Science.gov

Sample records for affect immune cells

  1. Optimistic Expectancies and Cell-Mediated Immunity: The Role of Positive Affect

    PubMed Central

    Segerstrom, Suzanne C.; Sephton, Sandra E.

    2014-01-01

    Optimistic expectancies affect many psychosocial outcomes and may also predict immune system changes and health, but the nature and mechanisms of any such physiological effects have not been identified. The present study related law-school expectancies to cell-mediated immunity (CMI), examining the within- and between-person components of this relationship and affective mediators. First-year law students (N = 124) completed questionnaire measures of expectancies and affect and received delayed-type hypersensitivity skin tests at five time points. A positive relationship between optimistic expectancies and CMI occurred, in which that changes in optimism correlated with changes in CMI. Likewise, changes in optimism predicted changes in positive and, to a lesser degree, negative affect, but the relationship between optimism and immunity was partially accounted for only by positive affect. This dynamic relationship between expectancies and immunity has positive implications for psychological interventions to improve health, particularly those that increase positive affect. PMID:20424083

  2. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity

    PubMed Central

    Winning, Sandra; Fandrey, Joachim

    2016-01-01

    Dendritic cells (DCs) are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia) which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate) immunity. PMID:26966693

  3. Scrapie affects the maturation cycle and immune complex trapping by follicular dendritic cells in mice.

    PubMed

    McGovern, Gillian; Mabbott, Neil; Jeffrey, Martin

    2009-01-01

    Transmissible spongiform encephalopathies (TSEs) or prion diseases are infectious neurological disorders of man and animals, characterised by abnormal disease-associated prion protein (PrP(d)) accumulations in the brain and lymphoreticular system (LRS). Prior to neuroinvasion, TSE agents often accumulate to high levels within the LRS, apparently without affecting immune function. However, our analysis of scrapie-affected sheep shows that PrP(d) accumulations within the LRS are associated with morphological changes to follicular dendritic cells (FDCs) and tingible body macrophages (TBMs). Here we examined FDCs and TBMs in the mesenteric lymph nodes (MLNs) of scrapie-affected mice by light and electron microscopy. In MLNs from uninfected mice, FDCs could be morphologically categorised into immature, mature and regressing forms. However, in scrapie-affected MLNs this maturation cycle was adversely affected. FDCs characteristically trap and retain immune complexes on their surfaces, which they display to B-lymphocytes. In scrapie-affected MLNs, some FDCs were found where areas of normal and abnormal immune complex retention occurred side by side. The latter co-localised with PrP(d) plasmalemmal accumulations. Our data suggest this previously unrecognised morphology represents the initial stage of an abnormal FDC maturation cycle. Alterations to the FDCs included PrP(d) accumulation, abnormal cell membrane ubiquitin and excess immunoglobulin accumulation. Regressing FDCs, in contrast, appeared to lose their membrane-attached PrP(d). Together, these data suggest that TSE infection adversely affects the maturation and regression cycle of FDCs, and that PrP(d) accumulation is causally linked to the abnormal pathology observed. We therefore support the hypothesis that TSEs cause an abnormality in immune function. PMID:19997557

  4. Fish oil source differentially affects rat immune cell alpha-tocopherol concentration.

    PubMed

    McGuire, S O; Alexander, D W; Fritsche, K L

    1997-07-01

    We have previously reported that both the source of dietary fish oil and the chemical form of vitamin E supplied in the diet affect the vitamin E status of immune cells in rats. The purpose of this study was to investigate further the effect of fish oil source on immune cell vitamin E status using free alpha-tocopherol (alpha-T) at the AIN recommended level as the sole source of vitamin E. Sixty weanling female rats were fed semipurified, high fat (20 g/100 g) diets containing either tocopherol-stripped lard (LRD), menhaden fish oil (MFO), sardine fish oil (SRD) or cod liver oil (CLO) as the primary lipid source. Endogenous alpha-T concentration was measured and equalized to 150 mg/kg oil by addition of free RRR-alpha-T to each lipid source, allowing for a final concentration of alpha-T in the mixed diet of 30 mg/kg. An additional group of rats was fed LRD without supplemental vitamin E (LRD-) as a negative control. After feeding experimental diets for 5 or 10 wk, tissues were collected for alpha-T analysis by HPLC. After 5 wk, plasma and liver alpha-T (micromol alpha-T/g lipid) were significantly lower in SRD- and CLO-fed rats compared with LRD-fed rats. At 10 wk, only plasma alpha-T in CLO-fed rats remained significantly depressed. Plasma and liver alpha-T concentrations (micromol alpha-T/g lipid) were not significantly lower in MFO-fed rats than LRD-fed rats at either time point. Compared with LRD, feeding MFO to rats for 5 or 10 wk resulted in significantly greater alpha-T content of immune cells. In similar fashion, SRD-fed rats, compared with LRD-fed rats, also had significantly greater alpha-T content in splenocytes at both time points and greater thymocyte alpha-T at 10 wk. In all instances, the alpha-T status of rats fed CLO was indistinguishable from that of rats fed the vitamin E-free diet (LRD-). These data further demonstrate the complexity of the relationship between vitamin E status and dietary (n-3) polyunsaturated fatty acids (PUFA). PMID:9202096

  5. Key Immune Cell Cytokines Affects the Telomere Activity of Cord Blood Cells In vitro

    PubMed Central

    Brazvan, Balal; Farahzadi, Raheleh; Mohammadi, Seyede Momeneh; Montazer Saheb, Soheila; Shanehbandi, Dariush; Schmied, Laurent; Soleimani Rad, Jafar; Darabi, Masoud; Nozad Charoudeh, Hojjatollah

    2016-01-01

    Purpose: Telomere is a nucleoprotein complex at the end of eukaryotic chromosomes and its length is regulated by telomerase. The number of DNA repeat sequence (TTAGGG)n is reduced with each cell division in differentiated cells. The aim of this study was to evaluate the effect of SCF (Stem Cell Factor), Flt3 (Fms- Like tyrosine kinase-3), Interleukin-2, 7 and 15 on telomere length and hTERT gene expression in mononuclear and umbilical cord blood stem cells (CD34+ cells) during development to lymphoid cells. Methods: The mononuclear cells were isolated from umbilical cord blood by Ficoll-Paque density gradient. Then cells were cultured for 21 days in the presence of different cytokines. Telomere length and hTERT gene expression were evaluated in freshly isolated cells, 7, 14 and 21 days of culture by real-time PCR. The same condition had been done for CD34+ cells but telomere length and hTERT gene expression were measured at initial and day 21 of the experiment. Results: Highest hTERT gene expression and maximum telomere length were measured at day14 of MNCs in the presence of IL-7 and IL-15. Also, there was a significant correlation between telomere length and telomerase gene expression in MNCs at 14 days in a combination of IL-7 and IL-15 (r = 0.998, p =0.04). In contrast, IL-2 showed no distinct effect on telomere length and hTERT gene expression in cells. Conclusion: Taken together, IL-7 and IL-15 increased telomere length and hTERT gene expression at 14 day of the experiment. In conclusion, it seems likely that cells maintain naïve phenotype due to prolonged exposure of IL-7 and IL-15. PMID:27478776

  6. Disruption of IL-21 Signaling Affects T Cell-B Cell Interactions and Abrogates Protective Humoral Immunity to Malaria

    PubMed Central

    Pérez-Mazliah, Damián; Ng, Dorothy Hui Lin; Freitas do Rosário, Ana Paula; McLaughlin, Sarah; Mastelic-Gavillet, Béatris; Sodenkamp, Jan; Kushinga, Garikai; Langhorne, Jean

    2015-01-01

    Interleukin-21 signaling is important for germinal center B-cell responses, isotype switching and generation of memory B cells. However, a role for IL-21 in antibody-mediated protection against pathogens has not been demonstrated. Here we show that IL-21 is produced by T follicular helper cells and co-expressed with IFN-γ during an erythrocytic-stage malaria infection of Plasmodium chabaudi in mice. Mice deficient either in IL-21 or the IL-21 receptor fail to resolve the chronic phase of P. chabaudi infection and P. yoelii infection resulting in sustained high parasitemias, and are not immune to re-infection. This is associated with abrogated P. chabaudi-specific IgG responses, including memory B cells. Mixed bone marrow chimeric mice, with T cells carrying a targeted disruption of the Il21 gene, or B cells with a targeted disruption of the Il21r gene, demonstrate that IL-21 from T cells signaling through the IL-21 receptor on B cells is necessary to control chronic P. chabaudi infection. Our data uncover a mechanism by which CD4+ T cells and B cells control parasitemia during chronic erythrocytic-stage malaria through a single gene, Il21, and demonstrate the importance of this cytokine in the control of pathogens by humoral immune responses. These data are highly pertinent for designing malaria vaccines requiring long-lasting protective B-cell responses. PMID:25763578

  7. Hemolysin-producing Listeria monocytogenes affects the immune response to T-cell-dependent and T-cell-independent antigens.

    PubMed Central

    Hage-Chahine, C M; Del Giudice, G; Lambert, P H; Pechere, J C

    1992-01-01

    A murine experimental infection with a hemolysin-producing (Hly+) strain of Listeria monocytogenes and a non-hemolysin-producing (Hly-) mutant was used as an in vivo model to evaluate the role of hemolysin production in the immune response. No antilisterial antibodies were detectable following sublethal infection with Hly+ bacteria, but consistent antilisterial immunoglobulin G (IgG) and IgM antibody production was observed following sublethal infection with the Hly- mutant. Hly+ but not Hly- L. monocytogenes induced transient inhibition of antibody response to Hly- bacteria and to unrelated T-cell-dependent (tetanus toxoid) and T-cell-independent (pneumococcal polysaccharide 3) antigens. Transient inhibition of the activation of an antigen-specific T-cell clone was also observed following Hly+ infection of antigen-presenting cells but not following Hly- infection. These results suggest that hemolysin production by L. monocytogenes is an important factor in modulating the immune response to T-cell-dependent and T-cell-independent antigens in infected individuals. Images PMID:1548067

  8. Tremelimumab (anti-CTLA4) mediates immune responses mainly by direct activation of T effector cells rather than by affecting T regulatory cells.

    PubMed

    Khan, Sameena; Burt, Deborah J; Ralph, Christy; Thistlethwaite, Fiona C; Hawkins, Robert E; Elkord, Eyad

    2011-01-01

    Cytotoxic T Lymphocyte Antigen 4 (CTLA4) blockade has shown antitumor activity against common cancers. However, the exact mechanism of immune mediation by anti-CTLA4 remains to be elucidated. Further understanding of how CTLA4 blockade with tremelimumab mediates immune responses may allow a more effective selection of responsive patients. Our results show that tremelimumab enhanced the proliferative response of T effector cells (Teff) upon TCR stimulation, and abrogated Treg suppressive ability. In the presence of tremelimumab, frequencies of IL-2-secreting CD4(+) T cells and IFN-γ-secreting CD4(+) and CD8(+) T cells were increased in response to polyclonal activation and tumor antigens. Importantly, Treg frequency was not reduced in the presence of tremelimumab, and expanded Tregs in cancer patients treated with tremelimumab expressed FoxP3 with no IL-2 release, confirming them as bona fide Tregs. Taken together, this data indicates that tremelimumab induces immune responses mainly by direct activation of Teff rather than by affecting Tregs. PMID:21056008

  9. The ability of Hepatitis B surface antigen DNA vaccine to elicit cell-mediated immune responses, but not antibody responses, was affected by the deglysosylation of S antigen.

    PubMed

    Xing, Yiping; Huang, Zuhu; Lin, Yan; Li, Jun; Chou, Te-Hui; Lu, Shan; Wang, Shixia

    2008-09-19

    Hepatitis B Virus (HBV) infection remains a major worldwide infectious disease with serious long-term morbidity and mortality. The limited selections of drug treatment are not able to control the progress of disease in people with active and persistent HBV infection. Immunotherapy to control the degree of viral infection is one possible alternative solution to this challenge. HBV DNA vaccines, with their strong ability to induce cell-mediated immune responses, offer an attractive option. HBV surface protein is important in viral immunity. Re-establishing anti-S immunity in chronic HBV infected patients will bring significant benefit to the patients. Previous studies have shown that HBV S DNA vaccines are immunogenic in a number of animal studies. In the current study, we further investigated the effect of glycosylation to the expression and immunogenicity of S DNA vaccines. Our results demonstrate that deglycosylation at the two potential N-linked glycosylation sites in S protein resulted in a significant decrease of S-specific cell-mediated immune responses, but did not affect anti-S antibody responses. This finding provides important direction to the development of S DNA vaccines to elicit the optimal and balanced antibody and cell-mediated immune responses to treat people with HBV chronic infections. PMID:18462847

  10. Immune competence of the mammary gland as affected by somatic cell and pathogenic bacteria in ewes with subclinical mastitis.

    PubMed

    Albenzio, M; Santillo, A; Caroprese, M; Ruggieri, D; Ciliberti, M; Sevi, A

    2012-07-01

    Immune competence of the ewe mammary gland was investigated by monitoring the leukocyte differential count, cytokine pattern, and endogenous proteolytic enzymes in milk samples with different somatic cell counts (SCC) and pathogenic bacteria. Furthermore, the leukocyte differential count and T-lymphocyte populations were evaluated in ewe blood. A total of 1,500 individual milk samples were randomly selected from the pool of the samples collected during sampling and grouped into 5 classes of 300 samples each, on the basis of SCC. Classes were <300,000 cells/mL, from 300,000 to 500,000 cells/mL, from 501,000 to 1,000,000 cells/mL, from 1,001,000 to 2,000,000 cells/mL, and >2,000,000 cells/mL. Microbiological analyses of ewe milk were conducted to detect mastitis-related pathogens. Sheep whose udders were without clinical abnormalities, and whose milk was apparently normal but with at least 10(3)cfu/mL of the same pathogen were considered to have subclinical mastitis and therefore defined as infected. Polymorphonuclear neutrophilic leukocytes (PMNL) and macrophages increased with SCC, whereas lymphocytes decreased. Milk samples with SCC >1,000,000 cells/mL showed differences in leukocyte populations between uninfected and infected ewes, with higher percentages of PMNL and macrophages and lower percentages of lymphocytes in infected animals. Nonviable PMNL levels were the highest in ewe milk samples with SCC <300,000 cells/mL; starting from SCC >500,000 cells/mL, nonviable PMNL were higher in uninfected ewes than in infected ones. In infected animals giving milk with SCC >1,000,000 cells/mL, a higher CD4(+)/CD8(+) ratio was observed, suggesting that the presence of pathogens induced an activation of both CD4(+) and CD8(+). The levels of tumor necrosis factor-α and IL-12 were higher in infected than uninfected ewes, irrespective of SCC. Plasmin activity increased along with SCC and was always higher in infected than uninfected animals; cathepsin D increased starting

  11. Antiviral Innate Immune Activation in HIV-Infected Adults Negatively Affects H1/IC31-Induced Vaccine-Specific Memory CD4+ T Cells.

    PubMed

    Lenz, Nicole; Schindler, Tobias; Kagina, Benjamin M; Zhang, Jitao David; Lukindo, Tedson; Mpina, Maxmillian; Bang, Peter; Kromann, Ingrid; Hoff, Søren T; Andersen, Peter; Reither, Klaus; Churchyard, Gavin J; Certa, Ulrich; Daubenberger, Claudia A

    2015-07-01

    Tuberculosis (TB) remains a global health problem, with vaccination being a necessary strategy for disease containment and elimination. A TB vaccine should be safe and immunogenic as well as efficacious in all affected populations, including HIV-infected individuals. We investigated the induction and maintenance of vaccine-induced memory CD4(+) T cells following vaccination with the subunit vaccine H1/IC31. H1/IC31 was inoculated twice on study days 0 and 56 among HIV-infected adults with CD4(+) lymphocyte counts of >350 cells/mm(3). Whole venous blood stimulation was conducted with the H1 protein, and memory CD4(+) T cells were analyzed using intracellular cytokine staining and polychromatic flow cytometry. We identified high responders, intermediate responders, and nonresponders based on detection of interleukin-2 (IL-2), tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ) expressing central (TCM) and effector memory CD4(+) T cells (TEM) 182 days after the first immunization. Amplicon-based transcript quantification using next-generation sequencing was performed to identify differentially expressed genes that correlated with vaccine-induced immune responses. Genes implicated in resolution of inflammation discriminated the responders from the nonresponders 3 days after the first inoculation. The volunteers with higher expression levels of genes involved in antiviral innate immunity at baseline showed impaired H1-specific TCM and TEM maintenance 6 months after vaccination. Our study showed that in HIV-infected volunteers, expression levels of genes involved in the antiviral innate immune response affected long-term maintenance of H1/IC31 vaccine-induced cellular immunity. (The clinical trial was registered in the Pan African Clinical Trials Registry [PACTR] with the identifier PACTR201105000289276.). PMID:25924764

  12. Antiviral Innate Immune Activation in HIV-Infected Adults Negatively Affects H1/IC31-Induced Vaccine-Specific Memory CD4+ T Cells

    PubMed Central

    Lenz, Nicole; Schindler, Tobias; Kagina, Benjamin M.; Zhang, Jitao David; Lukindo, Tedson; Mpina, Maxmillian; Bang, Peter; Kromann, Ingrid; Hoff, Søren T.; Andersen, Peter; Reither, Klaus; Churchyard, Gavin J.; Certa, Ulrich

    2015-01-01

    Tuberculosis (TB) remains a global health problem, with vaccination being a necessary strategy for disease containment and elimination. A TB vaccine should be safe and immunogenic as well as efficacious in all affected populations, including HIV-infected individuals. We investigated the induction and maintenance of vaccine-induced memory CD4+ T cells following vaccination with the subunit vaccine H1/IC31. H1/IC31 was inoculated twice on study days 0 and 56 among HIV-infected adults with CD4+ lymphocyte counts of >350 cells/mm3. Whole venous blood stimulation was conducted with the H1 protein, and memory CD4+ T cells were analyzed using intracellular cytokine staining and polychromatic flow cytometry. We identified high responders, intermediate responders, and nonresponders based on detection of interleukin-2 (IL-2), tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ) expressing central (TCM) and effector memory CD4+ T cells (TEM) 182 days after the first immunization. Amplicon-based transcript quantification using next-generation sequencing was performed to identify differentially expressed genes that correlated with vaccine-induced immune responses. Genes implicated in resolution of inflammation discriminated the responders from the nonresponders 3 days after the first inoculation. The volunteers with higher expression levels of genes involved in antiviral innate immunity at baseline showed impaired H1-specific TCM and TEM maintenance 6 months after vaccination. Our study showed that in HIV-infected volunteers, expression levels of genes involved in the antiviral innate immune response affected long-term maintenance of H1/IC31 vaccine-induced cellular immunity. (The clinical trial was registered in the Pan African Clinical Trials Registry [PACTR] with the identifier PACTR201105000289276.) PMID:25924764

  13. How phototherapy affects the immune system

    NASA Astrophysics Data System (ADS)

    Dyson, Mary

    2008-03-01

    The immune system is a complex group of cells, tissues and organs that recognize and attack foreign substances, pathogenic organisms and cancer cells. It also responds to injury by producing inflammation. The immune system has peripheral components that include skin-associated lymphoid tissues (SALT) and mucosa-associated lymphoid tissues (MALT), located where pathogens and other harmful substances gain access to the body. Phototherapy, delivered at appropriate treatment parameters, exerts direct actions on the cellular elements of the peripheral part of the immune system since it is readily accessible to photons.

  14. Innate immunity, decidual cells, and preeclampsia.

    PubMed

    Yeh, Chang-Ching; Chao, Kuan-Chong; Huang, S Joseph

    2013-04-01

    Preeclampsia (PE) manifested by hypertension and proteinuria complicates 3% to 8% of pregnancies and is a leading cause of fetal-maternal morbidity and mortality worldwide. It may lead to intrauterine growth restriction, preterm delivery, and long-term sequelae in women and fetuses, and consequently cause socioeconomic burden to the affected families and society as a whole. Balanced immune responses are required for the maintenance of successful pregnancy. Although not a focus of most studies, decidual cells, the major resident cell type at the fetal-maternal interface, have been shown to modulate the local immune balance by interacting with other cell types, such as bone marrow derived-immune cells, endothelial cells, and invading extravillous trophoblasts. Accumulating evidence suggests that an imbalanced innate immunity, facilitated by decidual cells, plays an important role in the pathogenesis of PE. Thus, this review will discuss the role of innate immunity and the potential contribution of decidual cells in the pathogenesis of PE. PMID:22814099

  15. Th1/Th2 cell dichotomy in acquired immunity to Bordetella pertussis: variables in the in vivo priming and in vitro cytokine detection techniques affect the classification of T-cell subsets as Th1, Th2 or Th0.

    PubMed Central

    Barnard, A; Mahon, B P; Watkins, J; Redhead, K; Mills, K H

    1996-01-01

    In studies of the mechanism of immunity to Bordetella pertussis in a murine respiratory infection model, we have previously demonstrated that natural infection of immunization with a whole cell vaccine induces a potent protective immune response, which is mediated by T-helper type-1 (Th1) cells. In contrast an acellular vaccine generates Th2 cells and is associated with delayed bacterial clearance following respiratory challenge. In the present study we have investigated the apparent Th1/Th2 cell dichotomy in acquired immunity and have examined the factors that affect their induction or detection. The cytokine profiles of B. pertussis-specific T cells in immune animals were determined using antigen-stimulated ex vivo spleen cells or CD4+ T-cell lines and clones established in the presence of interleukin-2 (IL-2) or IL-4. Antigen-specific T cells derived from mice immunized with the acellular vaccine were almost exclusively of the Th2 cell type. In contrast, T-cell lines and clones established following respiratory infection or immunization with the whole cell vaccine were predominantly of the Th1 type. However, a proportion of T cells from convalescent mice, especially when cultured in the presence of IL-4, secreted IL-4 and IL-5 with or without detectable IL-2 and interferon-gamma (IFN-gamma), suggesting that Th0 or Th2 cells were also primed during natural infection in vivo. Furthermore, when mice were assessed 6 months after infection, spleen cells produced significant levels of IL-4 and IL-5, which were not evident at 6 weeks. The route of immunization and the genetic background of the mice were also found to influence the preferential priming of Th1 cells, and this was directly related to the level of protection against respiratory or intracerebral (i.c.) challenge. Our findings underline the critical role of CD4+ Th1 cells in immunity to B. pertussis, but also demonstrate that a number of factors in the in vivo priming and in vitro restimulation can skew the

  16. The Progression of Cell Death Affects the Rejection of Allogeneic Tumors in Immune-Competent Mice – Implications for Cancer Therapy

    PubMed Central

    Chaurio, Ricardo A.; Muñoz, Luis E.; Maueröder, Christian; Janko, Christina; Harrer, Thomas; Fürnrohr, Barbara G.; Niederweis, Michael; Bilyy, Rostyslav; Schett, Georg; Herrmann, Martin; Berens, Christian

    2014-01-01

    Large amounts of dead and dying cells are produced during cancer therapy and allograft rejection. Depending on the death pathway and stimuli involved, dying cells exhibit diverse features, resulting in defined physiological consequences for the host. It is not fully understood how dying and dead cells modulate the immune response of the host. To address this problem, different death stimuli were studied in B16F10 melanoma cells by regulated inducible transgene expression of the pro-apoptotic active forms of caspase-3 (revCasp-3), Bid (tBid), and the Mycobacterium tuberculosis-necrosis inducing toxin (CpnTCTD). The immune outcome elicited for each death stimulus was assessed by evaluating the allograft rejection of melanoma tumors implanted subcutaneously in BALB/c mice immunized with dying cells. Expression of all proteins efficiently killed cells in vitro (>90%) and displayed distinctive morphological and physiological features as assessed by multiparametric flow cytometry analysis. BALB/c mice immunized with allogeneic dying melanoma cells expressing revCasp-3 or CpnTCTD showed strong rejection of the allogeneic challenge. In contrast, mice immunized with cells dying either after expression of tBid or irradiation with UVB did not, suggesting an immunologically silent cell death. Surprisingly, immunogenic cell death induced by expression of revCasp-3 or CpnTCTD correlated with elevated intracellular reactive oxygen species (ROS) levels at the time point of immunization. Conversely, early mitochondrial dysfunction induced by tBid expression or UVB irradiation accounted for the absence of intracellular ROS accumulation at the time point of immunization. Although ROS inhibition in vitro was not sufficient to abrogate the immunogenicity in our allo-immunization model, we suggest that the point of ROS generation and its intracellular accumulation may be an important factor for its role as damage associated molecular pattern in the development of allogeneic responses

  17. Oxidized LDL Immune Complexes and Oxidized LDL Differentially Affect the Expression of Genes Involved with Inflammation and Survival In Human U937 Monocytic Cells

    PubMed Central

    Hammad, Samar M; Twal, Waleed O; Barth, Jeremy L; Smith, Kent J.; Saad, Antonio F; Virella, Gabriel; Argraves, W. Scott; Lopes-Virella., Maria F

    2008-01-01

    Objective To compare the global effects of oxidized LDL (oxLDL) and oxLDL-containing immune complexes (oxLDL-IC) on gene expression in human monocytic cells and to identify differentially expressed genes involved with inflammation and survival. Methods and Results U937 cells were treated with oxLDL-IC, oxLDL, Keyhole limpet hemocyanin immune complexes (KLH-IC), or vehicle for 4 h. Transcriptome profiling was performed using DNA microarrays. oxLDL-IC uniquely affected the expression of genes involved with pro-survival (RAD54B, RUFY3, SNRPB2, and ZBTB24). oxLDL-IC also regulated many genes in a manner similar to KLH-IC. Functional categorization of these genes revealed that 39% are involved with stress responses, including the unfolded protein response which impacts cell survival, 19% with regulation of transcription, 10% with endocytosis and intracellular transport of protein and lipid, and 16% with inflammatory responses including regulation of I-κB/NF-κB cascade and cytokine activity. One gene in particular, HSP70 6, greatly up-regulated by ox-LDL-IC, was found to be required for the process by which oxLDL-IC augments IL1-β secretion. The study also revealed genes uniquely up-regulated by oxLDL including genes involved with growth inhibition (OKL38, NEK3, and FTH1), oxidoreductase activity (SPXN1 and HMOX1), and transport of amino acids and fatty acids (SLC7A11 and ADFP). Conclusions These findings highlight early transcriptional responses elicited by oxLDL-IC that may underlie its cytoprotective and pro-inflammatory effects. Cross-linking of Fcγ receptors appears to be the trigger for most of the transcriptional responses to oxLDL-IC. The findings further strengthen the hypothesis that oxLDL and oxLDL-IC elicit disparate inflammatory responses and play distinct roles in the process of atherosclerosis. PMID:18597759

  18. Salmonella adhesion, invasion and cellular immune responses are differentially affected by iron concentrations in a combined in vitro gut fermentation-cell model.

    PubMed

    Dostal, Alexandra; Gagnon, Mélanie; Chassard, Christophe; Zimmermann, Michael Bruce; O'Mahony, Liam; Lacroix, Christophe

    2014-01-01

    In regions with a high infectious disease burden, concerns have been raised about the safety of iron supplementation because higher iron concentrations in the gut lumen may increase risk of enteropathogen infection. The aim of this study was to investigate interactions of the enteropathogen Salmonella enterica ssp. enterica Typhimurium with intestinal cells under different iron concentrations encountered in the gut lumen during iron deficiency and supplementation using an in vitro colonic fermentation system inoculated with immobilized child gut microbiota combined with Caco-2/HT29-MTX co-culture monolayers. Colonic fermentation effluents obtained during normal, low (chelation by 2,2'-dipyridyl) and high iron (26.5 mg iron/L) fermentation conditions containing Salmonella or pure Salmonella cultures with similar iron conditions were applied to cellular monolayers. Salmonella adhesion and invasion capacity, cellular integrity and immune response were assessed. Under high iron conditions in pure culture, Salmonella adhesion was 8-fold increased compared to normal iron conditions while invasion was not affected leading to decreased invasion efficiency (-86%). Moreover, cellular cytokines IL-1β, IL-6, IL-8 and TNF-α secretion as well as NF-κB activation in THP-1 cells were attenuated under high iron conditions. Low iron conditions in pure culture increased Salmonella invasion correlating with an increase in IL-8 release. In fermentation effluents, Salmonella adhesion was 12-fold and invasion was 428-fold reduced compared to pure culture. Salmonella in high iron fermentation effluents had decreased invasion efficiency (-77.1%) and cellular TNF-α release compared to normal iron effluent. The presence of commensal microbiota and bacterial metabolites in fermentation effluents reduced adhesion and invasion of Salmonella compared to pure culture highlighting the importance of the gut microbiota as a barrier during pathogen invasion. High iron concentrations as

  19. Nanoengineering of Immune Cell Function

    PubMed Central

    Shen, Keyue; Milone, Michael C.; Dustin, Michael L.; Kam, Lance C.

    2010-01-01

    T lymphocytes are a key regulatory component of the adaptive immune system. Understanding how the micro- and nano-scale details of the extracellular environment influence T cell activation may have wide impact on the use of T cells for therapeutic purposes. In this article, we examine how the micro- and nano-scale presentation of ligands to cell surface receptors, including microscale organization and nanoscale mobility, influences the activation of T cells. We extend these studies to include the role of cell-generated forces, and the rigidity of the microenvironment, on T cell activation. These approaches enable delivery of defined signals to T cells, a step toward understanding the cell-cell communication in the immune system, and developing micro/nano- and material- engineered systems for tailoring immune responses for adoptive T cell therapies. PMID:21562611

  20. Immune cell promotion of metastasis

    PubMed Central

    Kitamura, Takanori; Qian, Bin-Zhi; Pollard, Jeffrey W.

    2015-01-01

    Metastatic disease is the major cause of death from cancer, and immunotherapy and chemotherapy have had limited success in reversing its progression. Data from mouse models suggest that the recruitment of immunosuppressive cells to tumours protects metastatic cancer cells from surveillance by killer cells, which nullifies the effects of immunotherapy and thus establishes metastasis. Furthermore, in most cases, tumour-infiltrating immune cells differentiate into cells that promote each step of the metastatic cascade and thus are novel targets for therapy. In this Review, we describe how tumour-infiltrating immune cells contribute to the metastatic cascade and we discuss potential therapeutic strategies to target these cells. PMID:25614318

  1. Exposure to Melan-A/MART-126-35 tumor epitope specific CD8(+)T cells reveals immune escape by affecting the ubiquitin-proteasome system (UPS).

    PubMed

    Ebstein, Frédéric; Keller, Martin; Paschen, Annette; Walden, Peter; Seeger, Michael; Bürger, Elke; Krüger, Elke; Schadendorf, Dirk; Kloetzel, Peter-M; Seifert, Ulrike

    2016-01-01

    Efficient processing of target antigens by the ubiquitin-proteasome-system (UPS) is essential for treatment of cancers by T cell therapies. However, immune escape due to altered expression of IFN-γ-inducible components of the antigen presentation machinery and consequent inefficient processing of HLA-dependent tumor epitopes can be one important reason for failure of such therapies. Here, we show that short-term co-culture of Melan-A/MART-1 tumor antigen-expressing melanoma cells with Melan-A/MART-126-35-specific cytotoxic T lymphocytes (CTL) led to resistance against CTL-induced lysis because of impaired Melan-A/MART-126-35 epitope processing. Interestingly, deregulation of p97/VCP expression, which is an IFN-γ-independent component of the UPS and part of the ER-dependent protein degradation pathway (ERAD), was found to be essentially involved in the observed immune escape. In support, our data demonstrate that re-expression of p97/VCP in Melan-A/MART-126-35 CTL-resistant melanoma cells completely restored immune recognition by Melan-A/MART-126-35 CTL. In conclusion, our experiments show that impaired expression of IFN-γ-independent components of the UPS can exert rapid immune evasion of tumor cells and suggest that tumor antigens processed by distinct UPS degradation pathways should be simultaneously targeted in T cell therapies to restrict the likelihood of immune evasion due to impaired antigen processing. PMID:27143649

  2. Exposure to Melan-A/MART-126-35 tumor epitope specific CD8+T cells reveals immune escape by affecting the ubiquitin-proteasome system (UPS)

    PubMed Central

    Ebstein, Frédéric; Keller, Martin; Paschen, Annette; Walden, Peter; Seeger, Michael; Bürger, Elke; Krüger, Elke; Schadendorf, Dirk; Kloetzel, Peter-M.; Seifert, Ulrike

    2016-01-01

    Efficient processing of target antigens by the ubiquitin-proteasome-system (UPS) is essential for treatment of cancers by T cell therapies. However, immune escape due to altered expression of IFN-γ-inducible components of the antigen presentation machinery and consequent inefficient processing of HLA-dependent tumor epitopes can be one important reason for failure of such therapies. Here, we show that short-term co-culture of Melan-A/MART-1 tumor antigen-expressing melanoma cells with Melan-A/MART-126-35-specific cytotoxic T lymphocytes (CTL) led to resistance against CTL-induced lysis because of impaired Melan-A/MART-126-35 epitope processing. Interestingly, deregulation of p97/VCP expression, which is an IFN-γ-independent component of the UPS and part of the ER-dependent protein degradation pathway (ERAD), was found to be essentially involved in the observed immune escape. In support, our data demonstrate that re-expression of p97/VCP in Melan-A/MART-126-35 CTL-resistant melanoma cells completely restored immune recognition by Melan-A/MART-126-35 CTL. In conclusion, our experiments show that impaired expression of IFN-γ-independent components of the UPS can exert rapid immune evasion of tumor cells and suggest that tumor antigens processed by distinct UPS degradation pathways should be simultaneously targeted in T cell therapies to restrict the likelihood of immune evasion due to impaired antigen processing. PMID:27143649

  3. The Application of Cytidyl Guanosyl Oligodeoxynucleotide Can Affect the Antitumor Immune Response Induced by a Combined Protocol of Cryoablation and Dendritic Cells in Lewis Lung Cancer Model

    PubMed Central

    Zhang, Mi; Yin, Tianquan; Lu, Yuan; Feng, Huasong

    2016-01-01

    Background Recently, several combined therapeutic strategies and targeted agents have been under investigation for their potential role in lung cancer. The combined administration of dendritic cells (DCs) and immune-adjuvant cytidyl guanosyl oligodeoxynucleotide (CpG-ODN) after cryosurgery has proven to be an effective strategy for treating lung cancer. However, whether the application of CpG-ODN could affect the therapeutic results remained to be further explored. Material/Methods The Lewis lung cancer (LLC)−bearing mice received cryoablation and injection of ex vivo-cultured DCs into the peritumoral zone. Subsequently, CpG-ODN was administered to experimental animals 6 hours, 12 hours, and 24 hours after DC injection. The mice in the control group received coadministration of DCs and CpG-ODN simultaneously. Therapeutic effects were evaluated by survival rates. The resistance to rechallenge of LLC cell was assessed by lung metastasis and in vitro cytotoxicity of splenocytes. Furthermore, T-cell subsets and multiple cytokines (interleukin [IL]-4, -10, and-12; interferon [IFN]-γ; tumor necrosis factor [TNF]-α) in the blood were assessed to elucidate the underlying mechanisms. Results Higher ratios of CD4+ and CD8+ T cells and higher levels of IL-12, IFN-γ, and TNF-α were found in the blood of the mice that received CpG-ODN therapy 12 h after DC injection. The cytotoxicity potency of the splenocytes of these mice was significantly higher compared with the mice in other groups. Moreover, the mice receiving CpG-ODN therapy 12 h after DC injection showed significantly better resistance to rechallenge. Compared with the mice in other groups, the mice receiving CpG-ODN therapy 12 h after DC injection were superior in survival rates and antimetastatic effects. Conclusions Our study suggested that the therapeutic efficacy was closely associated with CpG-ODN administration in the combined therapeutic protocol of cryoablation, DCs, and immune adjuvant. In situ

  4. The Application of Cytidyl Guanosyl Oligodeoxynucleotide Can Affect the Antitumor Immune Response Induced by a Combined Protocol of Cryoablation and Dendritic Cells in Lewis Lung Cancer Model.

    PubMed

    Zhang, Mi; Yin, Tianquan; Lu, Yuan; Feng, Huasong

    2016-01-01

    BACKGROUND Recently, several combined therapeutic strategies and targeted agents have been under investigation for their potential role in lung cancer. The combined administration of dendritic cells (DCs) and immune-adjuvant cytidyl guanosyl oligodeoxynucleotide (CpG-ODN) after cryosurgery has proven to be an effective strategy for treating lung cancer. However, whether the application of CpG-ODN could affect the therapeutic results remained to be further explored. MATERIAL AND METHODS The Lewis lung cancer (LLC)-bearing mice received cryoablation and injection of ex vivo-cultured DCs into the peritumoral zone. Subsequently, CpG-ODN was administered to experimental animals 6 hours, 12 hours, and 24 hours after DC injection. The mice in the control group received coadministration of DCs and CpG-ODN simultaneously. Therapeutic effects were evaluated by survival rates. The resistance to rechallenge of LLC cell was assessed by lung metastasis and in vitro cytotoxicity of splenocytes. Furthermore, T-cell subsets and multiple cytokines (interleukin [IL]-4, -10, and-12; interferon [IFN]-γ; tumor necrosis factor [TNF]-α) in the blood were assessed to elucidate the underlying mechanisms. RESULTS Higher ratios of CD4+ and CD8+ T cells and higher levels of IL-12, IFN-γ, and TNF-α were found in the blood of the mice that received CpG-ODN therapy 12 h after DC injection. The cytotoxicity potency of the splenocytes of these mice was significantly higher compared with the mice in other groups. Moreover, the mice receiving CpG-ODN therapy 12 h after DC injection showed significantly better resistance to rechallenge. Compared with the mice in other groups, the mice receiving CpG-ODN therapy 12 h after DC injection were superior in survival rates and antimetastatic effects. CONCLUSIONS Our study suggested that the therapeutic efficacy was closely associated with CpG-ODN administration in the combined therapeutic protocol of cryoablation, DCs, and immune adjuvant. In situ

  5. Are mesenchymal stromal cells immune cells?

    PubMed

    Hoogduijn, Martin J

    2015-01-01

    Mesenchymal stromal cells (MSCs) are considered to be promising agents for the treatment of immunological disease. Although originally identified as precursor cells for mesenchymal lineages, in vitro studies have demonstrated that MSCs possess diverse immune regulatory capacities. Pre-clinical models have shown beneficial effects of MSCs in multiple immunological diseases and a number of phase 1/2 clinical trials carried out so far have reported signs of immune modulation after MSC infusion. These data indicate that MSCs play a central role in the immune response. This raises the academic question whether MSCs are immune cells or whether they are tissue precursor cells with immunoregulatory capacity. Correct understanding of the immunological properties and origin of MSCs will aid in the appropriate and safe use of the cells for clinical therapy. In this review the whole spectrum of immunological properties of MSCs is discussed with the aim of determining the position of MSCs in the immune system. PMID:25880839

  6. Evolution of B Cell Immunity

    PubMed Central

    Sunyer, J. Oriol

    2013-01-01

    Two types of adaptive immune strategies are known to have evolved in vertebrates: the VLR-based system, which is present in jawless organisms and is mediated by VLRA and VLRB lymphocytes, and the BCR/TCR-based system, which is present in jawed species and is provided by B and T cell receptors expressed on B and T cells, respectively. Here we summarize features of B cells and their predecessors in the different animal phyla, focusing the review on B cells from jawed vertebrates. We point out the critical role of nonclassical species and comparative immunology studies in the understanding of B cell immunity. Because nonclassical models include species relevant to veterinary medicine, basic science research performed in these animals contributes to the knowledge required for the development of more efficacious vaccines against emerging pathogens. PMID:25340015

  7. Mechanisms by which pesticides affect insect immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The known effects of pesticides on insect immunity is reviewed here. A basic understanding of these interactions is needed for several reasons, including to improve methods for controlling pest insects in agricultural settings, for controlling insect vectors of human diseases, and for reducing morta...

  8. Immune Cells in Blood Recognize Tumors

    Cancer.gov

    NCI scientists have developed a novel strategy for identifying immune cells circulating in the blood that recognize specific proteins on tumor cells, a finding they believe may have potential implications for immune-based therapies.

  9. Woodchuck hepatitis virus core antigen-based DNA and protein vaccines induce qualitatively different immune responses that affect T cell recall responses and antiviral effects.

    PubMed

    Zhang, Ejuan; Kosinska, Anna D; Ma, Zhiyong; Dietze, Kirsten K; Xu, Yang; Meng, Zhongji; Zhang, Xiaoyong; Wang, Junzhong; Wang, Baoju; Dittmer, Ulf; Roggendorf, Michael; Yang, Dongliang; Lu, Mengji

    2015-01-15

    T helper type 1 (Th1) immunity was considered to play a dominant role in viral clearance of hepadnaviral infection. However, pre-primed Th2 type responses were able to efficiently control hepadnaviral infection in animal models. We investigated how pre-primed Th1/2 responses control hepadnaviral replication using the newly established mouse models. DNA (pWHcIm, pCTLA-4-C) and protein vaccines based on the nucleocapsid protein (WHcAg) of woodchuck hepatitis virus (WHV) primed specific immune responses with distinct features. The pre-primed responses determined the characteristics of recall responses if challenged with a WHcAg-expressing adenoviral vector. Vaccination with pWHcIm and pCTLA4-C facilitated viral control in the hydrodynamic injection model and reduced WHV loads by about 3 and 2 logs in WHV-transgenic mice, respectively, despite of different kinetics of specific CD8+ T cell responses. Thus, pre-primed Th2-biased responses facilitate the development of CD8+ T cell responses in mice compared with naïve controls and thereby confer better viral control. PMID:25462346

  10. Clinical significance of HLA-DR+, CD19+, CD10+ immature B-cell phenotype and CD34+ cell detection in bone marrow lymphocytes from children affected with immune thrombocytopenic purpura.

    PubMed

    Callea, V; Comis, M; Iaria, G; Sculli, G; Morabito, F; Lombardo, V T

    1997-01-01

    In children with immune thrombocytopenic purpura (ITP), bone marrow lymphocytes can express the common acute lymphoblastic leukemia antigen (CALLA) pattern with no evidence of leukemia or lymphoma. Bone marrow lymphocytes from 23 children and 20 adults affected with ITP were studied to determine the incidence and the clinical impact of lymphocytes with the immature B-cell phenotype and CD34+ cell expression. In this investigation we identified a group consisting of 52% of the children who showed the immature B phenotype, while the remaining 48%, similarly to adult ITP displayed an increase of T-cell antigens. CD34 was positive in 53% of children, but it was present in only half of the patients with the immature B phenotype and it was always absent in adults. IgH genes disclosed a germline configuration in all six patients in the immature B phenotype group. No difference was found in the two groups of children in terms of age, presentation of the disease or final outcome. Finally, no patient in either children's group has developed an acute lymphoproliferative disorder. PMID:9299867

  11. Genetically engineered immune privileged Sertoli cells

    PubMed Central

    Kaur, Gurvinder; Long, Charles R.; Dufour, Jannette M.

    2012-01-01

    Sertoli cells are immune privileged cells, important for controlling the immune response to male germ cells as well as maintaining the tolerogenic environment in the testis. Additionally, ectopic Sertoli cells have been shown to survive and protect co-grafted cells when transplanted across immunological barriers. The survival of ectopic Sertoli cells has led to the idea that they could be used in cell based gene therapy. In this review, we provide a brief overview of testis immune privilege and Sertoli cell transplantation, factors contributing to Sertoli cell immune privilege, the challenges faced by viral vector gene therapy, the use of immune privileged cells in cell based gene therapy and describe several recent studies on the use of genetically engineered Sertoli cells to provide continuous delivery of therapeutic proteins. PMID:22553487

  12. A co culture approach show that polyamine turnover is affected during inflammation in Atlantic salmon immune and liver cells and that arginine and LPS exerts opposite effects on p38MAPK signaling.

    PubMed

    Holen, Elisabeth; Espe, Marit; Andersen, Synne M; Taylor, Richard; Aksnes, Anders; Mengesha, Zebasil; Araujo, Pedro

    2014-04-01

    This study assess which pathways and molecular processes are affected by exposing salmon head kidney cells or liver cells to arginine supplementation above the established requirements for growth support. In addition to the conventional mono cultures of liver and head kidney cells, co cultures of the two cell types were included in the experimental set up. Responses due to elevated levels of arginine were measured during inflammatory (lipopolysaccharide/LPS) and non -inflammatory conditions. LPS up regulated the genes involved in polyamine turnover; ODC (ornithine decarboxylase), SSAT (spermidine/spermine-N1-acetyltransferase) and SAMdc (S-adenosyl methionine decarboxylase) in head kidney cells when co cultured with liver cells. Regardless of treatment, liver cells in co culture up regulated ODC and down regulated SSAT when compared to liver mono cultures. This suggests that polyamines have anti-inflammatory properties and that both salmon liver cells and immune cells seem to be involved in this process. The transcription of C/EBP β/CCAAT, increased during inflammation in all cultures except for liver mono cultures. The observed up regulation of this gene may be linked to glucose transport due to the highly variable glucose concentrations found in the cell media. PPARα transcription was also increased in liver cells when receiving signals from head kidney cells. Gene transcription of Interleukin 1β (IL-1β), Interleukin-8 (IL-8), cyclooxygenase 2 (COX2) and CD83 were elevated during LPS treatment in all the head kidney cell cultures while arginine supplementation reduced IL-1β and IL-8 transcription in liver cells co cultured with head kidney cells. This is probably connected to p38MAPK signaling as arginine seem to affect p38MAPK signaling contrary to the LPS induced p38MAPK signaling, suggesting anti-inflammatory effects of arginine/arginine metabolites. This paper shows that co culturing these two cell types reveals the connection between metabolism and

  13. Regulation of Intestinal Immune System by Dendritic Cells

    PubMed Central

    Ko, Hyun-Jeong

    2015-01-01

    Innate immune cells survey antigenic materials beneath our body surfaces and provide a front-line response to internal and external danger signals. Dendritic cells (DCs), a subset of innate immune cells, are critical sentinels that perform multiple roles in immune responses, from acting as principal modulators to priming an adaptive immune response through antigen-specific signaling. In the gut, DCs meet exogenous, non-harmful food antigens as well as vast commensal microbes under steady-state conditions. In other instances, they must combat pathogenic microbes to prevent infections. In this review, we focus on the function of intestinal DCs in maintaining intestinal immune homeostasis. Specifically, we describe how intestinal DCs affect IgA production from B cells and influence the generation of unique subsets of T cell. PMID:25713503

  14. Immune cells in the female reproductive tract.

    PubMed

    Lee, Sung Ki; Kim, Chul Jung; Kim, Dong-Jae; Kang, Jee-Hyun

    2015-02-01

    The female reproductive tract has two main functions: protection against microbial challenge and maintenance of pregnancy to term. The upper reproductive tract comprises the fallopian tubes and the uterus, including the endocervix, and the lower tract consists of the ectocervix and the vagina. Immune cells residing in the reproductive tract play contradictory roles: they maintain immunity against vaginal pathogens in the lower tract and establish immune tolerance for sperm and an embryo/fetus in the upper tract. The immune system is significantly influenced by sex steroid hormones, although leukocytes in the reproductive tract lack receptors for estrogen and progesterone. The leukocytes in the reproductive tract are distributed in either an aggregated or a dispersed form in the epithelial layer, lamina propria, and stroma. Even though immune cells are differentially distributed in each organ of the reproductive tract, the predominant immune cells are T cells, macrophages/dendritic cells, natural killer (NK) cells, neutrophils, and mast cells. B cells are rare in the female reproductive tract. NK cells in the endometrium significantly expand in the late secretory phase and further increase their number during early pregnancy. It is evident that NK cells and regulatory T (Treg) cells are extremely important in decidual angiogenesis, trophoblast migration, and immune tolerance during pregnancy. Dysregulation of endometrial/decidual immune cells is strongly related to infertility, miscarriage, and other obstetric complications. Understanding the immune system of the female reproductive tract will significantly contribute to women's health and to success in pregnancy. PMID:25713505

  15. ``Backpack'' Functionalized Living Immune Cells

    NASA Astrophysics Data System (ADS)

    Swiston, Albert; Um, Soong Ho; Irvine, Darrell; Cohen, Robert; Rubner, Michael

    2009-03-01

    We demonstrate that functional polymeric ``backpacks'' built from polyelectrolyte multilayers (PEMs) can be attached to a fraction of the surface area of living, individual lymphocytes. Backpacks containing fluorescent polymers, superparamagnetic nanoparticles, and commercially available quantum dots have been attached to B and T-cells, which may be spatially manipulated using a magnetic field. Since the backpack does not occlude the entire cellular surface from the environment, this technique allows functional synthetic payloads to be attached to a cell that is free to perform its native functions, thereby synergistically utilizing both biological and synthetic functionalities. For instance, we have shown that backpack-modified T-cells are able to migrate on surfaces for several hours following backpack attachment. Possible payloads within the PEM backpack include drugs, vaccine antigens, thermally responsive polymers, nanoparticles, and imaging agents. We will discuss how this approach has broad potential for applications in bioimaging, single-cell functionalization, immune system and tissue engineering, and cell-based therapeutics where cell-environment interactions are critical.

  16. Selenium Supplementation Restores Innate and Humoral Immune Responses in Footrot-Affected Sheep

    PubMed Central

    Hall, Jean A.; Vorachek, William R.; Stewart, Whitney C.; Gorman, M. Elena; Mosher, Wayne D.; Pirelli, Gene J.; Bobe, Gerd

    2013-01-01

    Dietary selenium (Se) alters whole-blood Se concentrations in sheep, dependent upon Se source and dosage administered, but little is known about effects on immune function. We used footrot (FR) as a disease model to test the effects of supranutritional Se supplementation on immune function. To determine the effect of Se-source (organic Se-yeast, inorganic Na-selenite or Na-selenate) and Se-dosage (1, 3, 5 times FDA-permitted level) on FR severity, 120 ewes with and 120 ewes without FR were drenched weekly for 62 weeks with different Se sources and dosages (30 ewes/treatment group). Innate immunity was evaluated after 62 weeks of supplementation by measuring neutrophil bacterial killing ability. Adaptive immune function was evaluated by immunizing sheep with keyhole limpet hemocyanin (KLH). The antibody titer and delayed-type hypersensitivity skin test to KLH were used to assess humoral immunity and cell-mediated immunity, respectively. At baseline, FR-affected ewes had lower whole-blood and serum-Se concentrations; this difference was not observed after Se supplementation. Se supplementation increased neutrophil bacterial killing percentages in FR-affected sheep to percentages observed in supplemented and non-supplemented healthy sheep. Similarly, Se supplementation increased KLH antibody titers in FR-affected sheep to titers observed in healthy sheep. FR-affected sheep demonstrated suppressed cell-mediated immunity at 24 hours after intradermal KLH challenge, although there was no improvement with Se supplementation. We did not consistently prevent nor improve recovery from FR over the 62 week Se-treatment period. In conclusion, Se supplementation does not prevent FR, but does restore innate and humoral immune functions negatively affected by FR. PMID:24340044

  17. γδ T Cell and Other Immune Cells Crosstalk in Cellular Immunity

    PubMed Central

    He, Ying; Wu, Kangni; Hu, Yongxian; Sheng, Lixia; Tie, Ruxiu; Wang, Binsheng; Huang, He

    2014-01-01

    γδ T cells have been recognized as effectors with immunomodulatory functions in cellular immunity. These abilities enable them to interact with other immune cells, thus having the potential for treatment of various immune-mediated diseases with adoptive cell therapy. So far, the interactions between γδ T cell and other immune cells have not been well defined. Here we will discuss the interactivities among them and the perspective on γδ T cells for their use in immunotherapy could be imagined. The understanding of the crosstalk among the immune cells in immunopathology might be beneficial for the clinical application of γδ T cell. PMID:24741636

  18. Secretion of dengue virus envelope protein ectodomain from mammalian cells is dependent on domain II serotype and affects the immune response upon DNA vaccination.

    PubMed

    Slon Campos, J L; Poggianella, M; Marchese, S; Bestagno, M; Burrone, O R

    2015-11-01

    Dengue virus (DENV) is currently among the most important human pathogens and affects millions of people throughout the tropical and subtropical regions of the world. Although it has been a World Health Organization priority for several years, there is still no efficient vaccine available to prevent infection. The envelope glycoprotein (E), exposed on the surface on infective viral particles, is the main target of neutralizing antibodies. For this reason it has been used as the antigen of choice for vaccine development efforts. Here we show a detailed analysis of factors involved in the expression, secretion and folding of E ectodomain from all four DENV serotypes in mammalian cells, and how this affects their ability to induce neutralizing antibody responses in DNA-vaccinated mice. Proper folding of E domain II (DII) is essential for efficient E ectodomain secretion, with DIII playing a significant role in stabilizing soluble dimers. We also show that the level of protein secreted from transfected cells determines the strength and efficiency of antibody responses in the context of DNA vaccination and should be considered a pivotal feature for the development of E-based DNA vaccines against DENV. PMID:26358704

  19. Glycosylation in immune cell trafficking

    PubMed Central

    Sperandio, Markus; Gleissner, Christian A.; Ley, Klaus

    2009-01-01

    Summary Leukocyte recruitment encompasses cell adhesion and activation steps that enable circulating leukocytes to roll, arrest, and firmly adhere on the endothelial surface before they extravasate into distinct tissue locations. This complex sequence of events relies on adhesive interactions between surface structures on leukocytes and endothelial cells and also on signals generated during the cell-cell contacts. Cell surface glycans play a crucial role in leukocyte recruitment. Several glycosyltransferases such as α1,3 fucosyltransferases, α2,3 sialyltransferases, core 2 N-acetylglucosaminlytransferases, β1,4 galactosyltransferases and polypeptide N-acetylgalactosaminyltransferases have been implicated in the generation of functional selectin ligands that mediate leukocyte rolling via binding to selectins. Recent evidence also suggests a role of α2,3 sialylated carbohydrate determinants in triggering chemokine-mediated leukocyte arrest and influencing β1 integrin function. Additional mechanisms by galectin- and siglec-dependent processes contribute to the growing number of reports emphasizing the significant role of glycans for the successful recruitment of leukocytes into tissues. Advancing the knowledge on glycan function into appropriate pathology models is likely to suggest interesting new therapeutic strategies in the treatment of immune- and inflammation-mediated diseases. PMID:19594631

  20. Immune cells in term and preterm labor.

    PubMed

    Gomez-Lopez, Nardhy; StLouis, Derek; Lehr, Marcus A; Sanchez-Rodriguez, Elly N; Arenas-Hernandez, Marcia

    2014-11-01

    Labor resembles an inflammatory response that includes secretion of cytokines/chemokines by resident and infiltrating immune cells into reproductive tissues and the maternal/fetal interface. Untimely activation of these inflammatory pathways leads to preterm labor, which can result in preterm birth. Preterm birth is a major determinant of neonatal mortality and morbidity; therefore, the elucidation of the process of labor at a cellular and molecular level is essential for understanding the pathophysiology of preterm labor. Here, we summarize the role of innate and adaptive immune cells in the physiological or pathological activation of labor. We review published literature regarding the role of innate and adaptive immune cells in the cervix, myometrium, fetal membranes, decidua and the fetus in late pregnancy and labor at term and preterm. Accumulating evidence suggests that innate immune cells (neutrophils, macrophages and mast cells) mediate the process of labor by releasing pro-inflammatory factors such as cytokines, chemokines and matrix metalloproteinases. Adaptive immune cells (T-cell subsets and B cells) participate in the maintenance of fetomaternal tolerance during pregnancy, and an alteration in their function or abundance may lead to labor at term or preterm. Also, immune cells that bridge the innate and adaptive immune systems (natural killer T (NKT) cells and dendritic cells (DCs)) seem to participate in the pathophysiology of preterm labor. In conclusion, a balance between innate and adaptive immune cells is required in order to sustain pregnancy; an alteration of this balance will lead to labor at term or preterm. PMID:24954221

  1. Immune cell interplay in colorectal cancer prognosis

    PubMed Central

    Norton, Samuel E; Ward-Hartstonge, Kirsten A; Taylor, Edward S; Kemp, Roslyn A

    2015-01-01

    The immune response to colorectal cancer has proven to be a reliable measure of patient outcome in several studies. However, the complexity of the immune response in this disease is not well understood, particularly the interactions between tumour-associated cells and cells of the innate and adaptive immune system. This review will discuss the relationship between cancer associated fibroblasts and macrophages, as well as between macrophages and T cells, and demonstrate how each population may support or prevent tumour growth in a different immune environment. PMID:26483876

  2. Mesenchymal stem cells: immune evasive, not immune privileged

    PubMed Central

    Ankrum, James A.; Ong, Joon Faii; Karp, Jeffrey M.

    2014-01-01

    The diverse immunomodulatory properties of mesenchymal stem/stromal cells (MSCs) may be exploited for treatment of a multitude of inflammatory conditions. MSCs have long been reported to be hypoimmunogenic or ‘immune privileged’; this property is thought to enable MSC transplantation across major histocompatibility barriers and the creation of off-the-shelf therapies consisting of MSCs grown in culture. However, recent studies describing generation of antibodies against and immune rejection of allogeneic donor MSCs suggest that MSCs may not actually be immune privileged. Nevertheless, whether rejection of donor MSCs influences the efficacy of allogeneic MSC therapies is not known, and no definitive clinical advantage of autologous MSCs over allogeneic MSCs has been demonstrated to date. Although MSCs may exert therapeutic function through a brief ‘hit and run’ mechanism, protecting MSCs from immune detection and prolonging their persistence in vivo may improve clinical outcomes and prevent patient sensitization toward donor antigens. PMID:24561556

  3. Higher whole-blood selenium is associated with improved immune responses in footrot-affected sheep

    PubMed Central

    2011-01-01

    We reported previously that sheep affected with footrot (FR) have lower whole-blood selenium (WB-Se) concentrations and that parenteral Se-supplementation in conjunction with routine control practices accelerates recovery from FR. The purpose of this follow-up study was to investigate the mechanisms by which Se facilitates recovery from FR. Sheep affected with FR (n = 38) were injected monthly for 15 months with either 5 mg Se (FR-Se) or saline (FR-Sal), whereas 19 healthy sheep received no treatment. Adaptive immune function was evaluated after 3 months of Se supplementation by immunizing all sheep with a novel protein, keyhole limpet hemocyanin (KLH). The antibody titer and delayed-type hypersensitivity (DTH) skin test to KLH were used to assess humoral immunity and cell-mediated immunity, respectively. Innate immunity was evaluated after 3 months of Se supplementation by measuring intradermal responses to histamine 30 min after injection compared to KLH and saline, and after 15 months of Se supplementation by isolating neutrophils and measuring their bacterial killing ability and relative abundance of mRNA for genes associated with neutrophil migration. Compared to healthy sheep, immune responses to a novel protein were suppressed in FR-affected sheep with smaller decreases in FR-affected sheep that received Se or had WB-Se concentrations above 250 ng/mL at the time of the immune assays. Neutrophil function was suppressed in FR-affected sheep, but was not changed by Se supplementation or WB-Se status. Sheep FR is associated with depressed immune responses to a novel protein, which may be partly restored by improving WB-Se status (> 250 ng/mL). PMID:21896161

  4. The Skin Microbiome: Is It Affected by UV-induced Immune Suppression?

    PubMed Central

    Patra, VijayKumar; Byrne, Scott N.; Wolf, Peter

    2016-01-01

    Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation (UV-R) from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. By targeting the cells and molecules within skin, UV-R can trigger the production and release of antimicrobial peptides, affect the innate immune system and ultimately suppress the adaptive cellular immune response. This can contribute to skin carcinogenesis and the promotion of infectious agents such as herpes simplex virus and possibly others. On the other hand, a UV-established immunosuppressive environment may protect against the induction of immunologically mediated skin diseases including some of photodermatoses such as polymorphic light eruption. In this article, we share our perspective about the possibility that UV-induced immune suppression may alter the landscape of the skin’s microbiome and its components. Alternatively, or in concert with this, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns (PAMPs) that interfere with UV-induced immune suppression. PMID:27559331

  5. The Skin Microbiome: Is It Affected by UV-induced Immune Suppression?

    PubMed

    Patra, VijayKumar; Byrne, Scott N; Wolf, Peter

    2016-01-01

    Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation (UV-R) from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. By targeting the cells and molecules within skin, UV-R can trigger the production and release of antimicrobial peptides, affect the innate immune system and ultimately suppress the adaptive cellular immune response. This can contribute to skin carcinogenesis and the promotion of infectious agents such as herpes simplex virus and possibly others. On the other hand, a UV-established immunosuppressive environment may protect against the induction of immunologically mediated skin diseases including some of photodermatoses such as polymorphic light eruption. In this article, we share our perspective about the possibility that UV-induced immune suppression may alter the landscape of the skin's microbiome and its components. Alternatively, or in concert with this, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns (PAMPs) that interfere with UV-induced immune suppression. PMID:27559331

  6. Selenoprotein K knockout mice exhibit deficient calcium flux in immune cells and impaired immune responses

    PubMed Central

    Verma, Saguna; Hoffmann, FuKun W.; Kumar, Mukesh; Huang, Zhi; Roe, Kelsey; Nguyen-Wu, Elizabeth; Hashimoto, Ann S.; Hoffmann, Peter R.

    2011-01-01

    Selenoprotein K (Sel K) is a selenium-containing protein for which no function has been identified. We found that Sel K is an endoplasmic reticulum (ER) transmembrane protein expressed at relatively high levels in immune cells and is regulated by dietary selenium. Sel K−/− mice were generated and found to be similar to WT controls regarding growth and fertility. Immune system development was not affected by Sel K deletion, but specific immune cell defects were found in Sel K−/− mice. Receptor-mediated Ca2+ flux was decreased in T cells, neutrophils, and macrophages from Sel K−/− mice compare to controls. Ca2+-dependent functions including T cell proliferation, T cell and neutrophil migration, and Fcγ-receptor-mediated oxidative burst in macrophages were decreased in cells from Sel K−/− mice compared to controls. West Nile virus (WNV) infections were performed and Sel K−/− mice exhibited decreased viral clearance in the periphery and increased viral titers in brain. Furthermore, WNV-infected Sel K−/− mice demonstrated significantly lower survival (2/23; 8.7%) compared to WT controls (10/26; 38.5%). These results establish Sel K as an ER-membrane protein important for promoting effective Ca2+ flux during immune cell activation and provide insight into molecular mechanisms by which dietary selenium enhances immune responses. PMID:21220695

  7. Immune cells tracing using quantum dots

    NASA Astrophysics Data System (ADS)

    Hoshino, Akiyoshi; Fujioka, Kouki; Kawamura, Yuki I.; Toyama-Sorimachi, Noriko; Yasuhara, Masato; Dohi, Taeko; Yamamoto, Kenji

    2006-02-01

    Fluorescent nanoparticles, such as nanocrystal quantum dots (QDs), have potential to be applied to molecular biology and bioimaging, since some nanocrystals emit higher and longer lasting fluorescence than conventional organic probes do. Here we report an example of labeling immune cells by QDs. We collected splenic CD4 + T-lymphocyte and peritoneal macrophages from mice. Then cells were labeled with QDs. QDs are incorporated into the T-lymphocyte and macrophages immediately after addition and located in the cytoplasm via endocytosis pathway. The fluorescence of QDs held in the endosomes was easily detected for more than a week. In addition, T-lymphocytes labeled with QDs were stable and cell proliferation or cytokine production including IL-2 and IFN-γ was not affected. When QD-labeled T-lymphocytes were adoptively transferred intravenously to mice, they remained in the peripheral blood and spleen up to a week. Using QD-labeled peritoneal macrophages, we studied cell traffic during inflammation on viscera in peritoneum cavity. QD-labeled macrophages were transplanted into the peritoneum of the mouse, and colitis was induced by intracolonic injection of a hapten, trinitrobenzensulfonic acid. With the aid of stong signals of QDs, we found that macrophage accumuled on the inflammation site of the colon. These results suggested that fluorescent probes of QDs might be useful as bioimaging tools for tracing target cells in vivo.

  8. Mucosal dendritic cells shape mucosal immunity

    PubMed Central

    Chang, Sun-Young; Ko, Hyun-Jeong; Kweon, Mi-Na

    2014-01-01

    Dendritic cells (DCs) are key modulators that shape the immune system. In mucosal tissues, DCs act as surveillance systems to sense infection and also function as professional antigen-presenting cells that stimulate the differentiation of naive T and B cells. On the basis of their molecular expression, DCs can be divided into several subsets with unique functions. In this review, we focus on intestinal DC subsets and their function in bridging the innate signaling and adaptive immune systems to maintain the homeostasis of the intestinal immune environment. We also review the current strategies for manipulating mucosal DCs for the development of efficient mucosal vaccines to protect against infectious diseases. PMID:24626170

  9. Immune targeting of cancer stem cells in gastrointestinal oncology.

    PubMed

    Canter, Robert J; Grossenbacher, Steven K; Ames, Erik; Murphy, William J

    2016-04-01

    The cancer stem cell (CSC) hypothesis postulates that a sub-population of quiescent cells exist within tumors which are resistant to conventional cytotoxic/anti-proliferative therapies. It is these CSCs which then seed tumor relapse, even in cases of apparent complete response to systemic therapy. Therefore, therapies, such as immunotherapy, which add a specific anti-CSC strategy to standard cytoreductive treatments may provide a promising new direction for future cancer therapies. CSCs are an attractive target for immune therapies since, unlike chemotherapy or radiotherapy, immune effector cells do not specifically require target cells to be proliferating in order to effectively kill them. Although recent advances have been made in the development of novel systemic and targeted therapies for advanced gastro-intestinal (GI) malignancies, there remains an unmet need for durable new therapies for these refractory malignancies. Novel immunotherapeutic strategies targeting CSCs are in pre-clinical and clinical development across the spectrum of the immune system, including strategies utilizing adaptive immune cell-based effectors, innate immune effectors, as well as vaccine approaches. Lastly, since important CSC functions are affected by the tumor microenvironment, targeting of both cellular (myeloid derived suppressor cells and tumor-associated macrophages) and sub-cellular (cytokines, chemokines, and PD1/PDL1) components of the tumor microenvironment is under investigation in the immune targeting of CSCs. These efforts are adding to the significant optimism about the potential utility of immunotherapy to overcome cancer resistance mechanisms and cure greater numbers of patients with advanced malignancy. PMID:27034806

  10. Immune targeting of cancer stem cells in gastrointestinal oncology

    PubMed Central

    Grossenbacher, Steven K.; Ames, Erik; Murphy, William J.

    2016-01-01

    The cancer stem cell (CSC) hypothesis postulates that a sub-population of quiescent cells exist within tumors which are resistant to conventional cytotoxic/anti-proliferative therapies. It is these CSCs which then seed tumor relapse, even in cases of apparent complete response to systemic therapy. Therefore, therapies, such as immunotherapy, which add a specific anti-CSC strategy to standard cytoreductive treatments may provide a promising new direction for future cancer therapies. CSCs are an attractive target for immune therapies since, unlike chemotherapy or radiotherapy, immune effector cells do not specifically require target cells to be proliferating in order to effectively kill them. Although recent advances have been made in the development of novel systemic and targeted therapies for advanced gastro-intestinal (GI) malignancies, there remains an unmet need for durable new therapies for these refractory malignancies. Novel immunotherapeutic strategies targeting CSCs are in pre-clinical and clinical development across the spectrum of the immune system, including strategies utilizing adaptive immune cell-based effectors, innate immune effectors, as well as vaccine approaches. Lastly, since important CSC functions are affected by the tumor microenvironment, targeting of both cellular (myeloid derived suppressor cells and tumor-associated macrophages) and sub-cellular (cytokines, chemokines, and PD1/PDL1) components of the tumor microenvironment is under investigation in the immune targeting of CSCs. These efforts are adding to the significant optimism about the potential utility of immunotherapy to overcome cancer resistance mechanisms and cure greater numbers of patients with advanced malignancy. PMID:27034806

  11. T cell immunity using transgenic B lymphocytes

    NASA Astrophysics Data System (ADS)

    Gerloni, Mara; Rizzi, Marta; Castiglioni, Paola; Zanetti, Maurizio

    2004-03-01

    Adaptive immunity exists in all vertebrates and plays a defense role against microbial pathogens and tumors. T cell responses begin when precursor T cells recognize antigen on specialized antigen-presenting cells and differentiate into effector cells. Currently, dendritic cells are considered the only cells capable of stimulating T lymphocytes. Here, we show that mature naïve B lymphocytes can be genetically programmed by using nonviral DNA and turned into powerful antigen-presenting cells with a dual capacity of synthesis and presentation of antigen to T cells in vivo. A single i.v. injection of transgenic lymphocytes activates T cell responses reproducibly and specifically even at very low cell doses (102). We also demonstrate that T cell priming can occur in the absence of dendritic cells and results in immunological memory with protective effector functions. These findings disclose aspects in the regulation of adaptive immunity and indicate possibilities for vaccination against viruses and cancer in humans.

  12. Orchestration of Angiogenesis by Immune Cells

    PubMed Central

    Bruno, Antonino; Pagani, Arianna; Pulze, Laura; Albini, Adriana; Dallaglio, Katiuscia; Noonan, Douglas M.; Mortara, Lorenzo

    2014-01-01

    It is widely accepted that the tumor microenvironment (TUMIC) plays a major role in cancer and is indispensable for tumor progression. The TUMIC involves many “players” going well beyond the malignant-transformed cells, including stromal, immune, and endothelial cells (ECs). The non-malignant cells can acquire tumor-promoting functions during carcinogenesis. In particular, these cells can “orchestrate” the “symphony” of the angiogenic switch, permitting the creation of new blood vessels that allows rapid expansion and progression toward malignancy. Considerable attention within the context of tumor angiogenesis should focus not only on the ECs, representing a fundamental unit, but also on immune cells and on the inflammatory tumor infiltrate. Immune cells infiltrating tumors typically show a tumor-induced polarization associated with attenuation of anti-tumor functions and generation of pro-tumor activities, among these angiogenesis. Here, we propose a scenario suggesting that the angiogenic switch is an immune switch arising from the pro-angiogenic polarization of immune cells. This view links immunity, inflammation, and angiogenesis to tumor progression. Here, we review the data in the literature and seek to identify the “conductors” of this “orchestra.” We also suggest that interrupting the immune → inflammation → angiogenesis → tumor progression process can delay or prevent tumor insurgence and malignant disease. PMID:25072019

  13. Stress Hyperglycemia, Insulin Treatment, and Innate Immune Cells

    PubMed Central

    Xiu, Fangming; Jeschke, Marc G.

    2014-01-01

    Hyperglycemia (HG) and insulin resistance are the hallmarks of a profoundly altered metabolism in critical illness resulting from the release of cortisol, catecholamines, and cytokines, as well as glucagon and growth hormone. Recent studies have proposed a fundamental role of the immune system towards the development of insulin resistance in traumatic patients. A comprehensive review of published literatures on the effects of hyperglycemia and insulin on innate immunity in critical illness was conducted. This review explored the interaction between the innate immune system and trauma-induced hypermetabolism, while providing greater insight into unraveling the relationship between innate immune cells and hyperglycemia. Critical illness substantially disturbs glucose metabolism resulting in a state of hyperglycemia. Alterations in glucose and insulin regulation affect the immune function of cellular components comprising the innate immunity system. Innate immune system dysfunction via hyperglycemia is associated with a higher morbidity and mortality in critical illness. Along with others, we hypothesize that reduction in morbidity and mortality observed in patients receiving insulin treatment is partially due to its effect on the attenuation of the immune response. However, there still remains substantial controversy regarding moderate versus intensive insulin treatment. Future studies need to determine the integrated effects of HG and insulin on the regulation of innate immunity in order to provide more effective insulin treatment regimen for these patients. PMID:24899891

  14. Orchestrating immune responses: How size, shape and rigidity affect the immunogenicity of particulate vaccines.

    PubMed

    Benne, Naomi; van Duijn, Janine; Kuiper, Johan; Jiskoot, Wim; Slütter, Bram

    2016-07-28

    Particulate carrier systems are promising drug delivery vehicles for subunit vaccination as they can enhance and direct the type of T cell response. In order to develop vaccines with optimal immunogenicity, a thorough understanding of parameters that could affect the strength and quality of immune responses is required. Pathogens have different dimensions and stimulate the immune system in a specific way. It is therefore not surprising that physicochemical characteristics of particulate vaccines, such as particle size, shape, and rigidity, affect multiple processes that impact their immunogenicity. Among these processes are the uptake of the particles from the site of administration, passage through lymphoid tissue and the uptake, antigen processing and activation of antigen-presenting cells. Herein, we systematically review the role of the size, shape and rigidity of particulate vaccines in enhancing and skewing T cell response and attempted to provide a "roadmap" for rational vaccine design. PMID:27221070

  15. Family Adversity and Autonomic Reactivity Association With Immune Changes in HIV-Affected School Children

    PubMed Central

    Thomas, Melanie; Wara, Diane; Saxton, Katherine; Truskier, Mary; Chesney, Margaret; Boyce, W. Thomas

    2013-01-01

    Objective To explore whether primary school entry is associated with changes in immune system parameters in HIV-affected children. HIV-affected children are vulnerable to psychosocial stressors, regardless of their own HIV serological status. Methods Data from 38 HIV+ and 29 HIV− children born to seropositive women were obtained before and after school entry. Measures included family adversity questionnaires, autonomic nervous system (ANS) reactivity (based on mean arterial responses to challenge tasks), and enumerative and functional changes in peripheral blood immune parameters. Results In comparison to children who were HIV−, children who were HIV+ at baseline had fewer CD4+ T lymphocytes (M = 916 vs. 1206 cells/mm3 × 103; F = 7.8, p = .007), more CD8+ cells (M = 1046 vs. 720 cells/mm3 ×103; F = 7.98, p = .006), and diminished NK cell cytotoxicity (M =−.29 vs. .41; F = 8.87, p = .004). School entry was associated with changes in immune parameters, but HIV status was not associated with the magnitude of changes. Changes in immune parameters following school entry were associated with family stress and pre school entry ANS reactivity. Highly ANS reactive children had either the greatest increase in CD8+ cells following school entry or the greatest decrease, depending upon reported levels of family adversity (B = 215.35; t = 3.74, p < .001). Changes in functional immune assays were significantly associated with the interactions between HIV status and ANS reactivity. Conclusions These results suggest that autonomic reactivity is associated with increased immunological sensitivity to adverse or challenging social contexts among children affected by HIV. PMID:23766380

  16. Regulation of Th2 Cell Immunity by Dendritic Cells

    PubMed Central

    Na, Hyeongjin

    2016-01-01

    Th2 cell immunity is required for host defense against helminths, but it is detrimental in allergic diseases in humans. Unlike Th1 cell and Th17 cell subsets, the mechanism by which dendritic cells modulate Th2 cell responses has been obscure, in part because of the inability of dendritic cells to provide IL-4, which is indispensable for Th2 cell lineage commitment. In this regard, immune cells other than dendritic cells, such as basophils and innate lymphoid cells, have been suggested as Th2 cell inducers. More recently, multiple independent researchers have shown that specialized subsets of dendritic cells mediate Th2 cell responses. This review will discuss the current understanding related to the regulation of Th2 cell responses by dendritic cells and other immune cells. PMID:26937227

  17. The trenbolone acetate affects the immune system in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Massart, Sophie; Redivo, Baptiste; Flamion, Enora; Mandiki, S N M; Falisse, Elodie; Milla, Sylvain; Kestemont, Patrick

    2015-06-01

    In aquatic systems, the presence of endocrine-disrupting chemicals (EDC) can disrupt the reproductive function but also the immune system of wildlife. Some studies have investigated the effects of androgens on the fish immune parameters but the mechanisms by which the xenoandrogens alter the immunity are not well characterized. In order to test the effects of trenbolone acetate (TbA) on fish immune system, we exposed rainbow trout male juveniles during three weeks to TbA levels at 0.1 and 1μg/L. The present results suggest that TbA impacts, in a tissue-dependent manner, the rainbow trout immunity by affecting primarily the humoral immunity. Indeed, TbA inhibited lysozyme activity in plasma and liver and enhanced the alternative complement pathway activity (ACH50) in kidney. In plasma, the modulation of the complement system was time-dependent. The mRNA expression of genes encoding some cytokines such as renal TGF-β1, TNF-α in skin and hepatic IL-1β was also altered in fish exposed to TbA. Regarding the cellular immunity, no effect was observed on the leucocyte population. However, the expression of genes involved in the development and maturation of lymphoid cells (RAG-1 and RAG-2) was decreased in TbA-treated fish. Among those effects, we suggest that the modulation of RAG-1 and mucus apolipoprotein-A1 gene expression as well as plasma and hepatic lysozyme activities are mediated through the action of the androgen receptor. All combined, we conclude that trenbolone affects the rainbow trout immunity. PMID:25889087

  18. Carotenoid intake does not affect immune-stimulated oxidative burst in greenfinches.

    PubMed

    Sild, Elin; Sepp, Tuul; Männiste, Marju; Hõrak, Peeter

    2011-10-15

    Carotenoid-based integument colouration is extremely widespread in the animal kingdom. It has been hypothesized that carotenoid colouration is used for communicating the health status of the bearers because carotenoids are efficient immunomodulators or antioxidants. However, the latter argument has been recently debated and the mechanisms by which carotenoids modulate immunity or oxidative balance are poorly known. We performed an experiment on wild-caught captive greenfinches, passerine birds with carotenoid-based plumage colouration, in order to test whether dietary carotenoid supplementation affects immune-stimulated oxidative burst of phagocytes in the whole blood and humoral immune response to a novel antigen, Brucella abortus (BA). Additionally, we tested whether immune stimulation with bacterial lipopolysaccharide (LPS) affects blood carotenoid levels. We thus tested the effects of carotenoids on the oxidative burst of phagocytes under neutral conditions and during in vivo immune challenge. LPS injection depleted plasma carotenoids, indicating involvement of these phytochemicals in the immune response. However, we did not find any evidence that manipulation of carotenoid intake had modulated anti-BA antibody production, LPS-stimulated oxidative burst of phagocytes, or basal levels of circulating reactive oxygen species. This indicates that carotenoid intake does not affect endogenous production of reactive oxygen species by immune cells. This finding is consistent with the view that carotenoids are unlikely to provide a direct link between oxidative stress and colouration. However, it remains to be tested whether the oxidative burst of phagocytes induced in our experiment actually inflicts oxidative damage and whether carotenoids play a role in the attenuation of such potential damages. PMID:21957110

  19. Immune signature of tumor infiltrating immune cells in renal cancer

    PubMed Central

    Geissler, Katharina; Fornara, Paolo; Lautenschläger, Christine; Holzhausen, Hans-Jürgen; Seliger, Barbara; Riemann, Dagmar

    2015-01-01

    Tumor-associated immune cells have been discussed as an essential factor for the prediction of the outcome of tumor patients. Lymphocyte-specific genes are associated with a favorable prognosis in colorectal cancer but with poor survival in renal cell carcinoma (RCC). Flow cytometric analyses combined with immunohistochemistry were performed to study the phenotypic profiles of tumor infiltrating lymphocytes (TIL) and the frequency of T cells and macrophages in RCC lesions. Data were correlated with clinicopathological parameters and survival of patients. Comparing oncocytoma and clear cell (cc)RCC, T cell numbers as well as activation-associated T cell markers were higher in ccRCC, whereas the frequency of NK cells was higher in oncocytoma. An intratumoral increase of T cell numbers was found with higher tumor grades (G1:G2:G3/4 = 1:3:4). Tumor-associated macrophages slightly increased with dedifferentiation, although the macrophage-to-T cell ratio was highest in G1 tumor lesions. A high expression of CD57 was found in T cells of early tumor grades, whereas T cells in dedifferentiated RCC lesions expressed higher levels of CD69 and CTLA4. TIL composition did not differ between older (>70 y) and younger (<58 y) patients. Enhanced patients’ survival was associated with a higher percentage of tumor infiltrating NK cells and Th1 markers, e.g. HLA-DR+ and CXCR3+ T cells, whereas a high number of T cells, especially with high CD69 expression correlated with a worse prognosis of patients. Our results suggest that immunomonitoring of RCC patients might represent a useful tool for the prediction of the outcome of RCC patients. PMID:25949868

  20. A single miRNA-mRNA interaction affects the immune response in a context- and cell type-specific manner

    PubMed Central

    Lu, Li-Fan; Gasteiger, Georg; Yu, I-Shing; Chaudhry, Ashutosh; Hsin, Jing-Ping; Lu, Yuheng; Bos, Paula D.; Lin, Ling-Li; Zawislak, Carolyn L.; Cho, Sunglim; Sun, Joseph C.; Leslie, Christina S.; Lin, Shu-Wha; Rudensky, Alexander Y.

    2015-01-01

    Summary MicroRNA (miRNA)-dependent regulation of gene expression confers robustness to cellular phenotypes and controls responses to extracellular stimuli. Although a single miRNA can regulate expression of hundreds of target genes, it is unclear whether any of its distinct biological functions can be due to the regulation of a single target. To explore in vivo the function of a single miRNA-mRNA interaction, we mutated the 3′ UTR of a major miR-155 target SOCS1 to specifically disrupt its regulation by miR-155. We found that under physiologic conditions and during autoimmune inflammation or viral infection some immunological functions of miR-155 were fully or largely attributable to the regulation of SOCS1, whereas others could be accounted only partially or not at all by this interaction. Our data suggest that the role of a single miRNA-mRNA interaction is cell type- and biological context-dependent. PMID:26163372

  1. Impact of sepsis on CD4 T cell immunity

    PubMed Central

    Cabrera-Perez, Javier; Condotta, Stephanie A.; Badovinac, Vladimir P.; Griffith, Thomas S.

    2014-01-01

    Sepsis remains the primary cause of death from infection in hospital patients, despite improvements in antibiotics and intensive-care practices. Patients who survive severe sepsis can display suppressed immune function, often manifested as an increased susceptibility to (and mortality from) nosocomial infections. Not only is there a significant reduction in the number of various immune cell populations during sepsis, but there is also decreased function in the remaining lymphocytes. Within the immune system, CD4 T cells are important players in the proper development of numerous cellular and humoral immune responses. Despite sufficient clinical evidence of CD4 T cell loss in septic patients of all ages, the impact of sepsis on CD4 T cell responses is not well understood. Recent findings suggest that CD4 T cell impairment is a multipronged problem that results from initial sepsis-induced cell loss. However, the subsequent lymphopenia-induced numerical recovery of the CD4 T cell compartment leads to intrinsic alterations in phenotype and effector function, reduced repertoire diversity, changes in the composition of naive antigen-specific CD4 T cell pools, and changes in the representation of different CD4 T cell subpopulations (e.g., increases in Treg frequency). This review focuses on sepsis-induced alterations within the CD4 T cell compartment that influence the ability of the immune system to control secondary heterologous infections. The understanding of how sepsis affects CD4 T cells through their numerical loss and recovery, as well as function, is important in the development of future treatments designed to restore CD4 T cells to their presepsis state. PMID:24791959

  2. Programmed Cell Death of Dendritic Cells in Immune Regulation

    PubMed Central

    Chen, Min; Wang, Jin

    2010-01-01

    Summary Programmed cell death is essential for the maintenance of lymphocyte homeostasis and immune tolerance. Dendritic cells (DCs), the most efficient antigen presenting cells, represent a small cell population in the immune system. However, DCs play major roles in the regulation of both innate and adaptive immune responses. Programmed cell death in DCs is essential for regulating DC homeostasis and consequently, the scope of immune responses. Interestingly, different DC subsets show varied turnover rates in vivo. The conventional DCs are relatively short-lived in most lymphoid organs, while plasmacytoid DCs are long-lived cells. Mitochondrion-dependent programmed cell death plays an important role in regulating spontaneous DC turnover. Antigen-specific T cells are also capable of killing DCs, thereby providing a mechanism for negative feedback regulation of immune responses. It has been shown that a surplus of DCs due to defects in programmed cell death leads to overactivation of lymphocytes and the onset of autoimmunity. Studying programmed cell death in DCs will shed light on the roles for DC turnover in the regulation of the duration and magnitude of immune responses in vivo, and in the maintenance of immune tolerance. PMID:20636805

  3. Quantitative PPARγ expression affects the balance between tolerance and immunity.

    PubMed

    Liu, Ya-Hui; Tsai, Yau-Sheng; Lin, Shih-Chieh; Liao, Nan-Shih; Jan, Ming-Shiou; Liang, Chung-Tiang; Hsu, Shih-Wen; Chen, Wen-Chung; Sung, Junne-Ming; Maeda, Nobuyo; Tsai, Pei-Jane

    2016-01-01

    PPARγ modulates energy metabolism and inflammation. However, its specific functions in the balance of immunity in vivo have been explored incompletely. In this study, by the age of 14 mo, Pparg(C/-) mice with PPARγ expression at 25% of the normal level exhibited high autoantibody levels and developed mesangial proliferative glomerulonephritis, which resembled systemic lupus erythematosus (SLE)-like autoimmune disease. These symptoms were preceded by splenomegaly at an early age, which was associated with increases in splenocyte accumulation and B-cell activation but not with relocation of hematopoiesis to the spleen. The mechanism of splenic lymphocyte accumulation involved reduced sphingosine-1-phosphate receptor 1 (S1P1) expression and diminished migration toward S1P in the Pparg(C/-) splenocytes, which impeded lymphocyte egression. Mechanistically, increased Th17 polarization and IL-17 signaling in the Pparg(C/-) CD4(+) T cells contributed to B-cell hyperactivation in the spleen. Finally, the activation of the remaining PPARγ in Pparg(C/-) mice by pioglitazone increased S1P1 levels, reduced the Th17 population in the spleen, and ameliorated splenomegaly. Taken together, our data demonstrated that reduction of Pparg expression in T-helper cells is critical for spontaneous SLE-like autoimmune disease development; we also revealed a novel function of PPARγ in lymphocyte trafficking and cross talk between Th17 and B cells. PMID:27221351

  4. Quantitative PPARγ expression affects the balance between tolerance and immunity

    PubMed Central

    Liu, Ya-Hui; Tsai, Yau-Sheng; Lin, Shih-Chieh; Liao, Nan-Shih; Jan, Ming-Shiou; Liang, Chung-Tiang; Hsu, Shih-Wen; Chen, Wen-Chung; Sung, Junne-Ming; Maeda, Nobuyo; Tsai, Pei-Jane

    2016-01-01

    PPARγ modulates energy metabolism and inflammation. However, its specific functions in the balance of immunity in vivo have been explored incompletely. In this study, by the age of 14 mo, PpargC/− mice with PPARγ expression at 25% of the normal level exhibited high autoantibody levels and developed mesangial proliferative glomerulonephritis, which resembled systemic lupus erythematosus (SLE)-like autoimmune disease. These symptoms were preceded by splenomegaly at an early age, which was associated with increases in splenocyte accumulation and B-cell activation but not with relocation of hematopoiesis to the spleen. The mechanism of splenic lymphocyte accumulation involved reduced sphingosine-1-phosphate receptor 1 (S1P1) expression and diminished migration toward S1P in the PpargC/− splenocytes, which impeded lymphocyte egression. Mechanistically, increased Th17 polarization and IL-17 signaling in the PpargC/− CD4+ T cells contributed to B-cell hyperactivation in the spleen. Finally, the activation of the remaining PPARγ in PpargC/− mice by pioglitazone increased S1P1 levels, reduced the Th17 population in the spleen, and ameliorated splenomegaly. Taken together, our data demonstrated that reduction of Pparg expression in T-helper cells is critical for spontaneous SLE-like autoimmune disease development; we also revealed a novel function of PPARγ in lymphocyte trafficking and cross talk between Th17 and B cells. PMID:27221351

  5. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis.

    PubMed

    López, Vladimir; Villar, Margarita; Queirós, João; Vicente, Joaquín; Mateos-Hernández, Lourdes; Díez-Delgado, Iratxe; Contreras, Marinela; Alves, Paulo C; Alberdi, Pilar; Gortázar, Christian; de la Fuente, José

    2016-03-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen

  6. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis

    PubMed Central

    López, Vladimir; Villar, Margarita; Queirós, João; Vicente, Joaquín; Mateos-Hernández, Lourdes; Díez-Delgado, Iratxe; Contreras, Marinela; Alves, Paulo C.; Alberdi, Pilar; Gortázar, Christian; de la Fuente, José

    2016-01-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen

  7. Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8+ T-cell immunity.

    PubMed

    Lang, Philipp A; Lang, Karl S; Xu, Haifeng C; Grusdat, Melanie; Parish, Ian A; Recher, Mike; Elford, Alisha R; Dhanji, Salim; Shaabani, Namir; Tran, Charles W; Dissanayake, Dilan; Rahbar, Ramtin; Ghazarian, Magar; Brüstle, Anne; Fine, Jason; Chen, Peter; Weaver, Casey T; Klose, Christoph; Diefenbach, Andreas; Häussinger, Dieter; Carlyle, James R; Kaech, Susan M; Mak, Tak W; Ohashi, Pamela S

    2012-01-24

    Infections with HIV, hepatitis B virus, and hepatitis C virus can turn into chronic infections, which currently affect more than 500 million patients worldwide. It is generally thought that virus-mediated T-cell exhaustion limits T-cell function, thus promoting chronic disease. Here we demonstrate that natural killer (NK) cells have a negative impact on the development of T-cell immunity by using the murine lymphocytic choriomeningitis virus. NK cell-deficient (Nfil3(-/-), E4BP4(-/-)) mice exhibited a higher virus-specific T-cell response. In addition, NK cell depletion caused enhanced T-cell immunity in WT mice, which led to rapid virus control and prevented chronic infection in lymphocytic choriomeningitis virus clone 13- and reduced viral load in DOCILE-infected animals. Further experiments showed that NKG2D triggered regulatory NK cell functions, which were mediated by perforin, and limited T-cell responses. Therefore, we identified an important role of regulatory NK cells in limiting T-cell immunity during virus infection. PMID:22167808

  8. Staying alive: cell death in antiviral immunity.

    PubMed

    Upton, Jason W; Chan, Francis Ka-Ming

    2014-04-24

    Programmed cell death is an integral part of host defense against invading intracellular pathogens. Apoptosis, programmed necrosis, and pyroptosis each serve to limit pathogen replication in infected cells, while simultaneously promoting the inflammatory and innate responses that shape effective long-term host immunity. The importance of carefully regulated cell death is evident in the spectrum of inflammatory and autoimmune disorders caused by defects in these pathways. Moreover, many viruses encode inhibitors of programmed cell death to subvert these host responses during infection, thereby facilitating their own replication and persistence. Thus, as both virus and cell vie for control of these pathways, the battle for survival has shaped a complex host-pathogen interaction. This review will discuss the multifaceted role that programmed cell death plays in maintaining the immune system and its critical function in host defense, with a special emphasis on viral infections. PMID:24766891

  9. The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity.

    PubMed

    Han, Qin; Wu, Fengli; Wang, Xiaonan; Qi, Hong; Shi, Liang; Ren, Ang; Liu, Qinghai; Zhao, Mingwen; Tang, Canming

    2015-04-01

    Verticillium wilt in cotton caused by Verticillium dahliae is one of the most serious plant diseases worldwide. Because no known fungicides or cotton cultivars provide sufficient protection against this pathogen, V. dahliae causes major crop yield losses. Here, an isolated cotton endophytic bacterium, designated Bacillus amyloliquefaciens 41B-1, exhibited greater than 50% biocontrol efficacy against V. dahliae in cotton plants under greenhouse conditions. Through high-performance liquid chromatography and mass analysis of the filtrate, we found that the antifungal compounds present in the strain 41B-1 culture filtrate were a series of isoforms of iturins. The purified iturins suppressed V. dahliae microsclerotial germination in the absence or presence of cotton. Treatment with the iturins induced reactive oxygen species bursts, Hog1 mitogen-activated protein kinase (MAPK) activation and defects in cell wall integrity. The oxidative stress response and high-osmolarity glycerol pathway contribute to iturins resistance in V. dahliae. In contrast, the Slt2 MAPK pathway may be involved in iturins sensitivity in this fungus. In addition to antagonism, iturins could induce plant defence responses as activators and mediate pathogen-associated molecular pattern-triggered immunity. These findings suggest that iturins may affect fungal signalling pathways and mediate plant defence responses against V. dahliae. PMID:24934960

  10. Epigenetic Dysfunction in Turner Syndrome Immune Cells.

    PubMed

    Thrasher, Bradly J; Hong, Lee Kyung; Whitmire, Jason K; Su, Maureen A

    2016-05-01

    Turner syndrome (TS) is a chromosomal condition associated with partial or complete absence of the X chromosome that involves characteristic findings in multiple organ systems. In addition to well-known clinical characteristics such as short stature and gonadal failure, TS is also associated with T cell immune alterations and chronic otitis media, suggestive of a possible immune deficiency. Recently, ubiquitously transcribed tetratricopeptide repeat on the X chromosome (UTX), a histone H3 lysine 27 (H3K27) demethylase, has been identified as a downregulated gene in TS immune cells. Importantly, UTX is an X-linked gene that escapes X-chromosome inactivation and thus is haploinsufficient in TS. Mice with T cell-specific UTX deficiency have impaired clearance of chronic viral infection due to decreased frequencies of T follicular helper (Tfh) cells, which are critical for B cell antibody generation. In parallel, TS patients have decreased Tfh frequencies in peripheral blood. Together, these findings suggest that haploinsufficiency of the X-linked UTX gene in TS T cells underlies an immune deficit, which may manifest as increased predisposition to chronic otitis media. PMID:27039394

  11. The immune microenvironment in Hodgkin lymphoma: T cells, B cells, and immune checkpoints

    PubMed Central

    Vardhana, Santosha; Younes, Anas

    2016-01-01

    Classical Hodgkin lymphoma is curable in the majority of cases with chemotherapy and/or radiation. However, 15–20% of patients ultimately relapse and succumb to their disease. Pathologically, classical Hodgkin lymphoma is characterized by rare tumor-initiating Reed-Sternberg cells surrounded by a dense immune microenvironment. However, the role of the immune microenvironment, particularly T and B cells, in either promoting or restricting Classical Hodgkin lymphoma growth remains undefined. Recent dramatic clinical responses seen using monoclonal antibodies against PD-1, a cell surface receptor whose primary function is to restrict T cell activation, have reignited questions regarding the function of the adaptive immune system in classical Hodgkin lymphoma. This review summarizes what is known regarding T cells, B cells, and immune checkpoints in classical Hodgkin lymphoma. PMID:27365459

  12. Gene Risk Factors for Age-Related Brain Disorders May Affect Immune System Function

    MedlinePlus

    ... for age-related brain disorders may affect immune system function June 17, 2014 Scientists have discovered gene ... factors for age-related neurological disorders to immune system functions, such as inflammation, offers new insights into ...

  13. The Human Natural Killer Cell Immune Synapse

    NASA Astrophysics Data System (ADS)

    Davis, Daniel M.; Chiu, Isaac; Fassett, Marlys; Cohen, George B.; Mandelboim, Ofer; Strominger, Jack L.

    1999-12-01

    Inhibitory killer Ig-like receptors (KIR) at the surface of natural killer (NK) cells induced clustering of HLA-C at the contacting surface of target cells. In this manner, inhibitory immune synapses were formed as human NK cells surveyed target cells. At target/NK cell synapses, HLA-C/KIR distributed into rings around central patches of intercellular adhesion molecule-1/lymphocyte function-associated antigen-1, the opposite orientation to mature murine T cell-activating synapses. This organization of protein was stable for at least 20 min. Cells could support multiple synapses simultaneously, and clusters of HLA-C moved as NK cells crawled over target cells. Clustering required a divalent metal cation, explaining how metal chelators inhibit KIR function. Surprisingly, however, formation of inhibitory synapses was unaffected by ATP depletion and the cytoskeletal inhibitors, colchicine and cytochalsins B and D. Clearly, supramolecular organization within plasma membranes is critical for NK cell immunosurveillance.

  14. [Immune cells on the IUD].

    PubMed

    Trebichavský, I; Nyklícek, O; Zahradnícková, M

    1989-06-01

    Cells isolated on the surface of just removed IUD "DANA" were characterized by means of monoclonal antibodies and the avidin-biotin method. Activated macrophages with the membrane sign CD 14 and transferrin receptors (25-72%) and B lymphocytes producing IgA and IgG (14-56%) contained strong transplantation antigens class II. By these glycoproteins macrophages and B cells are able to differentiate alie and thus also paternal antigens. The presence of these cells in the uterus may be the stimulus for triggering an aggressive cytotoxic reaction against the blastocyst and explains the contraceptive action of intrauterine devices. PMID:2791001

  15. Common European harmful algal blooms affect the viability and innate immune responses of Mytilus edulis larvae.

    PubMed

    De Rijcke, M; Vandegehuchte, M B; Vanden Bussche, J; Nevejan, N; Vanhaecke, L; De Schamphelaere, K A C; Janssen, C R

    2015-11-01

    Like marine diseases, harmful algal blooms (HABs) are globally increasing in frequency, severity and geographical scale. As a result, bivalves will have to face the combined threat of toxic algae and marine pathogens more frequently in the (near) future. These stressors combined may further affect the recruitment of ecologically and economically important bivalve species as HABs can affect the growth, viability and development of their larvae. To date, little is known on the specific effects of HABs on the innate immune system of bivalve larvae. This study therefore investigates whether two common harmful algae can influence the larval viability, development and immunological resilience of the blue mussel Mytilus edulis. Embryos of this model organism were exposed (48 h) to five densities of Pseudo-nitzschia multiseries or Prorocentrum lima cells. In addition, the effect of six concentrations of their respective toxins: domoic acid (DA) and okadaic acid (OA) were assessed. OA was found to significantly reduce larval protein phosphatase activity (p < 0.001) and larval viability (p < 0.01) at concentrations as low as 37.8 μg l(-1). P. multiseries (1400 cells ml(-1)), P. lima (150 cells ml(-1)) and DA (dosed five times higher than typical environmental conditions i.e. 623.2 μg l(-1)) increased the phenoloxidase (PO) innate immune activity of the mussel larvae. These results suggest that the innate immune response of even the earliest life stages of bivalves is susceptible to the presence of HABs. PMID:26348409

  16. T regulatory cells and the immune aging process

    PubMed Central

    Jagger, Ann Titi; Shimojima, Yasuhiro; Goronzy, Jorg J.; Weyand, Cornelia M.

    2016-01-01

    Constant exposure to new and persisting antigens and the need to replace cellular attrition with newly build cells lead to profound remodeling of the immune system during the second half of life. The impact of the immunosenescence process varies amongst the different functional subsets represented within the immune system, and emerging data suggest that progressive aging significantly affects frequencies, subset distribution and functional competence of regulatory T cells (Treg). Given the central role of Treg cells in immune homeostasis, age-related loss of Treg function would be predicted to render the host susceptible to excessive immunity, encountered in elderly humans as a syndrome of chronic-smoldering inflammation. Conversely, age-dependent gain of Treg activity would expose the host to greater risk of immune failure, such as the rising risk of malignancies and infections in the aging population. Emerging data suggest that some Treg populations, specifically naturally occurring Tregs (nTreg), seem to accumulate with advancing age, whereas inducible Tregs (iTreg) appear to be less available in the older host. More studies are necessary to elucidate functional competence of old Tregs, with emphasis on comparing efficacy of young on old Tregs for defined functional domains. Mechanisms of declining Treg inducibility are not understood, but may provide an opportunity for targeted immunomodulation in the elderly. On the horizon is the potential to develop novel therapeutic interventions that target Tregs to make the elderly more efficient in fighting cancers and infections and dampen the risk for senescence-associated inflammation. PMID:24296590

  17. Immune cell identity: perspective from a palimpsest

    PubMed Central

    Rothenberg, Ellen V.

    2016-01-01

    The immune system in mammals is composed of multiple different immune cell types that migrate through the body and are made continuously throughout life. Lymphocytes and myeloid cells interact with each other and depend upon each other, but are each highly diverse and specialized for different roles. Lymphocytes uniquely require developmentally programmed mutational changes in the genome itself for their maturation. Despite profound differences between their mechanisms of threat recognition and threat response, however, the developmental origins of lymphocytes and myeloid cells are interlinked, and important aspects of their response mechanisms remain shared. As the immune defense system has been elucidated in the past 50 years, it is notable that the chain of logic toward our current understanding was driven by strongly posited models that led to crucial discoveries even though these models ended up being partly wrong. It has been the predictive strength of these models and their success as guides to incisive experimental research that has also illuminated the limits of each model’s explanatory scope, beyond which another model needed to assume the lead. This brief review describes how a succession of distinct paradigms has helped to clarify a sophisticated picture of immune cell generation and control. PMID:26750603

  18. Intestinal epithelial cells as mediators of the commensal–host immune crosstalk

    PubMed Central

    Goto, Yoshiyuki; Ivanov, Ivaylo I

    2014-01-01

    Commensal bacteria regulate the homeostasis of host effector immune cell subsets. The mechanisms involved in this commensal–host crosstalk are not well understood. Intestinal epithelial cells (IECs) not only create a physical barrier between the commensals and immune cells in host tissues, but also facilitate interactions between them. Perturbations of epithelial homeostasis or function lead to the development of intestinal disorders such as inflammatory bowel diseases (IBD) and intestinal cancer. IECs receive signals from commensals and produce effector immune molecules. IECs also affect the function of immune cells in the lamina propria. Here we discuss some of these properties of IECs that define them as innate immune cells. We focus on how IECs may integrate and transmit signals from individual commensal bacteria to mucosal innate and adaptive immune cells for the establishment of the unique mucosal immunological equilibrium. PMID:23318659

  19. Immune Cells and Inflammation in Diabetic Nephropathy

    PubMed Central

    Zheng, Zihan; Zheng, Feng

    2016-01-01

    Diabetic nephropathy (DN) is a serious complication of diabetes. At its core, DN is a metabolic disorder which can also manifest itself in terms of local inflammation in the kidneys. Such inflammation can then drive the classical markers of fibrosis and structural remodeling. As a result, resolution of immune-mediated inflammation is critical towards achieving a cure for DN. Many immune cells play a part in DN, including key members of both the innate and adaptive immune systems. While these cells were classically understood to primarily function against pathogen insult, it has also become increasingly clear that they also serve a major role as internal sensors of damage. In fact, damage sensing may serve as the impetus for much of the inflammation that occurs in DN, in a vicious positive feedback cycle. Although direct targeting of these proinflammatory cells may be difficult, new approaches that focus on their metabolic profiles may be able to alleviate DN significantly, especially since dysregulation of the local metabolic environment may well be responsible for triggering inflammation to begin with. In this review, the authors consider the metabolic profile of several relevant immune types and discuss their respective roles. PMID:26824038

  20. Innate immune cells in the pathogenesis of primary systemic vasculitis.

    PubMed

    Misra, Durga Prasanna; Agarwal, Vikas

    2016-02-01

    Innate immune system forms the first line of defense against foreign substances. Neutrophils, eosinophils, erythrocytes, platelets, monocytes, macrophages, dendritic cells, γδ T cells, natural killer and natural killer T cells comprise the innate immune system. Genetic polymorphisms influencing the activation of innate immune cells predispose to development of vasculitis and influence its severity. Abnormally activated innate immune cells cross-talk with other cells of the innate immune system, present antigens more efficiently and activate T and B lymphocytes and cause tissue destruction via cell-mediated cytotoxicity and release of pro-inflammatory cytokines. These secreted cytokines further recruit other cells to the sites of vascular injury. They are involved in both the initiation as well as the perpetuation of vasculitis. Evidences suggest reversal of aberrant activation of immune cells in response to therapy. Understanding the role of innate immune cells in vasculitis helps understand the potential of therapeutic modulation of their activation to treat vasculitis. PMID:26403285

  1. Secretome identification of immune cell factors mediating metastatic cell homing

    PubMed Central

    Aguado, Brian A.; Wu, Jia J.; Azarin, Samira M.; Nanavati, Dhaval; Rao, Shreyas S.; Bushnell, Grace G.; Medicherla, Chaitanya B.; Shea, Lonnie D.

    2015-01-01

    Metastatic cell homing is a complex process mediated in part by diffusible factors secreted from immune cells found at a pre-metastatic niche. We report on connecting secretomics and TRanscriptional Activity CEll aRray (TRACER) data to identify functional paracrine interactions between immune cells and metastatic cells as novel mediators of homing. Metastatic breast cancer mouse models were used to generate a diseased splenocyte conditioned media (D-SCM) containing immune cell secreted factors. MDA-MB-231 metastatic cell activity including cell invasion, migration, transendothelial migration, and proliferation were increased in D-SCM relative to control media. Our D-SCM secretome analysis yielded 144 secreted factor candidates that contribute to increased metastatic cell activity. The functional mediators of homing were identified using MetaCore software to determine interactions between the immune cell secretome and the TRACER-identified active transcription factors within metastatic cells. Among the 5 candidate homing factors identified, haptoglobin was selected and validated in vitro and in vivo as a key mediator of homing. Our studies demonstrate a novel systems biology approach to identify functional signaling factors associated with a cellular phenotype, which provides an enabling tool that complements large-scale protein identification provided by proteomics. PMID:26634905

  2. Immune Suppressive Effect of Cinnamaldehyde Due to Inhibition of Proliferation and Induction of Apoptosis in Immune Cells: Implications in Cancer

    PubMed Central

    Gomez-Casado, Cristina; Diaz-Perales, Araceli; Oida, Kumiko; Singer, Josef; Kinaciyan, Tamar; Fuchs, Heidemarie C.; Jensen-Jarolim, Erika

    2014-01-01

    Background Besides its anti-inflammatory effects, cinnamaldehyde has been reported to have anti-carcinogenic activity. Here, we investigated its impact on immune cells. Methods Activation of nuclear factor-κB by cinnamaldehyde (0–10 µg/ml) alone or in combination with lipopolysaccharide was assessed in THP1XBlue human monocytic cell line and in human peripheral blood mononuclear cells (PBMCs). Proliferation and secretion of cytokines (IL10 and TNFα) was determined in primary immune cells and the human cell lines (THP1, Jurkat E6-1 and Raji cell lines) stimulated with cinnamaldehyde alone or in conjunction with lipopolysaccharide. Nitric oxide was determined in mouse RAW264.7 cells. Moreover, different treated PBMCs were stained for CD3, CD20 and AnnexinV. Results Low concentrations (up to 1 µg/ml) of cinnamaldehyde resulted in a slight increase in nuclar factor-kB activation, whereas higher concentrations led to a dose-dependent decrease of nuclear factor-kB activation (up to 50%) in lipopolysachharide-stimulated THP1 cells and PBMCs. Accordingly, nitric oxide, interleukin 10 secretion as well as cell proliferation were reduced in lipopolysachharide-stimulated RAW264.7 cells, PBMCs and THP1, Raji and Jurkat-E6 immune cells in the presence of cinnamaldehyde in a concentration-dependent manner. Flow cytometric analysis of PBMCs revealed that CD3+ were more affected than CD20+ cells to apopotosis by cinnamaldehyde. Conclusion We attribute the anti-inflammatory properties of cinnamaldehyde to its ability to block nuclear factor-κB activation in immune cells. Treatment with cinnamaldehyde led to inhibition of cell viability, proliferation and induced apoptosis in a dose-dependent manner in primary and immortalized immune cells. Therefore, despite its described anti-carcinogenic property, treatment with cinnamaldehyde in cancer patients might be contraindicated due to its ability to inhibit immune cell activation. PMID:25271635

  3. Label-free detection of immune complexes with myeloid cells.

    PubMed

    Szittner, Z; Bentlage, A E H; Rovero, P; Migliorini, P; Lóránd, V; Prechl, J; Vidarsson, G

    2016-07-01

    The aim of this study was to provide proof-of-concept for quantitative and qualitative label-free detection of immune complexes through myeloid cells with imaging surface plasmon resonance. Surface plasmon resonance imaging was first applied to monitor the binding of human sera from healthy and rheumatoid arthritis (RA) patients to immobilized citrullinated RA-specific peptide antigens, histone citrullinated peptide 2 (HCP2) and viral citrullinated peptide 2 (VCP2). Next, the binding of monocytoid cell line U937 to the resulting immune complexes on the sensor surface was monitored. As control, binding of U937 was monitored to immunoglobulin (Ig)G subclasses simultaneously. Cell response results were compared to results of cyclic citrullinated peptide 2 (CCP2) enzyme-linked immunosorbent assay (ELISA), clinical RA diagnosis and antigen-specific antibody distribution of the samples. Human IgG3 triggered the most pronounced response, followed by IgG1 and IgG4, while IgG2 did not result in U937 cell binding. Serum samples obtained from RA patients resulted in a significantly increased cell response to VCP2 compared to healthy controls. The strength of cell response towards VCP2 immune complexes showed significant correlation with levels of antigen-specific IgA, IgG and IgG3. Cellular responses on VCP2 immune complexes showed significant association with both CCP2-based serological positivity and European League Against Rheumatism (EULAR) criteria-based clinical RA diagnosis. Immunoglobulin-triggered binding of monocytoid cells can be monitored using a label-free multiplex technology. Because these binding events are presumably initiated by Fc receptors, the system provides a tool for biological detection of autoantibodies with diagnostic value, here exemplified by anti-citrullinated antibodies. This provides added information to antibody levels, as interaction with Fc-receptor-expressing cells is also affected by post-translational modification of the immunoglobulins

  4. In situ CUTANEOUS CELLULAR IMMUNE RESPONSE IN DOGS NATURALLY AFFECTED BY VISCERAL LEISHMANIASIS

    PubMed Central

    ROSSI, Claudio Nazaretian; TOMOKANE, Thaise Yumie; BATISTA, Luis Fábio da Silva; MARCONDES, Mary; LARSSON, Carlos Eduardo; LAURENTI, Márcia Dalastra

    2016-01-01

    SUMMARY Thirty-eight dogs naturally affected by visceral leishmaniasis were recruited in Araçatuba, São Paulo State, Brazil - an endemic area for visceral leishmaniasis. The animals were distributed into one of two groups, according to their clinical and laboratory features, as either symptomatic or asymptomatic dogs. Correlations between clinical features and inflammatory patterns, cellular immune responses, and parasitism in the macroscopically uninjured skin of the ear were investigated. Histological skin patterns were similar in both groups, and were generally characterized by a mild to intense inflammatory infiltrate in the dermis, mainly consisting of mononuclear cells. There was no difference in the number of parasites in the skin (amastigotes/mm²) between the two groups. Concerning the characterization of the cellular immune response, the number of positive inducible nitric oxide synthase (iNOS+) cells was higher in the dermis of symptomatic than in asymptomatic dogs (p = 0.0368). A positive correlation between parasite density and macrophages density (p = 0.031), CD4+ T-cells (p = 0.015), and CD8+ T-cells (p = 0.023) was observed. Furthermore, a positive correlation between density of iNOS+ cells and CD3+ T-cells (p = 0.005), CD4+ T-cells (p = 0.001), and CD8+ T-cells (p = 0.0001) was also found. The results showed the existence of a non-specific chronic inflammatory infiltrate in the dermis of dogs affected by visceral leishmaniasis, characterized by the presence of activated macrophages and T-lymphocytes, associated to cutaneous parasitism, independent of clinical status. PMID:27410908

  5. In situ CUTANEOUS CELLULAR IMMUNE RESPONSE IN DOGS NATURALLY AFFECTED BY VISCERAL LEISHMANIASIS.

    PubMed

    Rossi, Claudio Nazaretian; Tomokane, Thaise Yumie; Batista, Luis Fábio da Silva; Marcondes, Mary; Larsson, Carlos Eduardo; Laurenti, Márcia Dalastra

    2016-07-11

    Thirty-eight dogs naturally affected by visceral leishmaniasis were recruited in Araçatuba, São Paulo State, Brazil - an endemic area for visceral leishmaniasis. The animals were distributed into one of two groups, according to their clinical and laboratory features, as either symptomatic or asymptomatic dogs. Correlations between clinical features and inflammatory patterns, cellular immune responses, and parasitism in the macroscopically uninjured skin of the ear were investigated. Histological skin patterns were similar in both groups, and were generally characterized by a mild to intense inflammatory infiltrate in the dermis, mainly consisting of mononuclear cells. There was no difference in the number of parasites in the skin (amastigotes/mm²) between the two groups. Concerning the characterization of the cellular immune response, the number of positive inducible nitric oxide synthase (iNOS+) cells was higher in the dermis of symptomatic than in asymptomatic dogs (p = 0.0368). A positive correlation between parasite density and macrophages density (p = 0.031), CD4+ T-cells (p = 0.015), and CD8+ T-cells (p = 0.023) was observed. Furthermore, a positive correlation between density of iNOS+ cells and CD3+ T-cells (p = 0.005), CD4+ T-cells (p = 0.001), and CD8+ T-cells (p = 0.0001) was also found. The results showed the existence of a non-specific chronic inflammatory infiltrate in the dermis of dogs affected by visceral leishmaniasis, characterized by the presence of activated macrophages and T-lymphocytes, associated to cutaneous parasitism, independent of clinical status. PMID:27410908

  6. “Natural Regulators”: NK Cells as Modulators of T Cell Immunity

    PubMed Central

    Schuster, Iona S.; Coudert, Jerome D.; Andoniou, Christopher E.; Degli-Esposti, Mariapia A.

    2016-01-01

    Natural killer (NK) cells are known as frontline responders capable of rapidly mediating a response upon encountering transformed or infected cells. Recent findings indicate that NK cells, in addition to acting as innate effectors, can also regulate adaptive immune responses. Here, we review recent studies on the immunoregulatory function of NK cells with a specific focus on their ability to affect the generation of early, as well as long-term antiviral T cell responses, and their role in modulating immune pathology and disease. In addition, we summarize the current knowledge of the factors governing regulatory NK cell responses and discuss origin, tissue specificity, and open questions about the classification of regulatory NK cells as classical NK cells versus group 1 innate lymphoid cells. PMID:27379097

  7. Platelets and their interactions with other immune cells

    PubMed Central

    Lam, Fong W.; Vijayan, K. Vinod; Rumbaut, Rolando E.

    2015-01-01

    Platelets are anucleate blood cells, long known to be critically involved in hemostasis and thrombosis. In addition to their role in blood clots, increasing evidence reveals significant roles for platelets in inflammation and immunity. However, the notion that platelets represent immune cells is not broadly recognized in the field of Physiology. This manuscript reviews the role of platelets in inflammation and immune responses, and highlights their interactions with other immune cells, including examples of major functional consequences of these interactions. PMID:26140718

  8. Mesenchymal Stem Cells and Myeloid Derived Suppressor Cells: Common Traits in Immune Regulation

    PubMed Central

    Nikolaev, Alexander

    2016-01-01

    To protect host against immune-mediated damage, immune responses are tightly regulated. The regulation of immune responses is mediated by various populations of mature immune cells, such as T regulatory cells and B regulatory cells, but also by immature cells of different origins. In this review, we discuss regulatory properties and mechanisms whereby two distinct populations of immature cells, mesenchymal stem cells, and myeloid derived suppressor cells mediate immune regulation, focusing on their similarities, discrepancies, and potential clinical applications. PMID:27529074

  9. Intestinal immune cells in Strongyloides stercoralis infection.

    PubMed Central

    Trajman, A; MacDonald, T T; Elia, C C

    1997-01-01

    BACKGROUND: Strongyloides stercoralis can cause a wide spectrum of disease in man, ranging from a chronic asymptomatic infection to a hyperinfective, often fatal syndrome. In rodents, spontaneous expulsion of Strongyloides spp occurs after experimental infection. Mast cells, goblet cells, and eosinophils have been identified as possible effectors of this expulsion. AIMS: To investigate intestinal histopathology and mucosal immunity in immunocompetent patients with chronic S stercoralis infection. METHODS: Jejunal biopsies were performed in 19 immunocompetent patients with a positive stool examination for S stercoralis and few or no symptoms, and in seven healthy controls. Specimens were processed for histopathological analysis and stained by the immunoperoxidase technique, using the following monoclonal antibodies: CD2, CD3, CD4, CD8, anti-T cell receptor (TcR) gamma/delta, RFD1 and RFD7 (two different macrophage markers), Ki67+ (proliferating) cells, antihuman leucocyte antigen (HLA)-DR, and anticollagen IV. In addition, CD25+ cells, mast cells, IgE expressing cells, calprotectin containing cells, and neutrophil elastase positive cells were stained by the alkaline phosphatase method. RESULTS: Jejunal morphology and the numbers of different T cell subsets, mast cells, IgE expressing cells, eosinophils, and goblet cells were unaffected by S stercoralis infection. Conversely, the numbers of mature macrophages and dividing enterocytes in the crypts were reduced significantly. Crypt enterocytes did not express HLA-DR in both groups. The expression of HLA-DR by villus enterocytes was also comparable in patients and controls. There were no activated (CD25+) cells in the mucosa of either patients or controls. CONCLUSIONS: Compared with seven healthy uninfected volunteers, a group of 19 Brazilians with clinically mild strongyloides infection showed no abnormality of mucosal structure and no increase in non-specific inflammatory cells. Likewise, there was no increase in

  10. NKT Cell Immune Responses to Viral Infection

    PubMed Central

    Tessmer, Marlowe S.; Fatima, Ayesha; Paget, Christophe; Trottein, François; Brossay, Laurent

    2010-01-01

    Background Natural killer T (NKT) cells are a heterogeneous population of innate T cells that have attracted recent interest because of their potential to regulate immune responses to a variety of pathogens. The most widely studied NKT cell subset is the invariant (i)NKT cells that recognize glycolipids in the context of the CD1d molecule. The multifaceted methods of activation iNKT cells possess and their ability to produce regulatory cytokines has made them a primary target for therapeutic studies. Objective/Methods This review gives insight into the roles of iNKT cells during infectious diseases, particularly viral infections. We also highlight the different mechanisms leading to iNKT cell activation in response to pathogens. Conclusions The iNKT cell versatility allows them to detect and respond to several viral infections. However, therapeutic approaches to specifically target iNKT cells will require additional research. Notably, examination of the roles of non-invariant NKT cells in response to pathogens warrant further investigations. PMID:19236234

  11. Lentiviral Vectors for Immune Cells Targeting

    PubMed Central

    Froelich, Steven; Tai, April; Wang, Pin

    2009-01-01

    Lentiviral vectors are efficient gene delivery vehicles suitable for delivering long-term transgene expression in various cell types. Engineering lentiviral vectors to have the capacity to transduce specific cell types is of great interest to advance the translation of lentiviral vectors towards the clinic. Here we provide an overview of innovative approaches to target lentiviral vectors to cells of the immune system. In this overview we distinguish between two types of lentiviral vector targeting strategies: 1) targeting of the vectors to specific cells by lentiviral vector surface modifications, and 2) targeting at the level of transgene transcription by insertion of tissue-specific promoters to drive transgene expression. It is clear that each strategy is of enormous value but ultimately combining these approaches may help reduce the effects of off-target expression and improve the efficiency and saftey of lentiviral vectors for gene therapy. PMID:20085508

  12. Role of Dendritic Cells in Immune Dysfunction

    NASA Technical Reports Server (NTRS)

    Savary, Cherylyn A.

    1998-01-01

    The specific aims of the project were: (1) Application of the NASA bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC). (2) Compare the frequency and function of DC in normal donors and immunocompromised cancer patients. (3) Analyze the effectiveness of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in a murine model of experimental fungal disease. Our investigations have provided new insight into DC immunobiology and have led to the development of methodology to evaluate DC in blood of normal donors and patients. Information gained from these studies has broadened our understanding of possible mechanisms involved in the immune dysfunction of space travelers and earth-bound cancer patients, and could contribute to the design of novel therapies to restore/preserve immunity in these individuals. Several new avenues of investigation were also revealed. The results of studies completed during Round 2 are summarized.

  13. Cell-mediated immunity in epidermodysplasia verruciformis.

    PubMed

    Gliński, W; Jablonska, S; Langner, A; Obalek, S; Haftek, M; Proniewska, M

    1976-01-01

    Investigations were performed in 6 cases of epidermodysplasia verruciformis and 2 healthy family members. Nonspecific cell-mediated immunity (CMI) was studied by measuring response to phytohemagglutinin (PHA) and concanavalin A (Con A), percentrages of E- and EAC-rosette-forming lymphocytes, bacterial skin tests, and allergic reactions to dinitrochloro-benzene (DNCB). Impairment of CMI was manifested by reduction in the percentage of E rosettes, and lowered response to PHA, and- to a lesser degree- to Con A. The immune response to DNCB sensitization was invariably negative. Impairment of CMI was greater in cases of long duration and with extensive lesions. The cases of similar duration and extent of lesions, which never showed tendency to tumor formation, were not different in CMI in comparison with cases with numerous tumors. Only in cases with very advanced tumors CMI was impaired parallel to the gravity of the patient's general condition. PMID:1017532

  14. Probiotics and colostrum/milk differentially affect neonatal humoral immune responses to oral rotavirus vaccine.

    PubMed

    Chattha, Kuldeep S; Vlasova, Anastasia N; Kandasamy, Sukumar; Esseili, Malak A; Siegismund, Christine; Rajashekara, Gireesh; Saif, Linda J

    2013-04-01

    Breast milk (colostrum [col]/milk) components and gut commensals play important roles in neonatal immune maturation, establishment of gut homeostasis and immune responses to enteric pathogens and oral vaccines. We investigated the impact of colonization by probiotics, Lactobacillus rhamnosus GG (LGG) and Bifidobacterium lactis Bb12 (Bb12) with/without col/milk (mimicking breast/formula fed infants) on B lymphocyte responses to an attenuated (Att) human rotavirus (HRV) Wa strain vaccine in a neonatal gnotobiotic pig model. Col/milk did not affect probiotic colonization in AttHRV vaccinated pigs. However, unvaccinated pigs fed col/milk shed higher numbers of probiotic bacteria in feces than non-col/milk fed colonized controls. In AttHRV vaccinated pigs, col/milk feeding with probiotic treatment resulted in higher mean serum IgA HRV antibody titers and intestinal IgA antibody secreting cell (ASC) numbers compared to col/milk fed, non-colonized vaccinated pigs. In vaccinated pigs without col/milk, probiotic colonization did not affect IgA HRV antibody titers, but serum IgG HRV antibody titers and gut IgG ASC numbers were lower, suggesting that certain probiotics differentially impact HRV vaccine responses. Our findings suggest that col/milk components (soluble mediators) affect initial probiotic colonization, and together, they modulate neonatal antibody responses to oral AttHRV vaccine in complex ways. PMID:23453730

  15. Essential oil of clove (Eugenia caryophyllata) augments the humoral immune response but decreases cell mediated immunity.

    PubMed

    Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K

    2011-08-01

    The present study was undertaken to explore the effect of the essential oil isolated from the buds of Eugenia caryophyllata on some immunological parameters. Humoral immunity was assessed by measuring the hemagglutination titre to sheep red blood cells and delayed type hypersensitivity was assessed by measuring foot pad thickness. Clove oil administration produced a significant increase in the primary as well as secondary humoral immune response. In addition, it also produced a significant decrease in foot pad thickness compared with the control group. Thus, these results suggest that clove oil can modulate the immune response by augmenting humoral immunity and decreasing cell mediated immunity. PMID:21796701

  16. B Cells and Humoral Immunity in Atherosclerosis

    PubMed Central

    Tsiantoulas, Dimitrios; Diehl, Cody J.; Witztum, Joseph L.; Binder, Christoph J.

    2014-01-01

    Insights into the important contribution of inflammation and immune functions in the development and progression of atherosclerosis have greatly improved our understanding of this disease. Although the role of T cells has been extensively studied for decades, only recently has the role of B cells gained more attention. Recent studies have identified differential effects of different B-cell subsets and helped to clarify the still poorly understood mechanisms by which these act. B1 cells have been shown to prevent lesion formation, whereas B2 cells have been suggested to promote it. Natural IgM antibodies, mainly derived from B1 cells, have been shown to mediate atheroprotective effects, but the functional role of other immunoglobulin classes, particularly IgG, still remains elusive. In this review, we will focus on recent insights on the role of B cells and various immunoglobulin classes and how these may mediate their effects in atherosclerotic lesion formation. Moreover, we will highlight potential therapeutic approaches focusing on B-cell depletion that could be used to translate experimental evidence to human disease. PMID:24855199

  17. Cell-mediated immunity in anorexia nervosa.

    PubMed Central

    Cason, J; Ainley, C C; Wolstencroft, R A; Norton, K R; Thompson, R P

    1986-01-01

    Twelve patients with anorexia nervosa were studied for cell-mediated immunity in terms of delayed hypersensitivity reactions to recall antigens, lymphocyte transformation responses to T-cell mitogens, and numbers of circulating leucocytes and T-cell subpopulations. Compared to controls, all patients had reduced cutaneous reactions and four were anergic. There was a mild leucopenia in patients and both T4+ and T3+ numbers were slightly reduced. Mean peak transformation responses for patients were slightly lower than controls for phytohaemagglutinin, but not for concanavalin A; however, patients required greater doses of mitogens to elicit peak transformation responses. Plasmas from patients did not contain inhibitors of transformation responses. We conclude that there are functional cellular abnormalities associated with the under-nutrition of anorexia nervosa. PMID:3742879

  18. The responses of immune cells to iron oxide nanoparticles.

    PubMed

    Xu, Yaolin; Sherwood, Jennifer A; Lackey, Kimberly H; Qin, Ying; Bao, Yuping

    2016-04-01

    Immune cells play an important role in recognizing and removing foreign objects, such as nanoparticles. Among various parameters, surface coatings of nanoparticles are the first contact with biological system, which critically affect nanoparticle interactions. Here, surface coating effects on nanoparticle cellular uptake, toxicity and ability to trigger immune response were evaluated on a human monocyte cell line using iron oxide nanoparticles. The cells were treated with nanoparticles of three types of coatings (negatively charged polyacrylic acid, positively charged polyethylenimine and neutral polyethylene glycol). The cells were treated at various nanoparticle concentrations (5, 10, 20, 30, 50 μg ml(-1) or 2, 4, 8, 12, 20 μg cm(-2)) with 6 h incubation or treated at a nanoparticle concentration of 50 μg ml(-1) (20 μg cm(-2)) at different incubation times (6, 12, 24, 48 or 72 h). Cell viability over 80% was observed for all nanoparticle treatment experiments, regardless of surface coatings, nanoparticle concentrations and incubation times. The much lower cell viability for cells treated with free ligands (e.g. ~10% for polyethylenimine) suggested that the surface coatings were tightly attached to the nanoparticle surfaces. The immune responses of cells to nanoparticles were evaluated by quantifying the expression of toll-like receptor 2 and tumor necrosis factor-α. The expression of tumor necrosis factor-α and toll-like receptor 2 were not significant in any case of the surface coatings, nanoparticle concentrations and incubation times. These results provide useful information to select nanoparticle surface coatings for biological and biomedical applications. PMID:26817529

  19. Platelet Interaction with Innate Immune Cells

    PubMed Central

    Kral, Julia Barbara; Schrottmaier, Waltraud Cornelia; Salzmann, Manuel; Assinger, Alice

    2016-01-01

    Summary Beyond their traditional role in haemostasis and thrombosis, platelets are increasingly recognised as immune modulatory cells. Activated platelets and platelet-derived microparticles can bind to leukocytes, which stimulates mutual activation and results in rapid, local release of platelet-derived cytokines. Thereby platelets modulate leukocyte effector functions and contribute to inflammatory and immune responses to injury or infection. Platelets enhance leukocyte extravasation, differentiation and cytokine release. Platelet-neutrophil interactions boost oxidative burst, neutrophil extracellular trap formation and phagocytosis and play an important role in host defence. Platelet interactions with monocytes propagate their differentiation into macrophages, modulate cytokine release and attenuate macrophage functions. Depending on the underlying pathology, platelets can enhance or diminish leukocyte cytokine production, indicating that platelet-leukocyte interactions represent a fine balanced system to restrict excessive inflammation during infection. In atherosclerosis, platelet interaction with neutrophils, monocytes and dendritic cells accelerates key steps of atherogenesis by promoting leukocyte extravasation and foam cell formation. Platelet-leukocyte interactions at sites of atherosclerotic lesions destabilise atherosclerotic plaques and promote plaque rupture. Leukocytes in turn also modulate platelet function and production, which either results in enhanced platelet destruction or increased platelet production. This review aims to summarise the key effects of platelet-leukocyte interactions in inflammation, infection and atherosclerosis. PMID:27226790

  20. Platelet Interaction with Innate Immune Cells.

    PubMed

    Kral, Julia Barbara; Schrottmaier, Waltraud Cornelia; Salzmann, Manuel; Assinger, Alice

    2016-03-01

    Beyond their traditional role in haemostasis and thrombosis, platelets are increasingly recognised as immune modulatory cells. Activated platelets and platelet-derived microparticles can bind to leukocytes, which stimulates mutual activation and results in rapid, local release of platelet-derived cytokines. Thereby platelets modulate leukocyte effector functions and contribute to inflammatory and immune responses to injury or infection. Platelets enhance leukocyte extravasation, differentiation and cytokine release. Platelet-neutrophil interactions boost oxidative burst, neutrophil extracellular trap formation and phagocytosis and play an important role in host defence. Platelet interactions with monocytes propagate their differentiation into macrophages, modulate cytokine release and attenuate macrophage functions. Depending on the underlying pathology, platelets can enhance or diminish leukocyte cytokine production, indicating that platelet-leukocyte interactions represent a fine balanced system to restrict excessive inflammation during infection. In atherosclerosis, platelet interaction with neutrophils, monocytes and dendritic cells accelerates key steps of atherogenesis by promoting leukocyte extravasation and foam cell formation. Platelet-leukocyte interactions at sites of atherosclerotic lesions destabilise atherosclerotic plaques and promote plaque rupture. Leukocytes in turn also modulate platelet function and production, which either results in enhanced platelet destruction or increased platelet production. This review aims to summarise the key effects of platelet-leukocyte interactions in inflammation, infection and atherosclerosis. PMID:27226790

  1. Cell mediated immune regulation in autoimmunity.

    PubMed

    Gillissen, G; Pusztai-Markos, Z

    1979-01-01

    Autoimmunity is the term for the immune conditions characterized by a specific humoral or cell mediated response to the body's own tissues. The termination of the natural state of self tolerance may lead to immunopathological manifestations with clinical consequences, i.e. autoimmune diseases. In a very general sense, one may classify autoimmune diseases into two groups with respect to the underlying mechanism: 1. There are autoimmune diseases which develop in the presence of a normal intact regulation mechanism. 2. Another group whose development must be understood on the basis of a cellular dysfunction. In the first case, dequestered or semi-sequestered autoantigens are liberated as a consequence of exogenic influences inducing the sensitization of immunocompetent cells. The immune system then reacts with these autoantigens in the same way as with foreign substances. This kind of autoimmune disease will, however, not be dealt with here. In the second case, autoantigens are normally, i.e. in healthy individuals, accessible to the immunocompetent cells. To understand the reason for the development of an autoimmune reaction one must first clarify the mechanism of self tolerance. Then one must examine the way in which a break of this physiological state takes place. One of the major unanswered questions is the relative importance of antibody-mediated and cell-mediated immune mechanisms in the onset and further development of autoimmune diseases. Recently it has been suggested that a dysfunction at the cellular level might represent the basic cause which induces the termination of selftolerance. Most of the conceptions about the mechanism by which autoimmune diseases are triggered were gained through experiments with animals. It is, however, difficult to use these experimental results to explain human diseases; in humans many questions are still open. Undoubtedly, the mechanisms of induction and maintenance of self tolerance and also the ways in which autoimmune

  2. Respiratory epithelial cells orchestrate pulmonary innate immunity.

    PubMed

    Whitsett, Jeffrey A; Alenghat, Theresa

    2015-01-01

    The epithelial surfaces of the lungs are in direct contact with the environment and are subjected to dynamic physical forces as airway tubes and alveoli are stretched and compressed during ventilation. Mucociliary clearance in conducting airways, reduction of surface tension in the alveoli, and maintenance of near sterility have been accommodated by the evolution of a multi-tiered innate host-defense system. The biophysical nature of pulmonary host defenses are integrated with the ability of respiratory epithelial cells to respond to and 'instruct' the professional immune system to protect the lungs from infection and injury. PMID:25521682

  3. Cytoskeleton mediated spreading dynamics of immune cells

    NASA Astrophysics Data System (ADS)

    Hui, King-Lam; Wayt, Jessica; Grooman, Brian; Upadhyaya, Arpita

    2009-03-01

    We have studied the spreading of Jurkat T-cells on anti-CD3 antibody-coated substrates as a model of immune synapse formation. Cell adhesion area versus time was measured via interference reflection contrast microscopy. We found that the spread area exhibited a sigmoidal growth as a function of time in contrast to the previously proposed universal power-law growth for spreading cells. We used high-resolution total internal reflection fluorescence microscopy of these cells transfected with GFP-actin to study cytoskeletal dynamics during the spreading process. Actin filaments spontaneously organized into a variety of structures including traveling waves, target patterns, and mobile clusters emanating from an organizing center. We quantify these dynamic structures and relate them to the spreading rates. We propose that the spreading kinetics are determined by active rearrangements of the cytoskeleton initiated by signaling events upon antibody binding by T-cell receptors. Membrane deformations induced by such wavelike organization of the cytoskeleton may be a general phenomenon that underlies cell movement and cell-substrate interactions.

  4. Mycobacterium tuberculosis infection of the 'non-classical immune cell'.

    PubMed

    Randall, Philippa J; Hsu, Nai-Jen; Quesniaux, Valerie; Ryffel, Bernhard; Jacobs, Muazzam

    2015-10-01

    Mycobacterium tuberculosis can infect 'non-classical immune cells', which comprise a significant constituency of cells that reside outside of those defined as 'classical immune cells' from myeloid or lymphoid origin. Here we address the influence of specific 'non-classical immune cells' in host responses and their effects in controlling mycobacterial growth or enabling an environment conducive for bacilli persistence. The interaction of M. tuberculosis with epithelial cells, endothelial cells, fibroblasts, adipocytes, glia and neurons and downstream cellular responses that often dictate immune regulation and disease outcome are discussed. Functional integration and synergy between 'classical' and 'non-classical immune cells' are highlighted as critical for determining optimal immune outcomes that favour the host. PMID:25801479

  5. Cell-mediated immune deficiency in Hodgkin's disease.

    PubMed

    Kumar, R K; Penny, R

    1982-10-01

    Disturbances of the immune system frequently accompany the development of lymphomas in man. In the early stages of non-Hodgkin's lymphomas, abnormalities of immunological function are usually minimal, but impairment of both antibody- and cell-mediated immunity is often noted in advanced disease. In contrast, while antibody-mediated immune responses in patients with Hodgkin's disease usually remain intact until late in the course of the illness, cell-mediated immune dysfunction is an early and consistent feature. Here Rakesh Kumar and Ronald Penny discuss the abnormalities of cell-mediated immunity in Hodgkin's disease. PMID:25290229

  6. Therapeutic electric stimulation does not affect immune status in healthy individuals – a preliminary report

    PubMed Central

    2012-01-01

    Background Neuromuscular electric stimulation is widely used for muscle strengthening in clinical practice and for preventative purposes. However, there are few reports on the effects of electric stimulation on the immune response of the organism, and even those mainly describe the changes observed immediately after the electrotherapeutic procedures. The objective of our study was to examine the possible immunological consequences of moderate low-frequency transcutaneous neuromuscular electric stimulation for quadriceps muscle strengthening in healthy individuals. Methods The study included 10 healthy volunteers (5 males, 5 females, mean age 37.5 years). At the beginning and after a two-week electric stimulation program, muscle strength was measured and peripheral blood was collected to analyse white blood cells by flow cytometry for the expression of cell surface antigens (CD3, CD19, CD4, CD8, CD4/8, DR/3, NK, Th reg, CD25 + CD3+, CD25 + CD4+, CD25 + CD8+, CD69 + CD3+, CD69 + CD4+, CD69 + CD8+) and phagocytosis/oxidative killing function. Results Muscle strength slightly increased after the program on the dominant and the nondominant side. No statistically or clinically significant difference was found in any of the measured blood and immune cells parameters as well as phagocytosis and oxidative burst function of neutrophil granulocytes and monocytes one day after the program. Conclusions The program of transcutaneous low-frequency electric stimulation slightly strengthened the quadriceps femoris muscle while producing no changes in measured immunological parameters. Hence, therapeutic low-frequency electric stimulation appears not to be affecting the immune response of healthy persons. PMID:22839574

  7. Glycation of extracellular matrix proteins impairs migration of immune cells.

    PubMed

    Haucke, Elisa; Navarrete-Santos, Alexander; Simm, Andreas; Silber, Rolf-Edgar; Hofmann, Britt

    2014-01-01

    The immune response during aging and diabetes is disturbed and may be due to the altered migration of immune cells in an aged tissue. Our study should prove the hypothesis that age and diabetes-related advanced glycation end products (AGEs) have an impact on the migration and adhesion of human T-cells. To achieve our purpose, we used in vitro AGE-modified proteins (soluble albumin and fibronectin [FN]), as well as human collagen obtained from bypass graft. A Boyden chamber was used to study cell migration. Migrated Jurkat T-cells were analyzed by flow cytometry and cell adhesion by crystal violet staining. Actin polymerization was determined by phalloidin-Alexa-fluor 488-labeled antibody and fluorescence microscopy. We found that significantly fewer cells (50%, p = 0.003) migrated through methylglyoxal modified FN. The attachment to FN in the presence of AGE-bovine serum albumin (BSA) was also reduced (p < 0.05). In ex vivo experiments, isolated collagen from human vein graft material negatively affected the migration of the cells depending on the grade of AGE modification of the collagen. Collagen with a low AGE level reduced the cell migration by 30%, and collagen with a high AGE level by 60%. Interaction of the cells with an AGE-modified matrix, but not with soluble AGEs like BSA-AGE per se, was responsible for a disturbed migration. The reduced migration was accompanied by an impaired actin polymerization. We conclude that AGEs-modified matrix protein inhibits cell migration and adhesion of Jurkat T-cells. PMID:24635174

  8. Cell Surface Changes Associated with Cellular Immune Reactions in Drosophila

    NASA Astrophysics Data System (ADS)

    Nappi, Anthony J.; Silvers, Michael

    1984-09-01

    In Drosophila melanogaster a temperature-induced change in immune competence accompanies cell surface alterations that cause its blood cells to adhere and to encapsulate a parasite. At 29 degrees C the blood cells of the tumorous-lethal (Tuml) mutant show a high degree of immune competence and encapsulate the eggs of the parasitic wasp Leptopilina heterotoma. At 21 degrees C the blood cells are essentially immune incompetent. High percentages of lectin binding cells were found under conditions which potentiated cellular encapsulation responses. Some immune reactive blood cells did not bind lectin. The low percentages of lectin binding cells in susceptible hosts suggest that developing parasites alter the cell surface of the blood cells of immune reactive hosts.

  9. Cell surface changes associated with cellular immune reactions in Drosophila.

    PubMed

    Nappi, A J; Silvers, M

    1984-09-14

    In Drosophila melanogaster a temperature-induced change in immune competence accompanies cell surface alterations that cause its blood cells to adhere and to encapsulate a parasite. At 29 degrees C the blood cells of the tumorous-lethal (Tuml) mutant show a high degree of immune competence and encapsulate the eggs of the parasitic wasp Leptopilina heterotoma. At 21 degrees C the blood cells are essentially immune incompetent. High percentages of lectin binding cells were found under conditions which potentiated cellular encapsulation responses. Some immune reactive blood cells did not bind lectin. The low percentages of lectin binding cells in susceptible hosts suggest that developing parasites alter the cell surface of the blood cells of immune reactive hosts. PMID:6433482

  10. Purinergic Signaling During Immune Cell Trafficking.

    PubMed

    Ferrari, Davide; McNamee, Eóin N; Idzko, Marco; Gambari, Roberto; Eltzschig, Holger K

    2016-06-01

    Migration and positioning of immune cells is fundamental for their differentiation and recruitment at sites of infection. Besides the fundamental role played by chemokines and their receptors, recent studies demonstrate that a complex network of purinergic signaling events plays a key role in these trafficking events. This process includes the release of nucleotides (such as ATP and ADP) and subsequent autocrine and paracrine signaling events through nucleotide receptors. At the same time, surface-expressed ectoapyrases and nucleotidases convert extracellular nucleotides to adenosine, and adenosine signaling events play additional functional roles in leucocyte trafficking. In this review we revisit classical paradigms of inflammatory cell trafficking in the context of recent studies implicating purinergic signaling events in this process. PMID:27142306

  11. Invariant natural killer T cells: bridging innate and adaptive immunity

    PubMed Central

    Parekh, Vrajesh V.; Wu, Lan

    2013-01-01

    Cells of the innate immune system interact with pathogens via conserved pattern-recognition receptors, whereas cells of the adaptive immune system recognize pathogens through diverse, antigen-specific receptors that are generated by somatic DNA rearrangement. Invariant natural killer T (iNKT) cells are a subset of lymphocytes that bridge the innate and adaptive immune systems. Although iNKT cells express T cell receptors that are generated by somatic DNA rearrangement, these receptors are semi-invariant and interact with a limited set of lipid and glycolipid antigens, thus resembling the pattern-recognition receptors of the innate immune system. Functionally, iNKT cells most closely resemble cells of the innate immune system, as they rapidly elicit their effector functions following activation, and fail to develop immunological memory. iNKT cells can become activated in response to a variety of stimuli and participate in the regulation of various immune responses. Activated iNKT cells produce several cytokines with the capacity to jump-start and modulate an adaptive immune response. A variety of glycolipid antigens that can differentially elicit distinct effector functions in iNKT cells have been identified. These reagents have been employed to test the hypothesis that iNKT cells can be harnessed for therapeutic purposes in human diseases. Here, we review the innate-like properties and functions of iNKT cells and discuss their interactions with other cell types of the immune system. PMID:20734065

  12. Lead and cadmium at very low doses affect in vitro immune response of human lymphocytes

    SciTech Connect

    Borella, P.; Giardino, A. )

    1991-08-01

    The effect of lead chloride and cadmium chloride on in vitro immunoglobulin (Ig) production by human lymphocytes was investigated. After 7 days in culture, lead added in the range of human exposure (207-1035 {mu}g/liter) significantly enhanced Ig production either when cells were activated by pokeweed mitogen (PWM) or not. The effect was dose-dependent and was related to the Pb were measured in the extracellular medium and in the cells. Independently of the mitogen addition, about 2% of the Pb added was accumulated in the cells, most being associated with the nuclear fraction. Those findings suggest that the Pb effects could depend on its uptake and distribution in the cells. Cadmium added in the 50-500 nM range exhibited a dose-independent mitogenic activity in unstimulated cells, whereas the Ig secretion was not significantly affected by Cd when cells were PWM-activated. A considerable intraindividual variability, however, was observed when blood donors were separately examined, with both an increase, a decrease, or no variation on Ig production. Furthermore, higher percentages of Cd were accumulated in the nuclear fraction, and lower in the cytosol and precipitate, in PWM-activated compared to resting lymphocytes. Genetic factors could be of importance for the observed variability of the immune response to cadmium, and the authors support the hypothesis that differences in the metallothionein (MT) inducibility could play a role.

  13. Immune regulation of epithelial cell function: Implications for GI pathologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mammalian immune system is a complex and dynamic network that recognizes, responds, and adapts to numerous foreign and self molecules. CD4+ T cells orchestrate adaptive immune responses, and upon stimulation by antigen, naive CD4+ T cells proliferate and differentiate into various T cell subsets...

  14. Tracking immune cells in vivo using magnetic resonance imaging

    PubMed Central

    Ahrens, Eric T.; Bulte, Jeff W. M.

    2013-01-01

    The increasing complexity of in vivo imaging technologies, coupled with the development of cell therapies, has fuelled a revolution in immune cell tracking in vivo. Powerful magnetic resonance imaging (MRI) methods are now being developed that use iron oxide- and 19F-based probes. These MRI technologies can be used for image-guided immune cell delivery and for the visualization of immune cell homing and engraftment, inflammation, cell physiology and gene expression. MRI-based cell tracking is now also being applied to evaluate therapeutics that modulate endogenous immune cell recruitment and to monitor emerging cellular immunotherapies. These recent uses show that MRI has the potential to be developed in many applications to follow the fate of immune cells in vivo. PMID:24013185

  15. Involvement of Immune Cell Network in Aortic Valve Stenosis: Communication between Valvular Interstitial Cells and Immune Cells

    PubMed Central

    Lee, Seung Hyun

    2016-01-01

    Aortic valve stenosis is a heart disease prevalent in the elderly characterized by valvular calcification, fibrosis, and inflammation, but its exact pathogenesis remains unclear. Previously, aortic valve stenosis was thought to be caused by chronic passive and degenerative changes associated with aging. However, recent studies have demonstrated that atherosclerotic processes and inflammation can induce valvular calcification and bone deposition, leading to valvular stenosis. In particular, the most abundant cell type in cardiac valves, valvular interstitial cells, can differentiate into myofibroblasts and osteoblast-like cells, leading to valvular calcification and stenosis. Differentiation of valvular interstitial cells can be trigged by inflammatory stimuli from several immune cell types, including macrophages, dendritic cells, T cells, B cells, and mast cells. This review indicates that crosstalk between immune cells and valvular interstitial cells plays an important role in the development of aortic valve stenosis. PMID:26937229

  16. Effects of PVA coated nanoparticles on human immune cells

    PubMed Central

    Strehl, Cindy; Gaber, Timo; Maurizi, Lionel; Hahne, Martin; Rauch, Roman; Hoff, Paula; Häupl, Thomas; Hofmann-Amtenbrink, Margarethe; Poole, A Robin; Hofmann, Heinrich; Buttgereit, Frank

    2015-01-01

    Nanotechnology provides new opportunities in human medicine, mainly for diagnostic and therapeutic purposes. The autoimmune disease rheumatoid arthritis (RA) is often diagnosed after irreversible joint structural damage has occurred. There is an urgent need for a very early diagnosis of RA, which can be achieved by more sensitive imaging methods. Superparamagnetic iron oxide nanoparticles (SPION) are already used in medicine and therefore represent a promising tool for early diagnosis of RA. The focus of our work was to investigate any potentially negative effects resulting from the interactions of newly developed amino-functionalized amino-polyvinyl alcohol coated (a-PVA) SPION (a-PVA-SPION), that are used for imaging, with human immune cells. We analyzed the influence of a-PVA-SPION with regard to cell survival and cell activation in human whole blood in general, and in human monocytes and macrophages representative of professional phagocytes, using flow cytometry, multiplex suspension array, and transmission electron microscopy. We found no effect of a-PVA-SPION on the viability of human immune cells, but cytokine secretion was affected. We further demonstrated that the percentage of viable macrophages increased on exposure to a-PVA-SPION. This effect was even stronger when a-PVA-SPION were added very early in the differentiation process. Additionally, transmission electron microscopy analysis revealed that both monocytes and macrophages are able to endocytose a-PVA-SPION. Our findings demonstrate an interaction between human immune cells and a-PVA-SPION which needs to be taken into account when considering the use of a-PVA-SPION in human medicine. PMID:26056442

  17. Effects of PVA coated nanoparticles on human immune cells.

    PubMed

    Strehl, Cindy; Gaber, Timo; Maurizi, Lionel; Hahne, Martin; Rauch, Roman; Hoff, Paula; Häupl, Thomas; Hofmann-Amtenbrink, Margarethe; Poole, A Robin; Hofmann, Heinrich; Buttgereit, Frank

    2015-01-01

    Nanotechnology provides new opportunities in human medicine, mainly for diagnostic and therapeutic purposes. The autoimmune disease rheumatoid arthritis (RA) is often diagnosed after irreversible joint structural damage has occurred. There is an urgent need for a very early diagnosis of RA, which can be achieved by more sensitive imaging methods. Superparamagnetic iron oxide nanoparticles (SPION) are already used in medicine and therefore represent a promising tool for early diagnosis of RA. The focus of our work was to investigate any potentially negative effects resulting from the interactions of newly developed amino-functionalized amino-polyvinyl alcohol coated (a-PVA) SPION (a-PVA-SPION), that are used for imaging, with human immune cells. We analyzed the influence of a-PVA-SPION with regard to cell survival and cell activation in human whole blood in general, and in human monocytes and macrophages representative of professional phagocytes, using flow cytometry, multiplex suspension array, and transmission electron microscopy. We found no effect of a-PVA-SPION on the viability of human immune cells, but cytokine secretion was affected. We further demonstrated that the percentage of viable macrophages increased on exposure to a-PVA-SPION. This effect was even stronger when a-PVA-SPION were added very early in the differentiation process. Additionally, transmission electron microscopy analysis revealed that both monocytes and macrophages are able to endocytose a-PVA-SPION. Our findings demonstrate an interaction between human immune cells and a-PVA-SPION which needs to be taken into account when considering the use of a-PVA-SPION in human medicine. PMID:26056442

  18. Immune activation affects chemical sexual ornaments of male Iberian wall lizards

    NASA Astrophysics Data System (ADS)

    López, Pilar; Gabirot, Marianne; Martín, José

    2009-01-01

    Many animals use chemical signals in sexual selection, but it is not clear how these sexual traits might have evolved to signal honestly male condition. It is possible that there is a trade-off between maintaining the immune system and the elaboration of ornaments. We experimentally challenged the immune system of male Iberian wall lizards, Podarcis hispanica, with a bacterial antigen (lipopolysaccharide), without pathogenic effects, to explore whether the immune activation affected chemical ornaments. Immune activation resulted in decreased proportions of a major chemical in femoral secretions (cholesta-5,7-dien-3-ol = provitamin D3) known to be selected in scent of males by females and which active form (vitamin D) has a variety of important effects on immune system function. This result suggests the existence of a potential trade-off between physiological regulation of the immune system and the allocation of essential nutrients (vitamins) to sexual chemical ornaments in male lizards.

  19. Innate immune cell response upon Candida albicans infection.

    PubMed

    Qin, Yulin; Zhang, Lulu; Xu, Zheng; Zhang, Jinyu; Jiang, Yuan-Ying; Cao, Yongbing; Yan, Tianhua

    2016-07-01

    Candida albicans is a polymorphic fungus which is the predominant cause of superficial and deep tissue fungal infections. This microorganism has developed efficient strategies to invade the host and evade host defense systems. However, the host immune system will be prepared for defense against the microbe by recognition of receptors, activation of signal transduction pathways and cooperation of immune cells. As a consequence, C. albicans could either be eliminated by immune cells rapidly or disseminate hematogenously, leading to life-threatening systemic infections. The interplay between Candida albicans and the host is complex, requiring recognition of the invaded pathogens, activation of intricate pathways and collaboration of various immune cells. In this review, we will focus on the effects of innate immunity that emphasize the first line protection of host defense against invaded C. albicans including the basis of receptor-mediated recognition and the mechanisms of cell-mediated immunity. PMID:27078171

  20. Programmed cell death in the plant immune system

    PubMed Central

    Coll, N S; Epple, P; Dangl, J L

    2011-01-01

    Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms. PMID:21475301

  1. Ethanol Extract of Hedyotis diffusa Willd Affects Immune Responses in Normal Balb/c Mice In Vivo.

    PubMed

    Kuo, Yu-Jui; Lin, Jing-Pin; Hsiao, Yung-Ting; Chou, Guan-Ling; Tsai, Yu-Hsiang; Chiang, Su-Yin; Lin, Jaung-Geng; Chung, Jing-Gung

    2015-01-01

    Numerous clinical anticancer drugs are obtained from natural plants and Hedyotis diffusa Willd (EEHDW) has been used as a major component in Traditional Chinese medicine formulas since a long time. Ethanol extracts of EEHDW have been shown to possess various biological activities including anticancer function in vitro. Our earlier studies have shown that EEHDW affects immune responses in WEHI-3-generated leukemia mice, but EEHDW has not been reported to affect immune responses in a normal mouse model. Herein, we investigated whether EEHDW could affect immune responses on normal murine cells in vivo. Normal BALB/c mice were orally treated with or without EEHDW at 0, 16, 32, and 64 mg/kg or 32 mg/kg by i.p. for 3 weeks, then were weighed, and blood, liver and spleen samples were collected for further experiments. Results indicated that EEHDW did not significantly affect body and liver weight but significantly increased the spleen weight by i.p. treatment when compared to control groups. Flow cytometric assays indicated that EEHDW promoted CD11b levels at 16, 32 and 64 mg/kg oral treatment, CD19 levels at 16, 32, 64 mg/kg oral treatment and i.p. treatment, and Mac-3 levels at 16, 32 and 64 mg/kg oral treatment, however, it did not significantly affect the levels of CD3. Oral treatment with 16 and 32 mg/kg of EEHDW significantly decreased macrophage phagocytosis from PBMC; 32 mg/kg of EEHDW by i.p. treatment significantly increased phagocytosis activity of macrophages obtain from the peritoneal cavity. EEHDW at 32 mg/kg by i.p. treatment led to an increase of NK cell activities compared to oil control groups. EEHDW at 32 mg/kg of EEHDW by i.p. treatment increased B- and T-cell proliferation. Based on these observations, EEHDW seems to have promoted immune responses in this murine model. PMID:26130790

  2. Immunosuppressive cells in tumor immune escape and metastasis.

    PubMed

    Liu, Yang; Cao, Xuetao

    2016-05-01

    Tumor immune escape and the initiation of metastasis are critical steps in malignant progression of tumors and have been implicated in the failure of some clinical cancer immunotherapy. Tumors develop numerous strategies to escape immune surveillance or metastasize: Tumors not only modulate the recruitment and expansion of immunosuppressive cell populations to develop the tumor microenvironment or pre-metastatic niche but also switch the phenotype and function of normal immune cells from a potentially tumor-reactive state to a tumor-promoting state. Immunosuppressive cells facilitate tumor immune escape by inhibiting antitumor immune responses and furthermore promote tumor metastasis by inducing immunosuppression, promoting tumor cell invasion and intravasation, establishing a pre-metastatic niche, facilitating epithelial-mesenchymal transition, and inducing angiogenesis at primary tumor or metastatic sites. Numerous translational studies indicate that it is possible to inhibit tumor immune escape and prevent tumor metastasis by blocking immunosuppressive cells and eliminating immunosuppressive mechanisms that are induced by either immunosuppressive cells or tumor cells. Furthermore, many clinical trials targeting immunosuppressive cells have also achieved good outcome. In this review, we focus on the underlying mechanisms of immunosuppressive cells in promoting tumor immune escape and metastasis, discuss our current understanding of the interactions between immunosuppressive cells and tumor cells in the tumor microenvironment, and suggest future research directions as well as potential clinical strategies in cancer immunotherapy. PMID:26689709

  3. Differential protein network analysis of the immune cell lineage.

    PubMed

    Clancy, Trevor; Hovig, Eivind

    2014-01-01

    Recently, the Immunological Genome Project (ImmGen) completed the first phase of the goal to understand the molecular circuitry underlying the immune cell lineage in mice. That milestone resulted in the creation of the most comprehensive collection of gene expression profiles in the immune cell lineage in any model organism of human disease. There is now a requisite to examine this resource using bioinformatics integration with other molecular information, with the aim of gaining deeper insights into the underlying processes that characterize this immune cell lineage. We present here a bioinformatics approach to study differential protein interaction mechanisms across the entire immune cell lineage, achieved using affinity propagation applied to a protein interaction network similarity matrix. We demonstrate that the integration of protein interaction networks with the most comprehensive database of gene expression profiles of the immune cells can be used to generate hypotheses into the underlying mechanisms governing the differentiation and the differential functional activity across the immune cell lineage. This approach may not only serve as a hypothesis engine to derive understanding of differentiation and mechanisms across the immune cell lineage, but also help identify possible immune lineage specific and common lineage mechanism in the cells protein networks. PMID:25309909

  4. Interaction between sexual steroids and immune response in affecting oxidative status of birds.

    PubMed

    Casagrande, Stefania; Costantini, David; Groothuis, Ton G G

    2012-11-01

    One hypothesis explaining the honesty of secondary sexual traits regulated by testosterone (T) is that T can impair the balance between pro-oxidant compounds and antioxidant defences, favouring a status of oxidative stress that only good quality individuals can sustain (oxidative handicap hypothesis). In the present study, we evaluated for the first time the effects of sexual steroids, T and its metabolites 5-α-dihydrotestosterone (DHT) and estradiol (E2) on oxidative damage and plasma non-enzymatic antioxidant capacity, while birds are faced by an oxidative challenge induced by an immune stimulation with sheep red blood cells. We used male and female diamond doves Geopelia cuneata, a species that shows an orange-red periorbital ring, whose size and color are strongly affected by androgens, but not by estrogens. Immunization increased oxidative damage in all groups, regardless of hormone treatment. It also decreased anti-oxidant capacity in all groups, except for testosterone treated birds. The ratio of oxidative damage over anti-oxidant capacity (oxidative stress) was increased in both immunological challenged controls and E2 birds, while challenged birds treated with androgens did not differ from non-challenged birds. The response of males and females to our treatments never differed. Our results undermine the idea that T can induce honest signalling through a pro-oxidant activity. PMID:22885344

  5. APRIL modulates B and T cell immunity

    PubMed Central

    Stein, Jens V.; López-Fraga, Marta; Elustondo, Fernando A.; Carvalho-Pinto, Carla E.; Rodríguez, Dolores; Gómez-Caro, Ruth; de Jong, Joan; Martínez-A, Carlos; Medema, Jan Paul; Hahne, Michael

    2002-01-01

    The TNF-like ligands APRIL and BLyS are close relatives and share the capacity to bind the receptors TACI and BCMA. BLyS has been shown to play an important role in B cell homeostasis and autoimmunity, but the biological role of APRIL remains less well defined. Analysis of T cells revealed an activation-dependent increase in APRIL mRNA expression. We therefore generated mice expressing APRIL as a transgene in T cells. These mice appeared normal and showed no signs of B cell hyperplasia. Transgenic T cells revealed a greatly enhanced survival in vitro as well as enhanced survival of staphylococcal enterotoxin B–reactive CD4+ T cells in vivo, which both directly correlate with elevated Bcl-2 levels. Analysis of humoral responses to T cell–dependent antigens in the transgenic mice indicated that APRIL affects only IgM but not IgG responses. In contrast, T cell–independent type 2 (TI-2) humoral response was enhanced in APRIL transgenic mice. As TACI was previously reported to be indispensable for TI-2 antibody formation, these results suggest a role for APRIL/TACI interactions in the generation of this response. Taken together, our data indicate that APRIL is involved in the induction and/or maintenance of T and B cell responses. PMID:12070306

  6. Control of local immunity by airway epithelial cells.

    PubMed

    Weitnauer, M; Mijošek, V; Dalpke, A H

    2016-03-01

    The lung is ventilated by thousand liters of air per day. Inevitably, the respiratory system comes into contact with airborne microbial compounds, most of them harmless contaminants. Airway epithelial cells are known to have innate sensor functions, thus being able to detect microbial danger. To avoid chronic inflammation, the pulmonary system has developed specific means to control local immune responses. Even though airway epithelial cells can act as proinflammatory promoters, we propose that under homeostatic conditions airway epithelial cells are important modulators of immune responses in the lung. In this review, we discuss epithelial cell regulatory functions that control reactivity of professional immune cells within the microenvironment of the airways and how these mechanisms are altered in pulmonary diseases. Regulation by epithelial cells can be divided into two mechanisms: (1) mediators regulate epithelial cells' innate sensitivity in cis and (2) factors are produced that limit reactivity of immune cells in trans. PMID:26627458

  7. The Dynamics of Interactions Among Immune and Glioblastoma Cells.

    PubMed

    Eder, Katalin; Kalman, Bernadette

    2015-12-01

    Glioblastoma is the most common intracranial malignancy that constitutes about 50 % of all gliomas. Despite aggressive, multimodal therapy consisting of surgery, radiation, and chemotherapy, the outcome of patients with glioblastoma remains poor with 5-year survival rates of <10 %. Resistance to conventional therapies is most likely caused by several factors. Alterations in the functions of local immune mediators may represent a critical contributor to this resistance. The tumor microenvironment contains innate and adaptive immune cells in addition to the cancer cells and their surrounding stroma. These various cells communicate with each other by means of direct cell-cell contact or by soluble factors including cytokines and chemokines, and act in autocrine and paracrine manners to modulate tumor growth. There are dynamic interactions among the local immune elements and the tumor cells, where primarily the protective immune cells attempt to overcome the malignant cells. However, by developing somatic mutations and epigenetic modifications, the glioblastoma tumor cells acquire the capability of counteracting the local immune responses, and even exploit the immune cells and products for their own growth benefits. In this review, we survey those immune mechanisms that likely contribute to glioblastoma pathogenesis and may serve as a basis for novel treatment strategies. PMID:26224516

  8. [Immune Checkpoint Therapy for Non-Small-Cell Lung Cancer].

    PubMed

    Miyauchi, Eisaku; Inoue, Akira

    2016-06-01

    Nivolumab is an anti-PD-1 antibody that has recently been approved in Japan, and has shown high response rates and more favorable safety profiles in 2 phase III clinical trials. Accordingly, immune checkpoint therapy has now been included as a new standard treatment for non-small-cell lung cancer. These immune checkpoints are receptors expressed on T cells that regulate the immune response. The PD-1/PD-L1 signal inhibits cytotoxic T lymphocyte proliferation and survival, induces apoptosis of infiltrative T cells, and increases the amount of regulatory T cells in the tumor microenvironment. Therefore, severe immune-related adverse event(irAE)have been observed, including enterocolitis, neuropathies, and endocrinopathies. There are different management approaches to irAEs with conventional cytotoxic drugs. This article reviews the available data regarding immune checkpoint therapy for patients with non-small-cell lung cancer. PMID:27306803

  9. Exosomes and nanotubes: Control of immune cell communication.

    PubMed

    McCoy-Simandle, Kessler; Hanna, Samer J; Cox, Dianne

    2016-02-01

    Cell-cell communication is critical to coordinate the activity and behavior of a multicellular organism. The cells of the immune system not only must communicate with similar cells, but also with many other cell types in the body. Therefore, the cells of the immune system have evolved multiple ways to communicate. Exosomes and tunneling nanotubes (TNTs) are two means of communication used by immune cells that contribute to immune functions. Exosomes are small membrane vesicles secreted by most cell types that can mediate intercellular communication and in the immune system they are proposed to play a role in antigen presentation and modulation of gene expression. TNTs are membranous structures that mediate direct cell-cell contact over several cell diameters in length (and possibly longer) and facilitate the interaction and/or the transfer of signals, material and other cellular organelles between connected cells. Recent studies have revealed additional, but sometimes conflicting, structural and functional features of both exosomes and TNTs. Despite the new and exciting information in exosome and TNT composition, origin and in vitro function, biologically significant functions are still being investigated and determined. In this review, we discuss the current field regarding exosomes and TNTs in immune cells providing evaluation and perspectives of the current literature. PMID:26704468

  10. Tumor infiltrating immune cells in gliomas and meningiomas.

    PubMed

    Domingues, Patrícia; González-Tablas, María; Otero, Álvaro; Pascual, Daniel; Miranda, David; Ruiz, Laura; Sousa, Pablo; Ciudad, Juana; Gonçalves, Jesús María; Lopes, María Celeste; Orfao, Alberto; Tabernero, María Dolores

    2016-03-01

    Tumor-infiltrating immune cells are part of a complex microenvironment that promotes and/or regulates tumor development and growth. Depending on the type of cells and their functional interactions, immune cells may play a key role in suppressing the tumor or in providing support for tumor growth, with relevant effects on patient behavior. In recent years, important advances have been achieved in the characterization of immune cell infiltrates in central nervous system (CNS) tumors, but their role in tumorigenesis and patient behavior still remain poorly understood. Overall, these studies have shown significant but variable levels of infiltration of CNS tumors by macrophage/microglial cells (TAM) and to a less extent also lymphocytes (particularly T-cells and NK cells, and less frequently also B-cells). Of note, TAM infiltrate gliomas at moderate numbers where they frequently show an immune suppressive phenotype and functional behavior; in contrast, infiltration by TAM may be very pronounced in meningiomas, particularly in cases that carry isolated monosomy 22, where the immune infiltrates also contain greater numbers of cytotoxic T and NK-cells associated with an enhanced anti-tumoral immune response. In line with this, the presence of regulatory T cells, is usually limited to a small fraction of all meningiomas, while frequently found in gliomas. Despite these differences between gliomas and meningiomas, both tumors show heterogeneous levels of infiltration by immune cells with variable functionality. In this review we summarize current knowledge about tumor-infiltrating immune cells in the two most common types of CNS tumors-gliomas and meningiomas-, as well as the role that such immune cells may play in the tumor microenvironment in controlling and/or promoting tumor development, growth and control. PMID:26216710

  11. Relationship of VEGF/VEGFR with immune and cancer cells: staggering or forward?

    PubMed Central

    Li, Yu-Ling; Zhao, Hua; Ren, Xiu-Bao

    2016-01-01

    Vascular endothelial growth factor (VEGF) is primarily known as a proangiogenic factor and is one of the most important growth and survival factors affecting the vascular endothelium. However, recent studies have shown that VEGF also plays a vital role in the immune environment. In addition to the traditional growth factor role of VEGF and VEGF receptors (VEGFRs), they have a complicated relationship with various immune cells. VEGF also reportedly inhibits the differentiation and function of immune cells during hematopoiesis. Dendritic cells (DCs), macrophages, and lymphocytes further express certain types of VEGF receptors. VEGF can be secreted as well by tumor cells through the autocrine pathway and can stimulate the function of cancer stemness. This review will provide a paradigm shift in our understanding of the role of VEGF/VEGFR signaling in the immune and cancer environment. PMID:27458528

  12. Epigenetic regulation of immune cell functions during post-septic immunosuppression

    PubMed Central

    Cavassani, Karen A; Dou, Yali; Kunkel, Steven L

    2011-01-01

    Studies in humans and animal models indicate that profound immunosuppression is one of the chronic consequences of severe sepsis. This immune dysfunction encompasses deficiencies in activation of cells in both the myeloid and lymphoid cell lineages. As a result, survivors of severe sepsis are at risk of succumbing to infections perpetrated by opportunistic pathogens that are normally controlled by a fully functioning immune system. Recent studies have indicated that epigenetic mechanisms may be one driving force behind this immunosuppression, through suppression of proinflammatory gene production and subsequent immune cell activation, proliferation and effector function. A better understanding of epigenetics and post-septic immunosuppression can improve our diagnostic tools and may be an important potential source of novel molecular targets for new therapies. This review will discuss important pathways of immune cell activation affected by severe sepsis, and highlight pathways of epigenetic regulation that may be involved in post-septic immunosuppression. PMID:21048427

  13. Prenatal cadmium exposure alters postnatal immune cell development and function

    PubMed Central

    Hanson, Miranda L.; Holásková, Ida; Elliott, Meenal; Brundage, Kathleen M.; Schafer, Rosana; Barnett, John B.

    2012-01-01

    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl2 (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4+FoxP3+CD25+ (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8+CD223+ T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can result in long term detrimental

  14. Dickkopf-3 Contributes to the Regulation of Anti-Tumor Immune Responses by Mesenchymal Stem Cells

    PubMed Central

    Lu, Kun-Hui; Tounsi, Amel; Shridhar, Naveen; Küblbeck, Günter; Klevenz, Alexandra; Prokosch, Sandra; Bald, Tobias; Tüting, Thomas; Arnold, Bernd

    2015-01-01

    Mesenchymal stem cells (MSCs) are known to limit immune responses in vivo by multiple soluble factors. Dickkopf-3 (DKK3), a secreted glycoprotein, has recently been identified as a novel immune modulator. Since DKK3 has been reported to be produced by MSCs, we investigated whether DKK3 contributes to the immune suppression of anti-tumor responses by MSCs. Whereas wild-type MSCs inhibited immune responses against two different transplantation tumors, DKK3-deficient MSCs did not affect the rejection process. Increased CD8+ T cell and reduced M2-type macrophages infiltration was observed in tumors inoculated together with DKK3-deficient MSCs. Thus, DKK3 could alter the composition of the tumor stroma, thereby supporting the MSCs-mediated suppression of immune responses against these tumor transplants. PMID:26734010

  15. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature.

    PubMed

    Naik, Shruti; Bouladoux, Nicolas; Linehan, Jonathan L; Han, Seong-Ji; Harrison, Oliver J; Wilhelm, Christoph; Conlan, Sean; Himmelfarb, Sarah; Byrd, Allyson L; Deming, Clayton; Quinones, Mariam; Brenchley, Jason M; Kong, Heidi H; Tussiwand, Roxanne; Murphy, Kenneth M; Merad, Miriam; Segre, Julia A; Belkaid, Yasmine

    2015-04-01

    The skin represents the primary interface between the host and the environment. This organ is also home to trillions of microorganisms that play an important role in tissue homeostasis and local immunity. Skin microbial communities are highly diverse and can be remodelled over time or in response to environmental challenges. How, in the context of this complexity, individual commensal microorganisms may differentially modulate skin immunity and the consequences of these responses for tissue physiology remains unclear. Here we show that defined commensals dominantly affect skin immunity and identify the cellular mediators involved in this specification. In particular, colonization with Staphylococcus epidermidis induces IL-17A(+) CD8(+) T cells that home to the epidermis, enhance innate barrier immunity and limit pathogen invasion. Commensal-specific T-cell responses result from the coordinated action of skin-resident dendritic cell subsets and are not associated with inflammation, revealing that tissue-resident cells are poised to sense and respond to alterations in microbial communities. This interaction may represent an evolutionary means by which the skin immune system uses fluctuating commensal signals to calibrate barrier immunity and provide heterologous protection against invasive pathogens. These findings reveal that the skin immune landscape is a highly dynamic environment that can be rapidly and specifically remodelled by encounters with defined commensals, findings that have profound implications for our understanding of tissue-specific immunity and pathologies. PMID:25539086

  16. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature

    PubMed Central

    Naik, Shruti; Bouladoux, Nicolas; Linehan, Jonathan L.; Han, Seong-Ji; Harrison, Oliver J.; Wilhelm, Christoph; Conlan, Sean; Himmelfarb, Sarah; Byrd, Allyson L.; Deming, Clayton; Quinones, Mariam; Brenchley, Jason M.; Kong, Heidi H.; Tussiwand, Roxanne; Murphy, Kenneth M.; Merad, Miriam; Segre, Julia A; Belkaid, Yasmine

    2015-01-01

    The skin represents the primary interface between the host and the environment. This organ is also home to trillions of microorganisms that play an important role in tissue homeostasis and local immunity1–4. Skin microbial communities are highly diverse and can be remodelled over time or in response to environmental challenges5–7. How, in the context of this complexity, individual commensal microorganisms may differentially modulate skin immunity and the consequences of these responses for tissue physiology remains unclear. Here we show that defined commensals dominantly affect skin immunity and identify the cellular mediators involved in this specification. In particular, colonization with Staphylococcus epidermidis induces IL-17A+ CD8+ T cells that home to the epidermis, enhance innate barrier immunity and limit pathogen invasion. Commensal-specific T-cell responses result from the coordinated action of skin-resident dendritic cell subsets and are not associated with inflammation, revealing that tissue-resident cells are poised to sense and respond to alterations in microbial communities. This interaction may represent an evolutionary means by which the skin immune system uses fluctuating commensal signals to calibrate barrier immunity and provide heterologous protection against invasive pathogens. These findings reveal that the skin immune landscape is a highly dynamic environment that can be rapidly and specifically remodelled by encounters with defined commensals, findings that have profound implications for our understanding of tissue-specific immunity and pathologies. PMID:25539086

  17. Coping strategies and immune neglect in affective forecasting: Direct evidence and key moderators

    PubMed Central

    Hoerger, Michael

    2012-01-01

    Affective forecasting skills have important implications for decision making. However, recent research suggests that immune neglect – the tendency to overlook coping strategies that reduce future distress – may lead to affective forecasting problems. Prior evidence for immune neglect has been indirect. More direct evidence and a deeper understanding of immune neglect are vital to informing the design of future decision-support interventions. In the current study, young adults (N = 325) supplied predicted, actual, and recollected reactions to an emotionally-evocative interpersonal event, Valentine’s Day. Based on participants’ qualitative descriptions of the holiday, a team of raters reliably coded the effectiveness of their coping strategies. Supporting the immune neglect hypothesis, participants overlooked the powerful role of coping strategies when predicting their emotional reactions. Immune neglect was present not only for those experiencing the holiday negatively (non-daters) but also for those experiencing it positively (daters), suggesting that the bias may be more robust than originally theorized. Immune neglect was greater for immediate emotional reactions than more enduring reactions. Further, immune neglect was conspicuously absent from recollected emotional reactions. Implications for decision-support interventions are discussed. PMID:22375161

  18. Incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis.

    PubMed

    Dang, Wei; Zhang, Wen; Du, Wei-Guo

    2015-01-01

    Identifying how developmental temperature affects the immune system is critical for understanding how ectothermic animals defend against pathogens and their fitness in the changing world. However, reptiles have received little attention regarding this issue. We incubated eggs at three ecologically relevant temperatures to determine how incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis. When exposed to bacterial infections, hatchlings from 24 °C had lower cumulative mortalities (55%, therefore, higher immunocompetence) than those from 28 °C (85%) or 32 °C (100%). Consistent with higher immunocompetence, hatchlings from low incubation temperature had higher IgM, IgD, and CD3γ expressions than their counterparts from the other two higher incubation temperatures. Conversely, the activity of immunity-related enzymes did not match the among-temperature difference in immune function. Specifically, enzyme activity was higher at intermediate temperatures (alkaline phosphatase) or was not affected by incubation temperature (acid phosphatase, lysozyme). Our study is the first to provide unequivocal evidence (at the molecular and organismal level) about the significant effect of incubation temperature on offspring immunity in reptiles. Our results also indicate that the reduced immunity induced by high developmental temperatures might increase the vulnerability of reptiles to the outbreak of diseases under global warming scenarios. PMID:26028216

  19. Incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis

    PubMed Central

    Dang, Wei; Zhang, Wen; Du, Wei-Guo

    2015-01-01

    Identifying how developmental temperature affects the immune system is critical for understanding how ectothermic animals defend against pathogens and their fitness in the changing world. However, reptiles have received little attention regarding this issue. We incubated eggs at three ecologically relevant temperatures to determine how incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis. When exposed to bacterial infections, hatchlings from 24 °C had lower cumulative mortalities (55%, therefore, higher immunocompetence) than those from 28 °C (85%) or 32 °C (100%). Consistent with higher immunocompetence, hatchlings from low incubation temperature had higher IgM, IgD, and CD3γ expressions than their counterparts from the other two higher incubation temperatures. Conversely, the activity of immunity-related enzymes did not match the among-temperature difference in immune function. Specifically, enzyme activity was higher at intermediate temperatures (alkaline phosphatase) or was not affected by incubation temperature (acid phosphatase, lysozyme). Our study is the first to provide unequivocal evidence (at the molecular and organismal level) about the significant effect of incubation temperature on offspring immunity in reptiles. Our results also indicate that the reduced immunity induced by high developmental temperatures might increase the vulnerability of reptiles to the outbreak of diseases under global warming scenarios. PMID:26028216

  20. Dendritic cells and cytokines in immune rejection of cancer.

    PubMed

    Ferrantini, Maria; Capone, Imerio; Belardelli, Filippo

    2008-02-01

    Dendritic cells (DCs) play a crucial role in linking innate and adaptive immunity and, thus, in the generation of a protective immune response against both infectious diseases and tumors. The ability of DCs to prime and expand an immune response is regulated by signals acting through soluble mediators, mainly cytokines and chemokines. Understanding how cytokines influence DC functions and orchestrate the interactions of DCs with other immune cells is strictly instrumental to the progress in cancer immunotherapy. Herein, we will illustrate how certain cytokines and immune stimulating molecules can induce and sustain the antitumor immune response by acting on DCs. We will also discuss these cytokine-DC interactions in the light of clinical results in cancer patients. PMID:18054517

  1. Immune Cell Isolation from Mouse Femur Bone Marrow

    PubMed Central

    Liu, Xiaoyu; Quan, Ning

    2016-01-01

    The bone marrow is the site of hematopoesis and contains mixed population of blood cells including erythrocytes, granulocytes, monocytes, dendritic cells, lymphocytes and hematopoietic stem cells. The following protocol provides a simple and fast method for isolation of bone marrow immune cells (no erythrocytes) from mouse femurs with a yield of approximate 8 × 107 cells in 5 ml culture media (1.6 × 104 cells/μl). Further isolation or flow cytometric analysis might be required for study of specific immune cell types.

  2. Induced hyperketonemia affects the mammary immune response during lipopolysaccharide challenge in dairy cows.

    PubMed

    Zarrin, M; Wellnitz, O; van Dorland, H A; Bruckmaier, R M

    2014-01-01

    Metabolic adaptations during negative energy and nutrient balance in dairy cows are thought to cause impaired immune function and hence increased risk of infectious diseases, including mastitis. Characteristic adaptations mostly occurring in early lactation are an elevation of plasma ketone bodies and free fatty acids (nonesterified fatty acids, NEFA) and diminished glucose concentration. The aim of this study was to investigate effects of elevated plasma β-hydroxybutyrate (BHBA) at simultaneously even or positive energy balance and thus normal plasma NEFA and glucose on factors related to the immune system in liver and mammary gland of dairy cows. In addition, we investigated the effect of elevated plasma BHBA and intramammary lipopolysaccharide (LPS) challenge on the mammary immune response. Thirteen dairy cows were infused either with BHBA (HyperB, n=5) to induce hyperketonemia (1.7 mmol/L) or with a 0.9% saline solution (NaCl, n=8) for 56 h. Two udder quarters were injected with 200 μg of LPS after 48 h of infusion. Rectal temperature (RT) and somatic cell counts (SCC) were measured before, at 48 h after the start of infusions, and hourly during the LPS challenge. The mRNA abundance of factors related to the immune system was measured in hepatic and mammary tissue biopsies 1 wk before and 48 h after the start of the infusion, and additionally in mammary tissue at 56 h of infusion (8h after LPS administration). At 48 h of infusion in HyperB, the mRNA abundance of serum amyloid A (SAA) in the mammary gland was increased and that of haptoglobin (Hp) tended to be increased. Rectal temperature, SCC, and mRNA abundance of candidate genes in the liver were not affected by the BHBA infusion until 48 h. During the following LPS challenge, RT and SCC increased in both groups. However, SCC increased less in HyperB than in NaCl. Quarters infused with LPS showed a more pronounced increase of mRNA abundance of IL-8 and IL-10 in HyperB than in NaCl. The results demonstrate

  3. Th17 Cell Plasticity and Functions in Cancer Immunity

    PubMed Central

    Guéry, Leslie; Hugues, Stéphanie

    2015-01-01

    Th17 cells represent a particular subset of T helper lymphocytes characterized by high production of IL-17 and other inflammatory cytokines. Th17 cells participate in antimicrobial immunity at mucosal and epithelial barriers and particularly fight against extracellular bacteria and fungi. While a role for Th17 cells in promoting inflammation and autoimmune disorders has been extensively and elegantly demonstrated, it is still controversial whether and how Th17 cells influence tumor immunity. Although Th17 cells specifically accumulate in many different types of tumors compared to healthy tissues, the outcome might however differ from a tumor type to another. Th17 cells were consequently associated with both good and bad prognoses. The high plasticity of those cells toward cells exhibiting either anti-inflammatory or in contrast pathogenic functions might contribute to Th17 versatile functions in the tumor context. On one hand, Th17 cells promote tumor growth by inducing angiogenesis (via IL-17) and by exerting themselves immunosuppressive functions. On the other hand, Th17 cells drive antitumor immune responses by recruiting immune cells into tumors, activating effector CD8+ T cells, or even directly by converting toward Th1 phenotype and producing IFN-γ. In this review, we are discussing the impact of the tumor microenvironment on Th17 cell plasticity and function and its implications in cancer immunity. PMID:26583099

  4. NCI, NHLBI/PBMTC First International Conference on Late Effects after Pediatric Hematopoietic Cell Transplantation: Persistent Immune Deficiency in Pediatric Transplant Survivors

    PubMed Central

    Bunin, Nancy; Small, Trudy; Szabolcs, Paul; Baker, K. Scott; Pulsipher, Michael A.; Torgerson, Troy

    2011-01-01

    Defective immune reconstitution is a major barrier to successful hematopoietic cell transplantation (HCT), and has important implications in the pediatric population. There are many factors which affect immune recovery, including stem cell source and GVHD. Complete assessment of immune recovery, including T and B lymphocyte evaluation, innate immunity and response to neoantigens, may provide insight as to infection risk and optimal time for immunizations. The increasing use of cord blood grafts requires additional study regarding early reconstitution and impact upon survival. Immunization schedules may require modification based upon stem cell source and immune reconstitution, and this is of particular importance as many children have been incompletely immunized, or not at all, prior to school entry. Additional studies are needed in children post HCT to evaluate the impact of differing stem cell sources upon immune reconstitution, infectious risks and immunization responses. PMID:22100979

  5. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer.

    PubMed

    Bindea, Gabriela; Mlecnik, Bernhard; Tosolini, Marie; Kirilovsky, Amos; Waldner, Maximilian; Obenauf, Anna C; Angell, Helen; Fredriksen, Tessa; Lafontaine, Lucie; Berger, Anne; Bruneval, Patrick; Fridman, Wolf Herman; Becker, Christoph; Pagès, Franck; Speicher, Michael R; Trajanoski, Zlatko; Galon, Jérôme

    2013-10-17

    The complex interactions between tumors and their microenvironment remain to be elucidated. Combining large-scale approaches, we examined the spatio-temporal dynamics of 28 different immune cell types (immunome) infiltrating tumors. We found that the immune infiltrate composition changed at each tumor stage and that particular cells had a major impact on survival. Densities of T follicular helper (Tfh) cells and innate cells increased, whereas most T cell densities decreased along with tumor progression. The number of B cells, which are key players in the core immune network and are associated with prolonged survival, increased at a late stage and showed a dual effect on recurrence and tumor progression. The immune control relevance was demonstrated in three endoscopic orthotopic colon-cancer mouse models. Genomic instability of the chemokine CXCL13 was a mechanism associated with Tfh and B cell infiltration. CXCL13 and IL21 were pivotal factors for the Tfh/B cell axis correlating with survival. This integrative study reveals the immune landscape in human colorectal cancer and the major hallmarks of the microenvironment associated with tumor progression and recurrence. PMID:24138885

  6. Cell-mediated immunity in experimental Nocardia asteroides infection.

    PubMed Central

    Sundararaj, T; Agarwal, S C

    1977-01-01

    Experimental mycetoma-like lesions developed in guinea pigs after subcutaneous injection of Nocardia asteroides. Although delayed hypersensitivity appeared earlier, increased macrophage migration inhibition and microbicidal activity appeared after 7 weeks. When the lesions healed, high cell-mediated immunity was present. Cell-mediated immunity was transferred to normal recipient guinea pigs from healed donor guinea pigs by spleen cell transfer. Recipient guinea pigs showed marked protection against challenge with N. asteroides. PMID:321348

  7. Innate cell communication kick-starts pathogen-specific immunity

    PubMed Central

    Rivera, Amariliz; Siracusa, Mark C.; Yap, George S.; Gause, William C.

    2016-01-01

    Innate cells are responsible for the rapid recognition of infection and mediate essential mechanisms of pathogen elimination, and also facilitate adaptive immune responses. We review here the numerous intricate interactions among innate cells that initiate protective immunity. The efficient eradication of pathogens depends on the coordinated actions of multiple cells, including innate cells and epithelial cells. Rather than acting as isolated effector cells, innate cells are in constant communication with other responding cells of the immune system, locally and distally. These interactions are critically important for the efficient control of primary infections as well for the development of ‘trained’ innate cells that facilitate the rapid elimination of homologous or heterologous infections. PMID:27002843

  8. Single cell transcriptional analysis reveals novel innate immune cell types.

    PubMed

    Kippner, Linda E; Kim, Jinhee; Gibson, Greg; Kemp, Melissa L

    2014-01-01

    Single-cell analysis has the potential to provide us with a host of new knowledge about biological systems, but it comes with the challenge of correctly interpreting the biological information. While emerging techniques have made it possible to measure inter-cellular variability at the transcriptome level, no consensus yet exists on the most appropriate method of data analysis of such single cell data. Methods for analysis of transcriptional data at the population level are well established but are not well suited to single cell analysis due to their dependence on population averages. In order to address this question, we have systematically tested combinations of methods for primary data analysis on single cell transcription data generated from two types of primary immune cells, neutrophils and T lymphocytes. Cells were obtained from healthy individuals, and single cell transcript expression data was obtained by a combination of single cell sorting and nanoscale quantitative real time PCR (qRT-PCR) for markers of cell type, intracellular signaling, and immune functionality. Gene expression analysis was focused on hierarchical clustering to determine the existence of cellular subgroups within the populations. Nine combinations of criteria for data exclusion and normalization were tested and evaluated. Bimodality in gene expression indicated the presence of cellular subgroups which were also revealed by data clustering. We observed evidence for two clearly defined cellular subtypes in the neutrophil populations and at least two in the T lymphocyte populations. When normalizing the data by different methods, we observed varying outcomes with corresponding interpretations of the biological characteristics of the cell populations. Normalization of the data by linear standardization taking into account technical effects such as plate effects, resulted in interpretations that most closely matched biological expectations. Single cell transcription profiling provides

  9. Roles of regulatory T cells in cancer immunity.

    PubMed

    Takeuchi, Yoshiko; Nishikawa, Hiroyoshi

    2016-08-01

    CD4(+) regulatory T cells (Tregs) expressing the transcription factor FoxP3 are highly immune suppressive and play central roles in the maintenance of self-tolerance and immune homeostasis, yet in malignant tumors they promote tumor progression by suppressing effective antitumor immunity. Indeed, higher infiltration by Tregs is observed in tumor tissues, and their depletion augments antitumor immune responses in animal models. Additionally, increased numbers of Tregs and, in particular, decreased ratios of CD8(+) T cells to Tregs among tumor-infiltrating lymphocytes are correlated with poor prognosis in various types of human cancers. The recent success of cancer immunotherapy represented by immune checkpoint blockade has provided a new insight in cancer treatment, yet more than half of the treated patients did not experience clinical benefits. Identifying biomarkers that predict clinical responses and developing novel immunotherapies are therefore urgently required. Cancer patients whose tumors contain a large number of neoantigens stemming from gene mutations, which have not been previously recognized by the immune system, provoke strong antitumor T-cell responses associated with clinical responses following immune checkpoint blockade, depending on the resistance to Treg-mediated suppression. Thus, integration of a strategy restricting Treg-mediated immune suppression may expand the therapeutic spectrum of cancer immunotherapy towards patients with a lower number of neoantigens. In this review, we address the current understanding of Treg-mediated immune suppressive mechanisms in cancer, the involvement of Tregs in cancer immunotherapy, and strategies for effective and tolerable Treg-targeted therapy. PMID:27160722

  10. Detection of cell mediated immune response to avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In birds, lymphomyeloid tissues develop from epithelial (Bursa of Fabricus or thymus) or mesenchymal tissue which are populated by heamatopoietic stem cells. These stem cells develop directly into immunologically competent B (bursa) and T (thymus) cells. Cell-mediated immunity (CMI) is a part of the...

  11. Prenatal cadmium exposure alters postnatal immune cell development and function

    SciTech Connect

    Hanson, Miranda L.; Holásková, Ida; Elliott, Meenal; Brundage, Kathleen M.; Schafer, Rosana; Barnett, John B.

    2012-06-01

    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4{sup +}FoxP3{sup +}CD25{sup +} (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8{sup +}CD223{sup +} T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can

  12. EFFECTS OF ENVIRONMENTAL CONTAMINANTS ON CELL MEDIATED IMMUNITY

    EPA Science Inventory

    The effect of lead and cadmium on cell-mediated immunity was studied in peritoneal macrophages, B-, and T-lymphocytes of mice. Lead and cadmium were administered in drinking water for 10 weeks in short-term experiments and up to 18 months to deal with immune responses in aged mic...

  13. Retinoic Acid as a Modulator of T Cell Immunity.

    PubMed

    Bono, Maria Rosa; Tejon, Gabriela; Flores-Santibañez, Felipe; Fernandez, Dominique; Rosemblatt, Mario; Sauma, Daniela

    2016-01-01

    Vitamin A, a generic designation for an array of organic molecules that includes retinal, retinol and retinoic acid, is an essential nutrient needed in a wide array of aspects including the proper functioning of the visual system, maintenance of cell function and differentiation, epithelial surface integrity, erythrocyte production, reproduction, and normal immune function. Vitamin A deficiency is one of the most common micronutrient deficiencies worldwide and is associated with defects in adaptive immunity. Reports from epidemiological studies, clinical trials and experimental studies have clearly demonstrated that vitamin A plays a central role in immunity and that its deficiency is the cause of broad immune alterations including decreased humoral and cellular responses, inadequate immune regulation, weak response to vaccines and poor lymphoid organ development. In this review, we will examine the role of vitamin A in immunity and focus on several aspects of T cell biology such as T helper cell differentiation, function and homing, as well as lymphoid organ development. Further, we will provide an overview of the effects of vitamin A deficiency in the adaptive immune responses and how retinoic acid, through its effect on T cells can fine-tune the balance between tolerance and immunity. PMID:27304965

  14. Retinoic Acid as a Modulator of T Cell Immunity

    PubMed Central

    Bono, Maria Rosa; Tejon, Gabriela; Flores-Santibañez, Felipe; Fernandez, Dominique; Rosemblatt, Mario; Sauma, Daniela

    2016-01-01

    Vitamin A, a generic designation for an array of organic molecules that includes retinal, retinol and retinoic acid, is an essential nutrient needed in a wide array of aspects including the proper functioning of the visual system, maintenance of cell function and differentiation, epithelial surface integrity, erythrocyte production, reproduction, and normal immune function. Vitamin A deficiency is one of the most common micronutrient deficiencies worldwide and is associated with defects in adaptive immunity. Reports from epidemiological studies, clinical trials and experimental studies have clearly demonstrated that vitamin A plays a central role in immunity and that its deficiency is the cause of broad immune alterations including decreased humoral and cellular responses, inadequate immune regulation, weak response to vaccines and poor lymphoid organ development. In this review, we will examine the role of vitamin A in immunity and focus on several aspects of T cell biology such as T helper cell differentiation, function and homing, as well as lymphoid organ development. Further, we will provide an overview of the effects of vitamin A deficiency in the adaptive immune responses and how retinoic acid, through its effect on T cells can fine-tune the balance between tolerance and immunity. PMID:27304965

  15. [Multipotent mesenchymal stromal and immune cells interaction: reciprocal effects].

    PubMed

    Andreeva, E R; Buravkova, L B

    2012-12-01

    Adult multipotent mesenchymal stromal cells (MMSCs) are considered now as one of the key players in physiological and pathological tissue remodeling. Clarification of the mechanisms that mediate MMSC functions, is one of the most intriguing issues in modern cell physiology. Present Review summarizes current understanding of the MMSC effects on different types of immune cells. The realization of MMSC immunomodulatory capacity is considered as a contribution of direct cell-to-cell contacts, soluble mediators and of local microenvironmental factors, the most important of which is the partial pressure of oxygen. MMSCs and immune cells interaction is discussed in the terms of reciprocal effects, modifying properties of all "partner cells". Special attention is paid to the influence of immune cells on the MMSCs. "Immunosuppressive" phenomenon of MMSCs is considered as the integral part of the "response to injury" mechanism. PMID:23461191

  16. Cellular Factors Targeting APCs to Modulate Adaptive T Cell Immunity

    PubMed Central

    Do, Jeongsu; Min, Booki

    2014-01-01

    The fate of adaptive T cell immunity is determined by multiple cellular and molecular factors, among which the cytokine milieu plays the most important role in this process. Depending on the cytokines present during the initial T cell activation, T cells become effector cells that produce different effector molecules and execute adaptive immune functions. Studies thus far have primarily focused on defining how these factors control T cell differentiation by targeting T cells themselves. However, other non-T cells, particularly APCs, also express receptors for the factors and are capable of responding to them. In this review, we will discuss how APCs, by responding to those cytokines, influence T cell differentiation and adaptive immunity. PMID:25126585

  17. The effect of rotation on function and signal transduction in immune cell

    NASA Astrophysics Data System (ADS)

    Song, J. P.; Zhong, P.; Li, Y. H.; Yang, F.

    Objective Both spaceflight and modeled weightlessness on ground could compromise immune function especially cellular immunity In turn astrouants would not resist to external pathogen effectually the health status and work ability of astrounants were perhaps affected but the cellular and molecular mechanisms by which spaceflight alters human immune functions are poorly understood The aim this trial was to using high aspect rotation vessal HARV investigate the functional changes of immune cell rotated for virous time period in vitro and explore mechanisms in which space weightlessness affect immune function through cell signal transduction Methods Using high aspect rotation vessal HARV as simulated weightlessness model mouse splenic lymphocyte and Jurkat E6 1 as cell model the effects of rotation on cell proliferation cytokine secretion expression and activation of signal molecule ZAP-70 were studied Results After rotation T lymphocytic proliferation in mouse splenocyte were inhibited and the concentration of IL-2 and IFN- A secreted were reduced markly and all this happen within 6 hours after T cell were activated The activity of ZAP-70 in Jurkat cell were repressed significantly Conclusion Incapable activation of ZAP-70 might be one cause of depressed lymphocyte function under weightlessness

  18. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma

    PubMed Central

    Banat, G-Andre; Tretyn, Aleksandra; Pullamsetti, Soni Savai; Wilhelm, Jochen; Weigert, Andreas; Olesch, Catherine; Ebel, Katharina; Stiewe, Thorsten; Grimminger, Friedrich; Seeger, Werner; Fink, Ludger; Savai, Rajkumar

    2015-01-01

    Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+), cytotoxic-T cells (CD8+), T-helper cells (CD4+), B cells (CD20+), macrophages (CD68+), mast cells (CD117+), mononuclear cells (CD11c+), plasma cells, activated-T cells (MUM1+), B cells, myeloid cells (PD1+) and neutrophilic granulocytes (myeloperoxidase+) compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells) in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition. PMID:26413839

  19. Stem Cell-Derived Extracellular Vesicles and Immune-Modulation

    PubMed Central

    Burrello, Jacopo; Monticone, Silvia; Gai, Chiara; Gomez, Yonathan; Kholia, Sharad; Camussi, Giovanni

    2016-01-01

    Extra-cellular vesicles (EVs) are bilayer membrane structures enriched with proteins, nucleic acids, and other active molecules and have been implicated in many physiological and pathological processes over the past decade. Recently, evidence suggests EVs to play a more dichotomic role in the regulation of the immune system, whereby an immune response may be enhanced or supressed by EVs depending on their cell of origin and its functional state. EVs derived from antigen (Ag)-presenting cells for instance, have been involved in both innate and acquired (or adaptive) immune responses, as Ag carriers or presenters, or as vehicles for delivering active signaling molecules. On the other hand, tumor and stem cell derived EVs have been identified to exert an inhibitory effect on immune responses by carrying immuno-modulatory effectors, such as transcriptional factors, non-coding RNA (Species), and cytokines. In addition, stem cell-derived EVs have also been reported to impair dendritic cell maturation and to regulate the activation, differentiation, and proliferation of B cells. They have been shown to control natural killer cell activity and to suppress the innate immune response (IIR). Studies reporting the role of EVs on T lymphocyte modulation are controversial. Discrepancy in literature may be due to stem cell culture conditions, methods of EV purification, EV molecular content, and functional state of both parental and target cells. However, mesenchymal stem cell-derived EVs were shown to play a more suppressive role by shifting T cells from an activated to a T regulatory phenotype. In this review, we will discuss how stem cell-derived EVs may contribute toward the modulation of the immune response. Collectively, stem cell-derived EVs mainly exhibit an inhibitory effect on the immune system. PMID:27597941

  20. Stem Cell-Derived Extracellular Vesicles and Immune-Modulation.

    PubMed

    Burrello, Jacopo; Monticone, Silvia; Gai, Chiara; Gomez, Yonathan; Kholia, Sharad; Camussi, Giovanni

    2016-01-01

    Extra-cellular vesicles (EVs) are bilayer membrane structures enriched with proteins, nucleic acids, and other active molecules and have been implicated in many physiological and pathological processes over the past decade. Recently, evidence suggests EVs to play a more dichotomic role in the regulation of the immune system, whereby an immune response may be enhanced or supressed by EVs depending on their cell of origin and its functional state. EVs derived from antigen (Ag)-presenting cells for instance, have been involved in both innate and acquired (or adaptive) immune responses, as Ag carriers or presenters, or as vehicles for delivering active signaling molecules. On the other hand, tumor and stem cell derived EVs have been identified to exert an inhibitory effect on immune responses by carrying immuno-modulatory effectors, such as transcriptional factors, non-coding RNA (Species), and cytokines. In addition, stem cell-derived EVs have also been reported to impair dendritic cell maturation and to regulate the activation, differentiation, and proliferation of B cells. They have been shown to control natural killer cell activity and to suppress the innate immune response (IIR). Studies reporting the role of EVs on T lymphocyte modulation are controversial. Discrepancy in literature may be due to stem cell culture conditions, methods of EV purification, EV molecular content, and functional state of both parental and target cells. However, mesenchymal stem cell-derived EVs were shown to play a more suppressive role by shifting T cells from an activated to a T regulatory phenotype. In this review, we will discuss how stem cell-derived EVs may contribute toward the modulation of the immune response. Collectively, stem cell-derived EVs mainly exhibit an inhibitory effect on the immune system. PMID:27597941

  1. Cell fate decision: T-helper 1 and 2 subsets in immune responses

    PubMed Central

    Dong, Chen; Flavell, Richard A

    2000-01-01

    After activation CD4+ helper T cells differentiate into T-helper (Th) 1 or Th2 effector cells. These two subsets are characterized by their distinct cytokine expression pattern and the immune function they mediate. Over the past years, a number of factors have been identified to affect helper T cell lineage determination, including antigen receptor, coreceptors and, most importantly, cytokine environment. In this review, we also summarize recent advancement in understanding of transcriptional and signaling regulation of the differentiation process. This knowledge will become important in the future to develop means in treating immune disorders. PMID:11094427

  2. Reliable and High Efficiency Extraction of Kidney Immune Cells.

    PubMed

    Nistala, Ravi; Meuth, Alex; Smith, Cassandra; Annayya, Aroor

    2016-01-01

    Immune system activation occurs in multiple kidney diseases and pathophysiological processes. The immune system consists of both adaptive and innate components and multiple cell types. Sometimes, the cell type of interest is present in very low numbers among the large numbers of total cells isolated from the kidney. Hence, reliable and efficient isolation of kidney mononuclear cell populations is important in order to study the immunological problems associated with kidney diseases. Traditionally, tissue isolation of kidney mononuclear cells have been performed via enzymatic digestions using different varieties and strengths of collagenases/DNAses yielding varying numbers of viable immune cells. Recently, with the development of the mechanical tissue disruptors for single cell isolation, the collagenase digestion step is avoided and replaced by a simple mechanical disruption of the kidneys after extraction from the mouse. Herein, we demonstrate a simple yet efficient method for the isolation of kidney mononuclear cells for every day immune cell extractions. We further demonstrate an example of subset analysis of immune cells in the kidney. Importantly, this technique can be adapted to other soft and non-fibrous tissues such as the liver and brain. PMID:27583412

  3. Stability analysis of simple models for immune cells interacting with normal pathogens and immune system retroviruses.

    PubMed Central

    Reibnegger, G; Fuchs, D; Hausen, A; Werner, E R; Werner-Felmayer, G; Dierich, M P; Wachter, H

    1989-01-01

    A mathematical analysis is presented for several simple dynamical systems that might be considered as crude descriptions for the situation when an immune system retrovirus, immune cells, and normal autonomously replicating pathogens interact. By stability analysis of the steady-state solutions, the destabilizing effect of the immune system retrovirus is described. The qualitative behavior of the solutions depending on the system parameters is analyzed in terms of trajectories moving in a phase space in which the axes are defined by the population numbers of the interacting biological entities. PMID:2522657

  4. Cell-cell communication via extracellular membrane vesicles and its role in the immune response.

    PubMed

    Hwang, Inkyu

    2013-08-01

    The host immune response involves a variety of cell types, including specialized immune and non-immune cells. The delicate coordination among these cells via close communication is central for the proper operation of immune system. Cell-cell communication is mediated by a complex network that includes soluble factors such as cytokines, chemokines, and metabolites exported from cells, as well as membrane-bound receptors and their ligands. Cell-cell communication is also mediated by membrane vesicles (e.g., exosomes, ectosomes), which are either shed by distant cells or exchanged by cells that are making direct contact. Intercellular communication via extracellular membrane vesicles has drawn much attention recently, as they have been shown to carry various biomolecules that modulate the activities of recipient cells. In this review, I will discuss current views on cell-cell communication via extra-cellular membrane vesicles, especially shedded membrane vesicles, and their effects on the control of the immune system. PMID:23807045

  5. Maintenance of Immune Homeostasis through ILC/T Cell Interactions

    PubMed Central

    von Burg, Nicole; Turchinovich, Gleb; Finke, Daniela

    2015-01-01

    Innate lymphoid cells (ILCs) have emerged as a new family of immune cells with crucial functions in innate and adaptive immunity. ILC subsets mirror the cytokine and transcriptional profile of CD4+ T helper (TH) cell subsets. Hence, group 1 (ILC1), group 2 (ILC2), and group 3 (ILC3) ILCs can be distinguished by the production of TH1, TH2, and TH17-type cytokines, respectively. Cytokine release by ILCs not only shapes early innate immunity but can also orchestrate TH immune responses to microbial or allergen exposure. Recent studies have identified an unexpected effector function of ILCs as antigen presenting cells. Both ILC2s and ILC3s are able to process and present foreign antigens (Ags) via major histocompatibility complex class II, and to induce cognate CD4+ T cell responses. In addition, Ag-stimulated T cells promote ILC activation and effector functions indicating a reciprocal interaction between the adaptive and innate immune system. A fundamental puzzle in ILC function is how ILC/T cell interactions promote host protection and prevent autoimmune diseases. Furthermore, the way in which microenvironmental and inflammatory signals determine the outcome of ILC/T cell immune responses in various tissues is not yet understood. This review focuses on recent advances in understanding the mechanisms that coordinate the collaboration between ILCs and T cells under homeostatic and inflammatory conditions. We also discuss the potential roles of T cells and other immune cells to regulate ILC functions and to maintain homeostasis in mucosal tissues. PMID:26322047

  6. Age effects on B cells and humoral immunity in humans

    PubMed Central

    Frasca, Daniela; Diaz, Alain; Romero, Maria; Landin, Ana Marie; Blomberg, Bonnie B

    2010-01-01

    Both humoral and cellular immune responses are impaired in aged individuals, leading to decreased vaccine responses. Although T cell defects occur, defects in B cells play a significant role in age-related humoral immune changes. The ability to undergo class switch recombination (CSR), the enzyme for CSR, AID (activation-induced cytidine deaminase) and the transcription factor E47 are all decreased in aged stimulated B cells. We here present an overview of age-related changes in human B cell markers and functions, and also discuss some controversies in the field of B cell aging. PMID:20728581

  7. Temperature stress affects the expression of immune response genes in the alfalfa leafcutting bee (Megachile rotundata)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The alfalfa leafcutting bee (Megachile rotundata) is affected by a fungal disease called chalkbrood. In several species of bees, chalkbrood is more likely to occur in larvae kept at 25-30 C than at 35 C. We found that both high and low temperature stress increased the expression of immune response g...

  8. Mechanisms of tumor escape from immune system: role of mesenchymal stromal cells.

    PubMed

    Poggi, Alessandro; Musso, Alessandra; Dapino, Irene; Zocchi, Maria Raffaella

    2014-01-01

    Tumor microenvironment represents the site where the tumor tries to survive and escape from immune system-mediated recognition. Indeed, to proliferate tumor cells can divert the immune response inducing the generation of myeloid derived suppressor cells and regulatory T cells which can limit the efficiency of effector antitumor lymphocytes in eliminating neoplastic cells. Many components of the tumor microenvironment can serve as a double sword for the tumor and the host. Several types of fibroblast-like cells, which herein we define mesenchymal stromal cells (MSC), secrete extracellular matrix components and surrounding the tumor mass can limit the expansion of the tumor. On the other hand, MSC can interfere with the immune recognition of tumor cells producing immunoregulatory cytokines as transforming growth factor (TGF)ß, releasing soluble ligands of the activating receptors expressed on cytolytic effector cells as decoy molecules, affecting the correct interaction among lymphocytes and tumor cells. MSC can also serve as target for the same anti-tumor effector lymphocytes or simply impede the interaction between these lymphocytes and neoplastic cells. Thus, several evidences point out the role of MSC, both in epithelial solid tumors and hematological malignancies, in regulating tumor cell growth and immune response. Herein, we review these evidences and suggest that MSC can be a suitable target for a more efficient anti-tumor therapy. PMID:24657523

  9. Human immune cell targeting of protein nanoparticles - caveospheres.

    PubMed

    Glass, Joshua J; Yuen, Daniel; Rae, James; Johnston, Angus P R; Parton, Robert G; Kent, Stephen J; De Rose, Robert

    2016-04-14

    Nanotechnology has the power to transform vaccine and drug delivery through protection of payloads from both metabolism and off-target effects, while facilitating specific delivery of cargo to immune cells. However, evaluation of immune cell nanoparticle targeting is conventionally restricted to monocultured cell line models. We generated human caveolin-1 nanoparticles, termed caveospheres, which were efficiently functionalized with monoclonal antibodies. Using this platform, we investigated CD4+ T cell and CD20+ B cell targeting within physiological mixtures of primary human blood immune cells using flow cytometry, imaging flow cytometry and confocal microscopy. Antibody-functionalization enhanced caveosphere binding to targeted immune cells (6.6 to 43.9-fold) within mixed populations and in the presence of protein-containing fluids. Moreover, targeting caveospheres to CCR5 enabled caveosphere internalization by non-phagocytic CD4+ T cells-an important therapeutic target for HIV treatment. This efficient and flexible system of immune cell-targeted caveosphere nanoparticles holds promise for the development of advanced immunotherapeutics and vaccines. PMID:27031090

  10. Human immune cell targeting of protein nanoparticles - caveospheres

    NASA Astrophysics Data System (ADS)

    Glass, Joshua J.; Yuen, Daniel; Rae, James; Johnston, Angus P. R.; Parton, Robert G.; Kent, Stephen J.; de Rose, Robert

    2016-04-01

    Nanotechnology has the power to transform vaccine and drug delivery through protection of payloads from both metabolism and off-target effects, while facilitating specific delivery of cargo to immune cells. However, evaluation of immune cell nanoparticle targeting is conventionally restricted to monocultured cell line models. We generated human caveolin-1 nanoparticles, termed caveospheres, which were efficiently functionalized with monoclonal antibodies. Using this platform, we investigated CD4+ T cell and CD20+ B cell targeting within physiological mixtures of primary human blood immune cells using flow cytometry, imaging flow cytometry and confocal microscopy. Antibody-functionalization enhanced caveosphere binding to targeted immune cells (6.6 to 43.9-fold) within mixed populations and in the presence of protein-containing fluids. Moreover, targeting caveospheres to CCR5 enabled caveosphere internalization by non-phagocytic CD4+ T cells--an important therapeutic target for HIV treatment. This efficient and flexible system of immune cell-targeted caveosphere nanoparticles holds promise for the development of advanced immunotherapeutics and vaccines.

  11. Myeloid cell-driven angiogenesis and immune regulation in tumors

    PubMed Central

    Rivera, Lee B.; Bergers, Gabriele

    2015-01-01

    Angiogenesis is a hallmark of cancer as its induction is indispensable to fuel an expanding tumor. The tumor microenvironment contributes to tumor vessel growth, and distinct myeloid cells recruited by the tumor have been shown to not only support angiogenesis but to foster an immune suppressive environment that supports tumor expansion and progression. Recent findings suggest that the intertwined regulation of angiogenesis and immune modulation can offer therapeutic opportunities for the treatment of cancer. Here we review the mechanisms by which distinct myeloid cell populations contribute to tumor angiogenesis, discuss current approaches in the clinic that are targeting both angiogenic and immune suppressive pathways, and highlight important areas of future research. PMID:25770923

  12. Integrating innate and adaptive immune cells: Mast cells as crossroads between regulatory and effector B and T cells.

    PubMed

    Mekori, Yoseph A; Hershko, Alon Y; Frossi, Barbara; Mion, Francesca; Pucillo, Carlo E

    2016-05-01

    A diversity of immune mechanisms have evolved to protect normal tissues from infection, but from immune damage too. Innate cells, as well as adaptive cells, are critical contributors to the correct development of the immune response and of tissue homeostasis. There is a dynamic "cross-talk" between the innate and adaptive immunomodulatory mechanisms for an integrated control of immune damage as well as the development of the immune response. Mast cells have shown a great plasticity, modifying their behavior at different stages of immune response through interaction with effector and regulatory populations of adaptive immunity. Understanding the interplays among T effectors, regulatory T cells, B cells and regulatory B cells with mast cells will be critical in the future to assist in the development of therapeutic strategies to enhance and synergize physiological immune-modulator and -suppressor elements in the innate and adaptive immune system. PMID:25941086

  13. Balancing Immune Protection and Immune Pathology by CD8+ T-Cell Responses to Influenza Infection

    PubMed Central

    Duan, Susu; Thomas, Paul G.

    2016-01-01

    Influenza A virus (IAV) is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL)-mediated immunity contributes to the clearance of virus-infected cells, and CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, its cytotoxicity, and the effects of produced proinflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL antiviral immunity from those necessary to restrain CTL-mediated non-specific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity. PMID:26904022

  14. Balancing Immune Protection and Immune Pathology by CD8(+) T-Cell Responses to Influenza Infection.

    PubMed

    Duan, Susu; Thomas, Paul G

    2016-01-01

    Influenza A virus (IAV) is a significant human pathogen causing annual epidemics and periodic pandemics. CD8(+) cytotoxic T lymphocyte (CTL)-mediated immunity contributes to the clearance of virus-infected cells, and CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, its cytotoxicity, and the effects of produced proinflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL antiviral immunity from those necessary to restrain CTL-mediated non-specific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity. PMID:26904022

  15. Immune-surveillance through exhausted effector T-cells.

    PubMed

    Zehn, Dietmar; Utzschneider, Daniel T; Thimme, Robert

    2016-02-01

    Pathogens such as the human immunodeficiency virus (HIV), the hepatitis B and C virus (HBV, HCV) and certain strains of the rodent lymphocytic choriomeningitis virus (LCMV) establish a state of persisting viral replication. This occurs besides strong adoptive immune responses and the induction of large numbers of activated pathogen-specific T-cells. The failure of the immune system to clear these viruses is typically attributed to a loss of effector T-cell function-a phenomenon referred to as T-cell exhaustion. Though largely accepted, this loss of function concept is being more and more challenged by comprehensive clinical and experimental observations which highlight that T-cells in chronic infections are more functional than previously considered. Here, we highlight examples that demonstrate that such T-cells mediate a profound form of immune-surveillance. We also briefly discuss the opportunities and limitations of employing 'exhausted' T-cells for therapeutic purposes. PMID:26826950

  16. Immunity and Tolerance Induced by Intestinal Mucosal Dendritic Cells.

    PubMed

    Aliberti, Julio

    2016-01-01

    Dendritic cells present in the digestive tract are constantly exposed to environmental antigens, commensal flora, and invading pathogens. Under steady-state conditions, these cells have high tolerogenic potential, triggering differentiation of regulatory T cells to protect the host from unwanted proinflammatory immune responses to innocuous antigens or commensals. On the other hand, these cells must discriminate between commensal flora and invading pathogens and mount powerful immune response against pathogens. A potential result of unbalanced tolerogenic versus proinflammatory responses mediated by dendritic cells is associated with chronic inflammatory conditions, such as Crohn's disease, ulcerative colitis, food allergies, and celiac disease. Herein, we review the dendritic cell population involved in mediating tolerance and immunity in mucosal surfaces, the progress in unveiling their development in vivo, and factors that can influence their functions. PMID:27034589

  17. Immunity and Tolerance Induced by Intestinal Mucosal Dendritic Cells

    PubMed Central

    Aliberti, Julio

    2016-01-01

    Dendritic cells present in the digestive tract are constantly exposed to environmental antigens, commensal flora, and invading pathogens. Under steady-state conditions, these cells have high tolerogenic potential, triggering differentiation of regulatory T cells to protect the host from unwanted proinflammatory immune responses to innocuous antigens or commensals. On the other hand, these cells must discriminate between commensal flora and invading pathogens and mount powerful immune response against pathogens. A potential result of unbalanced tolerogenic versus proinflammatory responses mediated by dendritic cells is associated with chronic inflammatory conditions, such as Crohn's disease, ulcerative colitis, food allergies, and celiac disease. Herein, we review the dendritic cell population involved in mediating tolerance and immunity in mucosal surfaces, the progress in unveiling their development in vivo, and factors that can influence their functions. PMID:27034589

  18. Juvenile immune status affects the expression of a sexually selected trait in field crickets.

    PubMed

    Jacot, A; Scheuber, H; Kurtz, J; Brinkhof, M W G

    2005-07-01

    Parasite-mediated sexual selection theory presumes that variation in sexual traits reliably reflects variation in parasite resistance among available mates. One mechanism that may warrant signal honesty involves costs of immune system activation in the case of a parasitic infection. We investigated this hypothesis in male field crickets Gryllus campestris, whose attractiveness to females depends on characteristics of the sound-producing harp that are essentially fixed following adult eclosion. During the nymphal stage, males subjected to one of two feeding regimes were challenged with bacterial lipopolysaccharides (LPS) to investigate condition-dependent effects on harp development as compared to other adult traits. Nymphal nutritional status positively affected adult body size, condition, and harp size. However, nymphal immune status affected harp size only, with LPS-males having smaller harps than control-injected males. In addition, the harps of LPS-males showed a lesser degree of melanization, indicating an enhanced substrate use by the melanin-producing enzyme cascade of the immune system. Thus, past immune status is specifically mirrored in sexual traits, suggesting a key role for deployment costs of immunity in parasite-mediated sexual selection. PMID:16033579

  19. Trace Metals Affect Early Maternal Transfer of Immune Components in the Feral Pigeon.

    PubMed

    Chatelain, M; Gasparini, J; Haussy, C; Frantz, A

    2016-01-01

    Maternal early transfers of immune components influence eggs' hatching probability and nestlings' survival. They depend on females' own immunity and, because they are costly, on their physiological state. Therefore, trace metals, whether toxic and immunosuppressive (e.g., lead, cadmium, etc.) or necessary and immunostimulant (e.g., zinc, copper, iron, etc.), are likely to affect the amount of immune components transferred into the eggs. It may also vary with plumage eumelanin level, which is known to be linked to immunity, to transfer of antibodies, and to metal detoxification. In feral pigeons (Columba livia) injected with an antigen and experimentally exposed to lead and/or zinc (two highly abundant trace metals in urban areas), we measured specific antibody transfer and concentrations of two antimicrobial proteins (lysozyme and ovotransferrin) in eggs. As expected, lead had negative effects on specific antibody transfer, while zinc positively affected lysozyme egg concentrations. Moreover, eggs from lead-exposed females exhibited higher ovotransferrin concentrations; because it binds metal ions, ovotransferrin may enable egg detoxification and embryo protection. Finally, eggs' lysozyme concentrations increased with plumage darkness of females not exposed to zinc, while the relation was opposite among zinc-exposed females, suggesting that benefits and costs of plumage melanism depend on trace metal environmental levels. Overall, our study underlines the potential ecotoxicological effects of trace metals on maternal transfers of immune components and the role of plumage melanism in modulating these effects. PMID:27153130

  20. Antitumor immunity induced by hybrid murine tumor cells: requirements for optimal immunization

    SciTech Connect

    McCune, C.S.; O'Donnell, R.W.; Horan, P.K.; Budd, H.S.; Spennacchio, J.L.; Chuang, C.; Henshaw, E.C.

    1982-09-01

    Hybrid tumor cells have been evaluated for their ability to induce specific antitumor immunity in inbred female C3H/He mice challenged with the syngeneic BA tumor. Hybrid cells were produced by fusion of BA cells with a BALB/c renal adenocarcinoma, which is hypoxanthine phosphoribosyl transferase-deficient and grows well in culture. Corynebacterium parvum was evaluated as an adjuvant for BA and hybrid cells. The BA tumor was shown to be poorly immunogenic, and four weekly injections of BA cells alone or C. parvum alone did not confer significant immunity. When BA cells and C. parvum were mixed, survival time was prolonged and most mice remained tumor-free. Hybrid cell lines derived from the BA tumor were produced in culture in unlimited quantities and were successfully used as immunogens. The addition of C. parvum to hybrids gave a significant incremental increase in survival when compared to the survival resulting from immunization by hybrids without adjuvant. When hybrids without adjuvant were used, several weekly injections were required for effective immunization. Irradiated and unirradiated hybrids were compared, and it was found that irradiation did not diminish hybrid immunogenicity. The potential problems and advantages of this concept of therapy are discussed.

  1. The heterogeneous immune microenvironment in breast cancer is affected by hypoxia-related genes.

    PubMed

    Duechler, Markus; Peczek, Lukasz; Zuk, Karolina; Zalesna, Izabela; Jeziorski, Arkadiusz; Czyz, Malgorzata

    2014-02-01

    The immune system constitutes an important first-line defence against malignant transformation. However, cancer mediated immunosuppression inactivates the mechanisms of host immune surveillance. Cancer cells shut down anti-cancer immunity through direct cell-cell interactions with leukocytes and through soluble factors, establishing an immunosuppressive environment for unimpeded cancer growth. The composition of the immunosuppressive microenvironment in breast tumours is not well documented. To address this question, selected immunosuppressive factors were analyzed in tumour specimens from 33 breast cancer patients after surgery. The mRNA expression of selected genes was quantified in fresh tumour samples. Tumour infiltrating leukocytes were characterized by flow cytometry to identify regulatory T cells, myeloid derived suppressor cells, and type 2 macrophages. Statistical analysis revealed several interesting correlations between the studied parameters and clinical features. Overall, a surprisingly high degree of heterogeneity in the composition of the immunosuppressive environment was found across all breast cancer samples which adds to the complexity of this disease. The influence of the hypoxia inducible factors (HIFs) on the immune microenvironment was also addressed. The level of HIFs correlated with hormone receptor status and the expression of several immunosuppressive molecules. Targeting HIFs might not only sensitize breast tumours for radiation and chemotherapies but also interfere with cancer immunosuppression. PMID:24091277

  2. Early-Life Environmental Variation Affects Intestinal Microbiota and Immune Development in New-Born Piglets

    PubMed Central

    Zhang, Ling-li; Vastenhouw, Stéphanie A.; Heilig, Hans G. H. J.; Smidt, Hauke; Rebel, Johanna M. J.; Smits, Mari A.

    2014-01-01

    Background Early-life environmental variation affects gut microbial colonization and immune competence development; however, the timing and additional specifics of these processes are unknown. The impact of early-life environmental variations, as experienced under real life circumstances, on gut microbial colonization and immune development has not been studied extensively so far. We designed a study to investigate environmental variation, experienced early after birth, to gut microbial colonization and intestinal immune development. Methodology/Principal Findings To investigate effects of early-life environmental changes, the piglets of 16 piglet litters were divided into 3 groups per litter and experimentally treated on day 4 after birth. During the course of the experiment, the piglets were kept with their mother sow. Group 1 was not treated, group 2 was treated with an antibiotic, and group 3 was treated with an antibiotic and simultaneously exposed to several routine, but stressful management procedures, including docking, clipping and weighing. Thereafter, treatment effects were measured at day 8 after birth in 16 piglets per treatment group by community-scale analysis of gut microbiota and genome-wide intestinal transcriptome profiling. We observed that the applied antibiotic treatment affected the composition and diversity of gut microbiota and reduced the expression of a large number of immune-related processes. The effect of management procedures on top of the use of an antibiotic was limited. Conclusions/Significance We provide direct evidence that different early-life conditions, specifically focusing on antibiotic treatment and exposure to stress, affect gut microbial colonization and intestinal immune development. This reinforces the notion that the early phase of life is critical for intestinal immune development, also under regular production circumstances. PMID:24941112

  3. Mucosal Regulatory T Cells and T Helper 17 Cells in HIV-Associated Immune Activation

    PubMed Central

    Pandiyan, Pushpa; Younes, Souheil-Antoine; Ribeiro, Susan Pereira; Talla, Aarthi; McDonald, David; Bhaskaran, Natarajan; Levine, Alan D.; Weinberg, Aaron; Sekaly, Rafick P.

    2016-01-01

    Residual mucosal inflammation along with chronic systemic immune activation is an important feature in individuals infected with human immunodeficiency virus (HIV), and has been linked to a wide range of co-morbidities, including malignancy, opportunistic infections, immunopathology, and cardiovascular complications. Although combined antiretroviral therapy (cART) can reduce plasma viral loads to undetectable levels, reservoirs of virus persist, and increased mortality is associated with immune dysbiosis in mucosal lymphoid tissues. Immune-based therapies are pursued with the goal of improving CD4+ T-cell restoration, as well as reducing chronic immune activation in cART-treated patients. However, the majority of research on immune activation has been derived from analysis of circulating T cells. How immune cell alterations in mucosal tissues contribute to HIV immune dysregulation and the associated risk of non-infectious chronic complications is less studied. Given the significant differences between mucosal T cells and circulating T cells, and the immediate interactions of mucosal T cells with the microbiome, more attention should be devoted to mucosal immune cells and their contribution to systemic immune activation in HIV-infected individuals. Here, we will focus on mucosal immune cells with a specific emphasis on CD4+ T lymphocytes, such as T helper 17 cells and CD4+Foxp3+ regulatory T cells (Tregs), which play crucial roles in maintaining mucosal barrier integrity and preventing inflammation, respectively. We hypothesize that pro-inflammatory milieu in cART-treated patients with immune activation significantly contributes to enhanced loss of Th17 cells and increased frequency of dysregulated Tregs in the mucosa, which in turn may exacerbate immune dysfunction in HIV-infected patients. We also present initial evidence to support this hypothesis. A better comprehension of how pro-inflammatory milieu impacts these two types of cells in the mucosa will shed light

  4. Effect of space flight on cell-mediated immunity

    NASA Technical Reports Server (NTRS)

    Mandel, A. D.; Balish, E.

    1977-01-01

    The cell-mediated immune response to Listeria monocytogenes was studied in rats subjected to 20 days of flight aboard the Soviet biosatellite Kosmos 7820. Groups of rats were immunized with 1,000,000 formalin-killed Listeria suspended in Freunds Complete Adjuvant, 5 days prior to flight. Immunized rats subjected to the same environmental factors as the flight rats, except flight itself, and immunized and nonimmunized rats held in a normal animal colony served as controls. Following recovery, lymphocyte cultures were harvested from spleens of all rats, cultured in vitro in the presence of L. monocytogenes antigens, Phytohemagglutinin, Conconavlin A, or purified protein derivative (PPD), and measured for their uptake of H-3-thymidine. Although individual rats varied considerably, all flight and immunized control rats gave a blastogenic response to the Listeria antigens and PPD. With several mitogens, the lymphocytes of flight rats showed a significantly increased blastogenic response over the controls. The results of this study do not support a hypothesis of a detrimental effect of space flight on cell-mediated immunity. The data suggest a possible suppressive effect of stress and gravity on an in vitro correlate of cell-mediated immunity.

  5. Immune Monitoring Using mRNA-Transfected Dendritic Cells.

    PubMed

    Borch, Troels Holz; Svane, Inge Marie; Met, Özcan

    2016-01-01

    Dendritic cells are known to be the most potent antigen presenting cell in the immune system and are used as cellular adjuvants in therapeutic anticancer vaccines using various tumor-associated antigens or their derivatives. One way of loading antigen into the dendritic cells is by mRNA electroporation, ensuring presentation of antigen through major histocompatibility complex I and potentially activating T cells, enabling them to kill the tumor cells. Despite extensive research in the field, only one dendritic cell-based vaccine has been approved. There is therefore a great need to elucidate and understand the immunological impact of dendritic cell vaccination in order to improve clinical benefit. In this chapter, we describe a method for performing immune monitoring using peripheral blood mononuclear cells and autologous dendritic cells transfected with tumor-associated antigen-encoding mRNA. PMID:27236804

  6. CX3CR1(+) B Cells Show Immune Suppressor Properties*

    PubMed Central

    Wu, Zhiqiang

    2014-01-01

    The immune regulatory functions of B cells are not fully understood yet. The present study aims to characterize a subtype of B cells that expresses CX3CR1. In this study, peripheral blood samples were collected from patients with food allergies and healthy subjects. Peripheral B cells were analyzed by flow cytometry. T cell proliferation was assessed by carboxyfluorescein succinimidyl ester dilution assay. The results showed that the CX3CR1+ B cells were detected in the peripheral blood samples of healthy subjects and were significantly less in patients with food allergies. CX3CR1+ B cells expressed high levels of TGF-β and integrin αvβ6. CX3CR1+ B cells could efficiently suppress other effector CD4+ T cell activation. We conclude that human peripheral CX3CR1+ B cells have immune suppressor properties. PMID:24970890

  7. Super-enhancers: Asset management in immune cell genomes

    PubMed Central

    Witte, Steven; O’Shea, John J.; Vahedi, Golnaz

    2015-01-01

    Super-enhancers (SEs) are regions of the genome consisting of clusters of regulatory elements bound with very high amounts of transcription factors, and this architecture appears to be the hallmark of genes and noncoding RNAs linked with cell identity. Recent studies have identified SEs in CD4+ T cells and have further linked these regions to SNPs associated with immune-mediated disorders, pointing to an important role for these structures in the T cell differentiation and function. Here we review the features that define SEs, and discuss their function within the broader understanding of the mechanisms that define immune cell identity and function. We propose that SEs present crucial regulatory hubs, coordinating intrinsic and extrinsic differentiation signals, and argue that delineating these regions will provide important insight into the factors and mechanisms that define immune cell identity. PMID:26277449

  8. Super-enhancers: Asset management in immune cell genomes.

    PubMed

    Witte, Steven; O'Shea, John J; Vahedi, Golnaz

    2015-09-01

    Super-enhancers (SEs) are regions of the genome consisting of clusters of regulatory elements bound with very high amounts of transcription factors, and this architecture appears to be the hallmark of genes and noncoding RNAs linked with cell identity. Recent studies have identified SEs in CD4(+) T cells and have further linked these regions to single nucleotide polymorphisms (SNPs) associated with immune-mediated disorders, pointing to an important role for these structures in the T cell differentiation and function. Here we review the features that define SEs, and discuss their function within the broader understanding of the mechanisms that define immune cell identity and function. We propose that SEs present crucial regulatory hubs, coordinating intrinsic and extrinsic differentiation signals, and argue that delineating these regions will provide important insight into the factors and mechanisms that define immune cell identity. PMID:26277449

  9. Adaptive Immunity in Schizophrenia: Functional Implications of T Cells in the Etiology, Course and Treatment.

    PubMed

    Debnath, Monojit

    2015-12-01

    Schizophrenia is a severe and highly complex neurodevelopmental disorder with an unknown etiopathology. Recently, immunopathogenesis has emerged as one of the most compelling etiological models of schizophrenia. Over the past few years considerable research has been devoted to the role of innate immune responses in schizophrenia. The findings of such studies have helped to conceptualize schizophrenia as a chronic low-grade inflammatory disorder. Although the contribution of adaptive immune responses has also been emphasized, however, the precise role of T cells in the underlying neurobiological pathways of schizophrenia is yet to be ascertained comprehensively. T cells have the ability to infiltrate brain and mediate neuro-immune cross-talk. Conversely, the central nervous system and the neurotransmitters are capable of regulating the immune system. Neurotransmitter like dopamine, implicated widely in schizophrenia risk and progression can modulate the proliferation, trafficking and functions of T cells. Within brain, T cells activate microglia, induce production of pro-inflammatory cytokines as well as reactive oxygen species and subsequently lead to neuroinflammation. Importantly, such processes contribute to neuronal injury/death and are gradually being implicated as mediators of neuroprogressive changes in schizophrenia. Antipsychotic drugs, commonly used to treat schizophrenia are also known to affect adaptive immune system; interfere with the differentiation and functions of T cells. This understanding suggests a pivotal role of T cells in the etiology, course and treatment of schizophrenia and forms the basis of this review. PMID:26162591

  10. B cell regulation of anti-tumor immune response.

    PubMed

    Zhang, Yu; Morgan, Richard; Podack, Eckhard R; Rosenblatt, Joseph

    2013-12-01

    Our laboratory has been investigating the role of B cells on tumor immunity. We have studied the immune response in mice that are genetically lacking in B cells (BCDM) using a variety of syngeneic mouse tumors and compared immune responses in BCDM with those seen in wild type (WT) immunocompetent mice (ICM). A variety of murine tumors are rejected or inhibited in their growth in BCDM, compared with ICM, including the EL4 thymoma, and the MC38 colon carcinoma in C57BL/6 mice, as well as the EMT-6 breast carcinoma in BALB/c mice. In all three murine models, tumors show reduced growth in BCDM which is accompanied by increased T cell and NK cell infiltration, and a more vigorous Th1 cytokine response, and increased cytolytic T cell response in the absence of B cells. Reconstitution of the mice with B cells results in augmented tumor growth due to a diminished anti-tumor immune response and in reduction in CD8+ T cell and NK cell infiltration. Studies involving BCR transgenic mice indicated that B cells inhibit anti-tumor T cell responses through antigen non-specific mechanisms. More recent studies using the EMT-6 model demonstrated that both the number and function of Treg cells in ICM was increased relative to that seen in BCDM. Increased expansion of Treg cells was evident following EMT-6 implantation in ICM relative to that seen in non-tumor-bearing mice or BCDM. The percentage and number of Tregs in spleen, tumor draining lymph nodes, and the tumor bed are increased in ICM compared with BCDM. Treg functional capacity as measured by suppression assays appears to be reduced in BCDM compared with ICM. In contrast to other described types of B regulatory activity, adoptive transfer of B cells can rescue tumor growth independently of the ability of B cells to secrete IL-10, and also independently of MHC-II expression. In experiments using the MC38 adenocarcinoma model, BCDM reconstituted with WT B cells support tumor growth while tumor growth continues to be inhibited

  11. Tailored immunity by skin antigen-presenting cells

    PubMed Central

    Levin, Clement; Perrin, Helene; Combadiere, Behazine

    2014-01-01

    Skin vaccination aims at targeting epidermal and dermal antigen-presenting cells (APCs), indeed many subsets of different origin endowed with various functions populate the skin. The idea that the skin could represent a particularly potent site to induce adaptive and protective immune response emerged after the success of vaccinia virus vaccination by skin scarification. Recent advances have shown that multiple subsets of APCs coexist in the skin and participate in immunity to infectious diseases. Induction of an adaptive immune response depends on the initial recognition and capture of antigens by skin APCs and their transport to lymphoid organs. Innovative strategies of vaccination have thus been developed to target skin APCs for tailored immunity, hence this review will discuss recent insights into skin APC subsets characterization and how they can shape adaptive immune responses. PMID:25483512

  12. Dual role of B cells in mediating innate and acquired immunity to herpes simplex virus infections.

    PubMed

    Deshpande, S P; Kumaraguru, U; Rouse, B T

    2000-06-15

    mu-immunoglobulin chain gene targeted B-cell-deficient mice of susceptible BALB/c strain and resistant C57B1/6 strain are up to 100- to 1000-fold more susceptible to cutaneous infection by herpes simplex virus (HSV) than the respective control wild type mice. The effect of the lack of B cells on immunity to HSV infections was analyzed and B cells were found to play a dual role in affecting both innate and acquired immune responses. Natural antibodies (IgM isotype), reactive with HSV have an anti-viral effect in the innate control of primary cutaneous HSV infection. B cells can also function as antigen-presenting cells for the stimulation of HSV-specific CD4+ T-cell responses. Consequently, CD4+ T cells and interferon-gamma responses were found to be significantly impaired in HSV-infected B-cell-deficient mice compared to that seen in control mice. No significant differences were found in natural-killer-cell- or HSV-specific CD8+ T-cell activity between control and B-cell-deficient mice. Our results imply a role for B cell in mediating innate and CD4+ T-cell-specific immunity in determining susceptibility to primary HSV infections. PMID:10896767

  13. Regulation of local immunity by airway epithelial cells.

    PubMed

    Mayer, Anja K; Dalpke, Alexander H

    2007-01-01

    Epithelial cells are the first line of defense against invading microbial pathogens. They are important contributors to innate mucosal immunity and generate various and sophisticated anti-microbial defense mechanisms, including the formation of a tight barrier and secretion of anti-microbial substances as well as inflammatory mediators. To provide these active defense mechanisms, epithelial cells functionally express various pattern-recognition receptors. Toll-like receptors have been shown to recognize conserved microbial patterns mediating inducible activation of innate immunity. Mucosal surfaces, however, are prone to contact with pathogenic as well as non-pathogenic microbes and, therefore, immune-recognition principles have to be strictly regulated to avoid uncontrolled permanent activation. This review will focus on mechanisms by which epithelial cells regulate mucosal immune responses, thus creating an organ-specific microenvironment. This includes local adaptations in microbial recognition, regulation of local immune homeostasis, and modulation of antigen-presenting cells and adaptive immune responses. These regulatory mechanisms serve the special needs of controlled microbial recognition in mucosal compartments. PMID:18060372

  14. Secondary specific immune response in vitro to MSV tumor cells.

    PubMed

    Senik, A; Hebrero, F P; Levy, J P

    1975-12-15

    The interactions which occur between antigenic tumor cells and normal or immune lymphoid cells in a 3-day in vitro culture, have been studied with a murine sarcoma virus (MSV)-induced tumor. The 3H-thymidine incorporation of lymphoma cells growing in suspension, and the radioactive-chromium release of freshly sampled lymphoma cells regularly added to the culture, have been compared to determine the part played by immune lymphoid cells in cytolysis and cytostasis of the tumor-cell population. The cytolytic activity increases in the culture from day 0 to day 3. It is due, predominantly, to T-cells, and remains specific to antigens shared by MSV tumors and related lymphomas. This activity would be difficult to detect unless freshly sampled ascitic cells were used as targets, since the lymphoma cells spontaneously lose a part of their sensitivity to immune cytolysis during in vitro culture. The method used in the present experiments is a secondary chromium release test (SCRT), which measures the invitro secondary stimulation of cytotoxic T-lymphocytes (CTL) by tumor cells. In the absence of stimulatory cells, the CTL activity would have rapidly fallen in vitro. The cytostatic activity also increases during the 3 days in vitro, in parallel to the cytolytic activity: it is due to non-T-cells and remains mainly non-specific. The significance of these data for the interpretation of invitro demonstrated cell-mediated anti-tumor immune reactions is briefly discussed, as well as their relevance in the in vivo role of immune CTL. PMID:53210

  15. Regulatory T cells in immune-mediated renal disease.

    PubMed

    Ghali, Joanna R; Wang, Yuan Min; Holdsworth, Stephen R; Kitching, A Richard

    2016-02-01

    Regulatory T cells (Tregs) are CD4+ T cells that can suppress immune responses by effector T cells, B cells and innate immune cells. This review discusses the role that Tregs play in murine models of immune-mediated renal diseases and acute kidney injury and in human autoimmune kidney disease (such as systemic lupus erythematosus, anti-glomerular basement membrane disease, anti-neutrophil cytoplasmic antibody-associated vasculitis). Current research suggests that Tregs may be reduced in number and/or have impaired regulatory function in these diseases. Tregs possess several mechanisms by which they can limit renal and systemic inflammatory immune responses. Potential therapeutic applications involving Tregs include in vivo induction of Tregs or inducing Tregs from naïve CD4+ T cells or expanding natural Tregs ex vivo, to use as a cellular therapy. At present, the optimal method of generating a phenotypically stable pool of Tregs with long-lasting suppressive effects is not established, but human studies in renal transplantation are underway exploring the therapeutic potential of Tregs as a cellular therapy, and if successful may have a role as a novel therapy in immune-mediated renal diseases. PMID:26206106

  16. Eliminating Encephalitogenic T Cells without Undermining Protective Immunity

    PubMed Central

    McNally, Jonathan P.; Elfers, Eileen E.; Terrell, Catherine E.; Grunblatt, Eli; Hildeman, David A.

    2014-01-01

    The current clinical approach for treating autoimmune diseases is to broadly blunt immune responses as a means of preventing autoimmune pathology. Among the major side effects of this strategy are depressed beneficial immunity and increased rates of infections and tumors. Using the experimental autoimmune encephalomyelitis model for human multiple sclerosis, we report a novel alternative approach for purging autoreactive T cells that spares beneficial immunity. The moderate and temporally limited use of etoposide, a topoisomerase inhibitor, to eliminate encephalitogenic T cells significantly reduces the onset and severity of experimental autoimmune encephalomyelitis, dampens cytokine production and overall pathology, while dramatically limiting the off-target effects on naive and memory adaptive immunity. Etoposide-treated mice show no or significantly ameliorated pathology with reduced antigenic spread, yet have normal T cell and T-dependent B cell responses to de novo antigenic challenges as well as unimpaired memory T cell responses to viral rechallenge. Thus, etoposide therapy can selectively ablate effector T cells and limit pathology in an animal model of autoimmunity while sparing protective immune responses. This strategy could lead to novel approaches for the treatment of autoimmune diseases with both enhanced efficacy and decreased treatment-associated morbidities. PMID:24277699

  17. Monocyte Heterogeneity: Consequences for Monocyte-Derived Immune Cells

    PubMed Central

    de Vries, Teun J.; Everts, Vincent

    2016-01-01

    Blood monocytes are precursors of dendritic cells, macrophages, and osteoclasts. They are a heterogeneous cell population with differences in size, phenotype, and function. Although monocytes maintain several tissue-specific populations of immune cells in homeostasis, their contribution to populations of dendritic cells, macrophages, and osteoclasts is significantly increased in inflammation. Identification of a growing number of functionally different subsets of cells within populations of monocyte-derived immune cells has recently put monocyte heterogeneity into sharp focus. Here, we summarize recent findings in monocyte heterogeneity and their differentiation into dendritic cells, macrophages, and osteoclasts. We also discuss these advances in the context of the formation of functionally different monocyte-derived subsets of dendritic cells, macrophages, and osteoclasts. PMID:27478854

  18. Antidrug Antibodies: B Cell Immunity Against Therapy.

    PubMed

    Fogdell-Hahn, A

    2015-09-01

    Chronic inflammatory diseases are now treated with a range of different biopharmaceuticals, often requiring lifelong parenteral administrations. This exposure to drugs is unnatural and can trigger the immune system and result in the formation of antidrug antibodies. Drug-specific antibodies will, if of sufficiently high titre and affinity, block the intended effect of the drug, increase its clearance and make continued treatment worthless. We expect the immune system to react towards therapies against which tolerance has never been established, which is the case for factor VIII treatment in patients with haemophilia A. However, even biopharmaceutical molecules that we should be tolerant against can elicit antidrug antibodies, for instance in treatment of multiple sclerosis patients with recombinant human interferon-beta. Possible immunological mechanisms behind the breaking of tolerance against drugs, the impact this has on continuous treatment success, clinical practice and drug development, will be discussed in this review. PMID:26098690

  19. Flow Cytometric Analysis of Immune Cells Within Murine Aorta.

    PubMed

    Gjurich, Breanne N; Taghavie-Moghadam, Parésa L; Galkina, Elena V

    2015-01-01

    The immune system plays a critical role in the modulation of atherogenesis at all stages of the disease. However, there are many technical difficulties when studying the immune system within murine aortas. Common techniques such as PCR and immunohistochemistry have answered many questions about the presence of immune cells and mediators of inflammation within the aorta yet many questions remain unanswered due to the limitations of these techniques. On the other hand, cumulatively the flow cytometry approach has propelled the immunology field forward but it has been challenging to apply this technique to aortic tissues. Here, we describe the methodology to isolate and characterize the immune cells within the murine aorta and provide examples of functional assays for aortic leukocytes using flow cytometry. The method involves the harvesting and enzymatic digestion of the aorta, extracellular and intracellular protein staining, and a subsequent flow cytometric analysis. PMID:26445788

  20. Regulation of innate immune cell function by mTOR.

    PubMed

    Weichhart, Thomas; Hengstschläger, Markus; Linke, Monika

    2015-10-01

    The innate immune system is central for the maintenance of tissue homeostasis and quickly responds to local or systemic perturbations by pathogenic or sterile insults. This rapid response must be metabolically supported to allow cell migration and proliferation and to enable efficient production of cytokines and lipid mediators. This Review focuses on the role of mammalian target of rapamycin (mTOR) in controlling and shaping the effector responses of innate immune cells. mTOR reconfigures cellular metabolism and regulates translation, cytokine responses, antigen presentation, macrophage polarization and cell migration. The mTOR network emerges as an integrative rheostat that couples cellular activation to the environmental and intracellular nutritional status to dictate and optimize the inflammatory response. A detailed understanding of how mTOR metabolically coordinates effector responses by myeloid cells will provide important insights into immunity in health and disease. PMID:26403194

  1. Neonatal Phytoestrogen Exposure Alters Oviduct Mucosal Immune Response to Pregnancy and Affects Preimplantation Embryo Development in the Mouse1

    PubMed Central

    Jefferson, Wendy N.; Padilla-Banks, Elizabeth; Phelps, Jazma Y.; Cantor, Amy M.; Williams, Carmen J.

    2012-01-01

    ABSTRACT Treatment of neonatal mice with the phytoestrogen genistein (50 mg/kg/day) results in complete female infertility caused in part by preimplantation embryo loss in the oviduct between Days 2 and 3 of pregnancy. We previously demonstrated that oviducts of genistein-treated mice are “posteriorized” as compared to control mouse oviducts because they express numerous genes normally restricted to posterior regions of the female reproductive tract (FRT), the cervix and vagina. We report here that neonatal genistein treatment resulted in substantial changes in oviduct expression of genes important for the FRT mucosal immune response, including immunoglobulins, antimicrobials, and chemokines. Some of the altered immune response genes were chronically altered beginning at the time of neonatal genistein treatment, indicating that these alterations were a result of the posteriorization phenotype. Other alterations in oviduct gene expression were observed only in early pregnancy, immediately after the FRT was exposed to inflammatory or antigenic stimuli from ovulation and mating. The oviduct changes affected development of the surviving embryos by increasing the rate of cleavage and decreasing the trophectoderm-to-inner cell mass cell ratio at the blastocyst stage. We conclude that both altered immune responses to pregnancy and deficits in oviduct support for preimplantation embryo development in the neonatal genistein model are likely to contribute to infertility phenotype. PMID:22553218

  2. Spaceflight alters immune cell function and distribution

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Mandel, Adrian D.; Konstantinova, Irina V.; Berry, Wallace D.; Taylor, Gerald R.; Lesniak, A. T.; Fuchs, Boris B.; Rakhmilevich, Alexander L.

    1992-01-01

    Experiments are described which were performed onboard Cosmos 2044 to determine spaceflight effects on immunologically important cell function and distribution. Results indicate that bone marrow cells from flown and suspended rats exhibited a decreased response to a granulocyte/monocyte colony-stimulating factor compared with the bone marrow cells from control rats. Bone marrow cells showed an increase in the percentage of cells expressing markers for helper T-cells in the myelogenous population and increased percentages of anti-asialo granulocyte/monocyte-1-bearing interleulin-2 receptor bearing pan T- and helper T-cells in the lymphocytic population.

  3. Regenerative function of immune system: Modulation of muscle stem cells.

    PubMed

    Saini, Jasdeep; McPhee, Jamie S; Al-Dabbagh, Sarah; Stewart, Claire E; Al-Shanti, Nasser

    2016-05-01

    Ageing is characterised by progressive deterioration of physiological systems and the loss of skeletal muscle mass is one of the most recognisable, leading to muscle weakness and mobility impairments. This review highlights interactions between the immune system and skeletal muscle stem cells (widely termed satellite cells or myoblasts) to influence satellite cell behaviour during muscle regeneration after injury, and outlines deficits associated with ageing. Resident neutrophils and macrophages in skeletal muscle become activated when muscle fibres are damaged via stimuli (e.g. contusions, strains, avulsions, hyperextensions, ruptures) and release high concentrations of cytokines, chemokines and growth factors into the microenvironment. These localised responses serve to attract additional immune cells which can reach in excess of 1×10(5) immune cell/mm(3) of skeletal muscle in order to orchestrate the repair process. T-cells have a delayed response, reaching peak activation roughly 4 days after the initial damage. The cytokines and growth factors released by activated T-cells play a key role in muscle satellite cell proliferation and migration, although the precise mechanisms of these interactions remain unclear. T-cells in older people display limited ability to activate satellite cell proliferation and migration which is likely to contribute to insufficient muscle repair and, consequently, muscle wasting and weakness. If the factors released by T-cells to activate satellite cells can be identified, it may be possible to develop therapeutic agents to enhance muscle regeneration and reduce the impact of muscle wasting during ageing and disease. PMID:27039885

  4. Innate immune natural killer cells and their role in HIV and SIV infection

    PubMed Central

    Bostik, Pavel; Takahashi, Yoshiaki; Mayne, Ann E; Ansari, Aftab A

    2010-01-01

    The findings that early events during HIV-1 and SIV infection of Asian rhesus macaques dictate the levels of viremia and rate of disease progression prior to the establishment of mature and effective adaptive immune responses strongly suggest an important role for innate immune mechanisms. In addition, the fact that the major target of HIV and SIV during this period of acute infection is the gastrointestinal tissue suggests that whatever role the innate immune system plays must either directly and/or indirectly focus on the GI tract. The object of this article is to provide a general overview of the innate immune system with a focus on natural killer (NK) cells and their role in the pathogenesis of lentivirus infection. The studies summarized include our current understanding of the phenotypic heterogeneity, the putative functions ascribed to the subsets, the maturation/differentiation of NK cells, the mechanisms by which their function is mediated and regulated, the studies of these NK-cell subsets, with a focus on killer cell immunoglobulin-like receptors (KIRs) in nonhuman primates and humans, and finally, how HIV and SIV infection affects these NK cells in vivo. Clearly much has yet to be learnt on how the innate immune system influences the interaction between lentiviruses and the host within the GI tract, knowledge of which is reasoned to be critical for the formulation of effective vaccines against HIV-1. PMID:20730028

  5. Studies of Cell-Mediated Immunity Against Immune Disorders Using Synthetic Peptides and Rotating Bioreactor System

    NASA Technical Reports Server (NTRS)

    Sastry, Jagannadha K.

    1997-01-01

    Our proposed experiments included: (1) immunzing mice with synthetic peptides; (2) preparing spleen and lymph node cells; (3) growing them under conventional conditions as well as in the rotatory vessel in appropriate medium reconstituting with synthetic peptides and/or cytokines as needed; and (4) comparing at regular time intervals the specific CTL activity as well as helper T-cell activity (in terms of both proliferative responses and cytokine production) using established procedures in my laboratory. We further proposed that once we demonstrated the merit of rotatory vessel technology to achieve desired results, these studies would be expanded to include immune cells from non-human primates (rhesus monkeys and chimpanzees) and also humans. We conducted a number of experiments to determine CTL induction by the synthetic peptides corresponding to antigenic proteins in HIV and HPV in different mouse strains that express MHC haplotypes H-2b or H-2d. We immunized mice with 100 ug of the synthetic peptide, suspended in sterile water, and emulsified in CFA (1:1). The immune lymph node cells obtained after 7 days were restimulated by culturing in T25 flask, HARV-10, or STLV-50, in the presence of the peptide at 20 ug/ml. The results from the 5'Cr-release assay consistently revealed complete abrogation of CTL activity of cells grown in the bioreactors (both HARV and STLV), while significant antigen-specific CTL activity was observed with cells cultured in tissue culture flasks. Thus, overall the data we generated in this study proved the usefulness of the NASA-developed developed technology for understanding the known immune deficiency during space travel. Additionally, this ex vivo microgravity technology since it mimics effectively the in vivo situation, it is also useful in understanding immune disorders in general. Thus, our proposed studies in TMC-NASA contract round II application benefit from data generated in this TMC-NASA contract round I study.

  6. Marginal zone B-cells, a gatekeeper of innate immunity.

    PubMed

    Zouali, Moncef; Richard, Yolande

    2011-01-01

    To maintain the integrity of an organism constantly challenged by pathogens, the immune system is endowed with a variety of cell types. B lymphocytes were initially thought to only play a role in the adaptive branch of immunity. However, a number of converging observations revealed that two B-cell subsets, marginal zone (MZ) and B1 cells, exhibit unique developmental and functional characteristics, and can contribute to innate immune responses. In addition to their capacity to mount a local antibody response against type-2 T-cell-independent (TI-2) antigens, MZ B-cells can participate to T-cell-dependent (TD) immune responses through the capture and import of blood-borne antigens to follicular areas of the spleen. Here, we discuss the multiple roles of MZ B-cells in humans, non-human primates, and rodents. We also summarize studies - performed in transgenic mice expressing fully human antibodies on their B-cells and in macaques whose infection with Simian immunodeficiency virus (SIV) represents a suitable model for HIV-1 infection in humans - showing that infectious agents have developed strategies to subvert MZ B-cell functions. In these two experimental models, we observed that two microbial superantigens for B-cells (protein A from Staphylococcus aureus and protein L from Peptostreptococcus magnus) as well as inactivated AT-2 virions of HIV-1 and infectious SIV preferentially deplete innate-like B-cells - MZ B-cells and/or B1 B-cells - with different consequences on TI and TD antibody responses. These data revealed that viruses and bacteria have developed strategies to deplete innate-like B-cells during the acute phase of infection and to impair the antibody response. Unraveling the intimate mechanisms responsible for targeting MZ B-cells in humans will be important for understanding disease pathogenesis and for designing novel vaccine strategies. PMID:22566852

  7. Sea urchin immune cells as sentinels of environmental stress.

    PubMed

    Pinsino, Annalisa; Matranga, Valeria

    2015-03-01

    Echinoderms, an ancient and very successful phylum of marine invertebrates, play a central role in the maintenance of ecosystem integrity and are constantly exposed to environmental pressure, including: predation, changes in temperature and pH, hypoxia, pathogens, UV radiation, metals, toxicants, and emerging pollutants like nanomaterials. The annotation of the sea urchin genome, so closely related to humans and other vertebrate genomes, revealed an unusually complex immune system, which may be the basis for why sea urchins can adapt to different marine environments and survive even in hazardous conditions. In this review, we give a brief overview of the morphological features and recognized functions of echinoderm immune cells with a focus on studies correlating stress and immunity in the sea urchin. Immune cells from adult Paracentrotus lividus, which have been introduced in the last fifteen years as sentinels of environmental stress, are valid tools to uncover basic molecular and regulatory mechanisms of immune responses, supporting their use in immunological research. Here we summarize laboratory and field studies that reveal the amenability of sea urchin immune cells for toxicological testing. PMID:25463510

  8. Orchestration of pulmonary T cell immunity during Mycobacterium tuberculosis infection: immunity interruptus

    PubMed Central

    Behar, Samuel M.; Carpenter, Stephen M.; Booty, Matthew G.; Barber, Daniel L.; Jayaraman, Pushpa

    2014-01-01

    Despite the introduction almost a century ago of Mycobacterium bovis BCG (BCG), an attenuated form of M. bovis that is used as a vaccine against Mycobacterium tuberculosis, tuberculosis remains a global health threat and kills more than 1.5 million people each year. This is mostly because BCG fails to prevent pulmonary disease – the contagious form of tuberculosis. Although there have been significant advances in understanding how the immune system responds to infection, the qualities that define protective immunity against M. tuberculosis remain poorly characterized. The ability to predict who will maintain control over the infection and who will succumb to clinical disease would revolutionize our approach to surveillance, control, and treatment. Here we review the current understanding of pulmonary T cell responses following M. tuberculosis infection. While infection elicits a strong immune response that contains infection, M. tuberculosis evades eradication. Traditionally, its intracellular lifestyle and alteration of macrophage function are viewed as the dominant mechanisms of evasion. Now we appreciate that chronic inflammation leads to T cell dysfunction. While this may arise as the host balances the goals of bacterial sterilization and avoidance of tissue damage, it is becoming clear that T cell dysfunction impairs host resistance. Defining the mechanisms that lead to T cell dysfunction is crucial as memory T cell responses are likely to be subject to the same subject to the same pressures. Thus, success of T cell based vaccines is predicated on memory T cells avoiding exhaustion while at the same time not promoting overt tissue damage. PMID:25311810

  9. Immune response to stem cells and strategies to induce tolerance.

    PubMed

    Batten, Puspa; Rosenthal, Nadia A; Yacoub, Magdi H

    2007-08-29

    Although recent progress in cardiovascular tissue engineering has generated great expectations for the exploitation of stem cells to restore cardiac form and function, the prospects of a common mass-produced cell resource for clinically viable engineered tissues and organs remain problematic. The refinement of stem cell culture protocols to increase induction of the cardiomyocyte phenotype and the assembly of transplantable vascularized tissue are areas of intense current research, but the problem of immune rejection of heterologous cell type poses perhaps the most significant hurdle to overcome. This article focuses on the potential advantages and problems encountered with various stem cell sources for reconstruction of the damaged or failing myocardium or heart valves and also discusses the need for integrating advances in developmental and stem cell biology, immunology and tissue engineering to achieve the full potential of cardiac tissue engineering. The ultimate goal is to produce 'off-the-shelf' cells and tissues capable of inducing specific immune tolerance. PMID:17584730

  10. IgE epitope proximity determines immune complex shape and effector cell activation capacity

    PubMed Central

    Gieras, Anna; Linhart, Birgit; Roux, Kenneth H.; Dutta, Moumita; Khodoun, Marat; Zafred, Domen; Cabauatan, Clarissa R.; Lupinek, Christian; Weber, Milena; Focke-Tejkl, Margarete; Keller, Walter; Finkelman, Fred D.; Valenta, Rudolf

    2016-01-01

    Background IgE-allergen complexes induce mast cell and basophil activation and thus immediate allergic inflammation. They are also important for IgE-facilitated allergen presentation to T cells by antigen-presenting cells. Objective To investigate whether the proximity of IgE binding sites on an allergen affects immune complex shape and subsequent effector cell activation in vitro and in vivo. Methods We constructed artificial allergens by grafting IgE epitopes in different numbers and proximity onto a scaffold protein. The shape of immune complexes formed between artificial allergens and the corresponding IgE was studied by negative-stain electron microscopy. Allergenic activity was determined using basophil activation assays. Mice were primed with IgE, followed by injection of artificial allergens to evaluate their in vivo allergenic activity. Severity of systemic anaphylaxis was measured by changes in body temperature. Results We could demonstrate simultaneous binding of 4 IgE antibodies in close vicinity to each other. The proximity of IgE binding sites on allergens influenced the shape of the resulting immune complexes and the magnitude of effector cell activation and in vivo inflammation. Conclusions Our results demonstrate that the proximity of IgE epitopes on an allergen affects its allergenic activity. We thus identified a novel mechanism by which IgE-allergen complexes regulate allergic inflammation. This mechanism should be important for allergy and other immune complex–mediated diseases. PMID:26684291

  11. Effects of spaceflight on levels and activity of immune cells

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Berry, Wallace D.; Mandel, Adrian D.; Konstantinova, Irena V.; Taylor, Gerald R.

    1990-01-01

    Experiments were carried out on cells from rats that had been flown on Soviet Biosputnik Cosmos 1887 to explore the effects of speceflight on immune responses. Rat bone marrow cells were examined for their response to colony stimulating factor-M. Rat spleen and bone marrow cells were stained with antibodies directed against cell surface antigenic markers. The results of the studies indicate that bone marrow cells from flown rats showed a decreased response to colony stimulating factor. There was a higher percentage of spleen cells from flown rats staining positively for pan-T-cell, suppressor-T-cell, and interleukin-2 receptor cell surface antigens. A small increase in the percentage of cells staining positively for helper-T-cell antigens was also noted. In addition, a higher percentage of cells that appeared to be part of the myelogenous population of bone marrow cells from flown rats stained positively for surface immunoglobulin.

  12. How sex and age affect immune responses, susceptibility to infections, and response to vaccination

    PubMed Central

    Giefing-Kröll, Carmen; Berger, Peter; Lepperdinger, Günter; Grubeck-Loebenstein, Beatrix

    2015-01-01

    Do men die young and sick, or do women live long and healthy? By trying to explain the sexual dimorphism in life expectancy, both biological and environmental aspects are presently being addressed. Besides age-related changes, both the immune and the endocrine system exhibit significant sex-specific differences. This review deals with the aging immune system and its interplay with sex steroid hormones. Together, they impact on the etiopathology of many infectious diseases, which are still the major causes of morbidity and mortality in people at old age. Among men, susceptibilities toward many infectious diseases and the corresponding mortality rates are higher. Responses to various types of vaccination are often higher among women thereby also mounting stronger humoral responses. Women appear immune-privileged. The major sex steroid hormones exhibit opposing effects on cells of both the adaptive and the innate immune system: estradiol being mainly enhancing, testosterone by and large suppressive. However, levels of sex hormones change with age. At menopause transition, dropping estradiol potentially enhances immunosenescence effects posing postmenopausal women at additional, yet specific risks. Conclusively during aging, interventions, which distinctively consider the changing level of individual hormones, shall provide potent options in maintaining optimal immune functions. PMID:25720438

  13. Immune System 101

    MedlinePlus

    ... your healthy cells. How HIV Affects This Complex Process HIV disrupts this process by directly infecting the helper T-cells. Your ... T-cells are destroyed in the HIV replication process. For more information, see NIAID's The Immune System . ...

  14. Natural T cell immunity against cancer.

    PubMed

    Nagorsen, Dirk; Scheibenbogen, Carmen; Marincola, Francesco M; Letsch, Anne; Keilholz, Ulrich

    2003-10-01

    It has long been a matter of debate whether tumors are spontaneously immunogenic in patients. With the availability of sensitive methods, naturally occurring T cells directed against tumor-associated antigens (TAAs) can be frequently detected in cancer patients. In this review, we summarize the current data on T cell responses to TAAs in various malignancies, including melanoma, colorectal cancer, leukemia, and breast cancer. T cell responses against various antigens, including melanoma differentiation antigens, carcinoembryonic antigen, epithelial cell adhesion molecule, her-2/neu, Wilms' tumor protein, proteinase 3, NY-ESO-1, and surviving, have been reported in a substantial number of patients. In contrast, other TAAs, including most antigens of the MAGE family, do not usually elicit spontaneous T cell responses. A distinction between direct ex vivo T cell responses and in vitro-generated T cell responses is provided because in vitro stimulation results in quantitative and functional changes of T cell responses. The possible role of TAA-specific T cells in immunosurveillance and tumor escape and the implications for immunological treatment strategies are discussed. Naturally occurring T cells against TAAs are a common phenomenon in tumor patients. Understanding the mechanisms and behavior of natural TAA-specific T cells could provide crucial information for rational development of more efficient T cell-directed immunotherapy. PMID:14555498

  15. Single Nucleotide Polymorphisms of Human STING Can Affect Innate Immune Response to Cyclic Dinucleotides

    PubMed Central

    Yi, Guanghui; Brendel, Volker P.; Shu, Chang; Li, Pingwei; Palanathan, Satheesh; Cheng Kao, C.

    2013-01-01

    The STING (stimulator of interferon genes) protein can bind cyclic dinucleotides to activate the production of type I interferons and inflammatory cytokines. The cyclic dinucleotides can be bacterial second messengers c-di-GMP and c-di-AMP, 3’5’-3’5’ cyclic GMP-AMP (3’3’ cGAMP) produced by Vibrio cholerae and metazoan second messenger 2’5’-3’5’ Cyclic GMP-AMP (2’3’ cGAMP). Analysis of single nucleotide polymorphism (SNP) data from the 1000 Genome Project revealed that R71H-G230A-R293Q (HAQ) occurs in 20.4%, R232H in 13.7%, G230A-R293Q (AQ) in 5.2%, and R293Q in 1.5% of human population. In the absence of exogenous ligands, the R232H, R293Q and AQ SNPs had only modest effect on the stimulation of IFN-β and NF-κB promoter activities in HEK293T cells, while HAQ had significantly lower intrinsic activity. The decrease was primarily due to the R71H substitution. The SNPs also affected the response to the cyclic dinucleotides. In the presence of c-di-GMP, the R232H variant partially decreased the ability to activate IFN-βsignaling, while it was defective for the response to c-di-AMP and 3’3’ cGAMP. The R293Q dramatically decreased the stimulatory response to all bacterial ligands. Surprisingly, the AQ and HAQ variants maintained partial abilities to activate the IFN-β signaling in the presence of ligands due primarily to the G230A substitution. Biochemical analysis revealed that the recombinant G230A protein could affect the conformation of the C-terminal domain of STING and the binding to c-di-GMP. Comparison of G230A structure with that of WT revealed that the conformation of the lid region that clamps onto the c-di-GMP was significantly altered. These results suggest that hSTING variation can affect innate immune signaling and that the common HAQ haplotype expresses a STING protein with reduced intrinsic signaling activity but retained the ability to response to bacterial cyclic dinucleotides. PMID:24204993

  16. PTPROt maintains T cell immunity in the microenvironment of hepatocellular carcinoma.

    PubMed

    Hou, Jiajie; Deng, Lei; Zhuo, Han; Lin, Zhe; Chen, Yun; Jiang, Runqiu; Chen, Dianyu; Zhang, Xudong; Huang, Xingxu; Sun, Beicheng

    2015-08-01

    Intratumoral T cells play a central role in anti-tumor immunity, and the balance between T effector cells (Teff) and regulatory T cells (Treg) affects the prognosis of cancer patients. However, educated by tumor microenvironment, T cells frequently fail in their responsibility. In this study, we aimed to investigate the role of truncated isoform of protein tyrosine phosphatase receptor-type O (PTPROt) in T cell-mediated anti-tumor immunity. We recruited 70 hepatocellular carcinoma (HCC) patients and 30 healthy volunteers for clinical investigation, and analyzed cellular tumor immunity by using ptpro(-/-) C57BL/6 mice and NOD/SCID mice. PTPROt expression was significantly downregulated in human HCC-infiltrating T cells due to the hypoxia microenvironment; PTPROt expression highly correlated with the intratumoral Teff/Treg ratio and clinicopathologic characteristics. Moreover, PTPROt deficiency attenuated T cell-mediated anti-tumor immunity and remarkably promoted mouse HCC growth. Mechanistically, deletion of PTPROt decreased Teff quantity and quality through phosphorylation of lymphocyte-specific tyrosine kinase, but increased Treg differentiation through phosphorylation of signal transducer and activator of transcription 5. In support of the Teff/Treg homeostasis, PTPROt serves as an important tumor suppressor in HCC microenvironment. PMID:26117839

  17. Genetic immunization converts the trypanosoma cruzi B-Cell mitogen proline racemase to an effective immunogen.

    PubMed

    Bryan, Marianne A; Norris, Karen A

    2010-02-01

    Trypanosoma cruzi is the etiologic agent of Chagas' disease. Acute T. cruzi infection results in polyclonal B-cell activation and delayed specific humoral immunity. T. cruzi proline racemase (TcPRAC), a T. cruzi B-cell mitogen, may contribute to this dysfunctional humoral response. Stimulation of murine splenocytes with recombinant protein (rTcPRAC) induced B-cell proliferation, antibody secretion, interleukin-10 (IL-10) production, and upregulation of CD69 and CD86 on B cells. Marginal zone (MZ) B cells are more responsive to T-cell-independent (TI) rTcPRAC stimulation than are follicular mature (FM) B cells in terms of proliferation, antibody secretion, and IL-10 production. During experimental T. cruzi infection, TcPRAC-specific IgG remained undetectable when responses to other T. cruzi antigens developed. Conversely, intradermal genetic immunization via gene gun (GG) delivered TcPRAC as an immunogen, generating high-titer TcPRAC-specific IgG without B-cell dysfunction. TcPRAC GG immunization led to antigen-specific splenic memory B-cell and bone marrow plasma cell formation. TcPRAC-specific IgG bound mitogenic rTcPRAC, decreasing subsequent B-cell activation. GG immunization with rTcPRAC DNA was nonmitogenic and did not affect the generation of specific IgG to another T. cruzi antigen, complement regulatory protein (CRP). These data demonstrate the utility of genetic immunization for the conversion of a protein mitogen to an effective antigen. Furthermore, coimmunization of TcPRAC with another T. cruzi antigen indicates the usefulness of this approach for multivalent vaccine development. PMID:19917711

  18. Innate Immune Defenses in Human Tuberculosis: An Overview of the Interactions between Mycobacterium tuberculosis and Innate Immune Cells.

    PubMed

    Sia, Jonathan Kevin; Georgieva, Maria; Rengarajan, Jyothi

    2015-01-01

    Tuberculosis (TB) remains a serious global public health problem that results in up to 2 million deaths each year. TB is caused by the human pathogen, Mycobacterium tuberculosis (Mtb), which infects primarily innate immune cells patrolling the lung. Innate immune cells serve as barometers of the immune response against Mtb infection by determining the inflammatory milieu in the lungs and promoting the generation of adaptive immune responses. However, innate immune cells are also potential niches for bacterial replication and are readily manipulated by Mtb. Our understanding of the early interactions between Mtb and innate immune cells is limited, especially in the context of human infection. This review will focus on Mtb interactions with human macrophages, dendritic cells, neutrophils, and NK cells and detail evidence that Mtb modulation of these cells negatively impacts Mtb-specific immune responses. Furthermore, this review will emphasize important innate immune pathways uncovered through human immunogenetic studies. Insights into the human innate immune response to Mtb infection are necessary for providing a rational basis for the augmentation of immune responses against Mtb infection, especially with respect to the generation of effective anti-TB immunotherapeutics and vaccines. PMID:26258152

  19. Innate Immune Defenses in Human Tuberculosis: An Overview of the Interactions between Mycobacterium tuberculosis and Innate Immune Cells

    PubMed Central

    Sia, Jonathan Kevin; Georgieva, Maria; Rengarajan, Jyothi

    2015-01-01

    Tuberculosis (TB) remains a serious global public health problem that results in up to 2 million deaths each year. TB is caused by the human pathogen, Mycobacterium tuberculosis (Mtb), which infects primarily innate immune cells patrolling the lung. Innate immune cells serve as barometers of the immune response against Mtb infection by determining the inflammatory milieu in the lungs and promoting the generation of adaptive immune responses. However, innate immune cells are also potential niches for bacterial replication and are readily manipulated by Mtb. Our understanding of the early interactions between Mtb and innate immune cells is limited, especially in the context of human infection. This review will focus on Mtb interactions with human macrophages, dendritic cells, neutrophils, and NK cells and detail evidence that Mtb modulation of these cells negatively impacts Mtb-specific immune responses. Furthermore, this review will emphasize important innate immune pathways uncovered through human immunogenetic studies. Insights into the human innate immune response to Mtb infection are necessary for providing a rational basis for the augmentation of immune responses against Mtb infection, especially with respect to the generation of effective anti-TB immunotherapeutics and vaccines. PMID:26258152

  20. Immune cell profiling to guide therapeutic decisions in rheumatic diseases

    PubMed Central

    Ermann, Joerg; Rao, Deepak A.; Teslovich, Nikola C.; Brenner, Michael B.; Raychaudhuri, Soumya

    2016-01-01

    Biomarkers are needed to guide treatment decisions for patients with rheumatic diseases. Although the phenotypic and functional analysis of immune cells is an appealing strategy for understanding immune-mediated disease processes, immune cell profiling currently has no role in clinical rheumatology. New technologies, including mass cytometry, gene expression profiling by RNA sequencing (RNA-seq) and multiplexed functional assays, enable the analysis of immune cell function with unprecedented detail and promise not only a deeper understanding of pathogenesis, but also the discovery of novel biomarkers. The large and complex data sets generated by these technologies—big data—require specialized approaches for analysis and visualization of results. Standardization of assays and definition of the range of normal values are additional challenges when translating these novel approaches into clinical practice. In this Review, we discuss technological advances in the high-dimensional analysis of immune cells and consider how these developments might support the discovery of predictive biomarkers to benefit the practice of rheumatology and improve patient care. PMID:26034835

  1. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees.

    PubMed

    Di Prisco, Gennaro; Cavaliere, Valeria; Annoscia, Desiderato; Varricchio, Paola; Caprio, Emilio; Nazzi, Francesco; Gargiulo, Giuseppe; Pennacchio, Francesco

    2013-11-12

    Large-scale losses of honey bee colonies represent a poorly understood problem of global importance. Both biotic and abiotic factors are involved in this phenomenon that is often associated with high loads of parasites and pathogens. A stronger impact of pathogens in honey bees exposed to neonicotinoid insecticides has been reported, but the causal link between insecticide exposure and the possible immune alteration of honey bees remains elusive. Here, we demonstrate that the neonicotinoid insecticide clothianidin negatively modulates NF-κB immune signaling in insects and adversely affects honey bee antiviral defenses controlled by this transcription factor. We have identified in insects a negative modulator of NF-κB activation, which is a leucine-rich repeat protein. Exposure to clothianidin, by enhancing the transcription of the gene encoding this inhibitor, reduces immune defenses and promotes the replication of the deformed wing virus in honey bees bearing covert infections. This honey bee immunosuppression is similarly induced by a different neonicotinoid, imidacloprid, but not by the organophosphate chlorpyriphos, which does not affect NF-κB signaling. The occurrence at sublethal doses of this insecticide-induced viral proliferation suggests that the studied neonicotinoids might have a negative effect at the field level. Our experiments uncover a further level of regulation of the immune response in insects and set the stage for studies on neural modulation of immunity in animals. Furthermore, this study has implications for the conservation of bees, as it will contribute to the definition of more appropriate guidelines for testing chronic or sublethal effects of pesticides used in agriculture. PMID:24145453

  2. Low cost delivery of proteins bioencapsulated in plant cells to human non-immune or immune modulatory cells.

    PubMed

    Xiao, Yuhong; Kwon, Kwang-Chul; Hoffman, Brad E; Kamesh, Aditya; Jones, Noah T; Herzog, Roland W; Daniell, Henry

    2016-02-01

    Targeted oral delivery of GFP fused with a GM1 receptor binding protein (CTB) or human cell penetrating peptide (PTD) or dendritic cell peptide (DCpep) was investigated. Presence of GFP(+) intact plant cells between villi of ileum confirm their protection in the digestive system from acids/enzymes. Efficient delivery of GFP to gut-epithelial cells by PTD or CTB and to M cells by all these fusion tags confirm uptake of GFP in the small intestine. PTD fusion delivered GFP more efficiently to most tissues or organs than the other two tags. GFP was efficiently delivered to the liver by all fusion tags, likely through the gut-liver axis. In confocal imaging studies of human cell lines using purified GFP fused with different tags, GFP signal of DCpep-GFP was only detected within dendritic cells. PTD-GFP was only detected within kidney or pancreatic cells but not in immune modulatory cells (macrophages, dendritic, T, B, or mast cells). In contrast, CTB-GFP was detected in all tested cell types, confirming ubiquitous presence of GM1 receptors. Such low-cost oral delivery of protein drugs to sera, immune system or non-immune cells should dramatically lower their cost by elimination of prohibitively expensive fermentation, protein purification cold storage/transportation and increase patient compliance. PMID:26706477

  3. Genome rearrangement affects RNA virus adaptability on prostate cancer cells.

    PubMed

    Pesko, Kendra; Voigt, Emily A; Swick, Adam; Morley, Valerie J; Timm, Collin; Yin, John; Turner, Paul E

    2015-01-01

    Gene order is often highly conserved within taxonomic groups, such that organisms with rearranged genomes tend to be less fit than wild type gene orders, and suggesting natural selection favors genome architectures that maximize fitness. But it is unclear whether rearranged genomes hinder adaptability: capacity to evolutionarily improve in a new environment. Negative-sense non-segmented RNA viruses (order Mononegavirales) have specific genome architecture: 3' UTR - core protein genes - envelope protein genes - RNA-dependent RNA-polymerase gene - 5' UTR. To test how genome architecture affects RNA virus evolution, we examined vesicular stomatitis virus (VSV) variants with the nucleocapsid (N) gene moved sequentially downstream in the genome. Because RNA polymerase stuttering in VSV replication causes greater mRNA production in upstream genes, N gene translocation toward the 5' end leads to stepwise decreases in N transcription, viral replication and progeny production, and also impacts the activation of type 1 interferon mediated antiviral responses. We evolved VSV gene-order variants in two prostate cancer cell lines: LNCap cells deficient in innate immune response to viral infection, and PC-3 cells that mount an IFN stimulated anti-viral response to infection. We observed that gene order affects phenotypic adaptability (reproductive growth; viral suppression of immune function), especially on PC-3 cells that strongly select against virus infection. Overall, populations derived from the least-fit ancestor (most-altered N position architecture) adapted fastest, consistent with theory predicting populations with low initial fitness should improve faster in evolutionary time. Also, we observed correlated responses to selection, where viruses improved across both hosts, rather than suffer fitness trade-offs on unselected hosts. Whole genomics revealed multiple mutations in evolved variants, some of which were conserved across selective environments for a given gene

  4. Hypothalamus-Pituitary-Adrenal cell-mediated immunity regulation in the Immune Restoration Inflammatory Syndrome

    PubMed Central

    Khakshooy, Allen; Chiappelli, Francesco

    2016-01-01

    Over one third of the patients sero-positive for the human immunodeficiency virus (HIV) with signs of the acquired immune deficiency syndrome (AIDS), and under treatment with anti-retroviral therapy (ART), develop the immune reconstitution inflammatory syndrome (IRIS). It is not clear what variables are that determine whether a patient with HIV/AIDS will develop ART-related IRIS, but the best evidence base thus far indicates that HIV/AIDS patients with low CD4 cell count, and HIV/AIDS patients whose CD4 count recovery shows a sharp slope, suggesting a particularly fast "immune reconstitution", are at greater risk of developing IRIS. Here, we propose the hypothesis that one important variable that can contribute to low CD4 cell count number and function in ART-treated HIV/AIDS patients is altered hypothalamic-pituitary-adrenal (HPA) cell-mediated immune (CMI) regulation. We discuss HPA-CMI deregulation in IRIS as the new frontier in comparative effectiveness research (CRE) for obtaining and utilizing the best evidence base for treatment of patients with HIV/AIDS in specific clinical settings. We propose that our hypothesis about altered HPA-CMI may extend to the pathologies observed in related viral infection, including Zika PMID:27212842

  5. Hypothalamus-Pituitary-Adrenal cell-mediated immunity regulation in the Immune Restoration Inflammatory Syndrome.

    PubMed

    Khakshooy, Allen; Chiappelli, Francesco

    2016-01-01

    Over one third of the patients sero-positive for the human immunodeficiency virus (HIV) with signs of the acquired immune deficiency syndrome (AIDS), and under treatment with anti-retroviral therapy (ART), develop the immune reconstitution inflammatory syndrome (IRIS). It is not clear what variables are that determine whether a patient with HIV/AIDS will develop ART-related IRIS, but the best evidence base thus far indicates that HIV/AIDS patients with low CD4 cell count, and HIV/AIDS patients whose CD4 count recovery shows a sharp slope, suggesting a particularly fast "immune reconstitution", are at greater risk of developing IRIS. Here, we propose the hypothesis that one important variable that can contribute to low CD4 cell count number and function in ART-treated HIV/AIDS patients is altered hypothalamic-pituitary-adrenal (HPA) cell-mediated immune (CMI) regulation. We discuss HPA-CMI deregulation in IRIS as the new frontier in comparative effectiveness research (CRE) for obtaining and utilizing the best evidence base for treatment of patients with HIV/AIDS in specific clinical settings. We propose that our hypothesis about altered HPA-CMI may extend to the pathologies observed in related viral infection, including Zika. PMID:27212842

  6. To investigate the necessity of STRA6 upregulation in T cells during T cell immune responses.

    PubMed

    Terra, Rafik; Wang, Xuehai; Hu, Yan; Charpentier, Tania; Lamarre, Alain; Zhong, Ming; Sun, Hui; Mao, Jianning; Qi, Shijie; Luo, Hongyu; Wu, Jiangping

    2013-01-01

    Our earlier study revealed that STRA6 (stimulated by retinoic acid gene 6) was up-regulated within 3 h of TCR stimulation. STRA6 is the high-affinity receptor for plasma retinol-binding protein (RBP) and mediates cellular vitamin A uptake. We generated STRA6 knockout (KO) mice to assess whether such up-regulation was critical for T-cell activation, differentiation and function. STRA6 KO mice under vitamin A sufficient conditions were fertile without apparent anomalies upon visual inspection. The size, cellularity and lymphocyte subpopulations of STRA6 KO thymus and spleen were comparable to those of their wild type (WT) controls. KO and WT T cells were similar in terms of TCR-stimulated proliferation in vitro and homeostatic expansion in vivo. Naive KO CD4 cells differentiated in vitro into Th1, Th2, Th17 as well as regulatory T cells in an analogous manner as their WT counterparts. In vivo experiments revealed that anti-viral immune responses to lymphocytic choriomeningitis virus in KO mice were comparable to those of WT controls. We also demonstrated that STRA6 KO and WT mice had similar glucose tolerance. Total vitamin A levels are dramatically lower in the eyes of KO mice as compared to those of WT mice, but the levels in other organs were not significantly affected after STRA6 deletion under vitamin A sufficient conditions, indicating that the eye is the mouse organ most sensitive to the loss of STRA6. Our results demonstrate that 1) in vitamin A sufficiency, the deletion of STRA6 in T cells does no affect the T-cell immune responses so-far tested, including those depend on STAT5 signaling; 2) STRA6-independent vitamin A uptake compensated the lack of STRA6 in lymphoid organs under vitamin A sufficient conditions in mice; 3) STRA6 is critical for vitamin A uptake in the eyes even in vitamin A sufficiency. PMID:24391722

  7. To Investigate the Necessity of STRA6 Upregulation in T Cells during T Cell Immune Responses

    PubMed Central

    Charpentier, Tania; Lamarre, Alain; Zhong, Ming; Sun, Hui; Mao, Jianning; Qi, Shijie; Luo, Hongyu; Wu, Jiangping

    2013-01-01

    Our earlier study revealed that STRA6 (stimulated by retinoic acid gene 6) was up-regulated within 3 h of TCR stimulation. STRA6 is the high-affinity receptor for plasma retinol-binding protein (RBP) and mediates cellular vitamin A uptake. We generated STRA6 knockout (KO) mice to assess whether such up-regulation was critical for T-cell activation, differentiation and function. STRA6 KO mice under vitamin A sufficient conditions were fertile without apparent anomalies upon visual inspection. The size, cellularity and lymphocyte subpopulations of STRA6 KO thymus and spleen were comparable to those of their wild type (WT) controls. KO and WT T cells were similar in terms of TCR-stimulated proliferation in vitro and homeostatic expansion in vivo. Naive KO CD4 cells differentiated in vitro into Th1, Th2, Th17 as well as regulatory T cells in an analogous manner as their WT counterparts. In vivo experiments revealed that anti-viral immune responses to lymphocytic choriomeningitis virus in KO mice were comparable to those of WT controls. We also demonstrated that STRA6 KO and WT mice had similar glucose tolerance. Total vitamin A levels are dramatically lower in the eyes of KO mice as compared to those of WT mice, but the levels in other organs were not significantly affected after STRA6 deletion under vitamin A sufficient conditions, indicating that the eye is the mouse organ most sensitive to the loss of STRA6. Our results demonstrate that 1) in vitamin A sufficiency, the deletion of STRA6 in T cells does no affect the T-cell immune responses so-far tested, including those depend on STAT5 signaling; 2) STRA6-independent vitamin A uptake compensated the lack of STRA6 in lymphoid organs under vitamin A sufficient conditions in mice; 3) STRA6 is critical for vitamin A uptake in the eyes even in vitamin A sufficiency. PMID:24391722

  8. Immune-Mediated Complications after Hematopoietic Stem Cell Transplantation.

    PubMed

    Li, Zhuoyan; Rubinstein, Samuel M; Thota, Ramya; Savani, Malvi; Brissot, Eolia; Shaw, Bronwen E; Majhail, Navneet S; Mohty, Mohamad; Savani, Bipin N

    2016-08-01

    Hematopoietic stem cell transplantation (HSCT) has an integral role in the treatment of malignant and nonmalignant diseases. Long-term complications after HSCT have been well established and include graft-versus-host disease (GVHD), conditioning regimen-related toxicities, disease relapse, and infections. Immune-mediated phenomena are increasingly described after HSCT with clinically significant sequelae. Diagnosis is challenging because of features that overlap with other commonly reported post-transplantation complications. Patients who experience immune-mediated disease after HSCT tend to have poor outcomes. Early recognition of immune-mediated complications is imperative to reduce preventable morbidity and mortality. This review looks at the currently available literature on pathogenesis, incidence, risk factors, treatment, and outcomes of immune-mediated disease (other than GVHD) after HSCT. PMID:27095688

  9. Stimulatory Effect of β-glucans on Immune Cells

    PubMed Central

    Kim, Hyung Sook; Hong, Jin Tae; Kim, Youngsoo

    2011-01-01

    β-Glucans are naturally occurring polysaccharides that are produced by bacteria, yeast, fungi, and many plants. Although their pharmacological activities, such as immunomodulatory, anti-infective and anti-cancer effects, have been well studied, it is still unclear how β-glucans exert their activities. However, recent studies on the β-glucan receptors shed some light on their mechanism of action. Since β-glucans have large molecular weights, they must bind surface receptors to activate immune cells. In this review, we summarize the immunopharmacological activities and the potential receptors of β-glucans in immune cells. PMID:22039366

  10. Timing of Maternal Immunization Affects Immunological and Behavioral Outcomes of Adult Offspring in Siberian Hamsters (Phodopus sungorus).

    PubMed

    French, Susannah S; Chester, Emily M; Demas, Gregory E

    2016-07-01

    Maternal influences are an important contributing factor to offspring survival, development, and behavior. Common environmental pathogens can induce maternal immune responses and affect subsequent development of offspring. There are likely sensitive periods during pregnancy when animals are particularly vulnerable to environmental disruption. Here we characterize the effects of maternal immunization across pregnancy and postpartum on offspring physiology and behavior in Siberian hamsters (Phodopus sungorus). Hamsters were injected with the antigen keyhole limpet hemocyanin (KLH) (1) prior to pairing with a male (premating), (2) at separation (postmating), (3) at midpregnancy, or (4) after birth (lactation). Maternal food intake, body mass, and immunity were monitored throughout gestation, and litters were measured weekly for growth until adulthood when social behavior, hormone concentrations, and immune responses were determined. We found that immunizations altered maternal immunity throughout pregnancy and lactation. The effects of maternal treatment differed between male and female offspring. Aggressive behavior was enhanced in offspring of both sexes born to mothers treated postmating and thus early in pregnancy relative to other stages. In contrast, maternal treatment and maternal stage differentially affected innate immunity in males and females. Offspring cortisol, however, was unaffected by maternal treatment. Collectively, these data demonstrate that maternal immunization affects offspring physiology and behavior in a time-dependent and sex-specific manner. More broadly, these findings contribute to our understanding of the effects of maternal immune activation, whether it be from environmental exposure or immunization, on immunological and behavioral responses of offspring. PMID:27320639

  11. Effect of feeding whole compared with cell-free colostrum on calf immune status: Vaccination response.

    PubMed

    Langel, S N; Wark, W A; Garst, S N; James, R E; McGilliard, M L; Petersson-Wolfe, C S; Kanevsky-Mullarky, I

    2016-05-01

    Vaccination contributes to improved herd health and production. Boosting immune development at a young age may have long-term effects by enhancing vaccine immune response and efficacy. In the bovine, colostrum is the sole source of maternal immunity, having a substantial effect on health status in the neonate. To date, colostral antibody concentration is used to evaluate colostrum quality. However, colostrum also contains proteins and cells, which may affect immune development and future responses to vaccines. To determine the effect of maternal colostral cells on immune development, 37 female Holstein and Jersey dairy calves were bottle-fed 4 quarts total of whole colostrum (WC) or cell-free colostrum (CFC) at birth. Calves were vaccinated with 2 series of multivalent vaccines. Series A consisted of vaccines given between 1 and 4mo of life. Series B consisted of vaccines given between 5 and 10mo of life. Calf peripheral blood samples were obtained before each vaccination series and monthly for 3mo after each vaccination series. Cellular blood parameters were determined by flow cytometry. Quantitative real-time PCR was used to determine cytokine gene expression in peripheral blood mononuclear cells before vaccination series B and once a month for 2mo after vaccination series B. Calves fed CFC had fewer numbers of B cells in mo 2 after vaccination series A when compared with WC-fed calves. Calves fed CFC had decreased gene expression levels of IL-2 in mo 1 and numbers of CD4(+)CD62L(+)CD45RO(-) and CD4(+)CD62L(+)CD45RO(+) T cells in mo 0 and 1 after vaccination series B as compared with WC-fed calves. Our findings indicate a greater response to vaccines up to 6 to 10mo post-WC feeding when compared with CFC. These data suggest that adoptive transfer of maternal colostral cells at birth has a long-term effect on development of the neonatal immune system. PMID:26923041

  12. Follicular helper T cell in immunity and autoimmunity

    PubMed Central

    Mesquita, D.; Cruvinel, W.M.; Resende, L.S.; Mesquita, F.V.; Silva, N.P.; Câmara, N.O.S.; Andrade, L.E.C.

    2016-01-01

    The traditional concept that effector T helper (Th) responses are mediated by Th1/Th2 cell subtypes has been broadened by the recent demonstration of two new effector T helper cells, the IL-17 producing cells (Th17) and the follicular helper T cells (Tfh). These new subsets have many features in common, such as the ability to produce IL-21 and to express the IL-23 receptor (IL23R), the inducible co-stimulatory molecule ICOS, and the transcription factor c-Maf, all of them essential for expansion and establishment of the final pool of both subsets. Tfh cells differ from Th17 by their ability to home to B cell areas in secondary lymphoid tissue through interactions mediated by the chemokine receptor CXCR5 and its ligand CXCL13. These CXCR5+ CD4+ T cells are considered an effector T cell type specialized in B cell help, with a transcriptional profile distinct from Th1 and Th2 cells. The role of Tfh cells and its primary product, IL-21, on B-cell activation and differentiation is essential for humoral immunity against infectious agents. However, when deregulated, Tfh cells could represent an important mechanism contributing to exacerbated humoral response and autoantibody production in autoimmune diseases. This review highlights the importance of Tfh cells by focusing on their biology and differentiation processes in the context of normal immune response to infectious microorganisms and their role in the pathogenesis of autoimmune diseases. PMID:27096200

  13. Radiation exposure induces inflammasome pathway activation in immune cells.

    PubMed

    Stoecklein, Veit M; Osuka, Akinori; Ishikawa, Shizu; Lederer, Madeline R; Wanke-Jellinek, Lorenz; Lederer, James A

    2015-02-01

    Radiation exposure induces cell and tissue damage, causing local and systemic inflammatory responses. Because the inflammasome pathway is triggered by cell death and danger-associated molecular patterns, we hypothesized that the inflammasome may signal acute and chronic immune responses to radiation. Using a mouse radiation model, we show that radiation induces a dose-dependent increase in inflammasome activation in macrophages, dendritic cells, NK cells, T cells, and B cells as judged by cleaved caspase-1 detection in cells. Time course analysis showed the appearance of cleaved caspase-1 in cells by day 1 and sustained expression until day 7 after radiation. Also, cells showing inflammasome activation coexpressed the cell surface apoptosis marker annexin V. The role of caspase-1 as a trigger for hematopoietic cell losses after radiation was studied in caspase-1(-/-) mice. We found less radiation-induced cell apoptosis and immune cell loss in caspase-1(-/-) mice than in control mice. Next, we tested whether uric acid might mediate inflammasome activation in cells by treating mice with allopurinol and discovered that allopurinol treatment completely blocked caspase-1 activation in cells. Finally, we demonstrate that radiation-induced caspase-1 activation occurs by a Nod-like receptor family protein 3-independent mechanism because radiation-exposed Nlrp3(-/-) mice showed caspase-1 activation profiles that were indistinguishable from those of wild-type mice. In summary, our data demonstrate that inflammasome activation occurs in many immune cell types following radiation exposure and that allopurinol prevented radiation-induced inflammasome activation. These results suggest that targeting the inflammasome may help control radiation-induced inflammation. PMID:25539818

  14. Maternal immunity enhances Mycoplasma hyopneumoniae vaccination induced cell-mediated immune responses in piglets

    PubMed Central

    2014-01-01

    Background Passively acquired maternal derived immunity (MDI) is a double-edged sword. Maternal derived antibody-mediated immunity (AMI) and cell-mediated immunity (CMI) are critical immediate defenses for the neonate; however, MDI may interfere with the induction of active immunity in the neonate, i.e. passive interference. The effect of antigen-specific MDI on vaccine-induced AMI and CMI responses to Mycoplasma hyopneumoniae (M. hyopneumoniae) was assessed in neonatal piglets. To determine whether CMI and AMI responses could be induced in piglets with MDI, piglets with high and low levels of maternal M. hyopneumoniae-specific immunity were vaccinated against M. hyopneumoniae at 7 d of age. Piglet M. hyopneumoniae-specific antibody, lymphoproliferation, and delayed type hypersensitivity (DTH) responses were measured 7 d and 14 d post vaccination. Results Piglets with M. hyopneumoniae-specific MDI failed to show vaccine-induced AMI responses; there was no rise in M. hyopneumoniae antibody levels following vaccination of piglets in the presence of M. hyopneumoniae-specific MDI. However, piglets with M. hyopneumoniae-specific MDI had primary (antigen-specific lymphoproliferation) and secondary (DTH) M. hyopneumoniae-specific CMI responses following vaccination. Conclusions In this study neonatal M. hyopneumoniae-specific CMI was not subject to passive interference by MDI. Further, it appears that both maternal derived and endogenous CMI contribute to M. hyopneumoniae-specific CMI responses in piglets vaccinated in the face of MDI. PMID:24903770

  15. The role of immune system exhaustion on cancer cell escape and anti-tumor immune induction after irradiation.

    PubMed

    Mendes, Fernando; Domingues, Cátia; Rodrigues-Santos, Paulo; Abrantes, Ana Margarida; Gonçalves, Ana Cristina; Estrela, Jéssica; Encarnação, João; Pires, Ana Salomé; Laranjo, Mafalda; Alves, Vera; Teixo, Ricardo; Sarmento, Ana Bela; Botelho, Maria Filomena; Rosa, Manuel Santos

    2016-04-01

    Immune surveillance seems to represent an effective tumor suppressor mechanism. However, some cancer cells survive and become variants, being poorly immunogenic and able to enter a steady-state phase. These cells become functionally dormant or remain hidden clinically throughout. Neoplastic cells seem to be able to instruct immune cells to undergo changes promoting malignancy. Radiotherapy may act as a trigger of the immune response. After radiotherapy a sequence of reactions occurs, starting in the damage of oncogenic cells by multiple mechanisms, leading to the immune system positive feedback against the tumor. The link between radiotherapy and the immune system is evident. T cells, macrophages, Natural Killer cells and other immune cells seem to have a key role in controlling the tumor. T cells may be dysfunctional and remain in a state of T cell exhaustion, nonetheless, they often retain a high potential for successful defense against cancer, being able to be mobilized to become highly functional. The lack of clinical trials on a large scale makes data a little robust, in spite of promising information, there are still many variables in the studies relating to radiation and immune system. The clarification of the mechanisms underlying immune response to radiation exposure may contribute to treatment improvement, gain of life quality and span of patients. PMID:26868867

  16. Myeloid suppressor cells and immune modulation in lung cancer

    PubMed Central

    Srivastava, Minu K.; Andersson, Åsa; Zhu, Li; Harris-White, Marni; Lee, Jay M.; Dubinett, Steven; Sharma, Sherven

    2012-01-01

    Many tumors, including lung cancers, promote immune tolerance to escape host immune surveillance and facilitate tumor growth. Tumors utilize numerous pathways to inhibit immune responses, including the elaboration of immune-suppressive mediators such as PGE2, TGF-β, IL-10, VEGF, GM-CSF, IL-6, S100A8/A9 and SCF, which recruit and/or activate myeloid-derived suppressor cells (MDSCs). MDSCs, a subset of heterogeneous bone marrow-derived hematopoietic cells, are found in the peripheral blood of cancer patients and positively correlate to malignancy. Solid tumors contain MDSCs that maintain an immune-suppressive network in the tumor microenvironment. This review will focus on the interaction of tumors with MDSCs that lead to dysregulation of antigen presentation and T-cell activities in murine tumor models. Specific genetic signatures in lung cancer modulate the activities of MDSCs and impact tumor progression. Targeting MDSCs may have a long-term antitumor benefit and is at the forefront of anticancer therapeutic strategies. PMID:22401635

  17. TANK-binding kinase-1 broadly affects oyster immune response to bacteria and viruses.

    PubMed

    Tang, Xueying; Huang, Baoyu; Zhang, Linlin; Li, Li; Zhang, Guofan

    2016-09-01

    As a benthic filter feeder of estuaries, the immune system of oysters provides one of the best models for studying the genetic and molecular basis of the innate immune pathway in marine invertebrates and examining the influence of environmental factors on the immune system. Here, the molecular function of molluscan TANK-binding kinase-1 (TBK1) (which we named CgTBK1) was studied in the Pacific oyster, Crassostrea gigas. Compared with known TBK1 proteins in other model organisms, CgTBK1 contains a conserved S-TKc domain and a coiled coil domain at the N- and C-terminals but lacks an important ubiquitin domain. Quantitative real-time PCR analysis revealed that the expression level of CgTBK1 was ubiquitous in all selected tissues, with highest expression in the gills. CgTBK1 expression was significantly upregulated in response to infections with Vibrio alginolyticus, ostreid herpesvirus 1 (OsHV-1 reference strain and μvar), and polyinosinic:polycytidylic acid sodium salt, suggesting its broad function in immune response. Subcellular localization showed the presence of CgTBK1 in the cytoplasm of HeLa cells, suggesting its potential function as the signal transducer between the receptor and transcription factor. We further demonstrated that CgTBK1 interacted with CgSTING in HEK293T cells, providing evidence that CgTBK1 could be activated by direct binding to CgSTING. In summary, we characterized the TBK1 gene in C. gigas and demonstrated its role in the innate immune response to pathogen infections. PMID:27422757

  18. New immune cells in spondyloarthritis: Key players or innocent bystanders?

    PubMed

    Venken, Koen; Elewaut, Dirk

    2015-12-01

    The central role of the inflammatory cytokines such as TNF-α, IL-23, and IL-17 in the disease pathogenesis of spondyloarthritis (SpA) is unquestionable, given the strong efficacy of anti-cytokine therapeutics used in the treatment of SpA patients. These cytokines are produced by a diverse range of immune cells, some extending beyond the typical spectrum of lineage-defined subsets. Recently, a number of specialized cells, such as innate-like T-cells, innate lymphoid cells (ILCs) and natural killer receptor (NKR)-expressing T cells, have been marked to be involved in SpA pathology. In this chapter, we will elaborate on the unique characteristics of these particular immune subsets and critically evaluate their potential contribution to SpA disease, taking into account their role in joint and gut pathology. PMID:27107508

  19. Interactions between MSCs and Immune Cells: Implications for Bone Healing

    PubMed Central

    Kovach, Tracy K.; Dighe, Abhijit S.; Lobo, Peter I.; Cui, Quanjun

    2015-01-01

    It is estimated that, of the 7.9 million fractures sustained in the United States each year, 5% to 20% result in delayed or impaired healing requiring therapeutic intervention. Following fracture injury, there is an initial inflammatory response that plays a crucial role in bone healing; however, prolonged inflammation is inhibitory for fracture repair. The precise spatial and temporal impact of immune cells and their cytokines on fracture healing remains obscure. Some cytokines are reported to be proosteogenic while others inhibit bone healing. Cell-based therapy utilizing mesenchymal stromal cells (MSCs) is an attractive option for augmenting the fracture repair process. Osteoprogenitor MSCs not only differentiate into bone, but they also exert modulatory effects on immune cells via a variety of mechanisms. In this paper, we review the current literature on both in vitro and in vivo studies on the role of the immune system in fracture repair, the use of MSCs in the enhancement of fracture healing, and interactions between MSCs and immune cells. Insight into this paradigm can provide valuable clues in identifying cellular and noncellular targets that can potentially be modulated to enhance both natural bone healing and bone repair augmented by the exogenous addition of MSCs. PMID:26000315

  20. Immunization

    MedlinePlus

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against things like measles, ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  1. Immunizations

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Immunizations KidsHealth > For Teens > Immunizations Print A A A ... That Shot? en español Las vacunas Why Are Vaccinations Important? Measles, mumps, and whooping cough may seem ...

  2. Immunization

    MedlinePlus

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  3. Hematopoietic stem cell transplantation for auto immune rheumatic diseases.

    PubMed

    Ramaswamy, Subramanian; Jain, Sandeep; Ravindran, Vinod

    2016-03-24

    Stem cells have their origins in the embryo and during the process of organogenesis, these differentiate into specialized cells which mature to form tissues. In addition, stem cell are characterized by an ability to indefinitely self renew. Stem cells are broadly classified into embryonic stem cells and adult stem cells. Adult stem cells can be genetically reprogrammed to form pluripotent stem cells and exist in an embroyonic like state. In the early phase of embryogenesis, human embryonic stem cells only exist transiently. Adult stem cells are omnipresent in the body and function to regenerate during the process of apoptosis or tissue repair. Hematopoietic stem cells (HSC) are adult stem cells that form blood and immune cells. Autoimmune responses are sustained due to the perennial persistence of tissue self autoantigens and/or auto reactive lymphocytes. Immune reset is a process leading to generation of fresh self-tolerant lymphocytes after chemotherapy induced elimination of self or autoreactive lymphocytes. This forms the basis for autologous HSC transplantation (HSCT). In the beginning HSCT had been limited to refractory autoimmune rheumatic diseases (AIRD) due to concern about transplant related mortality and morbidity. However HSCT for AIRD has come a long way with better understanding of patient selection, conditioning regime and supportive care. In this narrative review we have examined the available literature regarding the HSCT use in AIRD. PMID:27011918

  4. Hematopoietic stem cell transplantation for auto immune rheumatic diseases

    PubMed Central

    Ramaswamy, Subramanian; Jain, Sandeep; Ravindran, Vinod

    2016-01-01

    Stem cells have their origins in the embryo and during the process of organogenesis, these differentiate into specialized cells which mature to form tissues. In addition, stem cell are characterized by an ability to indefinitely self renew. Stem cells are broadly classified into embryonic stem cells and adult stem cells. Adult stem cells can be genetically reprogrammed to form pluripotent stem cells and exist in an embroyonic like state. In the early phase of embryogenesis, human embryonic stem cells only exist transiently. Adult stem cells are omnipresent in the body and function to regenerate during the process of apoptosis or tissue repair. Hematopoietic stem cells (HSC) are adult stem cells that form blood and immune cells. Autoimmune responses are sustained due to the perennial persistence of tissue self autoantigens and/or auto reactive lymphocytes. Immune reset is a process leading to generation of fresh self-tolerant lymphocytes after chemotherapy induced elimination of self or autoreactive lymphocytes. This forms the basis for autologous HSC transplantation (HSCT). In the beginning HSCT had been limited to refractory autoimmune rheumatic diseases (AIRD) due to concern about transplant related mortality and morbidity. However HSCT for AIRD has come a long way with better understanding of patient selection, conditioning regime and supportive care. In this narrative review we have examined the available literature regarding the HSCT use in AIRD. PMID:27011918

  5. Bridging innate NK cell functions with adaptive immunity.

    PubMed

    Marcenaro, Emanuela; Carlomagno, Simona; Pesce, Silvia; Moretta, Alessandro; Sivori, Simona

    2011-01-01

    Killer Ig-like receptors (KIRs) are major human NK receptors displaying either inhibitory or activating functions which recognize allotypic determinants of HLA-class I molecules. Surprisingly, NK cell treatment with CpG-ODN (TLR9 ligands) results in selective down-modulation of KIR3DL2, its co-internalization with CpG-ODN and its translocation to TLR9-rich early endosomes. This novel KIR-associated function may offer clues to better understand the possible role of certain KIRs and also emphasizes the involvement of NK cells in the course of microbial infections. NK cells are involved not only in innate immune responses against viruses and tumors but also participate in the complex network of cell-to cell interaction that leads to the development of adaptive immune responses. In this context the interaction of NK cells with DC appears to play a crucial role in the acquisition of CCR7, a chemokine receptor that enables NK cells to migrate towards lymph nodes in response to CCL19 and/or CCL21. Analysis of NK cell clones revealed that KIR-mismatched but not KIR-matched NK cells acquire CCR7. These data have important implications in haploidentical haematopoietic stem cell transplantation (HSCT), in which KIR-mismatched NK cells may acquire the ability to migrate to secondary lymphoid compartments (SLCs), where they can kill recipient's antigen presenting cells (APCs) and T cells thus preventing graft versus host (and host vs. graft) reactions. PMID:21842364

  6. Innate lymphoid cell function in the context of adaptive immunity.

    PubMed

    Bando, Jennifer K; Colonna, Marco

    2016-06-21

    Innate lymphoid cells (ILCs) are a family of innate immune cells that have diverse functions during homeostasis and disease. Subsets of ILCs have phenotypes that mirror those of polarized helper T cell subsets in their expression of core transcription factors and effector cytokines. Given the similarities between these two classes of lymphocytes, it is important to understand which functions of ILCs are specialized and which are redundant with those of T cells. Here we discuss genetic mouse models that have been used to delineate the contributions of ILCs versus those of T cells and review the current understanding of the specialized in vivo functions of ILCs. PMID:27328008

  7. Immune regulatory effects of simvastatin on regulatory T cell-mediated tumour immune tolerance.

    PubMed

    Lee, K J; Moon, J Y; Choi, H K; Kim, H O; Hur, G Y; Jung, K H; Lee, S Y; Kim, J H; Shin, C; Shim, J J; In, K H; Yoo, S H; Kang, K H; Lee, S Y

    2010-08-01

    Statins are potent inhibitors of hydroxyl-3-methylglutaryl co-enzyme A (HMG-CoA) reductase, and have emerged as potential anti-cancer agents based on preclinical evidence. In particular, compelling evidence suggests that statins have a wide range of immunomodulatory properties. However, little is known about the role of statins in tumour immune tolerance. Tumour immune tolerance involves the production of immunosuppressive molecules, such as interleukin (IL)-10, transforming growth factor (TGF)-beta and indoleamine-2,3-dioxygenase (IDO) by tumours, which induce a regulatory T cell (T(reg)) response. In this study, we investigated the effect of simvastatin on the production of IL-10, TGF-beta and IDO production and the proliferation of T(regs) using several cancer cell lines, and Lewis lung cancer (3LL) cells-inoculated mouse tumour model. Simvastatin treatment resulted in a decrease in the number of cancer cells (3LL, A549 and NCI-H292). The production of the immune regulatory markers IL-10, TGF-beta in 3LL and NCI-H292 cells increased after treatment with simvastatin. The expression of IDO and forkhead box P3 (FoxP3) transcription factor was also increased in the presence of simvastatin. In a murine 3LL model, there were no significant differences in tumour growth rate between untreated and simvastatin-treated mice groups. Therefore, while simvastatin had an anti-proliferative effect, it also exhibited immune tolerance-promoting properties during tumour development. Thus, due to these opposing actions, simvastatin had no net effect on tumour growth. PMID:20491794

  8. Repeated stress-induced stimulation of catecholamine response is not followed by altered immune cell redistribution.

    PubMed

    Imrich, Richard; Tibenska, Elena; Koska, Juraj; Ksinantova, Lucia; Kvetnansky, Richard; Bergendiova-Sedlackova, Katarina; Blazicek, Pavol; Vigas, Milan

    2004-06-01

    Stress response is considered an important factor in the modulation of immune function. Neuroendocrine hormones, including catecholamines, affect the process of immune cell redistribution, important for cell-mediated immunity. This longitudinal investigation was aimed at evaluating the effect of repeated stress-induced elevation of catecholamines on immune cell redistribution and expression of adhesive molecules. We assessed the responses of epinephrine (EPI), norepinephrine (NE), cortisol, changes in lymphocytes subpopulations, and percentages of CD11a+, CD11b+, and CD62L+ lymphocytes to a 20-min treadmill exercise of an intensity equal to 80% of the individual's Vo(2)max. The exercise was performed before and after 6 weeks of endurance training consisting of a 1-h run 4 times a week (ET) and after 5 days of bed rest (HDBR) in 10 healthy males. We did not observe any significant changes in the basal levels of EPI, NE, and cortisol in the plasma, nor in the immune parameters after ET and HDBR. The exercise test led to a significant (P <.001) elevation of EPI and NE levels after both ET and HDBR, a significant elevation (P <.01) of cortisol after HDBR, an increase in the absolute numbers of leukocytes, granulocytes, monocytes, CD3+, CD4+, CD8+, CD16+, CD19+ lymphocytes, percentage of CD11a+ and CD11b+ lymphocytes, and to a decrease of CD62L1 before, after ET, and after HDBR. We found comparable changes in all measured immune parameters after ET and HDBR. In conclusion, repeated stress-induced elevation of EPI and NE was not associated with an alteration in immune cell redistribution found in response to the single bout of exercise. PMID:15240377

  9. Immunity to Pathogens Taught by Specialized Human Dendritic Cell Subsets

    PubMed Central

    Geginat, Jens; Nizzoli, Giulia; Paroni, Moira; Maglie, Stefano; Larghi, Paola; Pascolo, Steve; Abrignani, Sergio

    2015-01-01

    Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) that have a key role in immune responses because they bridge the innate and adaptive arms of the immune system. They mature upon recognition of pathogens and upregulate MHC molecules and costimulatory receptors to activate antigen-specific CD4+ and CD8+ T cells. It is now well established that DCs are not a homogeneous population but are composed of different subsets with specialized functions in immune responses to specific pathogens. Upon viral infections, plasmacytoid DCs (pDCs) rapidly produce large amounts of IFN-α, which has potent antiviral functions and activates several other immune cells. However, pDCs are not particularly potent APCs and induce the tolerogenic cytokine IL-10 in CD4+ T cells. In contrast, myeloid DCs (mDCs) are very potent APCs and possess the unique capacity to prime naive T cells and consequently to initiate a primary adaptive immune response. Different subsets of mDCs with specialized functions have been identified. In mice, CD8α+ mDCs capture antigenic material from necrotic cells, secrete high levels of IL-12, and prime Th1 and cytotoxic T-cell responses to control intracellular pathogens. Conversely, CD8α− mDCs preferentially prime CD4+ T cells and promote Th2 or Th17 differentiation. BDCA-3+ mDC2 are the human homologue of CD8α+ mDCs, since they share the expression of several key molecules, the capacity to cross-present antigens to CD8+ T-cells and to produce IFN-λ. However, although several features of the DC network are conserved between humans and mice, the expression of several toll-like receptors as well as the production of cytokines that regulate T-cell differentiation are different. Intriguingly, recent data suggest specific roles for human DC subsets in immune responses against individual pathogens. The biology of human DC subsets holds the promise to be exploitable in translational medicine, in particular for the development of vaccines against

  10. Immunity to Pathogens Taught by Specialized Human Dendritic Cell Subsets.

    PubMed

    Geginat, Jens; Nizzoli, Giulia; Paroni, Moira; Maglie, Stefano; Larghi, Paola; Pascolo, Steve; Abrignani, Sergio

    2015-01-01

    Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) that have a key role in immune responses because they bridge the innate and adaptive arms of the immune system. They mature upon recognition of pathogens and upregulate MHC molecules and costimulatory receptors to activate antigen-specific CD4(+) and CD8(+) T cells. It is now well established that DCs are not a homogeneous population but are composed of different subsets with specialized functions in immune responses to specific pathogens. Upon viral infections, plasmacytoid DCs (pDCs) rapidly produce large amounts of IFN-α, which has potent antiviral functions and activates several other immune cells. However, pDCs are not particularly potent APCs and induce the tolerogenic cytokine IL-10 in CD4(+) T cells. In contrast, myeloid DCs (mDCs) are very potent APCs and possess the unique capacity to prime naive T cells and consequently to initiate a primary adaptive immune response. Different subsets of mDCs with specialized functions have been identified. In mice, CD8α(+) mDCs capture antigenic material from necrotic cells, secrete high levels of IL-12, and prime Th1 and cytotoxic T-cell responses to control intracellular pathogens. Conversely, CD8α(-) mDCs preferentially prime CD4(+) T cells and promote Th2 or Th17 differentiation. BDCA-3(+) mDC2 are the human homologue of CD8α(+) mDCs, since they share the expression of several key molecules, the capacity to cross-present antigens to CD8(+) T-cells and to produce IFN-λ. However, although several features of the DC network are conserved between humans and mice, the expression of several toll-like receptors as well as the production of cytokines that regulate T-cell differentiation are different. Intriguingly, recent data suggest specific roles for human DC subsets in immune responses against individual pathogens. The biology of human DC subsets holds the promise to be exploitable in translational medicine, in particular for the development of

  11. B-1-cell subpopulations contribute differently to gut immunity.

    PubMed

    Roy, Bishnudeo; Agarwal, Shiwani; Brennecke, Anne-Margarete; Krey, Martina; Pabst, Oliver; Düber, Sandra; Weiss, Siegfried

    2013-08-01

    In mice, B-1 (B1a/B1b) cells are mainly located in the peritoneal cavity. B-1 cells are well known for their role in the early stages of Ab-mediated immune responses against pathogenic invasion as well as for the production of natural IgM antibodies. Although such B cells have been claimed to give rise to intestinal plasma cells producing IgA, a clear role of B-1 cells in IgA production in the gut-associated tissues is still not defined. Here, we employed the transgenic L2 mouse model characterized by the lack of B-2 cells and presence of B-1 cells as major B-cell subpopulation. The oligoclonality of the Ab repertoire in this mouse allowed us to take typical B1a cell VH sequences as indicators of the presence of IgM-producing B-1a cells in Peyer's patches as well as in lamina propria. However, amongst the IgAVH sequences recovered from the same tissues, none of the sequences showed B1a-cell specificity. Interestingly, all IgAVH sequences derived from the lamina propria of L2 mice displayed extensive numbers of nucleotide exchanges, indicating somatic hypermutation, and affinity maturation. This suggests that the contribution of natural unmutated IgA by B-1a cells to intestinal immunity is negligible. PMID:23677546

  12. Hepatocytes: a key cell type for innate immunity.

    PubMed

    Zhou, Zhou; Xu, Ming-Jiang; Gao, Bin

    2016-05-01

    Hepatocytes, the major parenchymal cells in the liver, play pivotal roles in metabolism, detoxification, and protein synthesis. Hepatocytes also activate innate immunity against invading microorganisms by secreting innate immunity proteins. These proteins include bactericidal proteins that directly kill bacteria, opsonins that assist in the phagocytosis of foreign bacteria, iron-sequestering proteins that block iron uptake by bacteria, several soluble factors that regulate lipopolysaccharide signaling, and the coagulation factor fibrinogen that activates innate immunity. In this review, we summarize the wide variety of innate immunity proteins produced by hepatocytes and discuss liver-enriched transcription factors (e.g. hepatocyte nuclear factors and CCAAT/enhancer-binding proteins), pro-inflammatory mediators (e.g. interleukin (IL)-6, IL-22, IL-1β and tumor necrosis factor-α), and downstream signaling pathways (e.g. signal transducer and activator of transcription factor 3 and nuclear factor-κB) that regulate the expression of these innate immunity proteins. We also briefly discuss the dysregulation of these innate immunity proteins in chronic liver disease, which may contribute to an increased susceptibility to bacterial infection in patients with cirrhosis. PMID:26685902

  13. Hepatocytes: a key cell type for innate immunity

    PubMed Central

    Zhou, Zhou; Xu, Ming-Jiang; Gao, Bin

    2016-01-01

    Hepatocytes, the major parenchymal cells in the liver, play pivotal roles in metabolism, detoxification, and protein synthesis. Hepatocytes also activate innate immunity against invading microorganisms by secreting innate immunity proteins. These proteins include bactericidal proteins that directly kill bacteria, opsonins that assist in the phagocytosis of foreign bacteria, iron-sequestering proteins that block iron uptake by bacteria, several soluble factors that regulate lipopolysaccharide signaling, and the coagulation factor fibrinogen that activates innate immunity. In this review, we summarize the wide variety of innate immunity proteins produced by hepatocytes and discuss liver-enriched transcription factors (e.g. hepatocyte nuclear factors and CCAAT/enhancer-binding proteins), pro-inflammatory mediators (e.g. interleukin (IL)-6, IL-22, IL-1β and tumor necrosis factor-α), and downstream signaling pathways (e.g. signal transducer and activator of transcription factor 3 and nuclear factor-κB) that regulate the expression of these innate immunity proteins. We also briefly discuss the dysregulation of these innate immunity proteins in chronic liver disease, which may contribute to an increased susceptibility to bacterial infection in patients with cirrhosis. PMID:26685902

  14. Liver innate immune cells and insulin resistance: the multiple facets of Kupffer cells.

    PubMed

    Jager, J; Aparicio-Vergara, M; Aouadi, M

    2016-08-01

    Obesity, which affects 600 million adults worldwide, is a major risk factor for type 2 diabetes (T2D) and insulin resistance. Current therapies for these metabolic disorders include weight management by lifestyle intervention or bariatric surgery and pharmacological treatment with the aim of regulating blood glucose. Probably because of their short-term effectiveness, these therapies have not been able to stop the rapidly rising prevalence of T2D over the past decades, highlighting an urgent need to develop new therapeutic strategies. The role of immune cells, such as macrophages, in insulin resistance has been extensively studied. Major advances have been made to elucidate the role of adipose tissue macrophages in these pathogeneses. Recently, anti-inflammatory drugs have been suggested as an alternative treatment for T2D, and clinical trials of these agents are currently ongoing. In addition, results of previous clinical trials using antibodies against inflammatory cytokines, which showed modest effects, are now being rigorously re-evaluated. However, it is still unclear how liver macrophages [termed Kupffer cells (KCs)], which constitute the major source of macrophages in the body, contribute to the development of insulin resistance. In this review, we will discuss the present understanding of the role of liver immune cells in the development of insulin resistance. We will particularly focus on KCs, which could represent an attractive target for the treatment of metabolic diseases. PMID:26864622

  15. Ovarian follicular cells have innate immune capabilities that modulate their endocrine function

    PubMed Central

    Herath, Shan; Williams, Erin J; Lilly, Sonia T; Gilbert, Robert O; Dobson, Hilary; Bryant, Clare E; Sheldon, I Martin

    2007-01-01

    Oestrogens are pivotal in ovarian follicular growth, development and function, with fundamental roles in steroidogenesis, nurturing the oocyte and ovulation. Infections with bacteria such as Escherichia coli cause infertility in mammals at least in part by perturbing ovarian follicle function, characterised by suppression of oestradiol production. Ovarian follicle granulosa cells produce oestradiol by aromatisation of androstenedione from the theca cells, under the regulation of gonadotrophins such as FSH. Many of the effects of E. coli are mediated by its surface molecule lipopolysaccharide (LPS) binding to the Toll-like receptor-4 (TLR4), CD14, MD-2 receptor complex on immune cells, but immune cells are not present inside ovarian follicles. The present study tested the hypothesis that granulosa cells express the TLR4 complex and LPS directly perturbs their secretion of oestradiol. Granulosa cells from recruited or dominant follicles are exposed to LPS in vivo and when they were cultured in the absence of immune cell contamination in vitro they produced less oestradiol when challenged with LPS, although theca cell androstenedione production was unchanged. The suppression of oestradiol production by LPS was associated with down-regulation of transcripts for aromatase in granulosa cells, and did not affect cell survival. Furthermore, these cells expressed TLR4, CD14 and MD-2 transcripts throughout the key stages of follicle growth and development. It appears that granulosa cells have an immune capability to detect bacterial infection, which perturbs follicle steroidogenesis, and this is a likely mechanism by which ovarian follicle growth and function is perturbed during bacterial infection. PMID:17965259

  16. Cell-mediated immune responses after immunization of healthy seronegative children with varicella vaccine: kinetics and specificity.

    PubMed

    Watson, B; Keller, P M; Ellis, R W; Starr, S E

    1990-10-01

    Humoral and cell-mediated immune responses were determined in seronegative children immunized with live attenuated Oka strain varicella vaccine. At 2 weeks after immunization, 80% of children had detectable lymphocyte proliferation to varicella-zoster virus (VZV) antigens, while only 40% had antibodies to VZV as detected by ELISA. By 6 weeks after immunization, 97% of children seroconverted, and 95% of these responded to VZV antigens in the proliferation assay. A high proportion of immunized children also responded in the proliferation assay to purified glycoproteins I, II, and III of VZV. These results indicate that most children develop a broad cell-mediated immune response to VZV antigens within weeks after immunization with varicella vaccine. PMID:2169495

  17. Splenic Immune Cells In Experimental Neonatal Hypoxia-Ischemia

    PubMed Central

    Fathali, Nancy; Ostrowski, Robert P.; Hasegawa, Yu; Lekic, Tim; Tang, Jiping; Zhang, John H.

    2013-01-01

    Summary Neuroimmune processes contribute to hypoxic-ischemic damage in the immature brain and may play a role in the progression of particular variants of neonatal encephalopathy. The present study was designed to elucidate molecular mediators of interactions between astrocytes, neurons and infiltrating peripheral immune cells after experimental neonatal hypoxia-ischemia (HI). Splenectomy was performed on postnatal day-7 Sprague-Dawley rats 3 days prior to HI surgery; in which the right common carotid artery was permanently ligated followed by 2 hours of hypoxia (8% O2). Quantitative analysis showed that natural killer (NK) and T cell expression was reduced in spleen but increased in the brain following HI. Elevations in cyclooxygenase-2 (COX-2) expression after HI by immune cells promoted interleukin-15 expression in astrocytes and infiltration of inflammatory cells to site of injury; additionally, down-regulated the pro-survival protein, phosphoinositide-3-kinase, resulting in caspase-3 mediated neuronal death. The removal of the largest pool of peripheral immune cells in the body by splenectomy, COX-2 inhibitors, as well as rendering NK cells inactive by CD161 knockdown, significantly ameliorated cerebral infarct volume at 72 hours, diminished body weight loss and brain and systemic organ atrophy, and reduced neurobehavioral deficits at 3 weeks. Herein we demonstrate with the use of surgical approach (splenectomy), with pharmacological loss-gain function approach using COX-2 inhibitors/agonists, as well as with NK cell-type specific siRNA that after neonatal HI, the infiltrating peripheral immune cells may modulate downstream targets of cell death and neuroinflammation by COX-2 regulated signals. PMID:23626659

  18. Mast cells: new therapeutic target in helminth immune modulation.

    PubMed

    Vukman, K V; Lalor, R; Aldridge, A; O'Neill, S M

    2016-01-01

    Helminth infection and their secreted antigens have a protective role in many immune-mediated inflammatory disorders such as inflammatory bowel disease, rheumatoid arthritis and multiple sclerosis. However, studies have focused primarily on identifying immune protective mechanisms of helminth infection and their secreted molecules on dendritic cells and macrophages. Given that mast cells have been shown to be implicated in the pathogenesis and progression of many inflammatory disorders, their role should also be examined and considered as cellular target for helminth-based therapies. As there is a dearth of studies examining the interaction of helminth-derived antigens and mast cells, this review will focus on the role of mast cells during helminth infection and examine our current understanding of the involvement of mast cells in TH 1/TH 17-mediated immune disorders. In this context, potential mechanisms by which helminths could target the TH 1/TH 17 promoting properties of mast cells can be identified to unveil novel therapeutic mast cell driven targets in combating these inflammatory disorders. PMID:26577605

  19. Human placenta-derived adherent cells induce tolerogenic immune responses.

    PubMed

    Liu, Wei; Morschauser, Andrew; Zhang, Xin; Lu, Xiaohua; Gleason, Joseph; He, Shuyang; Chen, Hong-Jung; Jankovic, Vladimir; Ye, Qian; Labazzo, Kristen; Herzberg, Uri; Albert, Vivian R; Abbot, Stewart E; Liang, Bitao; Hariri, Robert

    2014-05-01

    Human placenta-derived adherent cells (PDAC cells) are a culture expanded, undifferentiated mesenchymal-like population derived from full-term placental tissue, with immunomodulatory and anti-inflammatory properties. PDA-001 (cenplacel-L), an intravenous formulation of PDAC cells, is in clinical development for the treatment of autoimmune and inflammatory diseases. To elucidate the mechanisms underlying the immunoregulatory properties of PDAC cells, we investigated their effects on immune cell populations, including T cells and dendritic cells (DC) in vitro and in vivo. PDAC cells suppressed T-cell proliferation in an OT-II T-cell adoptive transfer model, reduced the severity of myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalomyelitis and ameliorated inflammation in a delayed type hypersensitivity response model. In vitro, PDAC cells suppressed T-cell proliferation and inhibited Th1 and Th17 differentiation. Analysis of tissues derived from PDAC cell-treated animals revealed diminished CD86 expression on splenic DC, suggesting that they can also modulate DC populations. Furthermore, PDAC cells modulate the differentiation and maturation of mouse bone marrow-derived DC. Similarly, human DC differentiated from CD14(+) monocytes in the presence of PDAC cells acquired a tolerogenic phenotype. These tolerogenic DC failed to induce allogeneic T-cell proliferation and differentiation toward Th1, but skewed T-cell differentiation toward Th2. Inhibition of cyclo-oxygenase-2 activity resulted in a significant, but not complete, abrogation of PDAC cells' effects on DC phenotype and function, implying a role for prostaglandin E2 in PDAC-mediated immunomodulation. This study identifies modulation of DC differentiation toward immune tolerance as a key mechanism underlying the immunomodulatory activities of PDAC cells. PMID:25505962

  20. Innate immune cells cast an eye on DNA.

    PubMed

    Sander, Leif E; Blander, J Magarian

    2009-12-01

    The threonine phosphatase eyes absent (EYA) has been identified as a novel regulator of innate immune responses to cytosolic nucleic acids and undigested DNA from apoptotic cells. EYA regulates responses of yet unidentified DNA sensors and enhances interferon-beta and CXCL10 transcription. PMID:19789172

  1. Biomarkers of CD4+ CTL cell Mediated Immunity to Tuberculosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The immune responses mediated by interactions between T-lymphocyte subsets and mycobacteria-infected macrophages are critical for control of tuberculosis. In these studies, the bovine model was used to characterize the cytolytic and mycobactericidal CD4+ T cell response induced by BCG vaccination. ...

  2. Regulatory T cells in atherosclerosis: critical immune regulatory function and therapeutic potential.

    PubMed

    Spitz, Charlotte; Winkels, Holger; Bürger, Christina; Weber, Christian; Lutgens, Esther; Hansson, Göran K; Gerdes, Norbert

    2016-03-01

    Atherosclerosis is a chronic inflammatory disease that is mediated by innate and adaptive immune responses. The disease is characterized by sub-endothelial accumulation and modification of lipids in the artery wall triggering an inflammatory reaction which promotes lesion progression and eventual plaque rupture, thrombus formation, and the respective clinical sequelae such as myocardial infarction or stroke. During the past decade, T-cell-mediated immune responses, especially control of pro-inflammatory signals by regulatory T cells (Tregs), have increasingly attracted the interest of experimental and clinical researchers. By suppression of T cell proliferation and secretion of anti-inflammatory cytokines, such as interleukin-10 (IL-10) and transforming growth factor-β, Tregs exert their atheroprotective properties. Atherosclerosis-prone, hyperlipidemic mice harbor systemically less Tregs compared to wild-type mice, suggesting an imbalance of immune cells which affects local and systemic inflammatory and potentially metabolic processes leading to atherogenesis. Restoring or increasing Treg frequency and enhancing their suppressive capacity by various modulations may pose a promising approach for treating inflammatory conditions such as cardiovascular diseases. In this review, we briefly summarize the immunological basics of atherosclerosis and introduce the role and contribution of different subsets of T cells. We then discuss experimental data and current knowledge pertaining to Tregs in atherosclerosis and perspectives on manipulating the adaptive immune system to alleviate atherosclerosis and cardiovascular disease. PMID:26518635

  3. Cellular senescence impact on immune cell fate and function.

    PubMed

    Vicente, Rita; Mausset-Bonnefont, Anne-Laure; Jorgensen, Christian; Louis-Plence, Pascale; Brondello, Jean-Marc

    2016-06-01

    Cellular senescence occurs not only in cultured fibroblasts, but also in undifferentiated and specialized cells from various tissues of all ages, in vitro and in vivo. Here, we review recent findings on the role of cellular senescence in immune cell fate decisions in macrophage polarization, natural killer cell phenotype, and following T-lymphocyte activation. We also introduce the involvement of the onset of cellular senescence in some immune responses including T-helper lymphocyte-dependent tissue homeostatic functions and T-regulatory cell-dependent suppressive mechanisms. Altogether, these data propose that cellular senescence plays a wide-reaching role as a homeostatic orchestrator. PMID:26910559

  4. Human Invariant Natural Killer T cells possess immune-modulating functions during Aspergillus infection.

    PubMed

    Beitzen-Heineke, Antonia; Bouzani, Maria; Schmitt, Anna-Lena; Kurzai, Oliver; Hünniger, Kerstin; Einsele, Hermann; Loeffler, Juergen

    2016-02-01

    Aspergillus fumigatus is the most common cause for invasive fungal infections, a disease associated with high mortality in immune-compromised patients. CD1d-restricted invariant natural killer T (iNKT) cells compose a small subset of T cells known to impact the immune response toward various infectious pathogens. To investigate the role of human iNKT cells during A. fumigatus infection, we studied their activation as determined by CD69 expression and cytokine production in response to distinct fungal morphotypes in the presence of different CD1d(+) antigen presenting cells using flow cytometry and multiplex enzyme-linked immunosorbent assay (ELISA). Among CD1d(+) subpopulations, CD1d(+)CD1c(+) mDCs showed the highest potential to activate iNKT cells on a per cell basis. The presence of A. fumigatus decreased this effect of CD1d(+)CD1c(+) mDCs on iNKT cells and led to reduced secretion of TNF-α, G-CSF and RANTES. Production of other Th1 and Th2 cytokines was not affected by the fungus, suggesting an immune-modulating function for human iNKT cells during A. fumigatus infection. PMID:26483428

  5. Myeloid cell TRAF3 regulates immune responses and inhibits inflammation and tumor development in mice.

    PubMed

    Lalani, Almin I; Moore, Carissa R; Luo, Chang; Kreider, Benjamin Z; Liu, Yan; Morse, Herbert C; Xie, Ping

    2015-01-01

    Myeloid cells, including granulocytes, monocytes, macrophages, and dendritic cells, are crucial players in innate immunity and inflammation. These cells constitutively or inducibly express a number of receptors of the TNFR and TLR families, whose signals are transduced by TNFR-associated factor (TRAF) molecules. In vitro studies showed that TRAF3 is required for TLR-induced type I IFN production, but the in vivo function of TRAF3 in myeloid cells remains unknown. In this article, we report the generation and characterization of myeloid cell-specific TRAF3-deficient (M-TRAF3(-/-)) mice, which allowed us to gain insights into the in vivo functions of TRAF3 in myeloid cells. We found that TRAF3 ablation did not affect the maturation or homeostasis of myeloid cells in young adult mice, even though TRAF3-deficient macrophages and neutrophils exhibited constitutive NF-κB2 activation. However, in response to injections with LPS (a bacterial mimic) or polyinosinic-polycytidylic acid (a viral mimic), M-TRAF3(-/-) mice exhibited an altered profile of cytokine production. M-TRAF3(-/-) mice immunized with T cell-independent and -dependent Ags displayed elevated T cell-independent IgG3 and T cell-dependent IgG2b responses. Interestingly, 15- to 22-mo-old M-TRAF3(-/-) mice spontaneously developed chronic inflammation or tumors, often affecting multiple organs. Taken together, our findings indicate that TRAF3 expressed in myeloid cells regulates immune responses in myeloid cells and acts to inhibit inflammation and tumor development in mice. PMID:25422508

  6. Stimulation of dendritic cells enhances immune response after photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Castano, Ana P.; Hamblin, Michael R.

    2009-02-01

    Photodynamic therapy (PDT) involves the administration of photosensitizers followed by illumination of the primary tumor with red light producing reactive oxygen species that cause vascular shutdown and tumor cell necrosis and apoptosis. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, priming of the immune system to recognize tumor-associated antigens (TAA). The induction of specific CD8+ Tlymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. This process is however, often sub-optimal, in part due to tumor-induced DC dysfunction. Instead of DC that can become mature and activated and have a potent antigen-presenting and immune stimulating phenotype, immature dendritic cells (iDC) are often found in tumors and are part of an immunosuppressive milieu including regulatory T-cells and immunosuppressive cytokines such as TGF-beta and IL10. We here report on the use of a potent DC activating agent, an oligonucleotide (ODN) that contains a non-methylated CpG motif and acts as an agonist of toll like receptor (TLR) 9. TLR activation is a danger signal to notify the immune system of the presence of invading pathogens. CpG-ODN (but not scrambled non-CpG ODN) increased bone-marrow DC activation after exposure to PDT-killed tumor cells, and significantly increased tumor response to PDT and mouse survival after peri-tumoral administration. CpG may be a valuable immunoadjuvant to PDT especially for tumors that produce DC dysfunction.

  7. Accelerating immune reconstitution after hematopoietic stem cell transplantation

    PubMed Central

    Tzannou, Ifigeneia; Leen, Ann M

    2014-01-01

    Viral infections remain a significant cause of morbidity and mortality after hematopoietic stem cell transplantation. Pharmacologic agents are effective against some pathogens, but they are costly and can be associated with significant toxicities. Thus, many groups have investigated adoptive T-cell transfer as a means of hastening immune reconstitution and preventing and treating viral infections. This review discusses the immunotherapeutic strategies that have been explored. PMID:25505959

  8. Immune Reconstitution after Allogeneic Hematopoietic Cell Transplantation in Children.

    PubMed

    de Koning, Coco; Plantinga, Maud; Besseling, Paul; Boelens, Jaap Jan; Nierkens, Stefan

    2016-02-01

    Allogeneic (allo) hematopoietic cell transplantation (HCT) has evolved into a potent curative treatment option for a variety of malignant and nonmalignant diseases. The occurrence of complications and mortality after allo-HCT is, however, still high and is strongly associated with immune reconstitution (IR). Therefore, detailed information on IR through immunomonitoring is crucial to improve survival chances after HCT. To date, information about the reconstituting immune system after allo-HCT in pediatric patients is mostly derived from routine standard-of-care measurements. More profound knowledge on IR may provide tools to better predict and modulate adverse reactions and, subsequently, improve survival chances. Here, we provide an overview of IR (eg, immune cell subsets and circulating chemokines/cytokines) after allo-HCT in children, taking into account different cell sources and serotherapy, and discuss strategies to enhance immunomonitoring. We conclude that available IR data after allo-HCT contain limited information on immune cell families (mostly only generic T, B, and NK cells), which would improve with more detailed information on reconstituting cell subsets or effector cell functionality at earlier time points (<1 month). In addition, secretome data (eg, multiplex cytokine/chemokine profiles) could add to the understanding of IR mechanisms and cell functionality and may even provide (early) biomarkers for individual disease outcome, such as viral reactivity, graft-versus-host disease, or graft-versus-leukemia. The present data and suggestions for more detailed, standardized, and harmonized immunomonitoring in future (pediatric) allo-HCT studies will pave the path to "precision transplantation:" an individualized HCT approach (including conditioning), based on detailed information on IR and biomarkers, aiming to reduce transplantation related mortality and relapse, and subsequently improve survival chances. PMID:26341398

  9. Cell mechanics and immune system link up to fight infections

    NASA Astrophysics Data System (ADS)

    Ekpenyong, Andrew; Man, Si Ming; Tourlomousis, Panagiotis; Achouri, Sarra; Cammarota, Eugenia; Hughes, Katherine; Rizzo, Alessandro; Ng, Gilbert; Guck, Jochen; Bryant, Clare

    2015-03-01

    Infectious diseases, in which pathogens invade and colonize host cells, are responsible for one third of all mortality worldwide. Host cells use special proteins (immunoproteins) and other molecules to fight viral and bacterial invaders. The mechanisms by which immunoproteins enable cells to reduce bacterial loads and survive infections remain unclear. Moreover, during infections, some immunoproteins are known to alter the cytoskeleton, the structure that largely determines cellular mechanical properties. We therefore used an optical stretcher to measure the mechanical properties of primary immune cells (bone marrow derived macrophages) during bacterial infection. We found that macrophages become stiffer upon infection. Remarkably, macrophages lacking the immunoprotein, NLR-C4, lost the stiffening response to infection. This in vitro result correlates with our in vivo data whereby mice lacking NLR-C4 have more lesions and hence increased bacterial distribution and spread. Thus, the immune-protein-dependent increase in cell stiffness in response to bacterial infection (in vitro result) seems to have a functional role in the system level fight against pathogens (in vivo result). We will discuss how this functional link between cell mechanical properties and innate immunity, effected by actin polymerization, reduces the spread of infection.

  10. Potent Cell-Intrinsic Immune Responses in Dendritic Cells Facilitate HIV-1-Specific T Cell Immunity in HIV-1 Elite Controllers

    PubMed Central

    Martin-Gayo, Enrique; Buzon, Maria Jose; Ouyang, Zhengyu; Hickman, Taylor; Cronin, Jacqueline; Pimenova, Dina; Walker, Bruce D.; Lichterfeld, Mathias; Yu, Xu G.

    2015-01-01

    The majority of HIV-1 elite controllers (EC) restrict HIV-1 replication through highly functional HIV-1-specific T cell responses, but mechanisms supporting the evolution of effective HIV-1-specific T cell immunity in these patients remain undefined. Cytosolic immune recognition of HIV-1 in conventional dendritic cells (cDC) can facilitate priming and expansion of HIV-1-specific T cells; however, HIV-1 seems to be able to avoid intracellular immune recognition in cDCs in most infected individuals. Here, we show that exposure of cDCs from EC to HIV-1 leads to a rapid and sustained production of type I interferons and upregulation of several interferon-stimulated effector genes. Emergence of these cell-intrinsic immune responses was associated with a reduced induction of SAMHD1 and LEDGF/p75, and an accumulation of viral reverse transcripts, but inhibited by pharmacological blockade of viral reverse transcription or siRNA-mediated silencing of the cytosolic DNA sensor cGAS. Importantly, improved cell-intrinsic immune recognition of HIV-1 in cDCs from elite controllers translated into stronger abilities to stimulate and expand HIV-1-specific CD8 T cell responses. These data suggest an important role of cell-intrinsic type I interferon secretion in dendritic cells for the induction of effective HIV-1-specific CD8 T cells, and may be helpful for eliciting functional T cell immunity against HIV-1 for preventative or therapeutic clinical purposes. PMID:26067651

  11. The impact of regulatory T cells on T-cell immunity following hematopoietic cell transplantation

    PubMed Central

    Nguyen, Vu H.; Shashidhar, Sumana; Chang, Daisy S.; Ho, Lena; Kambham, Neeraja; Bachmann, Michael; Brown, Janice M.

    2008-01-01

    Regulatory T cells (Tregs) prevent graft-versus-host disease (GvHD) by inhibiting the proliferation and function of conventional T cells (Tcons). However, the impact of Tregs on T-cell development and immunity following hematopoietic cell transplantation (HCT) is unknown. Using a murine GvHD model induced by Tcons, we demonstrate that adoptive transfer of Tregs leads to (1) abrogration of GvHD, (2) preservation of thymic and peripheral lymph node architecture, and (3) an accelerated donor lymphoid reconstitution of a diverse TCR-Vβ repertoire. The resultant enhanced lymphoid reconstitution in Treg recipients protects them from lethal cytomegalovirus (MCMV) infection. By contrast, mice that receive Tcons alone have disrupted lymphoid organs from GvHD and remain lymphopenic with a restricted TCR-Vβ repertoire and rapid death on MCMV challenge. Lymphocytes from previously infected Treg recipients generate secondary response specific to MCMV, indicating long-term protective immunity with transferred Tregs. Thymectomy significantly reduces survival after MCMV challenge in Treg recipients compared with euthymic controls. Our results indicate that Tregs enhance immune reconstitution by preventing GvHD-induced damage of the thymic and secondary lymphoid microenvironment. These findings provide new insights into the role of Tregs in affording protection to lymphoid stromal elements important for T-cell immunity. PMID:17916743

  12. Tissue Specific Heterogeneity in Effector Immune Cell Response

    PubMed Central

    Tufail, Saba; Badrealam, Khan Farheen; Sherwani, Asif; Gupta, Umesh D.; Owais, Mohammad

    2013-01-01

    Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct “homing codes” (adhesion molecules and chemokine receptors) during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A) and sunlight (vitamin D3) prime dendritic cells, imprinting them to play centre stage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue-tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues along with giving an overview of tissue tropism in B cells. PMID:23986763

  13. Role of Dendritic Cells in Immune Dysfunction

    NASA Technical Reports Server (NTRS)

    Savary, Cherylyn A.

    1997-01-01

    Specific aims include: (1) Application of the bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC); (2) Based on clues from spaceflight: compare the frequency and function of DC in normal donors and immunocompromised cancer patients; and (3) Initiate studies on the efficiency of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in animal models of experimental fungal infections.

  14. Genetic variants regulating immune cell levels in health and disease.

    PubMed

    Orrù, Valeria; Steri, Maristella; Sole, Gabriella; Sidore, Carlo; Virdis, Francesca; Dei, Mariano; Lai, Sandra; Zoledziewska, Magdalena; Busonero, Fabio; Mulas, Antonella; Floris, Matteo; Mentzen, Wieslawa I; Urru, Silvana A M; Olla, Stefania; Marongiu, Michele; Piras, Maria G; Lobina, Monia; Maschio, Andrea; Pitzalis, Maristella; Urru, Maria F; Marcelli, Marco; Cusano, Roberto; Deidda, Francesca; Serra, Valentina; Oppo, Manuela; Pilu, Rosella; Reinier, Frederic; Berutti, Riccardo; Pireddu, Luca; Zara, Ilenia; Porcu, Eleonora; Kwong, Alan; Brennan, Christine; Tarrier, Brendan; Lyons, Robert; Kang, Hyun M; Uzzau, Sergio; Atzeni, Rossano; Valentini, Maria; Firinu, Davide; Leoni, Lidia; Rotta, Gianluca; Naitza, Silvia; Angius, Andrea; Congia, Mauro; Whalen, Michael B; Jones, Chris M; Schlessinger, David; Abecasis, Gonçalo R; Fiorillo, Edoardo; Sanna, Serena; Cucca, Francesco

    2013-09-26

    The complex network of specialized cells and molecules in the immune system has evolved to defend against pathogens, but inadvertent immune system attacks on "self" result in autoimmune disease. Both genetic regulation of immune cell levels and their relationships with autoimmunity are largely undetermined. Here, we report genetic contributions to quantitative levels of 95 cell types encompassing 272 immune traits, in a cohort of 1,629 individuals from four clustered Sardinian villages. We first estimated trait heritability, showing that it can be substantial, accounting for up to 87% of the variance (mean 41%). Next, by assessing ∼8.2 million variants that we identified and confirmed in an extended set of 2,870 individuals, 23 independent variants at 13 loci associated with at least one trait. Notably, variants at three loci (HLA, IL2RA, and SH2B3/ATXN2) overlap with known autoimmune disease associations. These results connect specific cellular phenotypes to specific genetic variants, helping to explicate their involvement in disease. PMID:24074872

  15. TRAF3 is required for T cell-mediated immunity and T cell receptor/CD28 signaling1

    PubMed Central

    Xie, Ping; Kraus, Zachary J.; Stunz, Laura L.; Liu, Yan; Bishop, Gail A.

    2011-01-01

    We recently reported that TRAF3, a ubiquitously expressed adaptor protein, promotes mature B cell apoptosis. However, the specific function of TRAF3 in T cells has remained unclear. Here we report the generation and characterization of T cell-specific TRAF3−/− mice, in which the TRAF3 gene was deleted from thymocytes and T cells. Ablation of TRAF3 in the T cell-lineage did not affect the numbers or proportions of CD4+,CD8+ or double positive or negative thymocytes, or CD4 or CD8 T cell populations in secondary lymphoid organs except that the T cell specific TRAF3−/− mice had a two-fold increase in FoxP3+ T cells.. In striking contrast to mice lacking TRAF3 in B cells, the T cell TRAF3 deficient mice exhibited defective IgG1 responses to a T dependent antigen, and impaired T cell-mediated immunity to infection with Listeria monocytogenes. Surprisingly, we found that TRAF3 was recruited to the TCR/CD28 signaling complex upon co-stimulation, and that TCR/CD28-mediated proximal and distal signaling events were compromised by TRAF3 deficiency. These findings provide new insights into the roles played by TRAF3 in T cell activation and T cell-mediated immunity. PMID:21084666

  16. The role of airway epithelial cells and innate immune cells in chronic respiratory disease

    PubMed Central

    Holtzman, Michael J.; Byers, Derek E.; Alexander-Brett, Jennifer; Wang, Xinyu

    2016-01-01

    An abnormal immune response to environmental agents is generally thought to be responsible for causing chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Based on studies of experimental models and human subjects, there is increasing evidence that the response of the innate immune system is crucial for the development of this type of airway disease. Airway epithelial cells and innate immune cells represent key components of the pathogenesis of chronic airway disease and are emerging targets for new therapies. In this Review, we summarize the innate immune mechanisms by which airway epithelial cells and innate immune cells regulate the development of chronic respiratory diseases. We also explain how these pathways are being targeted in the clinic to treat patients with these diseases. PMID:25234144

  17. Cutting Edge: Retinoic Acid Signaling in B Cells Is Essential for Oral Immunization and Microflora Composition.

    PubMed

    Pantazi, Eirini; Marks, Ellen; Stolarczyk, Emilie; Lycke, Nils; Noelle, Randolph J; Elgueta, Raul

    2015-08-15

    Retinoic acid (RA) is a critical regulator of the intestinal adaptive immune response. However, the intrinsic impact of RA on B cell differentiation in the regulation of gut humoral immunity in vivo has never been directly shown. To address this issue, we have been able to generate a mouse model where B cells specifically express a dominant-negative receptor α for RA. In this study, we show that the silencing of RA signaling in B cells reduces the numbers of IgA(+) Ab-secreting cells both in vitro and in vivo, suggesting that RA has a direct effect on IgA plasma cell differentiation. Moreover, the lack of RA signaling in B cells abrogates Ag-specific IgA responses after oral immunization and affects the microbiota composition. In conclusion, these results suggest that RA signaling in B cells through the RA receptor α is important to generate an effective gut humoral response and to maintain a normal microbiota composition. PMID:26163586

  18. Th17 cells in immunity to Candida albicans

    PubMed Central

    Hernández-Santos, Nydiaris; Gaffen, Sarah L.

    2012-01-01

    Our understanding of immunity to fungal pathogens has advanced considerably in recent years. Particularly significant have been the parallel discoveries in the C-type lectin receptor family and the Th effector arms of immunity, especially Th17 cells and their signature cytokine IL-17. Many of these studies have focused on the most common human fungal pathogen Candida albicans, which is typically a commensal microbe in healthy individuals but causes various disease manifestations in immunocompromised hosts, ranging from mild mucosal infections to lethal disseminated disease. Here, we discuss emerging fundamental discoveries with C. albicans that have informed our overall molecular understanding of fungal immunity. In particular, we focus on the importance of pattern recognition receptor-mediated fungal recognition and subsequent IL-17 responses in host defense against mucosal candidiasis. In light of these recent advances, we also discuss the implications for anti-cytokine biologic therapy and vaccine development. PMID:22607796

  19. The Role of Immune Cells in Chronic HBV Infection

    PubMed Central

    Li, Hai-Jun; Zhai, Nai-Cui; Song, Hong-Xiao; Yang, Yang; Cui, An; Li, Tian-Yang; Tu, Zheng-Kun

    2015-01-01

    Hepatitis B virus (HBV) infection is a major cause of chronic liver diseases that may progress to liver cirrhosis and hepatocellular carcinoma. Host immune responses are important factors that determine whether HBV infection is cleared or persists. After infection, viral replication occurs inside hepatocytes, and the secretion of infectious virions can take place at high rates for decades. Consequently, HBV DNA and viral proteins, like HBV early antigen (HBeAg) and HBV surface antigen (HBsAg), can be easily detected in serum. Chronic infection with HBV is the result of an ineffective antiviral immune response towards the virus. In this review, we discuss the role of immune cells in chronic HBV infection. PMID:26807384

  20. Neutrophils are immune cells preferentially targeted by retinoic acid in elderly subjects

    PubMed Central

    2010-01-01

    Background The immune system gradually deteriorates with age and nutritional status is a major factor in immunosenescence. Of the many nutritional factors implicated in age-related immune dysfunction, vitamin A may be a good candidate, since vitamin A concentrations classically decrease during aging whereas it may possess important immunomodulatory properties via its active metabolites, the retinoic acids. This prompted us to investigate the immune response induced by retinoids in adults and elderly healthy subjects. Before and after oral supplementation with 13cis retinoic acid (0.5 mg/kg/day during 28 days), whole blood cells were phenotyped, and functions of peripheral blood mononuclear cells (PBMC) and polymorphonuclear cells (PMN) were investigated by flow cytometry and ELISA tests. Results In both young adults (n = 20, 25 ± 4 years) and older subjects (n = 20, 65 ± 4 years), retinoic acid supplementation had no effect on the distribution of leukocyte subpopulations or on the functions of PBMC (Il-2 and sIl-2R production, membrane expression of CD25). Concerning PMN, retinoic acid induced an increase in both spontaneous migration and cell surface expression of CD11b in the two different age populations, whereas bactericidal activity and phagocytosis remained unchanged. Conclusions We demonstrated that retinoic acid induces the same intensity of immune response between adult and older subjects, and more specifically affects PMN functions, i.e. adhesion and migration, than PBMC functions. PMID:20727130

  1. Immune cells in primary and metastatic gastrointestinal stromal tumors (GIST)

    PubMed Central

    Cameron, Silke; Gieselmann, Marieke; Blaschke, Martina; Ramadori, Giuliano; Füzesi, Laszlo

    2014-01-01

    We have previously described immune cells in untreated primary gastrointestinal stromal tumors (GIST). Here we compare immune cells in metastatic and primary GIST, and describe their chemoattractants. For this purpose, tissue microarrays from 196 patients, 188 primary and 51 metastasized GIST were constructed for paraffin staining. Quantitative analysis was performed for cells of macrophage lineage (Ki-M1P, CD68), T-cells (CD3, CD56) and B-cells (CD20). Chemokine gene-expression was evaluated by real-time RT-PCR. Immuno-localisation was verified by immunofluorescence. Ki-M1P+ cells were the predominant immune cells in both primary and metastatic GIST (2 8.8% ± 7.1, vs. 26.7% ± 6.3). CD68+ macrophages were significantly fewer, with no significant difference between primary GIST (3.6% ± 2.1) and metastases (4.6% ± 1.5). CD3+ T-cells were the most dominant lymphocytes with a significant increase in metastases (7.3% ± 2.3 vs. 2.2% ± 1.8 in primary GIST, P < 0.01). The percentage of CD56+ NK-cells was 1.1% ± 0.9 in the primary, and 2.4 ± 0.7 (P < 0.05) in the metastases. The number of CD20+ B-cells was generally low with 0.6% ± 0.7 in the primary and 1.8% ± 0.3 (P < 0.05) in the metastases. Analysis of the metastases showed significantly more Ki-M1P+ cells in peritoneal metastases (31.8% ± 7.4 vs. 18.2% ± 3.7, P < 0.01), whilst CD3+ T-cells were more common in liver metastases (11.7% ± 1.8 vs. 4.4% ± 2.6, P < 0.01). The highest transcript expression was seen for monocyte chemotactic protein 1 (MCP1/CCL2), macrophage inflammatory protein 1α (MIP-1α/CCL3) and the pro-angiogenic growth-related oncoprotein 1 (Gro-α/CXCL-1). Whilst the ligands were predominantly expressed in tumor cells, their receptors were mostly present in immune cells. This locally specific microenvironment might influence neoplastic progression of GIST at the different metastatic sites. PMID:25120735

  2. Evidence of tricellulin expression by immune cells, particularly microglia.

    PubMed

    Mariano, Cibelle; Silva, Sandra Leitão; Pereira, Pedro; Fernandes, Adelaide; Brites, Dora; Brito, Maria A

    2011-06-17

    Tight junctions (TJs) are elaborate structures located on the apical region of epithelial cells that limit paracellular permeability. Tricellulin is a recently discovered TJ protein, which is concentrated at the structurally specialized tricellular TJs but also present at bicellular contacts between epithelial cells, namely in the stomach. Interestingly, several TJ proteins have been found in other than epithelial cells, as astrocytes, and tricellulin mRNA expression was reported in mature dendritic cells. These findings prompted us to look for tricellulin expression in both epithelial and immune cells in the stomach, as well as in microglia, the brain resident immunocompetent cells. Immunohistochemical analysis of human stomach tissue sections revealed peroxidase staining at three-corner contact sites, as well as at the contact between two adjacent epithelial cells, thus evidencing the expression of tricellulin not only at tricellullar but at bicellular junctions as well. Such analysis, further revealed tricellulin immunostaining in cells of the monocyte/macrophage lineage, scattered throughout the lamina propria. Cultured rat microglia exhibited a notorious tricellulin staining, consistent with an extensive expression of the protein along the cell, which was not absolutely coincident with the lysosomal marker CD68. Detection of mRNA expression by real-time PCR provided supportive evidence for the expression of the TJ protein in microglia. These data demonstrate for the first time that microglia express a TJ protein. Moreover, the expression of tricellulin both in microglia and in the stomach immune cells point to a possible role of this new TJ protein in the immune system. PMID:21624353

  3. Novel immune modulators used in hematology: impact on NK cells.

    PubMed

    Krieg, Stephanie; Ullrich, Evelyn

    2012-01-01

    There is a wide range of important pharmaceuticals used in treatment of cancer. Besides their known effects on tumor cells, there is growing evidence for modulation of the immune system. Immunomodulatory drugs (IMiDs(®)) play an important role in the treatment of patients with multiple myeloma or myelodysplastic syndrome and have already demonstrated antitumor, anti-angiogenic, and immunostimulating effects, in particular on natural killer (NK) cells. Tyrosine kinase inhibitors are directly targeting different kinases and are known to regulate effector NK cells and expression of NKG2D ligands (NKG2DLs) on tumor cells. Demethylating agents, histone deacetylases, and proteasome inhibitors interfere with the epigenetic regulation and protein degradation of malignant cells. There are first hints that these drugs also sensitize tumor cells to chemotherapy, radiation, and NK cell-mediated cytotoxicity by enhanced expression of TRAIL and NKG2DLs. However, these pharmaceuticals may also impair NK cell function in a dose- and time-dependent manner. In summary, this review provides an update on the effects of different novel molecules on the immune system focusing NK cells. PMID:23316191

  4. Novel immune modulators used in hematology: impact on NK cells

    PubMed Central

    Krieg, Stephanie; Ullrich, Evelyn

    2013-01-01

    There is a wide range of important pharmaceuticals used in treatment of cancer. Besides their known effects on tumor cells, there is growing evidence for modulation of the immune system. Immunomodulatory drugs (IMiDs®) play an important role in the treatment of patients with multiple myeloma or myelodysplastic syndrome and have already demonstrated antitumor, anti-angiogenic, and immunostimulating effects, in particular on natural killer (NK) cells. Tyrosine kinase inhibitors are directly targeting different kinases and are known to regulate effector NK cells and expression of NKG2D ligands (NKG2DLs) on tumor cells. Demethylating agents, histone deacetylases, and proteasome inhibitors interfere with the epigenetic regulation and protein degradation of malignant cells. There are first hints that these drugs also sensitize tumor cells to chemotherapy, radiation, and NK cell-mediated cytotoxicity by enhanced expression of TRAIL and NKG2DLs. However, these pharmaceuticals may also impair NK cell function in a dose- and time-dependent manner. In summary, this review provides an update on the effects of different novel molecules on the immune system focusing NK cells. PMID:23316191

  5. T regulatory cells and their counterparts: masters of immune regulation.

    PubMed

    Ozdemir, C; Akdis, M; Akdis, C A

    2009-05-01

    The interaction of environmental and genetic factors with the immune system can lead to the development of allergic diseases. The essential step in this progress is the generation of allergen-specific CD4(+) T-helper (Th) type 2 cells that mediate several effector functions. The influence of Th2 cytokines leads to the production of allergen-specific IgE antibodies by B cells, development and recruitment of eosinophils, mucus production and bronchial hyperreactivity, as well as tissue homing of other Th2 cells and eosinophils. Meanwhile, Th1 cells may contribute to chronicity and the effector phases. T cells termed T regulatory (Treg) cells, which have immunosuppressive functions and cytokine profiles distinct from that of either Th1 or Th2 cells, have been intensely investigated during the last 13 years. Treg cell response is characterized by an abolished allergen-specific T cell proliferation and the suppressed secretion of Th1 and Th2-type cytokines. Treg cells are able to inhibit the development of allergen-specific Th2 and Th1 cell responses and therefore play an important role in a healthy immune response to allergens. In addition, Treg cells potently suppress IgE production and directly or indirectly suppress the activity of effector cells of allergic inflammation, such as eosinophils, basophils and mast cells. Currently, Treg cells represent an exciting area of research, where understanding the mechanisms of peripheral tolerance to allergens may soon lead to more rational and safer approaches for the prevention and cure of allergic diseases. PMID:19422105

  6. Physical parameters affecting living cells in space.

    PubMed

    Langbein, D

    1986-01-01

    The question is posed: Why does a living cell react to the absence of gravity? What sensors may it have? Does it note pressure, sedimentation, convection, or other parameters? If somewhere in a liquid volume sodium ions are replaced by potassium ions, the density of the liquid changes locally: the heavier regions sink, the lighter regions rise. This may contribute to species transport, to the metabolism. Under microgravity this mechanism is strongly reduced. On the other hand, other reasons for convection like thermal and solutal interface convection are left. Do they affect species transport? Another important effect of gravity is the hydrostatic pressure. On the macroscopic side, the pressure between our head and feet changes by 0.35 atmospheres. On the microscopic level the hydrostatic pressure on the upper half of a cell membrane is lower than on the lower half. This, by affecting the ion transport through the membrane, may change the surrounding electric potential. It has been suggested to be one of the reasons for graviperception. Following the discussion of these and other effects possibly important in life sciences in space, an order of magnitude analysis of the residual accelerations tolerable during experiments in materials sciences is outlined. In the field of life sciences only rough estimates are available at present. PMID:11537842

  7. Identifying genes that mediate anthracyline toxicity in immune cells

    PubMed Central

    Frick, Amber; Suzuki, Oscar T.; Benton, Cristina; Parks, Bethany; Fedoriw, Yuri; Richards, Kristy L.; Thomas, Russell S.; Wiltshire, Tim

    2015-01-01

    The role of the immune system in response to chemotherapeutic agents remains elusive. The interpatient variability observed in immune and chemotherapeutic cytotoxic responses is likely, at least in part, due to complex genetic differences. Through the use of a panel of genetically diverse mouse inbred strains, we developed a drug screening platform aimed at identifying genes underlying these chemotherapeutic cytotoxic effects on immune cells. Using genome-wide association studies (GWAS), we identified four genome-wide significant quantitative trait loci (QTL) that contributed to the sensitivity of doxorubicin and idarubicin in immune cells. Of particular interest, a locus on chromosome 16 was significantly associated with cell viability following idarubicin administration (p = 5.01 × 10−8). Within this QTL lies App, which encodes amyloid beta precursor protein. Comparison of dose-response curves verified that T-cells in App knockout mice were more sensitive to idarubicin than those of C57BL/6J control mice (p < 0.05). In conclusion, the cellular screening approach coupled with GWAS led to the identification and subsequent validation of a gene involved in T-cell viability after idarubicin treatment. Previous studies have suggested a role for App in in vitro and in vivo cytotoxicity to anticancer agents; the overexpression of App enhances resistance, while the knockdown of this gene is deleterious to cell viability. Further investigations should include performing mechanistic studies, validating additional genes from the GWAS, including Ppfia1 and Ppfibp1, and ultimately translating the findings to in vivo and human studies. PMID:25926793

  8. Th17 Cells in Immunity and Autoimmunity

    PubMed Central

    Bedoya, Simone Kennedy; Lam, Brandon; Lau, Kenneth; Larkin, Joseph

    2013-01-01

    Th17 and IL-17 play important roles in the clearance of extracellular bacterial and fungal infections. However, strong evidence also implicates the Th17 lineage in several autoimmune disorders including multiple sclerosis, psoriasis, rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, and asthma. The Th17 subset has also been connected with type I diabetes, although whether it plays a role in the pathogenicity of or protection from the disease remains a controversial issue. In this review we have provided a comprehensive overview of Th17 pathogenicity and function, including novel evidence for a protective role of Th17 cells in conjunction with the microbiota gut flora in T1D onset and progression. PMID:24454481

  9. Studies of Cell-Mediated Immunity Against Immune Disorders Using Synthetic Peptides and Rotating Bioreactor System

    NASA Technical Reports Server (NTRS)

    Sastry, Jagannadha K.

    1998-01-01

    We conducted a series of experiments using mouse immune-precursor cells, and observed that bioreactor culturing results in the loss of antigen-specific cytotoxic T lymphocyte (CTL) function. The reason for the abrogation of CTL function is microgravity conditions in the bioreactor, but not the antigen per se or its MHC restriction. Similarly, we observed that allostimulation of human PBMC in the bioreactor, but not in the T flask, resulted in the blunting of both allo-CTL function and the NK activity, indicating that the microgravity-associated functional defects are not unique to the mouse system. These results provide further confirmation to the microgravity-associated immune dysfunction, and constitute ground-based confirmatory data for those related to space-travel.

  10. Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis.

    PubMed

    Ait-Oufella, Hafid; Sage, Andrew P; Mallat, Ziad; Tedgui, Alain

    2014-05-01

    Chronic inflammation in response to lipoprotein accumulation in the arterial wall is central in the development of atherosclerosis. Both innate and adaptive immunity are involved in this process. Adaptive immune responses develop against an array of potential antigens presented to effector T lymphocytes by antigen-presenting cells, especially dendritic cells. Functional analysis of the role of different T-cell subsets identified the Th1 responses as proatherogenic, whereas regulatory T-cell responses exert antiatherogenic activities. The effect of Th2 and Th17 responses is still debated. Atherosclerosis is also associated with B-cell activation. Recent evidence established that conventional B-2 cells promote atherosclerosis. In contrast, innate B-1 B cells offer protection through secretion of natural IgM antibodies. This review discusses the recent development in our understanding of the role of T- and B-cell subsets in atherosclerosis and addresses the role of dendritic cell subpopulations in the control of adaptive immunity. PMID:24812352

  11. IVIg immune reconstitution treatment alleviates the state of persistent immune activation and suppressed CD4 T cell counts in CVID.

    PubMed

    Paquin-Proulx, Dominic; Santos, Bianca A N; Carvalho, Karina I; Toledo-Barros, Myrthes; Barreto de Oliveira, Ana Karolina; Kokron, Cristina M; Kalil, Jorge; Moll, Markus; Kallas, Esper G; Sandberg, Johan K

    2013-01-01

    Common variable immunodeficiency (CVID) is characterized by defective B cell function, impaired antibody production, and increased susceptibility to bacterial infections. Here, we addressed the hypothesis that poor antibody-mediated immune control of infections may result in substantial perturbations in the T cell compartment. Newly diagnosed CVID patients were sampled before, and 6-12 months after, initiation of intravenous immunoglobulin (IVIg) therapy. Treatment-naïve CVID patients displayed suppressed CD4 T cell counts and myeloid dendritic cell (mDC) levels, as well as high levels of immune activation in CD8 T cells, CD4 T cells, and invariant natural killer T (iNKT) cells. Expression of co-stimulatory receptors CD80 and CD83 was elevated in mDCs and correlated with T cell activation. Levels of both FoxP3+ T regulatory (Treg) cells and iNKT cells were low, whereas soluble CD14 (sCD14), indicative of monocyte activation, was elevated. Importantly, immune reconstitution treatment with IVIg partially restored the CD4 T cell and mDC compartments. Treatment furthermore reduced the levels of CD8 T cell activation and mDC activation, whereas levels of Treg cells and iNKT cells remained low. Thus, primary deficiency in humoral immunity with impaired control of microbial infections is associated with significant pathological changes in cell-mediated immunity. Furthermore, therapeutic enhancement of humoral immunity with IVIg infusions alleviates several of these defects, indicating a relationship between poor antibody-mediated immune control of infections and the occurrence of abnormalities in the T cell and mDC compartments. These findings help our understanding of the immunopathogenesis of primary immunodeficiency, as well as acquired immunodeficiency caused by HIV-1 infection. PMID:24130688

  12. Microbial Cryptotopes are Prominent Targets of B-cell Immunity

    PubMed Central

    Rieder, Franz J. J.; Biebl, Julia; Kastner, Marie-Theres; Schneider, Martina; Jungbauer, Christof; Redlberger-Fritz, Monika; Britt, William J.; Kundi, Michael; Steininger, Christoph

    2016-01-01

    B-cell recognition of microbial antigens may be limited by masking of epitopes within three-dimensional structures (cryptotopes). Here we report that unmasking of cryptotopes by unfolding whole cytomegalovirus (CMV) antigen preparations with the chaotropic reagent Urea and probing with immune sera from healthy individuals (n = 109) increased ELISA signals by 36% in comparison to folded CMV antigens (P < 0.001). ELISA signals increased also significantly upon unfolding of S. aureus or E. coli antigens, whereas unfolded influenza H1N1 or respiratory syncitial virus antigens yielded reduced or unchanged reactivity in comparison to folded ones, respectively. Blocking of CMV cryptotope-specific Abs by incubation of an immunoglobuline preparation and three sera with unfolded CMV antigens enhanced clearly the neutralizing capacity of this immunoglobuline preparation against CMV infection. Thus, B-cell immunity frequently targets cryptotopes on CMV but these Abs are non-neutralizing, may reduce the neutralizing effectiveness of pathogen-specific Abs, and increase during immune maturation following primary CMV infection. The observation of functional consequences of Abs specific for cryptotopes may open whole new avenues to a better understanding of the humoral immune response to CMV and development of more effective vaccines and immunoglobuline preparations. PMID:27539094

  13. Microbial Cryptotopes are Prominent Targets of B-cell Immunity.

    PubMed

    Rieder, Franz J J; Biebl, Julia; Kastner, Marie-Theres; Schneider, Martina; Jungbauer, Christof; Redlberger-Fritz, Monika; Britt, William J; Kundi, Michael; Steininger, Christoph

    2016-01-01

    B-cell recognition of microbial antigens may be limited by masking of epitopes within three-dimensional structures (cryptotopes). Here we report that unmasking of cryptotopes by unfolding whole cytomegalovirus (CMV) antigen preparations with the chaotropic reagent Urea and probing with immune sera from healthy individuals (n = 109) increased ELISA signals by 36% in comparison to folded CMV antigens (P < 0.001). ELISA signals increased also significantly upon unfolding of S. aureus or E. coli antigens, whereas unfolded influenza H1N1 or respiratory syncitial virus antigens yielded reduced or unchanged reactivity in comparison to folded ones, respectively. Blocking of CMV cryptotope-specific Abs by incubation of an immunoglobuline preparation and three sera with unfolded CMV antigens enhanced clearly the neutralizing capacity of this immunoglobuline preparation against CMV infection. Thus, B-cell immunity frequently targets cryptotopes on CMV but these Abs are non-neutralizing, may reduce the neutralizing effectiveness of pathogen-specific Abs, and increase during immune maturation following primary CMV infection. The observation of functional consequences of Abs specific for cryptotopes may open whole new avenues to a better understanding of the humoral immune response to CMV and development of more effective vaccines and immunoglobuline preparations. PMID:27539094

  14. Postnatal nutritional restriction affects growth and immune function of piglets with intra-uterine growth restriction.

    PubMed

    Hu, Liang; Liu, Yan; Yan, Chuan; Peng, Xie; Xu, Qin; Xuan, Yue; Han, Fei; Tian, Gang; Fang, Zhengfeng; Lin, Yan; Xu, Shengyu; Zhang, Keying; Chen, Daiwen; Wu, De; Che, Lianqiang

    2015-07-14

    Postnatal rapid growth by excess intake of nutrients has been associated with an increased susceptibility to diseases in neonates with intra-uterine growth restricted (IUGR). The aim of the present study was to determine whether postnatal nutritional restriction could improve intestinal development and immune function of neonates with IUGR using piglets as model. A total of twelve pairs of normal-birth weight (NBW) and IUGR piglets (7 d old) were randomly assigned to receive adequate nutrient intake or restricted nutrient intake (RNI) by artificially liquid feeding for a period of 21 d. Blood samples and intestinal tissues were collected at necropsy and were analysed for morphology, digestive enzyme activities, immune cells and expression of innate immunity-related genes. The results indicated that both IUGR and postnatal nutritional restriction delayed the growth rate during the sucking period. Irrespective of nutrient intake, piglets with IUGR had a significantly lower villous height and crypt depth in the ileum than the NBW piglets. Moreover, IUGR decreased alkaline phosphatase activity while enhanced lactase activity in the jejunum and mRNA expressions of Toll-like receptor 9 (TLR-9) and DNA methyltransferase 1 (DNMT1) in the ileum of piglets. Irrespective of body weight, RNI significantly decreased the number and/or percentage of peripheral leucocytes, lymphocytes and monocytes of piglets, whereas the percentage of neutrophils and the ratio of CD4+ to CD8+ were increased. Furthermore, RNI markedly enhanced the mRNA expression of TLR-9 and DNMT1, but decreased the expression of NOD2 and TRAF-6 in the ileum of piglets. In summary, postnatal nutritional restriction led to abnormal cellular and innate immune response, as well as delayed the growth and intestinal development of IUGR piglets. PMID:26059215

  15. Cell-Mediated Immune Responses in Four-Year-Old Children after Primary Immunization with Acellular Pertussis Vaccines

    PubMed Central

    Ausiello, Clara M.; Lande, Roberto; Urbani, Francesca; la Sala, Andrea; Stefanelli, Paola; Salmaso, Stefania; Mastrantonio, Paola; Cassone, Antonio

    1999-01-01

    Cell-mediated immune (CMI) responses to Bordetella pertussis antigens (pertussis toxin [PT], pertactin [PRN], and filamentous hemagglutinin [FHA]) were assessed in 48-month-old recipients of acellular pertussis [aP] vaccines (either from Chiron-Biocine [aP-CB] or from SmithKline Beecham [aP-SB]) and compared to CMI responses to the same antigens at 7 months of age, i.e., 1 month after completion of the primary immunization cycle. None of the children enrolled in this study received any booster of pertussis vaccines or was affected by pertussis during the whole follow-up period. Overall, around 75% of 4-year-old children showed a CMI-positive response to at least one B. pertussis antigen, independently of the type of aP vaccine received, and the proportion of CMI responders were at least equal at 48 and 7 months of age. However, longitudinal examination of individual responses showed that from 20 (against PT) to 37% (against FHA) of CMI responders after primary immunization became negative at 48 months of age. This loss was more than compensated for by conversion to positive CMI responses, ranging from 36% against FHA to 69% against PRN, in other children who were CMI negative at 7 months of age. In 60 to 80% of these CMI converters, a lack of decline or even marked elevation of antibody (Ab) titers against B. pertussis antigens also occurred between 20 and 48 months of age. In particular, the frequency of seropositivity to PRN and FHA (but not to PT) was roughly three times higher in CMI converters than in nonconverters. The acquisition of CMI response to B. pertussis antigens in 48-month-old children was not associated with a greater frequency of coughing episodes lasting ≥7 days and was characterized by a prevalent type 1 cytokine profile, with high gamma interferon and low or no production of interleukin-5, reminiscent of cytokine patterns following immunization with whole-cell pertussis vaccine or natural infection. Our data imply that vaccination

  16. LAI reactivity in rats immunized with tumor cells.

    PubMed

    Pham Manh Hung; Kalafut, F; Novotná, L; Koníková, E

    1980-01-01

    Leukocytes of peripheral blood of F1 hybrid inbred strain of rats LW X AVN and rats of inbred Lewis strain, immunized for three consecutive weeks with increasing doses of live or dead MC-1 or B 77 tumor cells, incubated for 20 hours with specific tumor extract, showed a lower adhering ability (LAI 32.8 +/- 16.6, 44.4 +/- 14.0, 43.1 +/- 7.4%) than that of the same cell population cultured without a specific antigen. The nonspecific tumor extract did not produce any LAI reactivity (4.4 +/- 5.9, 5.8 +/- 8.2, 6.7 +/- 5.9%). The values of LAI leukocytes of the controls tested by both the antigens were concordant with those found in samples of the same cell population tested without any antigens. The discussion bears on a possibility of applying the 20-hour modification of the LAI test in studies of cell immunity in immunized patients. PMID:7005699

  17. Assessing humoral and cell-mediated immune response in Hawaiian green turtles, Chelonia mydas

    USGS Publications Warehouse

    Work, T.M.; Balazs, G.H.; Rameyer, R.A.; Chang, S.P.; Berestecky, J.

    2000-01-01

    Seven immature green turtles, Chelonia mydas, captured from Kaneohe Bay on the island of Oahu were used to evaluate methods for assessing their immune response. Two turtles each were immunized intramuscularly with egg white lysozyme (EWL) in Freunda??s complete adjuvant, Gerbu, or ISA-70; a seventh turtle was immunized with saline only and served as a control. Humoral immune response was measured with an indirect enzyme linked immunosorbent assay (ELISA). Cell-mediated immune response was measured using in vitro cell proliferation assays (CPA) using whole blood or peripheral blood mononuclear cells (PBM) cultured with concanavalin A (ConA), phytohaemagglutinin (PHA), or soluble egg EWL antigen. All turtles, except for one immunized with Gerbu and the control, produced a detectable humoral immune response by 6 weeks which persisted for at least 14 weeks after a single immunization. All turtles produced an anamnestic humoral immune response after secondary immunization. Antigen specific cell-mediated immune response in PBM was seen in all turtles either after primary or secondary immunization, but it was not as consistent as humoral immune response; antigen specific cell-mediated immune response in whole blood was rarely seen. Mononuclear cells had significantly higher stimulation indices than whole blood regardless of adjuvant, however, results with whole blood had lower variability. Both Gerbu and ISA-70 appeared to potentiate the cell-mediated immune response when PBM or whole blood were cultured with PHA. This is the first time cell proliferation assays have been compared between whole blood and PBM for reptiles. This is also the first demonstration of antigen specific cell-mediated response in reptiles. Cell proliferation assays allowed us to evaluate the cell-mediated immune response of green turtles. However, CPA may be less reliable than ELISA for detecting antigen specific immune response. Either of the three adjuvants appears suitable to safely elicit a

  18. Mesenchymal stromal cells inhibit murine syngeneic anti-tumor immune responses by attenuating inflammation and reorganizing the tumor microenvironment.

    PubMed

    Modiano, Jaime F; Lindborg, Beth A; McElmurry, Ron T; Lewellen, Mitzi; Forster, Colleen L; Zamora, Edward A; Schaack, Jerome; Bellgrau, Donald; O'Brien, Timothy D; Tolar, Jakub

    2015-11-01

    The potential of mesenchymal stromal cells (MSCs) to inhibit anti-tumor immunity is becoming increasingly well recognized, but the precise steps affected by these cells during the development of an anti-tumor immune response remain incompletely understood. Here, we examined how MSCs affect the steps required to mount an effective anti-tumor immune response following administration of adenovirus Fas ligand (Ad-FasL) in the Lewis lung carcinoma (LL3) model. Administration of bone marrow-derived MSCs with LL3 cells accelerated tumor growth significantly. MSCs inhibited the inflammation induced by Ad-FasL in the primary tumors, precluding their rejection; MSCs also reduced the consequent expansion of tumor-specific T cells in the treated hosts. When immune T cells were transferred to adoptive recipients, MSCs impaired, but did not completely abrogate the ability of these T cells to promote elimination of secondary tumors. This impairment was associated with a modest reduction in tumor-infiltrating T cells, with a significant reduction in tumor-infiltrating macrophages, and with a reorganization of the stromal environment. Our data indicate that MSCs in the tumor environment reduce the efficacy of immunotherapy by creating a functional and anatomic barrier that impairs inflammation, T cell priming and expansion, and T cell function-including recruitment of effector cells. PMID:26250807

  19. Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses

    PubMed Central

    Chiba, Shiho; Ikushima, Hiroaki; Ueki, Hiroshi; Yanai, Hideyuki; Kimura, Yoshitaka; Hangai, Sho; Nishio, Junko; Negishi, Hideo; Tamura, Tomohiko; Saijo, Shinobu; Iwakura, Yoichiro; Taniguchi, Tadatsugu

    2014-01-01

    The eradication of tumor cells requires communication to and signaling by cells of the immune system. Natural killer (NK) cells are essential tumor-killing effector cells of the innate immune system; however, little is known about whether or how other immune cells recognize tumor cells to assist NK cells. Here, we show that the innate immune receptor Dectin-1 expressed on dendritic cells and macrophages is critical to NK-mediated killing of tumor cells that express N-glycan structures at high levels. Receptor recognition of these tumor cells causes the activation of the IRF5 transcription factor and downstream gene induction for the full-blown tumoricidal activity of NK cells. Consistent with this, we show exacerbated in vivo tumor growth in mice genetically deficient in either Dectin-1 or IRF5. The critical contribution of Dectin-1 in the recognition of and signaling by tumor cells may offer new insight into the anti-tumor immune system with therapeutic implications. DOI: http://dx.doi.org/10.7554/eLife.04177.001 PMID:25149452

  20. Endometriotic mesenchymal stem cells exhibit a distinct immune phenotype.

    PubMed

    Koippallil Gopalakrishnan Nair, Aghila Rani; Pandit, Hrishikesh; Warty, Neeta; Madan, Taruna

    2015-04-01

    Endometriosis is a significant debilitating gynecological problem affecting women of the reproductive age group and post-menopause. Recent reports suggest a role for endometriotic mesenchymal stem cells (ectopic MSCs) in the pathogenesis of endometriosis. To investigate the plausible mechanisms leading to the pathogenic behavior of ectopic MSCs, we compared the immunomodulatory properties of eutopic (healthy) and ectopic MSCs. We analyzed MSC phenotypes, differentiation potential, differential gene expression for an array of pattern recognition receptors (PRRs) and pro-inflammatory cytokine release along with markers of migration and angiogenesis among eutopic and ectopic MSCs. Further, alterations in immunosuppressive functions of eutopic and ectopic MSCs were examined by co-culturing them with mitogen-activated allogeneic PBMCs. Transcripts of PRRs such as all Toll-like receptors (TLR1-10), except TLR8, collectins (CL-L1, CL-P1 and CL-K1), NOD-1 and NOD-2 receptors and secreted pro-inflammatory cytokines like IL-6, IFN-γ, vascular endothelial growth factor (VEGF), epidermal growth factor and MCP-1 were significantly up-regulated in ectopic MSCs. The anti-inflammatory cytokine transforming growth factor-β showed significant down-regulation, while IL-10 showed a significant increase in ectopic MSCs. Further, ectopic MSCs showed up-regulated expression for markers of migration and angiogenesis such as matrix metalloproteinase-2 (MMP-2), MMP-3 and MMP-9 and VEGF, respectively. We report here that proliferation of PBMCs was less inhibited upon co-culture with ectopic MSCs compared with eutopic MSCs. The findings suggest that ectopic MSCs with increased levels of TLRs, collectins, pro-inflammatory cytokines and markers of migration and angiogenesis exhibit a distinct immune phenotype compared to eutopic MSCs. This distinct phenotype may be responsible for the reduced immunosuppressive property of ectopic MSCs and may be associated with the pathogenesis of

  1. Subcellular optogenetic activation of Cdc42 controls local and distal signaling to drive immune cell migration

    PubMed Central

    O’Neill, Patrick R.; Kalyanaraman, Vani; Gautam, N.

    2016-01-01

    Migratory immune cells use intracellular signaling networks to generate and orient spatially polarized responses to extracellular cues. The monomeric G protein Cdc42 is believed to play an important role in controlling the polarized responses, but it has been difficult to determine directly the consequences of localized Cdc42 activation within an immune cell. Here we used subcellular optogenetics to determine how Cdc42 activation at one side of a cell affects both cell behavior and dynamic molecular responses throughout the cell. We found that localized Cdc42 activation is sufficient to generate polarized signaling and directional cell migration. The optically activated region becomes the leading edge of the cell, with Cdc42 activating Rac and generating membrane protrusions driven by the actin cytoskeleton. Cdc42 also exerts long-range effects that cause myosin accumulation at the opposite side of the cell and actomyosin-mediated retraction of the cell rear. This process requires the RhoA-activated kinase ROCK, suggesting that Cdc42 activation at one side of a cell triggers increased RhoA signaling at the opposite side. Our results demonstrate how dynamic, subcellular perturbation of an individual signaling protein can help to determine its role in controlling polarized cellular responses. PMID:26941336

  2. Subcellular optogenetic activation of Cdc42 controls local and distal signaling to drive immune cell migration.

    PubMed

    O'Neill, Patrick R; Kalyanaraman, Vani; Gautam, N

    2016-05-01

    Migratory immune cells use intracellular signaling networks to generate and orient spatially polarized responses to extracellular cues. The monomeric G protein Cdc42 is believed to play an important role in controlling the polarized responses, but it has been difficult to determine directly the consequences of localized Cdc42 activation within an immune cell. Here we used subcellular optogenetics to determine how Cdc42 activation at one side of a cell affects both cell behavior and dynamic molecular responses throughout the cell. We found that localized Cdc42 activation is sufficient to generate polarized signaling and directional cell migration. The optically activated region becomes the leading edge of the cell, with Cdc42 activating Rac and generating membrane protrusions driven by the actin cytoskeleton. Cdc42 also exerts long-range effects that cause myosin accumulation at the opposite side of the cell and actomyosin-mediated retraction of the cell rear. This process requires the RhoA-activated kinase ROCK, suggesting that Cdc42 activation at one side of a cell triggers increased RhoA signaling at the opposite side. Our results demonstrate how dynamic, subcellular perturbation of an individual signaling protein can help to determine its role in controlling polarized cellular responses. PMID:26941336

  3. Innate Immune Function of TH2 Cells in vivo

    PubMed Central

    Guo, Liying; Huang, Yuefeng; Chen, Xi; Hu-Li, Jane; Urban, Joseph F.; Paul, William E.

    2015-01-01

    Type 2 helper T (TH) cells produce interleukin 13 (IL-13) when stimulated by papain or house dust mites (HDM) and induce eosinophilic inflammation. This innate response is dependent on IL-33 but not T cell antigen receptors (TCRs). While type 2 innate lymphoid cells (ILC2s) are the dominant innate producers of IL-13 in naïve animals, we show here that in helminth-infected mice, TH2 cell numbers increased and became major mediators of innate type II responses. TH2 cells made important contributions to HDM-induced antigen–non-specific eosinophilic inflammation and protected mice recovering from Ascaris suum infection against subsequent infection with the phylogenetically distant nematode Nippostrongylus brasiliensis. Our findings reveal a previously unappreciated role of effector TH2 cells during TCR-independent innate-like immune responses. PMID:26322482

  4. Myeloid-Derived Suppressor Cells: Critical Cells Driving Immune Suppression in the Tumor Microenvironment

    PubMed Central

    Parker, Katherine H.; Beury, Daniel W.; Ostrand-Rosenberg, Suzanne

    2015-01-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that suppress innate and adaptive immunity. MDSCs are present in many disease settings; however, in cancer, they are a major obstacle for both natural antitumor immunity and immunotherapy. Tumor and host cells in the tumor microenvironment (TME) produce a myriad of pro-inflammatory mediators that activate MDSCs and drive their accumulation and suppressive activity. MDSCs utilize a variety of mechanisms to suppress T cell activation, induce other immune-suppressive cell populations, regulate inflammation in the TME, and promote the switching of the immune system to one that tolerates and enhances tumor growth. Because MDSCs are present in most cancer patients and are potent immune-suppressive cells, MDSCs have been the focus of intense research in recent years. This review describes the history and identification of MDSCs, the role of inflammation and intracellular signaling events governing MDSC accumulation and suppressive activity, immune-suppressive mechanisms utilized by MDSCs, and recent therapeutics that target MDSCs to enhance antitumor immunity. PMID:26216631

  5. Trail networks formed by populations of immune cells

    NASA Astrophysics Data System (ADS)

    Yang, Taeseok Daniel; Kwon, Tae Goo; Park, Jin-sung; Lee, Kyoung J.

    2014-02-01

    Populations of biological cells that communicate with each other can organize themselves to generate large-scale patterns. Examples can be found in diverse systems, ranging from developing embryos, cardiac tissues, chemotaxing ameba and swirling bacteria. The similarity, often shared by the patterns, suggests the existence of some general governing principle. On the other hand, rich diversity and system-specific properties are exhibited, depending on the type of involved cells and the nature of their interactions. The study on the similarity and the diversity constitutes a rapidly growing field of research. Here, we introduce a new class of self-organized patterns of cell populations that we term as ‘cellular trail networks’. They were observed with populations of rat microglia, the immune cells of the brain and the experimental evidence suggested that haptotaxis is the key element responsible for them. The essential features of the observed patterns are well captured by the mathematical model cells that actively crawl and interact with each other through a decomposing but non-diffusing chemical attractant laid down by the cells. Our finding suggests an unusual mechanism of socially cooperative long-range signaling for the crawling immune cells.

  6. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells.

    PubMed

    Rimoldi, Monica; Chieppa, Marcello; Salucci, Valentina; Avogadri, Francesca; Sonzogni, Angelica; Sampietro, Gianluca M; Nespoli, Angelo; Viale, Giuseppe; Allavena, Paola; Rescigno, Maria

    2005-05-01

    The control of damaging inflammation by the mucosal immune system in response to commensal and harmful ingested bacteria is unknown. Here we show epithelial cells conditioned mucosal dendritic cells through the constitutive release of thymic stromal lymphopoietin and other mediators, resulting in the induction of 'noninflammatory' dendritic cells. Epithelial cell-conditioned dendritic cells released interleukins 10 and 6 but not interleukin 12, and they promoted the polarization of T cells toward a 'classical' noninflammatory T helper type 2 response, even after exposure to a T helper type 1-inducing pathogen. This control of immune responses seemed to be lost in patients with Crohn disease. Thus, the intimate interplay between intestinal epithelial cells and dendritic cells may help to maintain gut immune homeostasis. PMID:15821737

  7. Engineered Lentivector Targeting of Dendritic Cells for In Vivo Immunization

    PubMed Central

    Yang, Lili; Yang, Haiguang; Rideout, Kendra; Cho, Taehoon; Joo, Kye il; Ziegler, Leslie; Elliot, Abigail; Walls, Anthony; Yu, Dongzi; Baltimore, David; Wang, Pin

    2008-01-01

    We report a method of inducing antigen production in dendritic cells (DCs) by in vivo targeting with lentiviral vectors that specifically bind to the DC surface protein, DC-SIGN. To target the DCs, the lentivector was enveloped with a viral glycoprotein from Sindbis virus, engineered to be DC-SIGN-specific. In vitro, this lentivector specifically transduced DCs and induced DC maturation. A remarkable frequency (up to 12%) of ovalbumin (OVA)-specific CD8+ T cells and a significant antibody response were observed 2 weeks following injection of a targeted lentiviral vector encoding an OVA transgene into naïve mice. These mice were solidly protected against the growth of the OVA-expressing E.G7 tumor and this methodology could even induce regression of an established tumor. Thus, lentiviral vectors targeting DCs provide a simple method of producing effective immunity and may provide an alternative route for immunization with protein antigens. PMID:18297056

  8. Cochlin produced by follicular dendritic cells promotes antibacterial innate immunity.

    PubMed

    Py, Bénédicte F; Gonzalez, Santiago F; Long, Kai; Kim, Mi-Sung; Kim, Young-A; Zhu, Hong; Yao, Jianhua; Degauque, Nicolas; Villet, Régis; Ymele-Leki, Patrick; Gadjeva, Mihaela; Pier, Gerald B; Carroll, Michael C; Yuan, Junying

    2013-05-23

    Cochlin, an extracellular matrix protein, shares homologies with the Factor C, a serine protease found in horseshoe crabs, which is critical for antibacterial responses. Mutations in the COCH gene are responsible for human DFNA9 syndrome, a disorder characterized by neurodegeneration of the inner ear that leads to hearing loss and vestibular impairments. The physiological function of cochlin, however, is unknown. Here, we report that cochlin is specifically expressed by follicular dendritic cells and selectively localized in the fine extracellular network of conduits in the spleen and lymph nodes. During inflammation, cochlin was cleaved by aggrecanases and secreted into blood circulation. In models of lung infection with Pseudomonas aeruginosa and Staphylococcus aureus, Coch(-/-) mice show reduced survival linked to defects in local cytokine production, recruitment of immune effector cells, and bacterial clearance. By producing cochlin, FDCs thus contribute to the innate immune response in defense against bacteria. PMID:23684986

  9. Curcumin prevents human dendritic cell response to immune stimulants

    SciTech Connect

    Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.

    2008-09-26

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14{sup +} monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing CD4{sup +} T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant.

  10. Curcumin prevents human dendritic cell response to immune stimulants

    PubMed Central

    Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.

    2012-01-01

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14+ monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing naïve CD4+ T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant. PMID:18639521

  11. Hexabromocyclododecane and tetrabromobisphenol A alter secretion of interferon gamma (IFN-γ) from human immune cells.

    PubMed

    Almughamsi, Haifa; Whalen, Margaret M

    2016-07-01

    Hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA) are brominated flame-retardant compounds used in a variety of applications including insulation, upholstery, and epoxy resin circuit boards. Interferon gamma (IFN-γ) is an inflammatory cytokine produced by activated T and NK cells that regulates immune responsiveness. HBCD and TBBPA are found in human blood, and previous studies have shown that they alter the ability of human natural killer (NK) lymphocytes to destroy tumor cells. This study examines whether HBCD and TBBPA affect the secretion of IFN-γ from increasingly complex preparations of human immune cells-purified NK cells, monocyte-depleted (MD) peripheral blood mononuclear cells (PBMCs), and PBMCs. Both HBCD and TBBPA were tested at concentrations ranging from 0.05 to 5 µM. HBCD generally caused increases in IFN-γ secretion after 24-h, 48-h, and 6-day exposures in each of the different cell preparations. The specific concentration of HBCD that caused increases as well as the magnitude of the increase varied from donor to donor. In contrast, TBBPA tended to decrease secretion of IFN-γ from NK cells, MD-PBMCs, and PBMCs. Thus, exposure to these compounds may potentially disrupt the immune regulation mediated by IFN-γ. Signaling pathways that have the capacity to regulate IFN-γ production (nuclear factor kappa B (NF-κB), p44/42, p38, JNK) were examined for their role in the HBCD-induced increases in IFN-γ. Results showed that the p44/42 (ERK1/2) MAPK pathway appears to be important in HBCD-induced increases in IFN-γ secretion from human immune cells. PMID:26302867

  12. In vitro production of functional immune cells derived from human hematopoietic stem cells

    PubMed Central

    Payuhakrit, Witchuda; Panichakul, Tasanee; Charoenphon, Natthawut; Chalermsaenyakorn, Panus; Jaovisidha, Adithep; Wongborisuth, Chokdee; Udomsangpetch, Rachanee

    2015-01-01

    Hematopoietic stem cells (HSC) from cord blood are potentially high sources for transplantation due to their low immunogenicity and the presence of the multipotent cells. These cells are capable of differentiating to produce various lineages of blood cells under specific conditions. We have enriched highly purified CD34+ cells from cord blood, determined in vitro growth of the cells in culture systems in the absence (condition A) or presence of GM-CSF and G-CSF (condition B), and determined the profile of immune cells during the period of cultivation by using flow cytometry. PhytohemagglutininA (PHA) was used as a mitogen to stimulate T lymphocytes derived from hematopoietic stem cells. GM-CSF and G-CSF prolonged the survival of the growing cells and also maintained expansion of cells in blastic stage. By day 12 of cultivation, when cell numbers peaked, various types of immune cells had appeared (CD14+ cells, CD40+HLA-DR+ cells, CD3+CD56+ cells, CD19+ cells, CD3+CD4+ cells, CD3+CD8+cells and CD3-CD56+). A significantly higher percentage of monocytes (p = 0.002) were observed under culture with GM-CSF, G-CSF when compared with culture without GM-CSF, G-CSF. In addition, T lymphocytes derived from HSC responded to 50 µg/ml of PHA. This is the first report showing the complete differentiation and proliferation of immune cells derived from CD34+ HSC under in vitro culture conditions. Lymphocytes, monocytes, dendritic cells and polymorph nuclear cells derived from HSC in vitro are unique, and thus may benefit various studies such as innate immunity and pathophysiology of immune disorders. PMID:26933404

  13. Autoreactive natural killer T cells: promoting immune protection and immune tolerance through varied interactions with myeloid antigen-presenting cells

    PubMed Central

    Hegde, Subramanya; Fox, Lisa; Wang, Xiaohua; Gumperz, Jenny E

    2010-01-01

    Natural killer T (NKT) cells are innate T lymphocytes that are restricted by CD1d antigen-presenting molecules and recognize lipids and glycolipids as antigens. NKT cells have attracted attention for their potent immunoregulatory effects. Like other types of regulatory lymphocytes, a high proportion of NKT cells appear to be autoreactive to self antigens. Thus, as myeloid antigen-presenting cells (APCs) such as monocytes, dendritic cells (DCs) and myeloid-derived suppressor cells (MDSCs) constitutively express CD1d, NKT cells are able to interact with these APCs not only during times of immune activation but also in immunologically quiescent periods. The interactions of NKT cells with myeloid APCs can have either pro-inflammatory or tolerizing outcomes, and a central question is how the ensuing response is determined. Here we bring together published results from a variety of model systems to highlight three critical factors that influence the outcome of the NKT–APC interaction: (i) the strength of the antigenic signal delivered to the NKT cell, as determined by antigen abundance and/or T-cell receptor (TCR) affinity; (ii) the presence or absence of cytokines that costimulate NKT cells [e.g. interleukin (IL)-12, IL-18 and interferon (IFN)-α]; (iii) APC intrinsic factors such as differentiation state (e.g. monocyte versus DC) and Toll-like receptor (TLR) stimulation. Together with recent findings that demonstrate new links between NKT cell activation and endogenous lipid metabolism, these results outline a picture in which the functions of NKT cells are closely attuned to the existing biological context. Thus, NKT cells may actively promote tolerance until a critical level of danger signals arises, at which point they switch to activating pro-inflammatory immune responses. PMID:20465577

  14. Immune Cells and Molecular Networks in Experimentally Induced Pulpitis.

    PubMed

    Renard, E; Gaudin, A; Bienvenu, G; Amiaud, J; Farges, J C; Cuturi, M C; Moreau, A; Alliot-Licht, B

    2016-02-01

    Dental pulp is a dynamic tissue able to resist external irritation during tooth decay by using immunocompetent cells involved in innate and adaptive responses. To better understand the immune response of pulp toward gram-negative bacteria, we analyzed biological mediators and immunocompetent cells in rat incisor pulp experimentally inflamed by either lipopolysaccharide (LPS) or saline solution (phosphate-buffered saline [PBS]). Untreated teeth were used as control. Expression of pro- and anti-inflammatory cytokines, chemokine ligands, growth factors, and enzymes were evaluated at the transcript level, and the recruitment of the different leukocytes in pulp was measured by fluorescence-activated cell-sorting analysis after 3 h, 9 h, and 3 d post-PBS or post-LPS treatment. After 3 d, injured rat incisors showed pulp wound healing and production of reparative dentin in both LPS and PBS conditions, testifying to the reversible pulpitis status of this model. IL6, IL1-β, TNF-α, CCL2, CXCL1, CXCL2, MMP9, and iNOS gene expression were significantly upregulated after 3 h of LPS stimulation as compared with PBS. The immunoregulatory cytokine IL10 was also upregulated after 3 h, suggesting that LPS stimulates not only inflammation but also immunoregulation. Fluorescence-activated cell-sorting analysis revealed a significant, rapid, and transient increase in leukocyte levels 9 h after PBS and LPS stimulation. The quantity of dendritic cells was significantly upregulated with LPS versus PBS. Interestingly, we identified a myeloid-derived suppressor cell-enriched cell population in noninjured rodent incisor dental pulp. The percentage of this population, known to regulate immune response, was higher 9 h after inflammation triggered with PBS and LPS as compared with the control. Taken together, these data offer a better understanding of the mechanisms involved in the regulation of dental pulp immunity that may be elicited by gram-negative bacteria. PMID:26472753

  15. Characterization of PrP(Sc) transmission from immune cells to neuronal cells.

    PubMed

    Tanaka, Yufuko; Sadaike, Tetsuji; Inoshima, Yasuo; Ishiguro, Naotaka

    2012-10-01

    We investigated PrP(Sc) transmission in neuronal cells, spleen cells and several immune cells using an in vitro cell-to-cell transmission system. The transmission of PrP(Sc) in the supernatant of PrP(Sc)-infected neuronal cells was also investigated. We found that PrP(Sc) transmission was more efficient in the cell-to-cell transmission system than in the supernatant-mediated system. PrP(Sc) was more efficiently transmitted from adherent spleen cells to neuronal cells than from floating spleen cells. The adherent spleen cells were composed of macrophages (80%), dendritic cells (8%) and follicular dendritic cells (3%), indicating that macrophages play an important role in PrP(Sc) transmission from immune cells to neuronal cells. Although PrP(Sc) in the immune cells used as donor cells was gradually degraded, the PrP(Sc) transmitted to neuronal cells was observed by Western blot analysis. Investigation of the mechanism of PrP(Sc) transmission between cells represents an important step towards understanding the pathogenesis of prion diseases. PMID:23246505

  16. Circulating immune cell subpopulations in pestivirus persistently infected calves and non-infected calves varying in immune status [Abstract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The circulating immune cell subpopulations in cattle representing varying stages of immune status categorized as; colostrum deprived (CD), receiving colostrum (COL), colostrum plus vaccination (VAC) and persistently infected with a pestivirus (PI) were compared. The PI calves were infected with a H...

  17. Targeting Rho-GTPases in immune cell migration and inflammation

    PubMed Central

    Biro, Maté; Munoz, Marcia A; Weninger, Wolfgang

    2014-01-01

    Leukocytes are unmatched migrators capable of traversing barriers and tissues of remarkably varied structural composition. An effective immune response relies on the ability of its constituent cells to infiltrate target sites. Yet, unwarranted mobilization of immune cells can lead to inflammatory diseases and tissue damage ranging in severity from mild to life-threatening. The efficacy and plasticity of leukocyte migration is driven by the precise spatiotemporal regulation of the actin cytoskeleton. The small GTPases of the Rho family (Rho-GTPases), and their immediate downstream effector kinases, are key regulators of cellular actomyosin dynamics and are therefore considered prime pharmacological targets for stemming leukocyte motility in inflammatory disorders. This review describes advances in the development of small-molecule inhibitors aimed at modulating the Rho-GTPase-centric regulatory pathways governing motility, many of which stem from studies of cancer invasiveness. These inhibitors promise the advent of novel treatment options with high selectivity and potency against immune-mediated pathologies. Linked Articles This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24 PMID:24571448

  18. Adiponectin Receptor Signaling on Dendritic Cells Blunts Antitumor Immunity

    PubMed Central

    Tan, Peng H.; Tyrrell, Helen E.J.; Gao, Liquan; Xu, Danmei; Quan, Jianchao; Gill, Dipender; Rai, Lena; Ding, Yunchuan; Plant, Gareth; Chen, Yuan; Xue, John Z.; Handa, Ashok I.; Greenall, Michael J.; Walsh, Kenneth; Xue, Shao-An

    2015-01-01

    Immune escape is a fundamental trait of cancer. Dendritic cells (DC) that interact with T cells represent a crucial site for the development of tolerance to tumor antigens, but there remains incomplete knowledge about how DC-tolerizing signals evolve during tumorigenesis. In this study, we show that DCs isolated from patients with metastatic or locally advanced breast cancer express high levels of the adiponectin receptors AdipoR1 and AdipoR2, which are sufficient to blunt antitumor immunity. Mechanistic investigations of ligand–receptor interactions on DCs revealed novel signaling pathways for each receptor. AdipoR1 stimulated IL10 production by activating the AMPK and MAPKp38 pathways, whereas AdipoR2 modified inflammatory processes by activating the COX-2 and PPARγ pathways. Stimulation of these pathways was sufficient to block activation of NF-κB in DC, thereby attenuating their ability to stimulate antigen-specific T-cell responses. Together, our findings reveal novel insights into how DC-tolerizing signals evolve in cancer to promote immune escape. Furthermore, by defining a critical role for adiponectin signaling in this process, our work suggests new and broadly applicable strategies for immunometabolic therapy in patients with cancer. PMID:25261236

  19. Immunophenotyping of immune cell populations in the raccoon (Procyon lotor).

    PubMed

    Heinrich, Franziska; Jungwirth, Nicole; Carlson, Regina; Tipold, Andrea; Böer, Michael; Scheibe, Thomas; Molnár, Viktor; von Dörnberg, Katja; Spitzbarth, Ingo; Puff, Christina; Wohlsein, Peter; Baumgärtner, Wolfgang

    2015-12-15

    The raccoon (Procyon lotor) is a highly adaptable carnivore that has rapidly conquered Europe over the last decades and represents a potential candidate as pathogen reservoir, bearing the risk for transmission of infectious agents, as zoonosis or spill-over, to other wild life and domestic animals and man. Comprehensive investigations of infectious diseases in raccoons require a detailed knowledge of the participating immune cell populations. To close this gap of knowledge, various antibodies were tested for cross-reactivity with leukocytes in lymphoid organs and peripheral blood of raccoons using immunohistochemistry and flow cytometry, respectively. Eight out of 16 antibodies, directed against CD3, CD79α, Pax-5, IgG, CD44, MHC class II, myeloid/histiocyte antigen (MAC387), and Iba-1 exhibited a specific immunoreaction with cells in distinct anatomical compartments in formalin-fixed paraffin-embedded lymphoid tissues. Flow cytometric analysis revealed that 7 out of 18 antibodies directed against CD11c, CD14, CD21, CD44, CD79α, MHC class I and II cross-reacted with peripheral blood-derived raccoon leukocytes. Summarized, the usefulness of several cross-reacting antibodies was determined for the characterization of raccoon immune cells in immunohistochemistry and flow cytometry, offering the opportunity to study the raccoon immune system under normal and diseased conditions. PMID:26672912

  20. Dietary bovine lactoferrin alters mucosal and systemic immune cell responses in neonatal piglets.

    PubMed

    Comstock, Sarah S; Reznikov, Elizabeth A; Contractor, Nikhat; Donovan, Sharon M

    2014-04-01

    Lactoferrin (LF) is a multifunctional immune protein found at high concentrations in human milk. Herein, the effect of dietary bovine LF (bLF) on mucosal and systemic immune development was investigated. Colostrum-deprived piglets were fed formula containing 130 [control (Ctrl)], 367 (LF1), or 1300 (LF3) mg of bLF/(kg body weight · d). To provide passive immunity, sow serum was provided orally during the first 36 h of life. Blood, spleen, mesenteric lymph node (MLN), and ascending colon (Asc) contents were collected on day 7 (n = 10-14/group) and day 14 (n = 10-12/group). Immune cell populations were quantified by flow cytometry and immunoglobulins (Igs) were measured by ELISA. Additionally, immune cells were isolated from spleen and MLNs (n = 7/group) on day 7 and stimulated ex vivo with phytohemagglutinin or lipopolysaccharide (LPS) ± LF for 72 h. Secreted cytokine concentrations were quantified by multiplex assay. Lymphocyte populations [cluster determinant (CD)4, CD8, and natural killer cells] developed normally and were unaffected by dietary bLF. LF3 piglets tended to have 1.4 to 2 times more serum IgG than Ctrl piglets (P = 0.07) or LF1 piglets (P = 0.03), but IgA in Asc contents was unaffected by bLF. Asc IgA was 4 times higher on day 14 than day 7. Spleen cells from LF3 piglets produced 2 times more interleukin (IL)-10 and tumor necrosis factor (TNF)-α ex vivo than those from Ctrl or LF1 piglets. MLN cells from LF1 and LF3 piglets produced 40% more IL-10 and tended to produce 40% more IL-6 (P = 0.05) than those from Ctrl piglets. However, ex vivo bLF did not affect the cytokine response of spleen or MLN cells to LPS. In summary, dietary bLF alters the capacity of MLN and spleen immune cells to respond to stimulation, supporting a role for LF in the initiation of protective immune responses in these immunologically challenged neonates. PMID:24553692

  1. Adoptive transfer of natural antibodies to non-immunized chickens affects subsequent antigen-specific humoral and cellular immune responses.

    PubMed

    Lammers, Aart; Klomp, Marcel E V; Nieuwland, Mike G B; Savelkoul, Huub F J; Parmentier, Henk K

    2004-01-01

    To determine a regulatory function of natural antibodies in the immune response of chickens, pooled plasma obtained from non-immunized (naïve) 15 months old hens was subjected to keyhole limpet hemocyanin (KLH) antigen-affinity chromatography. Purified KLH-binding antibodies were adoptively transferred intravenously to 5 weeks-old cocks that were subsequently immunized subcutaneously 24 h later with KLH. Control groups consisted of birds that were either adoptively transferred with KLH-binding antibodies purified from plasma of KLH-immunized chickens, or PBS, or a salt precipitated total immunoglobulin fraction obtained from the corresponding pooled nai;ve chicken plasma, respectively.Total, IgM and IgY antibody titers to KLH in the plasma of recipients adoptively transferred with KLH-NAb, but not in the plasma of the groups transferred with salt precipitate or KLH-binding specific antibodies, were significantly enhanced as compared to the non-treated, KLH immunized group. Titers of IgA antibodies binding KLH were decreased in the plasma of the group that received specific KLH-binding antibodies, but not in the plasma of the other groups. Proliferation from peripheral blood leucocytes in whole blood from the KLH-NAb treated group, the group treated with KLH-binding specific antibodies and the group treated with salt precipitate, respectively, to both concanavalin A and KLH were significantly decreased as compared to the group receiving PBS. Our data show that antigen-specific antibodies can be isolated from plasma obtained from non-immunized chickens. Such antibodies that resemble natural antibodies as described in mammals may perform an important role in the enhancement of subsequent antigen-specific antibody responses or the maturation of the immune system, which may differ from the role of specific antibodies. PMID:12962982

  2. Metabolic stressors and signals differentially affect energy allocation between reproduction and immune function.

    PubMed

    Carlton, Elizabeth D; Cooper, Candace L; Demas, Gregory E

    2014-11-01

    Most free-living animals have finite energy stores that they must allocate to different physiological and behavioral processes. In times of energetic stress, trade-offs in energy allocation among these processes may occur. The manifestation of trade-offs may depend on the source (e.g., glucose, lipids) and severity of energy limitation. In this study, we investigated energetic trade-offs between the reproductive and immune systems by experimentally limiting energy availability to female Siberian hamsters (Phodopus sungorus) with 2-deoxy-d-glucose, a compound that disrupts cellular utilization of glucose. We observed how glucoprivation at two levels of severity affected allocation to reproduction and immunity. Additionally, we treated a subset of these hamsters with leptin, an adipose hormone that provides a direct signal of available fat stores, in order to determine how increasing this signal of fat stores influences glucoprivation-induced trade-offs. We observed trade-offs between the reproductive and immune systems and that these trade-offs depended on the severity of energy limitation and exogenous leptin signaling. The majority of the animals experiencing mild glucoprivation entered anestrus, whereas leptin treatment restored estrous cycling in these animals. Surprisingly, virtually all animals experiencing more severe glucoprivation maintained normal estrous cycling throughout the experiment; however, exogenous leptin resulted in lower antibody production in this group. These data suggest that variation in these trade-offs may be mediated by shifts between glucose and fatty acid utilization. Collectively, the results of the present study highlight the context-dependent nature of these trade-offs, as trade-offs induced by the same metabolic stressor can manifest differently depending on its intensity. PMID:25125082

  3. Detecting Secreted Analytes from Immune Cells: An Overview of Technologies.

    PubMed

    Pike, Kelly A; Hui, Caitlyn; Krawczyk, Connie M

    2016-01-01

    The tumor microenvironment is largely shaped by secreted factors and infiltrating immune cells and the nature of this environment can profoundly influence tumor growth and progression. As such, there is an increasing need to identify and quantify secreted factors by tumor cells, tumor-associated cells, and infiltrating immune cells. To meet this need, the dynamic range of immunoassays such as ELISAs and ELISpots have been improved and the scope of reagents commercially available has been expanded. In addition, new bead-based and membrane-based screening arrays have been developed to allow for the simultaneous detection of multiple analytes in one sample. Similarly, the optimization of intracellular staining for flow cytometry now allows for the quantitation of multiple cytokines from either a purified cell population or a complex mixed cell suspension. Herein, we review the rapidly evolving technologies that are currently available to detect secreted analytes. Emphasis is placed on discussing the advantages and disadvantages of these assays and their applications. PMID:27581018

  4. Immune response

    MedlinePlus Videos and Cool Tools

    ... cells. T cells are responsible for cell-mediated immunity. This type of immunity becomes deficient in persons with HIV, the virus ... blood. B lymphocytes provide the body with humoral immunity as they circulate in the fluids in search ...

  5. Evidence for induction of humoral and cytotoxic immune responses against devil facial tumor disease cells in Tasmanian devils (Sarcophilus harrisii) immunized with killed cell preparations.

    PubMed

    Kreiss, A; Brown, G K; Tovar, C; Lyons, A B; Woods, G M

    2015-06-12

    Tasmanian devils (Sarcophilus harrisii) risk extinction from a contagious cancer, devil facial tumour disease (DFTD) in which the infectious agent is the tumor cell itself. Because devils are unable to produce an immune response against the tumor cells no devil has survived 'infection'. To promote an immune response we immunized healthy devils with killed DFTD tumor cells in the presence of adjuvants. Immune responses, including cytotoxicity and antibody production, were detected in five of the six devils. The incorporation of adjuvants that act via toll like receptors may provide additional signals to break 'immunological ignorance'. One of these devils was protected against a challenge with viable DFTD cells. This was a short-term protection as re-challenge one year later resulted in tumor growth. These results suggest that Tasmanian devils can generate immune responses against DFTD cells. With further optimization of immune stimulation it should be possible to protect Tasmanian devils against DFTD with an injectable vaccine. PMID:25708088

  6. On cell resistance and immune response time lag in a model for the HIV infection

    NASA Astrophysics Data System (ADS)

    Solovey, Guillermo; Peruani, Fernando; Ponce Dawson, Silvina; Maria Zorzenon dos Santos, Rita

    2004-11-01

    Recently, a cellular automata model has been introduced (Phys. Rev. Lett. 87 (2001) 168102) to describe the spread of the HIV infection among target cells in lymphoid tissues. The model reproduces qualitatively the entire course of the infection displaying, in particular, the two time scales that characterize its dynamics. In this work, we investigate the robustness of the model against changes in three of its parameters. Two of them are related to the resistance of the cells to get infected. The other one describes the time interval necessary to mount specific immune responses. We have observed that an increase of the cell resistance, at any stage of the infection, leads to a reduction of the latency period, i.e., of the time interval between the primary infection and the onset of AIDS. However, during the early stages of the infection, when the cell resistance increase is combined with an increase in the initial concentration of infected cells, the original behavior is recovered. Therefore we find a long and a short latency regime (eight and one year long, respectively) depending on the value of the cell resistance. We have obtained, on the other hand, that changes on the parameter that describes the immune system time lag affects the time interval during which the primary infection occurs. Using different extended versions of the model, we also discuss how the two-time scale dynamics is affected when we include inhomogeneities on the cells properties, as for instance, on the cell resistance or on the time interval to mount specific immune responses.

  7. IL-33 in T Cell Differentiation, Function, and Immune Homeostasis.

    PubMed

    Peine, Michael; Marek, Roman M; Löhning, Max

    2016-05-01

    Recent studies have highlighted a role for the alarmin interleukin (IL)-33 in CD4(+) and CD8(+) T cell activation and function, and have also revealed important distinctions. The IL-33 receptor ST2 is constitutively and abundantly expressed on T-helper-2 (Th2) and GATA-3(+) regulatory T cells in a GATA-3- and STAT5-dependent manner. Upon activation, Th1 and cytotoxic T cells express ST2 transiently, driven by T-bet and/or STAT4. We review these findings here, and critically examine evidence indicating that IL-33 enhances the differentiation and functionality of various T cell subsets through positive feedback loops involving lineage-specifying transcription factors. In this context, we discuss how quantitative and qualitative differences in ST2 expression between effector and GATA-3(+) regulatory T cells may contribute to immune homeostasis, and outline important areas of future inquiry. PMID:27055914

  8. Paneth Cell α-Defensins in Enteric Innate Immunity

    PubMed Central

    Ouellette, André J.

    2014-01-01

    Paneth cells at the base of small intestinal crypts of Lieberkühn secrete high levels of α-defensins in response to cholinergic and microbial stimuli. Paneth cell α-defensins are broad spectrum microbicides that function in the extracellular environment of the intestinal lumen, and they are responsible for the majority of secreted bactericidal peptide activity. Paneth cell α-defensins confer immunity to oral infection by Salmonella enterica serovar Typhimurium, and they are major determinants of the composition of the small intestinal microbiome. In addition to host defense molecules such as α-defensins, lysozyme, and Pla2g2a, Paneth cells also produce and release proinflammatory mediators as components of secretory granules. Disruption of Paneth cell homeostasis, with subsequent induction of endoplasmic reticulum (ER) stress, autophagy, or apoptosis, contributes to inflammation in diverse genetic and experimental mouse models. PMID:21560070

  9. Current tools for predicting cancer-specific T cell immunity.

    PubMed

    Gfeller, David; Bassani-Sternberg, Michal; Schmidt, Julien; Luescher, Immanuel F

    2016-07-01

    Tumor exome and RNA sequencing data provide a systematic and unbiased view on cancer-specific expression, over-expression, and mutations of genes, which can be mined for personalized cancer vaccines and other immunotherapies. Of key interest are tumor-specific mutations, because T cells recognizing neoepitopes have the potential to be highly tumoricidal. Here, we review recent developments and technical advances in identifying MHC class I and class II-restricted tumor antigens, especially neoantigen derived MHC ligands, including in silico predictions, immune-peptidome analysis by mass spectrometry, and MHC ligand validation by biochemical methods on T cells. PMID:27622028

  10. Effect of microencapsulated ampicillin on cell-mediated immune responses in mice.

    PubMed

    Barsoum, I S; Kopydlowski, K M; Burge, J R; Setterstrom, J A

    1997-11-01

    The effects of free ampicillin, microencapsulated ampicillin anhydrate (MEAA) and antibiotic-free microspheres on the cell-mediated immune response in Balb/c mice were measured by lymphoproliferation assay, delayed-type hypersensitivity (DTH) and cytokine production. Injection into mice for seven consecutive days with equivalent subcutaneous doses of ampicillin, MEAA or placebo microspheres did not produce any consistent change in lymphocyte proliferation nor did it affect DTH responses or interleukin-2 production. Although the production of interleukin-4 in mice treated with ampicillin or MEAA increased compared with the control mice, this increase was not statistically significant. These results indicate that ampicillin and MEAA have similar effects on cell-mediated immunity in mice. PMID:9421323

  11. Molecular events by which dendritic cells promote Th2 immune protection in helmith infection.

    PubMed

    Méndez-Samperio, Patricia

    2016-10-01

    Helminth parasites are a major cause of global infectious diseases, affecting nearly one quarter of the world's population. The common feature of helminth infections is to skew the immune system towards a T-helper 2 (Th2) response that helps to control disease. Dendritic cells (DCs), which are professional antigen-presenting cells, play a critical role for Th2 skewing against helminth parasites. However, the molecular mechanisms by which helminth antigens activate DCs for Th2 polarization have not yet been clearly defined. This review provides a focused update on the major role of DCs for inducing and/or enhancing Th2 immune responses in helminthic infection and will discuss the main signalling-dependent and independent mechanisms by which helminth antigens activate DCs for Th2 skewing. PMID:27348757

  12. 'Stealth' nanoparticles evade neural immune cells but also evade major brain cell populations: Implications for PEG-based neurotherapeutics.

    PubMed

    Jenkins, Stuart I; Weinberg, Daniel; Al-Shakli, Arwa F; Fernandes, Alinda R; Yiu, Humphrey H P; Telling, Neil D; Roach, Paul; Chari, Divya M

    2016-02-28

    Surface engineering to control cell behavior is of high interest across the chemical engineering, drug delivery and biomaterial communities. Defined chemical strategies are necessary to tailor nanoscale protein interactions/adsorption, enabling control of cell behaviors for development of novel therapeutic strategies. Nanoparticle-based therapies benefit from such strategies but particle targeting to sites of neurological injury remains challenging due to circulatory immune clearance. As a strategy to overcome this barrier, the use of stealth coatings can reduce immune clearance and prolong circulatory times, thereby enhancing therapeutic capacity. Polyethylene glycol (PEG) is the most widely-used stealth coating and facilitates particle accumulation in the brain. However, once within the brain, the mode of handling of PEGylated particles by the resident immune cells of the brain itself (the 'microglia') is unknown. This is a critical question as it is well established that microglia avidly sequester nanoparticles, limiting their bioavailability and posing a major translational barrier. If PEGylation can be proved to promote evasion of microglia, then this information will be of high value in developing tailored nanoparticle-based therapies for neurological applications. Here, we have conducted the first comparative study of uptake of PEGylated particles by all the major (immune and non-immune) brain cell types. We prove for the first time that PEGylated nanoparticles evade major brain cell populations - a phenomenon which will enhance extracellular bioavailability. We demonstrate changes in protein coronas around these particles within biological media, and discuss how surface chemistry presentation may affect this process and subsequent cellular interactions. PMID:26780172

  13. Role of Innate T Cells in Anti-Bacterial Immunity

    PubMed Central

    Gao, Yifang; Williams, Anthony P.

    2015-01-01

    Innate T cells are a heterogeneous group of αβ and γδ T cells that respond rapidly (<2 h) upon activation. These innate T cells also share a non MHC class I or II restriction requirement for antigen recognition. Three major populations within the innate T cell group are recognized, namely, invariant NKT cells, mucosal associated invariant T cells, and gamma delta T cells. These cells recognize foreign/self-lipid presented by non-classical MHC molecules, such as CD1d, MR1, and CD1a. They are activated during the early stages of bacterial infection and act as a bridge between the innate and adaptive immune systems. In this review, we focus on the functional properties of these three innate T cell populations and how they are purposed for antimicrobial defense. Furthermore, we address the mechanisms through which their effector functions are targeted for bacterial control and compare this in human and murine systems. Lastly, we speculate on future roles of these cell types in therapeutic settings such as vaccination. PMID:26124758

  14. Immunological signaling networks: Integrating the body's immune response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The immune system’s role is to eliminate disease from the host. Immune cells are primarily responsible for eliminating pathogens or cancerous cells. In addition, immune cells regulate the immune response affecting the types of cells that are activated or suppressed. The following discussion is an...

  15. The evolving paradigm of cell-nonautonomous UPR-based regulation of immunity by cancer cells.

    PubMed

    Zanetti, M; Rodvold, J J; Mahadevan, N R

    2016-01-21

    The endoplasmic reticulum (ER) stress response/unfolded protein response (UPR) has been thought to influence tumorigenesis mainly through cell-intrinsic, pro-survival effects. In recent years, however, new evidence has emerged showing that the UPR is also the source of cell-extrinsic effects, particularly directed at those immune cells within the tumor microenvironment. Here we will review and discuss this new body of information with focus on the role of cell-extrinsic effects on innate and adaptive immunity, suggesting that the transmission of ER stress from cancer cells to myeloid cells in particular is an expedient used by cancer cells to control the immune microenvironment, which acquires pro-inflammatory as well as immune-suppressive characteristics. These new findings can now be seen in the broader context of similar phenomena described in Caenorhabditis elegans, and an analogy with quorum sensing and 'community effects' in prokaryotes and eukaryotes can be drawn, arguing that a cell-nonautonomous UPR-based regulation of heterologous cells may be phylogenetically conserved. Finally, we will discuss the role of aneuploidy as an inducer of proteotoxic stress and potential initiator of cell-nonautonomous UPR-based regulation. In presenting these new views, we wish to bring attention to the cell-extrinsic regulation of tumor growth, including tumor UPR-based cell-nonautonomous signaling as a mechanism of maintaining tumor heterogeneity and resistance to therapy, and suggest therapeutically targeting such mechanisms within the tumor microenvironment. PMID:25893303

  16. Ionizing Radiation Impairs T Cell Activation by Affecting Metabolic Reprogramming

    PubMed Central

    Li, Heng-Hong; Wang, Yi-wen; Chen, Renxiang; Zhou, Bin; Ashwell, Jonathan D.; Fornace, Albert J.

    2015-01-01

    Ionizing radiation has a variety of acute and long-lasting adverse effects on the immune system. Whereas measureable effects of radiation on immune cell cytotoxicity and population change have been well studied in human and animal models, little is known about the functional alterations of the surviving immune cells after ionizing radiation. The objective of this study was to delineate the effects of radiation on T cell function by studying the alterations of T cell receptor activation and metabolic changes in activated T cells isolated from previously irradiated animals. Using a global metabolomics profiling approach, for the first time we demonstrate that ionizing radiation impairs metabolic reprogramming of T cell activation, which leads to substantial decreases in the efficiency of key metabolic processes required for activation, such as glucose uptake, glycolysis, and energy metabolism. In-depth understanding of how radiation impacts T cell function highlighting modulation of metabolism during activation is not only a novel approach to investigate the pivotal processes in the shift of T cell homeostasis after radiation, it also may lead to new targets for therapeutic manipulation in the combination of radiotherapy and immune therapy. Given that appreciable effects were observed with as low as 10 cGy, our results also have implications for low dose environmental exposures. PMID:26078715

  17. Phenotypic characterisation of immune cell infiltrates in testicular germ cell neoplasia.

    PubMed

    Hvarness, Tine; Nielsen, John E; Almstrup, Kristian; Skakkebaek, Niels E; Rajpert-De Meyts, Ewa; Claesson, Mogens H

    2013-12-01

    Immune cells often infiltrate testicular germ cell neoplasms, including pre-invasive carcinoma in situ (CIS), but the significance of this phenomenon remains unknown. The composition and distribution of infiltrating immune cells were examined by immunohistochemistry in testis samples with CIS and overt seminoma, in comparison to biopsies from infertile men without neoplasia. The composition of immune cells was similar across all the groups studied. Macrophages, CD8⁺ and CD45R0⁺ T lymphocytes constituted the majority of infiltrates, B lymphocytes were present in an intermediate proportion and very few CD4⁺ and FoxP3⁺ T cells were detected. HLA-I antigen was more abundant in Sertoli cells in tubules containing CIS than in those with normal spermatogenesis. This study showed a phenotypically comparable composition of infiltrating immune cells independently of the presence of neoplasia, suggesting the absence of active immune surveillance in testicular germ cell cancer. PMID:24290033

  18. Autonomous immunity in mucosal epithelial cells: fortifying the barrier against infection.

    PubMed

    Ross, Karen F; Herzberg, Mark C

    2016-06-01

    Mucosal epithelial cells express an autonomous innate immune response that controls the overgrowth of invaded bacteria, mitigates the harmful effects of the bacteria carried within, and does not rely on other external arms of the immune response. Epithelial cell autonomous innate immunity "respects" the social biology of invading bacteria to achieve symbiosis, and is the primary protective mechanism against pathogens. PMID:27005450

  19. Cyclosporin A renders target cells resistant to immune cytolysis.

    PubMed

    Hudnall, S D

    1991-01-01

    Exposure of cytolytically susceptible human target cells with therapeutic concentrations of the immunosuppressive drug cyclosporin A renders these cells highly resistant to T cell-mediated, natural killer (NK) cell-mediated, and complement-mediated cytolysis. The resistance is dose dependent, time dependent and reversible. The resistance is accompanied by target cell growth inhibition as measured by thymidine uptake. Surprisingly, target cell growth inhibition induced by serum depletion is associated with cell-mediated cytolytic resistance. These data suggest that cyclosporin A (CsA) may block some target cell biochemical pathway(s) important in the suicidal cytolytic process which is (are) linked to some G0/G1 cell cycle events. In addition, these results suggest that the increased risk of Epstein-Barr virus (EBV)-associated lymphoproliferative disease in human organ transplant recipients may be contributed to by CsA-induced resistance of EBV-transformed B lymphocytes to immune cytolysis. In the post-transplant setting, CsA probably blocks T cell-dependent responses to EBV-transformed B lymphocytes (Bird, A.G., McLachlan, S.M. and Britton, S., Nature 1981, 289: 300) yet leaving the NK cell and antibody-dependent responses intact (Shao-Hsien, C. et al. Transplantation 1983. 35: 127). However, given the direct effect of CsA upon EBV-transformed B lymphocytes, these cells would be rendered resistant to nearly all forms of cytolytic immune control (cytotoxic T lymphocyte, natural killer, antibody-dependent cell-mediated cytotoxicity, complement). Unregulated EBV-transformed B lymphocytes may then proliferate in the CsA-treated host thus leading to a polyclonal B cell hyperplasia. Our data would suggest that this early pre-malignant process is likely to be reversible following CsA dose reduction. Indeed, EBV-dependent polyclonal B cell hyperplasia is seen in early post-transplant lymphoproliferative disorders (Hanto, D.W., et al., Transplantation 1989, 47: 458

  20. Anthrax lethal toxin and the induction of CD4 T cell immunity.

    PubMed

    Ascough, Stephanie; Ingram, Rebecca J; Altmann, Daniel M

    2012-10-01

    Bacillus anthracis secretes exotoxins which act through several mechanisms including those that can subvert adaptive immunity with respect both to antigen presenting cell and T cell function. The combination of Protective Antigen (PA) and Lethal Factor (LF) forming Lethal Toxin (LT), acts within host cells to down-regulate the mitogen activated protein kinase (MAPK) signaling cascade. Until recently the MAPK kinases were the only known substrate for LT; over the past few years it has become evident that LT also cleaves Nlrp1, leading to inflammasome activation and macrophage death. The predicted downstream consequences of subverting these important cellular pathways are impaired antigen presentation and adaptive immunity. In contrast to this, recent work has indicated that robust memory T cell responses to B. anthracis antigens can be identified following natural anthrax infection. We discuss how LT affects the adaptive immune response and specifically the identification of B. anthracis epitopes that are both immunogenic and protective with the potential for inclusion in protein sub-unit based vaccines. PMID:23162703

  1. Mast Cells as Cellular Sensors in Inflammation and Immunity

    PubMed Central

    Beghdadi, Walid; Madjene, Lydia Célia; Benhamou, Marc; Charles, Nicolas; Gautier, Gregory; Launay, Pierre; Blank, Ulrich

    2011-01-01

    Mast cells are localized in tissues. Intense research on these cells over the years has demonstrated their role as effector cells in the maintenance of tissue integrity following injury produced by infectious agents, toxins, metabolic states, etc. After stimulation they release a sophisticated array of inflammatory mediators, cytokines, and growth factors to orchestrate an inflammatory response. These mediators can directly initiate tissue responses on resident cells, but they have also been shown to regulate other infiltrating immune cell functions. Research in recent years has revealed that the outcome of mast cell actions is not always detrimental for the host but can also limit disease development. In addition, mast cell functions highly depend on the physiological context in the organism. Depending on the genetic background, strength of the injurious event, the particular microenvironment, mast cells direct responses ranging from pro- to anti-inflammatory. It appears that they have evolved as cellular sensors to discern their environment in order to initiate an appropriate physiological response either aimed to favor inflammation for repair or at the contrary limit the inflammatory process to prevent further damage. Like every sophisticated machinery, its dysregulation leads to pathology. Given the broad distribution of mast cells in tissues this also explains their implication in many inflammatory diseases. PMID:22566827

  2. High-Content Quantification of Single-Cell Immune Dynamics

    PubMed Central

    Junkin, Michael; Kaestli, Alicia J.; Cheng, Zhang; Jordi, Christian; Albayrak, Cem; Hoffmann, Alexander; Tay, Savaş

    2016-01-01

    Summary Cells receive time-varying signals from the environment and generate functional responses by secreting their own signaling molecules. Characterizing dynamic input-output relationships in single cells is crucial for understanding and modeling cellular systems. We developed an automated microfluidic system that delivers precisely defined dynamical inputs to individual living cells and simultaneously measures key immune parameters dynamically. Our system combines nanoliter immunoassays, microfluidic input generation, and time-lapse microscopy, enabling study of previously untestable aspects of immunity by measuring time-dependent cytokine secretion and transcription factor activity from single cells stimulated with dynamic inflammatory inputs. Employing this system to analyze macrophage signal processing under pathogen inputs, we found that the dynamics of TNF secretion are highly heterogeneous and surprisingly uncorrelated with the dynamics of NF-κB, the transcription factor controlling TNF production. Computational modeling of the LPS/TLR4 pathway shows that post-transcriptional regulation by TRIF is a key determinant of noisy and uncorrelated TNF secretion dynamics in single macrophages. PMID:27050527

  3. Immunization with adenovirus LIGHT-engineered dendritic cells induces potent T cell responses and therapeutic immunity in HBV transgenic mice.

    PubMed

    Jiang, Wenzheng; Chen, Ran; Kong, Xiaobo; Long, Fengying; Shi, Yaru

    2014-07-31

    LIGHT, a TNF superfamily member (TNFSF14), is a type II transmembrane protein expressed on activated T cells and immature dendritic cells (DCs). However, the expression of LIGHT on mature DCs is down-regulated. Recent studies demonstrated that LIGHT provides potent costimulatory activity for T cells, enhancing proliferation and the production of Th1 cytokines independently of the B7-CD28 pathway. Here, we evaluated the effectiveness of peptide-pulsed DC-mediated antiviral immunity in HBV transgenic mice and the immunoadjuvant effect of LIGHT. The bone marrow-derived DCs were modified in vitro with an adenovirus (Ad) vector expressing mouse LIGHT (Ad-LIGHT), the expression of costimulatory molecules was up-regulated and the secretion of cytokines IL-12 and IFN-γ increased. LIGHT-modified DCs enhanced allostimulation for T cells in mixed lymphocyte reaction (MLR). HBV peptide-pulsed DCs elicited HBV specific CD8+ T cell response and reduced the level of HBsAg and HBV DNA in sera of HBV transgenic mice. Importantly, LIGHT-modified DCs could induce stronger antiviral immunity. These results support the concept that genetic modification of DCs with a recombinant LIGHT adenovirus vector may be a useful strategy for antiviral immunotherapy. PMID:24951859

  4. Immunizations.

    PubMed

    Sanford, Christopher A; Jong, Elaine C

    2016-03-01

    Vaccinations are a cornerstone of the pretravel consultation. The pretravel provider should assess a traveler's past medical history, planned itinerary, activities, mode of travel, and duration of stay and make appropriate vaccine recommendations. Given that domestic vaccine-preventable illnesses are more common in international travelers than are exotic or low-income nation-associated vaccine-preventable illnesses, clinicians should first ensure that travelers are current regarding routine immunizations. Additional immunizations may be indicated in some travelers. Familiarity with geographic distribution and seasonality of infectious diseases is essential. Clinicians should be cognizant of which vaccines are live, as there exist contraindications for live vaccines. PMID:26900111

  5. Immune Functions in Mice Lacking Clnk, an SLP-76-Related Adaptor Expressed in a Subset of Immune Cells

    PubMed Central

    Utting, Oliver; Sedgmen, Bradley J.; Watts, Tania H.; Shi, Xiaoshu; Rottapel, Robert; Iulianella, Angelo; Lohnes, David; Veillette, André

    2004-01-01

    The SLP-76 family of immune cell-specific adaptors is composed of three distinct members named SLP-76, Blnk, and Clnk. They have been implicated in the signaling pathways coupled to immunoreceptors such as the antigen receptors and Fc receptors. Previous studies using gene-targeted mice and deficient cell lines showed that SLP-76 plays a central role in T-cell development and activation. Moreover, it is essential for normal mast cell and platelet activation. In contrast, Blnk is necessary for B-cell development and activation. While the precise function of Clnk is not known, it was reported that Clnk is selectively expressed in mast cells, natural killer (NK) cells, and previously activated T-cells. Moreover, ectopic expression of Clnk was shown to rescue T-cell receptor-mediated signal transduction in an SLP-76-deficient T-cell line, suggesting that, like its relatives, Clnk is involved in the positive regulation of immunoreceptor signaling. Stimulatory effects of Clnk on immunoreceptor signaling were also reported to occur in transfected B-cell and basophil leukemia cell lines. Herein, we attempted to address the physiological role of Clnk in immune cells by the generation of Clnk-deficient mice. The results of our studies demonstrated that Clnk is dispensable for normal differentiation and function of T cells, mast cells, and NK cells. Hence, unlike its relatives, Clnk is not essential for normal immune functions. PMID:15199160

  6. Cell-Type-Specific Innate Immune Response to Oncolytic Newcastle Disease Virus

    PubMed Central

    Biswas, Moanaro; Kumar, Sandeep R.P.; Allen, Adria; Yong, Wang; Nimmanapalli, Ramadevi; Samal, Siba K.

    2012-01-01

    Abstract Virotherapy of cancer exploits the potential of naturally occurring and engineered oncolytic viruses to selectively replicate in and cause cytotoxicity to tumor cells without affecting healthy normal cells. The tumor selectivity of Newcastle disease virus (NDV), a member of the family Paramyxoviridae, depends on the differential type I interferon (IFN) response. Further understanding of the key mechanisms and immune effector molecules involved will aid in augmenting the oncolytic properties of NDV. Here we report on the infection kinetics and innate immune responses to a recombinant LaSota strain of NDV (rLaSota eGFP) in human tumor and normal cells. We observed varying replicative fit and cytotoxicity of rLaSota eGFP depending on the tumor cell type, with severely restricted replication in normal cells. The absence of retinoic acid-inducible gene I (RIG-I), a cytosolic RNA sensor, determined sensitivity to NDV. Productive NDV infection with a moderate IFN-α induction in human multiple myeloma cells suggested a role for IFN-independent mechanisms or lack of type I IFN reinforcement by RIG-I. Proinflammatory cytokines and chemokines were altered differentially in infected normal and tumor cells. Our results suggest that tumor selectivity is dependent on variations in the cellular antiviral response to infection with NDV and RIG-I expression. PMID:22808996

  7. Memory T Cell-Derived interferon-γ Instructs Potent Innate Cell Activation For Protective Immunity

    PubMed Central

    Soudja, Saidi M’Homa; Chandrabos, Ceena; Yakob, Ernest; Veenstra, Mike; Palliser, Deborah; Lauvau, Grégoire

    2014-01-01

    SUMMARY Cells of the innate immune system are essential for host defenses against primary microbial pathogen infections, yet their involvement in effective memory responses of vaccinated individuals has been poorly investigated. Here we show that memory T cells instruct innate cells to become potent effector cells in a systemic and a mucosal model of infection. Memory T cells controlled phagocyte, dendritic cell and NK or NK T cell mobilization and induction of a strong program of differentiation, which included their expression of effector cytokines and microbicidal pathways, all of which were delayed in non-vaccinated hosts. Disruption of IFN-γ-signaling in Ly6C+ monocytes, dendritic cells and macrophages impaired these processes and the control of pathogen growth. These results reveal how memory T cells, through rapid secretion of IFN-γ, orchestrate extensive modifications of host innate immune responses that are essential for effective protection of vaccinated hosts. PMID:24931122

  8. How Psychological States Affect the Immune System: Implications for Interventions in the Context of HIV.

    ERIC Educational Resources Information Center

    Littrell, Jill

    1996-01-01

    Discusses the psychological states associated with enhanced immune system functioning and those associated with suppressed immune functioning. Reviews studies of psychological and behavioral interventions to boost the immune systems of people who are HIV positive. Suggests that group interventions can enhance psychological states associated with…

  9. Stem cell educator therapy and induction of immune balance.

    PubMed

    Zhao, Yong

    2012-10-01

    Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that causes the deficit of pancreatic islet β cells. A true cure has proven elusive despite intensive research pressure by using conventional approaches over the past 25 years. The situation highlights the challenges we face in conquering this disease. Alternative approaches are needed. Increasing evidence demonstrates that stem cells possess the function of immune modulation. We established the Stem Cell Educator therapy by using cord blood-derived multipotent stem cells (CB-SCs). A closed-loop system that circulates a patient's blood through a blood cell separator, briefly co-cultures the patient's lymphocytes with adherent CB-SCs in vitro, and returns the educated lymphocytes (but not the CB-SCs) to the patient's circulation. Our clinical trial reveals that a single treatment with the Stem Cell Educator provides lasting reversal of autoimmunity that allows regeneration of islet β cells and improvement of metabolic control in subjects with long-standing T1D. PMID:22833322

  10. Tumor-Infiltrating Immune Cells Promoting Tumor Invasion and Metastasis: Existing Theories

    PubMed Central

    Man, Yan-gao; Stojadinovic, Alexander; Mason, Jeffrey; Avital, Itzhak; Bilchik, Anton; Bruecher, Bjoern; Protic, Mladjan; Nissan, Aviram; Izadjoo, Mina; Zhang, Xichen; Jewett, Anahid

    2013-01-01

    It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues. This mini-review presents several existing hypotheses and models that favor the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, and also analyzes their strength and weakness. PMID:23386907

  11. The "sweet" side of a long pentraxin: how glycosylation affects PTX3 functions in innate immunity and inflammation.

    PubMed

    Inforzato, Antonio; Reading, Patrick C; Barbati, Elisa; Bottazzi, Barbara; Garlanda, Cecilia; Mantovani, Alberto

    2012-01-01

    Innate immunity represents the first line of defense against pathogens and plays key roles in activation and orientation of the adaptive immune response. The innate immune system comprises both a cellular and a humoral arm. Components of the humoral arm include soluble pattern recognition molecules (PRMs) that recognize pathogen-associated molecular patterns and initiate the immune response in coordination with the cellular arm, therefore acting as functional ancestors of antibodies. The long pentraxin PTX3 is a prototypic soluble PRM that is produced at sites of infection and inflammation by both somatic and immune cells. Gene targeting of this evolutionarily conserved protein has revealed a non-redundant role in resistance to selected pathogens. Moreover, PTX3 exerts important functions at the crossroad between innate immunity, inflammation, and female fertility. The human PTX3 protein contains a single N-glycosylation site that is fully occupied by complex type oligosaccharides, mainly fucosylated and sialylated biantennary glycans. Glycosylation has been implicated in a number of PTX3 activities, including neutralization of influenza viruses, modulation of the complement system, and attenuation of leukocyte recruitment. Therefore, this post translational modification might act as a fine tuner of PTX3 functions in native immunity and inflammation. Here we review the studies on PTX3, with emphasis on the glycan-dependent mechanisms underlying pathogen recognition and crosstalk with other components of the innate immune system. PMID:23316195

  12. Immunization.

    ERIC Educational Resources Information Center

    Guerin, Nicole; And Others

    1986-01-01

    Contents of this double journal issue concern immunization and primary health care of children. The issue decribes vaccine storage and sterilization techniques, giving particular emphasis to the role of the cold chain, i.e., the maintenance of a specific temperature range to assure potency of vaccines as they are moved from a national storage…

  13. Avian Influenza Viruses, Inflammation, and CD8(+) T Cell Immunity.

    PubMed

    Wang, Zhongfang; Loh, Liyen; Kedzierski, Lukasz; Kedzierska, Katherine

    2016-01-01

    Avian influenza viruses (AIVs) circulate naturally in wild aquatic birds, infect domestic poultry, and are capable of causing sporadic bird-to-human transmissions. AIVs capable of infecting humans include a highly pathogenic AIV H5N1, first detected in humans in 1997, and a low pathogenic AIV H7N9, reported in humans in 2013. Both H5N1 and H7N9 cause severe influenza disease in humans, manifested by acute respiratory distress syndrome, multi-organ failure, and high mortality rates of 60% and 35%, respectively. Ongoing circulation of H5N1 and H7N9 viruses in wild birds and poultry, and their ability to infect humans emphasizes their epidemic and pandemic potential and poses a public health threat. It is, thus, imperative to understand the host immune responses to the AIVs so we can control severe influenza disease caused by H5N1 or H7N9 and rationally design new immunotherapies and vaccines. This review summarizes our current knowledge on AIV epidemiology, disease symptoms, inflammatory processes underlying the AIV infection in humans, and recent studies on universal pre-existing CD8(+) T cell immunity to AIVs. Immune responses driving the host recovery from AIV infection in patients hospitalized with severe influenza disease are also discussed. PMID:26973644

  14. Avian Influenza Viruses, Inflammation, and CD8+ T Cell Immunity

    PubMed Central

    Wang, Zhongfang; Loh, Liyen; Kedzierski, Lukasz; Kedzierska, Katherine

    2016-01-01

    Avian influenza viruses (AIVs) circulate naturally in wild aquatic birds, infect domestic poultry, and are capable of causing sporadic bird-to-human transmissions. AIVs capable of infecting humans include a highly pathogenic AIV H5N1, first detected in humans in 1997, and a low pathogenic AIV H7N9, reported in humans in 2013. Both H5N1 and H7N9 cause severe influenza disease in humans, manifested by acute respiratory distress syndrome, multi-organ failure, and high mortality rates of 60% and 35%, respectively. Ongoing circulation of H5N1 and H7N9 viruses in wild birds and poultry, and their ability to infect humans emphasizes their epidemic and pandemic potential and poses a public health threat. It is, thus, imperative to understand the host immune responses to the AIVs so we can control severe influenza disease caused by H5N1 or H7N9 and rationally design new immunotherapies and vaccines. This review summarizes our current knowledge on AIV epidemiology, disease symptoms, inflammatory processes underlying the AIV infection in humans, and recent studies on universal pre-existing CD8+ T cell immunity to AIVs. Immune responses driving the host recovery from AIV infection in patients hospitalized with severe influenza disease are also discussed. PMID:26973644

  15. Increased Immune Response Variability during Simultaneous Viral Coinfection Leads to Unpredictability in CD8 T Cell Immunity and Pathogenesis

    PubMed Central

    Kenney, Laurie L.; Cornberg, Markus; Chen, Alex T.; Emonet, Sebastien; de la Torre, Juan Carlos

    2015-01-01

    ABSTRACT T cell memory is usually studied in the context of infection with a single pathogen in naive mice, but how memory develops during a coinfection with two pathogens, as frequently occurs in nature or after vaccination, is far less studied. Here, we questioned how the competition between immune responses to two viruses in the same naive host would influence the development of CD8 T cell memory and subsequent disease outcome upon challenge. Using two different models of coinfection, including the well-studied lymphocytic choriomeningitis (LCMV) and Pichinde (PICV) viruses, several differences were observed within the CD8 T cell responses to either virus. Compared to single-virus infection, coinfection resulted in substantial variation among mice in the size of epitope-specific T cell responses to each virus. Some mice had an overall reduced number of virus-specific cells to either one of the viruses, and other mice developed an immunodominant response to a normally subdominant, cross-reactive epitope (nucleoprotein residues 205 to 212, or NP205). These changes led to decreased protective immunity and enhanced pathology in some mice upon challenge with either of the original coinfecting viruses. In mice with PICV-dominant responses, during a high-dose challenge with LCMV clone 13, increased immunopathology was associated with a reduced number of LCMV-specific effector memory CD8 T cells. In mice with dominant cross-reactive memory responses, during challenge with PICV increased immunopathology was directly associated with these cross-reactive NP205-specific CD8 memory cells. In conclusion, the inherent competition between two simultaneous immune responses results in significant alterations in T cell immunity and subsequent disease outcome upon reexposure. IMPORTANCE Combination vaccines and simultaneous administration of vaccines are necessary to accommodate required immunizations and maintain vaccination rates. Antibody responses generally correlate with

  16. Epidermal Viral Immunity Induced by CD8α+ Dendritic Cells But Not by Langerhans Cells

    NASA Astrophysics Data System (ADS)

    Allan, Rhys S.; Smith, Chris M.; Belz, Gabrielle T.; van Lint, Allison L.; Wakim, Linda M.; Heath, William R.; Carbone, Francis R.

    2003-09-01

    The classical paradigm for dendritic cell function derives from the study of Langerhans cells, which predominate within skin epidermis. After an encounter with foreign agents, Langerhans cells are thought to migrate to draining lymph nodes, where they initiate T cell priming. Contrary to this, we show here that infection of murine epidermis by herpes simplex virus did not result in the priming of virus-specific cytotoxic T lymphocytes by Langerhans cells. Rather, the priming response required a distinct CD8α+ dendritic cell subset. Thus, the traditional view of Langerhans cells in epidermal immunity needs to be revisited to accommodate a requirement for other dendritic cells in this response.

  17. Regulatory T Cells in Post-stroke Immune Homeostasis.

    PubMed

    Liesz, Arthur; Kleinschnitz, Christoph

    2016-08-01

    The secondary neuroinflammatory response has come into focus of experimental stroke research. Immunological mechanisms after acute stroke are being investigated in the hope to identify novel and druggable pathways that contribute to secondary infarct growth after stroke. Among a variety of neuroimmunological events after acute brain ischemia, including microglial activation, brain leukocyte invasion, and secretion of pro-inflammatory factors, lymphocytes have been identified as the key leukocyte subpopulation driving the neuroinflammatory response and contributing to stroke outcome. Several studies have shown that pro-inflammatory lymphocyte subpopulations worsen stroke outcome and that inhibiting their invasion to the injured brain is neuroprotective. In contrast to the effector functions of pro-inflammatory lymphocytes, regulatory T cells (Treg) are critically involved in maintaining immune homeostasis and have been characterized as disease-limiting protective cells in several inflammatory conditions, particularly in primary inflammatory diseases of the central nervous system (CNS). However, due to the complex function of regulatory cells in immune homeostasis and disease, divergent findings have been described for the role of Treg in stroke models. Emerging evidence suggests that this discrepancy arises from potentially differing functions of Treg depending on the predominant site of action within the neurovascular unit and the surrounding inflammatory milieu. This article will provide a comprehensive review of current findings on Treg in brain ischemia models and discuss potential reasons for the observed discrepancies. PMID:27030356

  18. Circulating immune complexes in sickle cell-beta zero thalassemia.

    PubMed

    Donadi, E A; Carvalho, I F; Falcão, R P

    1989-01-01

    A serum fraction from patients with sickle cell-beta zero thalassemia prepared by treatment with polyethyleneglycol showed increased amounts of C1q-precipitable immune complexes, i.e., 216 micrograms/dl (range, 141-266 micrograms/dl) vs 181 micrograms/dl (range, 152-228 micrograms/dl) for controls (P less than 0.05), as well as increased amounts of protein. Levels of IgG, IgA, IgM, C3, C4 and factor B in the same fraction were within the normal range. PMID:2638196

  19. Salmonella Modulates B Cell Biology to Evade CD8+ T Cell-Mediated Immune Responses

    PubMed Central

    Lopez-Medina, Marcela; Perez-Lopez, Araceli; Alpuche-Aranda, Celia; Ortiz-Navarrete, Vianney

    2014-01-01

    Although B cells and antibodies are the central effectors of humoral immunity, B cells can also produce and secrete cytokines and present antigen to helper T cells. The uptake of antigen is mainly mediated by endocytosis; thus, antigens are often presented by MHC-II molecules. However, it is unclear if B cells can present these same antigens via MHC-I molecules. Recently, Salmonella bacteria were found to infect B cells, allowing possible antigen cross-processing that could generate bacterial peptides for antigen presentation via MHC-I molecules. Here, we will discuss available knowledge regarding Salmonella antigen presentation by infected B cell MHC-I molecules and subsequent inhibitory effects on CD8+ T cells for bacterial evasion of cell-mediated immunity. PMID:25484884

  20. HIV-1 Adaptation to Antigen Processing Results in Population-Level Immune Evasion and Affects Subtype Diversification

    PubMed Central

    Tenzer, Stefan; Crawford, Hayley; Pymm, Phillip; Gifford, Robert; Sreenu, Vattipally B.; Weimershaus, Mirjana; de Oliveira, Tulio; Burgevin, Anne; Gerstoft, Jan; Akkad, Nadja; Lunn, Daniel; Fugger, Lars; Bell, John; Schild, Hansjörg; van Endert, Peter; Iversen, Astrid K.N.

    2014-01-01

    Summary The recent HIV-1 vaccine failures highlight the need to better understand virus-host interactions. One key question is why CD8+ T cell responses to two HIV-Gag regions are uniquely associated with delayed disease progression only in patients expressing a few rare HLA class I variants when these regions encode epitopes presented by ∼30 more common HLA variants. By combining epitope processing and computational analyses of the two HIV subtypes responsible for ∼60% of worldwide infections, we identified a hitherto unrecognized adaptation to the antigen-processing machinery through substitutions at subtype-specific motifs. Multiple HLA variants presenting epitopes situated next to a given subtype-specific motif drive selection at this subtype-specific position, and epitope abundances correlate inversely with the HLA frequency distribution in affected populations. This adaptation reflects the sum of intrapatient adaptations, is predictable, facilitates viral subtype diversification, and increases global HIV diversity. Because low epitope abundance is associated with infrequent and weak T cell responses, this most likely results in both population-level immune evasion and inadequate responses in most people vaccinated with natural HIV-1 sequence constructs. Our results suggest that artificial sequence modifications at subtype-specific positions in vitro could refocus and reverse the poor immunogenicity of HIV proteins. PMID:24726370

  1. Siglecs as targets for therapy in immune cell mediated disease

    PubMed Central

    O’Reilly, Mary K.; Paulson, James C.

    2010-01-01

    The sialic acid-binding immunoglobulin-like lectins (siglecs) comprise a family of receptors that are differentially expressed on leukocytes and other immune cells. The restricted expression of several siglecs to one or a few cell types makes them attractive targets for cell-directed therapies. The anti-CD33 (Siglec-3) antibody Gemtuzumab (Mylotarg™) is approved for treatment of acute myeloid leukemia (AML), and antibodies targeting CD22 (Siglec-2) are currently in clinical trials for treatment of B cell non-Hodgkins lymphomas and autoimmune diseases. Because siglecs are endocytic receptors, they are well suited for a ‘Trojan horse’ strategy, whereby therapeutic agents conjugated to an antibody, or multimeric glycan ligand, bind to the siglec and are efficiently carried into the cell. Although the rapid internalization of unmodified siglec antibodies reduces their utility for induction of antibody-dependent cellular cytotoxicity (ADCC) or complement-mediated cytotoxicity (CDC), antibody binding of Siglec-8, Siglec-9, and CD22 have been demonstrated to induce apoptosis of eosinophils, neutrophils, and depletion of B cells, respectively. Here we review the properties of siglecs that make them attractive for cell-targeted therapies. PMID:19359050

  2. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity.

    PubMed

    Mamessier, Emilie; Sylvain, Aude; Thibult, Marie-Laure; Houvenaeghel, Gilles; Jacquemier, Jocelyne; Castellano, Rémy; Gonçalves, Anthony; André, Pascale; Romagné, François; Thibault, Gilles; Viens, Patrice; Birnbaum, Daniel; Bertucci, François; Moretta, Alessandro; Olive, Daniel

    2011-09-01

    NK cells are a major component of the antitumor immune response and are involved in controlling tumor progression and metastases in animal models. Here, we show that dysfunction of these cells accompanies human breast tumor progression. We characterized human peripheral blood NK (p-NK) cells and malignant mammary tumor-infiltrating NK (Ti-NK) cells from patients with noninvasive and invasive breast cancers. NK cells isolated from the peripheral blood of healthy donors and normal breast tissue were used as controls. With disease progression, we found that expression of activating NK cell receptors (such as NKp30, NKG2D, DNAM-1, and CD16) decreased while expression of inhibitory receptors (such as NKG2A) increased and that this correlated with decreased NK cell function, most notably cytotoxicity. Importantly, Ti-NK cells had more pronounced impairment of their cytotoxic potential than p-NK cells. We also identified several stroma-derived factors, including TGF-β1, involved in tumor-induced reduction of normal NK cell function. Our data therefore show that breast tumor progression involves NK cell dysfunction and that breast tumors model their environment to evade NK cell antitumor immunity. This highlights the importance of developing future therapies able to restore NK cell cytotoxicity to limit/prevent tumor escape from antitumor immunity. PMID:21841316

  3. Modulation by gamma interferon of antiviral cell-mediated immune responses in vivo.

    PubMed Central

    Utermöhlen, O; Dangel, A; Tárnok, A; Lehmann-Grube, F

    1996-01-01

    Mice were infected with lymphocytic choriomeningitis virus and injected once 24 h later with a monoclonal antibody directed against gamma interferon. In comparison with controls, the increase of numbers of CD8+ T cells and the generation of virus-specific cytotoxic T lymphocytes in spleens and virus clearance from organs were diminished, as was the ability of spleen cells to transmit adoptive immunity to infected recipients. The same treatment slightly but consistently lessened rather than augmented the virus titers early in infection, which was also observed in thymusless nu/nu mice. Injection into infected mice of the lymphokine itself in quantities probably higher than are produced endogenously resulted in lower virus titers in spleens but higher titers in livers. The adoptive immunity in infected mice achieved by infusion of immune spleen cells was not altered by treating the recipients with gamma interferon monoclonal antibody. Such treatment did not measurably affect the production of antiviral serum antibodies. We conclude that in lymphocytic choriomeningitis virus-infected mice, gamma interferon is needed for the generation of antivirally active CD8+ T lymphocytes, and furthermore that in this experimental model, direct antiviral effects of the lymphokine elude detection. PMID:8627670

  4. Role for Lyt-2+ T cells in resistance to cutaneous leishmaniasis in immunized mice

    SciTech Connect

    Farrell, J.P.; Muller, I.; Louis, J.A.

    1989-03-15

    The role of Lyt-2+ T cells in immunologic resistance to cutaneous leishmaniasis was analyzed by comparing infection patterns in resistant C57BL/6 mice and susceptible BALB/c mice induced to heal their infections after sub-lethal irradiation or i.v. immunization, with similar mice treated in vivo with anti-Lyt-2 antibodies. Administration of anti-Lyt-2 mAb resulted in a dramatic reduction in the number of lymphoid cells expressing the Lyt-2+ phenotype. Such treatment led to enhanced disease in both resistant C57BL/6 and irradiated BALB/c mice, as assessed by lesion size, but did not affect the capacity of these mice to ultimately resolve their infections. In contrast, anti-Lyt-2 treatment totally blocked the induction of resistance in i.v. immunized mice. These results suggest, that Lyt-2+ T cells may play a role in immunity to a Leishmania major infection and that their relative importance to resistance may depend on how resistance is induced.

  5. Locally administered T cells from mice immunized with lipopolysaccharide (LPS) accelerate LPS-induced bone resorption.

    PubMed

    Ozaki, Yukio; Ukai, Takashi; Yamaguchi, Masayuki; Yokoyama, Miho; Haro, Esperanza R Ayón; Yoshimoto, Mayumi; Kaneko, Takashi; Yoshinaga, Miho; Nakamura, Hirotaka; Shiraishi, Chiaki; Hara, Yoshitaka

    2009-06-01

    T cells play important roles in bone destruction and osteoclastogenesis and are found in chronic destructive bone lesions. Lipopolysaccharide (LPS) is one of several pathological factors involved in inflammatory bone destruction. We previously described the importance of T cells in the inflammatory bone resorption that occurs after repeated LPS administration. However, whether local or systemic T cells are important for inflammatory bone resorption and whether immunization of host animals influences bone resorption remain unclear. The present study examines the effects of local extant T cells from LPS-immunized mice on LPS-induced bone resorption. T cells from LPS-immunized or non-immunized mice were injected together with LPS into the gingival tissues of mice with severe combined immunodeficiency disease that lack both T and B cells. We histomorphometrically evaluated bone resorption at sites of T cell injections and examined the influence of T cells from LPS-immunized mice on osteoclastogenesis in vitro. We found that locally administered T cells from LPS-immunized but not non-immunized mice accelerated LPS-induced bone resorption in vivo. Moreover, T cells from LPS-immunized mice increased osteoclastogenesis in vitro induced by receptor activator of NF-kappa B ligand and LPS and anti-tumor necrosis factor (TNF)-alpha antibody inhibited this increase. These results demonstrated that local extant T cells accelerate inflammatory bone resorption. Furthermore, T cells from LPS-immunized mice appear to elevate LPS-induced bone resorption using TNF-alpha. PMID:19437611

  6. IgH sequences in common variable immune deficiency reveal altered B cell development and selection**

    PubMed Central

    Roskin, Krishna M.; Simchoni, Noa; Liu, Yi; Lee, Ji-Yeun; Seo, Katie; Hoh, Ramona A.; Pham, Tho; Park, Joon H.; Furman, David; Dekker, Cornelia L.; Davis, Mark M.; James, Judith A.; Nadeau, Kari C.; Cunningham-Rundles, Charlotte; Boyd, Scott D.

    2015-01-01

    Common variable immune deficiency (CVID) is the most common symptomatic primary immune deficiency, affecting ∼1 in 25,000 persons. These patients suffer from impaired antibody responses, autoimmunity, and susceptibility to lymphoid cancers. To explore the cellular basis for these clinical phenotypes, we conducted high-throughput DNA sequencing of immunoglobulin heavy chain gene rearrangements from 93 CVID patients and 105 control subjects and sorted naïve and memory B cells from 13 of the CVID patients and 10 of the control subjects. CVID patients showed abnormal VDJ rearrangement and abnormal formation of complementarity determining region 3 (CDR3). We observed decreased selection against antibodies with long CDR3 regions in memory repertoires and decreased V gene replacement, offering possible mechanisms for increased patient autoreactivity. Our data indicate that patient immunodeficiency might derive both from decreased diversity of the naïve B cell pool and decreased somatic hypermutation in memory repertoires. CVID patients also exhibited abnormal clonal expansion of unmutated B cells relative to controls. Although impaired B cell germinal center activation is commonly viewed as causative in CVID, these data indicate that CVID B cells diverge from controls as early as the pro-B cell stage and suggest possible explanations for the increased incidence of autoimmunity, immunodeficiency, and lymphoma CVID patients. PMID:26311730

  7. In vivo and in vitro effects of lead on humoral and cell-mediated immunity.

    PubMed Central

    Lawrence, D A

    1981-01-01

    The humoral and cell-mediated immune responses of murine lymphocytes exposed to lead in vivo and in vitro were investigated. In vivo Pb was administered via the drinking water (0 to 10 mM) for 1 to 10 weeks. In vivo exposure of the mice to Pb did not alter significantly their plaque-forming cell response to sheep erythrocytes; however, their susceptibility to Listeria infection was reduced significantly with Pb dosages of greater than 0.4 mM. Although the in vivo plaque-forming cell responses did not appear to be altered, in vitro assessment of the reactivity of these in vivo Pb-exposed lymphocytes indicated that intermediate doses enhanced, but a high dose (10 mM) was suppressive. The 10 mM in vivo Pb dose suppressed the in vitro plaque-forming cell response, the mixed-lymphocyte culture response, and lipopolysaccharide-induced proliferation, but it did not affect concanavalin A- or phytohemagglutinin-induced proliferation. Interestingly, in vitro Pb exposure (10(-6) to 10(-4) M) of murine spleen cells caused an enhancement of most activities even though these in vitro concentrations of Pb were slightly above the in vivo concentrations. Direct in vitro Pb effects on the lymphocytes could be measured, and Pb consistently enhanced humoral and cell-mediated immunity. PMID:6971260

  8. The Dual Role of Dendritic cells in the Immune Response to HIV-1 Infection

    PubMed Central

    Hogue, Ian B.; Bajaria, Seema H.; Fallert, Beth A.; Qin, Shulin; Reinhart, Todd A.; Kirschner, Denise E.

    2009-01-01

    Many aspects of the complex interaction between HIV-1 and the human immune system remain elusive. Our objective is to study these interactions, focusing on the specific roles of dendritic cells (DCs). DCs enhance HIV-1 infection processes as well as promote an anti-viral immune response. We explore the implications of these dual roles. We present and analyse a mathematical model describing the dynamics of HIV-1, CD4+ and CD8+ T-cells, and DCs interacting in a human lymph node. We validate the behaviour of our model against non-human primate SIV experimental data and published human HIV-1 data. Our model qualitatively and quantitatively recapitulates clinical HIV-1 infection dynamics. We perform sensitivity analyses on the model to determine which mechanisms strongly affect infection dynamics. Sensitivity analysis identifies system interactions that contribute to infection progression, including DC-related mechanisms. We compare DC-dependent and DC-independent routes of CD4+ T-cell infection. The model predicts that simultaneous priming and infection of T cells by DCs drives early infection dynamics when activated T-helper cell numbers are low. Further, our model predicts that, while direct failure of DC function and an indirect failure due to loss of CD4+ T-cell help are both significant contributors to infection dynamics, our results support the hypothesis that the former has a more significant impact on HIV-1 immunopathogenesis. PMID:18753232

  9. IgH sequences in common variable immune deficiency reveal altered B cell development and selection.

    PubMed

    Roskin, Krishna M; Simchoni, Noa; Liu, Yi; Lee, Ji-Yeun; Seo, Katie; Hoh, Ramona A; Pham, Tho; Park, Joon H; Furman, David; Dekker, Cornelia L; Davis, Mark M; James, Judith A; Nadeau, Kari C; Cunningham-Rundles, Charlotte; Boyd, Scott D

    2015-08-26

    Common variable immune deficiency (CVID) is the most common symptomatic primary immune deficiency, affecting ~1 in 25,000 persons. These patients suffer from impaired antibody responses, autoimmunity, and susceptibility to lymphoid cancers. To explore the cellular basis for these clinical phenotypes, we conducted high-throughput DNA sequencing of immunoglobulin heavy chain gene rearrangements from 93 CVID patients and 105 control subjects and sorted naïve and memory B cells from 13 of the CVID patients and 10 of the control subjects. The CVID patients showed abnormal VDJ rearrangement and abnormal formation of complementarity-determining region 3 (CDR3). We observed a decreased selection against antibodies with long CDR3s in memory repertoires and decreased variable gene replacement, offering possible mechanisms for increased patient autoreactivity. Our data indicate that patient immunodeficiency might derive from both decreased diversity of the naïve B cell pool and decreased somatic hypermutation in memory repertoires. The CVID patients also exhibited an abnormal clonal expansion of unmutated B cells relative to the controls. Although impaired B cell germinal center activation is commonly viewed as causative in CVID, these data indicate that CVID B cells diverge from controls as early as the pro-B stage, cell and suggest possible explanations for the increased incidence of autoimmunity, immunodeficiency, and lymphoma CVID patients. PMID:26311730

  10. Regulatory T Cells: Molecular Actions on Effector Cells in Immune Regulation

    PubMed Central

    Arce-Sillas, Asiel; Álvarez-Luquín, Diana Denisse; Tamaya-Domínguez, Beatriz; Gomez-Fuentes, Sandra; Trejo-García, Abel; Melo-Salas, Marlene; Cárdenas, Graciela; Rodríguez-Ramírez, Juan; Adalid-Peralta, Laura

    2016-01-01

    T regulatory cells play a key role in the control of the immune response, both in health and during illness. While the mechanisms through which T regulatory cells exert their function have been extensively described, their molecular effects on effector cells have received little attention. Thus, this revision is aimed at summarizing our current knowledge on those regulation mechanisms on the target cells from a molecular perspective. PMID:27298831

  11. PI5P Triggers ICAM-1 Degradation in Shigella Infected Cells, Thus Dampening Immune Cell Recruitment.

    PubMed

    Boal, Frédéric; Puhar, Andrea; Xuereb, Jean-Marie; Kunduzova, Oksana; Sansonetti, Philippe J; Payrastre, Bernard; Tronchère, Hélène

    2016-02-01

    Shigella flexneri, the pathogen responsible for bacillary dysentery, has evolved multiple strategies to control the inflammatory response. Here, we show that Shigella subverts the subcellular trafficking of the intercellular adhesion molecule-1 (ICAM-1), a key molecule in immune cell recruitment, in a mechanism dependent on the injected bacterial enzyme IpgD and its product, the lipid mediator PI5P. Overexpression of IpgD, but not a phosphatase dead mutant, induced the internalization and the degradation of ICAM-1 in intestinal epithelial cells. Remarkably, addition of permeant PI5P reproduced IpgD effects and led to the inhibition of neutrophil recruitment. Finally, these results were confirmed in an in vivo model of Shigella infection where IpgD-dependent ICAM-1 internalization reduced neutrophil adhesion. In conclusion, we describe here an immune evasion mechanism used by the pathogen Shigella to divert the host cell trafficking machinery in order to reduce immune cell recruitment. PMID:26776508

  12. Activated Conventional T-Cells Are Present in Langerhans Cell Histiocytosis Lesions Despite the Presence of Immune Suppressive Cytokines.

    PubMed

    Quispel, Willemijn T; Stegehuis-Kamp, Janine A; Santos, Susy J; Egeler, R Maarten; van Halteren, Astrid G S

    2015-10-01

    Langerhans cell histiocytosis (LCH) lesions are characterized by neoplastic CD1a(+)/Langerin(+) histiocytes (LCH-cells) and display many features of chronic inflammation. Cancer cells can escape immune-surveillance through intra-tumoral secretion of immune-suppressive cytokines. We therefore studied by immunohistochemistry the local cytokine milieu and phenotypic characteristics of T-cells and LCH-cells present in LCH lesions collected from 25 therapy naïve patients. LCH biopsies predominantly expressed interleukin-10 (IL-10) (10/25), transforming growth factor-beta (TGF-β) (9/25), or both cytokines (6/25). The absolute number of CD3(+)T-cells and the CD3(+)FOXP3(-) conventional cell (T-CONV) versus the CD3(+)FOXP3(+) regulatory T-cell (T-REG) was comparable for each suppressive cytokine profile (5:1). IL-10-expressing lesions contained, however, a higher proportion of T-CONV expressing the activation markers CD25 98% (38%-100%) and inducible costimulatory molecule (ICOS) 86% (47%-100%) than lesions wherein solely TGF-β was detected (CD25(+) 20% (6%-54%); ICOS(+) 29% (7%-51%)). Virtually all T-REG expressed CD25 and ICOS in IL-10 lesions, whereas TGF-β(+) lesions contained a lower proportion of ICOS(+) T-REG (P=0.05). IL-10(+) lesions contained more LCH-cells expressing high intensity of ICOS ligand (ICOSL) compared with TGF-β(+) lesions (P=0.03). ICOS expression by lesion-infiltrating T-CONV and T-REG positively correlated to the extent of ICOSL expression by LCH-cells (P=0.004). Our study points out that the combined detection of interlesional IL-10 and ICOSL expression by LCH-cells is associated with the highest prevalence of activated T-CONV. Immune profiling of LCH-affected tissues obtained at the time of diagnosis may set the stage for the development of new types of therapies, which aim at local boosting of immune cells that recognize and eliminate neoplastic LCH-cells. PMID:26381039

  13. Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer's disease pathology

    PubMed Central

    Baruch, Kuti; Rosenzweig, Neta; Kertser, Alexander; Deczkowska, Aleksandra; Sharif, Alaa Mohammad; Spinrad, Amit; Tsitsou-Kampeli, Afroditi; Sarel, Ayelet; Cahalon, Liora; Schwartz, Michal

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder in which chronic neuroinflammation contributes to disease escalation. Nevertheless, while immunosuppressive drugs have repeatedly failed in treating this disease, recruitment of myeloid cells to the CNS was shown to play a reparative role in animal models. Here we show, using the 5XFAD AD mouse model, that transient depletion of Foxp3+ regulatory T cells (Tregs), or pharmacological inhibition of their activity, is followed by amyloid-β plaque clearance, mitigation of the neuroinflammatory response and reversal of cognitive decline. We further show that transient Treg depletion affects the brain's choroid plexus, a selective gateway for immune cell trafficking to the CNS, and is associated with subsequent recruitment of immunoregulatory cells, including monocyte-derived macrophages and Tregs, to cerebral sites of plaque pathology. Our findings suggest targeting Treg-mediated systemic immunosuppression for treating AD. PMID:26284939

  14. Prime-Boost Strategies in Mucosal Immunization Affect Local IgA Production and the Type of Th Response

    PubMed Central

    Fiorino, Fabio; Pettini, Elena; Pozzi, Gianni; Medaglini, Donata; Ciabattini, Annalisa

    2013-01-01

    Combinations of different delivery routes for priming and boosting represent vaccination strategies that can modulate magnitude, quality, and localization of the immune response. A murine model was used to study T cell clonal expansion following intranasal (IN) or subcutaneous (SC) priming, and secondary immune responses after boosting by either homologous or heterologous routes. T cell primary activation was studied by using the adoptive transfer model of ovalbumin-specific transgenic CD4+ T cells. Both IN and SC immunization efficiently elicited, in the respective draining lymph nodes, primary clonal expansion of antigen-specific CD4+ T cells that disseminated toward distal lymph nodes (mesenteric and iliac) and the spleen. After boosting, a significant serum IgG response was induced in all groups independent of the combination of immunization routes used, while significant levels of local IgA were detected only in mice boosted by the IN route. Mucosal priming drove a stronger Th1 polarization than the systemic route, as shown by serum IgG subclass analysis. IFN-gamma production was observed in splenocytes of all groups, while prime-boost vaccine combinations that included the mucosal route, yielded higher levels of IL-17. Memory lymphocytes were identified in both spleen and draining lymph nodes in all immunized mice, with the highest number of IL-2 producing cells detected in mice primed and boosted by the nasal route. This work shows the critical role of immunization routes in modulating quality and localization of immune responses in prime-boost vaccine strategies. PMID:23755051

  15. Pulmonary neuroendocrine cells function as airway sensors to control lung immune response.

    PubMed

    Branchfield, Kelsey; Nantie, Leah; Verheyden, Jamie M; Sui, Pengfei; Wienhold, Mark D; Sun, Xin

    2016-02-12

    The lung is constantly exposed to environmental atmospheric cues. How it senses and responds to these cues is poorly defined. Here, we show that Roundabout receptor (Robo) genes are expressed in pulmonary neuroendocrine cells (PNECs), a rare, innervated epithelial population. Robo inactivation in mouse lung results in an inability of PNECs to cluster into sensory organoids and triggers increased neuropeptide production upon exposure to air. Excess neuropeptides lead to an increase in immune infiltrates, which in turn remodel the matrix and irreversibly simplify the alveoli. We demonstrate in vivo that PNECs act as precise airway sensors that elicit immune responses via neuropeptides. These findings suggest that the PNEC and neuropeptide abnormalities documented in a wide array of pulmonary diseases may profoundly affect symptoms and progression. PMID:26743624

  16. Epigenetic Control of B Cell Development and B-Cell-Related Immune Disorders.

    PubMed

    Bao, Yan; Cao, Xuetao

    2016-06-01

    B lymphocytes are generally recognized as the essential component of humoral immunity and also a regulator of innate immunity. The development of B cells is precisely regulated by a variety of factors via different mechanisms, including cytokine/cytokine receptors, signal transduction molecules, and transcription factors. Recent findings suggest that epigenetic factors, such as DNA methylation, histone modification, and non-coding RNA, play critical roles in establishing B cell lineage-specific gene expression profiles to define and sustain B cell identity and function. Epigenetic modifications are also sensitive to external stimuli and might bridge genetic and environmental factors in the pathogenesis or control of B-cell-related immune disorders, such as autoimmune diseases, lymphoma, and leukemia. Better understanding of the epigenetic mechanisms for regulating B cell development and involving B cell abnormal differentiation and function will shed light on the design of new therapeutic approaches to B-cell-related diseases, and potential candidates of epigenetic modulators may be identified to target epigenetic pathways to prevent or treat B cell disorders. We summarize the relevance of epigenetic marks and landscapes in the stages of B cell development, discuss the interaction of the transcriptional networks and epigenetic changes, and review the involvement of epigenetic risk in the pathogenesis of B-cell-related diseases. Understanding how specific epigenetic alterations contribute to the development of B-cell-related autoimmunity and malignancies is instrumental to control B cell disorders. PMID:26066671

  17. Rituximab for immune hemolytic anemia following T- and B-Cell-depleted hematopoietic stem cell transplantation.

    PubMed

    Corti, P; Bonanomi, S; Vallinoto, C; Balduzzi, A; Uderzo, C; Cazzaniga, G; Gaipa, G; Dassi, M; Perseghin, P; Rovelli, A

    2003-01-01

    The treatment of immune-mediated hemolytic anemia (IHA) complicating hematopoietic stem cell transplantation (HSCT) is often unsatisfactory. We report a case of IHA which occurred after T- and B-cell depleted unrelated donor HSCT carried out for mucopolysaccharidosis type I-H (Hurler syndrome) which was successfully treated with anti-CD20+ monoclonal antibody PMID:12486323

  18. Evolutionary implication of B-1 lineage cells from innate to adaptive immunity.

    PubMed

    Zhu, Lv-yun; Shao, Tong; Nie, Li; Zhu, Ling-yun; Xiang, Li-xin; Shao, Jian-zhong

    2016-01-01

    The paradigm that B cells mainly play a central role in adaptive immunity may have to be reevaluated because B-1 lineage cells have been found to exhibit innate-like functions, such as phagocytic and bactericidal activities. Therefore, the evolutionary connection of B-1 lineage cells between innate and adaptive immunities have received much attention. In this review, we summarized various innate-like characteristics of B-1 lineage cells, such as natural antibody production, antigen-presenting function in primary adaptive immunity, and T cell-independent immune responses. These characteristics seem highly conserved between fish B cells and mammalian B-1 cells during vertebrate evolution. We proposed an evolutionary outline of B cells by comparing biological features, including morphology, phenotype, ontogeny, and functional activity between B-1 lineage cells and macrophages or B-2 cells. The B-1 lineage may be a transitional cell type between phagocytic cells (e.g., macrophages) and B-2 cells that functionally connects innate and adaptive immunities. Our discussion would contribute to the understanding on the origination of B cells specialized in adaptive immunity from innate immunity. The results might provide further insight into the evolution of the immune system as a whole. PMID:26573260

  19. Redirecting immune cells against bone metastases: Immunotherapy of prostate cancer metastases using genetically programmed immune effector cells.

    PubMed

    Eshhar, Zelig; Waks, Tova; Pinthus, Jehonathan

    2005-06-01

    Extract: Metastasis of the bone is common in two of the major gender-specific malignancies -- breast and prostate cancers. Although both primary breast and prostate cancer are manageable by "classical" therapies such as surgery, irradiation, and chemotherapy, when metastases (secondary cancers) disseminate to the bones these diseases are, by and large, incurable. Metastasis to the bone is implicated in around 70% of prostate and breast cancer deaths. The idea of harnessing the immune system to fight disseminated cancer has proven to be effective in experimental animal models against transplanted tumors. Here, both arms of the immune system, namely, the humoral one characterized by anti-tumor antibodies and the cellular one composed of a type of white blood cell, specifically the cytotoxic T-lymphocytes (CTLs), were found to cause tumor rejection either following immunization of the experimental mice before the tumor inoculations (active-vaccination) or after adoptive transfer of cancer-specific antibodies or CTLs into tumor-bearing mice (passive-vaccination). Encouraged by these results, scientists and clinicians have joined forces in extensive efforts to apply both active and passive vaccination for the immunotherapy of cancer patients. These attempts have flourished over the last fifteen years following the discovery of the first human tumor antigens in melanoma patients. PMID:20704885

  20. [Genetic basis of immune response of lymphocyte-like cells in the mucosal immune system of Lampetra japonica].

    PubMed

    Xin, Liu; Xueying, Song; Xiaoping, Zhang; Yinglun, Han; Ting, Zhu; Rong, Xiao; Qingwei, Li

    2015-11-01

    In recent years, the antigen recognition mechanism based on variable lymphocyte receptors (VLRs) was found in agnathan lamprey. To illuminate the genetic basis of immune response of lymphocyte-like cells in the mucosal immune system of lamprey and explore the evolutionary relationship of adaptive immune responses between the jawless and jawed vertebrates, we constructed cDNA libraries of lamprey (Lampetra japonica) gills before and after stimulation, and then performed high-throughput transcriptome sequencing and analysis. Through functional annotation of 88 525 assembled unigenes, 21 704 and 9769 unigenes were annotated in Gene Ontology (GO) and Kyto Encyclopedia of Genes and Genomes (KEGG) databases, respectively. Among 999 unigenes involved in multiple pathways of immune system, 184 unigenes were highly homologous to 51 TCR (T cell receptor) and BCR (B cell receptor) signalling molecules in higher vertebrates, indicating that molecules involved in adaptive immune signalling pathways in higher vertebrates also exist in lampreys. In addition, identification of five VLRA, seven VLRB and four VLRC molecules suggest that at least three types of lymphocyte subsets are distributed in lamprey gill mucosal immune tissues. The results of real-time fluorescence quantitative PCR showed that the expression levels of Lck, Fyn and Zap70 were up-regulated after immune stimulation while those of Syk, Btk and Blnk were not changed significantly, indicating the activation of TCR-like signal transduction pathway after antigen stimulation in lamprey gill tissues. Our studies preliminaryly proved that two parallel adaptive immune systems in jawless and jawed vertebrates have common genetic basis, and also provided valuable clues to the exploration of signalling processes of VLRA⁺, VLRB⁺, and VLRC⁺ lymphocyte-like cells in response to antigens. PMID:26582529

  1. Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma

    PubMed Central

    Giannakis, Marios; Mu, Xinmeng Jasmine; Shukla, Sachet A.; Qian, Zhi Rong; Cohen, Ofir; Nishihara, Reiko; Bahl, Samira; Cao, Yin; Amin-Mansour, Ali; Yamauchi, Mai; Sukawa, Yasutaka; Stewart, Chip; Rosenberg, Mara; Mima, Kosuke; Inamura, Kentaro; Nosho, Katsuhiko; Nowak, Jonathan A.; Lawrence, Michael S.; Giovannucci, Edward L.; Chan, Andrew T.; Ng, Kimmie; Meyerhardt, Jeffrey A.; Van Allen, Eliezer M.; Getz, Gad; Gabriel, Stacey B.; Lander, Eric S.; Wu, Catherine J.; Fuchs, Charles S.; Ogino, Shuji; Garraway, Levi A.

    2016-01-01

    Summary Large-scale genomic characterization of tumors from prospective cohort studies may yield new insights into cancer pathogenesis. We performed whole-exome sequencing of 619 incident colorectal cancers (CRCs) and integrated the results with tumor immunity, pathology, and survival data. We identified recurrently mutated genes in CRC, such as BCL9L, RBM10, CTCF, and KLF5, that were not previously appreciated in this disease. Furthermore, we investigated the genomic correlates of immune-cell infiltration and found that higher neoantigen load was positively associated with overall lymphocytic infiltration, tumor-infiltrating lymphocytes (TILs), memory T cells, and CRC-specific survival. The association with TILs was evident even within microsatellite-stable tumors. We also found positive selection of mutations in HLA genes and other components of the antigen-processing machinery in TIL-rich tumors. These results may inform immunotherapeutic approaches in CRC. More generally, this study demonstrates a framework for future integrative molecular epidemiology research in colorectal and other malignancies. PMID:27149842

  2. Burkholderia cenocepacia Lipopolysaccharide Modification and Flagellin Glycosylation Affect Virulence but Not Innate Immune Recognition in Plants

    PubMed Central

    Khodai-Kalaki, Maryam; Andrade, Angel; Fathy Mohamed, Yasmine

    2015-01-01

    ABSTRACT Burkholderia cenocepacia causes opportunistic infections in plants, insects, animals, and humans, suggesting that “virulence” depends on the host and its innate susceptibility to infection. We hypothesized that modifications in key bacterial molecules recognized by the innate immune system modulate host responses to B. cenocepacia. Indeed, modification of lipopolysaccharide (LPS) with 4-amino-4-deoxy-l-arabinose and flagellin glycosylation attenuates B. cenocepacia infection in Arabidopsis thaliana and Galleria mellonella insect larvae. However, B. cenocepacia LPS and flagellin triggered rapid bursts of nitric oxide and reactive oxygen species in A. thaliana leading to activation of the PR-1 defense gene. These responses were drastically reduced in plants with fls2 (flagellin FLS2 host receptor kinase), Atnoa1 (nitric oxide-associated protein 1), and dnd1-1 (reduced production of nitric oxide) null mutations. Together, our results indicate that LPS modification and flagellin glycosylation do not affect recognition by plant receptors but are required for bacteria to establish overt infection. PMID:26045541

  3. Microbial environment affects innate immunity in two closely related earthworm species Eisenia andrei and Eisenia fetida.

    PubMed

    Dvořák, Jiří; Mančíková, Veronika; Pižl, Václav; Elhottová, Dana; Silerová, Marcela; Roubalová, Radka; Skanta, František; Procházková, Petra; Bilej, Martin

    2013-01-01

    Survival of earthworms in the environment depends on their ability to recognize and eliminate potential pathogens. This work is aimed to compare the innate defense mechanisms of two closely related earthworm species, Eisenia andrei and Eisenia fetida, that inhabit substantially different ecological niches. While E. andrei lives in a compost and manure, E. fetida can be found in the litter layer in forests. Therefore, the influence of environment-specific microbiota on the immune response of both species was followed. Firstly, a reliable method to discern between E. andrei and E. fetida based on species-specific primers for cytochrome c oxidase I (COI) and stringent PCR conditions was developed. Secondly, to analyze the immunological profile in both earthworm species, the activity and expression of lysozyme, pattern recognition protein CCF, and antimicrobial proteins with hemolytic function, fetidin and lysenins, have been assessed. Whereas, CCF and lysozyme showed only slight differences in the expression and activity, fetidin/lysenins expression as well as the hemolytic activity was considerably higher in E. andrei as compared to E. fetida. The expression of fetidin/lysenins in E. fetida was not affected upon the challenge with compost microbiota, suggesting more substantial changes in the regulation of the gene expression. Genomic DNA analyses revealed significantly higher level of fetidin/lysenins (determined using universal primer pairs) in E. andrei compared to E. fetida. It can be hypothesized that E. andrei colonizing compost as a new habitat acquired an evolutionary selection advantage resulting in a higher expression of antimicrobial proteins. PMID:24223917

  4. Microbial Environment Affects Innate Immunity in Two Closely Related Earthworm Species Eisenia andrei and Eisenia fetida

    PubMed Central

    Dvořák, Jiří; Mančíková, Veronika; Pižl, Václav; Elhottová, Dana; Šilerová, Marcela; Roubalová, Radka; Škanta, František; Procházková, Petra; Bilej, Martin

    2013-01-01

    Survival of earthworms in the environment depends on their ability to recognize and eliminate potential pathogens. This work is aimed to compare the innate defense mechanisms of two closely related earthworm species, Eisenia andrei and Eisenia fetida, that inhabit substantially different ecological niches. While E. andrei lives in a compost and manure, E. fetida can be found in the litter layer in forests. Therefore, the influence of environment-specific microbiota on the immune response of both species was followed. Firstly, a reliable method to discern between E. andrei and E. fetida based on species-specific primers for cytochrome c oxidase I (COI) and stringent PCR conditions was developed. Secondly, to analyze the immunological profile in both earthworm species, the activity and expression of lysozyme, pattern recognition protein CCF, and antimicrobial proteins with hemolytic function, fetidin and lysenins, have been assessed. Whereas, CCF and lysozyme showed only slight differences in the expression and activity, fetidin/lysenins expression as well as the hemolytic activity was considerably higher in E. andrei as compared to E. fetida. The expression of fetidin/lysenins in E. fetida was not affected upon the challenge with compost microbiota, suggesting more substantial changes in the regulation of the gene expression. Genomic DNA analyses revealed significantly higher level of fetidin/lysenins (determined using universal primer pairs) in E. andrei compared to E. fetida. It can be hypothesized that E. andrei colonizing compost as a new habitat acquired an evolutionary selection advantage resulting in a higher expression of antimicrobial proteins. PMID:24223917

  5. Metabolic reprogramming in macrophages and dendritic cells in innate immunity

    PubMed Central

    Kelly, Beth; O'Neill, Luke AJ

    2015-01-01

    Activation of macrophages and dendritic cells (DCs) by pro-inflammatory stimuli causes them to undergo a metabolic switch towards glycolysis and away from oxidative phosphorylation (OXPHOS), similar to the Warburg effect in tumors. However, it is only recently that the mechanisms responsible for this metabolic reprogramming have been elucidated in more detail. The transcription factor hypoxia-inducible factor-1α (HIF-1α) plays an important role under conditions of both hypoxia and normoxia. The withdrawal of citrate from the tricarboxylic acid (TCA) cycle has been shown to be critical for lipid biosynthesis in both macrophages and DCs. Interference with this process actually abolishes the ability of DCs to activate T cells. Another TCA cycle intermediate, succinate, activates HIF-1α and promotes inflammatory gene expression. These new insights are providing us with a deeper understanding of the role of metabolic reprogramming in innate immunity. PMID:26045163

  6. The peptide semax affects the expression of genes related to the immune and vascular systems in rat brain focal ischemia: genome-wide transcriptional analysis

    PubMed Central

    2014-01-01

    Background The nootropic neuroprotective peptide Semax (Met-Glu-His-Phe-Pro-Gly-Pro) has proved efficient in the therapy of brain stroke; however, the molecular mechanisms underlying its action remain obscure. Our genome-wide study was designed to investigate the response of the transcriptome of ischemized rat brain cortex tissues to the action of Semax in vivo. Results The gene-expression alteration caused by the action of the peptide Semax was compared with the gene expression of the “ischemia” group animals at 3 and 24 h after permanent middle cerebral artery occlusion (pMCAO). The peptide predominantly enhanced the expression of genes related to the immune system. Three hours after pMCAO, Semax influenced the expression of some genes that affect the activity of immune cells, and, 24 h after pMCAO, the action of Semax on the immune response increased considerably. The genes implicated in this response represented over 50% of the total number of genes that exhibited Semax-induced altered expression. Among the immune-response genes, the expression of which was modulated by Semax, genes that encode immunoglobulins and chemokines formed the most notable groups. In response to Semax administration, 24 genes related to the vascular system exhibited altered expression 3 h after pMCAO, whereas 12 genes were changed 24 h after pMCAO. These genes are associated with such processes as the development and migration of endothelial tissue, the migration of smooth muscle cells, hematopoiesis, and vasculogenesis. Conclusions Semax affects several biological processes involved in the function of various systems. The immune response is the process most markedly affected by the drug. Semax altered the expression of genes that modulate the amount and mobility of immune cells and enhanced the expression of genes that encode chemokines and immunoglobulins. In conditions of rat brain focal ischemia, Semax influenced the expression of genes that promote the formation and

  7. Immune-inflammatory responses in atherosclerosis: Role of an adaptive immunity mainly driven by T and B cells.

    PubMed

    Chistiakov, Dimitry A; Orekhov, Alexander N; Bobryshev, Yuri V

    2016-09-01

    Adaptive immune response plays an important role in atherogenesis. In atherosclerosis, the proinflammatory immune response driven by Th1 is predominant but the anti-inflammatory response mediated mainly by regulatory T cells is also present. The role of Th2 and Th17 cells in atherogenesis is still debated. In the plaque, other T helper cells can be observed such as Th9 and Th22 but is little is known about their impact in atherosclerosis. Heterogeneity of CD4(+) T cell subsets presented in the plaque may suggest for plasticity of T cell that can switch the phenotype dependening on the local microenvironment and activating/blocking stimuli. Effector T cells are able to recognize self-antigens released by necrotic and apoptotic vascular cells and induce a humoral immune reaction. Tth cells resided in the germinal centers help B cells to switch the antibody class to the production of high-affinity antibodies. Humoral immunity is mediated by B cells that release antigen-specific antibodies. A variety of B cell subsets were found in human and murine atherosclerotic plaques. In mice, B1 cells could spontaneously produce atheroprotective natural IgM antibodies. Conventional B2 lymphocytes secrete either proatherogenic IgG, IgA, and IgE or atheroprotective IgG and IgM antibodies reactive with oxidation-specific epitopes on atherosclerosis-associated antigens. A small population of innate response activator (IRA) B cells, which is phenotypically intermediate between B1 and B2 cells, produces IgM but possesses proatherosclerotic properties. Finally, there is a minor subset of splenic regulatory B cells (Bregs) that protect against atherosclerotic inflammation through support of generation of Tregs and production of anti-inflammatory cytokines IL-10 and TGF-β and proapoptotic molecules. PMID:27262513

  8. A survey of children affected by ectomermal dysplasia syndromes shows an increased prevalence of atopic disorders and immune deficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ectodermal dysplasia (ED) syndromes are rare genetic disorders that affect the development of tissues derived from the embryonic ectoderm. Studies and anecdotal experience have indicated that atopic disorders (AD) and immune deficiencies (ID) may be associated with ED in children. Some ED genotypes ...

  9. Immune response, productivity and quality of milk from grazing goats as affected by dietary polyunsaturated fatty acid supplementation.

    PubMed

    Caroprese, Mariangela; Ciliberti, Maria Giovana; Santillo, Antonella; Marino, Rosaria; Sevi, Agostino; Albenzio, Marzia

    2016-04-01

    This study was undertaken to assess how diet supplemented with fish oil and linseed improve the immune profile, the production performance, and milk quality of grazing goats by a diet supplementation of fish oil or linseed. Twenty-four Garganica grazing goats were divided into three groups named control (CON), fish oil (FO) and linseed (LIN) according to the fat supplement received in their diet. In vivo immune responses were evaluated by monitoring cell-mediated and humoral immune responses in order to verify the effects of polyunsaturated fatty acids supplementation on goats' health status. Goat milk samples were analysed weekly to determine milk chemical composition, fatty acid profile, and somatic cell count. Diet based on linseed supplementation (LIN) significantly increased milk yield by 30%, milk fat yield by 67%, protein yield by 34%, and casein yield by 41% as compared with CON. Fat content increased by 30% in LIN milk as compared with CON milk, and by 12% as compared with FO milk. Linseed modified milk fatty acid profile; LIN milk showed lower SFA and higher PUFA than FO milk. The modified fatty acid composition of LIN milk resulted in lower AI and TI indexes than FO and CON milk. Linseed and fish oil administration can reduce humoral immunity of goats, but has no effect in their cellular immunity. Dietary linseed supplementation in grazing dairy goat supports feeding programs to improve milk composition and quality, and a modulation of their immune responses. PMID:27033938

  10. Subversion of Cell-Autonomous Immunity and Cell Migration by Legionella pneumophila Effectors

    PubMed Central

    Simon, Sylvia; Hilbi, Hubert

    2015-01-01

    Bacteria trigger host defense and inflammatory processes, such as cytokine production, pyroptosis, and the chemotactic migration of immune cells toward the source of infection. However, a number of pathogens interfere with these immune functions by producing specific so-called “effector” proteins, which are delivered to host cells via dedicated secretion systems. Air-borne Legionella pneumophila bacteria trigger an acute and potential fatal inflammation in the lung termed Legionnaires’ disease. The opportunistic pathogen L. pneumophila is a natural parasite of free-living amoebae, but also replicates in alveolar macrophages and accidentally infects humans. The bacteria employ the intracellular multiplication/defective for organelle trafficking (Icm/Dot) type IV secretion system and as many as 300 different effector proteins to govern host–cell interactions and establish in phagocytes an intracellular replication niche, the Legionella-containing vacuole. Some Icm/Dot-translocated effector proteins target cell-autonomous immunity or cell migration, i.e., they interfere with (i) endocytic, secretory, or retrograde vesicle trafficking pathways, (ii) organelle or cell motility, (iii) the inflammasome and programed cell death, or (iv) the transcription factor NF-κB. Here, we review recent mechanistic insights into the subversion of cellular immune functions by L. pneumophila. PMID:26441958

  11. Data correlations between gender, cytomegalovirus infection and T cells, NK cells, and soluble immune mediators in elderly humans.

    PubMed

    Al-Attar, Ahmad; Presnell, Steven R; Peterson, Charlotte A; Thomas, D Travis; Lutz, Charles T

    2016-09-01

    We describe a cohort of 50 elderly subjects, age at least 70 years. We present gender-specific findings in T lymphocyte markers and soluble immune mediators. We show the correlation between cytomegalovirus infection status with CD56(dim) NK cell responses to a variety of stimuli and with CD56(bright)/CD56(dim) NK cell ratio. We also present the correlation of retinol binding protein (RBP)-4 plasma levels with NK cell responses and we explore the relationship between gender and adiponectin, 25(OH)D (vitamin D), and RBP4 in affecting CD56(dim) NK cell responses. These data are discussed in Al-Attar et al. (2016) [1]. PMID:27508213

  12. Leukocyte-associated Ig-like receptor-1-deficient mice have an altered immune cell phenotype.

    PubMed

    Tang, Xiaobin; Tian, Linjie; Esteso, Gloria; Choi, Seung-Chul; Barrow, Alexander D; Colonna, Marco; Borrego, Francisco; Coligan, John E

    2012-01-15

    Cross-linking of the collagen binding receptor leukocyte-associated Ig-like receptor-1 (LAIR-1) in vitro delivers an inhibitory signal that is able to downregulate activation-mediated signals. To study the in vivo function of LAIR-1, we generated LAIR-1(-/-) mice. They are healthy and fertile and have normal longevity; however, they show certain phenotypic characteristics distinct from wild-type mice, including increased numbers of splenic B, regulatory T, and dendritic cells. As LAIR-1(-/-) mice age, the splenic T cell population shows a higher frequency of activated and memory T cells. Because LAIR-1(+/+) and LAIR-1(-/-) T cells traffic with equal proficiency to peripheral lymphoid organs, this is not likely due to abnormal T lymphocyte trafficking. LAIR-1(-/-) mice have lower serum levels of IgG1 and, in response to T-dependent immunization with trinitrophenyl-OVA, switch less efficiently to Ag specific IgG2a and IgG2b, whereas switching to IgG1 is not affected. Several mouse disease models, including experimental autoimmune encephalitis and colitis, were used to examine the effect of LAIR-1 deficiency, and no differences in the responses of LAIR-1(-/-) and LAIR-1(+/+) mice were observed. Taken together, these observations indicate that LAIR-1 plays a role in regulating immune cells and suggest that any adverse effects of its absence may be balanced in vivo by other inhibitory receptors. PMID:22156345

  13. The role of the cell wall in plant immunity

    PubMed Central

    Malinovsky, Frederikke G.; Fangel, Jonatan U.; Willats, William G. T.

    2014-01-01

    The battle between plants and microbes is evolutionarily ancient, highly complex, and often co-dependent. A primary challenge for microbes is to breach the physical barrier of host cell walls whilst avoiding detection by the plant’s immune receptors. While some receptors sense conserved microbial features, others monitor physical changes caused by an infection attempt. Detection of microbes leads to activation of appropriate defense responses that then challenge the attack. Plant cell walls are formidable and dynamic barriers. They are constructed primarily of complex carbohydrates joined by numerous distinct connection types, and are subject to extensive post-synthetic modification to suit prevailing local requirements. Multiple changes can be triggered in cell walls in response to microbial attack. Some of these are well described, but many remain obscure. The study of the myriad of subtle processes underlying cell wall modification poses special challenges for plant glycobiology. In this review we describe the major molecular and cellular mechanisms that underlie the roles of cell walls in plant defense against pathogen attack. In so doing, we also highlight some of the challenges inherent in studying these interactions, and briefly describe the analytical potential of molecular probes used in conjunction with carbohydrate microarray technology. PMID:24834069

  14. Lipid body accumulation alters calcium signaling dynamics in immune cells.

    PubMed

    Greineisen, William E; Speck, Mark; Shimoda, Lori M N; Sung, Carl; Phan, Nolwenn; Maaetoft-Udsen, Kristina; Stokes, Alexander J; Turner, Helen

    2014-09-01

    There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcɛRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signaling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcɛRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signaling pathway and its downstream targets. PMID:25016314

  15. Lipid body accumulation alters calcium signaling dynamics in immune cells

    PubMed Central

    Greineisen, William E.; Speck, Mark; Shimoda, Lori M.N.; Sung, Carl; Phan, Nolwenn; Maaetoft-Udsen, Kristina; Stokes, Alexander J.; Turner, Helen

    2014-01-01

    Summary There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcεRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signalling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcεRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signalling pathway and its downstream targets. PMID:25016314

  16. Innate lymphoid cells and natural killer T cells in the gastrointestinal tract immune system.

    PubMed

    Montalvillo, Enrique; Garrote, José Antonio; Bernardo, David; Arranz, Eduardo

    2014-05-01

    The gastrointestinal tract is equipped with a highly specialized intrinsic immune system. However, the intestine is exposed to a high antigenic burden that requires a fast, nonspecific response -so-called innate immunity- to maintain homeostasis and protect the body from incoming pathogens. In the last decade multiple studies helped to unravel the particular developmental requirements and specific functions of the cells that play a role in innate immunity. In this review we shall focus on innate lymphoid cells, a newly discovered, heterogeneous set of cells that derive from an Id2-dependent lymphoid progenitor cell population. These cells have been categorized on the basis of the pattern of cytokines that they secrete, and the transcription factors that regulate their development and functions. Innate lymphoid cells play a role in the early response to pathogens, the anatomical contention of the commensal flora, and the maintenance of epithelial integrity.Amongst the various innate lymphoid cells we shall lay emphasis on a subpopulation with several peculiarities, namely that of natural killer T cells, a subset of T lymphocytes that express both T-cell and NK-cell receptors. The most numerous fraction of the NKT population are the so-called invariant NKT or iNKT cells. These iNKT cells have an invariant TCR and recognize the glycolipidic structures presented by the CD1d molecule, a homolog of class-I MHC molecules. Following activation they rapidly acquire cytotoxic activity and secrete both Th1 and Th2 cytokines, including IL-17. While their specific role is not yet established, iNKT cells take part in a great variety of intestinal immune responses ranging from oral tolerance to involvement in a number of gastrointestinal conditions. PMID:25287236

  17. Effect of dietary selenium on T cell immunity and cancer xenograft in nude mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenium is known to regulate carcinogenesis and immunity at nutritional and supranutritional levels. Because the immune system provides one of the main body defenses against cancer, we asked whether T cell immunity can modulate selenium chemoprevention. Twenty-four homozygous NU/J nude mice were fe...

  18. Role of B Cells in Vaccine-Induced Immunity against Coccidioidomycosis

    PubMed Central

    Magee, D. Mitchell; Friedberg, Rhonda L.; Woitaske, Melanie D.; Johnston, Stephen Albert; Cox, Rebecca A.

    2005-01-01

    We investigated secondary immunity against coccidioidomycosis by using gene expression microarrays. Surprisingly, a high percentage of B-cell-related genes were associated with protective immunity. A functional confirmation of the importance of B cells against coccidioidomycosis was achieved by demonstrating that vaccination was not fully protective in B-cell-deficient MuMT mice. PMID:16177382

  19. Survival of priceless cells: active and passive protection of embryonic stem cells against immune destruction.

    PubMed

    Utermöhlen, Olaf; Krönke, Martin

    2007-06-15

    This review focuses on our current knowledge of the mechanisms employed by embryonic stem (ES) cells to avoid destruction by cell-mediated immune responses. Recently, ES cells have been found to shield themselves against cytotoxic effector cells by expressing CD95L and serine protease inhibitor SPI-6 mediating apoptosis of the cytotoxic cells and inactivation of granzyme B, respectively. These findings are discussed in view of their implications for using ES cell-derived transplants in regenerative medicine as well as for our understanding of early embryonic stages during invasion and implantation. PMID:17459325

  20. Rapid reuptake of granzyme B leads to emperitosis: an apoptotic cell-in-cell death of immune killer cells inside tumor cells.

    PubMed

    Wang, S; He, M-f; Chen, Y-h; Wang, M-y; Yu, X-M; Bai, J; Zhu, H-y; Wang, Y-y; Zhao, H; Mei, Q; Nie, J; Ma, J; Wang, J-f; Wen, Q; Ma, L; Wang, Y; Wang, X-n

    2013-01-01

    A cell-in-cell process refers to the invasion of one living cell into another homotypic or heterotypic cell. Different from non-apoptotic death processes of internalized cells termed entosis or cannibalism, we previously reported an apoptotic cell-in-cell death occurring during heterotypic cell-in-cell formation. In this study, we further demonstrated that the apoptotic cell-in-cell death occurred only in internalized immune killer cells expressing granzyme B (GzmB). Vacuole wrapping around the internalized cells inside the target cells was the common hallmark during the early stage of all cell-in-cell processes, which resulted in the accumulation of reactive oxygen species and subsequent mitochondrial injury of encapsulated killer or non-cytotoxic immune cells. However, internalized killer cells mediated rapid bubbling of the vacuoles with the subsequent degranulation of GzmB inside the vacuole of the target cells and underwent the reuptake of GzmB by killer cells themselves. The confinement of GzmB inside the vacuole surpassed the lysosome-mediated cell death occurring in heterotypic or homotypic entosis processes, resulting in a GzmB-triggered caspase-dependent apoptotic cell-in-cell death of internalized killer cells. On the contrary, internalized killer cells from GzmB-deficient mice underwent a typical non-apoptotic entotic cell-in-cell death similar to that of non-cytotoxic immune cells or tumor cells. Our results thus demonstrated the critical involvement of immune cells with cytotoxic property in apoptotic cell-in-cell death, which we termed as emperitosis taken from emperipolesis and apoptosis. Whereas entosis or cannibalism may serve as a feed-on mechanism to exacerbate and nourish tumor cells, emperitosis of immune killer cells inside tumor cells may serve as an in-cell danger sensation model to prevent the killing of target cells from inside, implying a unique mechanism for tumor cells to escape from immune surveillance. PMID:24113190

  1. Non-neuronal Cells in ALS: Role of Glial, Immune cells and Blood-CNS Barriers.

    PubMed

    Puentes, Fabiola; Malaspina, Andrea; van Noort, Johannes M; Amor, Sandra

    2016-03-01

    Neurological dysfunction and motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is strongly associated with neuroinflammation reflected by activated microglia and astrocytes in the CNS. In ALS endogenous triggers in the CNS such as aggregated protein and misfolded proteins activate a pathogenic response by innate immune cells. However, there is also strong evidence for a neuroprotective immune response in ALS. Emerging evidence also reveals changes in the peripheral adaptive immune responses as well as alterations in the blood brain barrier that may aid traffic of lymphocytes and antibodies into the CNS. Understanding the triggers of neuroinflammation is key to controlling neuronal loss. Here, we review the current knowledge regarding the roles of non-neuronal cells as well as the innate and adaptive immune responses in ALS. Existing ALS animal models, in particular genetic rodent models, are very useful to study the underlying pathogenic mechanisms of motor neuron degeneration. We also discuss the approaches used to target the pathogenic immune responses and boost the neuroprotective immune pathways as novel immunotherapies for ALS. PMID:26780491

  2. Yeast killer plasmid mutations affecting toxin secretion and activity and toxin immunity function

    SciTech Connect

    Bussey, H.; Sacks, W.; Galley, D.; Saville, D.

    1982-04-01

    M double-stranded RNA (MdsRNA) plasmid mutants were obtained by mutagenesis and screening of a diploid killer culture partially heat cured of the plasmid, so that a high proportion of the cells could be expected to have only one M plasmid. Mutants with neutral (K/sup -/), immune (R/sup +/) or suicide (killer (K/sup +/), sensitive (R/sup -/)) phenotypes were examined. All mutants became K/sup -/ R/sup -/ sensitives on heat curing of the MdsRNA plasmid, and showed cytoplasmic inheritance by random spore analysis. In some cases, M plasmid mutations were indicated by altered mobility of the MdsRNA by agarose gel electrophoresis or by altered size of in vitro translation products from denatured dsRNA. Neutral mutants were of two types: nonsecretors of the toxin protein or secretors of an inactive toxin. Of three neutral nonsecretors examined, one (NLP-1), probably a nonsense mutation, made a smaller protoxin precursor in vitro and in vivo, and two made full-size protoxin molecules. The in vivo protoxin of 43,000 molecular weight was unstable in the wild type and kinetically showed a precursor product relationship to the processed, secreted 11,000-molecular-weight toxin. In one nonsecretor (N1), the protoxin appeared more stable in a pulse-chase experiment, and could be altered in a recognition site required for protein processing.

  3. [Production of a dialysable transfer factor of cell mediated immunity by lymphoblastoid cells in continuous proliferation].

    PubMed

    Goust, J M; Viza, D; Moulias, R; Trejdosiewicz, L; Lesourd, B; Marescot, M R; Prévot, A

    1975-01-20

    Four lymphoblastoid cell lines tested in this work contain normally a dialysable moiety having by ultraviolet spectroscopy, column chromatography (Biogel P 10) and chemically the same properties than human dialysable Transfer Factor (TFd), but unable to transfer cell mediated immune response against common antigens. Two of them are able to do so after incubation with minimal amounts of TFd. Production of a molecule identical to human TFd is possible in some lymphoblastoid cell lines after induction with TFd. PMID:808340

  4. Yeast culture supplement during nursing and transport affects immunity and intestinal microbial ecology of weanling pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weaning and transport stress can have a negative impact on the piglet's immune system and intestinal microbiota. The objective of this study was to determine the influence of a yeast product on innate immunity and microbial ecology of the gastrointestinal tract following stress of weaning and trans...

  5. Transgenerational interactions involving parental age and immune status affect female reproductive success in Drosophila melanogaster

    PubMed Central

    Nystrand, M.; Dowling, D. K.

    2014-01-01

    It is well established that the parental phenotype can influence offspring phenotypic expression, independent of the effects of the offspring's own genotype. Nonetheless, the evolutionary implications of such parental effects remain unclear, partly because previous studies have generally overlooked the potential for interactions between parental sources of non-genetic variance to influence patterns of offspring phenotypic expression. We tested for such interactions, subjecting male and female Drosophila melanogaster of two different age classes to an immune activation challenge or a control treatment. Flies were then crossed in all age and immune status combinations, and the reproductive success of their immune- and control-treated daughters measured. We found that daughters produced by two younger parents exhibited reduced reproductive success relative to those of other parental age combinations. Furthermore, immune-challenged daughters exhibited higher reproductive success when produced by immune-challenged relative to control-treated mothers, a pattern consistent with transgenerational immune priming. Finally, a complex interplay between paternal age and parental immune statuses influenced daughter's reproductive success. These findings demonstrate the dynamic nature of age- and immune-mediated parental effects, traceable to both parents, and regulated by interactions between parents and between parents and offspring. PMID:25253454

  6. Mineralocorticoid receptors in immune cells: emerging role in cardiovascular disease.

    PubMed

    Bene, Nicholas C; Alcaide, Pilar; Wortis, Henry H; Jaffe, Iris Z

    2014-12-01

    Mineralocorticoid receptors (MRs) contribute to the pathophysiology of hypertension and cardiovascular disease in humans. As such, MR antagonists improve cardiovascular outcomes but the molecular mechanisms remain unclear. The actions of the MR in the kidney to increase blood pressure are well known, but the recent identification of MRs in immune cells has led to novel discoveries in the pathogenesis of cardiovascular disease that are reviewed here. MR regulates macrophage activation to the pro-inflammatory M1 phenotype and this process contributes to the pathogenesis of cardiovascular fibrosis in response to hypertension and to outcomes in mouse models of stroke. T lymphocytes have recently been implicated in the development of hypertension and cardiovascular fibrosis in mouse models. MR activation in vivo promotes T lymphocyte differentiation to the pro-inflammatory Th1 and Th17 subsets while decreasing the number of anti-inflammatory T regulatory lymphocytes. The mechanism likely involves activation of MR in antigen presenting dendritic cells that subsequently regulate Th1/Th17 polarization by production of cytokines. Alteration of the balance between T helper and T regulatory lymphocytes contributes to the pathogenesis of hypertension and atherosclerosis and the associated complications. B lymphocytes also express the MR and specific B lymphocyte-derived antibodies modulate the progression of atherosclerosis. However, the role of MR in B lymphocyte function remains to be explored. Overall, recent studies of MR in immune cells have identified new mechanisms by which MR activation may contribute to the pathogenesis of organ damage in patients with cardiovascular risk factors. Conversely, inhibition of leukocyte MR may contribute to the protective effects of MR antagonist drugs in cardiovascular patients. Further understanding of the role of MR in leukocyte function could yield novel drug targets for cardiovascular disease. PMID:24769248

  7. Peptide assemblies: from cell scaffolds to immune adjuvants

    NASA Astrophysics Data System (ADS)

    Collier, Joel

    2011-03-01

    This talk will discuss two interrelated aspects of peptide self-assemblies in biological applications: their use as matrices for regenerative medicine, and their use as chemically defined adjuvants for directing immune responses against engineered antigens. In the first half of the presentation, the design of peptide self-assemblies as analogues for the extracellular matrix will be described, with a focus on self-assemblies displaying multiple different cell-binding peptides. We conducted multi-factorial investigations of peptide co-assemblies containing several different ligand-bearing peptides using statistical ``design of experiments'' (DoE). Using the DoE techniques of factorial experimentation and response surface modeling, we systematically explored how precise combinations of ligand-bearing peptides modulated endothelial cell growth, in the process finding interactions between ligands not previously appreciated. By investigating immune responses against the materials intended for tissue engineering applications, we discovered that the basic self-assembling peptides were minimally immunogenic or non-immunogenic, even when delivered in strong adjuvants. -But when they were appended to an appropriately restricted epitope peptide, these materials raised strong and persistent antibody responses. These responses were dependent on covalent conjugation between the epitope and self-assembling domains of the peptides, were mediated by T cells, and could be directed towards both peptide epitopes and conjugated protein antigens. In addition to their demonstrated utility as scaffolds for regenerative medicine, peptide self-assemblies may also be useful as chemically defined adjuvants for vaccines and immunotherapies. This work was funded by NIH/NIDCR (1 R21 DE017703-03), NIH/NIBIB (1 R01 EB009701-01), and NSF (CHE-0802286).

  8. Mineralocorticoid Receptors in Immune Cells; Emerging Role in Cardiovascular Disease

    PubMed Central

    Bene, Nicholas C.; Alcaide, Pilar; Wortis, Henry H.; Jaffe, Iris Z.

    2014-01-01

    Mineralocorticoid receptors (MR) contribute to the pathophysiology of hypertension and cardiovascular disease in humans. As such, MR antagonists improve cardiovascular outcomes but the molecular mechanisms remain unclear. The actions of the MR in the kidney to increase blood pressure are well known, but the recent identification of MRs in immune cells has led to novel discoveries in the pathogenesis of cardiovascular disease that are reviewed here. MR regulates macrophage activation to the pro-inflammatory M1 phenotype and this process contributes to the pathogenesis of cardiovascular fibrosis in response to hypertension and to outcomes in mouse models of stroke. T lymphocytes have recently been implicated in the development of hypertension and cardiovascular fibrosis in mouse models. MR activation in vivo promotes T lymphocyte differentiation to the pro-inflammatory Th1 and Th17 subsets while decreasing the number of anti-inflammatory T regulatory lymphocytes. The mechanism likely involves activation of MR in antigen presenting dendritic cells that subsequently regulate Th1/Th17 polarization by production of cytokines. Alteration of the balance between T helper and T regulatory lymphocytes contributes to the pathogenesis of hypertension and atherosclerosis and the associated complications. B lymphocytes also express the MR and specific B lymphocyte-derived antibodies modulate the progression of atherosclerosis. However, the role of MR in B lymphocyte function remains to be explored. Overall, recent studies of MR in immune cells have identified new mechanisms by which MR activation may contribute to the pathogenesis of organ damage in patients with cardiovascular risk factors. Conversely, inhibition of leukocyte MR may contribute to the protective effects of MR antagonist drugs in cardiovascular patients. Further understanding of the role of MR in leukocyte function could yield novel drug targets for cardiovascular disease. PMID:24769248

  9. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking

    PubMed Central

    Conniot, João; Silva, Joana M.; Fernandes, Joana G.; Silva, Liana C.; Gaspar, Rogério; Brocchini, Steve; Florindo, Helena F.; Barata, Teresa S.

    2014-01-01

    Cancer is one of the most common diseases afflicting people globally. New therapeutic approaches are needed due to the complexity of cancer as a disease. Many current treatments are very toxic and have modest efficacy at best. Increased understanding of tumor biology and immunology has allowed the development of specific immunotherapies with minimal toxicity. It is important to highlight the performance of monoclonal antibodies, immune adjuvants, vaccines and cell-based treatments. Although these approaches have shown varying degrees of clinical efficacy, they illustrate the potential to develop new strategies. Targeted immunotherapy is being explored to overcome the heterogeneity of malignant cells and the immune suppression induced by both the tumor and its microenvironment. Nanodelivery strategies seek to minimize systemic exposure to target therapy to malignant tissue and cells. Intracellular penetration has been examined through the use of functionalized particulates. These nano-particulate associated medicines are being developed for use in imaging, diagnostics and cancer targeting. Although nano-particulates are inherently complex medicines, the ability to confer, at least in principle, different types of functionality allows for the plausible consideration these nanodelivery strategies can be exploited for use as combination medicines. The development of targeted nanodelivery systems in which therapeutic and imaging agents are merged into a single platform is an attractive strategy. Currently, several nanoplatform-based formulations, such as polymeric nanoparticles, micelles, liposomes and dendrimers are in preclinical and clinical stages of development. Herein, nanodelivery strategies presently investigated for cancer immunotherapy, cancer targeting mechanisms and nanocarrier functionalization methods will be described. We also intend to discuss the emerging nano-based approaches suitable to be used as imaging techniques and as cancer treatment options

  10. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking

    NASA Astrophysics Data System (ADS)

    Conniot, João; Silva, Joana; Fernandes, Joana; Silva, Liana; Gaspar, Rogério; Brocchini, Steve; Florindo, Helena; Barata, Teresa

    2014-11-01

    Cancer is one of the most common diseases afflicting people globally. New therapeutic approaches are needed due to the complexity of cancer as a disease. Many current treatments are very toxic and have modest efficacy at best. Increased understanding of tumor biology and immunology has allowed the development of specific immunotherapies with minimal toxicity. It is important to highlight the performance of monoclonal antibodies, immune adjuvants, vaccines and cell-based treatments. Although these approaches have shown varying degrees of clinical efficacy, they illustrate the potential to develop new strategies. Targeted immunotherapy is being explored to overcome the heterogeneity of malignant cells and the immune suppression induced by both the tumor and its microenvironment. Nanodelivery strategies seek to minimize systemic exposure to target therapy to malignant tissue and cells. Intracellular penetration has been examined through the use of functionalized particulates. These nano-particulate associated medicines are being developed for use in imaging, diagnostics and cancer targeting. Although nano-particulates are inherently complex medicines, the ability to confer, at least in principle, different types of functionality allows for the plausible consideration these nanodelivery strategies can be exploited for use as combination medicines. The development of targeted nanodelivery systems in which therapeutic and imaging agents are merged into a single platform is an attractive strategy. Currently, several nanoplatform-based formulations, such as polymeric nanoparticles, micelles, liposomes and dendrimers are in preclinical and clinical stages of development. Herein, nanodelivery strategies presently investigated for cancer immunotherapy, cancer targeting mechanisms and nanocarrier functionalization methods will be described. We also intend to discuss the emerging nano-based approaches suitable to be used as imaging techniques and as cancer treatment options.

  11. Vaccination with vascular progenitor cells derived from induced pluripotent stem cells elicits antitumor immunity targeting vascular and tumor cells.

    PubMed

    Koido, Shigeo; Ito, Masaki; Sagawa, Yukiko; Okamoto, Masato; Hayashi, Kazumi; Nagasaki, Eijiro; Kan, Shin; Komita, Hideo; Kamata, Yuko; Homma, Sadamu

    2014-05-01

    Vaccination of BALB/c mice with dendritic cells (DCs) loaded with the lysate of induced vascular progenitor (iVP) cells derived from murine-induced pluripotent stem (iPS) cells significantly suppressed the tumor of CMS-4 fibrosarcomas and prolonged the survival of CMS-4-inoculated mice. This prophylactic antitumor activity was more potent than that of immunization with DCs loaded with iPS cells or CMS-4 tumor cells. Tumors developed slowly in mice vaccinated with DCs loaded with iVP cells (DC/iVP) and exhibited a limited vascular bed. Immunohistochemistry and a tomato-lectin perfusion study demonstrated that the tumors that developed in the iVP-immunized mice showed a marked decrease in tumor vasculature. Immunization with DC/iVP induced a potent suppressive effect on vascular-rich CMS-4 tumors, a weaker effect on BNL tumors with moderate vasculature, and nearly no effect on C26 tumors with poor vasculature. Treatment of DC/iVP-immunized mice with a monoclonal antibody against CD4 or CD8, but not anti-asialo GM1, inhibited the antitumor activity. CD8(+) T cells from DC/iVP-vaccinated mice showed significant cytotoxic activity against murine endothelial cells and CMS-4 cells, whereas CD8(+) T cells from DC/iPS-vaccinated mice did not. DNA microarray analysis showed that the products of 29 vasculature-associated genes shared between genes upregulated by differentiation from iPS cells into iVP cells and genes shared by iVP cells and isolated Flk-1(+) vascular cells in CMS-4 tumor tissue might be possible targets in the immune response. These results suggest that iVP cells from iPS cells could be used as a cancer vaccine targeting tumor vascular cells and tumor cells. PMID:24627093

  12. Dynamic changes in immune cell profile in head and neck squamous cell carcinoma: Immunomodulatory effects of chemotherapy.

    PubMed

    Takahashi, Hideyuki; Sakakura, Koichi; Mito, Ikko; Ida, Shota; Chikamatsu, Kazuaki

    2016-08-01

    Tumor cells have evolved sophisticated means of escape from the host immune system. To date, several important immunological phenomena have been revealed in peripheral blood as well as within tumors. In the present study, we first investigated the proportion and activation status of peripheral immune regulatory cells and CD8(+) T-cell subsets in patients with head and neck squamous cell carcinoma (HNSCC) using a multicolor flow cytometer, and then evaluated how therapy with docetaxel, cisplatin, and 5-fluorouracil modulated the immune cell profile in peripheral blood. The proportion of naïve T cells was lower and that of effector memory T cells (TEM ) was higher in HNSCC patients than in healthy donors. Moreover, the proportions of activated TEM cells and effector T cells (TEFF ) were dramatically increased in patients with advanced stage disease. The proportion of regulatory T cells and CD14(+) HLA-DR(-) myeloid-derived suppressor cells was elevated in HNSCC patients. Of note, after therapy, in addition to the transient reduction in immune regulatory cells, decreases in central memory T cells and increases in TEFF cells were observed among CD8(+) T-cell subsets, suggesting differentiation from central memory T cells into TEFF cells. Our results suggested that, despite the immunosuppressive status in HNSCC patients, tumor-specific immune responses mediated by CD8(+) T cells might be induced and maintained. Moreover, chemotherapy can trigger not only a transient reduction in immune regulatory cells but also further activation of CD8(+) T cells. PMID:27228557

  13. Skewed B cell differentiation affects lymphoid organogenesis but not T cell-mediated autoimmunity.

    PubMed

    Colombo, E; Tentorio, P; Musio, S; Rajewsky, K; Pedotti, R; Casola, S; Farina, C

    2014-04-01

    B cell receptor (BCR) signalling determines B cell differentiation and may potentially alter T cell-mediated immune responses. In this study we used two transgenic strains of BCR-deficient mice expressing Epstein-Barr virus latent membrane protein (LMP)2A in B cells, where either follicular and marginal zone differentiation (D(H)LMP2A mice) or B-1 cell development (V(H)LMP2A mice) were supported, and evaluated the effects of skewed B lymphocyte differentiation on lymphoid organogenesis and T cell responses in vivo. Compared to wild-type animals, both transgenic strains displayed alterations in the composition of lymphoid organs and in the dynamics of distinct immune cell subsets following immunization with the self-antigen PLP₁₈₅₋₂₀₆. However, ex-vivo T cell proliferation to PLP₁₈₅₋₂₀₆ peptide measured in immunized D(H)LMP2A and V(H)LMP2A mice was similar to that detected in immunized control mice. Further, clinical expression of experimental autoimmune encephalitis in both LMP2A strains was identical to that of wild-type mice. In conclusion, mice with skewed B cell differentiation driven by LMP2A expression in BCR-negative B cells do not show changes in the development of a T cell mediated disease model of autoimmunity, suggesting that compensatory mechanisms support the generation of T cell responses. PMID:24325711

  14. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4⁺ T cells.

    PubMed

    Arbore, Giuseppina; West, Erin E; Spolski, Rosanne; Robertson, Avril A B; Klos, Andreas; Rheinheimer, Claudia; Dutow, Pavel; Woodruff, Trent M; Yu, Zu Xi; O'Neill, Luke A; Coll, Rebecca C; Sher, Alan; Leonard, Warren J; Köhl, Jörg; Monk, Pete; Cooper, Matthew A; Arno, Matthew; Afzali, Behdad; Lachmann, Helen J; Cope, Andrew P; Mayer-Barber, Katrin D; Kemper, Claudia

    2016-06-17

    The NLRP3 inflammasome controls interleukin-1β maturation in antigen-presenting cells, but a direct role for NLRP3 in human adaptive immune cells has not been described. We found that the NLRP3 inflammasome assembles in human CD4(+) T cells and initiates caspase-1-dependent interleukin-1β secretion, thereby promoting interferon-γ production and T helper 1 (T(H)1) differentiation in an autocrine fashion. NLRP3 assembly requires intracellular C5 activation and stimulation of C5a receptor 1 (C5aR1), which is negatively regulated by surface-expressed C5aR2. Aberrant NLRP3 activity in T cells affects inflammatory responses in human autoinflammatory disease and in mouse models of inflammation and infection. Our results demonstrate that NLRP3 inflammasome activity is not confined to "innate immune cells" but is an integral component of normal adaptive T(H)1 responses. PMID:27313051

  15. Cell death, clearance and immunity in the skeletal muscle.

    PubMed

    Sciorati, C; Rigamonti, E; Manfredi, A A; Rovere-Querini, P

    2016-06-01

    accumulation and promoting autoimmunity itself. There is strong promise for novel treatments based on new knowledge of cell death, clearance and immunity in the muscle. PMID:26868912

  16. Nitrated Alpha Synuclein Induced Alterations in Microglial Immunity is Regulated by CD4+ T Cell Subsets1

    PubMed Central

    Reynolds, Ashley D.; Stone, David K.; Mosley, R. Lee; Gendelman, Howard E.

    2009-01-01

    Microglial inflammatory neuroregulatory activities affect the tempo of nigrostriatal degeneration during Parkinson's disease (PD). Such activities are induced, in part, by misfolded, nitrated alpha-synuclein (N-α-syn) within Lewy bodies released from dying or dead dopaminergic neurons. Such pathobiologic events initiate innate and adaptive immune responses affecting neurodegeneration. We posit that the neurobiological activities of activated microglia are affected by cell-protein and cell-cell contacts, in that microglial interactions with N-α-syn and CD4+ T cells substantively alter the microglial proteome. This leads to alterations in cell homeostatic functions and disease. CD4+CD25+ regulatory T cells (Treg) suppress N-α-syn microglial induced reactive oxygen species and nuclear factor kappa B activation by modulating redox-active enzymes, cell migration, phagocytosis, and bioenergetic protein expression and cell function. In contrast, CD4+CD25− effector T cells exacerbate microglial inflammation and induce “putative” neurotoxic responses. These data support the importance of adaptive immunity in the regulation of PD-associated microglial inflammation. PMID:19299711

  17. Lymphocytes in non-immune inflammation: a specific subclass of lymphoid cells?

    PubMed Central

    Leme, J. G.; Verissimo de Mello, S. B.; Falcao, R. P.; Rocha, J. R.

    1981-01-01

    Rats were subjected to various experimental procedures which affected lymphocyte numbers, in an attempt to investigate the participation of individual subpopulations of these cells in the development of acute, non-immune inflammation. Deficient T function, as evidenced in neonatally thymectomized animals, or in 6-week-old animals thymectomized and afterwards exposed to multiple total-body X-ray irradiations, did not interfere with the development of the acute inflammatory responses of the animals to carrageenin. In the former circumstance, the numbers of circulating B lymphocytes, identified by the presence of surface immunoglobulins, were increased. In thymectomized and irradiated rats, the B-lymphocyte subpopulation was reduced. Circumstances causing attenuated inflammatory reactions to carrageenin resulted, first, from lymphocyte depletion by chronic drainage from the thoracic duct and, second, from irradiation of the animals with a single large dose of X-ray, the animals being tested 24 h after irradiation. B lymphocytes in blood remained within the normal range after chronic lymphatic drainage, but a large dose of X-ray markedly reduced their number. In both cases the attenuation of the responses to carrageenin did not seem to be associated with nonspecific hyporeactivity, or with the effect of the treatments on the other blood cells, It is suggested that the development of acute, non-immune inflammation is influenced by lymphoid cells which might constitute a specific subclass of cells, distinct from fully differentiated T and B lymphocytes. PMID:7236499

  18. A distinct plasmablast and naïve B-cell phenotype in primary immune thrombocytopenia

    PubMed Central

    Flint, Shaun M.; Gibson, Adele; Lucas, Geoff; Nandigam, Raghava; Taylor, Louise; Provan, Drew; Newland, Adrian C.; Savage, Caroline O.; Henderson, Robert B.

    2016-01-01

    Primary immune thrombocytopenia is an autoimmune disorder in which platelet destruction is a consequence of both B- and T-cell dysregulation. Flow cytometry was used to further characterize the B- and T-cell compartments in a cross-sectional cohort of 26 immune thrombocytopenia patients including antiplatelet antibody positive (n=14) and negative (n=12) patients exposed to a range of therapies, and a cohort of matched healthy volunteers. Markers for B-cell activating factor and its receptors, relevant B-cell activation markers (CD95 and CD21) and markers for CD4+ T-cell subsets, including circulating T-follicular helper-like cells, were included. Our results indicate that an expanded population of CD95+ naïve B cells correlated with disease activity in immune thrombocytopenia patients regardless of treatment status. A population of CD21-naïve B cells was specifically expanded in autoantibody-positive immune thrombocytopenia patients. Furthermore, the B-cell maturation antigen, a receptor for B-cell activating factor, was consistently and strongly up-regulated on plasmablasts from immune thrombocytopenia patients. These observations have parallels in other autoantibody-mediated diseases and suggest that loss of peripheral tolerance in naïve B cells may be an important component of immune thrombocytopenia pathogenesis. Moreover, the B-cell maturation antigen represents a potential target for plasma cell directed therapies in immune thrombocytopenia. PMID:26969086

  19. VHL-dependent alterations in the secretome of renal cell carcinoma: Association with immune cell response?

    PubMed

    Stehle, Franziska; Leisz, Sandra; Schulz, Kristin; Schwurack, Nicolle; Weber, Nico; Massa, Chiara; Kalich, Jana; Fahldieck, Corinna; Seliger, Barbara

    2015-12-22

    Secreted proteins could modulate the interaction between tumor, stroma and immune cells within the tumor microenvironment thereby mounting an immunosuppressive tumor microenvironment. In order to determine the secretome-mediated, von Hippel Lindau (VHL)-regulated cross-talk between tumor cells and T lymphocytes peripheral blood mononuclear cells (PBMC) from healthy donors were either cultured in conditioned media obtained from normoxic and hypoxic human VHL-deficient renal cell carcinoma (RCC) cell line (786-0VHL-) and its wild type (wt) VHL-transfected counterpart (786-0VHL+) or directly co-cultured with both cell lines. An increased T cell proliferation was detected in the presence of 786-0VHL+-conditioned medium. By applying a quantitative proteomic-based approach using differential gel electrophoresis followed by mass spectrometry fourteen proteins were identified to be differentially expressed within the secretome of 786-0VHL- cells when compared to that of 786-0VHL+ cells. All proteins identified were involved in multiple tumor-associated biological functions including immune responses. Functional studies on manganese superoxide dismutase 2 (MnSOD2) demonstrated that it was a regulator of T cell activation-induced oxidative signaling and cell death. Direct effects of soluble MnSOD2 on the growth properties and interleukin 2 (IL-2) secretion of T cells could be demonstrated underlining the critical role of extracellular MnSOD2 levels for T cell proliferation and activation. PMID:26486078

  20. A comparative study of colorimetric cell proliferation assays in immune cells.

    PubMed

    Koyanagi, Madoka; Kawakabe, So; Arimura, Yutaka

    2016-08-01

    Cell proliferation assays are basic and essential techniques for assessing cellular function. Various colorimetric assays, such as MTT-, WST-1-, and resazurin-based assays, are available; however, studies directly comparing the suitability of each method for immune cell proliferation are scarce. Thus, we aimed to determine the best reagent and its optimal conditions based on variables such as cell number range, stimulation dose, kinetics, and compatibility with the cell division assay using CFSE fluorescence dye which is able to directly monitor divided cells by flow cytometry. In the absence of stimulation, MTT solubilized with SDS (MTT-SDS) and resazurin appeared to accurately reflect the cell numbers in a linear fashion. On the other hand, WST-1 exhibited a higher stimulation index following strong stimulation, whereas MTT-SDS and resazurin exhibited a better sensitivity to weak stimulation. A longer duration for stimulation did not necessarily increase sensitivity. CFSE staining revealed incremental cell division in response to anti-CD3 antibody stimulation in a dose-dependent manner. The cell numbers indirectly estimated from cell division profiles were consistent with the dose-response curve in the absorbance of MTT-SDS and resazurin. The absorbance does not increase before cell division, irrespective of T cell activation status, suggesting that these reagents reflect the cell number but not the cellular volume. Collectively, resazurin and MTT-SDS seem to be more reliable than others, and thus appear applicable in various conditions for the immune cell experiments. PMID:26280992

  1. VHL-dependent alterations in the secretome of renal cell carcinoma: Association with immune cell response?

    PubMed Central

    Stehle, Franziska; Leisz, Sandra; Schulz, Kristin; Schwurack, Nicolle; Weber, Nico; Massa, Chiara; Kalich, Jana; Fahldieck, Corinna; Seliger, Barbara

    2015-01-01

    Secreted proteins could modulate the interaction between tumor, stroma and immune cells within the tumor microenvironment thereby mounting an immunosuppressive tumor microenvironment. In order to determine the secretome-mediated, von Hippel Lindau (VHL)-regulated cross-talk between tumor cells and T lymphocytes peripheral blood mononuclear cells (PBMC) from healthy donors were either cultured in conditioned media obtained from normoxic and hypoxic human VHL-deficient renal cell carcinoma (RCC) cell line (786-0VHL−) and its wild type (wt) VHL-transfected counterpart (786-0VHL+) or directly co-cultured with both cell lines. An increased T cell proliferation was detected in the presence of 786-0VHL+-conditioned medium. By applying a quantitative proteomic-based approach using differential gel electrophoresis followed by mass spectrometry fourteen proteins were identified to be differentially expressed within the secretome of 786-0VHL− cells when compared to that of 786-0VHL+ cells. All proteins identified were involved in multiple tumor-associated biological functions including immune responses. Functional studies on manganese superoxide dismutase 2 (MnSOD2) demonstrated that it was a regulator of T cell activation-induced oxidative signaling and cell death. Direct effects of soluble MnSOD2 on the growth properties and interleukin 2 (IL-2) secretion of T cells could be demonstrated underlining the critical role of extracellular MnSOD2 levels for T cell proliferation and activation. PMID:26486078

  2. Enterococcus faecium NCIMB 10415 supplementation affects intestinal immune-associated gene expression in post-weaning piglets.

    PubMed

    Siepert, Bianca; Reinhardt, Nicole; Kreuzer, Susanne; Bondzio, Angelika; Twardziok, Sven; Brockmann, Gudrun; Nöckler, Karsten; Szabó, Istvan; Janczyk, Pawel; Pieper, Robert; Tedin, Karsten

    2014-01-15

    In a Salmonella challenge study of weaned piglets supplemented with the probiotic Enterococcus faecium NCIMB 10415 (SF68), we observed a delayed, post-infection proliferative response of purified blood mononuclear cell fractions towards Salmonella antigens. In order to clarify this observation, we examined the patterns of immune-associated gene expression in long-term feeding trials of both pre- and post-weaning piglets. Piglets supplemented with E. faecium NCIMB 10415 showed a post-weaning dysregulation in the expression patterns of both pro- and anti-inflammatory cytokine expression in intestinal tissues and spleen. Piglets of the supplemented group showed significantly reduced levels of IL-8, IL-10 and the co-stimulatory molecule CD86 mRNA expression in ileal Peyer's patches. The expression of CTLA4, an inhibitor of T-cell activation/proliferation, showed similar levels of expression in all tissues examined, particularly in ileal Peyer's patches post-weaning where IL-8, IL-10 and CD86 transcript levels were significantly reduced relative to control animals. Blood serum cytokine protein levels showed elevated TGFβ in pre-weaning piglets which, together with IL-6, may have suppressed IFNγ production in the probiotic-fed animals. In a second Salmonella challenge study, post-weaning, E. faecium-fed animals showed significantly elevated levels of IL-8 gene expression in mesenteric lymph nodes, but reduced levels in the spleen. At early times post-infection, the probiotic-fed group showed similar levels of IL-10, CD86 and CTLA4 mRNA expression as the control animals in intestinal Peyer's Patches, despite high relative levels of IL-8 expression in mesenteric lymph nodes. The sum of the observations suggests that supplementation of pre-weaning piglets with E. faecium affects intestinal immune-associated gene expression, which is aggravated post-weaning when the animals receive increased levels of the probiotic in feed. We suggest the post-weaning reductions in gene

  3. Allergen recognition by innate immune cells: critical role of dendritic and epithelial cells.

    PubMed

    Salazar, Fabián; Ghaemmaghami, Amir M

    2013-01-01

    Allergy is an exacerbated response of the immune system against non-self-proteins called allergens and is typically characterized by biased type-2 T helper cell and deleterious IgE mediated immune responses. The allergic cascade starts with the recognition of allergens by antigen presenting cells, mainly dendritic cells (DCs), leading to Th2 polarization, switching to IgE production by B cells, culminating in mast cell sensitization and triggering. DCs have been demonstrated to play a crucial role in orchestrating allergic diseases. Using different C-type lectin receptors DCs are able to recognize and internalize a number of allergens from diverse sources leading to sensitization. Furthermore, there is increasing evidence highlighting the role of epithelial cells in triggering and modulating immune responses to allergens. As well as providing a physical barrier, epithelial cells can interact with allergens and influence DCs behavior through the release of a number of Th2 promoting cytokines. In this review we will summarize current understanding of how allergens are recognized by DCs and epithelial cells and what are the consequences of such interaction in the context of allergic sensitization and downstream events leading to allergic inflammation. Better understanding of the molecular mechanisms of allergen recognition and associated signaling pathways could enable developing more effective therapeutic strategies that target the initial steps of allergic sensitization hence hindering development or progression of allergic diseases. PMID:24204367

  4. Ex vivo generation of functional immune cells by mitochondria-targeted photosensitization of cancer cells.

    PubMed

    Marrache, Sean; Tundup, Smanla; Harn, Donald A; Dhar, Shanta

    2015-01-01

    Stimulating the immune system for potent immune therapy against cancer is potentially a revolutionary method to eradicate cancer. Tumors stimulated with photosensitizers (PSs) not only kill cancer cells but also help to boost the immune system. We recently reported that tumor-associated antigens (TAAs) generated by delivery of a mitochondria-acting PS zinc phthalocyanine (ZnPc) to MCF-7 breast cancer cells followed by laser irradiation can lead to ex vivo stimulation of mouse bone marrow-derived dendritic cells (BMDCs). The antigens generated from the breast cancer cells were also found to cause significant DC maturation and the activated DCs were able to stimulate T cells to cytotoxic CD8(+) T cells. In this protocol, we describe methods to engineer a mitochondria-targeted biodegradable nanoparticle (NP) formulation, T-ZnPc-NPs for delivery of ZnPc to the mitochondria of MCF-7 cells, subsequent photodynamic therapy (PDT) using a long wavelength laser irradiation to produce TAAs, DC stimulation by the TAAs to secrete interferon-gamma (IFN-γ), and matured DC-driven T-cell activation. PMID:25634271

  5. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression.

    PubMed

    Pinton, Laura; Solito, Samantha; Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-12

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression. PMID:26700461

  6. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut.

    PubMed

    Howitt, Michael R; Lavoie, Sydney; Michaud, Monia; Blum, Arthur M; Tran, Sara V; Weinstock, Joel V; Gallini, Carey Ann; Redding, Kevin; Margolskee, Robert F; Osborne, Lisa C; Artis, David; Garrett, Wendy S

    2016-03-18

    The intestinal epithelium forms an essential barrier between a host and its microbiota. Protozoa and helminths are members of the gut microbiota of mammals, including humans, yet the many ways that gut epithelial cells orchestrate responses to these eukaryotes remain unclear. Here we show that tuft cells, which are taste-chemosensory epithelial cells, accumulate during parasite colonization and infection. Disruption of chemosensory signaling through the loss of TRMP5 abrogates the expansion of tuft cells, goblet cells, eosinophils, and type 2 innate lymphoid cells during parasite colonization. Tuft cells are the primary source of the parasite-induced cytokine interleukin-25, which indirectly induces tuft cell expansion by promoting interleukin-13 production by innate lymphoid cells. Our results identify intestinal tuft cells as critical sentinels in the gut epithelium that promote type 2 immunity in response to intestinal parasites. PMID:26847546

  7. Depressed cell-mediated immunity in coeliac disease.

    PubMed Central

    Scott, B B; Losowsky, M S

    1976-01-01

    Fourteen coeliac patients on a gluten free diet (GFD) and 10 on a normal diet were studied by lymphocyte transformation in response to PHA to assess the integrity of cell-mediated immunity (CMI). Transformation was depressed in the majority taking a normal diet, with improvement after a GFD. In some patients the depression may have been due to a serum factor, as transformation was more nearly normal when the lymphocytes were cultured in pooled AB serum than in their own serum. There was no correlation between transformation and nutritional deficiencies. Mantoux tests were performed in some of these and other coeliac patients and there was a very significant reduction in the incidence of positive tests compared with controls. These findings provide evidence of depressed CMI in coeliac patients taking a normal diet with improvement on a GFD and may be of relevance to the high risk of malignancy in coeliac disease, further strengthening the case for a strict GFD. PMID:1087262

  8. Nonspecific cell-mediated immunity in patients with epidermodysplasia verruciformis.

    PubMed

    Pereira de Oliveira, Walmar Roncalli; Carrasco, Solange; Neto, Cyro Festa; Rady, Peter; Tyring, Stephen K

    2003-03-01

    Epidermodysplasia verruciformis (EV) is a rare disease that usually begins in childhood and is characterized by a generalized infection by human papilloma virus (HPV), frequent associations with cutaneous carcinomas, and abnormalities of cell-mediated immunity (CMI). We studied nonspecific CMI in 13 patients with EV by bacterial skin tests, allergic reactions to dinitrochlorobenzene (DNCB), measurement of responses to phytohemagglutinin (PHA), and quantification of T lymphocytes and T lymphocytes subsets in peripheral blood. Impairment of CMI was manifested by the cutaneous anergy to a variety of common skin antigens and, by the reduction of the lymphocyte transformation to PHA. There were no correlation between the severity of cases and abnormalities of CMI in our patients, however; the impairment of CMI was lower in cases of short duration, suggesting that the impairment of CMI in EV might reflect a long period of disease. PMID:12692356

  9. Empowering gamma delta T cells with antitumor immunity by dendritic cell-based immunotherapy

    PubMed Central

    Van Acker, Heleen H; Anguille, Sébastien; Van Tendeloo, Viggo F; Lion, Eva

    2015-01-01

    Gamma delta (γδ) T cells are the all-rounders of our immune-system with their major histocompatibility complex-unrestricted cytotoxicity, capacity to secrete immunosti-mulatory cytokines and ability to promote the generation of tumor antigen-specific CD8+ and CD4+ T cell responses. Dendritic cell (DC)-based vaccine therapy has the prospective to harness these unique features of the γδ T cells in the fight against cancer. In this review, we will discuss our current knowledge on DC-mediated γδ T cell activation and related opportunities for tumor immunologists. PMID:26405575

  10. Colostral antibody-mediated and cell-mediated immunity contributes to innate and antigen-specific immunity in piglets.

    PubMed

    Bandrick, Meggan; Ariza-Nieto, Claudia; Baidoo, Samuel K; Molitor, Thomas W

    2014-03-01

    Immunoglobulins and immune cells are critical components of colostral immunity; however, their transfer to and function in the neonate, especially maternal lymphocytes, is unclear. Cell-mediated and antibody-mediated immunity in sow blood and colostrum and piglet blood before (PS) and after (AS) suckling were assessed to investigate transfer and function of maternal immunity in the piglet. CD4, CD8, and γδ lymphocytes were found in sow blood and colostrum and piglet blood PS and AS; each had a unique T lymphocyte profile. Immunoglobulins were detected in sow blood, colostrum, and in piglet blood AS; the immunoglobulin profile of piglet serum AS mimicked that of sow serum. These results suggest selectivity in lymphocyte concentration into colostrum and subsequent lymphocyte transfer into the neonate, but that immunoglobulin transfer is unimpeded. Assessment of colostral natural killer activity and antigen-specific proliferation revealed that colostral cells are capable of influencing the innate and specific immune response of neonatal pigs. PMID:24252519

  11. Autoimmune disease-associated variants of extracellular endoplasmic reticulum aminopeptidase 1 induce altered innate immune responses by human immune cells.

    PubMed

    Aldhamen, Yasser A; Pepelyayeva, Yuliya; Rastall, David P W; Seregin, Sergey S; Zervoudi, Efthalia; Koumantou, Despoina; Aylsworth, Charles F; Quiroga, Dionisia; Godbehere, Sarah; Georgiadis, Dimitris; Stratikos, Efstratios; Amalfitano, Andrea

    2015-01-01

    Endoplasmic reticulum aminopeptidase 1 (ERAP1) gene polymorphisms have been linked to several autoimmune diseases; however, the molecular mechanisms underlying these associations are not well understood. Recently, we demonstrated that ERAP1 regulates key aspects of the innate immune response. Previous studies show ERAP1 to be endoplasmic reticulum-localized and secreted during inflammation. Herein, we investigate the possible roles that ERAP1 polymorphic variants may have in modulating the innate immune responses of human peripheral blood mononuclear cells (hPBMCs) using two experimental methods: extracellular exposure of hPBMCs to ERAP1 variants and adenovirus (Ad)-based ERAP1 expression. We found that exposure of hPBMCs to ERAP1 variant proteins as well as ERAP1 overexpression by Ad5 vectors increased inflammatory cytokine and chemokine production, and enhanced immune cell activation. Investigating the molecular mechanisms behind these responses revealed that ERAP1 is able to activate innate immunity via multiple pathways, including the NLRP3 (NOD-like receptor, pyrin domain-containing 3) inflammasome. Importantly, these responses varied if autoimmune disease-associated variants of ERAP1 were examined in the assay systems. Unexpectedly, blocking ERAP1 cellular internalization augmented IL-1β production. To our knowledge, this is the first report identifying ERAP1 as being involved in modulating innate responses of human immune cells, a finding that may explain why ERAP1 has been genetically associated with several autoimmune diseases. PMID:25591727

  12. Lymph node trafficking of regulatory T cells is prerequisite for immune suppression.

    PubMed

    Huang, Miao-Tzu; Lin, Been-Ren; Liu, Wei-Liang; Lu, Chun-Wei; Chiang, Bor-Luen

    2016-04-01

    Regulatory T cells have a crucial role in health and disease because of their immune regulation function. However, the anatomic sites where regulatory T cells exert optimal immune regulation are open to debate. In our current study with the use of a shear-stress flow assay, we found that regulatory T cells exhibited significantly decreased adhesion to either activated endothelial monolayer or intercellular adhesion molecule 1 or E-selectin-coated surfaces compared with activated effector T cells. The less transmigration capacity of the regulatory T cells prompted our speculation of preferential lymph node localization for the regulatory T cells that endowed these cells with immune regulation function in the most efficient manner. To test this hypothesis, the role of lymph node localization in regulatory T cell-mediated immune suppression was evaluated with a footpad inflammation model. We found that adoptively transferred regulatory T cells inhibited the development of footpad inflammation. In addition, although blockage of CCR7 or CD62L had no effect on the immune suppressive function of the regulatory T cells per se, pretreatment of the regulatory T cells with either CCR7 or CD62L blocking antibodies prevented their recruitment into draining lymph nodes and concomitantly abrogated the immune suppressive effects of adoptively transferred regulatory T cells during footpad inflammation. Our data demonstrate the crucial role of lymph node localization in regulatory T cell-mediated immune suppression and suggest a probable hierarchy in the anatomic sites for optimal immune regulation. Elucidating the relationships between the transmigration characteristics of the regulatory T cells and their immune regulation function will provide insightful information for regulatory T cell-based cell therapy. PMID:26543091

  13. Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity

    PubMed Central

    Subramanian, Manikandan; Ozcan, Lale; Ghorpade, Devram Sampat; Ferrante, Anthony W.; Tabas, Ira

    2015-01-01

    Obesity-induced inflammation in visceral adipose tissue (VAT) is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT) inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis. PMID:26317499

  14. Isoform-specific targeting of ROCK proteins in immune cells

    PubMed Central

    Zanin-Zhorov, Alexandra; Flynn, Ryan; Waksal, Samuel D.; Blazar, Bruce R.

    2016-01-01

    ABSTRACT Rho-associated kinase 1 (ROCK1) and ROCK2 are activated by Rho GTPase and control cytoskeleton rearrangement through modulating the phosphorylation of their down-stream effector molecules. Although these 2 isoforms share more than 90% homology within their kinase domain the question of whether ROCK proteins function identically in different cell types is not clear. By using both pharmacological inhibition and genetic knockdown approaches recent studies suggest that the ROCK2 isoform plays an exclusive role in controlling of T-cell plasticity and macrophage polarization. Specifically, selective ROCK2 inhibition shifts the balance between pro-inflammatory and regulatory T-cell subsets via concurrent regulation of STAT3 and STAT5 phosphorylation, respectively. Furthermore, the administration of an orally available selective ROCK2 inhibitor effectively ameliorates clinical manifestations in experimental models of autoimmunity and chronic graft-vs.-host disease (cGVHD). Because ROCK2 inhibition results in the suppression of M2-type macrophages while favoring polarization of M1-type macrophages, ROCK2 inhibition can correct the macrophage imbalance seen during age-related macular degeneration (AMD). In summary, the exclusive role of ROCK2 in immune system modulation argues for the development and testing of isoform-specific ROCK2 inhibitors for the treatment of inflammatory disorders. PMID:27254302

  15. [Management of feto-maternal red cell allo-immunizations].

    PubMed

    Bricca, P; Guinchard, E; Guitton Bliem, C

    2011-04-01

    Feto-maternal red cell alloimmunization is defined by the presence in a pregnant woman of alloantibodies directed against blood group antigens present on the red blood cells of the fetus and inherited from the father. It arises from the immune response to a first contact to these same antigens during a prior transfusion, transplant or pregnancy. The placental transfer and the fixation of the antibodies on the fetal red cells antigenic targets lead to a haemolysis in the fetus and the newborn. The resulting haemolytic disease can show different clinical forms, from a mild anaemia with neonatal hyperbilirubinemia to a major fetal damage with stillbirth caused by hydrops fetalis. The objective of management strategies of feto-maternal alloimmunization is to detect and monitor maternal alloimmunization and to appreciate the effects on the fetus or the newborn. Since a few years, some new non-invasive techniques of surveillance are used, for instance fetal RHD genotyping on maternal plasma and evaluation of fetal anaemia through velocimetry measurement of the blood flow in the middle cerebral artery. The need for a careful postnatal surveillance has to be emphasized due to the neonatal anaemia, which can be prolonged, and to the resurgence of cases of severe neonatal icteruses recently reported by the Académie de Médecine. The policy of prevention of anti-RH1 alloimmunization should also benefit from the evolution of biological techniques by allowing an improved targeting of concerned women. PMID:21397546

  16. Sex differences in pain: a tale of two immune cells.

    PubMed

    Mapplebeck, Josiane C S; Beggs, Simon; Salter, Michael W

    2016-02-01

    Substantial evidence has implicated microglia in neuropathic pain. After peripheral nerve injury, microglia in the spinal cord proliferate and increase cell-surface expression of the purinergic receptor P2X4. Activation of P2X4 receptors results in release of brain-derived neurotrophic factor, which acts on neurons to produce disinhibition of dorsal horn neurons which transmit nociceptive information to the brain. Disinhibition of these neurons produces pain hypersensitivity, a hallmark symptom of neuropathic pain. However, elucidating this microglia-neuronal signalling pathway was based on studies using only male rodents. Recent evidence has shown that the role of microglia in pain is sexually dimorphic. Despite similar microglia proliferation in the dorsal horn in both sexes, females do not upregulate P2X4Rs and use a microglia-independent pathway to mediate pain hypersensitivity. Instead, adaptive immune cells, possibly T cells, may mediate pain hypersensitivity in female mice. This profound sex difference highlights the importance of including subjects of both sexes in preclinical pain research. PMID:26785152

  17. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells

    PubMed Central

    Horst, Andrea Kristina; Neumann, Katrin; Diehl, Linda; Tiegs, Gisa

    2016-01-01

    The liver is a tolerogenic organ with exquisite mechanisms of immune regulation that ensure upkeep of local and systemic immune tolerance to self and foreign antigens, but that is also able to mount effective immune responses against pathogens. The immune privilege of liver allografts was recognized first in pigs in spite of major histo-compatibility complex mismatch, and termed the “liver tolerance effect”. Furthermore, liver transplants are spontaneously accepted with only low-dose immunosuppression, and induce tolerance for non-hepatic co-transplanted allografts of the same donor. Although this immunotolerogenic environment is favorable in the setting of organ transplantation, it is detrimental in chronic infectious liver diseases like hepatitis B or C, malaria, schistosomiasis or tumorigenesis, leading to pathogen persistence and weak anti-tumor effects. The liver is a primary site of T-cell activation, but it elicits poor or incomplete activation of T cells, leading to their abortive activation, exhaustion, suppression of their effector function and early death. This is exploited by pathogens and can impair pathogen control and clearance or allow tumor growth. Hepatic priming of T cells is mediated by a number of local conventional and nonconventional antigen-presenting cells (APCs), which promote tolerance by immune deviation, induction of T-cell anergy or apoptosis, and generating and expanding regulatory T cells. This review will focus on the communication between classical and nonclassical APCs and lymphocytes in the liver in tolerance induction and will discuss recent insights into the role of innate lymphocytes in this process. PMID:27041638

  18. Targeting KIT on innate immune cells to enhance the antitumor activity of checkpoint inhibitors.

    PubMed

    Stahl, Maximilian; Gedrich, Richard; Peck, Ronald; LaVallee, Theresa; Eder, Joseph Paul

    2016-06-01

    Innate immune cells such as mast cells and myeloid-derived suppressor cells are key components of the tumor microenvironment. Recent evidence indicates that levels of myeloid-derived suppressor cells in melanoma patients are associated with poor survival to checkpoint inhibitors. This suggests that targeting both the innate and adaptive suppressive components of the immune system will maximize clinical benefit and elicit more durable responses in cancer patients. Preclinical data suggest that targeting signaling by the receptor tyrosine kinase KIT, particularly on mast cells, may modulate innate immune cell numbers and activity in tumors. Here, we review data highlighting the importance of the KIT signaling in regulating antitumor immune responses and the potential benefit of combining selective KIT inhibitors with immune checkpoint inhibitors. PMID:27349976

  19. Appearance of peripheral blood plasma cells and memory B cells in a primary and secondary immune response in humans

    PubMed Central

    Pulickal, Anoop S.; Jol-van der Zijde, Cornelia M.; Snape, Matthew D.; Pollard, Andrew J.

    2009-01-01

    In humans, the kinetics of the appearance of memory B cells and plasma cells during primary immunization are not well defined. In this study, we assessed the primary B-cell response of rabies-antigen naive volunteers during a 3-dose course of rabies vaccine compared with the B-cell response to a booster dose of rabies vaccine given to previously immunized volunteers. After a single dose of vaccine, in the naive group plasma and memory B cells appeared later (peak at day 10) than in the primed group (peak at day 7) and were at lower frequency. The most rapid responses (day 4) were detected after a third immunization in the naive group. This is the first study to document the detailed kinetics of the plasma cell and memory B-cell responses to immunization in adult humans and to demonstrate differences in the responses that relate to the preexisting immune status of the persons. PMID:19843885

  20. How Stem Cells Speak with Host Immune Cells in Inflammatory Brain Diseases

    PubMed Central

    Pluchino, Stefano; Cossetti, Chiara

    2014-01-01

    Advances in stem cell biology have raised great expectations that diseases and injuries of the central nervous system (CNS) may be ameliorated by the development of non-hematopoietic stem cell medicines. Yet, the application of adult stem cells as CNS therapeutics is challenging and the interpretation of some of the outcomes ambiguous. In fact, the initial idea that stem cell transplants work only via structural cell replacement has been challenged by the observation of consistent cellular signaling between the graft and the host. Cellular signaling is the foundation of coordinated actions and flexible responses, and arises via networks of exchanging and interacting molecules that transmit patterns of information between cells. Sustained stem cell graft-to-host communication leads to remarkable trophic effects on endogenous brain cells and beneficial modulatory actions on innate and adaptive immune responses in vivo, ultimately promoting the healing of the injured CNS. Among a number of adult stem cell types, mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs) are being extensively investigated for their ability to signal to the immune system upon transplantation in experimental CNS diseases. Here, we focus on the main cellular signaling pathways that grafted MSCs and NPCs use to establish a therapeutically relevant cross talk with host immune cells, while examining the role of inflammation in regulating some of the bidirectionality of these communications. We propose that the identification of the players involved in stem cell signaling might contribute to the development of innovative, high clinical impact therapeutics for inflammatory CNS diseases. PMID:23633288

  1. Epithelial immunization induces polyfunctional CD8+ T cells and optimal mousepox protection.

    PubMed

    Hersperger, Adam R; Siciliano, Nicholas A; DeHaven, Brian C; Snook, Adam E; Eisenlohr, Laurence C

    2014-08-01

    We assessed several routes of immunization with vaccinia virus (VACV) in protecting mice against ectromelia virus (ECTV). By a wide margin, skin scarification provided the greatest protection. Humoral immunity and resident-memory T cells notwithstanding, several approaches revealed that circulating, memory CD8(+) T cells primed via scarification were functionally superior and conferred enhanced virus control. Immunization via the epithelial route warrants further investigation, as it may also provide enhanced defense against other infectious agents. PMID:24899206

  2. Dietary polyunsaturated fatty acids from flaxseed affect immune responses of dairy sheep around parturition.

    PubMed

    Caroprese, Mariangela; Ciliberti, Maria Giovanna; Albenzio, Marzia; Annicchiarico, Giovanni; Sevi, Agostino

    2015-11-15

    The objective of the study was to characterize the immune profile of dairy ewes fed flaxseed, rich in polyunsaturated fatty acids (PUFA), around parturition. The hypothesis to be verified was that a physiological stressor, such as parturition, could be overcome with a nutritional manipulation in the diet of the animal in order to guarantee welfare of animals and to sustain their immune responses. Twenty Comisana ewes were divided in two groups (10 ewes/group), and fed a supplementation of whole flaxseed in the diet (FS group) or no supplementation (CON group). Blood samples were collected at parturition and then 7, 14, 21, 28, and 42 day post partum. Plasma samples were used to assess the humoral immune response after ovalbumin (OVA) immunization. At parturition, at 14 day, and 42 day post partum the level of plasma cytokines was assessed. The sheep showed a reduced responsiveness to OVA immunization. In FS ewes the IL-6 level remained unchanged until 14 day post partum and then significantly decreased from 14 day to 42 day post partum. IL-10 level was significantly higher in FS ewes than in CON ewes at 14 day. At parturition IL-1β level was significantly lower in FS ewes than in CON ewes and significantly decreased in both groups from parturition to 42 day. In conclusion, PUFA from flaxseed, as supplement in the diet of ewes around parturition can modulate sheep immune reactivity by influencing cytokine production. PMID:26347035

  3. Tasquinimod modulates tumor-infiltrating myeloid cells and improves the antitumor immune response to PD-L1 blockade in bladder cancer

    PubMed Central

    Nakhlé, Jessica; Pierron, Valérie; Bauchet, Anne-Laure; Plas, Pascale; Thiongane, Amath; Meyer-Losic, Florence; Schmidlin, Fabien

    2016-01-01

    ABSTRACT The infiltration of myeloid cells helps tumors to overcome immune surveillance and imparts resistance to cancer immunotherapy. Thus, strategies to modulate the effects of these immune cells may offer a potential therapeutic benefit. We report here that tasquinimod, a novel immunotherapy which targets S100A9 signaling, reduces the immunosuppressive properties of myeloid cells in preclinical models of bladder cancer (BCa). As single anticancer agent, tasquinimod treatment was effective in preventing early stage tumor growth, but did not achieve a clear antitumor effect in advanced tumors. Investigations of this response revealed that tasquinimod induces an increase in the expression of a negative regulator of T cell activation, Programmed-death-ligand 1 (PD-L1). This markedly weakens its antitumor immunity, yet provokes an “inflamed” milieu rendering tumors more prone to T cell-mediated immune attack by PD-L1 blockade. Interestingly, the combination of tasquinimod with an Anti-PD-L1 antibody enhanced the antitumor immune response in bladder tumors. This combination synergistically modulated tumor-infiltrating myeloid cells, thereby strongly affecting proliferation and activation of effector T cells. Together, our data provide insight into the rational combination of therapies that activate both innate and adaptive immune system, such as the association of S100A9-targeting agents with immune checkpoints inhibitors, to improve the response to cancer immunotherapeutic agents in BCa. PMID:27471612

  4. Immune Adaptation to Environmental Influence: The Case of NK Cells and HCMV.

    PubMed

    Rölle, Alexander; Brodin, Petter

    2016-03-01

    The immune system of an individual human is determined by heritable traits and a continuous process of adaptation to a broad variety of extrinsic, non-heritable factors such as viruses, bacteria, dietary components and more. Cytomegalovirus (CMV) successfully infects the majority of the human population and establishes latency, thereby exerting a life-long influence on the immune system of its host. CMV has been shown to influence the majority of immune parameters in healthy individuals. Here we focus on adaptive changes induced by CMV in subsets of Natural Killer (NK) cells, changes that question our very definition of adaptive and innate immunity by suggesting that adaptations of immune cells to environmental influences occur across the entire human immune system and not restricted to the classical adaptive branch of the immune system. PMID:26869205

  5. The 3 major types of innate and adaptive cell-mediated effector immunity.

    PubMed

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases. PMID:25528359

  6. Immune Restoration

    MedlinePlus

    ... marrow cells immune to HIV infection. Letting the immune system repair itself: CD4 counts have increased for many ... have taken ART. Some scientists believe that the immune system might be able to heal and repair itself ...

  7. Imaging tumour cell heterogeneity following cell transplantation into optically clear immune-deficient zebrafish

    PubMed Central

    Tang, Qin; Moore, John C.; Ignatius, Myron S.; Tenente, Inês M.; Hayes, Madeline N.; Garcia, Elaine G.; Torres Yordán, Nora; Bourque, Caitlin; He, Shuning; Blackburn, Jessica S.; Look, A. Thomas; Houvras, Yariv; Langenau, David M.

    2016-01-01

    Cancers contain a wide diversity of cell types that are defined by differentiation states, genetic mutations and altered epigenetic programmes that impart functional diversity to individual cells. Elevated tumour cell heterogeneity is linked with progression, therapy resistance and relapse. Yet, imaging of tumour cell heterogeneity and the hallmarks of cancer has been a technical and biological challenge. Here we develop optically clear immune-compromised rag2E450fs (casper) zebrafish for optimized cell transplantation and direct visualization of fluorescently labelled cancer cells at single-cell resolution. Tumour engraftment permits dynamic imaging of neovascularization, niche partitioning of tumour-propagating cells in embryonal rhabdomyosarcoma, emergence of clonal dominance in T-cell acute lymphoblastic leukaemia and tumour evolution resulting in elevated growth and metastasis in BRAFV600E-driven melanoma. Cell transplantation approaches using optically clear immune-compromised zebrafish provide unique opportunities to uncover biology underlying cancer and to dynamically visualize cancer processes at single-cell resolution in vivo. PMID:26790525

  8. Mast cells mediate the immune suppression induced by dermal exposure to JP-8 jet fuel.

    PubMed

    Limón-Flores, Alberto Y; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E

    2009-11-01

    Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell-mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel-induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell "knock-in mice") restored JP-8-induced immune suppression. When, however, mast cells from prostaglandin E(2) (PGE(2))-deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell-derived PGE(2) was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8-induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel-induced immune suppression. PMID:19726579

  9. Expression Profiling of Innate Immune Genes in Milk Somatic Cells During Subclinical Mastitis in Crossbred Dairy Cows.

    PubMed

    Karthikeyan, A; Radhika, G; Aravindhakshan, T V; Anilkumar, K

    2016-10-01

    Innate immune mechanism plays a key role in mammary defense, from recognition of pathogens to activation of nonspecific and specific immunity involved in elimination of pathogens. Expression profiles of innate immune response genes namely Toll like receptor 2 (TLR-2), Peptidoglycan recognition protein 1 (PGLYRP-1), Interleukin 8 receptor (IL-8 R), L-Selectin (SELL), and Osteopontin (OPN) in milk somatic cells of subclinical mastitis (SCM) affected crossbred cows were investigated under this study at transcript level using quantitative real time polymerase chain reaction (qRT-PCR). Dairy cows in mid lactation were screened for SCM using California Mastitis Test (CMT), Somatic Cell Count (SCC) and Electrical Conductivity test (EC). Based on results of SCM screening tests, crossbred cows were clustered into two groups with four Staphylococcus aureus infected SCM cows and four apparently healthy cows. The expressions levels of TLR-2, PGLYRP-1, IL-8 R, SELL, and OPN in milk somatic cells of SCM affected cows were significantly higher (p < 0.05) than healthy cows. These genes could be considered as candidate genes for innate immune response against S. aureus SCM infection. PMID:27565875

  10. Mesenchymal Stromal Cells Affect Disease Outcomes via Macrophage Polarization

    PubMed Central

    Zheng, Guoping; Ge, Menghua; Qiu, Guanguan; Shu, Qiang; Xu, Jianguo

    2015-01-01

    Mesenchymal stromal cells (MSCs) are multipotent and self-renewable cells that reside in almost all postnatal tissues. In recent years, many studies have reported the effect of MSCs on the innate and adaptive immune systems. MSCs regulate the proliferation, activation, and effector function of T lymphocytes, professional antigen presenting cells (dendritic cells, macrophages, and B lymphocytes), and NK cells via direct cell-to-cell contact or production of soluble factors including indoleamine 2,3-dioxygenase, prostaglandin E2, tumor necrosis factor-α stimulated gene/protein 6, nitric oxide, and IL-10. MSCs are also able to reprogram macrophages from a proinflammatory M1 phenotype toward an anti-inflammatory M2 phenotype capable of regulating immune response. Because of their capacity for differentiation and immunomodulation, MSCs have been used in many preclinical and clinical studies as possible new therapeutic agents for the treatment of autoimmune, degenerative, and inflammatory diseases. In this review, we discuss the central role of MSCs in macrophage polarization and outcomes of diseases such as wound healing, brain/spinal cord injuries, and diseases of heart, lung, and kidney in animal models. PMID:26257791

  11. Mesenchymal Stromal Cells Affect Disease Outcomes via Macrophage Polarization.

    PubMed

    Zheng, Guoping; Ge, Menghua; Qiu, Guanguan; Shu, Qiang; Xu, Jianguo

    2015-01-01

    Mesenchymal stromal cells (MSCs) are multipotent and self-renewable cells that reside in almost all postnatal tissues. In recent years, many studies have reported the effect of MSCs on the innate and adaptive immune systems. MSCs regulate the proliferation, activation, and effector function of T lymphocytes, professional antigen presenting cells (dendritic cells, macrophages, and B lymphocytes), and NK cells via direct cell-to-cell contact or production of soluble factors including indoleamine 2,3-dioxygenase, prostaglandin E2, tumor necrosis factor-α stimulated gene/protein 6, nitric oxide, and IL-10. MSCs are also able to reprogram macrophages from a proinflammatory M1 phenotype toward an anti-inflammatory M2 phenotype capable of regulating immune response. Because of their capacity for differentiation and immunomodulation, MSCs have been used in many preclinical and clinical studies as possible new therapeutic agents for the treatment of autoimmune, degenerative, and inflammatory diseases. In this review, we discuss the central role of MSCs in macrophage polarization and outcomes of diseases such as wound healing, brain/spinal cord injuries, and diseases of heart, lung, and kidney in animal models. PMID:26257791

  12. Tetraspanin-3 regulates protective immunity against Eimera tenella infection following immunization with dendritic cell-derived exosomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of immunization with dendritic cell (DC) exosomes, which had been incubated or non-incubated with an anti-tetraspanin-3 (Tspan-3) blocking antibody (Ab), were studied using an experimental model of Eimeria tenella avian coccidiosis. Purified exosomes from cecal tonsil and splenic DCs exp...

  13. Toxicological studies of semiconductor quantum dots on immune cells.

    SciTech Connect

    Ricken, James Bryce; Rios, Lynette; Poschet, Jens Fredrich; Bachand, Marlene; Bachand, George David; Greene, Adrienne Celeste; Carroll-Portillo, Amanda

    2008-11-01

    Nanoengineered materials hold a vast promise of enabling revolutionary technologies, but also pose an emerging and potentially serious threat to human and environmental health. While there is increasing knowledge concerning the risks posed by engineered nanomaterials, significant inconsistencies exist within the current data based on the high degree of variability in the materials (e.g., synthesis method, coatings, etc) and biological test systems (e.g., cell lines, whole organism, etc). In this project, we evaluated the uptake and response of two immune cell lines (RAW macrophage and RBL mast cells) to nanocrystal quantum dots (Qdots) with different sizes and surface chemistries, and at different concentrations. The basic experimental design followed a 2 x 2 x 3 factorial model: two Qdot sizes (Qdot 520 and 620), two surface chemistries (amine 'NH{sub 2}' and carboxylic acid 'COOH'), and three concentrations (0, 1 nM, and 1 {micro}M). Based on this design, the following Qdots from Evident Technologies were used for all experiments: Qdot 520-COOH, Qdot 520-NH{sub 2}, Qdot 620-COOH, and Qdot 620-NH{sub 2}. Fluorescence and confocal imaging demonstrated that Qdot 620-COOH and Qdot 620-NH{sub 2} nanoparticles had a greater level of internalization and cell membrane association in RAW and RBL cells, respectively. From these data, a two-way interaction between Qdot size and concentration was observed in relation to the level of cellular uptake in RAW cells, and association with RBL cell membranes. Toxicity of both RBL and RAW cells was also significantly dependent on the interaction of Qdot size and concentration; the 1 {micro}M concentrations of the larger, Qdot 620 nanoparticles induced a greater toxic effect on both cell lines. The RBL data also demonstrate that Qdot exposure can induce significant toxicity independent of cellular uptake. A significant increase in TNF-{alpha} and decrease in IL-10 release was observed in RAW cells, and suggested that Qdot exposure

  14. Human Immunodeficiency Syndromes Affecting Human Natural Killer Cell Cytolytic Activity

    PubMed Central

    Ham, Hyoungjun; Billadeau, Daniel D.

    2013-01-01

    Natural killer (NK) cells are lymphocytes of the innate immune system that secrete cytokines upon activation and mediate the killing of tumor cells and virus-infected cells, especially those that escape the adaptive T cell response caused by the down regulation of MHC-I. The induction of cytotoxicity requires that NK cells contact target cells through adhesion receptors, and initiate activation signaling leading to increased adhesion and accumulation of F-actin at the NK cell cytotoxic synapse. Concurrently, lytic granules undergo minus-end directed movement and accumulate at the microtubule-organizing center through the interaction with microtubule motor proteins, followed by polarization of the lethal cargo toward the target cell. Ultimately, myosin-dependent movement of the lytic granules toward the NK cell plasma membrane through F-actin channels, along with soluble N-ethylmaleimide-sensitive factor attachment protein receptor-dependent fusion, promotes the release of the lytic granule contents into the cleft between the NK cell and target cell resulting in target cell killing. Herein, we will discuss several disease-causing mutations in primary immunodeficiency syndromes and how they impact NK cell-mediated killing by disrupting distinct steps of this tightly regulated process. PMID:24478771

  15. Agonistic Anti-TIGIT Treatment Inhibits T Cell Responses in LDLr Deficient Mice without Affecting Atherosclerotic Lesion Development

    PubMed Central

    Foks, Amanda C.; Ran, Ingrid A.; Frodermann, Vanessa; Bot, Ilze; van Santbrink, Peter J.; Kuiper, Johan; van Puijvelde, Gijs H. M.

    2013-01-01

    Objective Co-stimulatory and co-inhibitory molecules are mainly expressed on T cells and antigen presenting cells and strongly orchestrate adaptive immune responses. Whereas co-stimulatory molecules enhance immune responses, signaling via co-inhibitory molecules dampens the immune system, thereby showing great therapeutic potential to prevent cardiovascular diseases. Signaling via co-inhibitory T cell immunoglobulin and ITIM domain (TIGIT) directly inhibits T cell activation and proliferation, and therefore represents a novel therapeutic candidate to specifically dampen pro-atherogenic T cell reactivity. In the present study, we used an agonistic anti-TIGIT antibody to determine the effect of excessive TIGIT-signaling on atherosclerosis. Methods and Results TIGIT was upregulated on CD4+ T cells isolated from mice fed a Western-type diet in comparison with mice fed a chow diet. Agonistic anti-TIGIT suppressed T cell activation and proliferation both in vitro and in vivo. However, agonistic anti-TIGIT treatment of LDLr−/− mice fed a Western-type diet for 4 or 8 weeks did not affect atherosclerotic lesion development in comparison with PBS and Armenian Hamster IgG treatment. Furthermore, elevated percentages of dendritic cells were observed in the blood and spleen of agonistic anti-TIGIT-treated mice. Additionally, these cells showed an increased activation status but decreased IL-10 production. Conclusions Despite the inhibition of splenic T cell responses, agonistic anti-TIGIT treatment does not affect initial atherosclerosis development, possibly due to increased activity of dendritic cells. PMID:24376654

  16. Interleukin 2 expression by tumor cells alters both the immune response and the tumor microenvironment.

    PubMed

    Lee, J; Fenton, B M; Koch, C J; Frelinger, J G; Lord, E M

    1998-04-01

    Microenvironmental conditions within solid tumors can have marked effects on the growth of the tumors and their response to therapies. The disorganized growth of tumors and their attendant vascular systems tends to result in areas of the tumors that are deficient in oxygen (hypoxic). Cells within these hypoxic areas are more resistant to conventional therapies such as radiation and chemotherapy. Here, we examine the hypoxic state of EMT6 mouse mammary tumors and the location of host cells within the different areas of the tumors to determine whether such microenvironmental conditions might also affect their ability to be recognized by the immune system. Hypoxia within tumors was quantified by flow cytometry and visualized by immunohistochemistry using a monoclonal antibody (ELK3-51) against cellular adducts of 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)acetam ide (EF5), a nitroimidazole compound that binds selectively to hypoxic cells. Thy-1+ cells, quantified using a monoclonal antibody, were found only in the well-oxygenated areas. The location of these Thy-1+ cells was also examined in EMT6 tumors that had been transfected with the gene for interleukin-2 (IL-2) because these tumors contain greatly increased numbers of host cells. Surprisingly, we found that IL-2-transfected tumors had significantly decreased hypoxia compared to parental tumors. Furthermore, using the fluorescent dye Hoechst 33342, an in vivo marker of perfused vessels, combined with immunochemical staining of PECAM-1 (CD31) as a marker of tumor vasculature, we found increased vascularization in the IL-2-transfected tumors. Thus, expression of IL-2 at the site of tumor growth may enhance tumor immunity not only by inducing the generation of tumor-reactive CTLs but also by allowing increased infiltration of activated T cells into the tumors. PMID:9537251

  17. Cell-Mediated Immune Function and Cytokine Regulation During Space Flight

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    The changes in immune function which occur during space flight potentially expose the crews to an increased risk for development of illness. Decreased cellular immune function has been repeatedly documented after space flight and confirmed during flight by in vivo delayed-type hypersensitivity testing. However, correlation of immune changes with a clinically significant risk factor has not yet been performed. Our hypothesis is that space flight induces a decrease in cell-mediated immune function accompanied by a shift from a type 1 cytokine pattern (favoring cell-mediated immunity) to a type 2 cytokine pattern (favoring humoral immunity). We further hypothesize that reactivation of latent viruses will occur during space flight in association with the decreased cellular immunity. To test these hypotheses, we will determine the effects of space flight on cell-mediated immunity and viral reactivation. We will utilize delayed-type hypersensitivity testing as an in vivo measure of integrated cell-mediated immune function. The production of cytokines and immunoregulatory factors by lymphocytes and monocytes will be measured to determine whether changes in cytokine patterns are associated with the space flight-induced immune dysregulation. Correlation of antigen-specific immune changes with reactivation of latent herpes viruses will be determined by measuring peripheral levels of viral (CMV, VZV, EBV) antigen-specific T cells and comparing to the levels of EBV-infected B-cells by fluorescence in situ hybridization and flow cytometry. A comparison of cell-mediated immune function, cytokine regulation and viral reactivation will provide new insights into crew member health risks during flight.