Lin, Jingying; Hsiung, Hsiang; Ritenour, E. Russell

    2009-02-01

    The O-arm is a cone beam imaging system designed primarily to support orthopedic surgery and is also used for image-guided and vascular surgery. Using a gantry that can be opened or closed, the O-arm can function as a 2-dimensional (2D) fluoroscopy device or collect 3-dimensional (3D) volumetric imaging data like a CT system. Clinical applications of the O-arm in spine surgical procedures, assessment of pedicle screw position, and kyphoplasty procedures show that the O-arm 3D mode provides enhanced imaging information compared to radiographs or fluoroscopy alone. In this study, the image quality of an O-arm system was quantitatively evaluated. A 20 cm diameter CATPHAN 424 phantom was scanned using the pre-programmed head protocols: small/medium (120 kVp, 100 mAs), large (120 kVp, 128 mAs), and extra-large (120 kVp, 160 mAs) in 3D mode. High resolution reconstruction mode (512×512×0.83 mm) was used to reconstruct images for the analysis of low and high contrast resolution, and noise power spectrum. MTF was measured using the point spread function. The results show that the O-arm image is uniform but with a noise pattern which cannot be removed by simply increasing the mAs. The high contrast resolution of the O-arm system was approximately 9 lp/cm. The system has a 10% MTF at 0.45 mm. The low-contrast resolution cannot be decided due to the noise pattern. For surgery where locations of a structure are emphasized over a survey of all image details, the image quality of the O-arm is well accepted clinically.

  3. Assessment of image quality in x-ray radiography imaging using a small plasma focus device

    NASA Astrophysics Data System (ADS)

    Kanani, A.; Shirani, B.; Jabbari, I.; Mokhtari, J.

    2014-08-01

    This paper offers a comprehensive investigation of image quality parameters for a small plasma focus as a pulsed hard x-ray source for radiography applications. A set of images were captured from some metal objects and electronic circuits using a low energy plasma focus at different voltages of capacitor bank and different pressures of argon gas. The x-ray source focal spot of this device was obtained to be about 0.6 mm using the penumbra imaging method. The image quality was studied by several parameters such as image contrast, line spread function (LSF) and modulation transfer function (MTF). Results showed that the contrast changes by variations in gas pressure. The best contrast was obtained at a pressure of 0.5 mbar and 3.75 kJ stored energy. The results of x-ray dose from the device showed that about 0.6 mGy is sufficient to obtain acceptable images on the film. The measurements of LSF and MTF parameters were carried out by means of a thin stainless steel wire 0.8 mm in diameter and the cut-off frequency was obtained to be about 1.5 cycles/mm.

  4. Factors Affecting Perceived Learning, Satisfaction, and Quality in the Online MBA: A Structural Equation Modeling Approach

    ERIC Educational Resources Information Center

    Sebastianelli, Rose; Swift, Caroline; Tamimi, Nabil

    2015-01-01

    The authors examined how six factors related to content and interaction affect students' perceptions of learning, satisfaction, and quality in online master of business administration (MBA) courses. They developed three scale items to measure each factor. Using survey data from MBA students at a private university, the authors estimated structural…

  5. A School Principal's Perceptions Regarding Personal Qualities and Pedagogical Qualifications Affecting Teacher Candidate Selection

    ERIC Educational Resources Information Center

    Smith, Pamela Thayer

    2014-01-01

    This study examined the procedures used and the perceptions of a principal as to the personal qualities and pedagogical qualifications affecting the selection of teacher candidates. The approach examined one principal's procedures used to choose which candidates to interview, the process she used to conduct the interviews, the professional…

  6. HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW

    EPA Science Inventory

    The paper discusses results of an evaluation of literature on heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). The various literature sources and methods for characterizing HVAC emission sources are re...

  7. A Case Study Showing Parameters Affecting the Quality of Education: Faculty Perspective

    ERIC Educational Resources Information Center

    Kumari, Neeraj

    2014-01-01

    The study aims to examine the faculty members' perspective (age Wise, Gender Wise and Work Experience wise) of parameters affecting the quality of education in an affiliated Undergraduate Engineering Institution in Haryana. It is a descriptive type of research. The data has been collected with the help of 'Questionnaire Based Survey'. The sample…

  8. WebCT--The Quasimoderating Effect of Perceived Affective Quality on an Extending Technology Acceptance Model

    ERIC Educational Resources Information Center

    Sanchez-Franco, Manuel J.

    2010-01-01

    Perceived affective quality is an attractive area of research in Information System. Specifically, understanding the intrinsic and extrinsic individual factors and interaction effects that influence Information and Communications Technology (ICT) acceptance and adoption--in higher education--continues to be a focal interest in learning research.…

  9. Change in Image Quality According to the 3D Locations of a CBCT Phantom

    PubMed Central

    Hwang, Jae Joon; Park, Hyok; Jeong, Ho-Gul; Han, Sang-Sun

    2016-01-01

    A patient’s position changes in every CBCT scan despite patient alignment protocols. However, there have been studies to determine image quality differences when an object is located at the center of the field of view (FOV). To evaluate changes in the image quality of the CBCT scan according to different object positions, the image quality indexes of the Alphard 3030 (Alphard Roentgen Ind., Ltd., Kyoto, Japan) and the Rayscan Symphony (RAY Ind., Ltd., Suwon, Korea) were measured using the Quart DVT_AP phantom at the center of the FOV and 6 peripheral positions under four types of exposure conditions. Anterior, posterior, right, left, upper, and lower positions 1 cm offset from the center of the FOV were used for the peripheral positions. We evaluated and compared the voxel size, homogeneity, contrast to noise ratio (CNR), and the 10% point of the modulation transfer function (MTF10%) of the center and periphery. Because the voxel size, which is determined by the Nyquist frequency, was within tolerance, other image quality indexes were not influenced by the voxel size. For the CNR, homogeneity, and MTF10%, there were peripheral positions which showed considerable differences with statistical significance. The average difference between the center and periphery was up to 31.27% (CNR), 70.49% (homogeneity), and 13.64% (MTF10%). Homogeneity was under tolerance at some of the peripheral locations. Because the CNR, homogeneity, and MTF10% were significantly affected by positional changes of the phantom, an object’s position can influence the interpretation of follow up CBCT images. Therefore, efforts to locate the object in the same position are important. PMID:27093639

  10. Change in Image Quality According to the 3D Locations of a CBCT Phantom.

    PubMed

    Hwang, Jae Joon; Park, Hyok; Jeong, Ho-Gul; Han, Sang-Sun

    2016-01-01

    A patient's position changes in every CBCT scan despite patient alignment protocols. However, there have been studies to determine image quality differences when an object is located at the center of the field of view (FOV). To evaluate changes in the image quality of the CBCT scan according to different object positions, the image quality indexes of the Alphard 3030 (Alphard Roentgen Ind., Ltd., Kyoto, Japan) and the Rayscan Symphony (RAY Ind., Ltd., Suwon, Korea) were measured using the Quart DVT_AP phantom at the center of the FOV and 6 peripheral positions under four types of exposure conditions. Anterior, posterior, right, left, upper, and lower positions 1 cm offset from the center of the FOV were used for the peripheral positions. We evaluated and compared the voxel size, homogeneity, contrast to noise ratio (CNR), and the 10% point of the modulation transfer function (MTF10%) of the center and periphery. Because the voxel size, which is determined by the Nyquist frequency, was within tolerance, other image quality indexes were not influenced by the voxel size. For the CNR, homogeneity, and MTF10%, there were peripheral positions which showed considerable differences with statistical significance. The average difference between the center and periphery was up to 31.27% (CNR), 70.49% (homogeneity), and 13.64% (MTF10%). Homogeneity was under tolerance at some of the peripheral locations. Because the CNR, homogeneity, and MTF10% were significantly affected by positional changes of the phantom, an object's position can influence the interpretation of follow up CBCT images. Therefore, efforts to locate the object in the same position are important. PMID:27093639

  11. Image quality in CT: From physical measurements to model observers.

    PubMed

    Verdun, F R; Racine, D; Ott, J G; Tapiovaara, M J; Toroi, P; Bochud, F O; Veldkamp, W J H; Schegerer, A; Bouwman, R W; Giron, I Hernandez; Marshall, N W; Edyvean, S

    2015-12-01

    Evaluation of image quality (IQ) in Computed Tomography (CT) is important to ensure that diagnostic questions are correctly answered, whilst keeping radiation dose to the patient as low as is reasonably possible. The assessment of individual aspects of IQ is already a key component of routine quality control of medical x-ray devices. These values together with standard dose indicators can be used to give rise to 'figures of merit' (FOM) to characterise the dose efficiency of the CT scanners operating in certain modes. The demand for clinically relevant IQ characterisation has naturally increased with the development of CT technology (detectors efficiency, image reconstruction and processing), resulting in the adaptation and evolution of assessment methods. The purpose of this review is to present the spectrum of various methods that have been used to characterise image quality in CT: from objective measurements of physical parameters to clinically task-based approaches (i.e. model observer (MO) approach) including pure human observer approach. When combined together with a dose indicator, a generalised dose efficiency index can be explored in a framework of system and patient dose optimisation. We will focus on the IQ methodologies that are required for dealing with standard reconstruction, but also for iterative reconstruction algorithms. With this concept the previously used FOM will be presented with a proposal to update them in order to make them relevant and up to date with technological progress. The MO that objectively assesses IQ for clinically relevant tasks represents the most promising method in terms of radiologist sensitivity performance and therefore of most relevance in the clinical environment.

  12. Image quality in CT: From physical measurements to model observers.

    PubMed

    Verdun, F R; Racine, D; Ott, J G; Tapiovaara, M J; Toroi, P; Bochud, F O; Veldkamp, W J H; Schegerer, A; Bouwman, R W; Giron, I Hernandez; Marshall, N W; Edyvean, S

    2015-12-01

    Evaluation of image quality (IQ) in Computed Tomography (CT) is important to ensure that diagnostic questions are correctly answered, whilst keeping radiation dose to the patient as low as is reasonably possible. The assessment of individual aspects of IQ is already a key component of routine quality control of medical x-ray devices. These values together with standard dose indicators can be used to give rise to 'figures of merit' (FOM) to characterise the dose efficiency of the CT scanners operating in certain modes. The demand for clinically relevant IQ characterisation has naturally increased with the development of CT technology (detectors efficiency, image reconstruction and processing), resulting in the adaptation and evolution of assessment methods. The purpose of this review is to present the spectrum of various methods that have been used to characterise image quality in CT: from objective measurements of physical parameters to clinically task-based approaches (i.e. model observer (MO) approach) including pure human observer approach. When combined together with a dose indicator, a generalised dose efficiency index can be explored in a framework of system and patient dose optimisation. We will focus on the IQ methodologies that are required for dealing with standard reconstruction, but also for iterative reconstruction algorithms. With this concept the previously used FOM will be presented with a proposal to update them in order to make them relevant and up to date with technological progress. The MO that objectively assesses IQ for clinically relevant tasks represents the most promising method in terms of radiologist sensitivity performance and therefore of most relevance in the clinical environment. PMID:26459319

  13. Spectral CT imaging in patients with Budd-Chiari syndrome: investigation of image quality.

    PubMed

    Su, Lei; Dong, Junqiang; Sun, Qiang; Liu, Jie; Lv, Peijie; Hu, Lili; Yan, Liangliang; Gao, Jianbo

    2014-11-01

    To assess the image quality of monochromatic imaging from spectral CT in patients with Budd-Chiari syndrome (BCS), fifty patients with BCS underwent spectral CT to generate conventional 140 kVp polychromatic images (group A) and monochromatic images, with energy levels from 40 to 80, 40 + 70, and 50 + 70 keV fusion images (group B) during the portal venous phase (PVP) and the hepatic venous phase (HVP). Two-sample t tests compared vessel-to-liver contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) for the portal vein (PV), hepatic vein (HV), inferior vena cava. Readers' subjective evaluations of the image quality were recorded. The highest SNR values in group B were distributed at 50 keV; the highest CNR values in group B were distributed at 40 keV. The higher CNR values and SNR values were obtained though PVP of PV (SNR 18.39 ± 6.13 vs. 10.56 ± 3.31, CNR 7.81 ± 3.40 vs. 3.58 ± 1.31) and HVP of HV (3.89 ± 2.08 vs. 1.27 ± 1.55) in the group B; the lower image noise for group B was at 70 keV and 50 + 70 keV (15.54 ± 8.39 vs. 18.40 ± 4.97, P = 0.0004 and 18.97 ± 7.61 vs. 18.40 ± 4.97, P = 0.0691); the results show that the 50 + 70 keV fusion image quality was better than that in group A. Monochromatic energy levels of 40-70, 40 + 70, and 50 + 70 keV fusion image can increase vascular contrast and that will be helpful for the diagnosis of BCS, we select the 50 + 70 keV fusion image to acquire the best BCS images.

  14. Automated techniques for quality assurance of radiological image modalities

    NASA Astrophysics Data System (ADS)

    Goodenough, David J.; Atkins, Frank B.; Dyer, Stephen M.

    1991-05-01

    This paper will attempt to identify many of the important issues for quality assurance (QA) of radiological modalities. It is of course to be realized that QA can span many aspects of the diagnostic decision making process. These issues range from physical image performance levels to and through the diagnostic decision of the radiologist. We will use as a model for automated approaches a program we have developed to work with computed tomography (CT) images. In an attempt to unburden the user, and in an effort to facilitate the performance of QA, we have been studying automated approaches. The ultimate utility of the system is its ability to render in a safe and efficacious manner, decisions that are accurate, sensitive, specific and which are possible within the economic constraints of modern health care delivery.

  15. SPOT4 HRVIR first in-flight image quality results

    NASA Astrophysics Data System (ADS)

    Kubik, Philippe; Breton, Eric; Meygret, Aime; Cabrieres, Bernard; Hazane, Philippe; Leger, Dominique

    1998-12-01

    The SPOT4 remote sensing satellite was successfully launched at the end of March 1998. It was designed first of all to guarantee continuity of SPOT services beyond the year 2000 but also to improve the mission. Its two cameras are now called HRVIR since a short-wave infrared (SWIR) spectral band has been added. Like their predecessor HRV cameras, they provide 20-meter multispectral and 10-meter monospectral images with a 60 km swath for nadir viewing. SPOT4's first two months of life in orbit were dedicated to the evaluation of its image quality performances. During this period of time, the CNES team used specific target programming in order to compute image correction parameters and estimate the performance, at system level, of the image processing chain. After a description of SPOT4 system requirements and new features of the HRVIR cameras, this paper focuses on the performance deduced from in-flight measurements, methods used and their accuracy: MTF measurements, refocusing, absolute calibration, signal-to-noise Ratio, location, focal plane cartography, dynamic disturbances.

  16. New strategy for image and video quality assessment

    NASA Astrophysics Data System (ADS)

    Ma, Qi; Zhang, Liming; Wang, Bin

    2010-01-01

    Image and video quality assessment (QA) is a critical issue in image and video processing applications. General full-reference (FR) QA criteria such as peak signal-to-noise ratio (PSNR) and mean squared error (MSE) do not accord well with human subjective assessment. Some QA indices that consider human visual sensitivity, such as mean structural similarity (MSSIM) with structural sensitivity, visual information fidelity (VIF) with statistical sensitivity, etc., were proposed in view of the differences between reference and distortion frames on a pixel or local level. However, they ignore the role of human visual attention (HVA). Recently, some new strategies with HVA have been proposed, but the methods extracting the visual attention are too complex for real-time realization. We take advantage of the phase spectrum of quaternion Fourier transform (PQFT), a very fast algorithm we previously proposed, to extract saliency maps of color images or videos. Then we propose saliency-based methods for both image QA (IQA) and video QA (VQA) by adding weights related to saliency features to these original IQA or VQA criteria. Experimental results show that our saliency-based strategy can approach more closely to human subjective assessment compared with these original IQA or VQA methods and does not take more time because of the fast PQFT algorithm.

  17. An automated system for numerically rating document image quality

    SciTech Connect

    Cannon, M.; Kelly, P.; Iyengar, S.S.; Brener, N.

    1997-04-01

    As part of the Department of Energy document declassification program, the authors have developed a numerical rating system to predict the OCR error rate that they expect to encounter when processing a particular document. The rating algorithm produces a vector containing scores for different document image attributes such as speckle and touching characters. The OCR error rate for a document is computed from a weighted sum of the elements of the corresponding quality vector. The predicted OCR error rate will be used to screen documents that would not be handled properly with existing document processing products.

  18. Virtual monochromatic imaging in dual-source dual-energy CT: Radiation dose and image quality

    SciTech Connect

    Yu Lifeng; Christner, Jodie A.; Leng Shuai; Wang Jia; Fletcher, Joel G.; McCollough, Cynthia H.

    2011-12-15

    Purpose: To evaluate the image quality of virtual monochromatic images synthesized from dual-source dual-energy computed tomography (CT) in comparison with conventional polychromatic single-energy CT for the same radiation dose. Methods: In dual-energy CT, besides the material-specific information, one may also synthesize monochromatic images at different energies, which can be used for routine diagnosis similar to conventional polychromatic single-energy images. In this work, the authors assessed whether virtual monochromatic images generated from dual-source CT scanners had an image quality similar to that of polychromatic single-energy images for the same radiation dose. First, the authors provided a theoretical analysis of the optimal monochromatic energy for either the minimum noise level or the highest iodine contrast to noise ratio (CNR) for a given patient size and dose partitioning between the low- and high-energy scans. Second, the authors performed an experimental study on a dual-source CT scanner to evaluate the noise and iodine CNR in monochromatic images. A thoracic phantom with three sizes of attenuating rings was used to represent four adult sizes. For each phantom size, three dose partitionings between the low-energy (80 kV) and the high-energy (140 kV) scans were used in the dual-energy scan. Monochromatic images at eight energies (40 to 110 keV) were generated for each scan. Phantoms were also scanned at each of the four polychromatic single energy (80, 100, 120, and 140 kV) with the same radiation dose. Results: The optimal virtual monochromatic energy depends on several factors: phantom size, partitioning of the radiation dose between low- and high-energy scans, and the image quality metrics to be optimized. With the increase of phantom size, the optimal monochromatic energy increased. With the increased percentage of radiation dose on the low energy scan, the optimal monochromatic energy decreased. When maximizing the iodine CNR in

  19. Image quality degradation and retrieval errors introduced by registration and interpolation of multispectral digital images

    SciTech Connect

    Henderson, B.G.; Borel, C.C.; Theiler, J.P.; Smith, B.W.

    1996-04-01

    Full utilization of multispectral data acquired by whiskbroom and pushbroom imagers requires that the individual channels be registered accurately. Poor registration introduces errors which can be significant, especially in high contrast areas such as boundaries between regions. We simulate the acquisition of multispectral imagery in order to estimate the errors that are introduced by co-registration of different channels and interpolation within the images. We compute the Modulation Transfer Function (MTF) and image quality degradation brought about by fractional pixel shifting and calculate errors in retrieved quantities (surface temperature and water vapor) that occur as a result of interpolation. We also present a method which might be used to estimate sensor platform motion for accurate registration of images acquired by a pushbroom scanner.

  20. Retinal Image Quality Assessment for Spaceflight-Induced Vision Impairment Study

    NASA Technical Reports Server (NTRS)

    Vu, Amanda Cadao; Raghunandan, Sneha; Vyas, Ruchi; Radhakrishnan, Krishnan; Taibbi, Giovanni; Vizzeri, Gianmarco; Grant, Maria; Chalam, Kakarla; Parsons-Wingerter, Patricia

    2015-01-01

    Long-term exposure to space microgravity poses significant risks for visual impairment. Evidence suggests such vision changes are linked to cephalad fluid shifts, prompting a need to directly quantify microgravity-induced retinal vascular changes. The quality of retinal images used for such vascular remodeling analysis, however, is dependent on imaging methodology. For our exploratory study, we hypothesized that retinal images captured using fluorescein imaging methodologies would be of higher quality in comparison to images captured without fluorescein. A semi-automated image quality assessment was developed using Vessel Generation Analysis (VESGEN) software and MATLAB® image analysis toolboxes. An analysis of ten images found that the fluorescein imaging modality provided a 36% increase in overall image quality (two-tailed p=0.089) in comparison to nonfluorescein imaging techniques.

  1. Digital processing to improve image quality in real-time neutron radiography

    NASA Astrophysics Data System (ADS)

    Fujine, Shigenori; Yoneda, Kenji; Kanda, Keiji

    1985-01-01

    Real-time neutron radiography (NTV) has been used for practical applications at the Kyoto University Reactor (KUR). At present, however, the direct image from the TV system is still poor in resolution and low in contrast. In this paper several image improvements are demonstrated, such as a frame summing technique, which are effective in increasing image quality in neutron radiography. Image integration before the A/D converter has a beneficial effect on image quality and the high quality image reveals details invisible in direct images, such as: small holes by a reversed image, defects in a neutron converter screen through a high quality image, a moving object in a contoured image, a slight difference between two low-contrast images by a subtraction technique, and so on. For the real-time application a contouring operation and an averaging approach can also be utilized effectively.

  2. Undetectable Changes in Image Resolution of Luminance-Contrast Gradients Affect Depth Perception

    PubMed Central

    Tsushima, Yoshiaki; Komine, Kazuteru; Sawahata, Yasuhito; Morita, Toshiya

    2016-01-01

    A great number of studies have suggested a variety of ways to get depth information from two dimensional images such as binocular disparity, shape-from-shading, size gradient/foreshortening, aerial perspective, and so on. Are there any other new factors affecting depth perception? A recent psychophysical study has investigated the correlation between image resolution and depth sensation of Cylinder images (A rectangle contains gradual luminance-contrast changes.). It was reported that higher resolution images facilitate depth perception. However, it is still not clear whether or not the finding generalizes to other kinds of visual stimuli, because there are more appropriate visual stimuli for exploration of depth perception of luminance-contrast changes, such as Gabor patch. Here, we further examined the relationship between image resolution and depth perception by conducting a series of psychophysical experiments with not only Cylinders but also Gabor patches having smoother luminance-contrast gradients. As a result, higher resolution images produced stronger depth sensation with both images. This finding suggests that image resolution affects depth perception of simple luminance-contrast differences (Gabor patch) as well as shape-from-shading (Cylinder). In addition, this phenomenon was found even when the resolution difference was undetectable. This indicates the existence of consciously available and unavailable information in our visual system. These findings further support the view that image resolution is a cue for depth perception that was previously ignored. It partially explains the unparalleled viewing experience of novel high resolution displays. PMID:26941693

  3. Undetectable Changes in Image Resolution of Luminance-Contrast Gradients Affect Depth Perception.

    PubMed

    Tsushima, Yoshiaki; Komine, Kazuteru; Sawahata, Yasuhito; Morita, Toshiya

    2016-01-01

    A great number of studies have suggested a variety of ways to get depth information from two dimensional images such as binocular disparity, shape-from-shading, size gradient/foreshortening, aerial perspective, and so on. Are there any other new factors affecting depth perception? A recent psychophysical study has investigated the correlation between image resolution and depth sensation of Cylinder images (A rectangle contains gradual luminance-contrast changes.). It was reported that higher resolution images facilitate depth perception. However, it is still not clear whether or not the finding generalizes to other kinds of visual stimuli, because there are more appropriate visual stimuli for exploration of depth perception of luminance-contrast changes, such as Gabor patch. Here, we further examined the relationship between image resolution and depth perception by conducting a series of psychophysical experiments with not only Cylinders but also Gabor patches having smoother luminance-contrast gradients. As a result, higher resolution images produced stronger depth sensation with both images. This finding suggests that image resolution affects depth perception of simple luminance-contrast differences (Gabor patch) as well as shape-from-shading (Cylinder). In addition, this phenomenon was found even when the resolution difference was undetectable. This indicates the existence of consciously available and unavailable information in our visual system. These findings further support the view that image resolution is a cue for depth perception that was previously ignored. It partially explains the unparalleled viewing experience of novel high resolution displays.

  4. A widefield fluorescence microscope with a linear image sensor for image cytometry of biospecimens: Considerations for image quality optimization

    NASA Astrophysics Data System (ADS)

    Hutcheson, Joshua A.; Majid, Aneeka A.; Powless, Amy J.; Muldoon, Timothy J.

    2015-09-01

    Linear image sensors have been widely used in numerous research and industry applications to provide continuous imaging of moving objects. Here, we present a widefield fluorescence microscope with a linear image sensor used to image translating objects for image cytometry. First, a calibration curve was characterized for a custom microfluidic chamber over a span of volumetric pump rates. Image data were also acquired using 15 μm fluorescent polystyrene spheres on a slide with a motorized translation stage in order to match linear translation speed with line exposure periods to preserve the image aspect ratio. Aspect ratios were then calculated after imaging to ensure quality control of image data. Fluorescent beads were imaged in suspension flowing through the microfluidics chamber being pumped by a mechanical syringe pump at 16 μl min-1 with a line exposure period of 150 μs. The line period was selected to acquire images of fluorescent beads with a 40 dB signal-to-background ratio. A motorized translation stage was then used to transport conventional glass slides of stained cellular biospecimens. Whole blood collected from healthy volunteers was stained with 0.02% (w/v) proflavine hemisulfate was imaged to highlight leukocyte morphology with a 1.56 mm × 1.28 mm field of view (1540 ms total acquisition time). Oral squamous cells were also collected from healthy volunteers and stained with 0.01% (w/v) proflavine hemisulfate to demonstrate quantifiable subcellular features and an average nuclear to cytoplasmic ratio of 0.03 (n = 75), with a resolution of 0.31 μm pixels-1.

  5. A widefield fluorescence microscope with a linear image sensor for image cytometry of biospecimens: Considerations for image quality optimization

    SciTech Connect

    Hutcheson, Joshua A.; Majid, Aneeka A.; Powless, Amy J.; Muldoon, Timothy J.

    2015-09-15

    Linear image sensors have been widely used in numerous research and industry applications to provide continuous imaging of moving objects. Here, we present a widefield fluorescence microscope with a linear image sensor used to image translating objects for image cytometry. First, a calibration curve was characterized for a custom microfluidic chamber over a span of volumetric pump rates. Image data were also acquired using 15 μm fluorescent polystyrene spheres on a slide with a motorized translation stage in order to match linear translation speed with line exposure periods to preserve the image aspect ratio. Aspect ratios were then calculated after imaging to ensure quality control of image data. Fluorescent beads were imaged in suspension flowing through the microfluidics chamber being pumped by a mechanical syringe pump at 16 μl min{sup −1} with a line exposure period of 150 μs. The line period was selected to acquire images of fluorescent beads with a 40 dB signal-to-background ratio. A motorized translation stage was then used to transport conventional glass slides of stained cellular biospecimens. Whole blood collected from healthy volunteers was stained with 0.02% (w/v) proflavine hemisulfate was imaged to highlight leukocyte morphology with a 1.56 mm × 1.28 mm field of view (1540 ms total acquisition time). Oral squamous cells were also collected from healthy volunteers and stained with 0.01% (w/v) proflavine hemisulfate to demonstrate quantifiable subcellular features and an average nuclear to cytoplasmic ratio of 0.03 (n = 75), with a resolution of 0.31 μm pixels{sup −1}.

  6. Quality Enhancement and Nerve Fibre Layer Artefacts Removal in Retina Fundus Images by Off Axis Imaging

    SciTech Connect

    Giancardo, Luca; Meriaudeau, Fabrice; Karnowski, Thomas Paul; Li, Yaquin; Tobin Jr, Kenneth William; Chaum, Edward

    2011-01-01

    Retinal fundus images acquired with non-mydriatic digital fundus cameras are a versatile tool for the diagnosis of various retinal diseases. Because of the ease of use of newer camera models and their relative low cost, these cameras are employed worldwide by retina specialists to diagnose diabetic retinopathy and other degenerative diseases. Even with relative ease of use, the images produced by these systems sometimes suffer from reflectance artefacts mainly due to the nerve fibre layer (NFL) or other camera lens related reflections. We propose a technique that employs multiple fundus images acquired from the same patient to obtain a single higher quality image without these reflectance artefacts. The removal of bright artefacts, and particularly of NFL reflectance, can have great benefits for the reduction of false positives in the detection of retinal lesions such as exudate, drusens and cotton wool spots by automatic systems or manual inspection. If enough redundant information is provided by the multiple images, this technique also compensates for a suboptimal illumination. The fundus images are acquired in straightforward but unorthodox manner, i.e. the stare point of the patient is changed between each shot but the camera is kept fixed. Between each shot, the apparent shape and position of all the retinal structures that do not exhibit isotropic reflectance (e.g. bright artefacts) change. This physical effect is exploited by our algorithm in order to extract the pixels belonging to the inner layers of the retina, hence obtaining a single artefacts-free image.

  7. Open source database of images DEIMOS: extension for large-scale subjective image quality assessment

    NASA Astrophysics Data System (ADS)

    Vítek, Stanislav

    2014-09-01

    DEIMOS (Database of Images: Open Source) is an open-source database of images and video sequences for testing, verification and comparison of various image and/or video processing techniques such as compression, reconstruction and enhancement. This paper deals with extension of the database allowing performing large-scale web-based subjective image quality assessment. Extension implements both administrative and client interface. The proposed system is aimed mainly at mobile communication devices, taking into account advantages of HTML5 technology; it means that participants don't need to install any application and assessment could be performed using web browser. The assessment campaign administrator can select images from the large database and then apply rules defined by various test procedure recommendations. The standard test procedures may be fully customized and saved as a template. Alternatively the administrator can define a custom test, using images from the pool and other components, such as evaluating forms and ongoing questionnaires. Image sequence is delivered to the online client, e.g. smartphone or tablet, as a fully automated assessment sequence or viewer can decide on timing of the assessment if required. Environmental data and viewing conditions (e.g. illumination, vibrations, GPS coordinates, etc.), may be collected and subsequently analyzed.

  8. Human vision model for the objective evaluation of perceived image quality applied to MRI and image restoration

    NASA Astrophysics Data System (ADS)

    Salem, Kyle A.; Wilson, David L.

    2002-12-01

    We are developing a method to objectively quantify image quality and applying it to the optimization of interventional magnetic resonance imaging (iMRI). In iMRI, images are used for live-time guidance of interventional procedures such as the minimally invasive treatment of cancer. Hence, not only does one desire high quality images, but they must also be acquired quickly. In iMRI, images are acquired in the Fourier domain, or k-space, and this allows many creative ways to image quickly such as keyhole imaging where k-space is preferentially subsampled, yielding suboptimal images at very high frame rates. Other techniques include spiral, radial, and the combined acquisition technique. We have built a perceptual difference model (PDM) that incorporates various components of the human visual system. The PDM was validated using subjective image quality ratings by naive observers and task-based measures defined by interventional radiologists. Using the PDM, we investigated the effects of various imaging parameters on image quality and quantified the degradation due to novel imaging techniques. Results have provided significant information about imaging time versus quality tradeoffs aiding the MR sequence engineer. The PDM has also been used to evaluate other applications such as Dixon fat suppressed MRI and image restoration. In image restoration, the PDM has been used to evaluate the Generalized Minimal Residual (GMRES) image restoration method and to examine the ability to appropriately determine a stopping condition for such iterative methods. The PDM has been shown to be an objective tool for measuring image quality and can be used to determine the optimal methodology for various imaging applications.

  9. Comparison of no-reference image quality assessment machine learning-based algorithms on compressed images

    NASA Astrophysics Data System (ADS)

    Charrier, Christophe; Saadane, AbdelHakim; Fernandez-Maloigne, Christine

    2015-01-01

    No-reference image quality metrics are of fundamental interest as they can be embedded in practical applications. The main goal of this paper is to perform a comparative study of seven well known no-reference learning-based image quality algorithms. To test the performance of these algorithms, three public databases are used. As a first step, the trial algorithms are compared when no new learning is performed. The second step investigates how the training set influences the results. The Spearman Rank Ordered Correlation Coefficient (SROCC) is utilized to measure and compare the performance. In addition, an hypothesis test is conducted to evaluate the statistical significance of performance of each tested algorithm.

  10. Evaluation of scatter effects on image quality for breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Wu, Gang; Mainprize, James G.; Boone, John M.; Yaffe, Martin J.

    2007-03-01

    Digital breast tomosynthesis uses a limited number of low-dose x-ray projections to produce a three-dimensional (3D) tomographic reconstruction of the breast. The purpose of this investigation was to characterize and evaluate the effect of scatter radiation on image quality for breast tomosynthesis. Generated by a Monte Carlo simulation method, scatter point spread functions (PSF) were convolved over the field of view (FOV) to estimate the distribution of scatter for each angle of tomosynthesis projection. The results demonstrated that in the absence of scatter reduction techniques, the scatter-to-primary ratio (SPR) levels for the average breast are quite high (~0.4 at the centre of mass), and increased with increased breast thickness and with larger FOV. Associated with such levels of x-ray scatter are cupping artifacts, as well as reduced accuracy in reconstruction values. The effect of x-ray scatter on the contrast, noise, and signal-difference-to-noise ratio (SDNR) in tomosynthesis reconstruction was measured as a function of tumour size. For example, the contrast in the reconstructed central slice of a tumour-like mass (14 mm in diameter) was degraded by 30% while the inaccuracy of the voxel value was 28%, and the reduction of SDNR was 60%. We have quantified the degree to which scatter degrades the image quality over a wide range of parameters, including x-ray beam energy, breast thickness, breast diameter, and breast composition. However, even without a scatter rejection device, the contrast and SDNR in the reconstructed tomosynthesis slice is higher than that of conventional mammographic projection images acquired with a grid at an equivalent total exposure.

  11. Proteomic Assessment of the Relevant Factors Affecting Pork Meat Quality Associated with Longissimus dorsi Muscles in Duroc Pigs

    PubMed Central

    Cho, Jin Hyoung; Lee, Ra Ham; Jeon, Young-Joo; Park, Seon-Min; Shin, Jae-Cheon; Kim, Seok-Ho; Jeong, Jin Young; Kang, Hyun-sung; Choi, Nag-Jin; Seo, Kang Seok; Cho, Young Sik; Kim, MinSeok S.; Ko, Sungho; Seo, Jae-Min; Lee, Seung-Youp; Shim, Jung-Hyun; Chae, Jung-Il

    2016-01-01

    Meat quality is a complex trait influenced by many factors, including genetics, nutrition, feeding environment, animal handling, and their interactions. To elucidate relevant factors affecting pork quality associated with oxidative stress and muscle development, we analyzed protein expression in high quality longissimus dorsi muscles (HQLD) and low quality longissimus dorsi muscles (LQLD) from Duroc pigs by liquid chromatographytandem mass spectrometry (LC-MS/MS)–based proteomic analysis. Between HQLD (n = 20) and LQLD (n = 20) Duroc pigs, 24 differentially expressed proteins were identified by LC-MS/MS. A total of 10 and 14 proteins were highly expressed in HQLD and LQLD, respectively. The 24 proteins have putative functions in the following seven categories: catalytic activity (31%), ATPase activity (19%), oxidoreductase activity (13%), cytoskeletal protein binding (13%), actin binding (12%), calcium ion binding (6%), and structural constituent of muscle (6%). Silver-stained image analysis revealed significant differential expression of lactate dehydrogenase A (LDHA) between HQLD and LQLD Duroc pigs. LDHA was subjected to in vitro study of myogenesis under oxidative stress conditions and LDH activity assay to verification its role in oxidative stress. No significant difference of mRNA expression level of LDHA was found between normal and oxidative stress condition. However, LDH activity was significantly higher under oxidative stress condition than at normal condition using in vitro model of myogenesis. The highly expressed LDHA was positively correlated with LQLD. Moreover, LDHA activity increased by oxidative stress was reduced by antioxidant resveratrol. This paper emphasizes the importance of differential expression patterns of proteins and their interaction for the development of meat quality traits. Our proteome data provides valuable information on important factors which might aid in the regulation of muscle development and the improvement of meat

  12. Digital Image Processing Applied To Quality Assurance In Mineral Industry

    NASA Astrophysics Data System (ADS)

    Hamrouni, Zouheir; Ayache, Alain; Krey, Charlie J.

    1989-03-01

    In this paper , we bring forward an application of vision in the domain of quality assurance in mineral industry of talc. By using image processing and computer vision means, the proposed real time whiteness captor system intends: - to inspect the whiteness of grinded product, - to manage the mixing of primary talcs before grinding, in order to obtain a final product with predetermined whiteness. The system uses the robotic CCD microcamera MICAM (designed by our laboratory and presently manufactured), a micro computer system based on Motorola 68020 and real time image processing boards. It has the industrial following specifications: - High reliability - Whiteness is determined with a 0.3% precision on a scale of 25 levels. Because of the expected precision, we had to study carefully the lighting system, the type of image captor and associated electronics. The first developped softwares are able to process the withness of talcum powder; then we have conceived original algorithms to control withness of rough talc taking into account texture and shadows. The processing times of these algorithms are completely compatible with industrial rates. This system can be applied to other domains where high precision reflectance captor is needed: industry of paper, paints, ...

  13. Beyond image quality: designing engaging interactions with digital products

    NASA Astrophysics Data System (ADS)

    de Ridder, Huib; Rozendaal, Marco C.

    2008-02-01

    Ubiquitous computing (or Ambient Intelligence) promises a world in which information is available anytime anywhere and with which humans can interact in a natural, multimodal way. In such world, perceptual image quality remains an important criterion since most information will be displayed visually, but other criteria such as enjoyment, fun, engagement and hedonic quality are emerging. This paper deals with engagement, the intrinsically enjoyable readiness to put more effort into exploring and/or using a product than strictly required, thus attracting and keeping user's attention for a longer period of time. The impact of the experienced richness of an interface, both visually and degree of possible manipulations, was investigated in a series of experiments employing game-like user interfaces. This resulted in the extension of an existing conceptual framework relating engagement to richness by means of two intermediating variables, namely experienced challenge and sense of control. Predictions from this revised framework are evaluated against results of an earlier experiment assessing the ergonomic and hedonic qualities of interactive media. Test material consisted of interactive CD-ROM's containing presentations of three companies for future customers.

  14. Mutual information as a measure of image quality for 3D dynamic lung imaging with EIT

    PubMed Central

    Crabb, M G; Davidson, J L; Little, R; Wright, P; Morgan, A R; Miller, C A; Naish, J H; Parker, G J M; Kikinis, R; McCann, H; Lionheart, W R B

    2014-01-01

    We report on a pilot study of dynamic lung electrical impedance tomography (EIT) at the University of Manchester. Low-noise EIT data at 100 frames per second (fps) were obtained from healthy male subjects during controlled breathing, followed by magnetic resonance imaging (MRI) subsequently used for spatial validation of the EIT reconstruction. The torso surface in the MR image and electrode positions obtained using MRI fiducial markers informed the construction of a 3D finite element model extruded along the caudal-distal axis of the subject. Small changes in the boundary that occur during respiration were accounted for by incorporating the sensitivity with respect to boundary shape into a robust temporal difference reconstruction algorithm. EIT and MRI images were co-registered using the open source medical imaging software, 3D Slicer. A quantitative comparison of quality of different EIT reconstructions was achieved through calculation of the mutual information with a lung-segmented MR image. EIT reconstructions using a linear shape correction algorithm reduced boundary image artefacts, yielding better contrast of the lungs, and had 10% greater mutual information compared with a standard linear EIT reconstruction. PMID:24710978

  15. The Effect of Body Image Threat on Smoking Motivation Among College Women: Mediation by Negative Affect

    PubMed Central

    Lopez Khoury, Elena N.; Litvin, Erika B.; Brandon, Thomas H.

    2014-01-01

    Previous descriptive, correlational, and quasi-experimental research has established that weight concerns and negative body image are associated with tobacco smoking, cessation, and relapse among young women. A recent experimental study found that activation of negative body image cognitions produced urges to smoke (Lopez, Drobes, Thompson, & Brandon, 2008). The current study intended to replicate and extend these experimental findings by examining the role of negative affect as a mediator of the relationship between body dissatisfaction and smoking urges. Female college smokers (N = 133) were randomly assigned to a body image challenge (trying on a bathing suit) or a control condition (evaluating a purse). State levels of urge to smoke, mood, and body dissatisfaction were assessed both pre- and post-manipulation. Trying on a bathing suit increased body dissatisfaction and reported urges to smoke, particularly those urges related to reducing negative affect. Additionally, state negative affect mediated the relationship between the body image manipulation and smoking urge. This study provides additional support, through an experimental design, that situational challenges to body image influence smoking motivation, and that this effect occurs, at least in part, via increases in negative affect. Theoretical and applied implications are discussed. PMID:19586144

  16. Factors Affecting Quality of Emergency Service in Iran’s Military Hospitals: A Qualitative Study

    PubMed Central

    Zaboli, Rouhollah; Shokri, Mohamad; Javadi, Maryam Seyed; Teymourzadeh, Ehsan; Ameryoun, Ahmad

    2016-01-01

    Introduction Quality is a key factor for the success of any organization. Moreover, accessing quality in the emergency department is highly significant due to the sensitive and complex role of this department in hospitals as well as the healthcare and medical treatment system. This study aimed to identify, from the perspective of medical experts and nurses serving in the military health and medical treatment system, the factors that affect the quality of emergency service provided in selected military hospitals in Iran. Methods This qualitative research was performed in Valiaser Hospital of Tehran (Iran) in 2015, using the framework analysis method. The purposive sampling technique was used for data collection. A total of 14 participants included two emergency medicine specialists, four general physicians, two senior nurses (holding M.Sc. degrees), and six nurses (holding B.Sc. degree). Data were collected through semistructured interviews. Sampling continued until data saturation occurred. The Atlas/Ti software was employed for data analysis. Results Four basic themes emerged as the effective factors on the quality of emergency services, namely, structural themes, process/performance themes, outcome themes, and environmental/contextual themes. Moreover, through a framework analysis, 47 subthemes were specified and summarized as indicators of the different aspects of the main themes. Conclusion The factors affecting the quality of emergency services in Iran’s selected military hospitals are especially complicated due to the diversity of the missions involved; thus, different factors can influence this quality. Therefore, an effort should be made to tackle the existing obstacles, facilitate the identification of these effective factors, and promotion of the quality of healthcare services. PMID:27790355

  17. The rise of global warming skepticism: exploring affective image associations in the United States over time.

    PubMed

    Smith, Nicholas; Leiserowitz, Anthony

    2012-06-01

    This article explores how affective image associations to global warming have changed over time. Four nationally representative surveys of the American public were conducted between 2002 and 2010 to assess public global warming risk perceptions, policy preferences, and behavior. Affective images (positive or negative feelings and cognitive representations) were collected and content analyzed. The results demonstrate a large increase in "naysayer" associations, indicating extreme skepticism about the issue of climate change. Multiple regression analyses found that holistic affect and "naysayer" associations were more significant predictors of global warming risk perceptions than cultural worldviews or sociodemographic variables, including political party and ideology. The results demonstrate the important role affective imagery plays in judgment and decision-making processes, how these variables change over time, and how global warming is currently perceived by the American public.

  18. Task-based measures of image quality and their relation to radiation dose and patient risk

    PubMed Central

    Barrett, Harrison H.; Myers, Kyle J.; Hoeschen, Christoph; Kupinski, Matthew A.; Little, Mark P.

    2015-01-01

    The theory of task-based assessment of image quality is reviewed in the context of imaging with ionizing radiation, and objective figures of merit (FOMs) for image quality are summarized. The variation of the FOMs with the task, the observer and especially with the mean number of photons recorded in the image is discussed. Then various standard methods for specifying radiation dose are reviewed and related to the mean number of photons in the image and hence to image quality. Current knowledge of the relation between local radiation dose and the risk of various adverse effects is summarized, and some graphical depictions of the tradeoffs between image quality and risk are introduced. Then various dose-reduction strategies are discussed in terms of their effect on task-based measures of image quality. PMID:25564960

  19. Joint influences of aerodynamic flow field and aerodynamic heating of the dome on imaging quality degradation of airborne optical systems.

    PubMed

    Xiao, Haosu; Zuo, Baojun; Tian, Yi; Zhang, Wang; Hao, Chenglong; Liu, Chaofeng; Li, Qi; Li, Fan; Zhang, Li; Fan, Zhigang

    2012-12-20

    We investigated the joint influences exerted by the nonuniform aerodynamic flow field surrounding the optical dome and the aerodynamic heating of the dome on imaging quality degradation of an airborne optical system. The Spalart-Allmaras model provided by FLUENT was used for flow computations. The fourth-order Runge-Kutta algorithm based ray tracing program was used to simulate optical transmission through the aerodynamic flow field and the dome. Four kinds of imaging quality evaluation parameters were presented: wave aberration of the exit pupil, point spread function, encircled energy, and modulation transfer function. The results show that the aero-optical disturbance of the aerodynamic flow field and the aerodynamic heating of the dome significantly affect the imaging quality of an airborne optical system.

  20. SENTINEL-2 image quality and level 1 processing

    NASA Astrophysics Data System (ADS)

    Meygret, Aimé; Baillarin, Simon; Gascon, Ferran; Hillairet, Emmanuel; Dechoz, Cécile; Lacherade, Sophie; Martimort, Philippe; Spoto, François; Henry, Patrice; Duca, Riccardo

    2009-08-01

    In the framework of the Global Monitoring for Environment and Security (GMES) programme, the European Space Agency (ESA) in partnership with the European Commission (EC) is developing the SENTINEL-2 optical imaging mission devoted to the operational monitoring of land and coastal areas. The Sentinel-2 mission is based on a twin satellites configuration deployed in polar sun-synchronous orbit and is designed to offer a unique combination of systematic global coverage with a wide field of view (290km), a high revisit (5 days at equator with two satellites), a high spatial resolution (10m, 20m and 60 m) and multi-spectral imagery (13 bands in the visible and the short wave infrared spectrum). SENTINEL-2 will ensure data continuity of SPOT and LANDSAT multispectral sensors while accounting for future service evolution. This paper presents the main geometric and radiometric image quality requirements for the mission. The strong multi-spectral and multi-temporal registration requirements constrain the stability of the platform and the ground processing which will automatically refine the geometric physical model through correlation technics. The geolocation of the images will take benefits from a worldwide reference data set made of SENTINEL-2 data strips geolocated through a global space-triangulation. These processing are detailed through the description of the level 1C production which will provide users with ortho-images of Top of Atmosphere reflectances. The huge amount of data (1.4 Tbits per orbit) is also a challenge for the ground processing which will produce at level 1C all the acquired data. Finally we discuss the different geometric (line of sight, focal plane cartography, ...) and radiometric (relative and absolute camera sensitivity) in-flight calibration methods that will take advantage of the on-board sun diffuser and ground targets to answer the severe mission requirements.

  1. Sparse Representation-Based Image Quality Index With Adaptive Sub-Dictionaries.

    PubMed

    Li, Leida; Cai, Hao; Zhang, Yabin; Lin, Weisi; Kot, Alex C; Sun, Xingming

    2016-08-01

    Distortions cause structural changes in digital images, leading to degraded visual quality. Dictionary-based sparse representation has been widely studied recently due to its ability to extract inherent image structures. Meantime, it can extract image features with slightly higher level semantics. Intuitively, sparse representation can be used for image quality assessment, because visible distortions can cause significant changes to the sparse features. In this paper, a new sparse representation-based image quality assessment model is proposed based on the construction of adaptive sub-dictionaries. An overcomplete dictionary trained from natural images is employed to capture the structure changes between the reference and distorted images by sparse feature extraction via adaptive sub-dictionary selection. Based on the observation that image sparse features are invariant to weak degradations and the perceived image quality is generally influenced by diverse issues, three auxiliary quality features are added, including gradient, color, and luminance information. The proposed method is not sensitive to training images, so a universal dictionary can be adopted for quality evaluation. Extensive experiments on five public image quality databases demonstrate that the proposed method produces the state-of-the-art results, and it delivers consistently well performances when tested in different image quality databases.

  2. Evaluation of variations and affecting factors of eco-environmental quality during urbanization.

    PubMed

    Cui, Erqian; Ren, Lijun; Sun, Haoyu

    2015-03-01

    Regional eco-environmental quality is the foundation of economic sustainable development and rational utilization of resources. It is necessary to understand and evaluate the regional eco-environmental quality correctly. Based on national remote sensing land use data, normalized difference vegetation index (NDVI) data and some other statistical data, this paper established an eco-environmental quality index (EQI) model to evaluate the ecological status of Jinan from 2000 to 2011. The results of eco-environmental quality showed little variation, with EQI values ranged from 62.00 to 69.01. EQI of each region in Jinan firstly decreased sharply and then increased slowly with the development of local economy. Besides the spatial and temporal variations analysis, affecting factors of eco-environmental quality was also discussed in this article. According to the results of correlation and regression analysis, meteorological conditions (rainfall and sunshine duration) and industrial structure (the proportion of primary industry) had relatively high correlations with eco-environmental quality. To summarize, a better eco-environmental status is associated with increasing rainfall, shorter sunshine duration, and lower proportion of primary industry. This article aims to giving supporting data and decision-making bases to restore the ecological environment and promote the sustainable development of Jinan.

  3. Dual-source computed tomographic coronary angiography: image quality and stenosis diagnosis in patients with high heart rates.

    PubMed

    Zheng, Minwen; Li, Jiayi; Xu, Jian; Chen, Kang; Zhao, Hongliang; Huan, Yi

    2009-01-01

    We sought to evaluate prospectively the effects of heart rate and heart-rate variability on dual-source computed tomographic coronary image quality in patients whose heart rates were high, and to determine retrospectively the accuracy of dual-source computed tomographic diagnosis of coronary artery stenosis in the same patients.We compared image quality and diagnostic accuracy in 40 patients whose heart rates exceeded 70 beats/min with the same data in 40 patients whose heart rates were 70 beats/min or slower. In both groups, we analyzed 1,133 coronary arterial segments. Five hundred forty-five segments (97.7%) in low-heart-rate patients and 539 segments (93.7%) in high-heart-rate patients were of diagnostic image quality. We considered P < 0.05 to be statistically significant. No statistically significant differences between the groups were found in diagnostic-image quality scores of total segments or of any coronary artery, nor were any significant differences found between the groups in the accurate diagnosis of angiographically significant stenosis.Calcification was the chief factor that affected diagnostic accuracy. In high-heart-rate patients, heart-rate variability was significantly related to the diagnostic image quality of all segments (P = 0.001) and of the left circumflex coronary artery (P = 0.016). Heart-rate variability of more than 5 beats/min most strongly contributed to an inability to evaluate segments in both groups. When heart rates rose, the optimal reconstruction window shifted from diastole to systole.The image quality of dual-source computed tomographic coronary angiography at high heart rates enables sufficient diagnosis of stenosis, although variability of heart rates significantly deteriorates image quality. PMID:19436804

  4. NOTE: Development of a quality assurance protocol for peripheral subtraction imaging applications

    NASA Astrophysics Data System (ADS)

    Walsh, C.; Murphy, D.; O'Hare, N.

    2002-04-01

    Peripheral subtraction scanning is used to trace the blood vessels of upper and lower extremities. In some modern C-arm fluoroscopy systems this function is performed automatically. In this mode the system is programmed to advance and stop in a series of steps taking a mask image at each point. The system then repeats each step after the contrast agent has been injected, and produces a DSA image at each point. Current radiographic quality assurance protocols do not address this feature. This note reviews methods of measuring system vibration while images are being acquired in automated peripheral stepping. The effect on image quality pre- and post-image processing is assessed. Results show that peripheral stepping DSA does not provide the same degree of image quality as static DSA. In examining static test objects, the major cause of the reduction in image quality is misregistration due to vibration of the image intensifier during imaging.

  5. [Readers' beliefs about text comprehension affect the quality of their summaries of a scientific article].

    PubMed

    Wada, Yuri; Ueda, Kazuhiro

    2013-04-01

    Readers' beliefs about text comprehension affect how they read texts. A previous study showed two types of readers' beliefs; one is a "transmission belief' which emphasizes the importance of understanding an author's intended meaning, while the other is a "transaction belief' which emphasizes the importance of reader-generated meaning. We expect that these beliefs also affect summarization, where readers need to effectively elicit important information from the text and reconstruct it. The present study examined how readers' beliefs were related to the quality of summaries they made for a scientific article. We used the followings as indicators of the quality of the summaries: how information from a scientific article was elicited and reconstructed, and to what extent the summaries were comprehensible. The results suggest that the stronger the transmission belief of a reader was, the less effectively the reader elicited and reconstructed information and the less comprehensible the summary was. Although it cannot reveal the relationships between the transaction belief and the quality of summaries, the present study suggests that readers' beliefs about text comprehension affect summarization.

  6. The image quality of ion computed tomography at clinical imaging dose levels

    SciTech Connect

    Hansen, David C.; Bassler, Niels; Sørensen, Thomas Sangild; Seco, Joao

    2014-11-01

    Purpose: Accurately predicting the range of radiotherapy ions in vivo is important for the precise delivery of dose in particle therapy. Range uncertainty is currently the single largest contribution to the dose margins used in planning and leads to a higher dose to normal tissue. The use of ion CT has been proposed as a method to improve the range uncertainty and thereby reduce dose to normal tissue of the patient. A wide variety of ions have been proposed and studied for this purpose, but no studies evaluate the image quality obtained with different ions in a consistent manner. However, imaging doses ion CT is a concern which may limit the obtainable image quality. In addition, the imaging doses reported have not been directly comparable with x-ray CT doses due to the different biological impacts of ion radiation. The purpose of this work is to develop a robust methodology for comparing the image quality of ion CT with respect to particle therapy, taking into account different reconstruction methods and ion species. Methods: A comparison of different ions and energies was made. Ion CT projections were simulated for five different scenarios: Protons at 230 and 330 MeV, helium ions at 230 MeV/u, and carbon ions at 430 MeV/u. Maps of the water equivalent stopping power were reconstructed using a weighted least squares method. The dose was evaluated via a quality factor weighted CT dose index called the CT dose equivalent index (CTDEI). Spatial resolution was measured by the modulation transfer function. This was done by a noise-robust fit to the edge spread function. Second, the image quality as a function of the number of scanning angles was evaluated for protons at 230 MeV. In the resolution study, the CTDEI was fixed to 10 mSv, similar to a typical x-ray CT scan. Finally, scans at a range of CTDEI’s were done, to evaluate dose influence on reconstruction error. Results: All ions yielded accurate stopping power estimates, none of which were statistically

  7. Quality of shrimp analogue product as affected by addition of modified potato starch.

    PubMed

    Remya, S; Basu, S; Venkateshwarlu, G; Mohan, C O

    2015-07-01

    The present study was aimed to investigate the effects of addition of modified potato starch on the biochemical and textural properties of shrimp analogue/imitation shrimp, a popular value-added product prepared from surimi. Three batches of shrimp analogues were prepared with 0 % (NPS), 50 % (CPS) and 100 % (MPS) of modified starch incorporation and various quality attributes were monitored at regular intervals during frozen storage (-20 °C). Loss of myofibrillar protein was least for the shrimp analogue sample added with 100 % modified potato starch. The expressible moisture content of MPS (2.48 %) was less affected by long term storage compared to CPS (3.38 %) and NPS (3.99 %). During extended low temperature storage, the textural quality of sea food analogue was highly influenced by the type of starch added to it. The percentage of modified potato starch added to shrimp analogue significantly (p ≤ 0.05) affected its hardness and fracturability. MPS samples did not show significant changes in hardness during storage as compared to other two samples. Springiness of shrimp analogue increased 2.57, 1.5 and 1.77 times with the storage period for samples with NPS, CPS and MPS, respectively. Addition of modified potato starch improved the sensory quality and textural properties of shrimp analogue and reduced the quality degradation during frozen storage as compared to NPS which contained only native potato starch.

  8. Neuron Image Analyzer: Automated and Accurate Extraction of Neuronal Data from Low Quality Images.

    PubMed

    Kim, Kwang-Min; Son, Kilho; Palmore, G Tayhas R

    2015-01-01

    Image analysis software is an essential tool used in neuroscience and neural engineering to evaluate changes in neuronal structure following extracellular stimuli. Both manual and automated methods in current use are severely inadequate at detecting and quantifying changes in neuronal morphology when the images analyzed have a low signal-to-noise ratio (SNR). This inadequacy derives from the fact that these methods often include data from non-neuronal structures or artifacts by simply tracing pixels with high intensity. In this paper, we describe Neuron Image Analyzer (NIA), a novel algorithm that overcomes these inadequacies by employing Laplacian of Gaussian filter and graphical models (i.e., Hidden Markov Model, Fully Connected Chain Model) to specifically extract relational pixel information corresponding to neuronal structures (i.e., soma, neurite). As such, NIA that is based on vector representation is less likely to detect false signals (i.e., non-neuronal structures) or generate artifact signals (i.e., deformation of original structures) than current image analysis algorithms that are based on raster representation. We demonstrate that NIA enables precise quantification of neuronal processes (e.g., length and orientation of neurites) in low quality images with a significant increase in the accuracy of detecting neuronal changes post-stimulation. PMID:26593337

  9. Neuron Image Analyzer: Automated and Accurate Extraction of Neuronal Data from Low Quality Images

    PubMed Central

    Kim, Kwang-Min; Son, Kilho; Palmore, G. Tayhas R.

    2015-01-01

    Image analysis software is an essential tool used in neuroscience and neural engineering to evaluate changes in neuronal structure following extracellular stimuli. Both manual and automated methods in current use are severely inadequate at detecting and quantifying changes in neuronal morphology when the images analyzed have a low signal-to-noise ratio (SNR). This inadequacy derives from the fact that these methods often include data from non-neuronal structures or artifacts by simply tracing pixels with high intensity. In this paper, we describe Neuron Image Analyzer (NIA), a novel algorithm that overcomes these inadequacies by employing Laplacian of Gaussian filter and graphical models (i.e., Hidden Markov Model, Fully Connected Chain Model) to specifically extract relational pixel information corresponding to neuronal structures (i.e., soma, neurite). As such, NIA that is based on vector representation is less likely to detect false signals (i.e., non-neuronal structures) or generate artifact signals (i.e., deformation of original structures) than current image analysis algorithms that are based on raster representation. We demonstrate that NIA enables precise quantification of neuronal processes (e.g., length and orientation of neurites) in low quality images with a significant increase in the accuracy of detecting neuronal changes post-stimulation. PMID:26593337

  10. Investigating How the Biographies of Today's Scientists Affect 8th Graders' Scientist Image

    ERIC Educational Resources Information Center

    Karaçam, Sedat

    2016-01-01

    This study aimed to investigate how a poster study focusing on the biographies of today's scientists affected 8th graders' scientist images. The study utilized a mixed model which combined qualitative and quantitative research techniques. 142 8th graders from a secondary school in Ankara Province Keçiören District participated in the study.…

  11. Improving a DWT-based compression algorithm for high image-quality requirement of satellite images

    NASA Astrophysics Data System (ADS)

    Thiebaut, Carole; Latry, Christophe; Camarero, Roberto; Cazanave, Grégory

    2011-10-01

    Past and current optical Earth observation systems designed by CNES are using a fixed-rate data compression processing performed at a high-rate in a pushbroom mode (also called scan-based mode). This process generates fixed-length data to the mass memory and data downlink is performed at a fixed rate too. Because of on-board memory limitations and high data rate processing needs, the rate allocation procedure is performed over a small image area called a "segment". For both PLEIADES compression algorithm and CCSDS Image Data Compression recommendation, this rate allocation is realised by truncating to the desired rate a hierarchical bitstream of coded and quantized wavelet coefficients for each segment. Because the quantisation induced by truncation of the bit planes description is the same for the whole segment, some parts of the segment have a poor image quality. These artefacts generally occur in low energy areas within a segment of higher level of energy. In order to locally correct these areas, CNES has studied "exceptional processing" targeted for DWT-based compression algorithms. According to a criteria computed for each part of the segment (called block), the wavelet coefficients can be amplified before bit-plane encoding. As usual Region of Interest handling, these multiplied coefficients will be processed earlier by the encoder than in the nominal case (without exceptional processing). The image quality improvement brought by the exceptional processing has been confirmed by visual image analysis and fidelity criteria. The complexity of the proposed improvement for on-board application has also been analysed.

  12. Optimization of beam quality for photon-counting spectral computed tomography in head imaging: simulation study.

    PubMed

    Chen, Han; Xu, Cheng; Persson, Mats; Danielsson, Mats

    2015-10-01

    Head computed tomography (CT) plays an important role in the comprehensive evaluation of acute stroke. Photon-counting spectral detectors, as promising candidates for use in the next generation of x-ray CT systems, allow for assigning more weight to low-energy x-rays that generally contain more contrast information. Most importantly, the spectral information can be utilized to decompose the original set of energy-selective images into several basis function images that are inherently free of beam-hardening artifacts, a potential advantage for further improving the diagnosis accuracy. We are developing a photon-counting spectral detector for CT applications. The purpose of this work is to determine the optimal beam quality for material decomposition in two head imaging cases: nonenhanced imaging and K-edge imaging. A cylindrical brain tissue of 16-cm diameter, coated by a 6-mm-thick bone layer and 2-mm-thick skin layer, was used as a head phantom. The imaging target was a 5-mm-thick blood vessel centered in the head phantom. In K-edge imaging, two contrast agents, iodine and gadolinium, with the same concentration ([Formula: see text]) were studied. Three parameters that affect beam quality were evaluated: kVp settings (50 to 130 kVp), filter materials ([Formula: see text] to 83), and filter thicknesses [0 to 2 half-value layer (HVL)]. The image qualities resulting from the varying x-ray beams were compared in terms of two figures of merit (FOMs): squared signal-difference-to-noise ratio normalized by brain dose ([Formula: see text]) and that normalized by skin dose ([Formula: see text]). For nonenhanced imaging, the results show that the use of the 120-kVp spectrum filtered by 2 HVL copper ([Formula: see text]) provides the best performance in both FOMs. When iodine is used in K-edge imaging, the optimal filter is 2 HVL iodine ([Formula: see text]) and the optimal kVps are 60 kVp in terms of [Formula: see text] and 75 kVp in terms of [Formula: see text]. A

  13. Optimization of beam quality for photon-counting spectral computed tomography in head imaging: simulation study.

    PubMed

    Chen, Han; Xu, Cheng; Persson, Mats; Danielsson, Mats

    2015-10-01

    Head computed tomography (CT) plays an important role in the comprehensive evaluation of acute stroke. Photon-counting spectral detectors, as promising candidates for use in the next generation of x-ray CT systems, allow for assigning more weight to low-energy x-rays that generally contain more contrast information. Most importantly, the spectral information can be utilized to decompose the original set of energy-selective images into several basis function images that are inherently free of beam-hardening artifacts, a potential advantage for further improving the diagnosis accuracy. We are developing a photon-counting spectral detector for CT applications. The purpose of this work is to determine the optimal beam quality for material decomposition in two head imaging cases: nonenhanced imaging and K-edge imaging. A cylindrical brain tissue of 16-cm diameter, coated by a 6-mm-thick bone layer and 2-mm-thick skin layer, was used as a head phantom. The imaging target was a 5-mm-thick blood vessel centered in the head phantom. In K-edge imaging, two contrast agents, iodine and gadolinium, with the same concentration ([Formula: see text]) were studied. Three parameters that affect beam quality were evaluated: kVp settings (50 to 130 kVp), filter materials ([Formula: see text] to 83), and filter thicknesses [0 to 2 half-value layer (HVL)]. The image qualities resulting from the varying x-ray beams were compared in terms of two figures of merit (FOMs): squared signal-difference-to-noise ratio normalized by brain dose ([Formula: see text]) and that normalized by skin dose ([Formula: see text]). For nonenhanced imaging, the results show that the use of the 120-kVp spectrum filtered by 2 HVL copper ([Formula: see text]) provides the best performance in both FOMs. When iodine is used in K-edge imaging, the optimal filter is 2 HVL iodine ([Formula: see text]) and the optimal kVps are 60 kVp in terms of [Formula: see text] and 75 kVp in terms of [Formula: see text]. A

  14. Crowdsourcing quality control for Dark Energy Survey images

    DOE PAGES

    Melchior, P.

    2016-07-01

    We have developed a crowdsourcing web application for image quality controlemployed by the Dark Energy Survey. Dubbed the "DES exposure checker", itrenders science-grade images directly to a web browser and allows users to markproblematic features from a set of predefined classes. Users can also generatecustom labels and thus help identify previously unknown problem classes. Userreports are fed back to hardware and software experts to help mitigate andeliminate recognized issues. We report on the implementation of the applicationand our experience with its over 100 users, the majority of which areprofessional or prospective astronomers but not data management experts. Wediscuss aspects ofmore » user training and engagement, and demonstrate how problemreports have been pivotal to rapidly correct artifacts which would likely havebeen too subtle or infrequent to be recognized otherwise. We conclude with anumber of important lessons learned, suggest possible improvements, andrecommend this collective exploratory approach for future astronomical surveysor other extensive data sets with a sufficiently large user base. We alsorelease open-source code of the web application and host an online demo versionat http://des-exp-checker.pmelchior.net« less

  15. Crowdsourcing quality control for Dark Energy Survey images

    NASA Astrophysics Data System (ADS)

    Melchior, P.; Sheldon, E.; Drlica-Wagner, A.; Rykoff, E. S.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Doel, P.; Evrard, A. E.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Jarvis, M.; Kuehn, K.; Li, T. S.; Maia, M. A. G.; March, M.; Marshall, J. L.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Vikram, V.; Walker, A. R.; Wester, W.; Zhang, Y.

    2016-07-01

    We have developed a crowdsourcing web application for image quality control employed by the Dark Energy Survey. Dubbed the "DES exposure checker", it renders science-grade images directly to a web browser and allows users to mark problematic features from a set of predefined classes. Users can also generate custom labels and thus help identify previously unknown problem classes. User reports are fed back to hardware and software experts to help mitigate and eliminate recognized issues. We report on the implementation of the application and our experience with its over 100 users, the majority of which are professional or prospective astronomers but not data management experts. We discuss aspects of user training and engagement, and demonstrate how problem reports have been pivotal to rapidly correct artifacts which would likely have been too subtle or infrequent to be recognized otherwise. We conclude with a number of important lessons learned, suggest possible improvements, and recommend this collective exploratory approach for future astronomical surveys or other extensive data sets with a sufficiently large user base. We also release open-source code of the web application and host an online demo version at http://des-exp-checker.pmelchior.net.

  16. Imaging-based logics for ornamental stone quality chart definition

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Gargiulo, Aldo; Serranti, Silvia; Raspi, Costantino

    2007-02-01

    Ornamental stone products are commercially classified on the market according to several factors related both to intrinsic lythologic characteristics and to their visible pictorial attributes. Sometimes these latter aspects prevail in quality criteria definition and assessment. Pictorial attributes are in any case also influenced by the performed working actions and the utilized tools selected to realize the final stone manufactured product. Stone surface finishing is a critical task because it can contribute to enhance certain aesthetic features of the stone itself. The study was addressed to develop an innovative set of methodologies and techniques able to quantify the aesthetic quality level of stone products taking into account both the physical and the aesthetical characteristics of the stones. In particular, the degree of polishing of the stone surfaces and the presence of defects have been evaluated, applying digital image processing strategies. Morphological and color parameters have been extracted developing specific software architectures. Results showed as the proposed approaches allow to quantify the degree of polishing and to identify surface defects related to the intrinsic characteristics of the stone and/or the performed working actions.

  17. Terahertz absorption and reflection imaging of carcinoma-affected colon tissues embedded in paraffin

    NASA Astrophysics Data System (ADS)

    Wahaia, Faustino; Kasalynas, Irmantas; Venckevicius, Rimvydas; Seliuta, Dalius; Valusis, Gintaras; Urbanowicz, Andrzej; Molis, Gediminas; Carneiro, Fatima; Carvalho Silva, Catia D.; Granja, Pedro L.

    2016-03-01

    In the present study, dehydrated human colon tissues embedded in paraffin were studied at THz frequency. A compact THz imaging system with high numerical aperture optics was developed for the analysis of adenocarcinoma-affected colon sections, in transmission and reflection geometry. A comprehensive analysis of the THz images revealed a contrast up to 23% between the neoplastic and control tissues. Absorption and reflection THz images demonstrated the possibility to distinguish adenocarcinoma-affected areas even without water in the tissue, as the main contrast mechanism in THz measurements has been observed to be water absorption in in vivo or freshly excised tissues. The present results corroborate with previous histologic findings in the same tissues, and confirm that the contrast prevails even in dehydrated tissues.

  18. Development of Software to Model AXAF-I Image Quality

    NASA Technical Reports Server (NTRS)

    Ahmad, Anees; Hawkins, Lamar

    1996-01-01

    This draft final report describes the work performed under the delivery order number 145 from May 1995 through August 1996. The scope of work included a number of software development tasks for the performance modeling of AXAF-I. A number of new capabilities and functions have been added to the GT software, which is the command mode version of the GRAZTRACE software, originally developed by MSFC. A structural data interface has been developed for the EAL (old SPAR) finite element analysis FEA program, which is being used by MSFC Structural Analysis group for the analysis of AXAF-I. This interface utility can read the structural deformation file from the EAL and other finite element analysis programs such as NASTRAN and COSMOS/M, and convert the data to a suitable format that can be used for the deformation ray-tracing to predict the image quality for a distorted mirror. There is a provision in this utility to expand the data from finite element models assuming 180 degrees symmetry. This utility has been used to predict image characteristics for the AXAF-I HRMA, when subjected to gravity effects in the horizontal x-ray ground test configuration. The development of the metrology data processing interface software has also been completed. It can read the HDOS FITS format surface map files, manipulate and filter the metrology data, and produce a deformation file, which can be used by GT for ray tracing for the mirror surface figure errors. This utility has been used to determine the optimum alignment (axial spacing and clocking) for the four pairs of AXAF-I mirrors. Based on this optimized alignment, the geometric images and effective focal lengths for the as built mirrors were predicted to cross check the results obtained by Kodak.

  19. Assessment of processes affecting low-flow water quality of Cedar Creek, west-central Illinois

    USGS Publications Warehouse

    Schmidt, Arthur R.; Freeman, W.O.; McFarlane, R.D.

    1989-01-01

    Water quality and the processes that affect dissolved oxygen, nutrient (nitrogen and phosphorus species), and algal concentrations were evaluated for a 23.8-mile reach of Cedar Creek near Galesburg, west-central Illinois, during periods of warm-weather, low-flow conditions. Water quality samples were collected and stream conditions were measured over a diel (24 hour) period on three occasions during July and August 1985. Analysis of data from the diel-sampling periods indicates that concentrations of iron, copper, manganese, phenols, and total dissolved-solids exceeded Illinois ' general-use water quality standards in some locations. Dissolved-oxygen concentrations were less than the State minimum standard throughout much of the study reach. These data were used to calibrate and verify a one-dimensional, steady-state, water quality model. The computer model was used to assess the relative effects on low-flow water quality of processes such as algal photosynthesis and respiration, ammonia oxidation, biochemical oxygen demand, sediment oxygen demand, and stream reaeration. Results from model simulations and sensitivity analysis indicate that sediment oxygen demand is the principal cause of low dissolved-oxygen concentrations in the creek. (USGS)

  20. Novel Card Games for Learning Radiographic Image Quality and Urologic Imaging in Veterinary Medicine.

    PubMed

    Ober, Christopher P

    2016-01-01

    Second-year veterinary students are often challenged by concepts in veterinary radiology, including the fundamentals of image quality and generation of differential lists. Four card games were developed to provide veterinary students with a supplemental means of learning about radiographic image quality and differential diagnoses in urogenital imaging. Students played these games and completed assessments of their subject knowledge before and after playing. The hypothesis was that playing each game would improve students' understanding of the topic area. For each game, students who played the game performed better on the post-test than students who did not play that game (all p<.01). For three of the four games, students who played each respective game demonstrated significant improvement in scores between the pre-test and the post-test (p<.002). The majority of students expressed that the games were both helpful and enjoyable. Educationally focused games can help students learn classroom and laboratory material. However, game design is important, as the game using the most passive learning process also demonstrated the weakest results. In addition, based on participants' comments, the games were very useful in improving student engagement in the learning process. Thus, use of games in the classroom and laboratory setting seems to benefit the learning process. PMID:26966984

  1. Novel Card Games for Learning Radiographic Image Quality and Urologic Imaging in Veterinary Medicine.

    PubMed

    Ober, Christopher P

    2016-01-01

    Second-year veterinary students are often challenged by concepts in veterinary radiology, including the fundamentals of image quality and generation of differential lists. Four card games were developed to provide veterinary students with a supplemental means of learning about radiographic image quality and differential diagnoses in urogenital imaging. Students played these games and completed assessments of their subject knowledge before and after playing. The hypothesis was that playing each game would improve students' understanding of the topic area. For each game, students who played the game performed better on the post-test than students who did not play that game (all p<.01). For three of the four games, students who played each respective game demonstrated significant improvement in scores between the pre-test and the post-test (p<.002). The majority of students expressed that the games were both helpful and enjoyable. Educationally focused games can help students learn classroom and laboratory material. However, game design is important, as the game using the most passive learning process also demonstrated the weakest results. In addition, based on participants' comments, the games were very useful in improving student engagement in the learning process. Thus, use of games in the classroom and laboratory setting seems to benefit the learning process.

  2. Quality Imaging - Comparison of CR Mammography with Screen-Film Mammography

    SciTech Connect

    Gaona, E.; Azorin Nieto, J.; Iran Diaz Gongora, J. A.; Arreola, M.; Casian Castellanos, G.; Perdigon Castaneda, G. M.; Franco Enriquez, J. G.

    2006-09-08

    The aim of this work is a quality imaging comparison of CR mammography images printed to film by a laser printer with screen-film mammography. A Giotto and Elscintec dedicated mammography units with fully automatic exposure and a nominal large focal spot size of 0.3 mm were used for the image acquisition of phantoms in screen-film mammography. Four CR mammography units from two different manufacturers and three dedicated x-ray mammography units with fully automatic exposure and a nominal large focal spot size of 0.3 mm were used for the image acquisition of phantoms in CR mammography. The tests quality image included an assessment of system resolution, scoring phantom images, Artifacts, mean optical density and density difference (contrast). In this study, screen-film mammography with a quality control program offers a significantly greater level of quality image relative to CR mammography images printed on film.

  3. Quantitative and qualitative image quality analysis of super resolution images from a low cost scanning laser ophthalmoscope

    NASA Astrophysics Data System (ADS)

    Murillo, Sergio; Echegaray, Sebastian; Zamora, Gilberto; Soliz, Peter; Bauman, Wendall

    2011-03-01

    The lurking epidemic of eye diseases caused by diabetes and aging will put more than 130 million Americans at risk of blindness by 2020. Screening has been touted as a means to prevent blindness by identifying those individuals at risk. However, the cost of most of today's commercial retinal imaging devices makes their use economically impractical for mass screening. Thus, low cost devices are needed. With these devices, low cost often comes at the expense of image quality with high levels of noise and distortion hindering the clinical evaluation of those retinas. A software-based super resolution (SR) reconstruction methodology that produces images with improved resolution and quality from multiple low resolution (LR) observations is introduced. The LR images are taken with a low-cost Scanning Laser Ophthalmoscope (SLO). The non-redundant information of these LR images is combined to produce a single image in an implementation that also removes noise and imaging distortions while preserving fine blood vessels and small lesions. The feasibility of using the resulting SR images for screening of eye diseases was tested using quantitative and qualitative assessments. Qualitatively, expert image readers evaluated their ability of detecting clinically significant features on the SR images and compared their findings with those obtained from matching images of the same eyes taken with commercially available high-end cameras. Quantitatively, measures of image quality were calculated from SR images and compared to subject-matched images from a commercial fundus imager. Our results show that the SR images have indeed enough quality and spatial detail for screening purposes.

  4. Do Stereotypic Images in Video Games Affect Attitudes and Behavior? Adolescents’ Perspectives

    PubMed Central

    Henning, Alexandra; Brenick, Alaina; Killen, Melanie; O’Connor, Alexander; Collins, Michael J.

    2015-01-01

    This study examined adolescents’ attitudes about video games along with their self-reported play frequency. Ninth and eleventh grade students (N = 361), approximately evenly divided by grade and gender, were surveyed about whether video games have stereotypic images, involve harmful consequences or affect one’s attitudes, whether game playing should be regulated by parents or the government, and whether game playing is a personal choice. Adolescents who played video games frequently showed decreased concern about the effects that games with negatively stereotyped images may have on the players’ attitudes compared to adolescents who played games infrequently or not at all. With age, adolescents were more likely to view images as negative, but were also less likely to recognize stereotypic images of females as harmful and more likely to judge video-game playing as a personal choice. The paper discusses other findings in relation to research on adolescents’ social cognitive judgments. PMID:25729336

  5. Application of ultrasound processed images in space: Quanitative assessment of diffuse affectations

    NASA Astrophysics Data System (ADS)

    Pérez-Poch, A.; Bru, C.; Nicolau, C.

    The purpose of this study was to evaluate diffuse affectations in the liver using texture image processing techniques. Ultrasound diagnose equipments are the election of choice to be used in space environments as they are free from hazardous effects on health. However, due to the need for highly trained radiologists to assess the images, this imaging method is mainly applied on focal lesions rather than on non-focal ones. We have conducted a clinical study on 72 patients with different degrees of chronic hepatopaties and a group of control of 18 individuals. All subjects' clinical reports and results of biopsies were compared to the degree of affectation calculated by our computer system , thus validating the method. Full statistical results are given in the present paper showing a good correlation (r=0.61) between pathologist's report and analysis of the heterogenicity of the processed images from the liver. This computer system to analyze diffuse affectations may be used in-situ or via telemedicine to the ground.

  6. How variation in head pitch could affect image matching algorithms for ant navigation.

    PubMed

    Ardin, Paul; Mangan, Michael; Wystrach, Antoine; Webb, Barbara

    2015-06-01

    Desert ants are a model system for animal navigation, using visual memory to follow long routes across both sparse and cluttered environments. Most accounts of this behaviour assume retinotopic image matching, e.g. recovering heading direction by finding a minimum in the image difference function as the viewpoint rotates. But most models neglect the potential image distortion that could result from unstable head motion. We report that for ants running across a short section of natural substrate, the head pitch varies substantially: by over 20 degrees with no load; and 60 degrees when carrying a large food item. There is no evidence of head stabilisation. Using a realistic simulation of the ant's visual world, we demonstrate that this range of head pitch significantly degrades image matching. The effect of pitch variation can be ameliorated by a memory bank of densely sampled along a route so that an image sufficiently similar in pitch and location is available for comparison. However, with large pitch disturbance, inappropriate memories sampled at distant locations are often recalled and navigation along a route can be adversely affected. Ignoring images obtained at extreme pitches, or averaging images over several pitches, does not significantly improve performance.

  7. Factors affecting the quality of sound recording for speech and voice analysis.

    PubMed

    Vogel, Adam P; Morgan, Angela T

    2009-01-01

    The importance and utility of objective evidence-based measurement of the voice is well documented. Therefore, greater consideration needs to be given to the factors that influence the quality of voice and speech recordings. This manuscript aims to bring together the many features that affect acoustically acquired voice and speech. Specifically, the paper considers the practical requirements of individual speech acquisition configurations through examining issues relating to hardware, software and microphone selection, the impact of environmental noise, analogue to digital conversion and file format as well as the acoustic measures resulting from varying levels of signal integrity. The type of recording environment required by a user is often dictated by a variety of clinical and experimental needs, including: the acoustic measures being investigated; portability of equipment; an individual's budget; and the expertise of the user. As the quality of recorded signals is influenced by many factors, awareness of these issues is essential. This paper aims to highlight the importance of these methodological considerations to those previously uninitiated with voice and speech acoustics. With current technology, the highest quality recording would be made using a stand-alone hard disc recorder, an independent mixer to attenuate the incoming signal, and insulated wiring combined with a high quality microphone in an anechoic chamber or sound treated room.

  8. Genetic and management factors affecting beef quality in grazing Hereford steers.

    PubMed

    Melucci, L M; Panarace, M; Feula, P; Villarreal, E L; Grigioni, G; Carduza, F; Soria, L A; Mezzadra, C A; Arceo, M E; Papaleo Mazzucco, J; Corva, P M; Irurueta, M; Rogberg-Muñoz, A; Miquel, M C

    2012-12-01

    Attributes contributing to differences in beef quality of 206 Hereford steers finished on pasture were assessed. Beef quality traits evaluated were: Warner-Bratzler meat tenderness and muscle and fat color at one and seven days after slaughter and trained sensory panel traits (tenderness, juiciness, flavor, and marbling) at seven days. Molecular markers were CAPN1 316 and an SNP in exon 2 on the leptin gene (E2FB). Average daily live weight gain, ultrasound monthly backfat thickness gain and rib-eye area gain were estimated. Molecular markers effects on meat quality traits were analyzed by mixed models. Association of meat quality with post weaning growth traits was analyzed by canonical correlations. Muscle color and marbling were affected by CAPN1 316 and E2FB and Warner-Bratzler meat tenderness by the former. The results confirm that marker assisted selection for tenderness is advisable only when beef aging is a common practice. The most important sources of variation in tenderness and color of meat remained unaccounted for. PMID:22818350

  9. Factors Affecting the Quality of Life and the Illness Acceptance of Pregnant Women with Diabetes.

    PubMed

    Bień, Agnieszka; Rzońca, Ewa; Kańczugowska, Angelika; Iwanowicz-Palus, Grażyna

    2015-12-22

    The paper contains an analysis of the factors affecting the quality of life (QoL) and the illness acceptance of diabetic pregnant women. The study was performed between January and April, 2013. It included 114 pregnant women with diabetes, hospitalized in the High Risk Pregnancy Wards of several hospitals in Lublin, Poland. The study used a diagnostic survey with questionnaires. The research instruments used were: The WHOQOL-Bref questionnaire and the Acceptance of Illness Scale (AIS). The women's general quality of life was slightly higher than their perceived general health. A higher quality of life was reported by women with a very good financial standing, very good perceived health, moderate self-reported knowledge of diabetes, and also by those only treated with diet and stating that the illness did not interfere with their lives (p < 0.05). Women with a very good financial standing (p < 0.009), high self-reported health (p < 0.002), and those treated with by means of a diet (p < 0.04) had a higher acceptance of illness. A higher acceptance of illness contributes to a higher general quality of life and a better perception of one's health.

  10. Lead level in seminal plasma may affect semen quality for men without occupational exposure to lead

    PubMed Central

    2012-01-01

    Background Infertility affects approximately 10–15% of reproductive-age couples. Poor semen quality contributes to about 25% of infertile cases. Resulting from the direct effect on testicular function or hormonal alterations, heavy metals exposure has been related to impaired semen quality. The objective of this study was to assess the level of lead in the seminal plasma in men without occupational exposure to lead, and to determine the relationship between semen quality and lead concentration in the semen. Methods This is a prospective and nonrandomized clinical study conducted in University infertility clinic and academic research laboratory. Three hundred and forty-one male partners of infertile couples undergoing infertility evaluation and management were recruited to the study. Semen samples collected for the analyses of semen quality were also used for the measurement of lead concentrations. Semen samples were evaluated according to the WHO standards. Results All subjects were married and from infertile couples without occupational exposure to lead. There is a significant inverse correlation between the lead concentration in seminal plasma and sperm count. A higher semen lead concentration was correlated with lower sperm count, but not with semen volume, sperm motility or sperm morphology as assessed by simple linear regression. Conclusions We found that semen lead concentration was significantly higher among the patients with lower sperm count. To our knowledge, this is the first study to demonstrate that a high level of lead accumulation in semen may reduce the sperm count contributing to infertility of men without occupational exposure to lead. PMID:23137356

  11. Quality and safety aspects of meat products as affected by various physical manipulations of packaging materials.

    PubMed

    Lee, Keun Taik

    2010-09-01

    This article explores the effects of physically manipulated packaging materials on the quality and safety of meat products. Recently, innovative measures for improving quality and extending the shelf-life of packaged meat products have been developed, utilizing technologies including barrier film, active packaging, nanotechnology, microperforation, irradiation, plasma and far-infrared ray (FIR) treatments. Despite these developments, each technology has peculiar drawbacks which will need to be addressed by meat scientists in the future. To develop successful meat packaging systems, key product characteristics affecting stability, environmental conditions during storage until consumption, and consumers' packaging expectations must all be taken into consideration. Furthermore, the safety issues related to packaging materials must also be taken into account when processing, packaging and storing meat products.

  12. Quality of life domains affected in children with developmental coordination disorder: a systematic review.

    PubMed

    Zwicker, J G; Harris, S R; Klassen, A F

    2013-07-01

    The quality of life (QOL) of children with developmental coordination disorder (DCD) is largely unknown, but evidence suggests that multiple QOL domains are affected by the disorder. While DCD is primarily considered a motor disorder, multiple studies have reported psychological and social concerns in children with this condition. Our primary aim was to present the current state of the evidence regarding the physical, psychological, and social QOL domains that can be affected in children with DCD. Systematic review of articles from seven databases through November 2010 (MEDLINE, EMBASE, CINAHL, PsycINFO, ERIC, CDSR, DARE) was conducted. Search terms included developmental coordination disorder, dyspraxia, quality of life, life satisfaction, well-being, activities of daily living, and participation. Two independent reviewers screened titles, abstracts, and full-text articles. Studies meeting the following criteria were selected: (1) sample comprised solely of individuals with coordination difficulties consistent with DCD; (2) outcome measures related to physical, psychological, or socials domains of QOL; and (3) articles published in English. Data were extracted by one author and verified by a second. Outcomes were categorized according to physical, psychological and social domains of QOL and study quality was rated by case definitions of DCD based on diagnostic criteria as per the Diagnostic and Statistical Manual - 4th edition. Forty-one articles were included. Most studies reported significantly poorer results in physical, psychological and social functioning in children with DCD compared with peers. Despite the impact of DCD on multiple domains, only one study used a QOL measure as an outcome. Although DCD impacts several QOL domains, the QOL of children with this disorder remains largely unknown. The next critical step is for clinicians and researchers to use QOL measures to gather information on how DCD may affect the QOL of children with this disorder.

  13. Neuropathic pain in neuromyelitis optica affects activities of daily living and quality of life.

    PubMed

    Zhao, Sizheng; Mutch, Kerry; Elsone, Liene; Nurmikko, Turo; Jacob, Anu

    2014-10-01

    Though pain in neuromyelitis optica (NMO) has been described in two recent reports, the proportion with true neuropathic pain (NP), its features, impact on activities of daily living (ADL) and quality of life has not been well characterised. A cross-sectional study of 50 NMO patients with transverse myelitis was performed using Douleur Neuropathique 4, Brief Pain Inventory, Extended Disability Status Scale and Short Form 36. NP was identified in 62% of patients. Pain was constant in 68% affecting most ADL. Pain was associated with significant reduction of the SF36 Mental Composite Score. The high prevalence of NP and associated disability necessitates an in-depth enquiry in patients with NMO.

  14. Oocyte aging-induced Neuronatin (NNAT) hypermethylation affects oocyte quality by impairing glucose transport in porcine

    PubMed Central

    Gao, Ying-Ying; Chen, Li; Wang, Tao; Nie, Zheng-Wen; Zhang, Xia; Miao, Yi-Liang

    2016-01-01

    DNA methylation plays important roles in regulating many physiological behaviors; however, few studies were focused on the changes of DNA methylation during oocyte aging. Early studies showed that some imprinted genes’ DNA methylation had been changed in aged mouse oocytes. In this study, we used porcine oocytes to test the hypothesis that oocyte aging would alter DNA methylation pattern of genes and disturb their expression in age oocytes, which affected the developmental potential of oocytes. We compared several different types of genes and found that the expression and DNA methylation of Neuronatin (NNAT) were disturbed in aged oocytes significantly. Additional experiments demonstrated that glucose transport was impaired in aged oocytes and injection of NNAT antibody into fresh oocytes led to the same effects on glucose transport. These results suggest that the expression of NNAT was declined by elevating DNA methylation, which affected oocyte quality by decreasing the ability of glucose transport in aged oocytes. PMID:27782163

  15. Dosimetric and image quality assessment of different acquisition protocols of a novel 64-slice CT scanner

    NASA Astrophysics Data System (ADS)

    Vite, Cristina; Mangini, Monica; Strocchi, Sabina; Novario, Raffaele; Tanzi, Fabio; Carrafiello, Gianpaolo; Conte, Leopoldo; Fugazzola, Carlo

    2006-03-01

    Dose and image quality assessment in computed tomography (CT) are almost affected by the vast variety of CT scanners (axial CT, spiral CT, low-multislice CT (2-16), high-multislice CT (32-64)) and imaging protocols in use. Very poor information is at the moment available on 64 slices CT scanners. Aim of this work is to assess image quality related to patient dose indexes and to investigate the achievable dose reduction for a commercially available 64 slices CT scanner. CT dose indexes (weighted computed tomography dose index, CTDI w and Dose Length Product, DLP) were measured with a standard CT phantom for the main protocols in use (head, chest, abdomen and pelvis) and compared with the values displayed by the scanner itself. The differences were always below 7%. All the indexes were below the Diagnostic Reference Levels defined by the European Council Directive 97/42. Effective doses were measured for each protocol with thermoluminescent dosimeters inserted in an anthropomorphic Alderson Rando phantom and compared with the same values computed by the ImPACT CT Patient Dosimetry Calculator software code and corrected by a factor taking in account the number of slices (from 16 to 64). The differences were always below 25%. The effective doses range from 1.5 mSv (head) to 21.8 mSv (abdomen). The dose reduction system of the scanner was assessed comparing the effective dose measured for a standard phantom-man (a cylinder phantom, 32 cm in diameter) to the mean dose evaluated on 46 patients. The standard phantom was considered as no dose reduction reference. The dose reduction factor range from 16% to 78% (mean of 46%) for all protocols, from 29% to 78% (mean of 55%) for chest protocol, from 16% to 76% (mean of 42%) for abdomen protocol. The possibility of a further dose reduction was investigated measuring image quality (spatial resolution, contrast and noise) as a function of CTDI w. This curve shows a quite flat trend decreasing the dose approximately to 90% and a

  16. Agreement between objective and subjective assessment of image quality in ultrasound abdominal aortic aneurism screening

    PubMed Central

    Wolstenhulme, S; Keeble, C; Moore, S; Evans, J A

    2015-01-01

    Objective: To investigate agreement between objective and subjective assessment of image quality of ultrasound scanners used for abdominal aortic aneurysm (AAA) screening. Methods: Nine ultrasound scanners were used to acquire longitudinal and transverse images of the abdominal aorta. 100 images were acquired per scanner from which 5 longitudinal and 5 transverse images were randomly selected. 33 practitioners scored 90 images blinded to the scanner type and subject characteristics and were required to state whether or not the images were of adequate diagnostic quality. Odds ratios were used to rank the subjective image quality of the scanners. For objective testing, three standard test objects were used to assess penetration and resolution and used to rank the scanners. Results: The subjective diagnostic image quality was ten times greater for the highest ranked scanner than for the lowest ranked scanner. It was greater at depths of <5.0 cm (odds ratio, 6.69; 95% confidence interval, 3.56, 12.57) than at depths of 15.1–20.0 cm. There was a larger range of odds ratios for transverse images than for longitudinal images. No relationship was seen between subjective scanner rankings and test object scores. Conclusion: Large variation was seen in the image quality when evaluated both subjectively and objectively. Objective scores did not predict subjective scanner rankings. Further work is needed to investigate the utility of both subjective and objective image quality measurements. Advances in knowledge: Ratings of clinical image quality and image quality measured using test objects did not agree, even in the limited scenario of AAA screening. PMID:25494526

  17. Filling factor characteristics of masking phase-only hologram on the quality of reconstructed images

    NASA Astrophysics Data System (ADS)

    Deng, Yuanbo; Chu, Daping

    2016-03-01

    The present study evaluates the filling factor characteristics of masking phase-only hologram on its corresponding reconstructed image. A square aperture with different filling factor is added on the phase-only hologram of the target image, and average cross-section intensity profile of the reconstructed image is obtained and deconvolved with that of the target image to calculate the point spread function (PSF) of the image. Meanwhile, Lena image is used as the target image and evaluated by metrics RMSE and SSIM to assess the quality of reconstructed image. The results show that the PSF of the image agrees with the PSF of the Fourier transform of the mask, and as the filling factor of the mask decreases, the width of PSF increases and the quality of reconstructed image drops. These characteristics could be used in practical situations where phase-only hologram is confined or need to be sliced or tiled.

  18. Image quality of microcalcifications in digital breast tomosynthesis: Effects of projection-view distributions

    PubMed Central

    Lu, Yao; Chan, Heang-Ping; Wei, Jun; Goodsitt, Mitch; Carson, Paul L.; Hadjiiski, Lubomir; Schmitz, Andrea; Eberhard, Jeffrey W.; Claus, Bernhard E. H.

    2011-01-01

    spatial blurring depended on the directions. In the X-direction (perpendicular to the chestwall), the normalized line profiles of the calcifications reconstructed with the different PV distributions were similar in terms of FWHM; the differences in the FWHMs between the different PV distributions were less than half a pixel. In the Y-direction (x-ray source motion), the normalized line profiles of the calcifications reconstructed with PVs acquired with a narrow angular range or a large fraction of PVs at small angles had smaller FWHMs and thus less blurring of the line profiles. In addition, PV distributions with a narrow angular range or a large fraction of PVs at small angles yielded slightly higher CNR than those with a wide angular range for small, subtle microcalcifications; however, PV distributions had no obvious effect on CNR for relatively large microcalcifications.Conclusions: PV distributions affect the image quality of DBT. The relative importance of the impact depends on the characteristics of the signal and the direction (perpendicular or parallel) relative to the direction of x-ray source motion. For a given number of PVs, the angular range and the distribution of the PVs affect the degree of in-plane and interplane blurring in opposite ways. The design of the scan parameters of tomosynthesis systems would require proper consideration of the characteristics of the signals of interest and the potential trade-off of the image quality of different types of signals. PMID:21992385

  19. Image quality of microcalcifications in digital breast tomosynthesis: Effects of projection-view distributions

    SciTech Connect

    Lu, Yao; Chan, Heang-Ping; Wei, Jun; Goodsitt, Mitch; Carson, Paul L.; Hadjiiski, Lubomir; Schmitz, Andrea; Eberhard, Jeffrey W.; Claus, Bernhard E. H.

    2011-10-15

    distributions on spatial blurring depended on the directions. In the X-direction (perpendicular to the chestwall), the normalized line profiles of the calcifications reconstructed with the different PV distributions were similar in terms of FWHM; the differences in the FWHMs between the different PV distributions were less than half a pixel. In the Y-direction (x-ray source motion), the normalized line profiles of the calcifications reconstructed with PVs acquired with a narrow angular range or a large fraction of PVs at small angles had smaller FWHMs and thus less blurring of the line profiles. In addition, PV distributions with a narrow angular range or a large fraction of PVs at small angles yielded slightly higher CNR than those with a wide angular range for small, subtle microcalcifications; however, PV distributions had no obvious effect on CNR for relatively large microcalcifications. Conclusions: PV distributions affect the image quality of DBT. The relative importance of the impact depends on the characteristics of the signal and the direction (perpendicular or parallel) relative to the direction of x-ray source motion. For a given number of PVs, the angular range and the distribution of the PVs affect the degree of in-plane and interplane blurring in opposite ways. The design of the scan parameters of tomosynthesis systems would require proper consideration of the characteristics of the signals of interest and the potential trade-off of the image quality of different types of signals.

  20. DTIPrep: quality control of diffusion-weighted images

    PubMed Central

    Oguz, Ipek; Farzinfar, Mahshid; Matsui, Joy; Budin, Francois; Liu, Zhexing; Gerig, Guido; Johnson, Hans J.; Styner, Martin

    2014-01-01

    In the last decade, diffusion MRI (dMRI) studies of the human and animal brain have been used to investigate a multitude of pathologies and drug-related effects in neuroscience research. Study after study identifies white matter (WM) degeneration as a crucial biomarker for all these diseases. The tool of choice for studying WM is dMRI. However, dMRI has inherently low signal-to-noise ratio and its acquisition requires a relatively long scan time; in fact, the high loads required occasionally stress scanner hardware past the point of physical failure. As a result, many types of artifacts implicate the quality of diffusion imagery. Using these complex scans containing artifacts without quality control (QC) can result in considerable error and bias in the subsequent analysis, negatively affecting the results of research studies using them. However, dMRI QC remains an under-recognized issue in the dMRI community as there are no user-friendly tools commonly available to comprehensively address the issue of dMRI QC. As a result, current dMRI studies often perform a poor job at dMRI QC. Thorough QC of dMRI will reduce measurement noise and improve reproducibility, and sensitivity in neuroimaging studies; this will allow researchers to more fully exploit the power of the dMRI technique and will ultimately advance neuroscience. Therefore, in this manuscript, we present our open-source software, DTIPrep, as a unified, user friendly platform for thorough QC of dMRI data. These include artifacts caused by eddy-currents, head motion, bed vibration and pulsation, venetian blind artifacts, as well as slice-wise and gradient-wise intensity inconsistencies. This paper summarizes a basic set of features of DTIPrep described earlier and focuses on newly added capabilities related to directional artifacts and bias analysis. PMID:24523693

  1. DTIPrep: quality control of diffusion-weighted images.

    PubMed

    Oguz, Ipek; Farzinfar, Mahshid; Matsui, Joy; Budin, Francois; Liu, Zhexing; Gerig, Guido; Johnson, Hans J; Styner, Martin

    2014-01-01

    In the last decade, diffusion MRI (dMRI) studies of the human and animal brain have been used to investigate a multitude of pathologies and drug-related effects in neuroscience research. Study after study identifies white matter (WM) degeneration as a crucial biomarker for all these diseases. The tool of choice for studying WM is dMRI. However, dMRI has inherently low signal-to-noise ratio and its acquisition requires a relatively long scan time; in fact, the high loads required occasionally stress scanner hardware past the point of physical failure. As a result, many types of artifacts implicate the quality of diffusion imagery. Using these complex scans containing artifacts without quality control (QC) can result in considerable error and bias in the subsequent analysis, negatively affecting the results of research studies using them. However, dMRI QC remains an under-recognized issue in the dMRI community as there are no user-friendly tools commonly available to comprehensively address the issue of dMRI QC. As a result, current dMRI studies often perform a poor job at dMRI QC. Thorough QC of dMRI will reduce measurement noise and improve reproducibility, and sensitivity in neuroimaging studies; this will allow researchers to more fully exploit the power of the dMRI technique and will ultimately advance neuroscience. Therefore, in this manuscript, we present our open-source software, DTIPrep, as a unified, user friendly platform for thorough QC of dMRI data. These include artifacts caused by eddy-currents, head motion, bed vibration and pulsation, venetian blind artifacts, as well as slice-wise and gradient-wise intensity inconsistencies. This paper summarizes a basic set of features of DTIPrep described earlier and focuses on newly added capabilities related to directional artifacts and bias analysis. PMID:24523693

  2. High-quality remote interactive imaging in the operating theatre

    NASA Astrophysics Data System (ADS)

    Grimstead, Ian J.; Avis, Nick J.; Evans, Peter L.; Bocca, Alan

    2009-02-01

    We present a high-quality display system that enables the remote access within an operating theatre of high-end medical imaging and surgical planning software. Currently, surgeons often use printouts from such software for reference during surgery; our system enables surgeons to access and review patient data in a sterile environment, viewing real-time renderings of MRI & CT data as required. Once calibrated, our system displays shades of grey in Operating Room lighting conditions (removing any gamma correction artefacts). Our system does not require any expensive display hardware, is unobtrusive to the remote workstation and works with any application without requiring additional software licenses. To extend the native 256 levels of grey supported by a standard LCD monitor, we have used the concept of "PseudoGrey" where slightly off-white shades of grey are used to extend the intensity range from 256 to 1,785 shades of grey. Remote access is facilitated by a customized version of UltraVNC, which corrects remote shades of grey for display in the Operating Room. The system is successfully deployed at Morriston Hospital, Swansea, UK, and is in daily use during Maxillofacial surgery. More formal user trials and quantitative assessments are being planned for the future.

  3. Ecological soil quality affected by land use and management on semi-arid Crete

    NASA Astrophysics Data System (ADS)

    van Leeuwen, J. P.; Moraetis, D.; Lair, G. J.; Bloem, J.; Nikolaidis, N. P.; Hemerik, L.; de Ruiter, P. C.

    2015-03-01

    Land use and soil management practice can have strong effects on soil quality, defined in terms of soil fertility, carbon sequestration and conservation of biodiversity. In this study, we investigate whether ecological soil quality parameters are adequate to assess soil quality under harsh conditions, and are able to reflect different land uses and intensities of soil management practices. We selected three sites as main representatives for the dominant types of land use in the region: an intensively cultivated olive orchard (annually tilled), an extensively used olive orchard (not tilled) and a heavily grazed pasture site in the Koiliaris catchment (Crete/Greece). Soil quality was analysed using an ecosystem approach, studying soil biological properties such as soil organism biomass and activity, and taxonomic diversity of soil microarthropods, in connection to abiotic soil parameters, including soil organic matter contents, and soil aggregate stability. The intensively cultivated olive orchard had a much lower aggregate water stability than the extensive olive orchard and the pasture. Contents of soil organic C and N were higher in the extensively used olive orchard than in the intensively cultivated orchard, with intermediate concentrations in the pasture. This was mainly caused by the highest input of organic matter, combined with the lowest organic matter decomposition rate. Soil organism biomasses in all sites were relatively low compared to values reported from less harsh systems, while microarthropod richness was highest in the pasture compared to both the intensive and extensive olive orchards. From the present results we conclude that microarthropod taxonomic richness is a very useful indicator for ecological soil quality, because it is not only able to separate harsh sites from other systems, but it is also sensitive enough to show differences between land management practices under harsh conditions. Microbial biomass and especially microarthropod

  4. Laying performance and egg quality of blue-shelled layers as affected by different housing systems.

    PubMed

    Wang, X L; Zheng, J X; Ning, Z H; Qu, L J; Xu, G Y; Yang, N

    2009-07-01

    Blue-shelled eggs are gaining popularity as the consumption demand diversifies in some countries. This study was carried out to investigate the laying performance and egg quality of the blue-shelled egg layers as well as the effects of different housing systems on egg production and quality traits. One thousand pullets from Dongxiang blue-shelled layers were divided into 2 even groups and kept in different housing systems (outdoor vs. cage). Daily laying performance was recorded from 20 to 60 wk of age. External and internal egg quality traits were examined at 26, 34, 42, and 50 wk. Yolk cholesterol concentration and whole egg cholesterol content were measured at 40 wk of age. Average laying rate from 20 to 60 wk for the cage (54.7%) was significantly higher than that of outdoor layers (39.3%). Among all of the egg quality traits, only eggshell color was affected by housing system. Interaction between housing system and layer age was found in egg weight, eggshell color, eggshell ratio, yolk color, and yolk weight. Meanwhile, cholesterol concentration in yolk was 8.64 +/- 0.40 mg/g in the outdoor eggs, which was significantly lower than that of eggs from the cage birds (10.32 +/- 0.48 mg/g; P < 0.05). Whole egg cholesterol content in the outdoor eggs (125.23 +/- 6.32 mg/egg) was also significantly lower than that of eggs from the caged layers (158.01 +/- 8.62 mg/egg). The results demonstrated that blue-shelled layers have lower productivity in the outdoor system than in the cage system. Blue-shelled layers have lower egg weight, larger yolk proportion, and lower cholesterol content compared with commercial layers. In a proper marketing system, lower productivity could be balanced by a higher price for the better quality of blue-shelled eggs. PMID:19531721

  5. Factors Affecting Source-Water Quality after Disturbance of Forests by Wildfire

    NASA Astrophysics Data System (ADS)

    Murphy, S. F.; Martin, D. A.; McCleskey, R. B.; Writer, J. H.

    2015-12-01

    Forests yield high-quality water supplies to communities throughout the world, in part because forest cover reduces flooding and the consequent transport of suspended and dissolved constituents to surface water. Disturbance by wildfire reduces or eliminates forest cover, leaving watersheds susceptible to increased surface runoff during storms and reduced ability to retain contaminants. We assessed water-quality response to hydrologic events for three years after a wildfire in the Fourmile Creek Watershed, near Boulder, Colorado, and found that hydrologic and geochemical responses downstream of a burned area were primarily driven by small, brief convective storms that had relatively high, but not unusual, rainfall intensity. Total suspended sediment, dissolved organic carbon, nitrate, and manganese concentrations were 10-156 times higher downstream of a burned area compared to upstream, and water quality was sufficiently impaired to pose water-treatment concerns. The response in both concentration and yield of water-quality constituents differed depending on source availability and dominant watershed processes controlling the constituent. For example, while all constituent concentrations were highest during storm events, annual sediment yields downstream of the burned area were controlled by storm events and subsequent mobilization, whereas dissolved organic carbon yields were more dependent on spring runoff from upstream areas. The watershed response was affected by a legacy of historical disturbance: the watershed had been recovering from extensive disturbance by mining, railroad and road development, logging, and fires in the late 19th and early 20th centuries, and we observed extensive erosion of mine waste in response to these summer storms. Therefore, both storm characteristics and historical disturbance in a burned watershed must be considered when evaluating the role of wildfire on water quality.

  6. Exposure of wood in floodplains affects its chemical quality and its subsequent breakdown in streams.

    PubMed

    del Campo, Rubén; Gómez, Rosa

    2016-02-01

    In stream ecosystems, coarse organic matter from the riparian vegetation, a key food resource, is often retained in the floodplains before reaching the channel. During floodplain exposure, organic matter can be affected by abiotic and biotic processes ("preconditioning"), which alter its quality and affect its subsequent decomposition in streams. We analyzed the effect of floodplain preconditioning on wood quality (lignin, C, N, P, K, among others), and its subsequent aquatic breakdown, paying special attention to microbial activity. We simulated preconditioned standard wooden sticks on one arid stream floodplain for 3 and 4 months, and then monitored their breakdown in three different streams, together with control (non-preconditioned) sticks. Preconditioning reduced lignin mass and C:N and lignin:N ratios, caused the leaching of soluble nutrients such as P and K, as well as N immobilization by microbes. These changes enhanced the breakdown of wood in the first week of immersion, but had no effect on breakdown rates after 4 months of incubation in the streams, although N immobilization was diminished. Our results suggest that terrestrial preconditioning could alter the role of wood as a long-lasting nutrients and energy source for freshwater ecosystem.

  7. Exposure of wood in floodplains affects its chemical quality and its subsequent breakdown in streams.

    PubMed

    del Campo, Rubén; Gómez, Rosa

    2016-02-01

    In stream ecosystems, coarse organic matter from the riparian vegetation, a key food resource, is often retained in the floodplains before reaching the channel. During floodplain exposure, organic matter can be affected by abiotic and biotic processes ("preconditioning"), which alter its quality and affect its subsequent decomposition in streams. We analyzed the effect of floodplain preconditioning on wood quality (lignin, C, N, P, K, among others), and its subsequent aquatic breakdown, paying special attention to microbial activity. We simulated preconditioned standard wooden sticks on one arid stream floodplain for 3 and 4 months, and then monitored their breakdown in three different streams, together with control (non-preconditioned) sticks. Preconditioning reduced lignin mass and C:N and lignin:N ratios, caused the leaching of soluble nutrients such as P and K, as well as N immobilization by microbes. These changes enhanced the breakdown of wood in the first week of immersion, but had no effect on breakdown rates after 4 months of incubation in the streams, although N immobilization was diminished. Our results suggest that terrestrial preconditioning could alter the role of wood as a long-lasting nutrients and energy source for freshwater ecosystem. PMID:26613519

  8. Both diet and gene mutation induced obesity affect oocyte quality in mice

    PubMed Central

    Hou, Yan-Jun; Zhu, Cheng-Cheng; Duan, Xing; Liu, Hong-Lin; Wang, Qiang; Sun, Shao-Chen

    2016-01-01

    Obesity was shown to cause reproductive dysfunctions such as reduced conception, infertility and early pregnancy loss. However, the possible effects of obesity on oocyte quality are still not fully understood. In this study we investigated the effects of both diet and gene mutation induced obesity on impairments in mouse oocyte polarization, oxidative stress, and epigenetic modifications. Our results showed that high-fat diet induced obesity (HFD) and gene mutation induced obesity (ob/ob) could both impair oocyte meiotic maturation, disrupt spindle morphology, and reduce oocyte polarity. Oocytes from obese mice underwent oxidative stress, as shown by high DHE and ROS levels. Abnormal mitochondrial distributions and structures were observed in oocytes from obese groups of mice and early apoptosis signals were detected, which suggesting that oxidative stress had impaired mitochondrial function and resulted in oocyte apoptosis. Our results also showed that 5 mC levels and H3K9 and H3K27 methylation levels were altered in oocytes from obese mice, which indicated that DNA methylation and histone methylation had been affected. Our results showed that both HFD and ob/ob induced obesity affected oocyte maturation and that oxidative stress-induced early apoptosis and altered epigenetic modifications may be the reasons for reduced oocyte quality in obese mice. PMID:26732298

  9. Gradient Magnitude Similarity Deviation: A Highly Efficient Perceptual Image Quality Index.

    PubMed

    Xue, Wufeng; Zhang, Lei; Mou, Xuanqin; Bovik, Alan C

    2014-02-01

    It is an important task to faithfully evaluate the perceptual quality of output images in many applications, such as image compression, image restoration, and multimedia streaming. A good image quality assessment (IQA) model should not only deliver high quality prediction accuracy, but also be computationally efficient. The efficiency of IQA metrics is becoming particularly important due to the increasing proliferation of high-volume visual data in high-speed networks. We present a new effective and efficient IQA model, called gradient magnitude similarity deviation (GMSD). The image gradients are sensitive to image distortions, while different local structures in a distorted image suffer different degrees of degradations. This motivates us to explore the use of global variation of gradient based local quality map for overall image quality prediction. We find that the pixel-wise gradient magnitude similarity (GMS) between the reference and distorted images combined with a novel pooling strategy-the standard deviation of the GMS map-can predict accurately perceptual image quality. The resulting GMSD algorithm is much faster than most state-of-the-art IQA methods, and delivers highly competitive prediction accuracy. MATLAB source code of GMSD can be downloaded at http://www4.comp.polyu.edu.hk/~cslzhang/IQA/GMSD/GMSD.htm. PMID:26270911

  10. Impact of a healthy body image program among adolescent boys on body image, negative affect, and body change strategies.

    PubMed

    McCabe, Marita P; Ricciardelli, Lina A; Karantzas, Gery

    2010-03-01

    This study evaluated the effectiveness of a healthy body image program. In total, 421 adolescent boys completed a five-session intervention program or a wait list control group. There were no differences between the intervention and the control group at post-intervention or any of the follow-up times. Boys in the intervention group who were one standard deviation above the mean on body dissatisfaction at baseline, demonstrated a reduction in negative affect in the intervention group at post-test and 6 months follow-up. Prevention programs need to target boys who are at risk of adopting health risk behaviors, rather than being universally applied.

  11. Lesion insertion in projection domain for computed tomography image quality assessment

    NASA Astrophysics Data System (ADS)

    Chen, Baiyu; Ma, Chi; Yu, Zhicong; Leng, Shuai; Yu, Lifeng; McCollough, Cynthia

    2015-03-01

    To perform task-based image quality assessment in CT, it is desirable to have a large number of realistic patient images with known diagnostic truth. One effective way to achieve this objective is to create hybrid images that combine patient images with simulated lesions. Because conventional hybrid images generated in the image-domain fails to reflect the impact of scan and reconstruction parameters on lesion appearance, this study explored a projection-domain approach. Liver lesion models were forward projected according to the geometry of a commercial CT scanner to acquire lesion projections. The lesion projections were then inserted into patient projections (decoded from commercial CT raw data with the assistance of the vendor) and reconstructed to acquire hybrid images. To validate the accuracy of the forward projection geometry, simulated images reconstructed from the forward projections of a digital ACR phantom were compared to physically acquired ACR phantom images. To validate the hybrid images, lesion models were inserted into patient images and visually assessed. Results showed that the simulated phantom images and the physically acquired phantom images had great similarity in terms of HU accuracy and high-contrast resolution. The lesions in the hybrid image had a realistic appearance and merged naturally into the liver background. In addition, the inserted lesion demonstrated reconstruction-parameter-dependent appearance. Compared to conventional image-domain approach, our method enables more realistic hybrid images for image quality assessment.

  12. Evaluation of image quality of MRI data for brain tumor surgery

    NASA Astrophysics Data System (ADS)

    Heckel, Frank; Arlt, Felix; Geisler, Benjamin; Zidowitz, Stephan; Neumuth, Thomas

    2016-03-01

    3D medical images are important components of modern medicine. Their usefulness for the physician depends on their quality, though. Only high-quality images allow accurate and reproducible diagnosis and appropriate support during treatment. We have analyzed 202 MRI images for brain tumor surgery in a retrospective study. Both an experienced neurosurgeon and an experienced neuroradiologist rated each available image with respect to its role in the clinical workflow, its suitability for this specific role, various image quality characteristics, and imaging artifacts. Our results show that MRI data acquired for brain tumor surgery does not always fulfill the required quality standards and that there is a significant disagreement between the surgeon and the radiologist, with the surgeon being more critical. Noise, resolution, as well as the coverage of anatomical structures were the most important criteria for the surgeon, while the radiologist was mainly disturbed by motion artifacts.

  13. Quality metric in matched Laplacian of Gaussian response domain for blind adaptive optics image deconvolution

    NASA Astrophysics Data System (ADS)

    Guo, Shiping; Zhang, Rongzhi; Yang, Yikang; Xu, Rong; Liu, Changhai; Li, Jisheng

    2016-04-01

    Adaptive optics (AO) in conjunction with subsequent postprocessing techniques have obviously improved the resolution of turbulence-degraded images in ground-based astronomical observations or artificial space objects detection and identification. However, important tasks involved in AO image postprocessing, such as frame selection, stopping iterative deconvolution, and algorithm comparison, commonly need manual intervention and cannot be performed automatically due to a lack of widely agreed on image quality metrics. In this work, based on the Laplacian of Gaussian (LoG) local contrast feature detection operator, we propose a LoG domain matching operation to perceive effective and universal image quality statistics. Further, we extract two no-reference quality assessment indices in the matched LoG domain that can be used for a variety of postprocessing tasks. Three typical space object images with distinct structural features are tested to verify the consistency of the proposed metric with perceptual image quality through subjective evaluation.

  14. Beyond air quality--factors that affect prevalence estimates of sick building syndrome.

    PubMed

    Mikatavage, M A; Rose, V E; Funkhouser, E; Oestenstad, R K; Dillon, K; Reynolds, K D

    1995-11-01

    If the prevalence of sick building syndrome (SBS) is estimated before intervention begins, then a reduction in the estimate may later be used to measure success of the intervention, and in particular, those efforts toward improving air quality. However, the measure of success will be distorted if factors other than air quality affect the SBS prevalence estimate. In this study the background prevalence of SBS was estimated and study factors identified that alone affected the estimate. Two symptom questionnaires were randomly administered to workers from 39 offices before routine physical examinations; one questionnaire described the SBS study, the other did not. SBS was defined as a symptom in the prior 24-hour or 7-day recall period that was more severe at work and not related to suspected confounders--allergy, cold, flu. Prevalence and prevalence ratios were estimated along with 95% confidence intervals (CI). Symptoms were reported by 45% of 1088 workers surveyed, but most reported them as more severe outside work or related them to confounders. SBS prevalence was 5%. It was 3.2 times higher (95% CI: 1.8, 5.7) among workers cognizant of the study relative to those blinded, 2.2 times higher (95% CI: 1.2, 4.1) for the 7-day relative to the 24-hour recall period, and 2.5 times higher (95% CI: 1.4, 5.0) for females. SBS prevalence did not differ by workday or age. Since study factors alone affected prevalence estimates, a standardized assessment method seems necessary for SBS.

  15. Digital mammography--DQE versus optimized image quality in clinical environment: an on site study

    NASA Astrophysics Data System (ADS)

    Oberhofer, Nadia; Fracchetti, Alessandro; Springeth, Margareth; Moroder, Ehrenfried

    2010-04-01

    The intrinsic quality of the detection system of 7 different digital mammography units (5 direct radiography DR; 2 computed radiography CR), expressed by DQE, has been compared with their image quality/dose performances in clinical use. DQE measurements followed IEC 62220-1-2 using a tungsten test object for MTF determination. For image quality assessment two different methods have been applied: 1) measurement of contrast to noise ratio (CNR) according to the European guidelines and 2) contrast-detail (CD) evaluation. The latter was carried out with the phantom CDMAM ver. 3.4 and the commercial software CDMAM Analyser ver. 1.1 (both Artinis) for automated image analysis. The overall image quality index IQFinv proposed by the software has been validated. Correspondence between the two methods has been shown figuring out a linear correlation between CNR and IQFinv. All systems were optimized with respect to image quality and average glandular dose (AGD) within the constraints of automatic exposure control (AEC). For each equipment, a good image quality level was defined by means of CD analysis, and the corresponding CNR value considered as target value. The goal was to achieve for different PMMA-phantom thicknesses constant image quality, that means the CNR target value, at minimum dose. All DR systems exhibited higher DQE and significantly better image quality compared to CR systems. Generally switching, where available, to a target/filter combination with an x-ray spectrum of higher mean energy permitted dose savings at equal image quality. However, several systems did not allow to modify the AEC in order to apply optimal radiographic technique in clinical use. The best ratio image quality/dose was achieved by a unit with a-Se detector and W anode only recently available on the market.

  16. National Beef Quality Audit-2011: Harvest-floor assessments of targeted characteristics that affect quality and value of cattle, carcasses, and byproducts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Beef Quality Audit-2011(NBQA-2011) was conducted to assess targeted characteristics on the harvest floor that affect the quality and value of cattle, carcasses, and byproducts. Survey teams evaluated approximately 18,000 cattle/carcasses between May and November 2011 in 8 beef processin...

  17. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    USGS Publications Warehouse

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  18. Image quality in thoracic 4D cone-beam CT: A sensitivity analysis of respiratory signal, binning method, reconstruction algorithm, and projection angular spacing

    SciTech Connect

    Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T.; Keall, Paul J.; Kuncic, Zdenka

    2014-04-15

    Purpose: Respiratory signal, binning method, and reconstruction algorithm are three major controllable factors affecting image quality in thoracic 4D cone-beam CT (4D-CBCT), which is widely used in image guided radiotherapy (IGRT). Previous studies have investigated each of these factors individually, but no integrated sensitivity analysis has been performed. In addition, projection angular spacing is also a key factor in reconstruction, but how it affects image quality is not obvious. An investigation of the impacts of these four factors on image quality can help determine the most effective strategy in improving 4D-CBCT for IGRT. Methods: Fourteen 4D-CBCT patient projection datasets with various respiratory motion features were reconstructed with the following controllable factors: (i) respiratory signal (real-time position management, projection image intensity analysis, or fiducial marker tracking), (ii) binning method (phase, displacement, or equal-projection-density displacement binning), and (iii) reconstruction algorithm [Feldkamp–Davis–Kress (FDK), McKinnon–Bates (MKB), or adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS)]. The image quality was quantified using signal-to-noise ratio (SNR), contrast-to-noise ratio, and edge-response width in order to assess noise/streaking and blur. The SNR values were also analyzed with respect to the maximum, mean, and root-mean-squared-error (RMSE) projection angular spacing to investigate how projection angular spacing affects image quality. Results: The choice of respiratory signals was found to have no significant impact on image quality. Displacement-based binning was found to be less prone to motion artifacts compared to phase binning in more than half of the cases, but was shown to suffer from large interbin image quality variation and large projection angular gaps. Both MKB and ASD-POCS resulted in noticeably improved image quality almost 100% of the time relative to FDK. In addition, SNR

  19. Imaging Quality Evaluation of Low Tube Voltage Coronary CT Angiography Using Low Concentration Contrast Medium

    PubMed Central

    Zhang, Zaixian; Wang, Qingguo; Zheng, Linfeng; Feng, Yan; Zhou, Zhiguo; Zhang, Guixiang; Li, Kangan

    2015-01-01

    Purpose To compare the image quality of prospectively ECG-gated low voltage coronary computed tomography angiography (CTA) with an administration of low concentration contrast medium. Method and Materials A total of 101 patients, each with a heart rate below 65 beats per minute (BPM), underwent a prospectively ECG-gated axial scan in CT coronary angiography on a 64-slice CT scanner. All patients were allocated in three groups (group A: n=31, 80kVp, 300 mgI/ml; group B: n=34, 100kVp, 300 mgI/ml; group C: n=36, 120kVp, 370 mgI/ml). The CT attenuation values of aortic root (AR), left main coronary artery (LMA), right main coronary artery (RMA) and chest subcutaneous fat tissue were measured. The contrast-to-noise ratio (CNR) of AR, LMA and RMA were calculated according to the formulas below. The values of computed tomography dose index (CTDI) and dose-length product (DLP) were recorded. Image quality was assessed on a 5-point scale. The results were compared using the one-way ANOVA and rank sum tests. Results The values of CNR and SNR for vessels in group A and group B were not significantly different from group C (each p > 0.05). The effective radiation dose in group A (1.51±0.70 mSv) and group B (2.59±1.24 mSv) were both lower than group C (4.92±2.82 mSv) (each p < 0.05). There was no significant difference among the image quality scores of group A (4.10±0.41), group B (3.90±0.48) and group C (4.04±0.36) (each P > 0.05). Conclusion Low tube voltage coronary CT angiography using low concentration contrast medium does not affect the imaging quality for assessing the coronary arteries compared with high voltage coronary CT angiography using high concentration contrast medium. Meanwhile low concentration contrast medium allowed 47-69% of radiation dose reduction. PMID:25811785

  20. Myocardial performance index correlates with the BODE index and affects quality of life in COPD patients

    PubMed Central

    Tannus-Silva, Daniela Graner Schuwartz; Masson-Silva, João Batista; Ribeiro, Lays Silva; Conde, Marcus Barreto; Rabahi, Marcelo Fouad

    2016-01-01

    Background and objective COPD, a systemic illness associated with the impairment of different organs, affects patient prognosis and quality of life. The aim of this study was to evaluate the association between right ventricle (RV) function, the BODE (body mass index, airflow obstruction, dyspnea, and exercise capacity) index (a multifunctional scale for the assessment of mortality risk), and quality of life in patients with COPD. Methods A cross-sectional study was carried out in 107 outpatients presenting with stable COPD who underwent clinical assessment, spirometry, arterial blood gas analyses, a 6-minute walk test, electrocardiography, and echocardiogram and who responded to the Saint George’s Respiratory Questionnaire (SGRQ). Results Among the study subjects, 53% (57/107) were males, and the mean age was 65.26±8.81 years. A positive correlation was observed between RV dysfunction measured by the myocardial performance index using tissue Doppler (MPIt) and the BODE index, even after adjustment for age and partial pressure of oxygen (r2=0.47; P<0.01). Patients with alterations in the MPIt had worse quality of life, and a statistically significant difference was found for different domains of the SGRQ. Patients with a normal MPIt had a mean total score of 46.2±18.6, whereas for those with MPIt alterations, the mean total score was 61.6±14.2 (P=0.005). These patients had a 1.49-fold increased risk of exhibiting SGRQ total score above the upper limit of the 95% CI (P=0.01). Conclusion The findings of this study suggest that RV dysfunction as measured by the MPIt was associated with impairment in quality of life and a worse BODE index in COPD patients, irrespective of age and hypoxemia status.

  1. Myocardial performance index correlates with the BODE index and affects quality of life in COPD patients

    PubMed Central

    Tannus-Silva, Daniela Graner Schuwartz; Masson-Silva, João Batista; Ribeiro, Lays Silva; Conde, Marcus Barreto; Rabahi, Marcelo Fouad

    2016-01-01

    Background and objective COPD, a systemic illness associated with the impairment of different organs, affects patient prognosis and quality of life. The aim of this study was to evaluate the association between right ventricle (RV) function, the BODE (body mass index, airflow obstruction, dyspnea, and exercise capacity) index (a multifunctional scale for the assessment of mortality risk), and quality of life in patients with COPD. Methods A cross-sectional study was carried out in 107 outpatients presenting with stable COPD who underwent clinical assessment, spirometry, arterial blood gas analyses, a 6-minute walk test, electrocardiography, and echocardiogram and who responded to the Saint George’s Respiratory Questionnaire (SGRQ). Results Among the study subjects, 53% (57/107) were males, and the mean age was 65.26±8.81 years. A positive correlation was observed between RV dysfunction measured by the myocardial performance index using tissue Doppler (MPIt) and the BODE index, even after adjustment for age and partial pressure of oxygen (r2=0.47; P<0.01). Patients with alterations in the MPIt had worse quality of life, and a statistically significant difference was found for different domains of the SGRQ. Patients with a normal MPIt had a mean total score of 46.2±18.6, whereas for those with MPIt alterations, the mean total score was 61.6±14.2 (P=0.005). These patients had a 1.49-fold increased risk of exhibiting SGRQ total score above the upper limit of the 95% CI (P=0.01). Conclusion The findings of this study suggest that RV dysfunction as measured by the MPIt was associated with impairment in quality of life and a worse BODE index in COPD patients, irrespective of age and hypoxemia status. PMID:27695314

  2. Recent Developments in Hyperspectral Imaging for Assessment of Food Quality and Safety

    PubMed Central

    Huang, Hui; Liu, Li; Ngadi, Michael O.

    2014-01-01

    Hyperspectral imaging which combines imaging and spectroscopic technology is rapidly gaining ground as a non-destructive, real-time detection tool for food quality and safety assessment. Hyperspectral imaging could be used to simultaneously obtain large amounts of spatial and spectral information on the objects being studied. This paper provides a comprehensive review on the recent development of hyperspectral imaging applications in food and food products. The potential and future work of hyperspectral imaging for food quality and safety control is also discussed. PMID:24759119

  3. Quantitative measurement of holographic image quality using Adobe Photoshop

    NASA Astrophysics Data System (ADS)

    Wesly, E.

    2013-02-01

    Measurement of the characteristics of image holograms in regards to diffraction efficiency and signal to noise ratio are demonstrated, using readily available digital cameras and image editing software. Illustrations and case studies, using currently available holographic recording materials, are presented.

  4. How do we watch images? A case of change detection and quality estimation

    NASA Astrophysics Data System (ADS)

    Radun, Jenni; Leisti, Tuomas; Virtanen, Toni; Nyman, Göte

    2012-01-01

    The most common tasks in subjective image estimation are change detection (a detection task) and image quality estimation (a preference task). We examined how the task influences the gaze behavior when comparing detection and preference tasks. The eye movements of 16 naïve observers were recorded with 8 observers in both tasks. The setting was a flicker paradigm, where the observers see a non-manipulated image, a manipulated version of the image and again the non-manipulated image and estimate the difference they perceived in them. The material was photographic material with different image distortions and contents. To examine the spatial distribution of fixations, we defined the regions of interest using a memory task and calculated information entropy to estimate how concentrated the fixations were on the image plane. The quality task was faster and needed fewer fixations and the first eight fixations were more concentrated on certain image areas than the change detection task. The bottom-up influences of the image also caused more variation to the gaze behavior in the quality estimation task than in the change detection task The results show that the quality estimation is faster and the regions of interest are emphasized more on certain images compared with the change detection task that is a scan task where the whole image is always thoroughly examined. In conclusion, in subjective image estimation studies it is important to think about the task.

  5. Factors Affecting Water Quality in Selected Carbonate Aquifers in the United States,1993-2005

    USGS Publications Warehouse

    Lindsey, Bruce D.; Berndt, Marian P.; Katz, Brian G.; Ardis, Ann F.; Skach, Kenneth A.

    2009-01-01

    Carbonate aquifers are an important source of water in the United States; however, these aquifers can be particularly susceptible to contamination from the land surface. The U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program collected samples from wells and springs in 12 carbonate aquifers across the country during 1993-2005; water-quality results for 1,042 samples were available to assess the factors affecting ground-water quality. These aquifers represent a wide range of climate, land-use types, degrees of confinement, and other characteristics that were compared and evaluated to assess the effect of those factors on water quality. Differences and similarities among the aquifers were also identified. Samples were analyzed for major ions, radon, nutrients, 47 pesticides, and 54 volatile organic compounds (VOCs). Geochemical analysis helped to identify dominant processes that may contribute to the differences in aquifer susceptibility to anthropogenic contamination. Differences in concentrations of dissolved oxygen and dissolved organic carbon and in ground-water age were directly related to the occurrence of anthropogenic contaminants. Other geochemical indicators, such as mineral saturation indexes and calcium-magnesium molar ratio, were used to infer residence time, an indirect indicator of potential for anthropogenic contamination. Radon exceeded the U.S. Environmental Protection Agency proposed Maximum Contaminant Level (MCL) of 300 picocuries per liter in 423 of 735 wells sampled, of which 309 were drinking-water wells. In general, land use, oxidation-reduction (redox) status, and degree of aquifer confinement were the most important factors affecting the occurrence of anthropogenic contaminants. Although none of these factors individually accounts for all the variation in water quality among the aquifers, a combination of these characteristics accounts for the majority of the variation. Unconfined carbonate aquifers that had high

  6. Impact of CT detector pixel-to-pixel crosstalk on image quality

    NASA Astrophysics Data System (ADS)

    Engel, Klaus J.; Spies, Lothar; Vogtmeier, Gereon; Luhta, Randy

    2006-03-01

    In Computed Tomography (CT), the image quality sensitively depends on the accuracy of the X-ray projection signal, which is acquired by a two-dimensional array of pixel cells in the detector. If the signal of X-ray photons is spread out to neighboring pixels (crosstalk), a decrease of spatial resolution may result. Moreover, streak and ring artifacts may emerge. Deploying system simulations for state-of-the-art CT detector configurations, we characterize origin and appearance of these artifacts in the reconstructed CT images for different scenarios. A uniform pixel-to-pixel crosstalk results in a loss of spatial resolution only. The Modulation Transfer Function (MTF) is attenuated, without affecting the limiting resolution, which is defined as the first zero of the MTF. Additional streak and ring artifacts appear, if the pixel-to-pixel crosstalk is non-uniform. Parallel to the system simulations we developed an analytical model. The model explains resolution loss and artifact level using the first and second derivative of the X-ray profile acquired by the detector. Simulations and analytical model are in agreement to each other. We discuss the perceptibility of ring and streak artifacts within noisy images if no crosstalk correction is applied.

  7. A brief discussion about image quality and SEM methods for quantitative fractography of polymer composites.

    PubMed

    Hein, L R O; Campos, K A; Caltabiano, P C R O; Kostov, K G

    2013-01-01

    The methodology for fracture analysis of polymeric composites with scanning electron microscopes (SEM) is still under discussion. Many authors prefer to use sputter coating with a conductive material instead of applying low-voltage (LV) or variable-pressure (VP) methods, which preserves the original surfaces. The present work examines the effects of sputter coating with 25 nm of gold on the topography of carbon-epoxy composites fracture surfaces, using an atomic force microscope. Also, the influence of SEM imaging parameters on fractal measurements is evaluated for the VP-SEM and LV-SEM methods. It was observed that topographic measurements were not significantly affected by the gold coating at tested scale. Moreover, changes on SEM setup leads to nonlinear outcome on texture parameters, such as fractal dimension and entropy values. For VP-SEM or LV-SEM, fractal dimension and entropy values did not present any evident relation with image quality parameters, but the resolution must be optimized with imaging setup, accompanied by charge neutralization.

  8. Non-reference quality assessment of infrared images reconstructed by compressive sensing

    NASA Astrophysics Data System (ADS)

    Ospina-Borras, J. E.; Benitez-Restrepo, H. D.

    2015-01-01

    Infrared (IR) images are representations of the world and have natural features like images in the visible spectrum. As such, natural features from infrared images support image quality assessment (IQA).1 In this work, we compare the quality of a set of indoor and outdoor IR images reconstructed from measurement functions formed by linear combination of their pixels. The reconstruction methods are: linear discrete cosine transform (DCT) acquisition, DCT augmented with total variation minimization, and compressive sensing scheme. Peak Signal to Noise Ratio (PSNR), three full-reference (FR), and four no-reference (NR) IQA measures compute the qualities of each reconstruction: multi-scale structural similarity (MSSIM), visual information fidelity (VIF), information fidelity criterion (IFC), sharpness identification based on local phase coherence (LPC-SI), blind/referenceless image spatial quality evaluator (BRISQUE), naturalness image quality evaluator (NIQE) and gradient singular value decomposition (GSVD), respectively. Each measure is compared to human scores that were obtained by differential mean opinion score (DMOS) test. We observe that GSVD has the highest correlation coefficients of all NR measures, but all FR have better performance. We use MSSIM to compare the reconstruction methods and we find that CS scheme produces a good-quality IR image, using only 30000 random sub-samples and 1000 DCT coefficients (2%). In contrast, linear DCT provides higher correlation coefficients than CS scheme by using all the pixels of the image and 31000 DCT (47%) coefficients.

  9. Quality assessment of stereoscopic 3D image compression by binocular integration behaviors.

    PubMed

    Lin, Yu-Hsun; Wu, Ja-Ling

    2014-04-01

    The objective approaches of 3D image quality assessment play a key role for the development of compression standards and various 3D multimedia applications. The quality assessment of 3D images faces more new challenges, such as asymmetric stereo compression, depth perception, and virtual view synthesis, than its 2D counterparts. In addition, the widely used 2D image quality metrics (e.g., PSNR and SSIM) cannot be directly applied to deal with these newly introduced challenges. This statement can be verified by the low correlation between the computed objective measures and the subjectively measured mean opinion scores (MOSs), when 3D images are the tested targets. In order to meet these newly introduced challenges, in this paper, besides traditional 2D image metrics, the binocular integration behaviors-the binocular combination and the binocular frequency integration, are utilized as the bases for measuring the quality of stereoscopic 3D images. The effectiveness of the proposed metrics is verified by conducting subjective evaluations on publicly available stereoscopic image databases. Experimental results show that significant consistency could be reached between the measured MOS and the proposed metrics, in which the correlation coefficient between them can go up to 0.88. Furthermore, we found that the proposed metrics can also address the quality assessment of the synthesized color-plus-depth 3D images well. Therefore, it is our belief that the binocular integration behaviors are important factors in the development of objective quality assessment for 3D images.

  10. An electron beam imaging system for quality assurance in IORT

    NASA Astrophysics Data System (ADS)

    Casali, F.; Rossi, M.; Morigi, M. P.; Brancaccio, R.; Paltrinieri, E.; Bettuzzi, M.; Romani, D.; Ciocca, M.; Tosi, G.; Ronsivalle, C.; Vignati, M.

    2004-01-01

    Intraoperative radiation therapy is a special radiotherapy technique, which enables a high dose of radiation to be given in a single fraction during oncological surgery. The major stumbling block to the large-scale application of the technique is the transfer of the patient, with an open wound, from the operating room to the radiation therapy bunker, with the consequent organisational problems and the increased risk of infection. To overcome these limitations, in the last few years a new kind of linear accelerator, the Novac 7, conceived for direct use in the surgical room, has become available. Novac 7 can deliver electron beams of different energies (3, 5, 7 and 9 MeV), with a high dose rate (up to 20 Gy/min). The aim of this work, funded by ENEA in the framework of a research contract, is the development of an innovative system for on-line measurements of 2D dose distributions and electron beam characterisation, before radiotherapy treatment with Novac 7. The system is made up of the following components: (a) an electron-light converter; (b) a 14 bit cooled CCD camera; (c) a personal computer with an ad hoc written software for image acquisition and processing. The performances of the prototype have been characterised experimentally with different electron-light converters. Several tests have concerned the assessment of the detector response as a function of impulse number and electron beam energy. Finally, the experimental results concerning beam profiles have been compared with data acquired with other dosimetric techniques. The achieved results make it possible to say that the developed system is suitable for fast quality assurance measurements and verification of 2D dose distributions.

  11. Quality of life and mental health status of arsenic-affected patients in a Bangladeshi population.

    PubMed

    Syed, Emdadul H; Poudel, Krishna C; Sakisaka, Kayako; Yasuoka, Junko; Ahsan, Habibul; Jimba, Masamine

    2012-09-01

    Contamination of groundwater by inorganic arsenic is one of the major public-health problems in Bangladesh. This cross-sectional study was conducted (a) to evaluate the quality of life (QOL) and mental health status of arsenic-affected patients and (b) to identify the factors associated with the QOL. Of 1,456 individuals, 521 (35.78%) were selected as case and control participants, using a systematic random-sampling method. The selection criteria for cases (n=259) included presence of at least one of the following: melanosis, leucomelanosis on at least 10% of the body, or keratosis on the hands or feet. Control (nonpatient) participants (n=262) were selected from the same villages by matching age (±5 years) and gender. The Bangladeshi version of the WHOQOL-BREF was used for assessing the QOL, and the self-reporting questionnaire (SRQ) was used for assessing the general mental health status. Data were analyzed using Student's t-test and analysis of covariance (ANCOVA), and the WHOQOL-BREF and SRQ scores between the patients and the non-patients were compared. The mean scores of QOL were significantly lower in the patients than those in the non-patients of both the sexes. Moreover, the mental health status of the arsenic-affected patients (mean score for males=8.4 and females=10.3) showed greater disturbances than those of the non-patients (mean score for males=5.2 and females=6.1) of both the sexes. The results of multiple regression analysis revealed that the factors potentially contributing to the lower QOL scores included: being an arsenic-affected patient, having lower age, and having lower annual income. Based on the findings, it is concluded that the QOL and mental health status of the arsenic-affected patients were significantly lower than those of the non-patients in Bangladesh. Appropriate interventions are necessary to improve the well-being of the patients.

  12. No-Reference Image Quality Assessment for ZY3 Imagery in Urban Areas Using Statistical Model

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Cui, W. H.; Yang, F.; Wu, Z. C.

    2016-06-01

    More and more high-spatial resolution satellite images are produced with the improvement of satellite technology. However, the quality of images is not always satisfactory for application. Due to the impact of complicated atmospheric conditions and complex radiation transmission process in imaging process the images often suffer deterioration. In order to assess the quality of remote sensing images over urban areas, we proposed a general purpose image quality assessment methods based on feature extraction and machine learning. We use two types of features in multi scales. One is from the shape of histogram the other is from the natural scene statistics based on Generalized Gaussian distribution (GGD). A 20-D feature vector for each scale is extracted and is assumed to capture the RS image quality degradation characteristics. We use SVM to learn to predict image quality scores from these features. In order to do the evaluation, we construct a median scale dataset for training and testing with subjects taking part in to give the human opinions of degraded images. We use ZY3 satellite images over Wuhan area (a city in China) to conduct experiments. Experimental results show the correlation of the predicted scores and the subjective perceptions.

  13. Quality evaluation of adaptive optical image based on DCT and Rényi entropy

    NASA Astrophysics Data System (ADS)

    Xu, Yuannan; Li, Junwei; Wang, Jing; Deng, Rong; Dong, Yanbing

    2015-04-01

    The adaptive optical telescopes play a more and more important role in the detection system on the ground, and the adaptive optical images are so many that we need find a suitable method of quality evaluation to choose good quality images automatically in order to save human power. It is well known that the adaptive optical images are no-reference images. In this paper, a new logarithmic evaluation method based on the use of the discrete cosine transform(DCT) and Rényi entropy for the adaptive optical images is proposed. Through the DCT using one or two dimension window, the statistical property of Rényi entropy for images is studied. The different directional Rényi entropy maps of an input image containing different information content are obtained. The mean values of different directional Rényi entropy maps are calculated. For image quality evaluation, the different directional Rényi entropy and its standard deviation corresponding to region of interest is selected as an indicator for the anisotropy of the images. The standard deviation of different directional Rényi entropy is obtained as the quality evaluation value for adaptive optical image. Experimental results show the proposed method that the sorting quality matches well with the visual inspection.

  14. Dysautonomia Differentially Influences the Effect of Affective Pain Perception on Quality of Life in Parkinson's Disease Patients.

    PubMed

    Rada, D; Seco, J; Echevarría, E; Tijero, B; Abecia, L C; Gómez-Esteban, J C

    2016-01-01

    Background. Our aim was to evaluate the real effect of dysautonomic symptoms on the influence of affective pain perception on quality of life in PD patients. Methods. An observational cross-sectional study was carried out using 105 Parkinson's disease (PD) patients of the Movement Disorders Unit, Hospital de Cruces (Bilbao, Spain) [men 59 (56.2%), women 46 (43.85%)]. Statistical analysis was made in order to evaluate the possible association of pain with life quality. Results. Quality of life measured by PDQ-39 (Parkinson's Disease Questionnaire for quality of life) was statistically associated with affective dimension of pain (PRIA, affective pain rating index). However, the influence of this dimension on PDQ-39 was different in the specific case of PD patients that experimented a high score (>12) in SCOPA-AUT (Scale for Outcomes in PD-Autonomic scale). Conclusions. These results confirm the effect of affective perception of pain in life quality of PD patients, indicating the critical role of autonomic symptoms in the modulation of the influence of pain on quality of life and showing the possible utility of dysautonomia as clinical prognostic indicator of quality of life in PD patients affected by pain.

  15. Dysautonomia Differentially Influences the Effect of Affective Pain Perception on Quality of Life in Parkinson's Disease Patients

    PubMed Central

    Rada, D.; Seco, J.; Tijero, B.; Abecia, L. C.; Gómez-Esteban, J. C.

    2016-01-01

    Background. Our aim was to evaluate the real effect of dysautonomic symptoms on the influence of affective pain perception on quality of life in PD patients. Methods. An observational cross-sectional study was carried out using 105 Parkinson's disease (PD) patients of the Movement Disorders Unit, Hospital de Cruces (Bilbao, Spain) [men 59 (56.2%), women 46 (43.85%)]. Statistical analysis was made in order to evaluate the possible association of pain with life quality. Results. Quality of life measured by PDQ-39 (Parkinson's Disease Questionnaire for quality of life) was statistically associated with affective dimension of pain (PRIA, affective pain rating index). However, the influence of this dimension on PDQ-39 was different in the specific case of PD patients that experimented a high score (>12) in SCOPA-AUT (Scale for Outcomes in PD-Autonomic scale). Conclusions. These results confirm the effect of affective perception of pain in life quality of PD patients, indicating the critical role of autonomic symptoms in the modulation of the influence of pain on quality of life and showing the possible utility of dysautonomia as clinical prognostic indicator of quality of life in PD patients affected by pain. PMID:27239367

  16. SU-E-I-43: Pediatric CT Dose and Image Quality Optimization

    SciTech Connect

    Stevens, G; Singh, R

    2014-06-01

    Purpose: To design an approach to optimize radiation dose and image quality for pediatric CT imaging, and to evaluate expected performance. Methods: A methodology was designed to quantify relative image quality as a function of CT image acquisition parameters. Image contrast and image noise were used to indicate expected conspicuity of objects, and a wide-cone system was used to minimize scan time for motion avoidance. A decision framework was designed to select acquisition parameters as a weighted combination of image quality and dose. Phantom tests were used to acquire images at multiple techniques to demonstrate expected contrast, noise and dose. Anthropomorphic phantoms with contrast inserts were imaged on a 160mm CT system with tube voltage capabilities as low as 70kVp. Previously acquired clinical images were used in conjunction with simulation tools to emulate images at different tube voltages and currents to assess human observer preferences. Results: Examination of image contrast, noise, dose and tube/generator capabilities indicates a clinical task and object-size dependent optimization. Phantom experiments confirm that system modeling can be used to achieve the desired image quality and noise performance. Observer studies indicate that clinical utilization of this optimization requires a modified approach to achieve the desired performance. Conclusion: This work indicates the potential to optimize radiation dose and image quality for pediatric CT imaging. In addition, the methodology can be used in an automated parameter selection feature that can suggest techniques given a limited number of user inputs. G Stevens and R Singh are employees of GE Healthcare.

  17. An image-based technique to assess the perceptual quality of clinical chest radiographs

    SciTech Connect

    Lin Yuan; Luo Hui; Dobbins, James T. III; Page McAdams, H.; Wang, Xiaohui; Sehnert, William J.; Barski, Lori; Foos, David H.; Samei, Ehsan

    2012-11-15

    Purpose: Current clinical image quality assessment techniques mainly analyze image quality for the imaging system in terms of factors such as the capture system modulation transfer function, noise power spectrum, detective quantum efficiency, and the exposure technique. While these elements form the basic underlying components of image quality, when assessing a clinical image, radiologists seldom refer to these factors, but rather examine several specific regions of the displayed patient images, further impacted by a particular image processing method applied, to see whether the image is suitable for diagnosis. In this paper, the authors developed a novel strategy to simulate radiologists' perceptual evaluation process on actual clinical chest images. Methods: Ten regional based perceptual attributes of chest radiographs were determined through an observer study. Those included lung grey level, lung detail, lung noise, rib-lung contrast, rib sharpness, mediastinum detail, mediastinum noise, mediastinum alignment, subdiaphragm-lung contrast, and subdiaphragm area. Each attribute was characterized in terms of a physical quantity measured from the image algorithmically using an automated process. A pilot observer study was performed on 333 digital chest radiographs, which included 179 PA images with 10:1 ratio grids (set 1) and 154 AP images without grids (set 2), to ascertain the correlation between image perceptual attributes and physical quantitative measurements. To determine the acceptable range of each perceptual attribute, a preliminary quality consistency range was defined based on the preferred 80% of images in set 1. Mean value difference ({mu}{sub 1}-{mu}{sub 2}) and variance ratio ({sigma}{sub 1}{sup 2}/{sigma}{sub 2}{sup 2}) were investigated to further quantify the differences between the selected two image sets. Results: The pilot observer study demonstrated that our regional based physical quantity metrics of chest radiographs correlated very well with

  18. Natural control of bacteria affecting meat quality by a neem (Azadirachta indica A. Juss) cake extract.

    PubMed

    Del Serrone, P; Failla, S; Nicoletti, M

    2015-01-01

    The antibacterial activity of an ethylacetate neem cake extract (NCE) against bacteria that affect meat quality, namely Campylobacter jejuni, Carnobacterium spp., Lactobacillus curvatus, Lactobacillus sakei and Leuconostoc sp., is reported. The antibacterial activity was detected using standardised disc diffusion and macrodilution methods. The bacterial growth inhibition zone ranged from 11.33 ± 0.58 to 22.67 ± 0.58 mm (100 μL NCE). There is significant difference between the growth inhibition zone of NCE and the control (ciprofloxacin 100 μg). The percent of bacterial growth reduction range was 79.75 ± 1.53 to 90.73 ± 1.53 (100 μg NCE) as compared with control (without NCE). NCE in different amounts counteracted the growth of all tested bacteria.

  19. Factors affecting handling qualities of a lift-fan aircraft during steep terminal area approaches

    NASA Technical Reports Server (NTRS)

    Gerdes, R. M.; Hynes, C. S.

    1975-01-01

    The XV-5B lift-fan aircraft was used to explore the factors affecting handling qualities in the terminal area. A 10 deg ILS approach task was selected to explore these problems. Interception of the glide slope at 457.2 m, glide slope tracking, deceleration along the glide slope to a spot hover were considered. Variations in airplane deck angle, deceleration schedule, and powered-lift management were studied. The overall descent performance envelope was identified on the basis of fan stall, maximum comfortable descent rate, and controllability restrictions. The collective-lift stick provided precise glide slope tracking capability. The pilot preferred a deck-parallel attitude for which he used powered lift to control glide slope and pitch attitude to keep the angle of attack near zero. Workload was reduced when the deceleration schedule was delayed until the aircraft was well established on the glide slope, since thrust vector changes induced flight path disturbances.

  20. An offspring signal of quality affects the timing of future parental reproduction

    PubMed Central

    Mas, Flore; Kölliker, Mathias

    2011-01-01

    Solicitation signals by offspring are well known to influence parental behaviour, and it is commonly assumed that this behavioural effect translates into an effect on residual reproduction of parents. However, this equivalence assumption concerning behavioural and reproductive effects caused by offspring signals remains largely untested. Here, we tested the effect of a chemical offspring signal of quality on the relative timing and amount of future reproduction in the European earwig (Forficula auricularia). We manipulated the nutritional condition of earwig nymphs and exposed females to their extract, or to solvent as a control. There were no significant main effects of exposure treatment on 2nd clutch production, but exposure to extracts of well-fed nymphs induced predictable timing of the 2nd relative to the 1st clutch. This result demonstrates for the first time that an offspring signal per se, in the absence of any maternal behaviour, affects maternal reproductive timing, possibly through an effect on maternal reproductive physiology. PMID:21208942

  1. Natural control of bacteria affecting meat quality by a neem (Azadirachta indica A. Juss) cake extract.

    PubMed

    Del Serrone, P; Failla, S; Nicoletti, M

    2015-01-01

    The antibacterial activity of an ethylacetate neem cake extract (NCE) against bacteria that affect meat quality, namely Campylobacter jejuni, Carnobacterium spp., Lactobacillus curvatus, Lactobacillus sakei and Leuconostoc sp., is reported. The antibacterial activity was detected using standardised disc diffusion and macrodilution methods. The bacterial growth inhibition zone ranged from 11.33 ± 0.58 to 22.67 ± 0.58 mm (100 μL NCE). There is significant difference between the growth inhibition zone of NCE and the control (ciprofloxacin 100 μg). The percent of bacterial growth reduction range was 79.75 ± 1.53 to 90.73 ± 1.53 (100 μg NCE) as compared with control (without NCE). NCE in different amounts counteracted the growth of all tested bacteria. PMID:25272067

  2. Impact of flat panel-imager veiling glare on scatter-estimation accuracy and image quality of a commercial on-board cone-beam CT imaging system

    SciTech Connect

    Lazos, Dimitrios; Williamson, Jeffrey F.

    2012-09-15

    Purpose: The purposes of this study is to measure the low frequency drop (LFD) of the modulation transfer function (MTF), associated with the long tails of the detector point spread function (PSF) of an on-board flat panel imager and study its impact on cone-beam CT (CBCT) image quality and scatter measurement accuracy. Methods: Two different experimental methods were used to characterize LFD and its associated PSF of a Varian OBI flat-panel detector system: the edge response function (ERF) method and the disk transfer function (DTF) method. PSF was estimated by fitting parametric models to these measurements for four values of the applied voltage (kVp). The resultant PSF was used to demonstrate the effect of LFD on image contrast and CT number accuracy in CBCT images reconstructed from synthetic datasets, as well as, accuracy of scatter measurements with the beam-stop method. Results: The MTFs derived from the measured ERF data revealed LFDs varying from 8% (at 60 kVp) to 10.5% (at 120 kVp), while the intensity of the long PSF tails was found to increase with increasing kVp. The veiling glare line spread functions derived from the ERF and DTF methods were in excellent agreement. Uncorrected veiling glare reduced contrast and the image intensity in CBCT reconstruction, near the phantom periphery (by 67 Hounsfield units in a 20 cm-in-diameter water phantom) and (to a smaller degree) near inhomogeneities. Use of the bow-tie filter mitigated these effects. Veiling glare also resulted in about 10%-15% overestimation of the scatter-to-primary ratio when measured with the beam-stop or beam-stop array method. Conclusions: The long tails of the detector PSF were found to have a modest dependence of beam spectrum, which is reflected on the MTF curve LFD. Our findings show that uncorrected veiling glare can affect quantitative accuracy and contrast in CBCT imaging, based on flat panel imager. In addition, it results in overestimation of the scatter-to-primary ratio, measured

  3. Overhydration Negatively Affects Quality of Life in Peritoneal Dialysis Patients: Evidence from a Prospective Observational Study

    PubMed Central

    Yoon, Hye Eun; Kwon, Young Joo; Song, Ho Cheol; Kim, Jin Kuk; Song, Young Rim; Shin, Seok Joon; Kim, Hyung Wook; Lee, Chang Hwa; Lee, Tae Won; Kim, Young Ok; Kim, Byung Soo; Moon, Kyoung Hyoub; Chang, Yoon Kyung; Kim, Seong Suk; Bang, Kitae; Cho, Jong Tae; Yun, Sung Ro; Na, Ki Ryang; Kim, Yang Wook; Han, Byoung Geun; Chung, Jong Hoon; Lee, Kwang Young; Jeong, Jong Hyeok; Hwang, Eun Ah; Kim, Yong-Soo

    2016-01-01

    Backgound: This study evaluated whether the hydration status affected health-related quality of life (HRQOL) during 12 months in peritoneal dialysis (PD) patients. Methods: The hydration status and the HRQOL were examined at baseline and after 12 months using a bioimpedance spectroscopy and Kidney Disease Quality of Life-Short Form, respectively in PD patients. Four hundred eighty-one patients were included and divided according to the baseline overhydration (OH) value; normohydration group (NH group, -2L≤ OH ≤+2L, n=266) and overhydration group (OH group, OH >+2L, n=215). Baseline HRQOL scores were compared between the two groups. The subjects were re-stratified into quartiles according to the OH difference (OH value at baseline - OH value at 12 months; <-1, -1 - -0.1, -0.1 - +1, and ≥+1L). The relations of OH difference with HRQOL scores at 12 months and the association of OH difference with the HRQOL score difference (HRQOL score at baseline - HRQOL score at 12 months) were assessed. Results: The OH group showed significantly lower baseline physical and mental health scores (PCS and MCS), and kidney disease component scores (KDCS) compared with the NH group (all, P<0.01). At 12 months, the adjusted PCS, MCS, and KDCS significantly increased as the OH difference quartiles increased (P<0.001, P=0.002, P<0.001, respectively). In multivariate analysis, the OH difference was independently associated with higher PCS (β = 2.04, P< .001), MCS (β=1.02, P=0.002), and KDCS (β=1.06, P<0.001) at 12 months. The OH difference was independently associated with the PCS difference (β = -1.81, P<0.001), MCS difference (β=-0.92, P=0.01), and KDCS difference (β=-0.90, P=0.001). Conclusion: The hydration status was associated with HRQOL and increased hydration status negatively affected HRQOL after 12 months in PD patients.

  4. Local homogeneity combined with DCT statistics to blind noisy image quality assessment

    NASA Astrophysics Data System (ADS)

    Yang, Lingxian; Chen, Li; Chen, Heping

    2015-03-01

    In this paper a novel method for blind noisy image quality assessment is proposed. First, it is believed that human visual system (HVS) is more sensitive to the local smoothness area in a noise image, an adaptively local homogeneous block selection algorithm is proposed to construct a new homogeneous image named as homogeneity blocks (HB) based on computing each pixel characteristic. Second, applying the discrete cosine transform (DCT) for each HB and using high frequency component to evaluate image noise level. Finally, a modified peak signal to noise ratio (MPSNR) image quality assessment approach is proposed based on analysis DCT kurtosis distributions change and noise level above-mentioned. Simulations show that the quality scores that produced from the proposed algorithm are well correlated with the human perception of quality and also have a stability performance.

  5. INCITS W1.1 development update: appearance-based image quality standards for printers

    NASA Astrophysics Data System (ADS)

    Zeise, Eric K.; Rasmussen, D. René; Ng, Yee S.; Dalal, Edul; McCarthy, Ann; Williams, Don

    2008-01-01

    In September 2000, INCITS W1 (the U.S. representative of ISO/IEC JTC1/SC28, the standardization committee for office equipment) was chartered to develop an appearance-based image quality standard. (1),(2) The resulting W1.1 project is based on a proposal (3) that perceived image quality can be described by a small set of broad-based attributes. There are currently six ad hoc teams, each working towards the development of standards for evaluation of perceptual image quality of color printers for one or more of these image quality attributes. This paper summarizes the work in progress of the teams addressing the attributes of Macro-Uniformity, Colour Rendition, Gloss & Gloss Uniformity, Text & Line Quality and Effective Resolution.

  6. Quantitative metrics for assessment of chemical image quality and spatial resolution

    DOE PAGES

    Kertesz, Vilmos; Cahill, John F.; Van Berkel, Gary J.

    2016-02-28

    Rationale: Currently objective/quantitative descriptions of the quality and spatial resolution of mass spectrometry derived chemical images are not standardized. Development of these standardized metrics is required to objectively describe chemical imaging capabilities of existing and/or new mass spectrometry imaging technologies. Such metrics would allow unbiased judgment of intra-laboratory advancement and/or inter-laboratory comparison for these technologies if used together with standardized surfaces. Methods: We developed two image metrics, viz., chemical image contrast (ChemIC) based on signal-to-noise related statistical measures on chemical image pixels and corrected resolving power factor (cRPF) constructed from statistical analysis of mass-to-charge chronograms across features of interest inmore » an image. These metrics, quantifying chemical image quality and spatial resolution, respectively, were used to evaluate chemical images of a model photoresist patterned surface collected using a laser ablation/liquid vortex capture mass spectrometry imaging system under different instrument operational parameters. Results: The calculated ChemIC and cRPF metrics determined in an unbiased fashion the relative ranking of chemical image quality obtained with the laser ablation/liquid vortex capture mass spectrometry imaging system. These rankings were used to show that both chemical image contrast and spatial resolution deteriorated with increasing surface scan speed, increased lane spacing and decreasing size of surface features. Conclusions: ChemIC and cRPF, respectively, were developed and successfully applied for the objective description of chemical image quality and spatial resolution of chemical images collected from model surfaces using a laser ablation/liquid vortex capture mass spectrometry imaging system.« less

  7. The quality of our Nation's waters: factors affecting public-supply-well vulnerability to contamination: understanding observed water quality and anticipating future water quality

    USGS Publications Warehouse

    Eberts, Sandra M.; Thomas, Mary Ann; Jagucki, Martha L.

    2013-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program, a study was conducted from 2001 to 2011 to shed light on factors that affect the vulnerability of water from public-supply wells to contamination (referred to hereafter as “public-supply-well vulnerability”). The study was designed as a follow-up to earlier NAWQA studies that found mixtures of contaminants at low concentrations in groundwater near the water table in urban areas across the Nation and, less frequently, in deeper groundwater typically used for public supply. Beside the factors affecting public-supply-well vulnerability to contamination, this circular describes measures that can be used to determine which factor (or factors) plays a dominant role at an individual public-supply well. Case-study examples are used throughout to show how such information can be used to improve water quality. In general, the vulnerability of the water from public-supply wells to contamination is a function of contaminant input within the area that contributes water to a well, the mobility and persistence of a contaminant once released to the groundwater, and the ease of groundwater and contaminant movement from the point of recharge to the open interval of a well. The following measures described in this circular are particularly useful for indicating which contaminants in an aquifer might reach an individual public-supply well and when, how, and at what concentration they might arrive: * Sources of recharge—Information on the sources of recharge for a well provides insight into contaminants that might enter the aquifer with the recharge water and potentially reach the well. * Geochemical conditions—Information on the geochemical conditions encountered by groundwater traveling to a well provides insight into contaminants that might persist in the water all the way to the well. * Groundwater-age mixtures—Information on the ages of the different waters that mix in a well

  8. MTF as a quality measure for compressed images transmitted over computer networks

    NASA Astrophysics Data System (ADS)

    Hadar, Ofer; Stern, Adrian; Huber, Merav; Huber, Revital

    1999-12-01

    One result of the recent advances in different components of imaging systems technology is that, these systems have become more resolution-limited and less noise-limited. The most useful tool utilized in characterization of resolution- limited systems is the Modulation Transfer Function (MTF). The goal of this work is to use the MTF as an image quality measure of image compression implemented by the JPEG (Joint Photographic Expert Group) algorithm and transmitted MPEG (Motion Picture Expert Group) compressed video stream through a lossy packet network. Although we realize that the MTF is not an ideal parameter with which to measure image quality after compression and transmission due to the non- linearity shift invariant process, we examine the conditions under which it can be used as an approximated criterion for image quality. The advantage in using the MTF of the compression algorithm is that it can be easily combined with the overall MTF of the imaging system.

  9. The study on the image quality of varied line spacing plane grating by computer simulation

    NASA Astrophysics Data System (ADS)

    Sun, Shouqiang; Zhang, Weiping; Liu, Lei; Yang, Qingyi

    2014-11-01

    Varied line spacing plane gratings have the features of self-focusing , aberration-reduced and easy manufacturing ,which are widely applied in synchrotron radiation, plasma physics and space astronomy, and other fields. In the study of diffracting imaging , the optical path function is expanded into maclaurin series, aberrations are expressed by the coefficient of series, most of the aberration coefficients are similar and the category is more, can't directly reflects image quality in whole. The paper will study on diffraction imaging of the varied line spacing plane gratings by using computer simulation technology, for a method judging the image quality visibly. In this paper, light beam from some object points on the same object plane are analyzed and simulated by ray trace method , the evaluation function is set up, which can fully scale the image quality. In addition, based on the evaluation function, the best image plane is found by search algorithm .

  10. Near-infrared hyperspectral imaging for quality analysis of agricultural and food products

    NASA Astrophysics Data System (ADS)

    Singh, C. B.; Jayas, D. S.; Paliwal, J.; White, N. D. G.

    2010-04-01

    Agricultural and food processing industries are always looking to implement real-time quality monitoring techniques as a part of good manufacturing practices (GMPs) to ensure high-quality and safety of their products. Near-infrared (NIR) hyperspectral imaging is gaining popularity as a powerful non-destructive tool for quality analysis of several agricultural and food products. This technique has the ability to analyse spectral data in a spatially resolved manner (i.e., each pixel in the image has its own spectrum) by applying both conventional image processing and chemometric tools used in spectral analyses. Hyperspectral imaging technique has demonstrated potential in detecting defects and contaminants in meats, fruits, cereals, and processed food products. This paper discusses the methodology of hyperspectral imaging in terms of hardware, software, calibration, data acquisition and compression, and development of prediction and classification algorithms and it presents a thorough review of the current applications of hyperspectral imaging in the analyses of agricultural and food products.

  11. Light treatment improves sleep quality and negative affectiveness in high arctic residents during winter.

    PubMed

    Paul, Michel A; Love, Ryan J; Hawton, Andrea; Brett, Kaighley; McCreary, Donald R; Arendt, Josephine

    2015-01-01

    The seasonal extremes of photoperiod in the high Arctic place particular strain on the human circadian system, which leads to trouble sleeping and increased feelings of negative affect in the winter months. To qualify for our study, potential participants had to have been at Canadian Forces Station (CFS) Alert (82° 30' 00″ N) for at least 2 weeks. Subjects filled out questionnaires regarding sleep difficulty, psychological well-being and mood and wore Actigraphs to obtain objective sleep data. Saliva was collected at regular intervals on two occasions, 2 weeks apart, to measure melatonin and assess melatonin onset. Individuals with a melatonin rhythm that was in disaccord with their sleep schedule were given individualized daily light treatment interventions based on their pretreatment salivary melatonin profile. The light treatment prescribed to seven of the twelve subjects was effective in improving sleep quality both subjectively, based on questionnaire results, and objectively, based on the actigraphic data. The treatment also caused a significant reduction in negative affect among the participants. Since the treatment is noninvasive and has minimal associated side effects, our results support the use of the light visors at CFS Alert and other northern outposts during the winter for individuals who are experiencing sleep difficulty or low mood. PMID:25580574

  12. Positive affect and pain: mediators of the within-day relation linking sleep quality to activity interference in fibromyalgia.

    PubMed

    Kothari, Dhwani J; Davis, Mary C; Yeung, Ellen W; Tennen, Howard A

    2015-03-01

    Fibromyalgia (FM) is a chronic pain condition often resulting in functional impairments. Nonrestorative sleep is a prominent symptom of FM that is related to disability, but the day-to-day mechanisms relating the prior night's sleep quality to next-day reports of disability have not been examined. This study examined the within-day relations among early-morning reports of sleep quality last night, late-morning reports of pain and positive and negative affect, and end-of-day reports of activity interference. Specifically, we tested whether pain, positive affect, and negative affect mediated the association between sleep quality and subsequent activity interference. Data were drawn from electronic diary reports collected from 220 patients with FM for 21 consecutive days. The direct and mediated effects at the within-person level were estimated with multilevel structural equation modeling. Results showed that pain and positive affect mediated the relation between sleep quality and activity interference. Early-morning reports of poor sleep quality last night predicted elevated levels of pain and lower levels of positive affect at late-morning, which, in turn, predicted elevated end-of-day activity interference. Of note, positive affect was a stronger mediator than pain and negative affect was not a significant mediator. In summary, the findings identify 2 parallel mechanisms, pain and positive affect, through which the prior night's sleep quality predicts disability the next day in patients with FM. Furthermore, results highlight the potential utility of boosting positive affect after a poor night's sleep as one means of preserving daily function in FM. PMID:25679472

  13. Evaluation of impact-affected areas of glass fibre thermoplastic composites from thermographic images

    NASA Astrophysics Data System (ADS)

    Boccardi, S.; Carlomagno, G. M.; Simeoli, G.; Russo, P.; Meola, C.

    2016-07-01

    The usefulness of an infrared imaging device, in terms of both acting as a mechanism for surface thermal monitoring when a specimen is being impacted and as a non-destructive evaluation technique, has already been proved. Nevertheless, past investigation has focused on mainly thermoset-matrix composites with little attention towards thermoplastic ones. Conversely, these thermoplastic composites are becoming ever more attractive to the aeronautical sector. Their main advantage lies in the possibility of modifying their interface strength by adjusting the composition of the matrix. However, for a proper exploitation of new materials it is necessary to detail their characterization. The purpose of the present paper is to focus on the use of infrared thermography (IRT) to gain information on the behaviour of thermoplastic composites under impact. In addition, attention is given to image processing algorithms with the aim of more effectively measuring the extension of the impact-affected area.4

  14. A conceptual study of automatic and semi-automatic quality assurance techniques for round image processing

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This report summarizes the results of a study conducted by Engineering and Economics Research (EER), Inc. under NASA Contract Number NAS5-27513. The study involved the development of preliminary concepts for automatic and semiautomatic quality assurance (QA) techniques for ground image processing. A distinction is made between quality assessment and the more comprehensive quality assurance which includes decision making and system feedback control in response to quality assessment.

  15. Quality Index for Stereoscopic Images by Separately Evaluating Adding and Subtracting

    PubMed Central

    Yang, Jiachen; Lin, Yancong; Gao, Zhiqun; Lv, Zhihan; Wei, Wei; Song, Houbing

    2015-01-01

    The human visual system (HVS) plays an important role in stereo image quality perception. Therefore, it has aroused many people’s interest in how to take advantage of the knowledge of the visual perception in image quality assessment models. This paper proposes a full-reference metric for quality assessment of stereoscopic images based on the binocular difference channel and binocular summation channel. For a stereo pair, the binocular summation map and binocular difference map are computed first by adding and subtracting the left image and right image. Then the binocular summation is decoupled into two parts, namely additive impairments and detail losses. The quality of binocular summation is obtained as the adaptive combination of the quality of detail losses and additive impairments. The quality of binocular summation is computed by using the Contrast Sensitivity Function (CSF) and weighted multi-scale (MS-SSIM). Finally, the quality of binocular summation and binocular difference is integrated into an overall quality index. The experimental results indicate that compared with existing metrics, the proposed metric is highly consistent with the subjective quality assessment and is a robust measure. The result have also indirectly proved hypothesis of the existence of binocular summation and binocular difference channels. PMID:26717412

  16. Quality Index for Stereoscopic Images by Separately Evaluating Adding and Subtracting.

    PubMed

    Yang, Jiachen; Lin, Yancong; Gao, Zhiqun; Lv, Zhihan; Wei, Wei; Song, Houbing

    2015-01-01

    The human visual system (HVS) plays an important role in stereo image quality perception. Therefore, it has aroused many people's interest in how to take advantage of the knowledge of the visual perception in image quality assessment models. This paper proposes a full-reference metric for quality assessment of stereoscopic images based on the binocular difference channel and binocular summation channel. For a stereo pair, the binocular summation map and binocular difference map are computed first by adding and subtracting the left image and right image. Then the binocular summation is decoupled into two parts, namely additive impairments and detail losses. The quality of binocular summation is obtained as the adaptive combination of the quality of detail losses and additive impairments. The quality of binocular summation is computed by using the Contrast Sensitivity Function (CSF) and weighted multi-scale (MS-SSIM). Finally, the quality of binocular summation and binocular difference is integrated into an overall quality index. The experimental results indicate that compared with existing metrics, the proposed metric is highly consistent with the subjective quality assessment and is a robust measure. The result have also indirectly proved hypothesis of the existence of binocular summation and binocular difference channels. PMID:26717412

  17. Application of wavelets to the evaluation of phantom images for mammography quality control.

    PubMed

    Alvarez, M; Pina, D R; Miranda, J R A; Duarte, S B

    2012-11-01

    The main goal of this work was to develop a methodology for the computed analysis of American College of Radiology (ACR) mammographic phantom images, to be used in a quality control (QC) program of mammographic services. Discrete wavelet transform processing was applied to enhance the quality of images from the ACR mammographic phantom and to allow a lower dose for automatic evaluations of equipment performance in a QC program. Regions of interest (ROIs) containing phantom test objects (e.g., masses, fibers and specks) were focalized for appropriate wavelet processing, which highlighted the characteristics of structures present in each ROI. To minimize false-positive detection, each ROI in the image was submitted to pattern recognition tests, which identified structural details of the focalized test objects. Geometric and morphologic parameters of the processed test object images were used to quantify the final level of image quality. The final purpose of this work was to establish the main computational procedures for algorithms of quality evaluation of ACR phantom images. These procedures were implemented, and satisfactory agreement was obtained when the algorithm scores for image quality were compared with the results of assessments by three experienced radiologists. An exploratory study of a potential dose reduction was performed based on the radiologist scores and on the algorithm evaluation of images treated by wavelet processing. The results were comparable with both methods, although the algorithm had a tendency to provide a lower dose reduction than the evaluation by observers. Nevertheless, the objective and more precise criteria used by the algorithm to score image quality gave the computational result a higher degree of confidence. The developed algorithm demonstrates the potential use of the wavelet image processing approach for objectively evaluating the mammographic image quality level in routine QC tests. The implemented computational procedures

  18. Fusion and quality analysis for remote sensing images using contourlet transform

    NASA Astrophysics Data System (ADS)

    Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram

    2013-05-01

    Recent developments in remote sensing technologies have provided various images with high spatial and spectral resolutions. However, multispectral images have low spatial resolution and panchromatic images have low spectral resolution. Therefore, image fusion techniques are necessary to improve the spatial resolution of spectral images by injecting spatial details of high-resolution panchromatic images. The objective of image fusion is to provide useful information by improving the spatial resolution and the spectral information of the original images. The fusion results can be utilized in various applications, such as military, medical imaging, and remote sensing. This paper addresses two issues in image fusion: i) image fusion method and ii) quality analysis of fusion results. First, a new contourlet-based image fusion method is presented, which is an improvement over the wavelet-based fusion. This fusion method is then applied to a case study to demonstrate its fusion performance. Fusion framework and scheme used in the study are discussed in detail. Second, quality analysis for the fusion results is discussed. We employed various quality metrics in order to analyze the fusion results both spatially and spectrally. Our results indicate that the proposed contourlet-based fusion method performs better than the conventional wavelet-based fusion methods.

  19. Scientific assessment of the quality of OSIRIS images

    NASA Astrophysics Data System (ADS)

    Tubiana, C.; Güttler, C.; Kovacs, G.; Bertini, I.; Bodewits, D.; Fornasier, S.; Lara, L.; La Forgia, F.; Magrin, S.; Pajola, M.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J.-L.; Besse, S.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; El-Maarry, M. R.; Fulle, M.; Groussin, O.; Gutiérrez-Marques, P.; Gutiérrez, P. J.; Hoekzema, N.; Hofmann, M.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Massironi, M.; Michalik, H.; Moissl, R.; Naletto, G.; Oklay, N.; Scholten, F.; Shi, X.; Thomas, N.; Vincent, J.-B.

    2015-11-01

    Context. OSIRIS, the scientific imaging system onboard the ESA Rosetta spacecraft, has been imaging the nucleus of comet 67P/Churyumov-Gerasimenko and its dust and gas environment since March 2014. The images serve different scientific goals, from morphology and composition studies of the nucleus surface, to the motion and trajectories of dust grains, the general structure of the dust coma, the morphology and intensity of jets, gas distribution, mass loss, and dust and gas production rates. Aims: We present the calibration of the raw images taken by OSIRIS and address the accuracy that we can expect in our scientific results based on the accuracy of the calibration steps that we have performed. Methods: We describe the pipeline that has been developed to automatically calibrate the OSIRIS images. Through a series of steps, radiometrically calibrated and distortion corrected images are produced and can be used for scientific studies. Calibration campaigns were run on the ground before launch and throughout the years in flight to determine the parameters that are used to calibrate the images and to verify their evolution with time. We describe how these parameters were determined and we address their accuracy. Results: We provide a guideline to the level of trust that can be put into the various studies performed with OSIRIS images, based on the accuracy of the image calibration.

  20. Optimization of image quality and dose for Varian aS500 electronic portal imaging devices (EPIDs)

    NASA Astrophysics Data System (ADS)

    McGarry, C. K.; Grattan, M. W. D.; Cosgrove, V. P.

    2007-12-01

    This study was carried out to investigate whether the electronic portal imaging (EPI) acquisition process could be optimized, and as a result tolerance and action levels be set for the PIPSPro QC-3V phantom image quality assessment. The aim of the optimization process was to reduce the dose delivered to the patient while maintaining a clinically acceptable image quality. This is of interest when images are acquired in addition to the planned patient treatment, rather than images being acquired using the treatment field during a patient's treatment. A series of phantoms were used to assess image quality for different acquisition settings relative to the baseline values obtained following acceptance testing. Eight Varian aS500 EPID systems on four matched Varian 600C/D linacs and four matched Varian 2100C/D linacs were compared for consistency of performance and images were acquired at the four main orthogonal gantry angles. Images were acquired using a 6 MV beam operating at 100 MU min-1 and the low-dose acquisition mode. Doses used in the comparison were measured using a Farmer ionization chamber placed at dmax in solid water. The results demonstrated that the number of reset frames did not have any influence on the image contrast, but the number of frame averages did. The expected increase in noise with corresponding decrease in contrast was also observed when reducing the number of frame averages. The optimal settings for the low-dose acquisition mode with respect to image quality and dose were found to be one reset frame and three frame averages. All patients at the Northern Ireland Cancer Centre are now imaged using one reset frame and three frame averages in the 6 MV 100 MU min-1 low-dose acquisition mode. Routine EPID QC contrast tolerance (±10) and action (±20) levels using the PIPSPro phantom based around expected values of 190 (Varian 600C/D) and 225 (Varian 2100C/D) have been introduced. The dose at dmax from electronic portal imaging has been reduced

  1. Factors Affecting Oral Health–Related Quality of Life Among Elderly Croatian Patients

    PubMed Central

    Kranjčić, Josip; Mikuš, Anja; Peršić, Sanja; Vojvodić, Denis

    2014-01-01

    Objective of work Oral health–related quality of life (OHRQoL) as a multidimensional concept is affected by many factors. Therefore, the aim of this study was to determine which demographic and subjective factors are significantly affecting the OHRQoL among the elderly people wearing complete removable dental prostheses (CRDP). Materials and Methods This questionnaire-based study included 301 participants, residents of elderly care homes (in Zagreb and Slavonski Brod, Croatia) wearing maxillary and/or mandibular CRDP. The questionnaire used in this study consisted of two sections; the first section included questions giving general information and in the second section the Croatian version of Oral Health Impact Profile (OHIP)-49 questionnaire with 49 items representing seven OHIP domains was used. Results Participants were aged between 60–99 years, with average age of 74 ± 12.1 years. OHIP summary score was 26.5. The highest average OHIP mean values in the domain of functional limitation amounted to 6.7, physical pain 5.1, and physical disability 5.9. The participants’ age, education, profession, residence place size, type of CRDP, and the time of denture wearing period all statistically significantly affected OHRQoL (p < 0.05). Conclusions General and sociodemographic factors had a significant influence on the participant’s subjective perception of oral health and OHRQoL. Younger participants, participants from rural places, those with lower levels of education, and shorter period of denture wearing demonstrated a higher impact on OHRQoL.

  2. Comparison of retinal image quality with spherical and customized aspheric intraocular lenses

    PubMed Central

    Guo, Huanqing; Goncharov, Alexander V.; Dainty, Chris

    2012-01-01

    We hypothesize that an intraocular lens (IOL) with higher-order aspheric surfaces customized for an individual eye provides improved retinal image quality, despite the misalignments that accompany cataract surgery. To test this hypothesis, ray-tracing eye models were used to investigate 10 designs of mono-focal single lens IOLs with rotationally symmetric spherical, aspheric, and customized surfaces. Retinal image quality of pseudo-phakic eyes using these IOLs together with individual variations in ocular and IOL parameters, are evaluated using a Monte Carlo analysis. We conclude that customized lenses should give improved retinal image quality despite the random errors resulting from IOL insertion. PMID:22574257

  3. Testing the quality of images for permanent magnet desktop MRI systems using specially designed phantoms

    NASA Astrophysics Data System (ADS)

    Qiu, Jianfeng; Wang, Guozhu; Min, Jiao; Wang, Xiaoyan; Wang, Pengcheng

    2013-12-01

    Our aim was to measure the performance of desktop magnetic resonance imaging (MRI) systems using specially designed phantoms, by testing imaging parameters and analysing the imaging quality. We designed multifunction phantoms with diameters of 18 and 60 mm for desktop MRI scanners in accordance with the American Association of Physicists in Medicine (AAPM) report no. 28. We scanned the phantoms with three permanent magnet 0.5 T desktop MRI systems, measured the MRI image parameters, and analysed imaging quality by comparing the data with the AAPM criteria and Chinese national standards. Image parameters included: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, signal-to-noise ratio (SNR), and image uniformity. The image parameters of three desktop MRI machines could be measured using our specially designed phantoms, and most parameters were in line with MRI quality control criterion, including: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, image uniformity and slice position accuracy. However, SNR was significantly lower than in some references. The imaging test and quality control are necessary for desktop MRI systems, and should be performed with the applicable phantom and corresponding standards.

  4. Spectral quality affects disease development of three pathogens on hydroponically grown plants.

    PubMed

    Schuerger, A C; Brown, C S

    1997-02-01

    Plants were grown under light-emitting diode (LED) arrays with various spectra to determine the effects of light quality on the development of diseases caused by tomato mosaic virus (ToMV) on pepper (Capsicum annuum L.), powdery mildew [Sphaerotheca fuliginea (Schlectend:Fr.) Pollaci] on cucumber (Cucumis sativus L.), and bacterial wilt (Pseudomonas solanacearum Smith) on tomato (Lycopersicon esculentum Mill.). One LED (660) array supplied 99% red light at 660 nm (25 nm bandwidth at half-peak height) and 1% far-red light between 700 to 800 nm. A second LED (660/735) array supplied 83% red light at 660 nm and 17% far-red light at 735 nm (25 nm bandwidth at half-peak height). A third LED (660/BF) array supplied 98% red light at 660 nm, 1% blue light (BF) between 350 to 550 nm, and 1% far-red light between 700 to 800 nm. Control plants were grown under broad-spectrum metal halide (MH) lamps. Plants were grown at a mean photon flux (300 to 800 nm) of 330 micromoles m-2 s-1 under a 12-h day/night photoperiod. Spectral quality affected each pathosystem differently. In the ToMV/pepper pathosystem, disease symptoms developed slower and were less severe in plants grown under light sources that contained blue and UV-A wavelengths (MH and 660/BF treatments) compared to plants grown under light sources that lacked blue and UV-A wavelengths (660 and 660/735 LED arrays). In contrast, the number of colonies per leaf was highest and the mean colony diameters of S. fuliginea on cucumber plants were largest on leaves grown under the MH lamp (highest amount of blue and UV-A light) and least on leaves grown under the 660 LED array (no blue or UV-A light). The addition of far-red irradiation to the primary light source in the 660/735 LED array increased the colony counts per leaf in the S. fuliginea/cucumber pathosystem compared to the red-only (660) LED array. In the P. solanacearum/tomato pathosystem, disease symptoms were less severe in plants grown under the 660 LED array, but the

  5. Spectral quality affects disease development of three pathogens on hydroponically grown plants

    NASA Technical Reports Server (NTRS)

    Schuerger, A. C.; Brown, C. S.; Sager, J. C. (Principal Investigator)

    1997-01-01

    Plants were grown under light-emitting diode (LED) arrays with various spectra to determine the effects of light quality on the development of diseases caused by tomato mosaic virus (ToMV) on pepper (Capsicum annuum L.), powdery mildew [Sphaerotheca fuliginea (Schlectend:Fr.) Pollaci] on cucumber (Cucumis sativus L.), and bacterial wilt (Pseudomonas solanacearum Smith) on tomato (Lycopersicon esculentum Mill.). One LED (660) array supplied 99% red light at 660 nm (25 nm bandwidth at half-peak height) and 1% far-red light between 700 to 800 nm. A second LED (660/735) array supplied 83% red light at 660 nm and 17% far-red light at 735 nm (25 nm bandwidth at half-peak height). A third LED (660/BF) array supplied 98% red light at 660 nm, 1% blue light (BF) between 350 to 550 nm, and 1% far-red light between 700 to 800 nm. Control plants were grown under broad-spectrum metal halide (MH) lamps. Plants were grown at a mean photon flux (300 to 800 nm) of 330 micromoles m-2 s-1 under a 12-h day/night photoperiod. Spectral quality affected each pathosystem differently. In the ToMV/pepper pathosystem, disease symptoms developed slower and were less severe in plants grown under light sources that contained blue and UV-A wavelengths (MH and 660/BF treatments) compared to plants grown under light sources that lacked blue and UV-A wavelengths (660 and 660/735 LED arrays). In contrast, the number of colonies per leaf was highest and the mean colony diameters of S. fuliginea on cucumber plants were largest on leaves grown under the MH lamp (highest amount of blue and UV-A light) and least on leaves grown under the 660 LED array (no blue or UV-A light). The addition of far-red irradiation to the primary light source in the 660/735 LED array increased the colony counts per leaf in the S. fuliginea/cucumber pathosystem compared to the red-only (660) LED array. In the P. solanacearum/tomato pathosystem, disease symptoms were less severe in plants grown under the 660 LED array, but the

  6. Spectral quality affects disease development of three pathogens on hydroponically grown plants.

    PubMed

    Schuerger, A C; Brown, C S

    1997-02-01

    Plants were grown under light-emitting diode (LED) arrays with various spectra to determine the effects of light quality on the development of diseases caused by tomato mosaic virus (ToMV) on pepper (Capsicum annuum L.), powdery mildew [Sphaerotheca fuliginea (Schlectend:Fr.) Pollaci] on cucumber (Cucumis sativus L.), and bacterial wilt (Pseudomonas solanacearum Smith) on tomato (Lycopersicon esculentum Mill.). One LED (660) array supplied 99% red light at 660 nm (25 nm bandwidth at half-peak height) and 1% far-red light between 700 to 800 nm. A second LED (660/735) array supplied 83% red light at 660 nm and 17% far-red light at 735 nm (25 nm bandwidth at half-peak height). A third LED (660/BF) array supplied 98% red light at 660 nm, 1% blue light (BF) between 350 to 550 nm, and 1% far-red light between 700 to 800 nm. Control plants were grown under broad-spectrum metal halide (MH) lamps. Plants were grown at a mean photon flux (300 to 800 nm) of 330 micromoles m-2 s-1 under a 12-h day/night photoperiod. Spectral quality affected each pathosystem differently. In the ToMV/pepper pathosystem, disease symptoms developed slower and were less severe in plants grown under light sources that contained blue and UV-A wavelengths (MH and 660/BF treatments) compared to plants grown under light sources that lacked blue and UV-A wavelengths (660 and 660/735 LED arrays). In contrast, the number of colonies per leaf was highest and the mean colony diameters of S. fuliginea on cucumber plants were largest on leaves grown under the MH lamp (highest amount of blue and UV-A light) and least on leaves grown under the 660 LED array (no blue or UV-A light). The addition of far-red irradiation to the primary light source in the 660/735 LED array increased the colony counts per leaf in the S. fuliginea/cucumber pathosystem compared to the red-only (660) LED array. In the P. solanacearum/tomato pathosystem, disease symptoms were less severe in plants grown under the 660 LED array, but the

  7. Examination of body checking, body image dissatisfaction, and negative affect using Ecological momentary assessment.

    PubMed

    Stefano, Emily C; Hudson, Danae L; Whisenhunt, Brooke L; Buchanan, Erin M; Latner, Janet D

    2016-08-01

    Research has shown that non-clinical women, particularly those with high body concern, engage in frequent body checking behaviors. The purpose of this study was to use ecological momentary assessment (EMA) to examine the frequency and correlates of body checking behavior, including its association with body image dissatisfaction and negative affect, in non-clinical women with high body concern. Undergraduate female participants with high body concern (n=22) were assessed five times per day for five days via text messages sent to their smart phones. During each assessment, participants reported the number of times they engaged in eight different body checking behaviors and their current level of negative affect and body dissatisfaction. After aggregation, a total of 3064 body checking behaviors were reported by the sample during the five-day period. All participants reported engaging in body checking at least once per day, with a mean of 27.85 checking behaviors per day. Hierarchical Linear Modeling revealed that body checking significantly predicted both body dissatisfaction and negative affect. These results provide preliminary support for the cognitive behavioral theory of eating disorders, suggesting that as women engage in more frequent body checking behaviors, they also experience higher levels of body dissatisfaction and negative affect. PMID:27086048

  8. Differential gloss quality scale experiment update: an appearance-based image quality standard initiative (INCITS W1.1)

    NASA Astrophysics Data System (ADS)

    Ng, Yee S.; Kuo, Chunghui; Maggard, Eric; Mashtare, Dale; Morris, Peter; Farnand, Susan

    2007-01-01

    Surface characteristics of a printed sample command a parallel group of visual attributes determining perceived image quality beyond color, and they manifest themselves through various perceived gloss features such as differential gloss, gloss granularity, gloss mottle, etc. Extending from the scope of ISO19799 with limited range of gloss level and printing technologies, the objective of this study is to derive an appearance-based differential gloss quality scale ranging from very low gloss level to very high gloss level composed by various printing technology/substrate combinations. Three psychophysical experiment procedures were proposed including the quality ruler method, pair comparison, and interval scaling with two anchor stimuli, where the pair comparison process was subsequently dropped because of the concern of experiment complexity and data consistency after preliminary trial study. In this paper, we will compare the obtained average quality scale after mapping to the sharpness quality ruler with the average perceived differential gloss via the interval scale. Our numerical analysis indicates a general inverse relationship between the perceived image quality and the gloss variation on an image.

  9. Body image and college women's quality of life: The importance of being self-compassionate.

    PubMed

    Duarte, Cristiana; Ferreira, Cláudia; Trindade, Inês A; Pinto-Gouveia, José

    2015-06-01

    This study explored self-compassion as a mediator between body dissatisfaction, social comparison based on body image and quality of life in 662 female college students. Path analysis revealed that while controlling for body mass index, self-compassion mediated the impact of body dissatisfaction and unfavourable social comparisons on psychological quality of life. The path model accounted for 33 per cent of psychological quality of life variance. Findings highlight the importance of self-compassion as a mechanism that may operate on the association between negative body image evaluations and young women's quality of life.

  10. Application of image quality metamerism to investigate gold color area in cultural property

    NASA Astrophysics Data System (ADS)

    Miyata, Kimiyoshi; Tsumura, Norimichi

    2013-01-01

    A concept of image quality metamerism as an expansion of conventional metamerism defined in color science is introduced, and it is applied to segment similar color areas in a cultural property. The image quality metamerism can unify different image quality attributes based on an index showing the degree of image quality metamerism proposed. As a basic research step, the index is consisted of color and texture information and examined to investigate a cultural property. The property investigated is a pair of folding screen paintings that depict the thriving city of Kyoto designated as a nationally important cultural property in Japan. Gold-colored areas painted by using high granularity colorants compared with other color areas are evaluated based on the image quality metamerism index locally, then the index is visualized as a map showing the possibility of the image quality metamer to the reference pixel set in the same image. This visualization means a segmentation of areas where color is similar but texture is different. The experimental result showed that the proposed method was effective to show areas of gold color areas in the property.

  11. ANALYZING WATER QUALITY WITH IMAGES ACQUIRED FROM AIRBORNE SENSORS

    EPA Science Inventory

    Monitoring different parameters of water quality can be a time consuming and expensive activity. However, the use of airborne light-sensitive (optical) instruments may enhance the abilities of resource managers to monitor water quality in rivers in a timely and cost-effective ma...

  12. Metric-based no-reference quality assessment of heterogeneous document images

    NASA Astrophysics Data System (ADS)

    Nayef, Nibal; Ogier, Jean-Marc

    2015-01-01

    No-reference image quality assessment (NR-IQA) aims at computing an image quality score that best correlates with either human perceived image quality or an objective quality measure, without any prior knowledge of reference images. Although learning-based NR-IQA methods have achieved the best state-of-the-art results so far, those methods perform well only on the datasets on which they were trained. The datasets usually contain homogeneous documents, whereas in reality, document images come from different sources. It is unrealistic to collect training samples of images from every possible capturing device and every document type. Hence, we argue that a metric-based IQA method is more suitable for heterogeneous documents. We propose a NR-IQA method with the objective quality measure of OCR accuracy. The method combines distortion-specific quality metrics. The final quality score is calculated taking into account the proportions of, and the dependency among different distortions. Experimental results show that the method achieves competitive results with learning-based NR-IQA methods on standard datasets, and performs better on heterogeneous documents.

  13. Objectification of perceptual image quality for mobile video

    NASA Astrophysics Data System (ADS)

    Lee, Seon-Oh; Sim, Dong-Gyu

    2011-06-01

    This paper presents an objective video quality evaluation method for quantifying the subjective quality of digital mobile video. The proposed method aims to objectify the subjective quality by extracting edgeness and blockiness parameters. To evaluate the performance of the proposed algorithms, we carried out subjective video quality tests with the double-stimulus continuous quality scale method and obtained differential mean opinion score values for 120 mobile video clips. We then compared the performance of the proposed methods with that of existing methods in terms of the differential mean opinion score with 120 mobile video clips. Experimental results showed that the proposed methods were approximately 10% better than the edge peak signal-to-noise ratio of the J.247 method in terms of the Pearson correlation.

  14. Toward a Blind Deep Quality Evaluator for Stereoscopic Images Based on Monocular and Binocular Interactions.

    PubMed

    Shao, Feng; Tian, Weijun; Lin, Weisi; Jiang, Gangyi; Dai, Qionghai

    2016-05-01

    During recent years, blind image quality assessment (BIQA) has been intensively studied with different machine learning tools. Existing BIQA metrics, however, do not design for stereoscopic images. We believe this problem can be resolved by separating 3D images and capturing the essential attributes of images via deep neural network. In this paper, we propose a blind deep quality evaluator (DQE) for stereoscopic images (denoted by 3D-DQE) based on monocular and binocular interactions. The key technical steps in the proposed 3D-DQE are to train two separate 2D deep neural networks (2D-DNNs) from 2D monocular images and cyclopean images to model the process of monocular and binocular quality predictions, and combine the measured 2D monocular and cyclopean quality scores using different weighting schemes. Experimental results on four public 3D image quality assessment databases demonstrate that in comparison with the existing methods, the devised algorithm achieves high consistent alignment with subjective assessment. PMID:26960225

  15. Quality of Life and Mental Health Status of Arsenic-affected Patients in a Bangladeshi Population

    PubMed Central

    Syed, Emdadul H.; Poudel, Krishna C.; Sakisaka, Kayako; Yasuoka, Junko; Ahsan, Habibul

    2012-01-01

    Contamination of groundwater by inorganic arsenic is one of the major public-health problems in Bangladesh. This cross-sectional study was conducted (a) to evaluate the quality of life (QOL) and mental health status of arsenic-affected patients and (b) to identify the factors associated with the QOL. Of 1,456 individuals, 521 (35.78%) were selected as case and control participants, using a systematic random-sampling method. The selection criteria for cases (n=259) included presence of at least one of the following: melanosis, leucomelanosis on at least 10% of the body, or keratosis on the hands or feet. Control (non-patient) participants (n=262) were selected from the same villages by matching age (±5 years) and gender. The Bangladeshi version of the WHOQOL-BREF was used for assessing the QOL, and the self-reporting questionnaire (SRQ) was used for assessing the general mental health status. Data were analyzed using Student's t-test and analysis of covariance (ANCOVA), and the WHOQOL-BREF and SRQ scores between the patients and the non-patients were compared. The mean scores of QOL were significantly lower in the patients than those in the non-patients of both the sexes. Moreover, the mental health status of the arsenic-affected patients (mean score for males=8.4 and females=10.3) showed greater disturbances than those of the non-patients (mean score for males=5.2 and females=6.1) of both the sexes. The results of multiple regression analysis revealed that the factors potentially contributing to the lower QOL scores included: being an arsenic-affected patient, having lower age, and having lower annual income. Based on the findings, it is concluded that the QOL and mental health status of the arsenic-affected patients were significantly lower than those of the non-patients in Bangladesh. Appropriate interventions are necessary to improve the well-being of the patients. PMID:23082628

  16. Wave aberration of human eyes and new descriptors of image optical quality and visual performance.

    PubMed

    Lombardo, Marco; Lombardo, Giuseppe

    2010-02-01

    The expansion of wavefront-sensing techniques redefined the meaning of refractive error in clinical ophthalmology. Clinical aberrometers provide detailed measurements of the eye's wavefront aberration. The distribution and contribution of each higher-order aberration to the overall wavefront aberration in the individual eye can now be accurately determined and predicted. Using corneal or ocular wavefront sensors, studies have measured the interindividual and age-related changes in the wavefront aberration in the normal population with the goal of optimizing refractive surgery outcomes for the individual. New objective optical-quality metrics would lead to better use and interpretation of newly available information on aberrations in the eye. However, the first metrics introduced, based on sets of Zernike polynomials, is not completely suitable to depict visual quality because they do not directly relate to the quality of the retinal image. Thus, several approaches to describe the real, complex optical performance of human eyes have been implemented. These include objective metrics that quantify the quality of the optical wavefront in the plane of the pupil (ie, pupil-plane metrics) and others that quantify the quality of the retinal image (ie, image-plane metrics). These metrics are derived by wavefront aberration information from the individual eye. This paper reviews the more recent knowledge of the wavefront aberration in human eyes and discusses the image-quality and optical-quality metrics and predictors that are now routinely calculated by wavefront-sensor software to describe the optical and image quality in the individual eye.

  17. Survey of mammography practice in Croatia: equipment performance, image quality and dose.

    PubMed

    Faj, Dario; Posedel, Dario; Stimac, Damir; Ivezic, Zdravko; Kasabasic, Mladen; Ivkovic, Ana; Kubelka, Dragan; Ilakovac, Vesna; Brnic, Zoran; Bjelac, Olivera Ciraj

    2008-01-01

    A national audit of mammography equipment performance, image quality and dose has been conducted in Croatia. Film-processing parameters, optical density (OD), average glandular dose (AGD) to the standard breast, viewing conditions and image quality were examined using TOR(MAM) test object. Average film gradient ranged from 2.6 to 3.7, with a mean of 3.1. Tube voltage used for imaging of the standard 45 mm polymethylmethacrylate phantom ranged from 24 to 34 kV, and OD ranged from 0.75 to 1.94 with a mean of 1.26. AGD to the standard breast ranged from 0.4 to 2.3 mGy with a mean of 1.1 mGy. Besides clinical conditions, the authors have imaged the standard phantom in the referent conditions with 28 kV and OD as close as possible to 1.5. Then, AGD ranged from 0.5 to 2.6 mGy with a mean of 1.3 mGy. Image viewing conditions were generally unsatisfying with ambient light up to 500 lx and most of the viewing boxes with luminance between 1000 and 2000 cd per m(2). TOR(MAM) scoring of images taken in clinical and referent conditions was done by local radiologists in local image viewing conditions and by the referent radiologist in good image viewing conditions. Importance of OD and image viewing conditions for diagnostic information were analysed. The survey showed that the main problem in Croatia is the lack of written quality assurance/quality control (QA/QC) procedures. Consequently, equipment performance, image quality and dose are unstable and activities to improve image quality or to reduce the dose are not evidence-based. This survey also had an educational purpose, introducing in Croatia the QC based on European Commission Guidelines.

  18. Three-dimensional volumetric display of CT data: effect of scan parameters upon image quality.

    PubMed

    Ney, D R; Fishman, E K; Magid, D; Robertson, D D; Kawashima, A

    1991-01-01

    Of the many steps involved in producing high quality three-dimensional (3D) images of CT data, the data acquisition step is of greatest consequence. The principle of "garbage in, garbage out" applies to 3D imaging--bad scanning technique produces equally bad 3D images. We present a formal study of the effect of two basic scanning parameters, slice thickness and slice spacing, on image quality. Three standard test objects were studied using variable CT scanning parameters. The objects chosen were a bone phantom, a cadaver femur with a simulated 5 mm fracture gap, and a cadaver femur with a simulated 1 mm fracture gap. Each object was scanned at three collimations: 8, 4, and 2 mm. For each collimation, four sets of scans were performed using four slice intervals: 8, 4, 3, and 2 mm. The bone phantom was scanned in two positions: oriented perpendicular to the scanning plane and oriented 45 degrees from the scanning plane. Three-dimensional images of the resulting 48 sets of data were produced using volumetric rendering. Blind review of the resultant 48 data sets was performed by three reviewers rating five factors for each image. The images resulting from scans with thin collimation and small table increments proved to rate the highest in all areas. The data obtained using 2 mm slice intervals proved to rate the highest in perceived image quality. Three millimeter slice spacing with 4 mm collimation, which clinically provides a good compromise between image quality and acquisition time and dose, also produced good perceived image quality. The studies with 8 mm slice intervals provided the least detail and introduced the worst inaccuracies and artifacts and were not suitable for clinical use. Statistical analysis demonstrated that slice interval (i.e., table incrementation) was of primary importance and slice collimation was of secondary, although significant, importance in determining perceived 3D image quality.

  19. Terroir et vignoble: how the farming management can affect the production of a quality wine

    NASA Astrophysics Data System (ADS)

    Gallo, Alba; Bini, Claudio

    2016-04-01

    added to soil as fertilizer. In grape leaves, Al concentration is releated to Al content in soil, Cu could derive from foliar fungicides and no signs of toxicity from high content of Fe and Zn are visible. LPO test values are below the reference value, therefore vegetation in the study area is not affected by oxidative stress. Concerning the biological soil quality, 3 different classes (4, 5 and 6) were recorded (with noteworthy microarthropods adaption to soil conditions. This result suggest that the study area presents good grade ecosystem stability and limited stress evident. In conclusion, it is possible to assert that the study area is characterized by not polluted soils of good quality and without environmental stress. It is likely that the agronomic practices do not produce any negative effect on plant growth and, thus, on quality of wine.

  20. Do SE(II) electrons really degrade SEM image quality?

    PubMed

    Bernstein, Gary H; Carter, Andrew D; Joy, David C

    2013-01-01

    Generally, in scanning electron microscopy (SEM) imaging, it is desirable that a high-resolution image be composed mainly of those secondary electrons (SEs) generated by the primary electron beam, denoted SE(I) . However, in conventional SEM imaging, other, often unwanted, signal components consisting of backscattered electrons (BSEs), and their associated SEs, denoted SE(II) , are present; these signal components contribute a random background signal that degrades contrast, and therefore signal-to-noise ratio and resolution. Ideally, the highest resolution SEM image would consist only of the SE(I) component. In SEMs that use conventional pinhole lenses and their associated Everhart-Thornley detectors, the image is composed of several components, including SE(I) , SE(II) , and some BSE, depending on the geometry of the detector. Modern snorkel lens systems eliminate the BSEs, but not the SE(II) s. We present a microfabricated diaphragm for minimizing the unwanted SE(II) signal components. We present evidence of improved imaging using a microlithographically generated pattern of Au, about 500 nm thick, that blocks most of the undesired signal components, leaving an image composed mostly of SE(I) s. We refer to this structure as a "spatial backscatter diaphragm."

  1. PLÉIADES Project: Assessment of Georeferencing Accuracy, Image Quality, Pansharpening Performence and Dsm/dtm Quality

    NASA Astrophysics Data System (ADS)

    Topan, Hüseyin; Cam, Ali; Özendi, Mustafa; Oruç, Murat; Jacobsen, Karsten; Taşkanat, Talha

    2016-06-01

    Pléiades 1A and 1B are twin optical satellites of Optical and Radar Federated Earth Observation (ORFEO) program jointly running by France and Italy. They are the first satellites of Europe with sub-meter resolution. Airbus DS (formerly Astrium Geo) runs a MyGIC (formerly Pléiades Users Group) program to validate Pléiades images worldwide for various application purposes. The authors conduct three projects, one is within this program, the second is supported by BEU Scientific Research Project Program, and the third is supported by TÜBİTAK. Assessment of georeferencing accuracy, image quality, pansharpening performance and Digital Surface Model/Digital Terrain Model (DSM/DTM) quality subjects are investigated in these projects. For these purposes, triplet panchromatic (50 cm Ground Sampling Distance (GSD)) and VNIR (2 m GSD) Pléiades 1A images were investigated over Zonguldak test site (Turkey) which is urbanised, mountainous and covered by dense forest. The georeferencing accuracy was estimated with a standard deviation in X and Y (SX, SY) in the range of 0.45m by bias corrected Rational Polynomial Coefficient (RPC) orientation, using ~170 Ground Control Points (GCPs). 3D standard deviation of ±0.44m in X, ±0.51m in Y, and ±1.82m in Z directions have been reached in spite of the very narrow angle of convergence by bias corrected RPC orientation. The image quality was also investigated with respect to effective resolution, Signal to Noise Ratio (SNR) and blur coefficient. The effective resolution was estimated with factor slightly below 1.0, meaning that the image quality corresponds to the nominal resolution of 50cm. The blur coefficients were achieved between 0.39-0.46 for triplet panchromatic images, indicating a satisfying image quality. SNR is in the range of other comparable space borne images which may be caused by de-noising of Pléiades images. The pansharpened images were generated by various methods, and are validated by most common statistical

  2. Image quality improvement in megavoltage cone beam CT using an imaging beam line and a sintered pixelated array system

    SciTech Connect

    Breitbach, Elizabeth K.; Maltz, Jonathan S.; Gangadharan, Bijumon; Bani-Hashemi, Ali; Anderson, Carryn M.; Bhatia, Sudershan K.; Stiles, Jared; Edwards, Drake S.; Flynn, Ryan T.

    2011-11-15

    Purpose: To quantify the improvement in megavoltage cone beam computed tomography (MVCBCT) image quality enabled by the combination of a 4.2 MV imaging beam line (IBL) with a carbon electron target and a detector system equipped with a novel sintered pixelated array (SPA) of transl