Science.gov

Sample records for affect local weather

  1. Whether weather affects music

    NASA Astrophysics Data System (ADS)

    Aplin, Karen L.; Williams, Paul D.

    2012-09-01

    The creative output of composers, writers, and artists is often influenced by their surroundings. To give a literary example, it has been claimed recently that some of the characters in Oliver Twist and A Christmas Carol were based on real-life people who lived near Charles Dickens in London [Richardson, 2012]. Of course, an important part of what we see and hear is not only the people with whom we interact but also our geophysical surroundings. Of all the geophysical phenomena to influence us, the weather is arguably the most significant because we are exposed to it directly and daily. The weather was a great source of inspiration for artists Claude Monet, John Constable, and William Turner, who are known for their scientifically accurate paintings of the skies [e.g., Baker and Thornes, 2006].

  2. Radiometers Optimize Local Weather Prediction

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Radiometrics Corporation, headquartered in Boulder, Colorado, engaged in Small Business Innovation Research (SBIR) agreements with Glenn Research Center that resulted in a pencil-beam radiometer designed to detect supercooled liquid along flight paths -- a prime indicator of dangerous icing conditions. The company has brought to market a modular radiometer that resulted from the SBIR work. Radiometrics' radiometers are used around the world as key tools for detecting icing conditions near airports and for the prediction of weather conditions like fog and convective storms, which are known to produce hail, strong winds, flash floods, and tornadoes. They are also employed for oceanographic research and soil moisture studies.

  3. Multiple Weather Factors Affect Apparent Survival of European Passerine Birds

    PubMed Central

    Salewski, Volker; Hochachka, Wesley M.; Fiedler, Wolfgang

    2013-01-01

    Weather affects the demography of animals and thus climate change will cause local changes in demographic rates. In birds numerous studies have correlated demographic factors with weather but few of those examined variation in the impacts of weather in different seasons and, in the case of migrants, in different regions. Using capture-recapture models we correlated weather with apparent survival of seven passerine bird species with different migration strategies to assess the importance of selected facets of weather throughout the year on apparent survival. Contrary to our expectations weather experienced during the breeding season did not affect apparent survival of the target species. However, measures for winter severity were associated with apparent survival of a resident species, two short-distance/partial migrants and a long-distance migrant. Apparent survival of two short distance migrants as well as two long-distance migrants was further correlated with conditions experienced during the non-breeding season in Spain. Conditions in Africa had statistically significant but relatively minor effects on the apparent survival of the two long-distance migrants but also of a presumably short-distance migrant and a short-distance/partial migrant. In general several weather effects independently explained similar amounts of variation in apparent survival for the majority of species and single factors explained only relatively low amounts of temporal variation of apparent survival. Although the directions of the effects on apparent survival mostly met our expectations and there are clear predictions for effects of future climate we caution against simple extrapolations of present conditions to predict future population dynamics. Not only did weather explains limited amounts of variation in apparent survival, but future demographics will likely be affected by changing interspecific interactions, opposing effects of weather in different seasons, and the potential for

  4. Multiple weather factors affect apparent survival of European passerine birds.

    PubMed

    Salewski, Volker; Hochachka, Wesley M; Fiedler, Wolfgang

    2013-01-01

    Weather affects the demography of animals and thus climate change will cause local changes in demographic rates. In birds numerous studies have correlated demographic factors with weather but few of those examined variation in the impacts of weather in different seasons and, in the case of migrants, in different regions. Using capture-recapture models we correlated weather with apparent survival of seven passerine bird species with different migration strategies to assess the importance of selected facets of weather throughout the year on apparent survival. Contrary to our expectations weather experienced during the breeding season did not affect apparent survival of the target species. However, measures for winter severity were associated with apparent survival of a resident species, two short-distance/partial migrants and a long-distance migrant. Apparent survival of two short distance migrants as well as two long-distance migrants was further correlated with conditions experienced during the non-breeding season in Spain. Conditions in Africa had statistically significant but relatively minor effects on the apparent survival of the two long-distance migrants but also of a presumably short-distance migrant and a short-distance/partial migrant. In general several weather effects independently explained similar amounts of variation in apparent survival for the majority of species and single factors explained only relatively low amounts of temporal variation of apparent survival. Although the directions of the effects on apparent survival mostly met our expectations and there are clear predictions for effects of future climate we caution against simple extrapolations of present conditions to predict future population dynamics. Not only did weather explains limited amounts of variation in apparent survival, but future demographics will likely be affected by changing interspecific interactions, opposing effects of weather in different seasons, and the potential for

  5. Blood Pressure: Is It Affected by Cold Weather?

    MedlinePlus

    ... your narrowed veins and arteries. In addition to cold weather, blood pressure may also be affected by a sudden change in weather patterns, such as a weather front or a storm. Your body — and blood vessels — ...

  6. Space Weather affects on Air Transportation

    NASA Astrophysics Data System (ADS)

    Jones, J. B. L.; Bentley, R. D.; Dyer, C.; Shaw, A.

    In Europe, legislation requires the airline industry to monitor the occupational exposure of aircrew to cosmic radiation. However, there are other significant impacts of space weather phenomena on the technological systems used for day-to-day operations which need to be considered by the airlines. These were highlighted by the disruption caused to the industry by the period of significant solar activity in late October and early November 2003. Next generation aircraft will utilize increasingly complex avionics as well as expanding the performance envelopes. These and future generation platforms will require the development of a new air-space management infrastructure with improved position accuracy (for route navigation and landing in bad weather) and reduced separation minima in order to cope with the expected growth in air travel. Similarly, greater reliance will be placed upon satellites for command, control, communication and information (C3I) of the operation. However, to maximize effectiveness of this globally interoperable C3I and ensure seamless fusion of all components for a safe operation will require a greater understanding of the space weather affects, their risks with increasing technology, and the inclusion of space weather information into the operation. This paper will review space weather effects on air transport and the increasing risks for future operations cause by them. We will examine how well the effects can be predicted, some of the tools that can be used and the practicalities of using such predictions in an operational scenario. Initial results from the SOARS ESA Space Weather Pilot Project will also be discussed,

  7. Severe storms and local weather research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Developments in the use of space related techniques to understand storms and local weather are summarized. The observation of lightning, storm development, cloud development, mesoscale phenomena, and ageostrophic circulation are discussed. Data acquisition, analysis, and the development of improved sensor and computer systems capability are described. Signal processing and analysis and application of Doppler lidar data are discussed. Progress in numerous experiments is summarized.

  8. Can the Weather Affect My Child's Asthma?

    MedlinePlus

    ... Dry, windy weather can stir up pollen and mold in the air, leading to problems for some ... symptoms, and wet weather encourages the growth of mold spores, another asthma trigger. In certain areas, heat ...

  9. Can the Weather Affect My Child's Asthma?

    MedlinePlus

    ... who participate in winter sports are especially susceptible. Dry, windy weather can stir up pollen and mold in the ... in the dryer (hanging clothes or sheets to dry can allow mold or pollen to ... action plan should list weather triggers and ways to manage them, including any ...

  10. Utilization of Live Localized Weather Information for Sustainable Agriculture

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Usher, J.

    2010-09-01

    Authors: Jim Anderson VP, Global Network and Business Development WeatherBug® Professional Jeremy Usher Managing Director, Europe WeatherBug® Professional Localized, real-time weather information is vital for day-to-day agronomic management of all crops. The challenge for agriculture is twofold in that local and timely weather data is not often available for producers and farmers, and it is not integrated into decision-support tools they require. Many of the traditional sources of weather information are not sufficient for agricultural applications because of the long distances between weather stations, meaning the data is not always applicable for on-farm decision making processes. The second constraint with traditional weather information is the timeliness of the data. Most delivery systems are designed on a one-hour time step, whereas many decisions in agriculture are based on minute-by-minute weather conditions. This is especially true for decisions surrounding chemical and fertilizer application and frost events. This presentation will outline how the creation of an agricultural mesonet (weather network) can enable producers and farmers with live, local weather information from weather stations installed in farm/field locations. The live weather information collected from each weather station is integrated into a web-enabled decision support tool, supporting numerous on-farm agronomic activities such as pest management, or dealing with heavy rainfall and frost events. Agronomic models can be used to assess the potential of disease pressure, enhance the farmer's abilities to time pesticide applications, or assess conditions contributing to yield and quality fluctuations. Farmers and industry stakeholders may also view quality-assured historical weather variables at any location. This serves as a record-management tool for viewing previously uncharted agronomic weather events in graph or table form. This set of weather tools is unique and provides a

  11. Weather anomalies affect Climate Change microblogging intensity

    NASA Astrophysics Data System (ADS)

    Molodtsova, T.; Kirilenko, A.

    2012-12-01

    There is a huge gap between the scientific consensus and public understanding of climate change. Climate change has become a political issue and a "hot" topic in mass media that only adds the complexity to forming the public opinion. Scientists operate in scientific terms, not necessarily understandable by general public, while it is common for people to perceive the latest weather anomaly as an evidence of climate change. In 1998 Hansen et al. introduced a concept of an objectively measured subjective climate change indicator, which can relate public feeling that the climate is changing to the observed meteorological parameters. We tested this concept in a simple example of a temperature-based index, which we related to microblogging activity. Microblogging is a new form of communication in which the users describe their current status in short Internet messages. Twitter (http://twitter.com), is currently the most popular microblogging platform. There are multiple reasons, why this data is particularly valuable to the researches interested in social dynamics: microblogging is widely used to publicize one's opinion with the public; has broad, diverse audience, represented by users from many countries speaking different languages; finally, Twitter contains an enormous number of data, e.g., there were 1,284,579 messages related to climate change from 585,168 users in the January-May data collection. We collected the textual data entries, containing words "climate change" or "global warming" from the 1st of January, 2012. The data was retrieved from the Internet every 20 minutes using a specially developed Python code. Using geolocational information, blog entries originating from the New York urbanized area were selected. These entries, used as a source of public opinion on climate change, were related to the surface temperature, obtained from La Guardia airport meteorological station. We defined the "significant change" in the temperature index as deviation of the

  12. Adaptation of Mesoscale Weather Models to Local Forecasting

    NASA Technical Reports Server (NTRS)

    Manobianco, John T.; Taylor, Gregory E.; Case, Jonathan L.; Dianic, Allan V.; Wheeler, Mark W.; Zack, John W.; Nutter, Paul A.

    2003-01-01

    Methodologies have been developed for (1) configuring mesoscale numerical weather-prediction models for execution on high-performance computer workstations to make short-range weather forecasts for the vicinity of the Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS) and (2) evaluating the performances of the models as configured. These methodologies have been implemented as part of a continuing effort to improve weather forecasting in support of operations of the U.S. space program. The models, methodologies, and results of the evaluations also have potential value for commercial users who could benefit from tailoring their operations and/or marketing strategies based on accurate predictions of local weather. More specifically, the purpose of developing the methodologies for configuring the models to run on computers at KSC and CCAFS is to provide accurate forecasts of winds, temperature, and such specific thunderstorm-related phenomena as lightning and precipitation. The purpose of developing the evaluation methodologies is to maximize the utility of the models by providing users with assessments of the capabilities and limitations of the models. The models used in this effort thus far include the Mesoscale Atmospheric Simulation System (MASS), the Regional Atmospheric Modeling System (RAMS), and the National Centers for Environmental Prediction Eta Model ( Eta for short). The configuration of the MASS and RAMS is designed to run the models at very high spatial resolution and incorporate local data to resolve fine-scale weather features. Model preprocessors were modified to incorporate surface, ship, buoy, and rawinsonde data as well as data from local wind towers, wind profilers, and conventional or Doppler radars. The overall evaluation of the MASS, Eta, and RAMS was designed to assess the utility of these mesoscale models for satisfying the weather-forecasting needs of the U.S. space program. The evaluation methodology includes

  13. Identification of weather variables sensitive to dysentery in disease-affected county of China.

    PubMed

    Liu, Jianing; Wu, Xiaoxu; Li, Chenlu; Xu, Bing; Hu, Luojia; Chen, Jin; Dai, Shuang

    2017-01-01

    Climate change mainly refers to long-term change in weather variables, and it has significant impact on sustainability and spread of infectious diseases. Among three leading infectious diseases in China, dysentery is exclusively sensitive to climate change. Previous researches on weather variables and dysentery mainly focus on determining correlation between dysentery incidence and weather variables. However, the contribution of each variable to dysentery incidence has been rarely clarified. Therefore, we chose a typical county in epidemic of dysentery as the study area. Based on data of dysentery incidence, weather variables (monthly mean temperature, precipitation, wind speed, relative humidity, absolute humidity, maximum temperature, and minimum temperature) and lagged analysis, we used principal component analysis (PCA) and classification and regression trees (CART) to examine the relationships between the incidence of dysentery and weather variables. Principal component analysis showed that temperature, precipitation, and humidity played a key role in determining transmission of dysentery. We further selected weather variables including minimum temperature, precipitation, and relative humidity based on results of PCA, and used CART to clarify contributions of these three weather variables to dysentery incidence. We found when minimum temperature was at a high level, the high incidence of dysentery occurred if relative humidity or precipitation was at a high level. We compared our results with other studies on dysentery incidence and meteorological factors in areas both in China and abroad, and good agreement has been achieved. Yet, some differences remain for three reasons: not identifying all key weather variables, climate condition difference caused by local factors, and human factors that also affect dysentery incidence. This study hopes to shed light on potential early warnings for dysentery transmission as climate change occurs, and provide a theoretical

  14. Weather during bloom affects pollination and yield of highbush blueberry.

    PubMed

    Tuell, Julianna K; Isaacs, Rufus

    2010-06-01

    Weather plays an important role in spring-blooming fruit crops due to the combined effects on bee activity, flower opening, pollen germination, and fertilization. To determine the effects of weather on highbush blueberry, Vaccinium corymbosum L., productivity, we monitored bee activity and compared fruit set, weight, and seed number in a field stocked with honey bees, Apis mellifera L., and common eastern bumble bees, Bombus impatiens (Cresson). Flowers were subjected to one of five treatments during bloom: enclosed, open, open during poor weather only, open during good weather only, or open during poor and good weather. Fewer bees of all types were observed foraging and fewer pollen foragers returned to colonies during poor weather than during good weather. There were also changes in foraging community composition: honey bees dominated during good weather, whereas bumble bees dominated during poor weather. Berries from flowers exposed only during poor weather had higher fruit set in 1 yr and higher berry weight in the other year compared with enclosed clusters. In both years, clusters exposed only during good weather had > 5 times as many mature seeds, weighed twice as much, and had double the fruit set of those not exposed. No significant increase over flowers exposed during good weather was observed when clusters were exposed during good and poor weather. Our results are discussed in terms of the role of weather during bloom on the contribution of bees adapted to foraging during cool conditions.

  15. Local temperature differences in relation to weather parameters

    NASA Astrophysics Data System (ADS)

    Bogren, J.; Gustavsson, T.; Postgård, U.

    2000-02-01

    The objective of this paper is to focus on the influence of clouds and wind on air and road surface temperature variations between different types of local climate environments. The study area covers 160×130 km2 and includes 35 field stations in the Swedish Road Weather Information System (RWIS) and two synoptic weather stations. By combining data from the two sources, the spatial and temporal variations in air and road surface temperature have been analysed. In the first part of this paper the theoretical influence of different weather parameters is determined. In the empirical part of the study, a validation of the theoretical result is assessed using temperature and weather data from the study area. The results show that it is possible to calculate the temperature variations in relation to topographical siting and different weather factors. During day-time conditions, the effect of screening from the sun has a significant influence on the road surface temperature, even with cloudiness amounting to 4-6 octas, provided that the solar elevation is high. During night-time, the potential for pooling of cold air is determined by cloud cover and wind speed. When cloudy situations prevail during night-time, neutral stability is dominant resulting in a decrease with increasing altitude for both air and surface temperatures. Road surface temperatures, however, have a lower correlation with altitude than air temperature. The variation in surface temperature decreases with altitude is also larger and has a more even distribution than the air temperature decrease with altitude. Wind speed was not an important factor for the variation in surface temperature decrease with altitude, but insolation from the sun during day-time is one parameter to consider.

  16. Local Climate Experts: The Influence of Local TV Weather Information on Climate Change Perceptions.

    PubMed

    Bloodhart, Brittany; Maibach, Edward; Myers, Teresa; Zhao, Xiaoquan

    2015-01-01

    Individuals who identify changes in their local climate are also more likely to report that they have personally experienced global climate change. One way that people may come to recognize that their local climate is changing is through information provided by local TV weather forecasters. Using random digit dialing, 2,000 adult local TV news viewers in Virginia were surveyed to determine whether routine exposure to local TV weather forecasts influences their perceptions of extreme weather in Virginia, and their perceptions about climate change more generally. Results indicate that paying attention to TV weather forecasts is associated with beliefs that extreme weather is becoming more frequent in Virginia, which in turn is associated with stronger beliefs and concerns about climate change. These associations were strongest for individuals who trust their local TV weathercaster as a source of information about climate change, and for those who identify as politically conservative or moderate. The findings add support to the literature suggesting that TV weathercasters can play an important role in educating the public about climate change.

  17. Local Climate Experts: The Influence of Local TV Weather Information on Climate Change Perceptions

    PubMed Central

    Bloodhart, Brittany; Maibach, Edward; Myers, Teresa; Zhao, Xiaoquan

    2015-01-01

    Individuals who identify changes in their local climate are also more likely to report that they have personally experienced global climate change. One way that people may come to recognize that their local climate is changing is through information provided by local TV weather forecasters. Using random digit dialing, 2,000 adult local TV news viewers in Virginia were surveyed to determine whether routine exposure to local TV weather forecasts influences their perceptions of extreme weather in Virginia, and their perceptions about climate change more generally. Results indicate that paying attention to TV weather forecasts is associated with beliefs that extreme weather is becoming more frequent in Virginia, which in turn is associated with stronger beliefs and concerns about climate change. These associations were strongest for individuals who trust their local TV weathercaster as a source of information about climate change, and for those who identify as politically conservative or moderate. The findings add support to the literature suggesting that TV weathercasters can play an important role in educating the public about climate change. PMID:26551357

  18. Weather variability permitted within amphibian monitoring protocol and affects on calling Hylidae.

    PubMed

    Milne, Robert; Bennett, Lorne; Hoyle, Mathew

    2013-11-01

    Anuran populations are sensitive to changing environmental conditions and act as useful indicators. Presently, much information collected concerning frog populations comes from volunteers following the North American Amphibian Monitoring Protocol. Does weather variability allowed within protocol affect the abundance of calling frogs? For 10 years, Credit Valley Conservation (Ontario, Canada) has been collecting anuran data concerning nine frog species employing three frog monitoring runs. Records include frog abundance by protocol code and five weather variables. Antecedent precipitation and temperature were determined from the nearest weather station. Locations with large source populations of two Hylidae species were selected (spring peeper calling in April and gray tree frog in May). Spearman correlations suggested there were no significant relationships between calling abundance of Hylidae species and ambient wind speed or humidity. However, gray tree frogs were temperature sensitive and calling was significantly related to increased water and air temperatures as well as day time high temperatures over the previous 2 weeks. Both species of calling Hylidae were affected by the volume and timing of precipitation (though, in different ways). Gray tree frogs seem to prefer drier conditions (when temperatures are significantly warmer) while spring peepers prefer to call during, or closely following, precipitation. Monitors targeting gray tree frog should track local weather conditions and focus on evenings when it is (a) warmer than the minimum temperatures and (b) drier than suggested by the protocol. It is recommended that an additional monitoring run could be added to reduce detection variability of this species.

  19. Assessing Weather-Yield Relationships in Rice at Local Scale Using Data Mining Approaches.

    PubMed

    Delerce, Sylvain; Dorado, Hugo; Grillon, Alexandre; Rebolledo, Maria Camila; Prager, Steven D; Patiño, Victor Hugo; Garcés Varón, Gabriel; Jiménez, Daniel

    2016-01-01

    Seasonal and inter-annual climate variability have become important issues for farmers, and climate change has been shown to increase them. Simultaneously farmers and agricultural organizations are increasingly collecting observational data about in situ crop performance. Agriculture thus needs new tools to cope with changing environmental conditions and to take advantage of these data. Data mining techniques make it possible to extract embedded knowledge associated with farmer experiences from these large observational datasets in order to identify best practices for adapting to climate variability. We introduce new approaches through a case study on irrigated and rainfed rice in Colombia. Preexisting observational datasets of commercial harvest records were combined with in situ daily weather series. Using Conditional Inference Forest and clustering techniques, we assessed the relationships between climatic factors and crop yield variability at the local scale for specific cultivars and growth stages. The analysis showed clear relationships in the various location-cultivar combinations, with climatic factors explaining 6 to 46% of spatiotemporal variability in yield, and with crop responses to weather being non-linear and cultivar-specific. Climatic factors affected cultivars differently during each stage of development. For instance, one cultivar was affected by high nighttime temperatures in the reproductive stage but responded positively to accumulated solar radiation during the ripening stage. Another was affected by high nighttime temperatures during both the vegetative and reproductive stages. Clustering of the weather patterns corresponding to individual cropping events revealed different groups of weather patterns for irrigated and rainfed systems with contrasting yield levels. Best-suited cultivars were identified for some weather patterns, making weather-site-specific recommendations possible. This study illustrates the potential of data mining for

  20. Assessing Weather-Yield Relationships in Rice at Local Scale Using Data Mining Approaches

    PubMed Central

    Delerce, Sylvain; Dorado, Hugo; Grillon, Alexandre; Rebolledo, Maria Camila; Prager, Steven D.; Patiño, Victor Hugo; Garcés Varón, Gabriel; Jiménez, Daniel

    2016-01-01

    Seasonal and inter-annual climate variability have become important issues for farmers, and climate change has been shown to increase them. Simultaneously farmers and agricultural organizations are increasingly collecting observational data about in situ crop performance. Agriculture thus needs new tools to cope with changing environmental conditions and to take advantage of these data. Data mining techniques make it possible to extract embedded knowledge associated with farmer experiences from these large observational datasets in order to identify best practices for adapting to climate variability. We introduce new approaches through a case study on irrigated and rainfed rice in Colombia. Preexisting observational datasets of commercial harvest records were combined with in situ daily weather series. Using Conditional Inference Forest and clustering techniques, we assessed the relationships between climatic factors and crop yield variability at the local scale for specific cultivars and growth stages. The analysis showed clear relationships in the various location-cultivar combinations, with climatic factors explaining 6 to 46% of spatiotemporal variability in yield, and with crop responses to weather being non-linear and cultivar-specific. Climatic factors affected cultivars differently during each stage of development. For instance, one cultivar was affected by high nighttime temperatures in the reproductive stage but responded positively to accumulated solar radiation during the ripening stage. Another was affected by high nighttime temperatures during both the vegetative and reproductive stages. Clustering of the weather patterns corresponding to individual cropping events revealed different groups of weather patterns for irrigated and rainfed systems with contrasting yield levels. Best-suited cultivars were identified for some weather patterns, making weather-site-specific recommendations possible. This study illustrates the potential of data mining for

  1. Weather.

    ERIC Educational Resources Information Center

    Ruth, Amy, Ed.

    1996-01-01

    This theme issue of "The Goldfinch" focuses on weather in Iowa and weather lore. The bulletin contains historical articles, fiction, activities, and maps. The table of contents lists: (1) "Wild Rosie's Map"; (2) "History Mystery"; (3) "Iowa's Weather History"; (4) "Weather Wonders"; (6)…

  2. Local geomagnetic indices and their role in space weather

    NASA Astrophysics Data System (ADS)

    Guerrero, Antonio; Cid, Consuelo; Saiz, Elena; Palacios, Judith; Cerrato, Yolanda

    2016-04-01

    The analysis of local geomagnetic disturbances (specific longitude and latitude) have recently proved to play an important role in space weather research. Localized strong (high intensity) and impulsive (fast developed and fast recovered) geomagnetic disturbances are typically recorded at high latitudes and commonly related to field-aligned currents. These type of disturbances are also recorded, less frequently, at mid and low latitudes, representing an important hazard for technology. In order to obtain geomagnetic disturbances (geomagnetic index) from the records at a certain observatory, a baseline has to be removed. The baseline is usually determined taking into account geomagnetic secular variation and solar quiet time. At mid-latitudes the shape of the daily solar quiet component presents a strong day-to-day variability difficult to predict. In this work we present a new technique capable to determine the baseline at mid-latitudes which allows us to obtain a high resolution local geomagnetic index with the highest accuracy ever obtained at mid-latitudes.

  3. Come rain or come shine: individual differences in how weather affects mood.

    PubMed

    Klimstra, Theo A; Frijns, Tom; Keijsers, Loes; Denissen, Jaap J A; Raaijmakers, Quinten A W; van Aken, Marcel A G; Koot, Hans M; van Lier, Pol A C; Meeus, Wim H J

    2011-12-01

    There is a widespread belief that weather affects mood. However, few studies have investigated this link, and even less is known about individual differences in people's responses to the weather. In the current study, we sought to identify weather reactivity types by linking self-reported daily mood across 30 days with objective weather data. We identified four distinct types among 497 adolescents and replicated these types among their mothers. The types were labeled Summer Lovers (better mood with warmer and sunnier weather), Unaffected (weak associations between weather and mood), Summer Haters (worse mood with warmer and sunnier weather), and Rain Haters (particularly bad mood on rainy days). In addition, intergenerational concordance effects were found for two of these types, suggesting that weather reactivity may run in the family. Overall, the large individual differences in how people's moods were affected by weather reconciles the discrepancy between the generally held beliefs that weather has a substantive effect on mood and findings from previous research indicating that effects of weather on mood are limited or absent.

  4. Trace contaminant concentration affects mineral transformation and pollutant fate in hydroxide-weathered Hanford sediments.

    PubMed

    Perdrial, Nicolas; Rivera, Nelson; Thompson, Aaron; O'Day, Peggy A; Chorover, Jon

    2011-12-15

    Prior work has shown that when silicaceous sediments are infused with caustic radioactive waste, contaminant fate is tightly coupled to ensuing mineral weathering reactions. However, the effects of local aqueous geochemical conditions on these reactions are poorly studied. Thus, we varied contaminant concentration and pCO(2) during the weathering of previously uncontaminated Hanford sediments over 6 months and 1 year in a solution of caustic waste (pH 13, high ionic strength). Co-contaminants Sr, Cs and I were added at "low" (Cs/Sr: 10(-5)m; I: 10(-7)m) and "high" (Cs/Sr: 10(-3)m; I: 10(-5)m) concentrations, and headspace was held at atmospheric or undetectable (<10ppmv) CO(2) partial pressure. Solid phase characterization revealed the formation of the zeolite chabazite in "high" samples, whereas feldspathoids, sodalite and cancrinite, were formed preferentially in "low" samples. Sr, Cs and I were sequestered in all reacted sediments. Native calcite dissolution in the CO(2)-free treatment drove the formation of strätlingite (Ca(2)Al(2)SiO(7)·8H(2)O) and diminished availability of Si and Al for feldspathoid formation. Results indicate that pCO(2) and contaminant concentrations strongly affect contaminant speciation in waste-weathered sediments, and are therefore likely to impact reaction product stability under any remediation scenario.

  5. Does mineral surface area affect chemical weathering rates?

    NASA Astrophysics Data System (ADS)

    Salome Eiriksdottir, Eydis; Reynir Gislason, Sigurdur; Oelkers, Eric H.

    2010-05-01

    Iceland is a basaltic volcanic island representative of the high relief, volcanic and tectonic active islands that contribute over 45% of river suspended material to the oceans worldwide (Milliman and Syvitski, 1992). These islands have enormous mechanical and chemical weathering rates due to the combined effects of high relief, high runoff, the presence of glaciers and easily weathered volcanic rocks, and a lack of sedimentary traps. In total, Iceland delivers 0.7% of the worldwide river suspended matter flux to the ocean, which is approximately one fourth that of Africa (Tómasson, 1990). River suspended matter from volcanic islands is highly reactive in seawater and might play an important role in the global carbon cycle (Gislason et al., 2006). Thus it is important to define and understand the mechanical and chemical weathering rates of these islands. Experimental dissolution experiments performed in the laboratory suggest that chemical weathering rates should be proportional to rock-water interfacial surface area. This hypothesis is tested in the present study through a study of the chemical composition of suspended material collected from rivers located in Northeast Iceland. These rivers were selected for this study because their catchments essentially monolithic, consisting of uniform compositioned and aged basalts. Gaillardet (1999) described weathering intensities of the worlds river systems to be from 1 (low weathering intensity) to 25 (high weathering intensity). These indexes were calculated to be from 1.8 to 3.2 in rivers in NE-Iceland (Eiriksdottir et al., 2008). The surface area of sediments is inversely proportional to particle size; smaller particles have larger specific surface areas. As a result, smaller particles should weather faster. This trend is confirmed by the measured compositions of analyzed suspended material. The concentration of insoluble elements (Zr, Fe, Cu, Ni, Y) is found to increase in the suspended material, whereas the

  6. Weathering resistance of carbonate fault mirrors promotes rupture localization

    NASA Astrophysics Data System (ADS)

    Goldberg, R.; Siman-Tov, S.; Emmanuel, S.

    2016-04-01

    Fractured rocks in fault zones regain their mechanical strength through a process called healing. A central pathway for healing involves the dissolution and reprecipitation of minerals in the fault zone which cements the fractured rocks during interseismic periods. However, some faults contain highly polished surfaces—coated in a thin nanoparticle layer—along which slip is localized. Crucially, these surfaces show little evidence of postseismic mineralization and healing. Here we use atomic force microscopy to show that naturally polished rocks from carbonate fault zones are resistant to dissolution, in stark contrast to the reactive minerals that make up the fault breccia. Our results suggest that the low reactivity of the nanoparticle layer could retard healing, helping to maintain the localization of the fault zone between seismic slip events. As fault localization affects seismic motion, the geochemical reactivity of fault mirrors could be an important control on seismicity along faults.

  7. Decision Aids for Multiple-Decision Disease Management as Affected by Weather Input Errors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many disease management decision support systems (DSS) rely, exclusively or in part, on weather inputs to calculate an indicator for disease hazard. Error in the weather inputs, typically due to forecasting, interpolation or estimation from off-site sources, may affect model calculations and manage...

  8. Development and Implementation of Dynamic Scripts to Support Local Model Verification at National Weather Service Weather Forecast Offices

    NASA Technical Reports Server (NTRS)

    Zavordsky, Bradley; Case, Jonathan L.; Gotway, John H.; White, Kristopher; Medlin, Jeffrey; Wood, Lance; Radell, Dave

    2014-01-01

    Local modeling with a customized configuration is conducted at National Weather Service (NWS) Weather Forecast Offices (WFOs) to produce high-resolution numerical forecasts that can better simulate local weather phenomena and complement larger scale global and regional models. The advent of the Environmental Modeling System (EMS), which provides a pre-compiled version of the Weather Research and Forecasting (WRF) model and wrapper Perl scripts, has enabled forecasters to easily configure and execute the WRF model on local workstations. NWS WFOs often use EMS output to help in forecasting highly localized, mesoscale features such as convective initiation, the timing and inland extent of lake effect snow bands, lake and sea breezes, and topographically-modified winds. However, quantitatively evaluating model performance to determine errors and biases still proves to be one of the challenges in running a local model. Developed at the National Center for Atmospheric Research (NCAR), the Model Evaluation Tools (MET) verification software makes performing these types of quantitative analyses easier, but operational forecasters do not generally have time to familiarize themselves with navigating the sometimes complex configurations associated with the MET tools. To assist forecasters in running a subset of MET programs and capabilities, the Short-term Prediction Research and Transition (SPoRT) Center has developed and transitioned a set of dynamic, easily configurable Perl scripts to collaborating NWS WFOs. The objective of these scripts is to provide SPoRT collaborating partners in the NWS with the ability to evaluate the skill of their local EMS model runs in near real time with little prior knowledge of the MET package. The ultimate goal is to make these verification scripts available to the broader NWS community in a future version of the EMS software. This paper provides an overview of the SPoRT MET scripts, instructions for how the scripts are run, and example use

  9. Seeing is Believing? An Examination of Perceptions of Local Weather Conditions and Climate Change Among Residents in the U.S. Gulf Coast.

    PubMed

    Shao, Wanyun; Goidel, Kirby

    2016-11-01

    What role do objective weather conditions play in coastal residents' perceptions of local climate shifts and how do these perceptions affect attitudes toward climate change? While scholars have increasingly investigated the role of weather and climate conditions on climate-related attitudes and behaviors, they typically assume that residents accurately perceive shifts in local climate patterns. We directly test this assumption using the largest and most comprehensive survey of Gulf Coast residents conducted to date supplemented with monthly temperature data from the U.S. Historical Climatology Network and extreme weather events data from National Climatic Data Center. We find objective conditions have limited explanatory power in determining perceptions of local climate patterns. Only the 15- and 19-year hurricane trends and decadal summer temperature trend have some effects on perceptions of these weather conditions, while the decadal trend of total number of extreme weather events and 15- and 19-year winter temperature trends are correlated with belief in climate change. Partisan affiliation, in contrast, plays a powerful role affecting individual perceptions of changing patterns of air temperatures, flooding, droughts, and hurricanes, as well as belief in the existence of climate change and concern for future consequences. At least when it comes to changing local conditions, "seeing is not believing." Political orientations rather than local conditions drive perceptions of local weather conditions and these perceptions-rather than objectively measured weather conditions-influence climate-related attitudes.

  10. Daily weather variables and affective disorder admissions to psychiatric hospitals.

    PubMed

    McWilliams, Stephen; Kinsella, Anthony; O'Callaghan, Eadbhard

    2014-12-01

    Numerous studies have reported that admission rates in patients with affective disorders are subject to seasonal variation. Notwithstanding, there has been limited evaluation of the degree to which changeable daily meteorological patterns influence affective disorder admission rates. A handful of small studies have alluded to a potential link between psychiatric admission rates and meteorological variables such as environmental temperature (heat waves in particular), wind direction and sunshine. We used the Kruskal-Wallis test, ARIMA and time-series regression analyses to examine whether daily meteorological variables--namely wind speed and direction, barometric pressure, rainfall, hours of sunshine, sunlight radiation and temperature--influence admission rates for mania and depression across 12 regions in Ireland over a 31-year period. Although we found some very weak but interesting trends for barometric pressure in relation to mania admissions, daily meteorological patterns did not appear to affect hospital admissions overall for mania or depression. Our results do not support the small number of papers to date that suggest a link between daily meteorological variables and affective disorder admissions. Further study is needed.

  11. Daily weather variables and affective disorder admissions to psychiatric hospitals

    NASA Astrophysics Data System (ADS)

    McWilliams, Stephen; Kinsella, Anthony; O'Callaghan, Eadbhard

    2014-12-01

    Numerous studies have reported that admission rates in patients with affective disorders are subject to seasonal variation. Notwithstanding, there has been limited evaluation of the degree to which changeable daily meteorological patterns influence affective disorder admission rates. A handful of small studies have alluded to a potential link between psychiatric admission rates and meteorological variables such as environmental temperature (heat waves in particular), wind direction and sunshine. We used the Kruskal-Wallis test, ARIMA and time-series regression analyses to examine whether daily meteorological variables—namely wind speed and direction, barometric pressure, rainfall, hours of sunshine, sunlight radiation and temperature—influence admission rates for mania and depression across 12 regions in Ireland over a 31-year period. Although we found some very weak but interesting trends for barometric pressure in relation to mania admissions, daily meteorological patterns did not appear to affect hospital admissions overall for mania or depression. Our results do not support the small number of papers to date that suggest a link between daily meteorological variables and affective disorder admissions. Further study is needed.

  12. X-Band local area weather radar--preliminary calibration results.

    PubMed

    Jensen, N E

    2002-01-01

    DHI has developed a cost-effective X-Band Local Area Weather Radar (LAWR) with a typical range (radius) of 60 km, 500 x 500 m areal resolution and 253 reflection levels. The development is performed in a co-operation with a number of European partners, including Danish Meteorological Institute. The specifications of the weather radar and preliminary results from the calibration are presented. Good calibration results have been obtained using high-resolution rain gauges.

  13. Decision aids for multiple-decision disease management as affected by weather input errors.

    PubMed

    Pfender, W F; Gent, D H; Mahaffee, W F; Coop, L B; Fox, A D

    2011-06-01

    Many disease management decision support systems (DSSs) rely, exclusively or in part, on weather inputs to calculate an indicator for disease hazard. Error in the weather inputs, typically due to forecasting, interpolation, or estimation from off-site sources, may affect model calculations and management decision recommendations. The extent to which errors in weather inputs affect the quality of the final management outcome depends on a number of aspects of the disease management context, including whether management consists of a single dichotomous decision, or of a multi-decision process extending over the cropping season(s). Decision aids for multi-decision disease management typically are based on simple or complex algorithms of weather data which may be accumulated over several days or weeks. It is difficult to quantify accuracy of multi-decision DSSs due to temporally overlapping disease events, existence of more than one solution to optimizing the outcome, opportunities to take later recourse to modify earlier decisions, and the ongoing, complex decision process in which the DSS is only one component. One approach to assessing importance of weather input errors is to conduct an error analysis in which the DSS outcome from high-quality weather data is compared with that from weather data with various levels of bias and/or variance from the original data. We illustrate this analytical approach for two types of DSS, an infection risk index for hop powdery mildew and a simulation model for grass stem rust. Further exploration of analysis methods is needed to address problems associated with assessing uncertainty in multi-decision DSSs.

  14. Weathering the Preschool Environment: Affect Moderates the Relations between Meteorology and Preschool Behaviors

    ERIC Educational Resources Information Center

    Lagace-Seguin, Daniel G.; d'Entremont, Marc-Robert L.

    2005-01-01

    The goal of this study was to examine the relations among various meteorological conditions, affective states and behavior in young children. Results from past research have revealed many weather effects on behavior and emotions with adult samples. However, there is a paucity of empirical evidence to support this link with children. Thirty-three…

  15. State-of-the-art Space Weather Forecast with AFFECTS and HELCATS

    NASA Astrophysics Data System (ADS)

    Bothmer, Volker; Affects Team; Helcats Team

    2016-04-01

    The space weather projects fostered through the European Union FP7 and Horizon 2020 programs have opened up new horizons in the field of space weather research and have facilitated state-of-the-art-forecasts. Here we present an overview on the services and space weather forecasts the EU FP7 project AFFECTS (Advanced Forecast For Ensuring Communications Through Space) is providing and how the precision of the forecast is qualitatively greatly enhanced by new results derived from the EU FP7 project HELCATS (Heliospheric Cataloguing, Analysis, and Techniques Services). The forecast techniques base on near-real time multipoint analysis of coronal mass ejections observed by SOHO and STEREO and simulations of their Sun to Earth evolution.

  16. Simulating soybean canopy temperature as affected by weather variables and soil water potential

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1982-01-01

    Hourly weather data for several clear sky days during summer at Phoenix and Baltimore which covered a wide range of variables were used with a plant atmosphere model to simulate soybean (Glycine max L.) leaf water potential, stomatal resistance and canopy temperature at various soil water potentials. The air and dew point temperatures were found to be the significant weather variables affecting the canopy temperatures. Under identical weather conditions, the model gives a lower canopy temperature for a soybean crop with a higher rooting density. A knowledge of crop rooting density, in addition to air and dew point temperatures is needed in interpreting infrared radiometric observations for soil water status. The observed dependence of stomatal resistance on the vapor pressure deficit and soil water potential is fairly well represented. Analysis of the simulated leaf water potentials indicates overestimation, possibly due to differences in the cultivars.

  17. Local weather conditions have complex effects on the growth of blue tit nestlings.

    PubMed

    Mainwaring, Mark C; Hartley, Ian R

    2016-08-01

    Adverse weather conditions are expected to result in impaired nestling development in birds, but empirical studies have provided equivocal support for such a relationship. This may be because the negative effects of adverse weather conditions are masked by parental effects. Globally, ambient temperatures, rainfall levels and wind speeds are all expected to increase in a changing climate and so there is a need for a better understanding of the relationship between weather conditions and nestling growth. Here, we describe a correlative study that examined the relationships between local temperatures, rainfall levels and wind speeds and the growth of individual blue tit (Cyanistes caeruleus) nestlings in relation to their hatching order and sex. We found that changes in a range of morphological characters were negatively related to both temperature and wind speed, but positively related to rainfall. These patterns were further influenced by the hatching order of the nestlings but not by nestling sex. This suggests that the predicted changes in local weather conditions may have complex effects on nestling growth, but that parents may be able to mitigate the adverse effects via adaptive parental effects. We therefore conclude that local weather conditions have complex effects on avian growth and the implications for patterns of avian growth in a changing climate are discussed.

  18. Providing the Larger Climate Context During Extreme Weather - Lessons from Local Television News

    NASA Astrophysics Data System (ADS)

    Woods, M.; Cullen, H. M.

    2015-12-01

    Local television weathercasters, in their role as Station Scientists, are often called upon to educate viewers about the science and impacts of climate change. Climate Central supports these efforts through its Climate Matters program. Launched in 2010 with support from the National Science Foundation, the program has grown into a network that includes more than 245 weathercasters from across the country and provides localized information on climate and ready-to-use, broadcast quality graphics and analyses in both English and Spanish. This presentation will focus on discussing best practices for integrating climate science into the local weather forecast as well as advances in the science of extreme event attribution. The Chief Meteorologist at News10 (Sacramento, CA) will discuss local news coverage of the ongoing California drought, extreme weather and climate literacy.

  19. Dealing with uncertainty: integrating local and scientific knowledge of the climate and weather.

    PubMed

    Kniveton, Dominic; Visman, Emma; Tall, Arame; Diop, Mariane; Ewbank, Richard; Njoroge, Ezekiel; Pearson, Lucy

    2015-01-01

    While climate science has made great progress in the projection of weather and climate information, its uptake by local communities remains largely elusive. This paper describes two innovative approaches that strengthen understanding between the providers and users of weather and climate information and support-appropriate application: (1) knowledge timelines, which compare different sources and levels of certainty in community and scientific weather and climate information; and (2) participatory downscaling, which supports users to translate national and regional information into a range of outcomes at the local level. Results from piloting these approaches among flood-prone communities in Senegal and drought-prone farmers in Kenya highlight the importance of co-producing 'user-useful' climate information. Recognising that disaster risk management actions draw on a wide range of knowledge sources, climate information that can effectively support community-based decision-making needs to be integrated with local knowledge systems and based on an appreciation of the inherent uncertainty of weather and climate information.

  20. Local finite-amplitude wave activity as an objective diagnostic of midlatitude extreme weather

    SciTech Connect

    Chen, Gang; Lu, Jian; Burrows, Alex D.; Leung, Lai-Yung R.

    2015-12-28

    Midlatitude extreme weather events are responsible for a large part of climate related damage, yet our understanding of these extreme events is limited, partly due to the lack of a theoretical basis for midlatitude extreme weather. In this letter, the local finite-amplitude wave activity (LWA) of Huang and Nakamura [2015] is introduced as a diagnostic of the 500-hPa geopotential height (Z500) to characterizing midlatitude weather events. It is found that the LWA climatology and its variability associated with the Arctic Oscillation (AO) agree broadly with the previously reported blocking frequency in literature. There is a strong seasonal and spatial dependence in the trend13 s of LWA in recent decades. While there is no observational evidence for a hemispheric-scale increase in wave amplitude, robust trends in wave activity can be identified at the regional scales, with important implications for regional climate change.

  1. Transforming the sensing and numerical prediction of high-impact local weather through dynamic adaptation.

    PubMed

    Droegemeier, Kelvin K

    2009-03-13

    Mesoscale weather, such as convective systems, intense local rainfall resulting in flash floods and lake effect snows, frequently is characterized by unpredictable rapid onset and evolution, heterogeneity and spatial and temporal intermittency. Ironically, most of the technologies used to observe the atmosphere, predict its evolution and compute, transmit or store information about it, operate in a static pre-scheduled framework that is fundamentally inconsistent with, and does not accommodate, the dynamic behaviour of mesoscale weather. As a result, today's weather technology is highly constrained and far from optimal when applied to any particular situation. This paper describes a new cyberinfrastructure framework, in which remote and in situ atmospheric sensors, data acquisition and storage systems, assimilation and prediction codes, data mining and visualization engines, and the information technology frameworks within which they operate, can change configuration automatically, in response to evolving weather. Such dynamic adaptation is designed to allow system components to achieve greater overall effectiveness, relative to their static counterparts, for any given situation. The associated service-oriented architecture, known as Linked Environments for Atmospheric Discovery (LEAD), makes advanced meteorological and cyber tools as easy to use as ordering a book on the web. LEAD has been applied in a variety of settings, including experimental forecasting by the US National Weather Service, and allows users to focus much more attention on the problem at hand and less on the nuances of data formats, communication protocols and job execution environments.

  2. Maintaining a Local Data Integration System in Support of Weather Forecast Operations

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian

    2010-01-01

    Since 2000, both the National Weather Service in Melbourne, FL (NWS MLB) and the Spaceflight Meteorology Group (SMG) have used a local data integration system (LDIS) as part of their forecast and warning operations. Each has benefited from 3-dimensional analyses that are delivered to forecasters every 15 minutes across the peninsula of Florida. The intent is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements within East Central Florida. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) package as its core, which integrates a wide variety of national, regional, and local observational data sets. It assimilates all available real-time data within its domain and is run at a finer spatial and temporal resolution than current national- or regional-scale analysis packages. As such, it provides local forecasters with a more comprehensive and complete understanding of evolving fine-scale weather features. Recent efforts have been undertaken to update the LDIS through the formal tasking process of NASA's Applied Meteorology Unit. The goals include upgrading LDIS with the latest version of ADAS, incorporating new sources of observational data, and making adjustments to shell scripts written to govern the system. A series of scripts run a complete modeling system consisting of the preprocessing step, the main model integration, and the post-processing step. The preprocessing step prepares the terrain, surface characteristics data sets, and the objective analysis for model initialization. Data ingested through ADAS include (but are not limited to) Level II Weather Surveillance Radar- 1988 Doppler (WSR-88D) data from six Florida radars, Geostationary Operational Environmental Satellites (GOES) visible and infrared satellite imagery, surface and upper air observations throughout Florida from NOAA's Earth System Research Laboratory/Global Systems Division

  3. Nanomorphology of Itokawa regolith particles: Application to space-weathering processes affecting the Itokawa asteroid

    NASA Astrophysics Data System (ADS)

    Matsumoto, Toru; Tsuchiyama, Akira; Uesugi, Kentaro; Nakano, Tsukasa; Uesugi, Masayuki; Matsuno, Junya; Nagano, Takashi; Shimada, Akira; Takeuchi, Akihisa; Suzuki, Yoshio; Nakamura, Tomoki; Nakamura, Michihiko; Gucsik, Arnold; Nagaki, Keita; Sakaiya, Tatsuhiro; Kondo, Tadashi

    2016-08-01

    The morphological properties of 26 regolith particles from asteroid Itokawa were observed using scanning electron microscopes in combination with an investigation of their three-dimensional shapes obtained through X-ray microtomography. Surface observations of a cross section of the LL5 chondrite, and of crystals of olivine and pyroxene, were also performed for comparison. Some Itokawa particles have surfaces corresponding to walls of microdruses in the LL chondrite, where concentric polygonal steps develop and euhedral or subhedral grains exist. These formed through vapor growth owing to thermal annealing, which might have been caused by thermal metamorphism or shock-induced heating in Itokawa's parent body. Most of the Itokawa particles have more or less fractured surfaces, indicating that they were formed by disaggregation, probably caused by impacts. Itokawa particles with angular and rounded edges observed in computed tomography images are associated with surfaces exhibiting clear and faint structures, respectively. These surfaces can be interpreted by invoking different degrees of abrasion after regolith formation. A possible mechanism for the abrasion process is grain migration caused by impact-driven seismic waves. Space-weathered rims with blisters are distributed heterogeneously across the Itokawa regolith particles. This heterogeneous distribution can be explained by particle motion and fracturing, combined with solar-wind irradiation of the particle surfaces. The regolith activity-including grain motion, fracturing, and abrasion-might effectively act as refreshing process of Itokawa particles against space-weathered rim formation. The space-weathering processes affecting Itokawa would have developed simultaneously with space-weathered rim formation and regolith particle refreshment.

  4. Maintaining a Local Data Integration System in Support of Weather Forecast Operations

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian

    2010-01-01

    Since 2000, both the National Weather Service in Melbourne, FL (NWS MLB) and the Spaceflight Meteorology Group (SMG) at Johnson Space Center in Houston, TX have used a local data integration system (LDIS) as part of their forecast and warning operations. The original LDIS was developed by NASA's Applied Meteorology Unit (AMU; Bauman et ai, 2004) in 1998 (Manobianco and Case 1998) and has undergone subsequent improvements. Each has benefited from three-dimensional (3-D) analyses that are delivered to forecasters every 15 minutes across the peninsula of Florida. The intent is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements within East Central Florida. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) package as its core, which integrates a wide variety of national, regional, and local observational data sets. It assimilates all available real-time data within its domain and is run at a finer spatial and temporal resolution than current national- or regional-scale analysis packages. As such, it provides local forecasters with a more comprehensive understanding of evolving fine-scale weather features

  5. Come rain or shine? Public expectation on local weather change and differential effects on climate change attitude.

    PubMed

    Lo, Alex Y; Jim, C Y

    2015-11-01

    Tailored messages are instrumental to climate change communication. Information about the global threat can be 'localised' by demonstrating its linkage with local events. This research ascertains the relationship between climate change attitude and perception of local weather, based on a survey involving 800 Hong Kong citizens. Results indicate that concerns about climate change increase with expectations about the likelihood and impacts of local weather change. Climate change believers attend to all three types of adverse weather events, namely, temperature rises, tropical cyclones and prolonged rains. Climate scepticism, however, is not associated with expectation about prolonged rains. Differential spatial orientations are a possible reason. Global climate change is an unprecedented and distant threat, whereas local rain is a more familiar and localised weather event. Global climate change should be articulated in terms that respect local concerns. Localised framing may be particularly effective for engaging individuals holding positive views about climate change science.

  6. El Niño-Southern Oscillation, local weather and occurrences of dengue virus serotypes.

    PubMed

    Huang, Xiaodong; Clements, Archie C A; Williams, Gail; Devine, Gregor; Tong, Shilu; Hu, Wenbiao

    2015-11-19

    Severe dengue fever is usually associated with secondary infection by a dengue virus (DENV) serotype (1 to 4) that is different to the serotype of the primary infection. Dengue outbreaks only occur following importations of DENV in Cairns, Australia. However, the majority of imported cases do not result in autochthonous transmission in Cairns. Although DENV transmission is strongly associated with the El Niño-Southern Oscillation (ENSO) climate cycle and local weather conditions, the frequency and potential risk factors of infections with the different DENV serotypes, including whether or not they differ, is unknown. This study used a classification tree model to identify the hierarchical interactions between Southern Oscillation Index (SOI), local weather factors, the presence of imported serotypes and the occurrence of the four autochthonous DENV serotypes from January 2000-December 2009 in Cairns. We found that the 12-week moving average of SOI and the 2-week moving average of maximum temperature were the most important factors influencing the variation in the weekly occurrence of the four DENV serotypes, the likelihoods of the occurrence of the four DENV serotypes may be unequal under the same environmental conditions, and occurrence may be influenced by changes in global and local environmental conditions in Cairns.

  7. El Niño-Southern Oscillation, local weather and occurrences of dengue virus serotypes

    NASA Astrophysics Data System (ADS)

    Huang, Xiaodong; Clements, Archie C. A.; Williams, Gail; Devine, Gregor; Tong, Shilu; Hu, Wenbiao

    2015-11-01

    Severe dengue fever is usually associated with secondary infection by a dengue virus (DENV) serotype (1 to 4) that is different to the serotype of the primary infection. Dengue outbreaks only occur following importations of DENV in Cairns, Australia. However, the majority of imported cases do not result in autochthonous transmission in Cairns. Although DENV transmission is strongly associated with the El Niño-Southern Oscillation (ENSO) climate cycle and local weather conditions, the frequency and potential risk factors of infections with the different DENV serotypes, including whether or not they differ, is unknown. This study used a classification tree model to identify the hierarchical interactions between Southern Oscillation Index (SOI), local weather factors, the presence of imported serotypes and the occurrence of the four autochthonous DENV serotypes from January 2000-December 2009 in Cairns. We found that the 12-week moving average of SOI and the 2-week moving average of maximum temperature were the most important factors influencing the variation in the weekly occurrence of the four DENV serotypes, the likelihoods of the occurrence of the four DENV serotypes may be unequal under the same environmental conditions, and occurrence may be influenced by changes in global and local environmental conditions in Cairns.

  8. Estimation of climate change impact on dead fuel moisture at local scale by using weather generators

    NASA Astrophysics Data System (ADS)

    Pellizzaro, Grazia; Bortolu, Sara; Dubrovsky, Martin; Arca, Bachisio; Ventura, Andrea; Duce, Pierpaolo

    2015-04-01

    The moisture content of dead fuel is an important variable in fire ignition and fire propagation. Moisture exchange in dead materials is controlled by physical processes, and is clearly dependent on atmospheric changes. According to projections of future climate in Southern Europe, changes in temperature, precipitation and extreme events are expected. More prolonged drought seasons could influence fuel moisture content and, consequently, the number of days characterized by high ignition danger in Mediterranean ecosystems. The low resolution of the climate data provided by the general circulation models (GCMs) represents a limitation for evaluating climate change impacts at local scale. For this reason, the climate research community has called to develop appropriate downscaling techniques. One of the downscaling approaches, which transform the raw outputs from the climate models (GCMs or RCMs) into data with more realistic structure, is based on linking a stochastic weather generator with the climate model outputs. Weather generators linked to climate change scenarios can therefore be used to create synthetic weather series (air temperature and relative humidity, wind speed and precipitation) representing present and future climates at local scale. The main aims of this work are to identify useful tools to determine potential impacts of expected climate change on dead fuel status in Mediterranean shrubland and, in particular, to estimate the effect of climate changes on the number of days characterized by critical values of dead fuel moisture. Measurements of dead fuel moisture content (FMC) in Mediterranean shrubland were performed by using humidity sensors in North Western Sardinia (Italy) for six years. Meteorological variables were also recorded. Data were used to determine the accuracy of the Canadian Fine Fuels Moisture Code (FFM code) in modelling moisture dynamics of dead fuel in Mediterranean vegetation. Critical threshold values of FFM code for

  9. Probabilities of adverse weather affecting transport in Europe: climatology and scenarios up to the 2050s

    NASA Astrophysics Data System (ADS)

    Vajda, A.; Tuomenvirta, H.; Jokinen, P.; Luomaranta, A.; Makkonen, L.; Tikanmäki, M.; Groenemeijer, P.; Saarikivi, P.; Michaelides, S.; Papadakis, M.; Tymvios, F.; Athanasatos, S.

    2012-04-01

    This paper provides the first comprehensive climatology of the adverse and extreme weather events affecting the European transport system by estimating the frequency (or probability) of phenomena for the present climate (1971-2000) and an overview of the projected changes in some of these extremes in the future climate until the 2050s. The research was carried out within the framework of the EWENT Project that addresses the European Union (EU) policies and strategies related to climate change, with a particular focus on extreme weather impacts on the EU transportation system. This project is funded by the Seventh Framework Programme (Transports, call ID FPT7-TPT-2008-RTD-1). The analyzed phenomena are wind, snow, blizzards, heavy precipitation, cold spells and heat waves. In addition, reduced visibility conditions determined by fog and dust events, small-scale phenomena affecting the transport system, such as thunderstorms, lightning, large hail and tornadoes and events damaging infrastructure of the transport system, have been considered. Frequency and probability analysis of past and present ex¬tremes were performed using observational and atmospheric reanalysis data. Future changes in the probability of severe events were assessed based on six regional climate model simulations produced in the FP6 ENSEMBLES project (http://www.ensembles-eu.org/). To facilitate the assessment of impacts and consequences of extreme phenomena on a continental level, the WP2 Deliverable introduces a regionalization of the European extreme phenomena, defining the climate zones with similarities in extreme phenomena. The projected changes as well as large natural variability in weather extremes on the transportation network will have impacts of both signs. The decline of extreme cold and snowfall over most of the continent implies a positive impact on road, rail, inland water and air transportation, e.g., by reducing snow removal. However, even with a general decreasing trend in

  10. A Synoptic Weather Typing Approach and Its application to Assess Climate Change Impacts on Extreme Weather Events at Local Scale in South-Central Canada

    NASA Astrophysics Data System (ADS)

    Shouquan Cheng, Chad; Li, Qian; Li, Guilong

    2010-05-01

    The synoptic weather typing approach has become popular in evaluating the impacts of climate change on a variety of environmental problems. One of the reasons is its ability to categorize a complex set of meteorological variables as a coherent index, which can facilitate analyses of local climate change impacts. The weather typing method has been successfully applied in Environment Canada for several research projects to analyze climatic change impacts on a number of extreme weather events, such as freezing rain, heavy rainfall, high-/low-flow events, air pollution, and human health. These studies comprise of three major parts: (1) historical simulation modeling to verify the extreme weather events, (2) statistical downscaling to provide station-scale future hourly/daily climate data, and (3) projections of changes in frequency and intensity of future extreme weather events in this century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology and hydrology and a number of linear/nonlinear regression techniques were applied. Furthermore, a formal model result verification process has been built into each of the three parts of the projects. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. The modeled results from these projects found that the frequency and intensity of future extreme weather events are projected to significantly increase under a changing climate in this century. This talk will introduce these research projects and outline the modeling exercise and result verification process. The major findings on future projections from the studies will be summarized in the presentation as well. One of the major conclusions from the studies is that the procedures (including synoptic weather typing) used in the studies are useful for climate change impact analysis on future extreme weather events. The implication of

  11. California Coastal Low Clouds: Variability and Influences across Climate to Weather and Continental to Local Scales

    NASA Astrophysics Data System (ADS)

    Schwartz, Rachel E.

    Low coastal stratiform clouds (stratus, stratocumulus, and fog), referred to here as coastal low cloudiness (CLC), are a persistent seasonal feature of continental west coasts, including California. The importance of CLC ranges across fields, with applications ranging from solar resource forecasting, growth of endemic species, and heat wave expression and related health impacts. This dissertation improves our understanding of California's summertime CLC by describing its variability and influences on a range of scales from multidecadal to daily and continental to local. A novel achievement is the development of a new 19-year satellite-derived low cloud record. Trained on airport observations, this high resolution record plays a critical role in the description of CLC at finer spatial and shorter timescales. Observations at coastal airports from Alaska to southern California reveal coherent interannual to interdecadal variation of CLC. The leading mode of CLC variability, accounting for nearly 40% of the total variance, and the majority of individual airports, exhibit decreasing low cloudiness from 1950 to 2012. The coherent patterns of CLC variability are organized by North Pacific Sea Surface Temperature (SST) anomalies, linked to the Pacific Decadal Oscillation (PDO). The new satellite-derived low cloud retrieval reveals, in rich spatial texture, considerable variability in CLC within May-September. The average maximum cloudiness moves northward along the coast, from northern Baja, Mexico to northern California, from May to early August. Both component parts of lower tropospheric stability (LTS), SST and free-troposphere temperature, control this seasonal movement. The peak timing of cloudiness and daytime maximum temperatures are most closely aligned in northern California. On weather timescales, daily CLC anomalies are most strongly related to stability anomalies to the north (climatologically upwind) of the CLC region. CLC is strongly linked to stability in

  12. Can local climate variability be explained by weather patterns? A multi-station evaluation for the Rhine basin

    NASA Astrophysics Data System (ADS)

    Murawski, Aline; Bürger, Gerd; Vorogushyn, Sergiy; Merz, Bruno

    2016-10-01

    To understand past flood changes in the Rhine catchment and in particular the role of anthropogenic climate change in extreme flows, an attribution study relying on a proper GCM (general circulation model) downscaling is needed. A downscaling based on conditioning a stochastic weather generator on weather patterns is a promising approach. This approach assumes a strong link between weather patterns and local climate, and sufficient GCM skill in reproducing weather pattern climatology. These presuppositions are unprecedentedly evaluated here using 111 years of daily climate data from 490 stations in the Rhine basin and comprehensively testing the number of classification parameters and GCM weather pattern characteristics. A classification based on a combination of mean sea level pressure, temperature, and humidity from the ERA20C reanalysis of atmospheric fields over central Europe with 40 weather types was found to be the most appropriate for stratifying six local climate variables. The corresponding skill is quite diverse though, ranging from good for radiation to poor for precipitation. Especially for the latter it was apparent that pressure fields alone cannot sufficiently stratify local variability. To test the skill of the latest generation of GCMs from the CMIP5 ensemble in reproducing the frequency, seasonality, and persistence of the derived weather patterns, output from 15 GCMs is evaluated. Most GCMs are able to capture these characteristics well, but some models showed consistent deviations in all three evaluation criteria and should be excluded from further attribution analysis.

  13. Assimilating data from an unmanned aircraft into a local-scale numerical weather forecast

    NASA Astrophysics Data System (ADS)

    Jonassen, M. O.; Ólafsson, H.; Ágústsson, H.; Rögnvaldsson, Ó.; Reuder, J.

    2012-04-01

    In this paper, it is demonstrated how temperature, humidity and wind profile data of the lower troposphere obtained with ultra light weight Unmanned Aerial System (UAS) can be used to improve high resolution numerical weather simuluations by four dimensional data assimilation (FDDA). The combined UAS and FDDA system is applied to a case study of a weak northeasterly flow in Southwest Iceland which took place during the international MOSO field campaign on 19 July, 2009. The situation was characterised by high diurnal boundary layer temperature variation leading to thermally driven flow, predominantly in the form of sea breeze. The main improvement of the simulation using FDDA is the mitigation of a boundary layer temperature deficit of 1-2 K. The corresponding deepening of a South-west Iceland thermal low leads both to a more accurately simulated and stronger sea breeze and an enhancement of the local part of the synoptic flow. In addition, a fog residing over the Reykjanes pensinsula to the southwest of Reykjavik in the control simulation, causing a temperature underestimation of up to 8 K is largely corrected for through the data assimilation. The assimilation of temperature and humidity profiles has clearly a larger effect than assimilating only the wind profiles. UAS represents a novel instrument platform with a large potential within the atmospheric sciences. The presented method of using UAS data for assimilation into a high resolution numerical weather simulation is likely to have a wide range of future applications, wind energy and improvements of targeted weather forecasts for search and rescue missions being some of them.

  14. The Space Physics of Life: Searching for Biosignatures on Habitable Icy Worlds Affected by Space Weathering

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2006-01-01

    Accessible surfaces of the most likely astrobiological habitats (Mars, Europa, Titan) in the solar system beyond Earth are exposed to various chemical and hydrologic weathering processes directly or indirectly induced by interaction with the overlying space environment. These processes can be both beneficial, through provision of chemical compounds and energy, and destructive, through chemical dissociation or burial, to detectable presence of biosignatures. Orbital, suborbital, and surface platforms carrying astrobiological instrumentation must survive, and preferably exploit, space environment interactions to reach these habitats and search for evidence of life or its precursors. Experience from Mars suggests that any detection of biosignatures must be accompanied by characterization of the local chemical environment and energy sources including irradiation by solar ultraviolet photons and energetic particles from the space environment. Orbital and suborbital surveys of surface chemistry and astrobiological potential in the context of the space environment should precede targeted in-situ measurements to maximize probability of biosignature detection through site selection. The Space Physics of Life (SPOL) investigation has recently been proposed to the NASA Astrobiology Institute and is briefly described in this presentation. SPOL is the astrobiologically relevant study of the interactions and relationships of potentially? or previously inhabited, bodies of the solar system with the surrounding environments. This requires an interdisciplinary effort in space physics, planetary science, and radiation biology. The proposed investigation addresses the search for habitable environments, chemical resources to support life, and techniques for detection of organic and inorganic signs of life in the context of the space environment.

  15. How climate and weather affect the erosion risk in the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Wahl, T.; Plant, N. G.

    2015-12-01

    Oceanographic variables such as mean sea level, tides, storm surges, and waves are drivers of erosion, and they act on different time scales ranging from hours (associated with weather) to seasonal and decadal variations and trends (associated with climate). Here we explore how the related sea-state conditions affect the erosion risk in the northern Gulf of Mexico for past and future climate scenarios. From the climate perspective we find that long-term trends in the relevant variables have caused an increase of ~30% in the erosion risk since the 1980s; at least half of this increase was due to changes in the wave climate. In the next decades, sea level rise will likely become the dominating driver and may, in combination with ongoing changes in the wave climate (and depending on the emission scenario), escalate the erosion risk by up to 300% over the next 30 years. We also find significant changes in the seasonal cycles of sea level and significant wave height, which have in combination caused a considerable increase of the erosion risk in summer and decrease in winter (superimposed onto the long-term trends). The influence of weather is assessed with a copula-based multivariate sea storm model in a Monte-Carlo framework; i.e. we simulate hundreds of thousands of artificial but physically consistent sea-state conditions to quantify how different our understanding of the present day erosion risk would be if we had seen more or less extreme combinations of the different sea-state parameters over the last three decades. We find, for example, that total water levels (tide + surge + wave run-up) associated with 100-year return periods may be underestimated by up to 30% and that the average number of impact hours - when total water levels exceeded the height of the dune toe (collision) or dune crest (overwash) - could have been up to 50% higher than what we inferred based on the actually observed oceanographic conditions. Assessing erosion risk in such a probabilistic

  16. Seasonality, weather and climate affect home range size in roe deer across a wide latitudinal gradient within Europe.

    PubMed

    Morellet, Nicolas; Bonenfant, Christophe; Börger, Luca; Ossi, Federico; Cagnacci, Francesca; Heurich, Marco; Kjellander, Petter; Linnell, John D C; Nicoloso, Sandro; Sustr, Pavel; Urbano, Ferdinando; Mysterud, Atle

    2013-11-01

    1. Because many large mammal species have wide geographical ranges, spatially distant populations may be confronted with different sets of environmental conditions. Investigating how home range (HR) size varies across environmental gradients should yield a better understanding of the factors affecting large mammal ecology. 2. We evaluated how HR size of a large herbivore, the roe deer (Capreolus capreolus), varies in relation to seasonality, latitude (climate), weather, plant productivity and landscape features across its geographical range in Western Europe. As roe deer are income breeders, expected to adjust HR size continuously to temporal variation in food resources and energetic requirements, our baseline prediction was for HR size to decrease with proxies of resource availability. 3. We used GPS locations of roe deer collected from seven study sites (EURODEER collaborative project) to estimate fixed-kernel HR size at weekly and monthly temporal scales. We performed an unusually comprehensive analysis of variation in HR size among and within populations over time across the geographical range of a single species using generalized additive mixed models and linear mixed models, respectively. 4. Among populations, HR size decreased with increasing values for proxies of forage abundance, but increased with increases in seasonality, stochastic variation of temperature, latitude and snow cover. Within populations, roe deer HR size varied over time in relation to seasonality and proxies of forage abundance in a consistent way across the seven populations. Thus, our findings were broadly consistent across the distributional range of this species, demonstrating a strong and ubiquitous link between the amplitude and timing of environmental seasonality and HR size at the continental scale. 5. Overall, the variability in average HR size of roe deer across Europe reflects the interaction among local weather, climate and seasonality, providing valuable insight into the

  17. Linked Environment for Atmospheric Discovery (LEAD): Transforming the Sensing and Numerical Prediction of High Impact Local Weather Through Dynamic Adaptation

    NASA Astrophysics Data System (ADS)

    Ramamurthy, M.; Droegemeier, K.

    2006-12-01

    Those who have experienced the devastation of a tornado, the raging waters of a flash flood, or the paralyzing impacts of lake-effect snows understand that mesoscale weather develops rapidly, often with considerable uncertainty with regard to location. Such weather is also locally intense and frequently influenced by processes on both larger and smaller scales. Ironically, few of the technologies used to observe the atmosphere, predict its evolution, and compute, transmit, or store information about it operate in a manner that accommodates the dynamic behavior of mesoscale weather. Radars do not adaptively scan specific regions of thunderstorms; numerical models are run largely on fixed time schedules in fixed configurations; and cyberinfrastructure does not allow meteorological tools to run on-demand, change configurations in response to the weather, or provide the fault tolerance needed for rapid reconfiguration. As a result, today's weather technology is highly constrained and far from optimal when applied to any particular situation. This presentation describes a major paradigm shift now underway in the field of meteorology -- away from today's environment in which remote sensing systems, atmospheric prediction models, and hazardous weather detection systems operate in fixed configurations, and on fixed schedules largely independent of weather -- to one in which they can change their configuration dynamically in response to the evolving weather. A major driver of this change is a project known as Linked Environments for Atmospheric Discovery (LEAD) -- a 5-year NSF Large Information Technology Research (ITR) grant that is developing cyberinfrastructure to allow scientists, students, tools and sensors to interact with weather. This presentation will describe the research and technology development being performed to establish this capability

  18. The NOAA Local Climate Analysis Tool - An Application in Support of a Weather Ready Nation

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Horsfall, F. M.

    2012-12-01

    Citizens across the U.S., including decision makers from the local to the national level, have a multitude of questions about climate, such as the current state and how that state fits into the historical context, and more importantly, how climate will impact them, especially with regard to linkages to extreme weather events. Developing answers to these types of questions for locations has typically required extensive work to gather data, conduct analyses, and generate relevant explanations and graphics. Too frequently providers don't have ready access to or knowledge of reliable, trusted data sets, nor sound, scientifically accepted analysis techniques such that they can provide a rapid response to queries they receive. In order to support National Weather Service (NWS) local office forecasters with information they need to deliver timely responses to climate-related questions from their customers, we have developed the Local Climate Analysis Tool (LCAT). LCAT uses the principles of artificial intelligence to respond to queries, in particular, through use of machine technology that responds intelligently to input from users. A user translates customer questions into primary variables and issues and LCAT pulls the most relevant data and analysis techniques to provide information back to the user, who in turn responds to their customer. Most responses take on the order of 10 seconds, which includes providing statistics, graphical displays of information, translations for users, metadata, and a summary of the user request to LCAT. Applications in Phase I of LCAT, which is targeted for the NWS field offices, include Climate Change Impacts, Climate Variability Impacts, Drought Analysis and Impacts, Water Resources Applications, Attribution of Extreme Events, and analysis techniques such as time series analysis, trend analysis, compositing, and correlation and regression techniques. Data accessed by LCAT are homogenized historical COOP and Climate Prediction Center

  19. Identifying biologically meaningful hot-weather events using threshold temperatures that affect life-history.

    PubMed

    Cunningham, Susan J; Kruger, Andries C; Nxumalo, Mthobisi P; Hockey, Philip A R

    2013-01-01

    Increases in the frequency, duration and intensity of heat waves are frequently evoked in climate change predictions. However, there is no universal definition of a heat wave. Recent, intense hot weather events have caused mass mortalities of birds, bats and even humans, making the definition and prediction of heat wave events that have the potential to impact populations of different species an urgent priority. One possible technique for defining biologically meaningful heat waves is to use threshold temperatures (T(thresh)) above which known fitness costs are incurred by species of interest. We set out to test the utility of this technique using T(thresh) values that, when exceeded, affect aspects of the fitness of two focal southern African bird species: the southern pied babbler Turdiodes bicolor (T(thresh) = 35.5 °C) and the common fiscal Lanius collaris (T(thresh) = 33 °C). We used these T(thresh) values to analyse trends in the frequency, duration and intensity of heat waves of magnitude relevant to the focal species, as well as the annual number of hot days (maximum air temperature > T(thresh)), in north-western South Africa between 1961 and 2010. Using this technique, we were able to show that, while all heat wave indices increased during the study period, most rapid increases for both species were in the annual number of hot days and in the maximum intensity (and therefore intensity variance) of biologically meaningful heat waves. Importantly, we also showed that warming trends were not uniform across the study area and that geographical patterns in warming allowed both areas of high risk and potential climate refugia to be identified. We discuss the implications of the trends we found for our focal species, and the utility of the T(thresh) technique as a conservation tool.

  20. Does the preferential microbial colonisation of ferromagnesian minerals affect mineral weathering in soil?

    PubMed

    Wilson, Michael J; Certini, Giacomo; Campbell, Colin D; Anderson, Ian C; Hillier, Stephen

    2008-09-01

    Fungal activity is thought to play a direct and effective role in the breakdown and dissolution of primary minerals and in the synthesis of clay minerals in soil environments, with important consequences for plant growth and ecosystem functioning. We have studied primary mineral weathering in volcanic soils developed on trachydacite in southern Tuscany using a combination of qualitative and quantitative mineralogical and microbiological techniques. Specifically, we characterized the weathering and microbiological colonization of the magnetically separated ferromagnesian minerals (biotite and orthopyroxene) and non-ferromagnesian constituents (K-feldspar and volcanic glass) of the coarse sand fraction (250-1,000 microm). Our results show that in the basal horizons of the soils, the ferromagnesian minerals are much more intensively colonized by microorganisms than K-feldspar and glass, but that the composition of the microbial communities living on the two mineral fractions is similar. Moreover, X-ray diffraction, optical and scanning electron microscope observations show that although the ferromagnesian minerals are preferentially associated with an embryonic form of the clay mineral halloysite, they are still relatively fresh. We interpret our results as indicating that in this instance microbial activity, and particularly fungal activity, has not been an effective agent of mineral weathering, that the association with clay minerals is indirect, and that fungal weathering of primary minerals may not be as important a source of plant nutrients as previously claimed.

  1. Thinking about the Weather: How Display Salience and Knowledge Affect Performance in a Graphic Inference Task

    ERIC Educational Resources Information Center

    Hegarty, Mary; Canham, Matt S.; Fabrikant, Sara I.

    2010-01-01

    Three experiments examined how bottom-up and top-down processes interact when people view and make inferences from complex visual displays (weather maps). Bottom-up effects of display design were investigated by manipulating the relative visual salience of task-relevant and task-irrelevant information across different maps. Top-down effects of…

  2. Predators determine how weather affects the spatial niche of lizard prey: exploring niche dynamics at a fine scale.

    PubMed

    Lopez-Darias, Marta; Schoener, Thomas W; Spiller, David A; Losos, Jonathan B

    2012-12-01

    Although abiotic and biotic factors can interact to shape the spatial niche of a species, studies that explore the interactive effects of both at a local scale are rare. We demonstrate that one of the main axes (perch height) characterizing the spatial niche of a common lizard, Anolis sagrei, varies according to the interactive effects of weather and the activity of a larger predatory lizard, Leiocephalus carinatus. Results were completely consistent: no matter how favorable the weather conditions for using the ground (mainly characterized by temperature, humidity, wind speed, rain), A. sagrei did not do so if the predator was present. Hence, great behavioral plasticity enabled A. sagrei to adjust its use of space very quickly. To the best of our knowledge, these results constitute the first field demonstration for anoles (and possibly for other animals as well) of how time-varying environmental conditions and predator presence interact to produce short-term changes in utilization along a major niche axis.

  3. Soil microbial activity is affected by Roundup WeatherMax and pesticides applied to cotton (Gossypium hirsutum).

    PubMed

    Lancaster, Sarah H; Haney, Richard L; Senseman, Scott A; Hons, Frank M; Chandler, James M

    2006-09-20

    Adoption of glyphosate-based weed control systems has led to increased use of the herbicide with continued use of additional pesticides. Combinations of pesticides may affect soil microbial activity differently than pesticides applied alone. Research was conducted to evaluate the influence of glyphosate-based cotton pest management systems on soil microbial activity. Soil was treated with commercial formulations of trifluralin, aldicarb, and mefenoxam + pentachloronitrobenzene (PCNB) with or without glyphosate (applied as Roundup WeatherMax). The soil microbial activity was measured by quantifying C and N mineralization. Soil microbial biomass was determined using the chloroform fumigation-incubation method. Soils treated with glyphosate alone exhibited greater cumulative C mineralization 30 days after treatment than all other treatments, which were similar to the untreated control. The addition of Roundup WeatherMax reduced C mineralization in soils treated with fluometuron, aldicarb, or mefenoxam + PCNB formulations. These results indicate that glyphosate-based herbicides alter the soil microbial response to other pesticides.

  4. Local weather, regional climate, and annual survival of the northern spotted owl

    USGS Publications Warehouse

    Glenn, E.M.; Anthony, R.G.; Forsman, E.D.; Olson, G.S.

    2011-01-01

    We used an information-theoretical approach and Cormack-Jolly-Seber models for open populations in program MARK to examine relationships between survival rates of Northern Spotted Owls and a variety of local weather variables and long-term climate variables. In four of the six populations examined, survival was positively associated with wetter than normal conditions during the growing season or high summer temperatures. At the three study areas located at the highest elevations, survival was positively associated with winter temperature but also had a negative or quadratic relation with the number of storms and winter precipitation. A metaanalysis of all six areas combined indicated that annual survival was most strongly associated with phase shifts in the Southern Oscillation and Pacific Decadal Oscillation, which reflect large-scale temperature and precipitation patterns in this region. Climate accounted for a variable amount (1-41%) of the total process variation in annual survival but for more year-to-year variation (3-66%) than did spatial variation among owl territories (0-7%). Negative associations between survival and cold, wet winters and nesting seasons were similar to those found in other studies of the Spotted Owl. The relationships between survival and growing-season precipitation and regional climate patterns, however, had not been reported for this species previously. Climate-change models for the first half of the 21st century predict warmer, wetter winters and hotter, drier summers for the Pacific Northwest. Our results indicate that these conditions could decrease Spotted Owl survival in some areas. Copyright ?? The Cooper Ornithological Society 2011.

  5. Farm management, environment, and weather factors jointly affect the probability of spinach contamination by generic Escherichia coli at the preharvest stage.

    PubMed

    Park, Sangshin; Navratil, Sarah; Gregory, Ashley; Bauer, Arin; Srinath, Indumathi; Szonyi, Barbara; Nightingale, Kendra; Anciso, Juan; Jun, Mikyoung; Han, Daikwon; Lawhon, Sara; Ivanek, Renata

    2014-04-01

    The National Resources Information (NRI) databases provide underutilized information on the local farm conditions that may predict microbial contamination of leafy greens at preharvest. Our objective was to identify NRI weather and landscape factors affecting spinach contamination with generic Escherichia coli individually and jointly with farm management and environmental factors. For each of the 955 georeferenced spinach samples (including 63 positive samples) collected between 2010 and 2012 on 12 farms in Colorado and Texas, we extracted variables describing the local weather (ambient temperature, precipitation, and wind speed) and landscape (soil characteristics and proximity to roads and water bodies) from NRI databases. Variables describing farm management and environment were obtained from a survey of the enrolled farms. The variables were evaluated using a mixed-effect logistic regression model with random effects for farm and date. The model identified precipitation as a single NRI predictor of spinach contamination with generic E. coli, indicating that the contamination probability increases with an increasing mean amount of rain (mm) in the past 29 days (odds ratio [OR] = 3.5). The model also identified the farm's hygiene practices as a protective factor (OR = 0.06) and manure application (OR = 52.2) and state (OR = 108.1) as risk factors. In cross-validation, the model showed a solid predictive performance, with an area under the receiver operating characteristic (ROC) curve of 81%. Overall, the findings highlighted the utility of NRI precipitation data in predicting contamination and demonstrated that farm management, environment, and weather factors should be considered jointly in development of good agricultural practices and measures to reduce produce contamination.

  6. Farm Management, Environment, and Weather Factors Jointly Affect the Probability of Spinach Contamination by Generic Escherichia coli at the Preharvest Stage

    PubMed Central

    Navratil, Sarah; Gregory, Ashley; Bauer, Arin; Srinath, Indumathi; Szonyi, Barbara; Nightingale, Kendra; Anciso, Juan; Jun, Mikyoung; Han, Daikwon; Lawhon, Sara; Ivanek, Renata

    2014-01-01

    The National Resources Information (NRI) databases provide underutilized information on the local farm conditions that may predict microbial contamination of leafy greens at preharvest. Our objective was to identify NRI weather and landscape factors affecting spinach contamination with generic Escherichia coli individually and jointly with farm management and environmental factors. For each of the 955 georeferenced spinach samples (including 63 positive samples) collected between 2010 and 2012 on 12 farms in Colorado and Texas, we extracted variables describing the local weather (ambient temperature, precipitation, and wind speed) and landscape (soil characteristics and proximity to roads and water bodies) from NRI databases. Variables describing farm management and environment were obtained from a survey of the enrolled farms. The variables were evaluated using a mixed-effect logistic regression model with random effects for farm and date. The model identified precipitation as a single NRI predictor of spinach contamination with generic E. coli, indicating that the contamination probability increases with an increasing mean amount of rain (mm) in the past 29 days (odds ratio [OR] = 3.5). The model also identified the farm's hygiene practices as a protective factor (OR = 0.06) and manure application (OR = 52.2) and state (OR = 108.1) as risk factors. In cross-validation, the model showed a solid predictive performance, with an area under the receiver operating characteristic (ROC) curve of 81%. Overall, the findings highlighted the utility of NRI precipitation data in predicting contamination and demonstrated that farm management, environment, and weather factors should be considered jointly in development of good agricultural practices and measures to reduce produce contamination. PMID:24509926

  7. Carcass Type Affects Local Scavenger Guilds More than Habitat Connectivity

    PubMed Central

    Olson, Zachary H.; Beasley, James C.; Rhodes, Olin E.

    2016-01-01

    Scavengers and decomposers provide an important ecosystem service by removing carrion from the environment. Scavenging and decomposition are known to be temperature-dependent, but less is known about other factors that might affect carrion removal. We conducted an experiment in which we manipulated combinations of patch connectivity and carcass type, and measured responses by local scavenger guilds along with aspects of carcass depletion. We conducted twelve, 1-month trials in which five raccoon (Procyon lotor), Virginia opossum (Didelphis virginiana), and domestic rabbit (Oryctolagus spp.) carcasses (180 trials total) were monitored using remote cameras in 21 forest patches in north-central Indiana, USA. Of 143 trials with complete data, we identified fifteen species of vertebrate scavengers divided evenly among mammalian (N = 8) and avian species (N = 7). Fourteen carcasses (9.8%) were completely consumed by invertebrates, vertebrates exhibited scavenging behavior at 125 carcasses (87.4%), and four carcasses (2.8%) remained unexploited. Among vertebrates, mammals scavenged 106 carcasses, birds scavenged 88 carcasses, and mammals and birds scavenged 69 carcasses. Contrary to our expectations, carcass type affected the assemblage of local scavenger guilds more than patch connectivity. However, neither carcass type nor connectivity explained variation in temporal measures of carcass removal. Interestingly, increasing richness of local vertebrate scavenger guilds contributed moderately to rates of carrion removal (≈6% per species increase in richness). We conclude that scavenger-specific differences in carrion utilization exist among carcass types and that reliable delivery of carrion removal as an ecosystem service may depend on robust vertebrate and invertebrate communities acting synergistically. PMID:26886299

  8. ADP1 Affects Plant Architecture by Regulating Local Auxin Biosynthesis

    PubMed Central

    Li, Shibai; Qin, Genji; Novák, Ondřej; Pěnčík, Aleš; Ljung, Karin; Aoyama, Takashi; Liu, Jingjing; Murphy, Angus; Gu, Hongya; Tsuge, Tomohiko; Qu, Li-Jia

    2014-01-01

    Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion) transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs. PMID:24391508

  9. ADP1 affects plant architecture by regulating local auxin biosynthesis.

    PubMed

    Li, Ruixi; Li, Jieru; Li, Shibai; Qin, Genji; Novák, Ondřej; Pěnčík, Aleš; Ljung, Karin; Aoyama, Takashi; Liu, Jingjing; Murphy, Angus; Gu, Hongya; Tsuge, Tomohiko; Qu, Li-Jia

    2014-01-01

    Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion) transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs.

  10. Weather daily variation in winter and its effect on behavior and affective states in day-care children

    NASA Astrophysics Data System (ADS)

    Ciucci, Enrica; Calussi, Pamela; Menesini, Ersilia; Mattei, Alessandra; Petralli, Martina; Orlandini, Simone

    2011-05-01

    This study aimed to analyze the impact of winter weather conditions on young children's behavior and affective states by examining a group of 61 children attending day-care centers in Florence (Italy). Participants were 33 males, 28 females and their 11 teachers. The mean age of the children at the beginning of the observation period was 24.1 months. The day-care teachers observed the children's behavioral and emotional states during the morning before their sleeping time and filled in a questionnaire for each baby five times over a winter period of 3 weeks. Air temperature, relative humidity, air pressure and solar radiation data were collected every 15 min from a weather station located in the city center of Florence. At the same time, air temperature and relative humidity data were collected in the classroom and in the garden of each day-care center. We used multilevel linear models to evaluate the extent to which children's emotional and behavioral states could be predicted by weather conditions, controlling for child characteristics (gender and age). The data showed that relative humidity and solar radiation were the main predictors of the children's emotional and behavioral states. The outdoor humidity had a significant positive effect on frustration, sadness and aggression; solar radiation had a significant negative effect only on sadness, suggesting that a sunny winter day makes children more cheerful. The results are discussed in term of implications for parents and teachers to improve children's ecological environment.

  11. Identification of the key weather factors affecting overwintering success of Apolygus lucorum eggs in dead host tree branches.

    PubMed

    Pan, Hongsheng; Liu, Bing; Lu, Yanhui; Desneux, Nicolas

    2014-01-01

    Understanding the effects of weather on insect population dynamics is crucial to simulate and forecast pest outbreaks, which is becoming increasingly important with the effects of climate change. The mirid bug Apolygus lucorum is an important pest on cotton, fruit trees and other crops in China, and primarily lays its eggs on dead parts of tree branches in the fall for subsequent overwintering. As such, the eggs that hatch the following spring are most strongly affected by ambient weather factors, rather than by host plant biology. In this study, we investigated the effects of three major weather factors: temperature, relative humidity and rainfall, on the hatching rate of A. lucorum eggs overwintering on dead branches of Chinese date tree (Ziziphus jujuba). Under laboratory conditions, rainfall (simulated via soaking) was necessary for the hatching of overwintering A. lucorum eggs. In the absence of rainfall (unsoaked branches), very few nymphs successfully emerged under any of the tested combinations of temperature and relative humidity. In contrast, following simulated rainfall, the hatching rate of the overwintering eggs increased dramatically. Hatching rate and developmental rate were positively correlated with relative humidity and temperature, respectively. Under field conditions, the abundance of nymphs derived from overwintering eggs was positively correlated with rainfall amount during the spring seasons of 2009-2013, while the same was not true for temperature and relative humidity. Overall, our findings indicate that rainfall is the most important factor affecting the hatching rate of overwintering A. lucorum eggs on dead plant parts and nymph population levels during the spring season. It provides the basic information for precisely forecasting the emergence of A. lucorum and subsequently timely managing its population in spring, which will make it possible to regional control of this insect pest widely occurring in multiple crops in summer.

  12. Identification of the Key Weather Factors Affecting Overwintering Success of Apolygus lucorum Eggs in Dead Host Tree Branches

    PubMed Central

    Pan, Hongsheng; Liu, Bing; Lu, Yanhui; Desneux, Nicolas

    2014-01-01

    Understanding the effects of weather on insect population dynamics is crucial to simulate and forecast pest outbreaks, which is becoming increasingly important with the effects of climate change. The mirid bug Apolygus lucorum is an important pest on cotton, fruit trees and other crops in China, and primarily lays its eggs on dead parts of tree branches in the fall for subsequent overwintering. As such, the eggs that hatch the following spring are most strongly affected by ambient weather factors, rather than by host plant biology. In this study, we investigated the effects of three major weather factors: temperature, relative humidity and rainfall, on the hatching rate of A. lucorum eggs overwintering on dead branches of Chinese date tree (Ziziphus jujuba). Under laboratory conditions, rainfall (simulated via soaking) was necessary for the hatching of overwintering A. lucorum eggs. In the absence of rainfall (unsoaked branches), very few nymphs successfully emerged under any of the tested combinations of temperature and relative humidity. In contrast, following simulated rainfall, the hatching rate of the overwintering eggs increased dramatically. Hatching rate and developmental rate were positively correlated with relative humidity and temperature, respectively. Under field conditions, the abundance of nymphs derived from overwintering eggs was positively correlated with rainfall amount during the spring seasons of 2009–2013, while the same was not true for temperature and relative humidity. Overall, our findings indicate that rainfall is the most important factor affecting the hatching rate of overwintering A. lucorum eggs on dead plant parts and nymph population levels during the spring season. It provides the basic information for precisely forecasting the emergence of A. lucorum and subsequently timely managing its population in spring, which will make it possible to regional control of this insect pest widely occurring in multiple crops in summer. PMID

  13. Optimized circulation and weather type classifications relating large-scale atmospheric conditions to local PM10 concentrations in Bavaria

    NASA Astrophysics Data System (ADS)

    Weitnauer, C.; Beck, C.; Jacobeit, J.

    2013-12-01

    In the last decades the critical increase of the emission of air pollutants like nitrogen dioxide, sulfur oxides and particulate matter especially in urban areas has become a problem for the environment as well as human health. Several studies confirm a risk of high concentration episodes of particulate matter with an aerodynamic diameter < 10 μm (PM10) for the respiratory tract or cardiovascular diseases. Furthermore it is known that local meteorological and large scale atmospheric conditions are important influencing factors on local PM10 concentrations. With climate changing rapidly, these connections need to be better understood in order to provide estimates of climate change related consequences for air quality management purposes. For quantifying the link between large-scale atmospheric conditions and local PM10 concentrations circulation- and weather type classifications are used in a number of studies by using different statistical approaches. Thus far only few systematic attempts have been made to modify consisting or to develop new weather- and circulation type classifications in order to improve their ability to resolve local PM10 concentrations. In this contribution existing weather- and circulation type classifications, performed on daily 2.5 x 2.5 gridded parameters of the NCEP/NCAR reanalysis data set, are optimized with regard to their discriminative power for local PM10 concentrations at 49 Bavarian measurement sites for the period 1980 to 2011. Most of the PM10 stations are situated in urban areas covering urban background, traffic and industry related pollution regimes. The range of regimes is extended by a few rural background stations. To characterize the correspondence between the PM10 measurements of the different stations by spatial patterns, a regionalization by an s-mode principal component analysis is realized on the high-pass filtered data. The optimization of the circulation- and weather types is implemented using two representative

  14. Gauging climate change effects at local scales: weather-based indices to monitor insect harassment in caribou.

    PubMed

    Witter, Leslie A; Johnson, Chris J; Croft, Bruno; Gunn, Anne; Poirier, Lisa M

    2012-09-01

    Climate change is occurring at an accelerated rate in the Arctic. Insect harassment may be an important link between increased summer temperature and reduced body condition in caribou and reindeer (both Rangifer tarandus). To examine the effects of climate change at a scale relevant to Rangifer herds, we developed monitoring indices using weather to predict activity of parasitic insects across the central Arctic. During 2007-2009, we recorded weather conditions and used carbon dioxide baited traps to monitor activity of mosquitoes (Culicidae), black flies (Simuliidae), and oestrid flies (Oestridae) on the post-calving and summer range of the Bathurst barren-ground caribou (Rangifer tarandus groenlandicus) herd in Northwest Territories and Nunavut, Canada. We developed statistical models representing hypotheses about effects of weather, habitat, location, and temporal variables on insect activity. We used multinomial logistic regression to model mosquito and black fly activity, and logistic regression to model oestrid fly presence. We used information theory to select models to predict activity levels of insects. Using historical weather data, we used hindcasting to develop a chronology of insect activity on the Bathurst range from 1957 to 2008. Oestrid presence and mosquito and black fly activity levels were explained by temperature. Wind speed, light intensity, barometric pressure, relative humidity, vegetation, topography, location, time of day, and growing degree-days also affected mosquito and black fly levels. High predictive ability of all models justified the use of weather to index insect activity. Retrospective analyses indicated conditions favoring mosquito activity declined since the late 1950s, while predicted black fly and oestrid activity increased. Our indices can be used as monitoring tools to gauge potential changes in insect harassment due to climate change at scales relevant to caribou herds.

  15. Influence of local calibration on the quality of online wet weather discharge monitoring: feedback from five international case studies.

    PubMed

    Caradot, Nicolas; Sonnenberg, Hauke; Rouault, Pascale; Gruber, Günter; Hofer, Thomas; Torres, Andres; Pesci, Maria; Bertrand-Krajewski, Jean-Luc

    2015-01-01

    This paper reports about experiences gathered from five online monitoring campaigns in the sewer systems of Berlin (Germany), Graz (Austria), Lyon (France) and Bogota (Colombia) using ultraviolet-visible (UV-VIS) spectrometers and turbidimeters. Online probes are useful for the measurement of highly dynamic processes, e.g. combined sewer overflows (CSO), storm events, and river impacts. The influence of local calibration on the quality of online chemical oxygen demand (COD) measurements of wet weather discharges has been assessed. Results underline the need to establish local calibration functions for both UV-VIS spectrometers and turbidimeters. It is suggested that practitioners calibrate locally their probes using at least 15-20 samples. However, these samples should be collected over several events and cover most of the natural variability of the measured concentration. For this reason, the use of automatic peristaltic samplers in parallel to online monitoring is recommended with short representative sampling campaigns during wet weather discharges. Using reliable calibration functions, COD loads of CSO and storm events can be estimated with a relative uncertainty of approximately 20%. If no local calibration is established, concentrations and loads are estimated with a high error rate, questioning the reliability and meaning of the online measurement. Similar results have been obtained for total suspended solids measurements.

  16. Weather patterns as a downscaling tool - evaluating their skill in stratifying local climate variables

    NASA Astrophysics Data System (ADS)

    Murawski, Aline; Bürger, Gerd; Vorogushyn, Sergiy; Merz, Bruno

    2016-04-01

    The use of a weather pattern based approach for downscaling of coarse, gridded atmospheric data, as usually obtained from the output of general circulation models (GCM), allows for investigating the impact of anthropogenic greenhouse gas emissions on fluxes and state variables of the hydrological cycle such as e.g. on runoff in large river catchments. Here we aim at attributing changes in high flows in the Rhine catchment to anthropogenic climate change. Therefore we run an objective classification scheme (simulated annealing and diversified randomisation - SANDRA, available from the cost733 classification software) on ERA20C reanalyses data and apply the established classification to GCMs from the CMIP5 project. After deriving weather pattern time series from GCM runs using forcing from all greenhouse gases (All-Hist) and using natural greenhouse gas forcing only (Nat-Hist), a weather generator will be employed to obtain climate data time series for the hydrological model. The parameters of the weather pattern classification (i.e. spatial extent, number of patterns, classification variables) need to be selected in a way that allows for good stratification of the meteorological variables that are of interest for the hydrological modelling. We evaluate the skill of the classification in stratifying meteorological data using a multi-variable approach. This allows for estimating the stratification skill for all meteorological variables together, not separately as usually done in existing similar work. The advantage of the multi-variable approach is to properly account for situations where e.g. two patterns are associated with similar mean daily temperature, but one pattern is dry while the other one is related to considerable amounts of precipitation. Thus, the separation of these two patterns would not be justified when considering temperature only, but is perfectly reasonable when accounting for precipitation as well. Besides that, the weather patterns derived from

  17. Thinking about the weather: How display salience and knowledge affect performance in a graphic inference task.

    PubMed

    Hegarty, Mary; Canham, Matt S; Fabrikant, Sara I

    2010-01-01

    Three experiments examined how bottom-up and top-down processes interact when people view and make inferences from complex visual displays (weather maps). Bottom-up effects of display design were investigated by manipulating the relative visual salience of task-relevant and task-irrelevant information across different maps. Top-down effects of domain knowledge were investigated by examining performance and eye fixations before and after participants learned relevant meteorological principles. Map design and knowledge interacted such that salience had no effect on performance before participants learned the meteorological principles; however, after learning, participants were more accurate if they viewed maps that made task-relevant information more visually salient. Effects of display design on task performance were somewhat dissociated from effects of display design on eye fixations. The results support a model in which eye fixations are directed primarily by top-down factors (task and domain knowledge). They suggest that good display design facilitates performance not just by guiding where viewers look in a complex display but also by facilitating processing of the visual features that represent task-relevant information at a given display location. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  18. From daily movements to population distributions: weather affects competitive ability in a guild of soaring birds

    PubMed Central

    Shepard, Emily L. C.; Lambertucci, Sergio A.

    2013-01-01

    The ability of many animals to access and exploit food is dependent on the ability to move. In the case of scavenging birds, which use soaring flight to locate and exploit ephemeral resources, the cost and speed of movement vary with meteorological factors. These factors are likely to modify the nature of interspecific interactions, as well as individual movement capacity, although the former are less well understood. We used aeronautical models to examine how soaring performance varies with weather within a guild of scavenging birds and the consequences this has for access to a common resource. Birds could be divided broadly into those with low wing loading that are more competitive in conditions with weak updraughts and low winds (black vultures and caracaras), and those with high wing loading that are well adapted for soaring in strong updraughts and moderate to high winds (Andean condors). Spatial trends in meteorological factors seem to confine scavengers with high wing loading to the mountains where they out-compete other birds; a trend that is borne out in worldwide distributions of the largest species. However, model predictions and carcass observations suggest that the competitive ability of these and other birds varies with meteorological conditions in areas where distributions overlap. This challenges the view that scavenging guilds are structured by fixed patterns of dominance and suggests that competitive ability varies across spatial and temporal scales, which may ultimately be a mechanism promoting diversity among aerial scavengers. PMID:24026471

  19. From daily movements to population distributions: weather affects competitive ability in a guild of soaring birds.

    PubMed

    Shepard, Emily L C; Lambertucci, Sergio A

    2013-11-06

    The ability of many animals to access and exploit food is dependent on the ability to move. In the case of scavenging birds, which use soaring flight to locate and exploit ephemeral resources, the cost and speed of movement vary with meteorological factors. These factors are likely to modify the nature of interspecific interactions, as well as individual movement capacity, although the former are less well understood. We used aeronautical models to examine how soaring performance varies with weather within a guild of scavenging birds and the consequences this has for access to a common resource. Birds could be divided broadly into those with low wing loading that are more competitive in conditions with weak updraughts and low winds (black vultures and caracaras), and those with high wing loading that are well adapted for soaring in strong updraughts and moderate to high winds (Andean condors). Spatial trends in meteorological factors seem to confine scavengers with high wing loading to the mountains where they out-compete other birds; a trend that is borne out in worldwide distributions of the largest species. However, model predictions and carcass observations suggest that the competitive ability of these and other birds varies with meteorological conditions in areas where distributions overlap. This challenges the view that scavenging guilds are structured by fixed patterns of dominance and suggests that competitive ability varies across spatial and temporal scales, which may ultimately be a mechanism promoting diversity among aerial scavengers.

  20. Space Weather Activities at SERC for IHY: (1) Local Education, (2) Global Outreach and (3) Data Base Service (P61)

    NASA Astrophysics Data System (ADS)

    Yumoto, K.; Magdas/Cpmn Group

    2006-11-01

    arnoldyuki@serc.kyushu-u.ac.jp The Space Environment Research Center (SERC), Kyushu University (KU), conducts everyday space weather “now casting”. There are two main goals in this effort: (1) to train and educate KU students about the complexities of the Sun-Earth system so that they can become space weather forecasters in the future, (2) to globally disseminate space weather information from SERC as a service to the scientific community and the general public. In order to understand the complexities of the Sun-Earth system, KU students analyze the data of four regions: (1) solar surface, (2) solar wind, (3) geospace, and (4) the Earth’s surface. Using real-time public data from SOHO Real Time Movies, Solar Monitor, NASA/GSFC/SDAC, and SEC‘s Anonymous FTP Server, they check each day the Sun Spot Number, locations of active regions and coronal holes, and identify solar flare events: GOES X-Ray Flux, CME: SOHO/ LASCO- C2, 3, and Proton Event: GOES Proton Flux. By analyzing ACE Real Time Data, KU students examine the solar wind (Speed, Density, Temperature) and Interplanetary Magnetic Field (IMF: Bt, Bz, Phi), and identify events of sector boundary, CIR, CME, and Shock/Discontinuity. To understand magnetic circumstances in geospace and on the Earth’s Surface, KU students analyze storms and substorms using Dst index (Kyoto Univ.), Kp index (NOAA), and Magnetic Pulsation Index (Pc 3, 4, and 5: SERC). Every morning KU students create a space weather report and then discuss it with the staff at SERC for local training and education. The report and its details are disseminated on the SERC Home Page (http://www.serc.kyushu-u.ac.jp) to provide "global outreach" for space weather information. MAGDAS (Magnetic Data Acquisition System) data are obtained from the Circum-pan Pacific Magnetometer Network (CPMN) locations during the IHY period (2007-2008). MAGDAS magnetometers are installed at 50 stations along the 210o magnetic meridian and the magnetic dip equator

  1. Great Historical Events That Were Significantly Affected by the Weather. Part 11: Meteorological Aspects of the Battle of Waterloo.

    NASA Astrophysics Data System (ADS)

    Neumann, J.

    1993-03-01

    The Waterloo Campaign extended from 15 to 18 June 1815, with the decisive Battle of Waterloo taking place on the 18th. The campaign involved the "Army of the North" of Napoleon on the one hand, and the Anglo-Dutch and Prussian armies on the other. The latter were commanded, respectively, by the Duke of Wellington and Prince Blücher. A shallow but active low and associated warm and cold fronts crossed the battle area on the 16th and 17th.The weather had important effects on the battles. On the 16th, in a battle between part of the French army and part of the Prussian army, at the village of Ligny, about 40 km south-southeast of Brussels, thunderstorms connected with the passage of the aforementioned warm front made the use of muskets impracticable.However, the most important weather effects developed on the 17th and during the night from the 17th to the 18th. Violent thunderstorms occurred early in the afternoon of the 17th close to Ligny, while Napoleon was in the process of attacking the Anglo-Dutch force at Quatre Bras. The rains turned the ground into a quagmire, making it impossible for the French artillery and cavalry, and even for the infantry, to move across the fields in extended order, as required by the emperor. The French advance was so greatly slowed down that Wellington was able to withdraw his lighter force to a better position near Waterloo. Thus, the Anglo-Dutch force was almost completely preserved for the decisive battle of the next day.The rainshowers of the 17th and the night from the 17th to the 18th softened the ground to an extent that, on the morning of the 18th, Napoleon and his artillery experts judged that the battle-the Battle of Waterloo-could not be started before a late hour of the forenoon [1130 local standard time (LST)]. Until the arrival of the Prussian force, about 1600 LST and later, the battle tended to go in favor of the French, but the Prussians turned the tide of the fighting.The paper quotes judgments of military

  2. How Hospitable Are Space Weather Affected Habitable Zones? The Role of Ion Escape

    NASA Astrophysics Data System (ADS)

    Airapetian, Vladimir S.; Glocer, Alex; Khazanov, George V.; Loyd, R. O. P.; France, Kevin; Sojka, Jan; Danchi, William C.; Liemohn, Michael W.

    2017-02-01

    Atmospheres of exoplanets in the habitable zones around active young G-K-M stars are subject to extreme X-ray and EUV (XUV) fluxes from their host stars that can initiate atmospheric erosion. Atmospheric loss affects exoplanetary habitability in terms of surface water inventory, atmospheric pressure, the efficiency of greenhouse warming, and the dosage of the UV surface irradiation. Thermal escape models suggest that exoplanetary atmospheres around active K-M stars should undergo massive hydrogen escape, while heavier species including oxygen will accumulate forming an oxidizing atmosphere. Here, we show that non-thermal oxygen ion escape could be as important as thermal, hydrodynamic H escape in removing the constituents of water from exoplanetary atmospheres under supersolar XUV irradiation. Our models suggest that the atmospheres of a significant fraction of Earth-like exoplanets around M dwarfs and active K stars exposed to high XUV fluxes will incur a significant atmospheric loss rate of oxygen and nitrogen, which will make them uninhabitable within a few tens to hundreds of Myr, given a low replenishment rate from volcanism or cometary bombardment. Our non-thermal escape models have important implications for the habitability of the Proxima Centauri’s terrestrial planet.

  3. Exploring single polarization X-band weather radar potentials for local meteorological and hydrological applications

    NASA Astrophysics Data System (ADS)

    Lo Conti, Francesco; Francipane, Antonio; Pumo, Dario; Noto, Leonardo V.

    2015-12-01

    The aim of this study is to evaluate the potential use of a low-cost single polarization X-band weather radar, verified by a disdrometer and a dense rain gauge network, installed as a supporting tool for hydrological applications and for monitoring the urban area of Palermo (Italy). Moreover, this study focuses on studying the temporal variability of the Z-R relation for Mediterranean areas. The radar device is provided with an automatic operational ground-clutter filter developed by the producer. Attention has been paid to the development of blending procedures between radar measurements and other auxiliary instruments and to their suitability for both meteorological and hydrological applications. A general scheme enveloping these procedures and achieving the combination of data retrieved from the weather radar, the optical disdrometer, and the rain gauge network distributed within the monitored area has been designed. The first step of the procedure consists in the calibration of the radar equation by comparing the match between the radar raw data and the disdrometer reflectivity. The second step is the calibration of the Z-R relationship based on the retrieval of parameters that optimize the transformation of disdrometer reflectivity into rainfall intensity, starting from the disdrometer rainfall intensity measurements. The Z-R calibration has been applied to the disdrometer measurements retrieved during a 1 year observation period, after a preliminary segmentation into separated rainfall events. This analysis allows for the characterization of the variability of the Z-R relationship from event to event, deriving some considerations about its predictability as well. Results obtained from this analysis provide a geographical specific record, for the Mediterranean area, for the study of the spatial variability of the Z-R relationship. Finally, the set of operational procedures also includes a correction procedure of radar estimates based on rain gauge data. Each

  4. Comparison of different models for ground-level atmospheric turbulence strength (C(n)(2)) prediction with a new model according to local weather data for FSO applications.

    PubMed

    Arockia Bazil Raj, A; Arputha Vijaya Selvi, J; Durairaj, S

    2015-02-01

    Atmospheric parameters strongly affect the performance of free-space optical communication (FSOC) systems when the optical wave is propagating through the inhomogeneous turbulence transmission medium. Developing a model to get an accurate prediction of the atmospheric turbulence strength (C(n)(2)) according to meteorological parameters (weather data) becomes significant to understand the behavior of the FSOC channel during different seasons. The construction of a dedicated free-space optical link for the range of 0.5 km at an altitude of 15.25 m built at Thanjavur (Tamil Nadu) is described in this paper. The power level and beam centroid information of the received signal are measured continuously with weather data at the same time using an optoelectronic assembly and the developed weather station, respectively, and are recorded in a data-logging computer. Existing models that exhibit relatively fewer prediction errors are briefed and are selected for comparative analysis. Measured weather data (as input factors) and C(n)(2) (as a response factor) of size [177,147×4] are used for linear regression analysis and to design mathematical models more suitable in the test field. Along with the model formulation methodologies, we have presented the contributions of the input factors' individual and combined effects on the response surface and the coefficient of determination (R(2)) estimated using analysis of variance tools. An R(2) value of 98.93% is obtained using the new model, model equation V, from a confirmatory test conducted with a testing data set of size [2000×4]. In addition, the prediction accuracies of the selected and the new models are investigated during different seasons in a one-year period using the statistics of day, week-averaged, month-averaged, and seasonal-averaged diurnal Cn2 profiles, and are verified in terms of the sum of absolute error (SAE). A Cn2 prediction maximum average SAE of 2.3×10(-13)  m(-2/3) is achieved using the new model in

  5. A support system for assessing local vulnerability to weather and climate

    USGS Publications Warehouse

    Coletti, Alex; Howe, Peter D.; Yarnal, Brent; Wood, Nathan J.

    2013-01-01

    The changing number and nature of weather- and climate-related natural hazards is causing more communities to need to assess their vulnerabilities. Vulnerability assessments, however, often require considerable expertise and resources that are not available or too expensive for many communities. To meet the need for an easy-to-use, cost-effective vulnerability assessment tool for communities, a prototype online vulnerability assessment support system was built and tested. This prototype tool guides users through a stakeholder-based vulnerability assessment that breaks the process into four easy-to-implement steps. Data sources are integrated in the online environment so that perceived risks—defined and prioritized qualitatively by users—can be compared and discussed against the impacts that past events have had on the community. The support system is limited in scope, and the locations of the case studies do not provide a sufficiently broad range of sample cases. The addition of more publically available hazard databases combined with future improvements in the support system architecture and software will expand opportunities for testing and fully implementing the support system.

  6. Intra- and interseasonal autoregressive prediction of dengue outbreaks using local weather and regional climate for a tropical environment in Colombia.

    PubMed

    Eastin, Matthew D; Delmelle, Eric; Casas, Irene; Wexler, Joshua; Self, Cameron

    2014-09-01

    Dengue fever transmission results from complex interactions between the virus, human hosts, and mosquito vectors-all of which are influenced by environmental factors. Predictive models of dengue incidence rate, based on local weather and regional climate parameters, could benefit disease mitigation efforts. Time series of epidemiological and meteorological data for the urban environment of Cali, Colombia are analyzed from January of 2000 to December of 2011. Significant dengue outbreaks generally occur during warm-dry periods with extreme daily temperatures confined between 18°C and 32°C--the optimal range for mosquito survival and viral transmission. Two environment-based, multivariate, autoregressive forecast models are developed that allow dengue outbreaks to be anticipated from 2 weeks to 6 months in advance. These models have the potential to enhance existing dengue early warning systems, ultimately supporting public health decisions on the timing and scale of vector control efforts.

  7. Intra- and Interseasonal Autoregressive Prediction of Dengue Outbreaks Using Local Weather and Regional Climate for a Tropical Environment in Colombia

    PubMed Central

    Eastin, Matthew D.; Delmelle, Eric; Casas, Irene; Wexler, Joshua; Self, Cameron

    2014-01-01

    Dengue fever transmission results from complex interactions between the virus, human hosts, and mosquito vectors—all of which are influenced by environmental factors. Predictive models of dengue incidence rate, based on local weather and regional climate parameters, could benefit disease mitigation efforts. Time series of epidemiological and meteorological data for the urban environment of Cali, Colombia are analyzed from January of 2000 to December of 2011. Significant dengue outbreaks generally occur during warm-dry periods with extreme daily temperatures confined between 18°C and 32°C—the optimal range for mosquito survival and viral transmission. Two environment-based, multivariate, autoregressive forecast models are developed that allow dengue outbreaks to be anticipated from 2 weeks to 6 months in advance. These models have the potential to enhance existing dengue early warning systems, ultimately supporting public health decisions on the timing and scale of vector control efforts. PMID:24957546

  8. Socioeconomic factors affecting local support for black bear recovery strategies.

    PubMed

    Morzillo, Anita T; Mertig, Angela G; Hollister, Jeffrey W; Garner, Nathan; Liu, Jianguo

    2010-06-01

    There is global interest in recovering locally extirpated carnivore species. Successful efforts to recover Louisiana black bear in Louisiana have prompted interest in recovery throughout the species' historical range. We evaluated support for three potential black bear recovery strategies prior to public release of a black bear conservation and management plan for eastern Texas, United States. Data were collected from 1,006 residents living in proximity to potential recovery locations, particularly Big Thicket National Preserve. In addition to traditional logistic regression analysis, we used conditional probability analysis to statistically and visually evaluate probabilities of public support for potential black bear recovery strategies based on socioeconomic characteristics. Allowing black bears to repopulate the region on their own (i.e., without active reintroduction) was the recovery strategy with the greatest probability of acceptance. Recovery strategy acceptance was influenced by many socioeconomic factors. Older and long-time local residents were most likely to want to exclude black bears from the area. Concern about the problems that black bears may cause was the only variable significantly related to support or non-support across all strategies. Lack of personal knowledge about black bears was the most frequent reason for uncertainty about preferred strategy. In order to reduce local uncertainty about possible recovery strategies, we suggest that wildlife managers focus outreach efforts on providing local residents with general information about black bears, as well as information pertinent to minimizing the potential for human-black bear conflict.

  9. Socioeconomic Factors Affecting Local Support for Black Bear Recovery Strategies

    NASA Astrophysics Data System (ADS)

    Morzillo, Anita T.; Mertig, Angela G.; Hollister, Jeffrey W.; Garner, Nathan; Liu, Jianguo

    2010-06-01

    There is global interest in recovering locally extirpated carnivore species. Successful efforts to recover Louisiana black bear in Louisiana have prompted interest in recovery throughout the species’ historical range. We evaluated support for three potential black bear recovery strategies prior to public release of a black bear conservation and management plan for eastern Texas, United States. Data were collected from 1,006 residents living in proximity to potential recovery locations, particularly Big Thicket National Preserve. In addition to traditional logistic regression analysis, we used conditional probability analysis to statistically and visually evaluate probabilities of public support for potential black bear recovery strategies based on socioeconomic characteristics. Allowing black bears to repopulate the region on their own (i.e., without active reintroduction) was the recovery strategy with the greatest probability of acceptance. Recovery strategy acceptance was influenced by many socioeconomic factors. Older and long-time local residents were most likely to want to exclude black bears from the area. Concern about the problems that black bears may cause was the only variable significantly related to support or non-support across all strategies. Lack of personal knowledge about black bears was the most frequent reason for uncertainty about preferred strategy. In order to reduce local uncertainty about possible recovery strategies, we suggest that wildlife managers focus outreach efforts on providing local residents with general information about black bears, as well as information pertinent to minimizing the potential for human-black bear conflict.

  10. Alternative splicing affects the subcellular localization of Drosha

    PubMed Central

    Link, Steffen; Grund, Stefanie E.; Diederichs, Sven

    2016-01-01

    The RNase III enzyme Drosha is a key factor in microRNA (miRNA) biogenesis and as such indispensable for cellular homeostasis and developmental processes. Together with its co-factor DGCR8, it converts the primary transcript (pri-miRNA) into the precursor hairpin (pre-miRNA) in the nucleus. While the middle and the C-terminal domain are crucial for pri-miRNA processing and DGCR8 binding, the function of the N-terminus remains cryptic. Different studies have linked this region to the subcellular localization of Drosha, stabilization and response to stress. In this study, we identify alternatively spliced Drosha transcripts that are devoid of a part of the arginine/serine-rich (RS-rich) domain and expressed in a large set of human cells. In contrast to their expected habitation, we find two isoforms also present in the cytoplasm, while the other two isoforms reside exclusively in the nucleus. Their processing activity for pri-miRNAs and the binding to co-factors remains unaltered. In multiple cell lines, the endogenous mRNA expression of the Drosha isoforms correlates with the localization of endogenous Drosha proteins. The pri-miRNA processing efficiency is not significantly different between groups of cells with or without cytoplasmic Drosha expression. In summary, we discovered novel isoforms of Drosha with differential subcellular localization pointing toward additional layers of complexity in the regulation of its activity. PMID:27185895

  11. Reproductive parameters of tropical lesser noddies respond to local variations in oceanographic conditions and weather

    NASA Astrophysics Data System (ADS)

    Monticelli, David; Ramos, Jaime A.; Catry, Teresa; Pedro, Patricia; Paiva, Vitor H.

    2014-02-01

    Most attempts to link seabirds and climate/oceanographic effects have concerned the Atlantic and Pacific Oceans with comparatively few studies in the tropical Indian Ocean. This paper examines the reproductive response of the lesser noddy Anous tenuirostris to temporal fluctuations in oceanographic and climatic conditions using 8 years of monitoring data from Aride Island (Seychelles), tropical Western Indian Ocean. We tested the hypothesis that breeding parameters (mean hatching date, mean egg size, hatching and fledging successes) and chick growth are influenced by local, seasonal oceanographic conditions as expressed by ocean primary productivity (surface chlorophyll-a concentrations; CC), sea surface temperature (SST) and wind speed. We also examined the relationship between lesser noddy breeding parameters and climate conditions recorded at the basin-wide scale of the Indian Ocean (Indian Ocean Dipole Mode Index, DMI). Our findings suggest that birds had a tendency to lay slightly larger eggs during breeding seasons (years) with higher CC during April-June (pre-laying, laying and incubation periods). Hatching date was positively related to SST in April-June, with the regression parameters suggesting that each 0.5 °C increase in SST meant a delay of approx.10 days in hatching date. A negative linear relationship was also apparent between hatching success and SST in June-August (hatching and chick-rearing periods), while the quadratic regression models detected a significant effect of wind speed in June-August on fledging success. Body mass increments of growing chicks averaged over 7-day periods were positively related with (2-week) lagged CC values and negatively related with (2-week) lagged SST values. No significant relationship between DMI and lesser noddy breeding parameters was found, but DMI indices were strongly correlated with local SST. Altogether, our results indicate that the reproduction of this top marine predator is dictated by fluctuations in

  12. Qualitative and quantitative descriptions of temperature: a study of the terminology used by local television weather forecasters to describe thermal sensation.

    PubMed

    Brunskill, Jeffrey C

    2010-03-01

    This paper presents a study of the relationship between quantitative and qualitative descriptions of temperature. Online weather forecast narratives produced by local television forecasters were collected from affiliates in 23 cities throughout the northeastern, central and southern portions of the United States from August 2007 to July 2008. The narratives were collected to study the terminology and reference frames that local forecasters use to describe predicted temperatures for the following day. The main objectives were to explore the adjectives used to describe thermal conditions and the impact that geographical and seasonal variations in thermal conditions have on these descriptions. The results of this empirical study offer some insights into the structure of weather narratives and suggest that spatiotemporal variations in the weather impact how forecasters describe the temperature to their local audiences. In a broader sense, this investigation builds upon research in biometeorology, urban planning and linguistics that has explored the physiological and psychological factors that influence subjective assessments of thermal sensation and comfort. The results of this study provide a basis to reason about how thermal comfort is conveyed in meteorological communications and how experiential knowledge derived from daily observations of the weather influence how we think about and discuss the weather.

  13. Qualitative and quantitative descriptions of temperature: a study of the terminology used by local television weather forecasters to describe thermal sensation

    NASA Astrophysics Data System (ADS)

    Brunskill, Jeffrey C.

    2010-03-01

    This paper presents a study of the relationship between quantitative and qualitative descriptions of temperature. Online weather forecast narratives produced by local television forecasters were collected from affiliates in 23 cities throughout the northeastern, central and southern portions of the United States from August 2007 to July 2008. The narratives were collected to study the terminology and reference frames that local forecasters use to describe predicted temperatures for the following day. The main objectives were to explore the adjectives used to describe thermal conditions and the impact that geographical and seasonal variations in thermal conditions have on these descriptions. The results of this empirical study offer some insights into the structure of weather narratives and suggest that spatiotemporal variations in the weather impact how forecasters describe the temperature to their local audiences. In a broader sense, this investigation builds upon research in biometeorology, urban planning and linguistics that has explored the physiological and psychological factors that influence subjective assessments of thermal sensation and comfort. The results of this study provide a basis to reason about how thermal comfort is conveyed in meteorological communications and how experiential knowledge derived from daily observations of the weather influence how we think about and discuss the weather.

  14. Space weathering on airless bodies

    NASA Astrophysics Data System (ADS)

    Pieters, Carle M.; Noble, Sarah K.

    2016-10-01

    Space weathering refers to alteration that occurs in the space environment with time. Lunar samples, and to some extent meteorites, have provided a benchmark for understanding the processes and products of space weathering. Lunar soils are derived principally from local materials but have accumulated a range of optically active opaque particles (OAOpq) that include nanophase metallic iron on/in rims formed on individual grains (imparting a red slope to visible and near-infrared reflectance) and larger iron particles (which darken across all wavelengths) such as are often found within the interior of recycled grains. Space weathering of other anhydrous silicate bodies, such as Mercury and some asteroids, produces different forms and relative abundance of OAOpq particles depending on the particular environment. If the development of OAOpq particles is minimized (such as at Vesta), contamination by exogenic material and regolith mixing become the dominant space weathering processes. Volatile-rich bodies and those composed of abundant hydrous minerals (dwarf planet Ceres, many dark asteroids, and outer solar system satellites) are affected by space weathering processes differently than the silicate bodies of the inner solar system. However, the space weathering products of these bodies are currently poorly understood and the physics and chemistry of space weathering processes in different environments are areas of active research.

  15. Local bacteria affect the efficacy of chemotherapeutic drugs

    PubMed Central

    Lehouritis, Panos; Cummins, Joanne; Stanton, Michael; Murphy, Carola T.; McCarthy, Florence O.; Reid, Gregor; Urbaniak, Camilla; Byrne, William L.; Tangney, Mark

    2015-01-01

    In this study, the potential effects of bacteria on the efficacy of frequently used chemotherapies was examined. Bacteria and cancer cell lines were examined in vitro and in vivo for changes in the efficacy of cancer cell killing mediated by chemotherapeutic agents. Of 30 drugs examined in vitro, the efficacy of 10 was found to be significantly inhibited by certain bacteria, while the same bacteria improved the efficacy of six others. HPLC and mass spectrometry analyses of sample drugs (gemcitabine, fludarabine, cladribine, CB1954) demonstrated modification of drug chemical structure. The chemoresistance or increased cytotoxicity observed in vitro with sample drugs (gemcitabine and CB1954) was replicated in in vivo murine subcutaneous tumour models. These findings suggest that bacterial presence in the body due to systemic or local infection may influence tumour responses or off-target toxicity during chemotherapy. PMID:26416623

  16. Trapped energetic ion dynamics affected by localized electric field perturbations

    NASA Astrophysics Data System (ADS)

    Nishimura, Seiya

    2016-01-01

    Trapped energetic ion orbits in helical systems are numerically simulated using the Lorentz model. Simulation results of precession drift frequencies of trapped energetic ions are benchmarked by those of analytic solutions. The effects of the electric field perturbation localized at the rational surface on trapped energetic ions are examined, where the perturbation has an arbitrary rotation frequency and an amplitude fixed in time. It is found that the trapped energetic ions resonantly interact with the perturbation, when the rotation frequency of the perturbation is comparable to the precession drift frequencies of trapped energetic ions. The simulation results are suggestive to a mechanism of the energetic-ion-induced interchange mode, which might be associated with the fishbone mode observed in helical systems.

  17. Does weather affect daily pain intensity levels in patients with acute low back pain? A prospective cohort study.

    PubMed

    Duong, Vicky; Maher, Chris G; Steffens, Daniel; Li, Qiang; Hancock, Mark J

    2016-05-01

    The aim of this study was to investigate the influence of various weather parameters on pain intensity levels in patients with acute low back pain (LBP). We performed a secondary analysis using data from the PACE trial that evaluated paracetamol (acetaminophen) in the treatment of acute LBP. Data on 1604 patients with LBP were included in the analysis. Weather parameters (precipitation, temperature, relative humidity, and air pressure) were obtained from the Australian Bureau of Meteorology. Pain intensity was assessed daily on a 0-10 numerical pain rating scale over a 2-week period. A generalised estimating equation analysis was used to examine the relationship between daily pain intensity levels and weather in three different time epochs (current day, previous day, and change between previous and current days). A second model was adjusted for important back pain prognostic factors. The analysis did not show any association between weather and pain intensity levels in patients with acute LBP in each of the time epochs. There was no change in strength of association after the model was adjusted for prognostic factors. Contrary to common belief, the results demonstrated that the weather parameters of precipitation, temperature, relative humidity, and air pressure did not influence the intensity of pain reported by patients during an episode of acute LBP.

  18. How do weather extremes affect rice productivity in a changing climate? An answer to episodic lack of sunshine.

    PubMed

    Choi, Woo-Jung; Lee, Myoung-Seok; Choi, Jae-Eul; Yoon, Sanghoo; Kim, Han-Yong

    2013-04-01

    Here, we experimentally examined how an episodic lack of sunshine (ELS), as an extreme weather event, would affect rice productivity under warming with elevated [CO2 ]. In 2009 and 2010, rice plants were grown at two levels of [CO2 ] (ca. 390 and 650 μl l(-1) ) and three levels of warming (≈ambient, +1.2 °C, and +2.2/2.4 °C) in six independent temperature gradient field chambers (three each for ambient and elevated [CO2 ]). At panicle initiation (PI), booting (BT), or flowering (FL), rice plants were exposed to ELS (ca. 18% of full sunlight) for 10-14 days consecutively. As expected, ELS elicited a significant reduction in aboveground biomass (AGB) and yields. However, elevated [CO2 ] had the potential to relieve the ELS-induced reduction in AGB and yield, whereas warming had the reverse effect for yields, without a significant warming × [CO2 ] interaction. When ELS applied at PI, BT, and FL, the extents to which warming-reduced yields (averaged across [CO2 ] levels) ranged from 9 to 25%, 7 to 14, and 10 to 18% at +1.2 °C, and ranged from 24 to 56%, 22 to 55%, and 18 to 46% at +2.2/2.4 °C across two seasons, respectively. Meanwhile, under normal sunshine they ranged from 1 to 3% at +1.2 °C and 7 to 21% at +2.2/2.4 °C. Warming predisposed rice plants that had experienced ELS to be more sensitive to spikelet sterility and spikelet number per panicle, accounting for most of the yield reductions. These findings provide evidence that an expected warming could further exacerbate rice productivity if ELS occurs simultaneously during reproductive stages. Our results collectively suggest that it might be critically important to consider extreme events for a holistic evaluation of the potential impact of warming and [CO2 ] on crop productivity, when considering changing climate.

  19. Knowing Their Place: The Blue Hill Observatory and the Value of Local Knowledge in an Era of Synoptic Weather Forecasting, 1884-1894.

    PubMed

    Bergman, James

    2016-09-01

    Argument The history of meteorology has focused a great deal on the "scaling up" of knowledge infrastructures through the development of national and global observation networks. This article argues that such efforts to scale up were paralleled by efforts to define a place for local knowledge. By examining efforts of the Blue Hill Meteorological Observatory, near Boston, Massachusetts, to issue local weather forecasts that competed with the centralized forecasts of the U.S. Signal Service, this article finds that Blue Hill, as a user of the Signal Service's observation network, developed a new understanding of local knowledge by combining local observations of the weather with the synoptic maps afforded by the nationwide telegraph network of the U.S. Signal Service. Blue Hill used these forecasts not only as a service, but also as evidence of the superiority of its model of local forecasting over the Signal Service's model, and in the process opened up larger questions about the value of a weather forecast and the value of different kinds of knowledge in meteorology.

  20. NASA Connect: 'Plane Weather'

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Excerpt from the NASA Connect show 'Plane Weather' This clip explains what high and low pressure weather systems are, and how these affect weather patterns. Weather affects our daily lives. The elements of weather: rain, wind, fog, ice and snow affect the operation and flight of an airplane. In this program, NASA and FAA researchers will introduce students to math, science, and weather; demonstrate how these elements influence flight; and show how NASA and FAA research is used to limit the effects of these elements on flight. Students will examine: the tools, techniques, and technologies used by engineers and scientists to detect these and other climatological factors affecting aircraft in flight. The lesson and classroom experiment will involve students in the scientific process and emphasizing problem solving, measurement, and reasoning skills.

  1. Phenosafranin inhibits nuclear localization of transglutaminase 2 without affecting its transamidase activity.

    PubMed

    Furutani, Yutaka; Toguchi, Mariko; Shrestha, Rajan; Kojima, Soichi

    2017-03-01

    Transglutaminase 2 (TG2) localizes to the nucleus and induces apoptosis through a crosslinking inactivation of Sp1 in JHH-7 cells treated with acyclic retinoid. We screened an inhibitor suppressing transamidase activity in the nucleus without affecting transamidase activity itself. Phenosafranin was found to inhibit nuclear localization of EGFP-tagged TG2 and dose-dependently reduce nuclear transamidase activity without affecting the activity in a tube. We concluded that phenosafranin was a novel TG2 inhibitor capable of suppressing its nuclear localization.

  2. Compute the Weather in Your Classroom.

    ERIC Educational Resources Information Center

    Meier, Beverly

    1988-01-01

    Discusses a weather prediction activity connecting local weather network by computer modem. Describes software for telecommunications, data gathering, preparation work, and instructional procedures. (YP)

  3. Local network parameters can affect inter-network phase lags in central pattern generators.

    PubMed

    Jones, S R; Kopell, N

    2006-01-01

    Weakly coupled phase oscillators and strongly coupled relaxation oscillators have different mechanisms for creating stable phase lags. Many oscillations in central pattern generators combine features of each type of coupling: local networks composed of strongly coupled relaxation oscillators are weakly coupled to similar local networks. This paper analyzes the phase lags produced by this combination of mechanisms and shows how the parameters of a local network, such as the decay time of inhibition, can affect the phase lags between the local networks. The analysis is motivated by the crayfish central pattern generator used for swimming, and uses techniques from geometrical singular perturbation theory.

  4. Fat, weather, and date affect migratory songbirds’ departure decisions, routes, and time it takes to cross the Gulf of Mexico

    USGS Publications Warehouse

    Deppe, Jill L.; Ward, Michael P.; Bolus, Rachel; Diehl, Robert H.; Celis-Murillo, A.; Zenzal, Theodore J.; Moore, Frank R.; Benson, Thomas J.; Smolinsky, Jaclyn A.; Schofield, Lynn N.; Enstrom, David A.; Paxton, Eben; Bohrer, Gil; Beveroth, Tara A.; Raim, Arlo; Obringer, Renee L.; Delaney, David; Cochran, William W.

    2015-01-01

    Approximately two thirds of migratory songbirds in eastern North America negotiate the Gulf of Mexico (GOM), where inclement weather coupled with no refueling or resting opportunities can be lethal. However, decisions made when navigating such features and their consequences remain largely unknown due to technological limitations of tracking small animals over large areas. We used automated radio telemetry to track three songbird species (Red-eyed Vireo, Swainson’s Thrush, Wood Thrush) from coastal Alabama to the northern Yucatan Peninsula (YP) during fall migration. Detecting songbirds after crossing ∼1,000 km of open water allowed us to examine intrinsic (age, wing length, fat) and extrinsic (weather, date) variables shaping departure decisions, arrival at the YP, and crossing times. Large fat reserves and low humidity, indicative of beneficial synoptic weather patterns, favored southward departure across the Gulf. Individuals detected in the YP departed with large fat reserves and later in the fall with profitable winds, and flight durations (mean = 22.4 h) were positively related to wind profit. Age was not related to departure behavior, arrival, or travel time. However, vireos negotiated the GOM differently than thrushes, including different departure decisions, lower probability of detection in the YP, and longer crossing times. Defense of winter territories by thrushes but not vireos and species-specific foraging habits may explain the divergent migratory behaviors. Fat reserves appear extremely important to departure decisions and arrival in the YP. As habitat along the GOM is degraded, birds may be limited in their ability to acquire fat to cross the Gulf.

  5. Fat, weather, and date affect migratory songbirds' departure decisions, routes, and time it takes to cross the Gulf of Mexico.

    PubMed

    Deppe, Jill L; Ward, Michael P; Bolus, Rachel T; Diehl, Robert H; Celis-Murillo, Antonio; Zenzal, Theodore J; Moore, Frank R; Benson, Thomas J; Smolinsky, Jaclyn A; Schofield, Lynn N; Enstrom, David A; Paxton, Eben H; Bohrer, Gil; Beveroth, Tara A; Raim, Arlo; Obringer, Renee L; Delaney, David; Cochran, William W

    2015-11-17

    Approximately two thirds of migratory songbirds in eastern North America negotiate the Gulf of Mexico (GOM), where inclement weather coupled with no refueling or resting opportunities can be lethal. However, decisions made when navigating such features and their consequences remain largely unknown due to technological limitations of tracking small animals over large areas. We used automated radio telemetry to track three songbird species (Red-eyed Vireo, Swainson's Thrush, Wood Thrush) from coastal Alabama to the northern Yucatan Peninsula (YP) during fall migration. Detecting songbirds after crossing ∼1,000 km of open water allowed us to examine intrinsic (age, wing length, fat) and extrinsic (weather, date) variables shaping departure decisions, arrival at the YP, and crossing times. Large fat reserves and low humidity, indicative of beneficial synoptic weather patterns, favored southward departure across the Gulf. Individuals detected in the YP departed with large fat reserves and later in the fall with profitable winds, and flight durations (mean = 22.4 h) were positively related to wind profit. Age was not related to departure behavior, arrival, or travel time. However, vireos negotiated the GOM differently than thrushes, including different departure decisions, lower probability of detection in the YP, and longer crossing times. Defense of winter territories by thrushes but not vireos and species-specific foraging habits may explain the divergent migratory behaviors. Fat reserves appear extremely important to departure decisions and arrival in the YP. As habitat along the GOM is degraded, birds may be limited in their ability to acquire fat to cross the Gulf.

  6. Fat, weather, and date affect migratory songbirds’ departure decisions, routes, and time it takes to cross the Gulf of Mexico

    PubMed Central

    Deppe, Jill L.; Ward, Michael P.; Bolus, Rachel T.; Diehl, Robert H.; Celis-Murillo, Antonio; Zenzal, Theodore J.; Moore, Frank R.; Benson, Thomas J.; Smolinsky, Jaclyn A.; Schofield, Lynn N.; Enstrom, David A.; Paxton, Eben H.; Bohrer, Gil; Beveroth, Tara A.; Raim, Arlo; Obringer, Renee L.; Delaney, David; Cochran, William W.

    2015-01-01

    Approximately two thirds of migratory songbirds in eastern North America negotiate the Gulf of Mexico (GOM), where inclement weather coupled with no refueling or resting opportunities can be lethal. However, decisions made when navigating such features and their consequences remain largely unknown due to technological limitations of tracking small animals over large areas. We used automated radio telemetry to track three songbird species (Red-eyed Vireo, Swainson’s Thrush, Wood Thrush) from coastal Alabama to the northern Yucatan Peninsula (YP) during fall migration. Detecting songbirds after crossing ∼1,000 km of open water allowed us to examine intrinsic (age, wing length, fat) and extrinsic (weather, date) variables shaping departure decisions, arrival at the YP, and crossing times. Large fat reserves and low humidity, indicative of beneficial synoptic weather patterns, favored southward departure across the Gulf. Individuals detected in the YP departed with large fat reserves and later in the fall with profitable winds, and flight durations (mean = 22.4 h) were positively related to wind profit. Age was not related to departure behavior, arrival, or travel time. However, vireos negotiated the GOM differently than thrushes, including different departure decisions, lower probability of detection in the YP, and longer crossing times. Defense of winter territories by thrushes but not vireos and species-specific foraging habits may explain the divergent migratory behaviors. Fat reserves appear extremely important to departure decisions and arrival in the YP. As habitat along the GOM is degraded, birds may be limited in their ability to acquire fat to cross the Gulf. PMID:26578793

  7. Weather Watch

    ERIC Educational Resources Information Center

    Bratt, Herschell Marvin

    1973-01-01

    Suggests a number of ways in which Federal Aviation Agency weather report printouts can be used in teaching the weather section of meteorology. These weather sequence reports can be obtained free of charge at most major airports. (JR)

  8. Energy, Weatherization and Indoor Air Quality

    EPA Pesticide Factsheets

    Climate change presents many challenges, including the production of severe weather events. These events and efforts to minimize their effects through weatherization can adversely affect indoor environments.

  9. NASA Connect: 'Plane Weather'

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Excerpt from the NASA Connect show 'Plane Weather' This clip explains what high and low pressure weather systems are, and how they form. Weather affects our daily lives. The elements of weather: rain, wind, fog, ice and snow affect the operation and flight of an airplane. In this program, NASA and FAA researchers will introduce students to math, science, and weather; demonstrate how these elements influence flight; and show how NASA and FAA research is used to limit the effects of these elements on flight. Students will examine: the tools, techniques, and technologies used by engineers and scientists to detect these and other climatological factors affecting aircraft in flight. The lesson and classroom experiment will involve students in the scientific process and emphasizing problem solving, measurement, and reasoning skills.

  10. Weather assessment and forecasting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data management program activities centered around the analyses of selected far-term Office of Applications (OA) objectives, with the intent of determining if significant data-related problems would be encountered and if so what alternative solutions would be possible. Three far-term (1985 and beyond) OA objectives selected for analyses as having potential significant data problems were large-scale weather forecasting, local weather and severe storms forecasting, and global marine weather forecasting. An overview of general weather forecasting activities and their implications upon the ground based data system is provided. Selected topics were specifically oriented to the use of satellites.

  11. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This month's insert, Severe Weather, has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in this poster are hurricanes,…

  12. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This article deals with a poster entitled, "Severe Weather," that has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in…

  13. National, State, and Local Trends: Environmental Scan of Trends and Key Issues Affecting Planning.

    ERIC Educational Resources Information Center

    Kangas, Jon; Budros, Kathleen; Yoshioka, Joyce

    This document is a collection of one-page summaries, or "Trends Newsletters" (Numbers 50, 54-7, 59-60, 67-71, and 73-91), that analyze the national, state, and local trends affecting planning for the San Jose/Evergreen Community College District in California. The document is divided into two sections: External Scan and Internal Scan.…

  14. On Observing the Weather

    ERIC Educational Resources Information Center

    Crane, Peter

    2004-01-01

    Rain, sun, snow, sleet, wind... the weather affects everyone in some way every day, and observing weather is a terrific activity to attune children to the natural world. It is also a great way for children to practice skills in gathering and recording information and to learn how to use simple tools in a standardized fashion. What better way to…

  15. Weathering of primary minerals and mobility of major elements in soils affected by an accidental spill of pyrite tailing.

    PubMed

    Martín, Francisco; Diez, María; García, Inés; Simón, Mariano; Dorronsoro, Carlos; Iriarte, Angel; Aguilar, José

    2007-05-25

    In the present work, soil profiles were sampled 40 days and three years after an accidental pyrite tailing spill from the Aznalcóllar mine (S Spain) in order to figure out the effects of the acidic solution draining from the tailing. The composition of the acidic solution, the mineralogy, and the total and soluble content of the major elements were analysed at varying depths. The results show a weathering process of carbonates and of primary silicates. Calcium released is leached or reacts with the sulphate ions to form gypsum. Magnesium, aluminium and potassium tend to leach from the uppermost millimetres of the soil, accumulating where the pH>/=5.0; also the iron, probably forming more or less complex hydroxysulphates, precipitate in the upper 5 cm. The strong releasing of soluble salts increases the electrical conductivity, while the soluble potassium tends to decrease in the uppermost part of the soil due to the neoformation of jarosite. Iron is soluble only where the pH

  16. How the Relativistic Motion Affect Quantum Fisher Information and Bell Non-locality for Multipartite state

    NASA Astrophysics Data System (ADS)

    Huang, Chun Yu; Ma, Wenchao; Wang, Dong; Ye, Liu

    2017-02-01

    In this work, the quantum fisher information (QFI) and Bell non-locality of a multipartite fermionic system are investigated. Unlike the currently existing research of QFI, we focus our attention on the differences between quantum fisher information and Bell non-locality under the relativistic framework. The results show that although the relativistic motion affects the strength of the non-locality, it does not change the physical structure of non-locality. However, unlike the case of non-locality, the relativistic motion not only influence the precision of the QFI Fϕ but also broke the symmetry of the function Fϕ. The results also show that for a special multipartite system, , the number of particles of a initial state do not affect the Fθ. Furthermore, we also find that Fθ is completely unaffected in non-inertial frame if there are inertial observers. Finally, in view of the decay behavior of QFI and non-locality under the non-inertial frame, we proposed a effective scheme to battle against Unruh effect.

  17. How the Relativistic Motion Affect Quantum Fisher Information and Bell Non-locality for Multipartite state

    PubMed Central

    Huang, Chun Yu; Ma, Wenchao; Wang, Dong; Ye, Liu

    2017-01-01

    In this work, the quantum fisher information (QFI) and Bell non-locality of a multipartite fermionic system are investigated. Unlike the currently existing research of QFI, we focus our attention on the differences between quantum fisher information and Bell non-locality under the relativistic framework. The results show that although the relativistic motion affects the strength of the non-locality, it does not change the physical structure of non-locality. However, unlike the case of non-locality, the relativistic motion not only influence the precision of the QFI Fϕ but also broke the symmetry of the function Fϕ. The results also show that for a special multipartite system, , the number of particles of a initial state do not affect the Fθ. Furthermore, we also find that Fθ is completely unaffected in non-inertial frame if there are inertial observers. Finally, in view of the decay behavior of QFI and non-locality under the non-inertial frame, we proposed a effective scheme to battle against Unruh effect. PMID:28145437

  18. Temporal dynamics of a local fish community are strongly affected by immigration from the surrounding metacommunity.

    PubMed

    Stoffels, Rick J; Clarke, Kenneth Robert; Linklater, Danielle S

    2015-01-01

    A 5-year time series of annual censuses was collected from a large floodplain lake to determine how dynamics of the local fish community were affected by changes in hydrological connectivity with the surrounding metacommunity. The lake was disconnected from the metacommunity for 1 year prior to our study and remained disconnected until 3 months before our third annual census, when a flood reconnected the lake to the metacommunity. We determined how changes in connectivity affected temporal dynamics of (1) local community composition and (2) the population composition, condition, and growth of catfish, to shed light on how immigration of other species might affect local population dynamics. Before reconnection, the community was likely shaped by interactions between the local environment and species traits. The reconnection caused significant immigration and change in community composition and correlated with a significant and abrupt decline in catfish condition, growth, and abundance; effects likely due to the immigration of a competitor with a similar trophic niche: carp. The community was slow to return to its preconnection state, which may be due to dispersal traits of the fishes, and a time-lag in the recovery of the local catfish population following transient intensification of species interactions. The dynamics observed were concordant with the species sorting and mass-effects perspectives of metacommunity theory. Floods cause episodic dispersal in floodplain fish metacommunities, and so, flood frequency determines the relative importance of regional and local processes. Local processes may be particularly important to certain species, but these species may need sufficient time between floods for population increase, before the next flood-induced dispersal episode brings competitors and predators that might cause population decline. Accordingly, species coexistence in these metacommunities may be facilitated by spatiotemporal storage effects, which may in

  19. Temporal dynamics of a local fish community are strongly affected by immigration from the surrounding metacommunity

    PubMed Central

    Stoffels, Rick J; Clarke, Kenneth Robert; Linklater, Danielle S

    2015-01-01

    A 5-year time series of annual censuses was collected from a large floodplain lake to determine how dynamics of the local fish community were affected by changes in hydrological connectivity with the surrounding metacommunity. The lake was disconnected from the metacommunity for 1 year prior to our study and remained disconnected until 3 months before our third annual census, when a flood reconnected the lake to the metacommunity. We determined how changes in connectivity affected temporal dynamics of (1) local community composition and (2) the population composition, condition, and growth of catfish, to shed light on how immigration of other species might affect local population dynamics. Before reconnection, the community was likely shaped by interactions between the local environment and species traits. The reconnection caused significant immigration and change in community composition and correlated with a significant and abrupt decline in catfish condition, growth, and abundance; effects likely due to the immigration of a competitor with a similar trophic niche: carp. The community was slow to return to its preconnection state, which may be due to dispersal traits of the fishes, and a time-lag in the recovery of the local catfish population following transient intensification of species interactions. The dynamics observed were concordant with the species sorting and mass-effects perspectives of metacommunity theory. Floods cause episodic dispersal in floodplain fish metacommunities, and so, flood frequency determines the relative importance of regional and local processes. Local processes may be particularly important to certain species, but these species may need sufficient time between floods for population increase, before the next flood-induced dispersal episode brings competitors and predators that might cause population decline. Accordingly, species coexistence in these metacommunities may be facilitated by spatiotemporal storage effects, which may in

  20. Weather & Weather Maps. Teacher's Manual.

    ERIC Educational Resources Information Center

    Metro, Peter M.; Green, Rachel E.

    This guide is intended to provide an opportunity for students to work with weather symbols used for reporting weather. Also included are exercises in location of United States cities by latitude and longitude, measurement of distances in miles and kilometers, and prediction of weather associated with various types of weather fronts. (RE)

  1. Removal of the local geomagnetic field affects reproductive growth in Arabidopsis.

    PubMed

    Xu, Chunxiao; Wei, Shufeng; Lu, Yan; Zhang, Yuxia; Chen, Chuanfang; Song, Tao

    2013-09-01

    The influence of the geomagnetic field-removed environment on Arabidopsis growth was investigated by cultivation of the plants in a near-null magnetic field and local geomagnetic field (45 µT) for the whole growth period under laboratory conditions. The biomass accumulation of plants in the near-null magnetic field was significantly suppressed at the time when plants were switching from vegetative growth to reproductive growth compared with that of plants grown in the local geomagnetic field, which was caused by a delay in the flowering of plants in the near-null magnetic field. At the early or later growth stage, no significant difference was shown in the biomass accumulation between the plants in the near-null magnetic field and local geomagnetic field. The average number of siliques and the production of seeds per plant in the near-null magnetic field was significantly lower by about 22% and 19%, respectively, than those of control plants. These resulted in a significant reduction of about 20% in the harvest index of plants in the near-null magnetic field compared with that of the controls. These results suggest that the removal of the local geomagnetic field negatively affects the reproductive growth of Arabidopsis, which thus affects the yield and harvest index.

  2. Incorporating Medium-Range Weather Forecasts in Seasonal Crop Scenarios over the Greater Horn of Africa to Support National/Regional/Local Decision Makers

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Husak, G. J.; Funk, C. C.; Verdin, J. P.

    2015-12-01

    The USAID's Famine Early Warning Systems Network (FEWS NET) provides seasonal assessments of crop conditions over the Greater Horn of Africa (GHA) and other food insecure regions. These assessments and current livelihood, nutrition, market conditions and conflicts are used to generate food security scenarios that help national, regional and local decision makers target their resources and mitigate socio-economic losses. Among the various tools that FEWS NET uses is the FAO's Water Requirement Satisfaction Index (WRSI). The WRSI is a simple yet powerful crop assessment model that incorporates current moisture conditions (at the time of the issuance of forecast), precipitation scenarios, potential evapotranspiration and crop parameters to categorize crop conditions into different classes ranging from "failure" to "very good". The WRSI tool has been shown to have a good agreement with local crop yields in the GHA region. At present, the precipitation scenarios used to drive the WRSI are based on either a climatological forecast (that assigns equal chances of occurrence to all possible scenarios and has no skill over the forecast period) or a sea-surface temperature anomaly based scenario (which at best have skill at the seasonal scale). In both cases, the scenarios fail to capture the skill that can be attained by initial atmospheric conditions (i.e., medium-range weather forecasts). During the middle of a cropping season, when a week or two of poor rains can have a devastating effect, two weeks worth of skillful precipitation forecasts could improve the skill of the crop scenarios. With this working hypothesis, we examine the value of incorporating medium-range weather forecasts in improving the skill of crop scenarios in the GHA region. We use the NCEP's Global Ensemble Forecast system (GEFS) weather forecasts and examine the skill of crop scenarios generated using the GEFS weather forecasts with respect to the scenarios based solely on the climatological forecast

  3. Phase noise effects on turbulent weather radar spectrum parameter estimation

    NASA Technical Reports Server (NTRS)

    Lee, Jonggil; Baxa, Ernest G., Jr.

    1990-01-01

    Accurate weather spectrum moment estimation is important in the use of weather radar for hazardous windshear detection. The effect of the stable local oscillator (STALO) instability (jitter) on the spectrum moment estimation algorithm is investigated. Uncertainty in the stable local oscillator will affect both the transmitted signal and the received signal since the STALO provides transmitted and reference carriers. The proposed approach models STALO phase jitter as it affects the complex autocorrelation of the radar return. The results can therefore by interpreted in terms of any source of system phase jitter for which the model is appropriate and, in particular, may be considered as a cumulative effect of all radar system sources.

  4. Understanding the Local Socio-political Processes Affecting Conservation Management Outcomes in Corbett Tiger Reserve, India

    NASA Astrophysics Data System (ADS)

    Rastogi, Archi; Hickey, Gordon M.; Badola, Ruchi; Hussain, Syed Ainul

    2014-05-01

    Several measures have been recommended to guarantee a sustainable population of tigers: sufficient inviolate spaces for a viable population, sufficient prey populations, trained and skilled manpower to guard against poaching and intrusion, banning trade in tiger products to reduce poaching, and importantly, the political will to precipitate these recommendations into implementation. Of these, the creation of sufficient inviolate spaces (generally in the form of protected areas) has created the most issues with local resource-dependent communities, often resulting in significant challenges for tiger conservation policy and management. Very little empirical research has, however, been done to understand and contextualize the local-level socio-political interactions that may influence the efficacy of tiger conservation in India. In this paper, we present the results of exploratory research into the ways in which local-stakeholder groups affect the management of Corbett Tiger Reserve (CTR). Using a combined grounded theory-case study research design, and the Institutional Analysis and Development framework for analysis, we identify the socio-political processes through which local-stakeholder groups are able to articulate their issues and elicit desirable actions from the management of CTR. Increasing our awareness of these processes can help inform the design and implementation of more effective tiger conservation management and policy strategies that have the potential to create more supportive coalitions of tiger conservation stakeholders at the local level.

  5. Understanding the local socio-political processes affecting conservation management outcomes in Corbett Tiger Reserve, India.

    PubMed

    Rastogi, Archi; Hickey, Gordon M; Badola, Ruchi; Hussain, Syed Ainul

    2014-05-01

    Several measures have been recommended to guarantee a sustainable population of tigers: sufficient inviolate spaces for a viable population, sufficient prey populations, trained and skilled manpower to guard against poaching and intrusion, banning trade in tiger products to reduce poaching, and importantly, the political will to precipitate these recommendations into implementation. Of these, the creation of sufficient inviolate spaces (generally in the form of protected areas) has created the most issues with local resource-dependent communities, often resulting in significant challenges for tiger conservation policy and management. Very little empirical research has, however, been done to understand and contextualize the local-level socio-political interactions that may influence the efficacy of tiger conservation in India. In this paper, we present the results of exploratory research into the ways in which local-stakeholder groups affect the management of Corbett Tiger Reserve (CTR). Using a combined grounded theory-case study research design, and the Institutional Analysis and Development framework for analysis, we identify the socio-political processes through which local-stakeholder groups are able to articulate their issues and elicit desirable actions from the management of CTR. Increasing our awareness of these processes can help inform the design and implementation of more effective tiger conservation management and policy strategies that have the potential to create more supportive coalitions of tiger conservation stakeholders at the local level.

  6. Sun/shade conditions affect recruitment and local adaptation of a columnar cactus in dry forests

    PubMed Central

    Miranda-Jácome, Antonio; Montaña, Carlos; Fornoni, Juan

    2013-01-01

    Background and Aims Facilitation among plants in water-limited environments (i.e. where evapotranspiration overcomes the availability of water during the growing season) has been considered a local adaptation to water and light conditions. Among cacti, early life-history stages can benefit from the facilitative effects of nurse plants that reduce solar radiation and water stress. However, whether light condition itself acts as an agent of selection through facilitation remains untested. The aim of this study was to determine (1) whether light conditions affect seedling recruitment, (2) whether the positive effect of shade on seedling recruitment is more intense under more stressful conditions and (3) whether shade condition (facilitation) reduces the magnitude of local adaptation on seedling recruitment relative to full sunlight conditions. Methods A reciprocal transplant experiment, coupled with the artificial manipulation of sun/shade conditions, was performed to test for the effects of local adaptation on germination, seedling survival and growth, using two demes of the columnar cactus Pilosocereus leucocephalus, representing different intensities of stressful conditions. Key Results Full sunlight conditions reduced recruitment success and supported the expectation of lower recruitment in more stressful environments. Significant local adaptation was mainly detected under full sunlight conditions, indicating that this environmental factor acts as an agent of selection at both sites. Conclusions The results supported the expectation that the magnitude of local adaptation, driven by the effects of facilitative nurse plants, is less intense under reduced stressful conditions. This study is the first to demonstrate that sun/shade conditions act as a selective agent accounting for local adaptation in water-limited environments, and that facilitation provided by nurse plants in these environments can attenuate the patterns of local adaptation among plants benefiting

  7. 34 CFR 222.65 - How may a State aid program affect a local educational agency's eligibility for assistance under...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 1 2012-07-01 2012-07-01 false How may a State aid program affect a local educational agency's eligibility for assistance under section 8003(f)? 222.65 Section 222.65 Education Regulations of... Section 8003(f) of the Act § 222.65 How may a State aid program affect a local educational...

  8. Weather and emotional state

    NASA Astrophysics Data System (ADS)

    Spasova, Z.

    2010-09-01

    Introduction Given the proven effects of weather on the human organism, an attempt to examine its effects on a psychic and emotional level has been made. Emotions affect the bio-tonus, working ability and concentration, hence their significance in various domains of economic life, such as health care, education, transportation, tourism, etc. Data and methods The research has been made in Sofia City within a period of 8 months, using 5 psychological methods (Eysenck Personality Questionnaire (EPQ), State-Trait Anxiety Inventory (STAI), Test for Self-assessment of the emotional state (developed by Wessman and Ricks), Test for evaluation of moods and Test "Self-confidence - Activity - Mood" (developed by the specialists from the Military Academy in Saint Petersburg). The Fiodorov-Chubukov's complex-climatic method was used to characterize meteorological conditions because of the purpose to include in the analysis a maximal number of meteorological elements. 16 weather types are defined in dependence of the meteorological elements values according to this method. Abrupt weather changes from one day to another, defined by the same method, were considered as well. Results and discussions The results obtained by t-test show that the different categories of weather lead to changes in the emotional status, which indicates a character either positive or negative for the organism. The abrupt weather changes, according to expectations, have negative effect on human emotions but only when a transition to the cloudy weather or weather type, classified as "unfavourable" has been realized. The relationship between weather and human emotions is rather complicated since it depends on individual characteristics of people. One of these individual psychological characteristics, marked by the dimension "neuroticism", has a strong effect on emotional reactions in different weather conditions. Emotionally stable individuals are more "protected" to the weather influence on their emotions

  9. Relative Preference and Localized Food Affect Predator Space Use and Consumption of Incidental Prey.

    PubMed

    Schartel, Tyler E; Schauber, Eric M

    2016-01-01

    Abundant, localized foods can concentrate predators and their foraging efforts, thus altering both the spatial distribution of predation risk and predator preferences for prey that are encountered incidentally. However, few investigations have quantified the spatial scale over which localized foods affect predator foraging behavior and consumption of incidental prey. In spring 2010, we experimentally tested how point-source foods altered how generalist predators (white-footed mice, Peromyscus leucopus) utilized space and depredated two incidental prey items: almonds (Prunus dulcis; highly profitable) and maple seeds (Acer saccharum; less profitable). We estimated mouse population densities with trapping webs, quantified mouse consumption rates of these incidental prey items, and measured local mouse activity with track plates. We predicted that 1) mouse activity would be elevated near full feeders, but depressed at intermediate distances from the feeder, 2) consumption of both incidental prey would be high near feeders providing less-preferred food and, 3) consumption of incidental prey would be contingent on predator preference for prey relative to feeders providing more-preferred food. Mouse densities increased significantly from pre- to post-experiment. Mean mouse activity was unexpectedly greatest in control treatments, particularly <15 m from the control (empty) feeder. Feeders with highly preferred food (sunflower seeds) created localized refuges for incidental prey at intermediate distances (15 to 25m) from the feeder. Feeders with less-preferred food (corn) generated localized high risk for highly preferred almonds <10 m of the feeder. Our findings highlight the contingent but predictable effects of locally abundant food on risk experienced by incidental prey, which can be positive or negative depending on both spatial proximity and relative preference.

  10. Relative Preference and Localized Food Affect Predator Space Use and Consumption of Incidental Prey

    PubMed Central

    Schartel, Tyler E.; Schauber, Eric M.

    2016-01-01

    Abundant, localized foods can concentrate predators and their foraging efforts, thus altering both the spatial distribution of predation risk and predator preferences for prey that are encountered incidentally. However, few investigations have quantified the spatial scale over which localized foods affect predator foraging behavior and consumption of incidental prey. In spring 2010, we experimentally tested how point-source foods altered how generalist predators (white-footed mice, Peromyscus leucopus) utilized space and depredated two incidental prey items: almonds (Prunus dulcis; highly profitable) and maple seeds (Acer saccharum; less profitable). We estimated mouse population densities with trapping webs, quantified mouse consumption rates of these incidental prey items, and measured local mouse activity with track plates. We predicted that 1) mouse activity would be elevated near full feeders, but depressed at intermediate distances from the feeder, 2) consumption of both incidental prey would be high near feeders providing less-preferred food and, 3) consumption of incidental prey would be contingent on predator preference for prey relative to feeders providing more-preferred food. Mouse densities increased significantly from pre- to post-experiment. Mean mouse activity was unexpectedly greatest in control treatments, particularly <15 m from the control (empty) feeder. Feeders with highly preferred food (sunflower seeds) created localized refuges for incidental prey at intermediate distances (15 to 25m) from the feeder. Feeders with less-preferred food (corn) generated localized high risk for highly preferred almonds <10 m of the feeder. Our findings highlight the contingent but predictable effects of locally abundant food on risk experienced by incidental prey, which can be positive or negative depending on both spatial proximity and relative preference. PMID:26978659

  11. Using Forecasting to Teach Weather Science

    NASA Astrophysics Data System (ADS)

    Tsubota, Y.; Takahashi, T.

    2009-09-01

    Weather affects our lives and hence, is a popular topic in daily conversations and in the media. Therefore, it is not only important to teach weather, but is also a good idea to use 'weather' as a topic in science teaching. Science education has two main objectives: to acquire scientific concepts and methods. Weather forecasting is an adequate theme to teach scientific methods because it is dependent on observation. However, it is not easy to forecast weather using only temporal observation. We need to know the tendency of 'weather change' via consecutive and/or continuous weather observation. Students will acquire scientific-observation skills through weather observation. Data-processing skills would be enhanced through a weather-forecasting contest. A contest should be announced within 5 days of school events, such as a school excursion and field day. Students submit their own weather forecast by gathering weather information through the internet, news paper and so on. A weather-forecasting contest compels the student to observe the weather more often. We currently have some different weather forecasts. For example, American weather-related companies such as ACCU weather and Weather Channel provide weather forecast for the many locations all over the world. Comparing these weather forecasting with actual weather, participants such as students could evaluate the differences between forecasted and actual temperatures. Participants will judge the best weather forecast based on the magnitude of the difference. Also, participants evaluate the 'hitting ratio' of each weather forecast. Students can learn elementary statistics by comparing various weather forecasts. We have developed our weather web-site that provides our own weather forecasting and observation. Students acquire science skills using our weather web-site. We will report our lessen plans and explain our weather web-site.

  12. Types and concentrations of metal ions affect local structure and dynamics of RNA

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Xiao, Yi

    2016-10-01

    The roles that metal ions play in the structure and dynamics of RNA molecules are long-standing problems that have been studied extensively but are still not well understood. Here we show that metal ions have distributions around RNA molecules that strongly depend on the types and concentrations of the metal ions and also the electrostatic surface of the molecule. In particular, the ion distributions may not balance all the local electronegativity of the molecule. These ion distributions do not only greatly affect local structures but also lead to different local dynamics of RNA. We studied the effects of different ion solutions on the structure and dynamics of RNA by taking the pre Q1 riboswitch aptamer domain as an illustrative example and using molecular dynamics simulations. Since the local structures and dynamics of RNAs are important to their functions, our results also indicate that the selection of proper ion conditions is necessary to model them correctly, in contrast to the use of diverse ion solutions in current molecular dynamics simulations.

  13. Investigation of locally resonant absorption and factors affecting the absorption band of a phononic glass

    NASA Astrophysics Data System (ADS)

    Chen, Meng; Jiang, Heng; Feng, Yafei; Wang, Yuren

    2014-12-01

    We experimentally and theoretically investigated the mechanisms of acoustic absorption in phononic glass to optimize its properties. First, we experimentally studied its locally resonant absorption mechanism. From these results, we attributed its strong sound attenuation to its locally resonant units and its broadband absorption to its networked structure. These experiments also indicated that the porosity and thickness of the phononic glass must be tuned to achieve the best sound absorption at given frequencies. Then, using lumped-mass methods, we studied how the absorption bandgaps of the phononic glass were affected by various factors, including the porosity and the properties of the coating materials. These calculations gave optimal ranges for selecting the porosity, modulus of the coating material, and ratio of the compliant coating to the stiff matrix to achieve absorption bandgaps in the range of 6-30 kHz. This paper provides guidelines for designing phononic glasses with proper structures and component materials to work in specific frequency ranges.

  14. Small but Powerful: Top Predator Local Extinction Affects Ecosystem Structure and Function in an Intermittent Stream

    PubMed Central

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators’ extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a ‘mesopredator release’, affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to ‘mesopredator release’, and also to ‘prey release’ despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem’s structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers’ extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been

  15. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

    PubMed

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore

  16. The need for local, high resolution, multi instrument monitoring to study complex effects of space weather disturbances: a study of the events in February 2014

    NASA Astrophysics Data System (ADS)

    Verhulst, Tobias; Stankov, Stan; Sapundjiev, Danislav

    A case study of the space weather events that took place in February 2014 will be presented. In particular, we investigate the influence of these events on the local ionospheric and magnetic conditions by using several collocated instruments - ionosonde, magnetometer, cosmic rays detector, and GNSS receivers - in operation at the RMI Geophysical Centre in Dourbes (50.1N, 4.6E). Because all these instruments produce data with a high temporal resolution (5 minutes for the ionosonde data, 1 minute for all other data), we can study the rapid variations in the ionosphere that are due to (traveling) small-scale disturbances associated with this geomagnetic storm. The digital ionosonde (Digisonde-4D) produces high-resolution ionograms and “skymaps” that provide a detailed image of the ionosphere in a region around the digisonde, showing the positions of all points from which the radio wave is reflected back to the sounder. This provides an opportunity to also study the anisotropy and gradients caused by these disturbances. The results of the local measurements are compared with those obtained by the ACE and GOES satellites, with regional TEC maps and global Kp and Dst indices. This comparison illustrates the limitations of global indices and maps, and the usefulness of local, high (temporal and spatial) resolution data in monitoring ionospheric disturbances. Also, it can be seen that different types of events (X-ray flares, influxes of low or high energy protons,...) produce different kinds of disturbances.

  17. Local to regional emission sources affecting mercury fluxes to New York lakes

    NASA Astrophysics Data System (ADS)

    Bookman, Revital; Driscoll, Charles T.; Engstrom, Daniel R.; Effler, Steven W.

    Lake-sediment records across the Northern Hemisphere show increases in atmospheric deposition of anthropogenic mercury (Hg) over the last 150 years. Most of the previous studies have examined remote lakes affected by the global atmospheric Hg reservoir. In this study, we present Hg flux records from lakes in an urban/suburban setting of central New York affected also by local and regional emissions. Sediment cores were collected from the Otisco and Skaneateles lakes from the Finger Lakes region, Cross Lake, a hypereutrophic lake on the Seneca River, and Glacial Lake, a small seepage lake with a watershed that corresponds with the lake area. Sediment accumulation rates and dates were established by 210Pb. The pre-anthropogenic regional atmospheric Hg flux was estimated to be 3.0 μg m -2 yr -1 from Glacial Lake, which receives exclusively direct atmospheric deposition. Mercury fluxes peaked during 1971-2001, and were 3 to more than 30 times greater than pre-industrial deposition. Land use change and urbanization in the Otisco and Cross watersheds during the last century likely enhanced sediment loads and Hg fluxes to the lakes. Skaneateles and Glacial lakes have low sediment accumulation rates, and thus are excellent indicators for atmospheric Hg deposition. In these lakes, we found strong correlations with emission records for the Great Lakes region that markedly increased in the early 1900s, and peaked during WWII and in the early 1970s. Declines in modern Hg fluxes are generally evident in the core records. However, the decrease in sediment Hg flux at Glacial Lake was interrupted and has increased since the early 1990s probably due to the operation of new local emission sources. Assuming the global Hg reservoir tripled since the pre-industrial period, the contribution of local and regional emission sources to central New York lakes was estimated to about 80% of the total atmospheric Hg deposition.

  18. Attention to local and global levels of hierarchical Navon figures affects rapid scene categorization.

    PubMed

    Brand, John; Johnson, Aaron P

    2014-01-01

    In four experiments, we investigated how attention to local and global levels of hierarchical Navon figures affected the selection of diagnostic spatial scale information used in scene categorization. We explored this issue by asking observers to classify hybrid images (i.e., images that contain low spatial frequency (LSF) content of one image, and high spatial frequency (HSF) content from a second image) immediately following global and local Navon tasks. Hybrid images can be classified according to either their LSF, or HSF content; thus, making them ideal for investigating diagnostic spatial scale preference. Although observers were sensitive to both spatial scales (Experiment 1), they overwhelmingly preferred to classify hybrids based on LSF content (Experiment 2). In Experiment 3, we demonstrated that LSF based hybrid categorization was faster following global Navon tasks, suggesting that LSF processing associated with global Navon tasks primed the selection of LSFs in hybrid images. In Experiment 4, replicating Experiment 3 but suppressing the LSF information in Navon letters by contrast balancing the stimuli examined this hypothesis. Similar to Experiment 3, observers preferred to classify hybrids based on LSF content; however and in contrast, LSF based hybrid categorization was slower following global than local Navon tasks.

  19. Attention to local and global levels of hierarchical Navon figures affects rapid scene categorization

    PubMed Central

    Brand, John; Johnson, Aaron P.

    2014-01-01

    In four experiments, we investigated how attention to local and global levels of hierarchical Navon figures affected the selection of diagnostic spatial scale information used in scene categorization. We explored this issue by asking observers to classify hybrid images (i.e., images that contain low spatial frequency (LSF) content of one image, and high spatial frequency (HSF) content from a second image) immediately following global and local Navon tasks. Hybrid images can be classified according to either their LSF, or HSF content; thus, making them ideal for investigating diagnostic spatial scale preference. Although observers were sensitive to both spatial scales (Experiment 1), they overwhelmingly preferred to classify hybrids based on LSF content (Experiment 2). In Experiment 3, we demonstrated that LSF based hybrid categorization was faster following global Navon tasks, suggesting that LSF processing associated with global Navon tasks primed the selection of LSFs in hybrid images. In Experiment 4, replicating Experiment 3 but suppressing the LSF information in Navon letters by contrast balancing the stimuli examined this hypothesis. Similar to Experiment 3, observers preferred to classify hybrids based on LSF content; however and in contrast, LSF based hybrid categorization was slower following global than local Navon tasks. PMID:25520675

  20. Weather extremes could affect agriculture

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-05-01

    As Earth's climate warms, agricultural producers will need to adapt. Changes, especially increases in extreme events, are already having an impact on food production, according to speakers at a 1 May session on agriculture and food security at the AGU Science Policy Conference. Christopher Field, director of the Department of Global Ecology at the Carnegie Institution for Science of Washington, D. C., pointed out the complex factors that come into play in understanding food security, including spatially varying controls and stresses, incomplete models, and the potential for threshold responses. Factors that are likely to cause problems include increasing population; increasing preference for meat, which needs more land and energy inputs to produce; climate change; and increasing use of agricultural lands for biomass energy.

  1. Severe Weather Forecast Decision Aid

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Wheeler, Mark M.; Short, David A.

    2005-01-01

    This report presents a 15-year climatological study of severe weather events and related severe weather atmospheric parameters. Data sources included local forecast rules, archived sounding data, Cloud-to-Ground Lightning Surveillance System (CGLSS) data, surface and upper air maps, and two severe weather event databases covering east-central Florida. The local forecast rules were used to set threat assessment thresholds for stability parameters that were derived from the sounding data. The severe weather events databases were used to identify days with reported severe weather and the CGLSS data was used to differentiate between lightning and non-lightning days. These data sets provided the foundation for analyzing the stability parameters and synoptic patterns that were used to develop an objective tool to aid in forecasting severe weather events. The period of record for the analysis was May - September, 1989 - 2003. The results indicate that there are certain synoptic patterns more prevalent on days with severe weather and some of the stability parameters are better predictors of severe weather days based on locally tuned threat values. The results also revealed the stability parameters that did not display any skill related to severe weather days. An interactive web-based Severe Weather Decision Aid was developed to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters, CGLSS data, and synoptic-scale dynamics. The tool will be tested and evaluated during the 2005 warm season.

  2. Measuring natural pest suppression at different spatial scales affects the importance of local variables.

    PubMed

    Bennett, A B; Gratton, C

    2012-10-01

    The role biodiversity plays in the provision of ecosystem services is widely recognized, yet few ecological studies have identified characteristics of natural systems that support and maintain ecosystem services. The purpose of this study was to identify landscape variables correlated with natural pest suppression carried out by arthropod natural enemies, predators and parasitoids. We conducted two field experiments, one observational and one experimental, where landscape variables at broad and local scales were measured and related to natural pest suppression. The first experiment measured natural pest suppression at 16 sites across an urban to rural landscape gradient in south central Wisconsin. We found natural enemy diversity positively affected natural pest suppression, whereas flower diversity negatively affected pest suppression. No relationship was found between natural pest suppression and broad scale variables, which measured the percentage of different land cover classes in the surrounding landscape. In the second experiment, we established small (2- by 3-m) replicated plots that experimentally varied flower diversity (0, 1, or 7 species) within a plot. We found no significant relationship between natural pest suppression and the different levels of flower diversity. The fact that we only found differences in natural pest suppression in our first experiment, which measured natural pest suppression at sites separated by larger distances than our second experiment, suggests the more appropriate scale for measuring ecosystem services performed by mobile organisms like insects, is across broad spatial scales where variation in natural enemies communities and the factors that affect them become more apparent.

  3. Weather Instruments.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  4. Wacky Weather

    ERIC Educational Resources Information Center

    Sabarre, Amy; Gulino, Jacqueline

    2013-01-01

    What do a leaf blower, water hose, fan, and ice cubes have in common? Ask the students who participated in an integrative science, technology, engineering, and mathematics (I-STEM) education unit, "Wacky Weather," and they will tell say "fun and severe weather"--words one might not have expected! The purpose of the unit…

  5. DIRECT COMPARISON OF KINETIC AND LOCAL EQUILIBRIUM FORMULATIONS FOR SOLUTE TRANSPORT AFFECTED BY SURFACE REACTIONS.

    USGS Publications Warehouse

    Bahr, Jean M.; Rubin, Jacob

    1987-01-01

    Modeling transport of reacting solutes in porous media often requires a choice between models based on the local equilibrium assumption (LEA) and models involving reaction kinetics. Direct comparison of the mathematical formulations for these two types of transport models can aid in this choice. For cases of transport affected by surface reaction, such a comparison is made possible by a new derivation procedure. This procedure yields a kinetics-based formulation that is the sum of the LEA formulation and one or more kinetically influenced terms. The dimensionless form of the new kinetics-based formulation facilitates identification of critical parameter groupings which control the approach to transport behavior consistent with LEA model predictions. Results of numerical experiments demonstrate that criteria for LEA applicability can be expressed conveniently in terms of these parameter groupings. The derivation procedure is demonstrated for examples of surface reactions including first-order reversible sorption, Langmuir-type kinetics and binary, homovalent ion exchange.

  6. Local and regional factors affecting atmospheric mercury speciation at a remote location

    USGS Publications Warehouse

    Manolopoulos, H.; Schauer, J.J.; Purcell, M.D.; Rudolph, T.M.; Olson, M.L.; Rodger, B.; Krabbenhoft, D.P.

    2007-01-01

    Atmospheric concentrations of elemental (Hg0), reactive gaseous (RGM), and particulate (PHg) mercury were measured at two remote sites in the midwestern United States. Concurrent measurements of Hg0, PHg, and RGM obtained at Devil's Lake and Mt. Horeb, located approximately 65 km apart, showed that Hg0 and PHg concentrations were affected by regional, as well as local sources, while RGM was mainly impacted by local sources. Plumes reaching the Devil's Lake site from a nearby coal-fired power plant significantly impacted SO2 and RGM concentrations at Devil's Lake, but had little impact on Hg0. Our findings suggest that traditional modeling approaches to assess sources of mercury deposited that utilize source emissions and large-scale grids may not be sufficient to predict mercury deposition at sensitive locations due to the importance of small-scale sources and processes. We suggest the use of a receptor-based monitoring to better understand mercury source-receptor relationships. ?? 2007 NRC Canada.

  7. Local divergence of thermal reaction norms among amphibian populations is affected by pond temperature variation.

    PubMed

    Richter-Boix, Alex; Katzenberger, Marco; Duarte, Helder; Quintela, María; Tejedo, Miguel; Laurila, Anssi

    2015-08-01

    Although temperature variation is known to cause large-scale adaptive divergence, its potential role as a selective factor over microgeographic scales is less well-understood. Here, we investigated how variation in breeding pond temperature affects divergence in multiple physiological (thermal performance curve and critical thermal maximum [CTmax]) and life-history (thermal developmental reaction norms) traits in a network of Rana arvalis populations. The results supported adaptive responses to face two main constraints limiting the evolution of thermal adaptation. First, we found support for the faster-slower model, indicating an adaptive response to compensate for the thermodynamic constraint of low temperatures in colder environments. Second, we found evidence for the generalist-specialist trade-off with populations from colder and less thermally variable environments exhibiting a specialist phenotype performing at higher rates but over a narrower range of temperatures. By contrast, the local optimal temperature for locomotor performance and CTmax did not match either mean or maximum pond temperatures. These results highlight the complexity of the adaptive multiple-trait thermal responses in natural populations, and the role of local thermal variation as a selective force driving diversity in life-history and physiological traits in the presence of gene flow.

  8. Efficacy and Factors Affecting Outcome of Gemcitabine Concurrent Chemoradiotherapy in Patients With Locally Advanced Pancreatic Cancer

    SciTech Connect

    Huang, P.-I.; Chao, Yee; Li, C.-P.; Lee, R.-C.; Chi, K.-H.; Shiau, C.-Y.; Wang, L.-W.; Yen, S.-H.

    2009-01-01

    Purpose: To evaluate the efficacy and prognostic factors of gemcitabine (GEM) concurrent chemoradiotherapy (CCRT) in patients with locally advanced pancreatic cancer. Methods and Materials: Between January 2002 and December 2005, 55 patients with locally advanced pancreatic cancer treated with GEM (400 mg/m{sup 2}/wk) concurrently with radiotherapy (median dose, 50.4 Gy; range, 26-61.2) at Taipei Veterans General Hospital were enrolled. GEM (1,000 mg/m{sup 2}) was continued after CCRT as maintenance therapy once weekly for 3 weeks and repeated every 4 weeks. The response, survival, toxicity, and prognostic factors were evaluated. Results: With a median follow-up of 10.8 months, the 1- and 2-year survival rate was 52% and 19%, respectively. The median overall survival (OS) and median time to progression (TTP) was 12.4 and 5.9 months, respectively. The response rate was 42% (2 complete responses and 21 partial responses). The major Grade 3-4 toxicities were neutropenia (22%) and anorexia (19%). The median OS and TTP was 15.8 and 9.5 months in the GEM CCRT responders compared with 7.5 and 3.5 months in the nonresponders, respectively (both p < 0.001). The responders had a better Karnofsky performance status (KPS) (86 {+-} 2 vs. 77 {+-} 2, p = 0.002) and had received a greater GEM dose intensity (347 {+-} 13 mg/m{sup 2}/wk vs. 296 {+-} 15 mg/m{sup 2}/wk, p = 0.02) than the nonresponders. KPS and serum carbohydrate antigen 19-9 were the most significant prognostic factors of OS and TTP. Conclusion: The results of our study have shown that GEM CCRT is effective and tolerable for patients with locally advanced pancreatic cancer. The KPS and GEM dose correlated with response. Also, the KPS and CA 19-9 level were the most important factors affecting OS and TTP.

  9. Local Navon letter processing affects skilled behavior: a golf-putting experiment.

    PubMed

    Lewis, Michael B; Dawkins, Gemma

    2015-04-01

    Expert or skilled behaviors (for example, face recognition or sporting performance) are typically performed automatically and with little conscious awareness. Previous studies, in various domains of performance, have shown that activities immediately prior to a task demanding a learned skill can affect performance. In sport, describing the to-be-performed action is detrimental, whereas in face recognition, describing a face or reading local Navon letters is detrimental. Two golf-putting experiments are presented that compare the effects that these three tasks have on experienced and novice golfers. Experiment 1 found a Navon effect on golf performance for experienced players. Experiment 2 found, for experienced players only, that performance was impaired following the three tasks described above, when compared with reading or global Navon tasks. It is suggested that the three tasks affect skilled performance by provoking a shift from automatic behavior to a more analytic style. By demonstrating similarities between effects in face recognition and sporting behavior, it is hoped to better understand concepts in both fields.

  10. Water geochemistry of the Qiantangjiang River, East China: Chemical weathering and CO2 consumption in a basin affected by severe acid deposition

    NASA Astrophysics Data System (ADS)

    Liu, Wenjing; Shi, Chao; Xu, Zhifang; Zhao, Tong; Jiang, Hao; Liang, Chongshan; Zhang, Xuan; Zhou, Li; Yu, Chong

    2016-09-01

    The chemical composition of the Qiantangjiang River, the largest river in Zhejiang province in eastern China, was measured to understand the chemical weathering of rocks and the associated CO2 consumption and anthropogenic influences within a silicate-dominated river basin. The average total dissolved solids (TDS, 113 mg l-1) and total cation concentration (TZ+, 1357 μeq l-1) of the river waters are comparable with those of global major rivers. Ca2+ and HCO3- followed by Na2+ and SO42-, dominate the ionic composition of the river water. There are four major reservoirs (carbonates, silicates, atmospheric and anthropogenic inputs) contributing to the total dissolved load of the investigated rivers. The dissolved loads of the rivers are dominated by both carbonate and silicate weathering, which together account for about 76.3% of the total cationic load origin. The cationic chemical weathering rates of silicate and carbonate for the Qiantangjiang basin are estimated to be approximately 4.9 ton km-2 a-1 and 13.9 ton km-2 a-1, respectively. The calculated CO2 consumption rates with the assumption that all the protons involved in the weathering reaction are provided by carbonic acid are 369 × 103 mol km-2 a-1 and 273 × 103 mol km-2 a-1 by carbonate and silicate weathering, respectively. As one of the most severe impacted area by acid rain in China, H2SO4 from acid precipitation is also an important proton donor in weathering reactions. When H2SO4 is considered, the CO2 consumption rates for the river basin are estimated at 286 × 103 mol km-2 a-1 for carbonate weathering and 211 × 103 mol km-2 a-1 for silicate weathering, respectively. The results highlight that the drawdown effect of CO2 consumption by carbonate and silicate weathering can be largely overestimated if the role of sulfuric acid is ignored, especially in the area heavily impacted by acid deposition like Qiantangjiang basin. The actual CO2 consumption rates (after sulfuric acid weathering effect

  11. Expansion of the Real-time Sport-land Information System for NOAA/National Weather Service Situational Awareness and Local Modeling Applications

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.

    2014-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has been running a real-time version of the Land Information System (LIS) since summer 2010 (hereafter, SPoRTLIS). The real-time SPoRT-LIS runs the Noah land surface model (LSM) in an offline capacity apart from a numerical weather prediction model, using input atmospheric and precipitation analyses (i.e., "forcings") to drive the Noah LSM integration at 3-km resolution. Its objectives are to (1) produce local-scale information about the soil state for NOAA/National Weather Service (NWS) situational awareness applications such as drought monitoring and assessing flood potential, and (2) provide land surface initialization fields for local modeling initiatives. The current domain extent has been limited by the input atmospheric analyses that drive the Noah LSM integration within SPoRT-LIS, specifically the National Centers for Environmental Prediction (NCEP) Stage IV precipitation analyses. Due to the nature of the geographical edges of the Stage IV precipitation grid and its limitations in the western U.S., the SPoRT-LIS was originally confined to a domain fully nested within the Stage IV grid, over the southeastern half of the Conterminous United States (CONUS). In order to expand the real-time SPoRT-LIS to a full CONUS domain, alternative precipitation forcing datasets were explored in year-long, offline comparison runs of the Noah LSM. Based on results of these comparison simulations, we chose to implement the radar/gauge-based precipitation analyses from the National Severe Storms Laboratory as a replacement to the Stage IV product. The Multi-Radar Multi-Sensor (MRMS; formerly known as the National Mosaic and multi-sensor Quantitative precipitation estimate) product has full CONUS coverage at higher-resolution, thereby providing better coverage and greater detail than that of the Stage IV product. This paper will describe the expanded/upgraded SPoRT-LIS, present comparisons between the

  12. Great Historical Events that were Significantly Affected by the Weather: Part 9, the Year Leading to the Revolution of 1789 in France (II).

    NASA Astrophysics Data System (ADS)

    Neumann, J.; Dettwiller, J.

    1990-01-01

    This paper is an extension of an earlier paper (Neumann 1977) on historical events affected by the weather. More data are published herein on rainfall, pressure and temperature for spring-early summer 1788, when a severe drought struck France during anticyclonic conditions, leading to a crop failure. It is estimated that the grain harvest was 35%-40% below the mean for 1774-88. (The wine-grape harvest was even more catastrophic.) The shortfall led to increasingly high bread prices. The prices reached the highest level on 14 July 1789 (Bastille Day). Since workers spent about 55% of their income on bread and flour prior to 1788, bread riots had already broken out in August 1788. The number and violence of the riots tended to increase with time, causing a destabilization of public order.A meteorological factor of secondary importance was the harsh winter of 1788-89, which brought additional suffering to the lower classes. The price of heating materials rose, and water mills could not be operated because of the ice.Until April 1789 the numerous riots did not have, in most cases, anti-regime overtones. After May, however, the disturbances assumed political overtones, especially in Paris. This was due to agitation by the bourgeoisie who desired the abolition of the many privileges of the nobility and Church, and the lifting of restrictions on some economic activities. The bread riots, caused by the high bread prices (and, ultimately, by the drought), were used by the middle class for overthrowing the existing regime.In France of the 1700s, the number of poor depended on the price of bread which, first and foremost, was determined by the harvest.

  13. Global weather and local butterflies: variable responses to a large-scale climate pattern along an elevational gradient.

    PubMed

    Pardikes, Nicholas A; Shapiro, Arthur M; Dyer, Lee A; Forister, Matthew L

    2015-11-01

    Understanding the spatial and temporal scales at which environmental variation affects populations of plants and animals is an important goal for modern population biology, especially in the context of shifting climatic conditions. The El Niño Southern Oscillation (ENSO) generates climatic extremes of interannual variation, and has been shown to have significant effects on the diversity and abundance of a variety of terrestrial taxa. However, studies that have investigated the influence of such large-scale climate phenomena have often been limited in spatial and taxonomic scope. We used 23 years (1988-2010) of a long-term butterfly monitoring data set to explore associations between variation in population abundance of 28 butterfly species and variation in ENSO-derived sea surface temperature anomalies (SSTA) across 10 sites that encompass an elevational range of 2750 m in the Sierra Nevada mountain range of California. Our analysis detected a positive, regional effect of increased SSTA on butterfly abundance (wetter and warmer years predict more butterfly observations), yet the influence of SSTA on butterfly abundances varied along the elevational gradient, and also differed greatly among the 28 species. Migratory species had the strongest relationships with ENSO-derived SSTA, suggesting that large-scale climate indices are particularly valuable for understanding biotic-abiotic relationships of the most mobile species. In general, however, the ecological effects of large-scale climatic factors are context dependent between sites and species. Our results illustrate the power of long-term data sets for revealing pervasive yet subtle climatic effects, but also caution against expectations derived from exemplar species or single locations in the study of biotic-abiotic interactions.

  14. Weatherizing America

    SciTech Connect

    Stewart, Zachary; Bergeron, T.J.; Barth, Dale; Qualis, Xavier; Sewall, Travis; Fransen, Richard; Gill, Tony

    2009-01-01

    As Recovery Act money arrives to expand home weatherization programs across the country, Zachary Stewart of Phoenix, Ariz., and others have found an exciting opportunity not only to start working again, but also to find a calling.

  15. Weatherizing America

    ScienceCinema

    Stewart, Zachary; Bergeron, T.J.; Barth, Dale; Qualis, Xavier; Sewall, Travis; Fransen, Richard; Gill, Tony

    2016-07-12

    As Recovery Act money arrives to expand home weatherization programs across the country, Zachary Stewart of Phoenix, Ariz., and others have found an exciting opportunity not only to start working again, but also to find a calling.

  16. Communication on urban resilience to extreme weather: challenges and achievements in the dialogue between the international scientific community and local stakeholders

    NASA Astrophysics Data System (ADS)

    Vicari, Rosa; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2014-05-01

    The frequency and damages caused by pluvial floods in European cities are expected to increase as a consequence of climate change and urban development. New solutions are needed at local level to cope with extreme storm events and to reduce risks and costs on populations and infrastructures, in particular in disadvantaged urban areas. The HM&Co team (LEESU & Chair 'Hydrology for Resilient Cities' sponsored by Veolia) aims to develop resilient urban systems with the help of innovative technologies, tools and practices based in particular on the use of high-resolution data, simulations, forecasts and management. Indeed, the availability of fine-scale rainfall data, due to the improved reliability of recent low-cost weather radars, opens up prospects for new forms of local urban flood risk management, which requires exchange of information with local actors and their full cooperation with researchers. This demands a large collaboration ranging from regional to international levels, e.g. the RadX@IdF project (Regional Council of Paris Region), the RainGain project (EU Interreg programme) and Blue Green Dream project (Climate-KIC programme), TOMACS (World Meteorological Organisation). These research projects and programmes include awareness raising and capacity building activities aimed to stimulate cooperation between scientists, professionals (e.g. water managers, urban planners) and beneficiaries (e.g. concerned citizens, policy makers). A dialogue between these actors is indeed needed to bring together the know-how from different countries and areas of expertise, avoid fragmentation and link it to the needs of the local stakeholders. Without this "conductive environment", research results risk to remain unexploited. After a general description of the background communication needs, this presentation will illustrate the outreach practices that are carried out by the HM&Co team. The major challenges will be also discussed, some examples are: narrating research

  17. Genetically optimizing weather predictions

    NASA Astrophysics Data System (ADS)

    Potter, S. B.; Staats, Kai; Romero-Colmenero, Encarni

    2016-07-01

    humidity, air pressure, wind speed and wind direction) into a database. Built upon this database, we have developed a remarkably simple approach to derive a functional weather predictor. The aim is provide up to the minute local weather predictions in order to e.g. prepare dome environment conditions ready for night time operations or plan, prioritize and update weather dependent observing queues. In order to predict the weather for the next 24 hours, we take the current live weather readings and search the entire archive for similar conditions. Predictions are made against an averaged, subsequent 24 hours of the closest matches for the current readings. We use an Evolutionary Algorithm to optimize our formula through weighted parameters. The accuracy of the predictor is routinely tested and tuned against the full, updated archive to account for seasonal trends and total, climate shifts. The live (updated every 5 minutes) SALT weather predictor can be viewed here: http://www.saao.ac.za/ sbp/suthweather_predict.html

  18. How Are Local People Driving and Affected by Forest Cover Change? Opportunities for Local Participation in REDD+ Measurement, Reporting and Verification.

    PubMed

    Bong, Indah Waty; Felker, Mary Elizabeth; Maryudi, Ahmad

    2016-01-01

    Deforestation and forest degradation are complex and dynamic processes that vary from place to place. They are driven by multiple causes. Local communities are, to some extent, driving and also affected by some of these processes. Can their knowledge aid and add to place-specific assessment and monitoring of Deforestation and forest Degradation (DD) drivers? Our research was conducted in seven villages across three provinces of Indonesia (Papua, West Kalimantan and Central Java). Household surveys and focus group discussions were used to investigate how local community knowledge of DD drivers contributes to place-specific assessment and monitoring of DD drivers. We analyzed the link between drivers and local livelihoods to see how attempts to address deforestation and forest degradation might affect local communities and how this link might influence their participation in climate change mitigation measures such as Reducing Emissions from Deforestation and Forest Degradation (REDD+) and Measuring, Reporting and Verifying (MRV) activities. We found that local knowledge is fundamental to capturing the variety of drivers particularly in countries like Indonesia where forest and socio-economic conditions are diverse. Better understanding of drivers and their importance for local livelihoods will not only contribute to a more locally appropriate design of REDD+ and monitoring systems but will also foster local participation.

  19. How Are Local People Driving and Affected by Forest Cover Change? Opportunities for Local Participation in REDD+ Measurement, Reporting and Verification

    PubMed Central

    Bong, Indah Waty; Felker, Mary Elizabeth; Maryudi, Ahmad

    2016-01-01

    Deforestation and forest degradation are complex and dynamic processes that vary from place to place. They are driven by multiple causes. Local communities are, to some extent, driving and also affected by some of these processes. Can their knowledge aid and add to place-specific assessment and monitoring of Deforestation and forest Degradation (DD) drivers? Our research was conducted in seven villages across three provinces of Indonesia (Papua, West Kalimantan and Central Java). Household surveys and focus group discussions were used to investigate how local community knowledge of DD drivers contributes to place-specific assessment and monitoring of DD drivers. We analyzed the link between drivers and local livelihoods to see how attempts to address deforestation and forest degradation might affect local communities and how this link might influence their participation in climate change mitigation measures such as Reducing Emissions from Deforestation and Forest Degradation (REDD+) and Measuring, Reporting and Verifying (MRV) activities. We found that local knowledge is fundamental to capturing the variety of drivers particularly in countries like Indonesia where forest and socio-economic conditions are diverse. Better understanding of drivers and their importance for local livelihoods will not only contribute to a more locally appropriate design of REDD+ and monitoring systems but will also foster local participation. PMID:27806044

  20. Dress for the Weather

    ERIC Educational Resources Information Center

    Glen, Nicole J.; Smetana, Lara K.

    2010-01-01

    "If someone were traveling to our area for the first time during this time of year, what would you tell them to bring to wear? Why?" This question was used to engage students in a guided-inquiry unit about how climate differs from weather. In this lesson, students explored local and national data sets to give "travelers" advice…

  1. Expansion of the Real-Time SPoRT-Land Information System for NOAA/National Weather Service Situational Awareness and Local Modeling Applications

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L; White, Kristopher D.

    2014-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, AL is running a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework (hereafter referred to as the "SPoRT-LIS"). Output from the real-time SPoRT-LIS is used for (1) initializing land surface variables for local modeling applications, and (2) displaying in decision support systems for situational awareness and drought monitoring at select NOAA/National Weather Service (NWS) partner offices. The experimental CONUS run incorporates hourly quantitative precipitation estimation (QPE) from the National Severe Storms Laboratory Multi- Radar Multi-Sensor (MRMS) which will be transitioned into operations at the National Centers for Environmental Prediction (NCEP) in Fall 2014.This paper describes the current and experimental SPoRT-LIS configurations, and documents some of the limitations still remaining through the advent of MRMS precipitation analyses in the SPoRT-LIS land surface model (LSM) simulations.

  2. Atrazine exposure affects the ability of crayfish (Orconectes rusticus) to localize a food odor source.

    PubMed

    Belanger, Rachelle M; Peters, Tyler J; Sabhapathy, Gita S; Khan, Sana; Katta, Juhi; Abraham, Noor K

    2015-05-01

    Environmental pollutants, found in aquatic ecosystems, have been shown to have an effect on olfactory-mediated behaviors including feeding, mate attraction, and other important social behaviors. Crayfish are polytrophic, meaning that they feed on and become prey for all levels of the aquatic food web as well as are also important for the transfer of energy between benthic and terrestrial food webs. Because crayfish are a keystone species, it is important to investigate any factors that may affect their population size. Crayfish are active at night and rely heavily on their sensory appendages (e.g., antennulues, maxillipeds, and pereopods) to localize food sources. In this experiment, we investigated the effects of atrazine (ATR) exposure on the chemosensory responses of male and female crayfish to food odors. We exposed crayfish to environmentally relevant, sublethal levels of ATR [80 ppb (µg/L)] for 72 h and then examined the behavioral responses of both ATR-treated and control crayfish to food odor delivered from one end of a test arena. We used Noldus Ethovision XT software to measure odor localization and locomotory behaviors of crayfish in response to food (fish) odor. We found that control crayfish spent more time in the proximal region of the test arena and at the odor source compared with ATR-treated crayfish. Furthermore, there were no differences in the time spent moving and not moving, total distance travelled in the tank, and walking speed (cm/s) when control and ATR-treated crayfish were compared. Overall, this indicates that acute ATR exposure alters chemosensory abilities of crayfish, whereas overall motor function remains unchanged.

  3. Statistical analysis of accurate prediction of local atmospheric optical attenuation with a new model according to weather together with beam wandering compensation system: a season-wise experimental investigation

    NASA Astrophysics Data System (ADS)

    Arockia Bazil Raj, A.; Padmavathi, S.

    2016-07-01

    Atmospheric parameters strongly affect the performance of Free Space Optical Communication (FSOC) system when the optical wave is propagating through the inhomogeneous turbulent medium. Developing a model to get an accurate prediction of optical attenuation according to meteorological parameters becomes significant to understand the behaviour of FSOC channel during different seasons. A dedicated free space optical link experimental set-up is developed for the range of 0.5 km at an altitude of 15.25 m. The diurnal profile of received power and corresponding meteorological parameters are continuously measured using the developed optoelectronic assembly and weather station, respectively, and stored in a data logging computer. Measured meteorological parameters (as input factors) and optical attenuation (as response factor) of size [177147 × 4] are used for linear regression analysis and to design the mathematical model that is more suitable to predict the atmospheric optical attenuation at our test field. A model that exhibits the R2 value of 98.76% and average percentage deviation of 1.59% is considered for practical implementation. The prediction accuracy of the proposed model is investigated along with the comparative results obtained from some of the existing models in terms of Root Mean Square Error (RMSE) during different local seasons in one-year period. The average RMSE value of 0.043-dB/km is obtained in the longer range dynamic of meteorological parameters variations.

  4. Analysis of daily rainfall of the Sahelian weather-station Linguère (Senegal) - Trends and its impacts on the local population

    NASA Astrophysics Data System (ADS)

    Strommer, Gabriel; Brandt, Martin; Diongue-Niang, Aida; Samimi, Cyrus

    2013-04-01

    In the 20th century, the West African Sahel has been a hot-spot of climatic changes. After severe drought-events in the 1970s and 1980s which were followed by a significant drop in annual precipitation, rainfall seems to increase again during the past years. Most studies are based on monthly or yearly datasets. However, many processes and events which are important for the local population depending on rainfall are not related to monthly or annual precipitation but are related to intra-annual, often daily scales. During this study, interviews with farmers and herders were conducted in the Senegalese Sahel. The results show, that wet months with unsuitably distributed precipitation can cause more harm than bringing benefits - depending on the phenological stage of the plants. Agricultural crops for example need rainfall breaks. On the other hand, natural herbaceous vegetation tolerates longer wet periods. So, a wet season can still hide dry spells that alter crops and vegetation development. Based on the results of these interviews, this study developed two indexes, one for local farmers and one for herders separately, showing if the year was favorable for them or not. The indexes integrate the length of rainy seasons, intensity and frequency of rainfall events, breaks between events and also the previous year. This way, each year is assigned to one of 5 classes. Using daily rainfall data of the Linguère weather-station (from the Senegal Meteorological Service, ANACIM), trends of the indexes from 1945 to 2002 are detected and compared to results of the interviews. Statistically relating the indexes to yearly and monthly data demonstrates, how much information can be gathered by those datasets. Furthermore, changes in intensity and frequency are related with yearly and monthly sums showing relations between daily data and annual sums. For example, a high correlation (r=0.73) between the amount of rain days (> 1 mm) and the annual rainfall is observed in Linguère.

  5. Localized β-adrenergic receptor blockade does not affect sweating during exercise.

    PubMed

    Buono, Michael J; Tabor, Brian; White, Ailish

    2011-05-01

    The purpose of the current study was to determine the effect of a locally administered nonselective β-adrenergic antagonist on sweat gland function during exercise. Systemically administered propranolol has been reported to increase, decrease, or not alter sweat production during exercise. To eliminate the confounding systemic effects associated with orally administered propranolol, we used iontophoresis to deliver it to the eccrine sweat glands within a localized area on one forearm prior to exercise. This allowed for determination of the direct effect of β-adrenergic receptor blockade on sweating during exercise. Subjects (n = 14) reported to the laboratory (23 ± 1°C, 35 ± 3% relative humidity) after having refrained from exercise for ≥12 h. Propranolol (1% solution) was administered to a 5-cm(2) area of the flexor surface of one forearm via iontophoresis (1.5 mA) for 5 min. A saline solution was administered to the opposing arm via iontophoresis. Each subject then exercised on a motor-driven treadmill at 75% of their age-predicted maximal heart rate for 20 min, while sweat rate was measured simultaneously in both forearms. Immediately after cessation of exercise, the number of active sweat glands was measured by application of iodine-impregnated paper to each forearm. The sweat rate for the control and propranolol-treated forearm was 0.62 ± 41 and 0.60 ± 0.44 (SD) mg·cm(-2)·min(-1), respectively (P = 0.86). The density of active sweat glands for the control and propranolol-treated forearm was 130 ± 6 and 134 ± 5 (SD) glands/cm(2), respectively, (P = 0.33). End-exercise skin temperature was 32.9 ± 0.2 and 33.1 ± 0.3°C for the control and propranolol-treated forearm, respectively (P = 0.51). Results of the current study show that when propranolol is administered locally, thus eliminating the potential confounding systemic effects of the drug, it does not directly affect sweating during the initial stages of high-intensity exercise in young, healthy

  6. Cytogenetic and molecular localization of tipE: A gene affecting sodium channels in Drosophila melanogaster

    SciTech Connect

    Feng, G.; Deak, P.; Hall, L.M.

    1995-04-01

    Voltage-sensitive sodium channels play a key role in nerve cells where they are responsible for the increase in sodium permeability during the rising phase of action potentials. In Drosophila melanogaster a subset of temperature-sensitive paralytic mutations affect sodium channel function. One such mutation is temperature-induced paralysis locus E (tipE), which has been shown by electrophysiology and ligand binding studies to reduce sodium channel numbers. Three new {gamma}-ray-induced tipE alleles associated with either visible deletions in 64AB or a translocation breakpoint within 64B2 provide landmarks for positional cloning of tipE. Beginning with the flanking cloned gene Ras2, a 140-kb walk across the translocation breakpoint was completed. Germline transformation using a 42-kb cosmid clone and successively smaller subclones localized the tipE gene within a 7.4-kb genomic DNA segment. Although this chromosome region is rich in transcripts, only three overlapping mRNAs (5.4, 4.4, and 1.7 kb) lie completely within the smallest rescuing construct. The small sizes of the rescuing construct and transcripts suggests that tipE does not encode a standard sodium channel {alpha}-subunit with four homologous repeats. Sequencing these transcripts will elucidate the role of the tipE gene product in sodium channel functional regulation. 55 refs., 4 figs., 2 tabs.

  7. Cytogenetic and molecular localization of tipE: a gene affecting sodium channels in Drosophila melanogaster.

    PubMed

    Feng, G; Deák, P; Kasbekar, D P; Gil, D W; Hall, L M

    1995-04-01

    Voltage-sensitive sodium channels play a key role in nerve cells where they are responsible for the increase in sodium permeability during the rising phase of action potentials. In Drosophila melanogaster a subset of temperature-sensitive paralytic mutations affect sodium channel function. One such mutation is temperature-induced paralysis locus E (tipE), which has been shown by electrophysiology and ligand binding studies to reduce sodium channel numbers. Three new gamma-ray-induced tipE alleles associated with either visible deletions in 64AB or a translocation breakpoint within 64B2 provide landmarks for positional cloning of tipE. Beginning with the flanking cloned gene Ras2, a 140-kb walk across the translocation breakpoint was completed. Germline transformation using a 42-kb cosmid clone and successively smaller subclones localized the tipE gene within a 7.4-kb genomic DNA segment. Although this chromosome region is rich in transcripts, only three overlapping mRNAs (5.4, 4.4, and 1.7 kb) lie completely within the smallest rescuing construct. The small sizes of the rescuing construct and transcripts suggest that tipE does not encode a standard sodium channel alpha-subunit with four homologous repeats. Sequencing these transcripts will elucidate the role of the tipE gene product in sodium channel functional regulation.

  8. Seasonality and Locality Affect the Diversity of Anopheles gambiae and Anopheles coluzzii Midgut Microbiota from Ghana

    PubMed Central

    Gendrin, Mathilde; Pels, Nana Adjoa P.; Yeboah-Manu, Dorothy; Christophides, George K.; Wilson, Michael D.

    2016-01-01

    Symbiotic bacteria can have important implications in the development and competence of disease vectors. In Anopheles mosquitoes, the composition of the midgut microbiota is largely influenced by the larval breeding site, but the exact factors shaping this composition are currently unknown. Here, we examined whether the proximity to urban areas and seasons have an impact on the midgut microbial community of the two major malaria vectors in Africa, An. coluzzii and An. gambiae. Larvae and pupae were collected from selected habitats in two districts of Ghana during the dry and rainy season periods. The midgut microbiota of adults that emerged from these collections was determined by 454-pyrosequencing of the 16S ribosomal DNA. We show that in both mosquito species, Shewanellaceae constituted on average of 54% and 73% of the midgut microbiota from each site in the dry and rainy season, respectively. Enterobacteriaceae was found in comparatively low abundance below 1% in 22/30 samples in the dry season, and in 25/38 samples in the rainy season. Our data indicate that seasonality and locality significantly affect both the diversity of microbiota and the relative abundance of bacterial families with a positive impact of dry season and peri-urban settings. PMID:27322614

  9. The Application of Synoptic Weather Forecasting Rules to Selected Weather Situations in the United States.

    ERIC Educational Resources Information Center

    Kohler, Fred E.

    The document describes the use of weather maps and data in teaching introductory college courses in synoptic meteorology. Students examine weather changes at three-hour intervals from data obtained from the "Monthly Summary of Local Climatological Data." Weather variables in the local summary include sky cover, air temperature, dew point, relative…

  10. Great Historical Events That Were Significantly Affected by the Weather: Part 8, Germany's War on the Soviet Union, 1941-45. I. Long-range Weather Forecasts for 1941-42 and Climatological Studies.

    NASA Astrophysics Data System (ADS)

    Neumann, J.; Flohn, H.

    1987-06-01

    A brief account is given of Baur's long-range weather forecast prepared in the autumn of 1941 for the 1941-42 winter in Eastern Europe. Baur's forecast called for a normal' or mild winter but the winter turned out to be one of the most severe winters on record. The cold, the icy winds and blizzards gravely hit the German armies and coincided with the first major Soviet counteroffensive of the war. A Soviet weather forecast for January 1942, also called for a mild month.A review of the climatological studies prepared for the war indicates that the occurrence of mud periods of considerable intensity in autumn was not considered. The autumn 1941 mud period immobilized most of the German armies for a month and caused the attempted final German assault on Moscow to take place in an early and severe winter.Hitter would not tolerate the mention of winter and still less the mention of the retreat of Napoleon's Grande Armée from Russia.The support given by Soviet meteorologists and hydrologists to the Red Army is sketched. For the 1941-42 winter the more-important short- to medium-range forecasts included a forecast for 7 November (anniversary of the October Revolution) at Moscow and a forecast for the start of Zhukov's counteroffensive in the Battle of Moscow in December 1941.

  11. A simple model for regolith formation by chemical weathering

    NASA Astrophysics Data System (ADS)

    Braun, Jean; Mercier, Jonathan; Guillocheau, Francois; Robin, Cécile

    2016-11-01

    We present here a new model for the formation of regolith on geological timescales by chemical weathering based on the assumption that the rate of chemical weathering is primarily controlled by the ability of groundwater to transport solute away from the reacting solid-fluid interface and keep the system from reaching equilibrium (saturation). This allows us to specify the rate of propagation of the weathering front as linearly proportional to the pore fluid velocity which we obtain by computing the water table geometry in the regolith layer. The surface of the regolith layer is affected by mass transport and erosion. The main prediction of the model is that the geometry of the regolith, i.e., whether it is thickest beneath topographic highs or topographic lows, is controlled by the value of a dimensionless number, which depends on the square of the surface slope, the hydraulic conductivity, and local precipitation rate, but is independent of the chemical weathering rate. In orogenic environments, where regolith formation by chemical weathering competes with surface erosion, the model predicts that the existence and thickness of the regolith layer are controlled by the value of another dimensionless number which is the ratio between the timescale for erosion and the timescale for weathering. The model also predicts that in anorogenic areas, regolith thickness increases as the square root of time, whereas in orogenic environments, a steady state regolith thickness can be achieved, when the propagation of the weathering front is equal to erosion rate.

  12. Influence of weather conditions on hiking behavior.

    PubMed

    Li, Ching; Lin, Shu-Hua

    2012-07-01

    This study determines the major weather factors affecting hiking activity and builds a prediction model to estimate participation. An empirical assessment of hiking participation using weather factors was demonstrated for trails on Kuanyin Mountain, Taiwan. By adapting the concepts of the range of tolerance and the eclectic model, a nonlinear function was used to explain hiking participation with weather factors. Stepwise multiple-regression analysis was carried out to determine the major weather factors affecting hiking participation. The results indicate that not only did participation vary with the season but hiking behavior was affected by different weather factors in each season. The explanation rates for the seasons exceeded 90% except that for spring.

  13. Influence of weather conditions on hiking behavior

    NASA Astrophysics Data System (ADS)

    Li, Ching; Lin, Shu-Hua

    2012-07-01

    This study determines the major weather factors affecting hiking activity and builds a prediction model to estimate participation. An empirical assessment of hiking participation using weather factors was demonstrated for trails on Kuanyin Mountain, Taiwan. By adapting the concepts of the range of tolerance and the eclectic model, a nonlinear function was used to explain hiking participation with weather factors. Stepwise multiple-regression analysis was carried out to determine the major weather factors affecting hiking participation. The results indicate that not only did participation vary with the season but hiking behavior was affected by different weather factors in each season. The explanation rates for the seasons exceeded 90% except that for spring.

  14. Weather Forecasting Systems and Methods

    NASA Technical Reports Server (NTRS)

    Mecikalski, John (Inventor); MacKenzie, Wayne M., Jr. (Inventor); Walker, John Robert (Inventor)

    2014-01-01

    A weather forecasting system has weather forecasting logic that receives raw image data from a satellite. The raw image data has values indicative of light and radiance data from the Earth as measured by the satellite, and the weather forecasting logic processes such data to identify cumulus clouds within the satellite images. For each identified cumulus cloud, the weather forecasting logic applies interest field tests to determine a score indicating the likelihood of the cumulus cloud forming precipitation and/or lightning in the future within a certain time period. Based on such scores, the weather forecasting logic predicts in which geographic regions the identified cumulus clouds will produce precipitation and/or lighting within during the time period. Such predictions may then be used to provide a weather map thereby providing users with a graphical illustration of the areas predicted to be affected by precipitation within the time period.

  15. New weather index

    NASA Astrophysics Data System (ADS)

    Scientists at the National Oceanic and Atmospheric Administration (NOAA) and the University of Delaware have refined the wind-chill factor, a common measurement of weather discomfort, into a new misery register called the weather stress index. In addition to the mix of temperature and wind speed data used to calculate wind chill, the recipe for the index adds two new ingredients—humidity and a dash of benchmark statistics—to estimate human reaction to weather conditions. NOAA says that the weather stress index estimates human reaction to weather conditions and that the reaction depends on variations from the ‘normal’ conditions in the locality involved.Discomfort criteria for New Orleans, La., and Bismarck, N.D., for example, differ drastically. According to NOAA, when it's the middle of winter and it's -10°C with a relative humidity of 80% and 24 km/h winds, persons in New Orleans would be highly stressed while those in Bismarck wouldn't bat an eye.

  16. Expansion of the Real-time Sport-land Information System for NOAA / National Weather Service Situational Awareness and Local Modeling Applications

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; White, Kristopher D.

    2014-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, AL (Jedlovec 2013; Ralph et al. 2013; Merceret et al. 2013) is running a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework (hereafter referred to as the "SPoRT-LIS"). Output from the real-time SPoRT-LIS is used for (1) initializing land surface variables for local modeling applications, and (2) displaying in decision support systems for situational awareness and drought monitoring at select NOAA/National Weather Service (NWS) partner offices. The SPoRT-LIS is currently run over a domain covering the southeastern half of the Continental United States (CONUS), with an additional experimental real-time run over the entire CONUS and surrounding portions of southern Canada and northern Mexico. The experimental CONUS run incorporates hourly quantitative precipitation estimation (QPE) from the National Severe Storms Laboratory Multi- Radar Multi-Sensor (MRMS) product (Zhang et al. 2011, 2014), which will be transitioned into operations at the National Centers for Environmental Prediction (NCEP) in Fall 2014. This paper describes the current and experimental SPoRT-LIS configurations, and documents some of the limitations still remaining through the advent of MRMS precipitation analyses in the SPoRT-LIS land surface model (LSM) simulations. Section 2 gives background information on the NASA LIS and describes the realtime SPoRT-LIS configurations being compared. Section 3 presents recent work done to develop a training module on situational awareness applications of real-time SPoRT-LIS output. Comparisons between output from the two SPoRT-LIS runs are shown in Section 4, including a documentation of issues encountered in using the MRMS precipitation dataset. A summary and future work in given in Section 5, followed by acknowledgements and references.

  17. Preliminary Results of a U.S. Deep South Modeling Experiment Using NASA SPoRT Initialization Datasets for Operational National Weather Service Local Model Runs

    NASA Technical Reports Server (NTRS)

    Wood, Lance; Medlin, Jeffrey M.; Case, Jon

    2012-01-01

    A joint collaborative modeling effort among the NWS offices in Mobile, AL, and Houston, TX, and NASA Short-term Prediction Research and Transition (SPoRT) Center began during the 2011-2012 cold season, and continued into the 2012 warm season. The focus was on two frequent U.S. Deep South forecast challenges: the initiation of deep convection during the warm season; and heavy precipitation during the cold season. We wanted to examine the impact of certain NASA produced products on the Weather Research and Forecasting Environmental Modeling System in improving the model representation of mesoscale boundaries such as the local sea-, bay- and land-breezes (which often leads to warm season convective initiation); and improving the model representation of slow moving, or quasi-stationary frontal boundaries (which focus cold season storm cell training and heavy precipitation). The NASA products were: the 4-km Land Information System, a 1-km sea surface temperature analysis, and a 4-km greenness vegetation fraction analysis. Similar domains were established over the southeast Texas and Alabama coastlines, each with an outer grid with a 9 km spacing and an inner nest with a 3 km grid spacing. The model was run at each NWS office once per day out to 24 hours from 0600 UTC, using the NCEP Global Forecast System for initial and boundary conditions. Control runs without the NASA products were made at the NASA SPoRT Center. The NCAR Model Evaluation Tools verification package was used to evaluate both the positive and negative impacts of the NASA products on the model forecasts. Select case studies will be presented to highlight the influence of the products.

  18. How lithology and climate affect REE mobility and fractionation along a shale weathering transect of the Susquehanna Shale Hills Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Ma, L.; Jin, L.; Dere, A. L.; White, T.; Mathur, R.; Brantley, S. L.

    2012-12-01

    Shale weathering is an important process in global elemental cycles. Accompanied by the transformation of bedrock into regolith, many elements including rare earth elements (REE) are mobilized primarily by chemical weathering in the Critical Zone. Then, REE are subsequently transported from the vadose zone to streams, with eventual deposition in the oceans. REE have been identified as crucial and strategic natural resources; and discovery of new REE deposits will be facilitated by understanding global REE cycles. At present, the mechanisms and environmental factors controlling release, transport, and deposition of REE - the sources and sinks - at Earth's surface remain unclear. Here, we present a systematic study of soils, stream sediments, stream waters, soil water and bedrock in six small watersheds that are developed on shale bedrock in the eastern USA to constrain the mobility and fractionation of REE during early stages of chemical weathering. The selected watersheds are part of the shale transect established by the Susquehanna Shale Hills Observatory (SSHO) and are well suited to investigate weathering on shales of different compositions or within different climate regimes but on the same shale unit. Our REE study from SSHO, a small gray shale watershed in central Pennsylvania, shows that up to 65% of the REE (relative to parent bedrock) is depleted in the acidic and organic-rich soils due to chemical leaching. Both weathering soil profiles and natural waters show a preferential removal of middle REE (MREE: Sm to Dy) relative to light REE (La to Nd) and heavy REE (Ho to Lu) during shale weathering, due to preferential release of MREE from a phosphate phase (rhabdophane). Strong positive Ce anomalies observed in the regolith and stream sediments point to the fractionation and preferential precipitation of Ce as compared to other REE, in the generally oxidizing conditions of the surface environments. One watershed developed on the Marcellus black shale in

  19. The National Weather Service warning system.

    PubMed

    Belville, J D

    1987-09-01

    The National Weather Service (NWS) is the federal agency solely responsible for issuing weather forecasts and warnings of weather hazards. Additional facets of NWS operations that pertain to public safety are dissemination of weather warnings, weather hazard awareness, and the weather preparedness program. These are interrelated to form a successful warning program. NWS field operations encompass many types of atmospheric phenomena, each requiring different action in order to protect life and property. The NWS weather forecast and warning program is of little value if local officials or citizens are unprepared to take necessary precautions. Many deaths and serious injuries that occur due to hazardous weather are preventable. Although the weather-related death toll has decreased significantly since the 1960s, the potential for catastrophic loss of life remains in many areas of the United States. An excellent preparedness/awareness program can minimize the possibility of loss of life.

  20. Weather from the Stratosphere?

    NASA Technical Reports Server (NTRS)

    Baldwin, Mark P.; Thompson, David W. J.; Shuckburgh, Emily F.; Norton, Warwick A.; Gillett, Nathan P.

    2006-01-01

    Is the stratosphere, the atmospheric layer between about 10 and 50 km, important for predicting changes in weather and climate? The traditional view is that the stratosphere is a passive recipient of energy and waves from weather systems in the underlying troposphere, but recent evidence suggests otherwise. At a workshop in Whistler, British Columbia (1), scientists met to discuss how the stratosphere responds to forcing from below, initiating feedback processes that in turn alter weather patterns in the troposphere. The lowest layer of the atmosphere, the troposphere, is highly dynamic and rich in water vapor, clouds, and weather. The stratosphere above it is less dense and less turbulent (see the figure). Variability in the stratosphere is dominated by hemispheric-scale changes in airflow on time scales of a week to several months. Occasionally, however, stratospheric air flow changes dramatically within just a day or two, with large-scale jumps in temperature of 20 K or more. The troposphere influences the stratosphere mainly through atmospheric waves that propagate upward. Recent evidence shows that the stratosphere organizes this chaotic wave forcing from below to create long-lived changes in the stratospheric circulation. These stratospheric changes can feed back to affect weather and climate in the troposphere.

  1. WegenerNet climate station network region Feldbach/Austria: From local measurements to weather and climate data products at 1 km-scale resolution

    NASA Astrophysics Data System (ADS)

    Kabas, T.; Leuprecht, A.; Bichler, C.; Kirchengast, G.

    2010-12-01

    South-eastern Austria is characteristic for experiencing a rich variety of weather and climate patterns. For this reason, the county of Feldbach was selected by the Wegener Center as a focus area for a pioneering observation experiment at very high resolution: The WegenerNet climate station network (in brief WegenerNet) comprises 151 meteorological stations within an area of about 20 km × 15 km (~ 1.4 km × 1.4 km station grid). All stations measure the main parameters temperature, humidity and precipitation with 5 minute sampling. Selected further stations include measurements of wind speed and direction completed by soil parameters as well as air pressure and net radiation. The collected data is integrated in an automatic processing system including data transfer, quality control, product generation, and visualization. Each station is equipped with an internet-attached data logger and the measurements are transferred as binary files via GPRS to the WegenerNet server in 1 hour intervals. The incoming raw data files of measured parameters as well as several operating values of the data logger are stored in a relational database (PostgreSQL). Next, the raw data pass the Quality Control System (QCS) in which the data are checked for its technical and physical plausibility (e.g., sensor specifications, temporal and spatial variability). In consideration of the data quality (quality flag), the Data Product Generator (DPG) results in weather and climate data products on various temporal scales (from 5 min to annual) for single stations and regular grids. Gridded data are derived by vertical scaling and squared inverse distance interpolation (1 km × 1 km and 0.01° × 0.01° grids). Both subsystems (QCS and DPG) are realized by the programming language Python. For application purposes the resulting data products are available via the bi-lingual (dt, en) WegenerNet data portal (www.wegenernet.org). At this time, the main interface is still online in a system in which

  2. Developing New Strategies for Coping with Weather: Work in Alaskan and Canadian Coastal Communities

    NASA Astrophysics Data System (ADS)

    Atkinson, D. E.

    2014-12-01

    A changing climate is manifested at ground level through the day to day weather. For all Northern residents - community, industrial, operational and response - the need to think about the weather is ever present. Northern residents, and in particular, indigenous community residents, fully understand implications of the weather, however, a comment that has been heard more often is that old ways of knowing are not as reliable as they once were. Weather patterns seem less consistent and subject to more rapid fluctuations. Compromised traditional ways of knowing puts those who need to travel or hunt at greater risk. One response to adapt to this emerging reality is to make greater use of western sources of information, such as weather data and charts provided by NOAA's National Weather Service or Environment Canada. The federal weather agencies have very large and complex forecasting regions to cover, and so one problem is that it can be difficult to provide perfectly tailored forecasts, that cover all possible problems, right down to the very local scale in the communities. Only those affected have a complete feel for their own concerns. Thus, key to a strategy to improve the utility of available weather information is a linking of local-scale manifestations of problematic weather to the larger-scale weather patterns. This is done in two ways: by direct consultation with Northern residents, and by installation of equipment to measure parameters of interest to residents, which are not already being measured. This talk will overview projects in coastal Alaska and Canada targeting this objective. The challenge of designing and conducting interviews, and then of harvesting relevant information, will be visited using examples from the three major contexts: coastal community, industrial, and operational. Examples of how local comments can be married to weather products will be presented.

  3. The Push and Pull of Standards-Based Reform: How Does It Affect Local School Districts and Students with Disabilities?

    ERIC Educational Resources Information Center

    Raber, Suzanne; Roach, Virginia; Fraser, Katherine, Ed.

    This report discusses findings from case studies in California, Missouri, New Mexico, and Pennsylvania that examined ways in which state-level general and special education reforms interact, impact local districts, and affect the educational programs for students with disabilities. Chapter 1 reviews two major state-level priorities for education…

  4. Global markets and the differential effects of climate and weather on conflict

    NASA Astrophysics Data System (ADS)

    Meng, K. C.; Hsiang, S. M.; Cane, M. A.

    2011-12-01

    Both climate and weather have been attributed historically as possible drivers for violence. Previous empirical studies have either focused on isolating local idiosyncratic weather variation or have conflated weather with spatially coherent climatic changes. This paper provides the first study of the differential impacts of climate and weather variation by employing methods developed in earlier work linking the El Nino Southern Oscillation (ENSO) with the onset of civil conflicts. By separating the effects of climate from local weather, we are able to test possible mechanisms by which atmospheric changes can cause violence. It is generally difficult to separate the effect of year-to-year climate variations from other global events that might drive conflict. We avoid this problem by examining the set of tropical countries that are strongly teleconnected to ENSO. For this region, the ENSO cycle parallels the common year-to-year pattern of violence. Using ENSO, we isolate the influence of climatic changes from other global determinants of violence and compare it with the effect of local weather variations. We find that while climate affects the onset of civil conflicts in teleconnected countries, local weather has no significant effect. Productivity overall as well as across major sectors is more affected by local weather than by climatic variation. This is particularly evident in the agricultural sector where total value and cereal yield decline much greater from a 1°C increase in local temperature than a 1°C increase in ENSO. However, when examining the effect on food prices, we find that ENSO is associated with a large and statistically significant increase in cereal prices but no effect from hotter local temperatures. Altogether, this evidence points toward the ability of global and regional commodity markets to insure against the effects of local weather variation and their limitations in containing losses from aggregate shocks such as El Nino events. We posit

  5. Activities in Teaching Weather

    ERIC Educational Resources Information Center

    Tonn, Martin

    1977-01-01

    Presented is a unit composed of activities for teaching weather. Topics include cloud types and formation, simple weather instruments, and the weather station. Illustrations include a weather chart and instruments. A bibliography is given. (MA)

  6. Socioeconomic Factors Affecting Local Support for Black Bear Recovery Strategies(AED)

    EPA Science Inventory

    There is global interest in recovering locally extirpated carnivore species. Successful efforts to recover Louisiana black bear in Louisiana have prompted interest in recovery throughout the species’ historical range. We evaluated support for three potential black bear recovery s...

  7. Understanding Locally, Culturally, and Contextually Relevant Mental Health Problems among Rwandan Children and Adolescents Affected by HIV/AIDS

    PubMed Central

    Betancourt, Theresa Stichick; Rubin-Smith, Julia E.; Beardslee, William R.; Stulac, Sara N.; Fayida, Ildephonse; Safren, Steven

    2011-01-01

    In assessing the mental health of HIV/AIDS-affected children and adolescents in Sub-Saharan Africa, researchers often employ mental health measures developed in other settings. However, measures derived from standard Western psychiatric criteria are frequently based on conceptual models of illness or terminology that may or may not be an appropriate for diverse populations. Understanding local perceptions of mental health problems can aid in the selection or creation of appropriate measures. This study used qualitative methodologies (Free Listing [FL], Key Informant [KI] interviews, and Clinician Interviews [C-KIs]) to understand local perceptions of mental health problems facing HIV/AIDS-affected youth in Rwinkwavu, Rwanda. Several syndrome terms were identified by participants: agahinda kenshi, kwiheba, guhangayika, ihahamuka, umushiha and uburara. While these local syndromes share some similarities with Western mood, anxiety, and conduct disorders, they also contain important culture-specific features and gradations of severity. Our findings underscore the importance of understanding local manifestations of mental health syndromes when conducting mental health assessments and when planning interventions for HIV/AIDS-affected children and adolescents in diverse settings. PMID:21271393

  8. A Bayesian hierarchical model with spatial variable selection: the effect of weather on insurance claims

    PubMed Central

    Scheel, Ida; Ferkingstad, Egil; Frigessi, Arnoldo; Haug, Ola; Hinnerichsen, Mikkel; Meze-Hausken, Elisabeth

    2013-01-01

    Climate change will affect the insurance industry. We develop a Bayesian hierarchical statistical approach to explain and predict insurance losses due to weather events at a local geographic scale. The number of weather-related insurance claims is modelled by combining generalized linear models with spatially smoothed variable selection. Using Gibbs sampling and reversible jump Markov chain Monte Carlo methods, this model is fitted on daily weather and insurance data from each of the 319 municipalities which constitute southern and central Norway for the period 1997–2006. Precise out-of-sample predictions validate the model. Our results show interesting regional patterns in the effect of different weather covariates. In addition to being useful for insurance pricing, our model can be used for short-term predictions based on weather forecasts and for long-term predictions based on downscaled climate models. PMID:23396890

  9. Effect of weather on the number and the nature of visits to a pediatric ED.

    PubMed

    Attia, M W; Edward, R

    1998-07-01

    To determine whether unfavorable weather conditions affect the number and acuity of visits to a pediatric emergency department (ED), a retrospective analysis was conducted of children's hospital ED visits and weather conditions utilizing an ED log book and local climatological data during the year 1993. Visits, intensive care unit (ICU) admissions, non-ICU admissions, time periods with favorable weather (TPF), and time periods with unfavorable weather (TPUF) were measured. Each day of the year was divided into two time periods. The time periods were labeled TPF or TPUF based on certain weather conditions. There were 632 (86%) TPF and 98 (14%) TPUF. The number of visits, non-ICU admissions, and ICU admissions during TPF were 13,008 (88%), 1,031 (87%) and 121 (86%), respectively. The number of visits, non-ICU admissions, and ICU admissions during TPUF were 1,720 (12%), 148 (13%), and 19 (14%), respectively. No significant differences in visits and admissions during TPF and TPUF were identified. Also, there was no difference identified when the distribution of visits and admissions was examined during TPUF due to different weather factors, eg, low temperature, precipitation, etc. The results show that unfavorable weather due to the types of weather factors discussed does not affect the number or the nature of visits to a pediatric ED.

  10. GEM: Statistical weather forecasting procedure

    NASA Technical Reports Server (NTRS)

    Miller, R. G.

    1983-01-01

    The objective of the Generalized Exponential Markov (GEM) Program was to develop a weather forecast guidance system that would: predict between 0 to 6 hours all elements in the airways observations; respond instantly to the latest observed conditions of the surface weather; process these observations at local sites on minicomputing equipment; exceed the accuracy of current persistence predictions at the shortest prediction of one hour and beyond; exceed the accuracy of current forecast model output statistics inside eight hours; and be capable of making predictions at one location for all locations where weather information is available.

  11. Both population size and patch quality affect local extinctions and colonizations.

    PubMed

    Franzén, Markus; Nilsson, Sven G

    2010-01-07

    Currently, the habitat of many species is fragmented, resulting in small local populations with individuals occasionally dispersing between the remaining habitat patches. In a solitary bee metapopulation, extinction probability was related to both local bee population sizes and pollen resources measured as host plant population size. Patch size, on the other hand, had no additional predictive power. The turnover rate of local bee populations in 63 habitat patches over 4 years was high, with 72 extinction events and 31 colonization events, but the pollen plant population was stable with no extinctions or colonizations. Both pollen resources and bee populations had strong and independent effects on extinction probability, but connectivity was not of importance. Colonizations occurred more frequently within larger host plant populations. For metapopulation survival of the bee, large pollen plant populations are essential, independent of current bee population size.

  12. Madness or sadness? Local concepts of mental illness in four conflict-affected African communities

    PubMed Central

    2013-01-01

    Background Concepts of ‘what constitutes mental illness’, the presumed aetiology and preferred treatment options, vary considerably from one cultural context to another. Knowledge and understanding of these local conceptualisations is essential to inform public mental health programming and policy. Methods Participants from four locations in Burundi, South Sudan and the Democratic Republic of the Congo, were invited to describe ‘problems they knew of that related to thinking, feeling and behaviour?’ Data were collected over 31 focus groups discussions (251 participants) and key informant interviews with traditional healers and health workers. Results While remarkable similarities occurred across all settings, there were also striking differences. In all areas, participants were able to describe localized syndromes characterized by severe behavioural and cognitive disturbances with considerable resemblance to psychotic disorders. Additionally, respondents throughout all settings described local syndromes that included sadness and social withdrawal as core features. These syndromes had some similarities with nonpsychotic mental disorders, such as major depression or anxiety disorders, but also differed significantly. Aetiological concepts varied a great deal within each setting, and attributed causes varied from supernatural to psychosocial and natural. Local syndromes resembling psychotic disorders were seen as an abnormality in need of treatment, although people did not really know where to go. Local syndromes resembling nonpsychotic mental disorders were not regarded as a ‘medical’ disorder, and were therefore also not seen as a condition for which help should be sought within the biomedical health-care system. Rather, such conditions were expected to improve through social and emotional support from relatives, traditional healers and community members. Conclusions Local conceptualizations have significant implications for the planning of mental

  13. Components of RNA granules affect their localization and dynamics in neuronal dendrites.

    PubMed

    Mitsumori, Kazuhiko; Takei, Yosuke; Hirokawa, Nobutaka

    2017-04-12

    In neurons, RNA transport is important for local protein synthesis. Messenger RNAs (mRNAs) are transported along dendrites as large RNA granules. The localization and dynamics of Puralpha and Stau1, major components of RNA transport granules, were investigated in cultured hippocampal neurons. Puralpha-positive granules were localized in both the shafts and spines of dendrites. In contrast, Stau1-positive granules tended to be localized mainly in dendritic shafts. More than 90% of Puralpha-positive granules were positive for Stau1 in immature dendrites, while only half were positive in mature dendrites. Stau1-negative Puralpha granules tended to be stationary with fewer anterograde and retrograde movements than Stau1-positive Puralpha granules. After metabotropic glutamate receptor 5 (mGluR5) activation, Stau-1 positive granules remained in the dendritic shafts, while Puralpha granules translocated from the shaft to the spine. The translocation of Puralpha granules was dependent on Myosin Va, an actin-based molecular motor protein. Collectively, our findings suggest the possibility that the loss of Stau1 in Puralpha-positive RNA granules might promote their activity-dependent translocation into dendritic spines, which could underlie the regulation of protein synthesis in synapses.

  14. Dynamics of Choice: Relative Rate and Amount Affect Local Preference at Three Different Time Scales

    ERIC Educational Resources Information Center

    Aparicio, Carlos F.; Baum, William M.

    2009-01-01

    To examine extended control over local choice, the present study investigated preference in transition as food-rate ratio provided by two levers changed across seven components within daily sessions, and food-amount ratio changed across phases. Phase 1 arranged a food-amount ratio of 4:1 (i.e., the left lever delivered four pellets and the right…

  15. Principals and Local School Councils: An International Comparison of Judicial Policy Affecting School Reform.

    ERIC Educational Resources Information Center

    Menacker, Julius

    1996-01-01

    Compares the legal reasoning and results in two cases brought to courts by principals dismissed by local school governing boards under authority granted to these community groups by school reform laws in Chicago, Illinois, and New Zealand. Observations are made regarding the need for appropriate adjustments in school-based-management reform law…

  16. Recent improvement and projected worsening of weather in the United States.

    PubMed

    Egan, Patrick J; Mullin, Megan

    2016-04-21

    As climate change unfolds, weather systems in the United States have been shifting in patterns that vary across regions and seasons. Climate science research typically assesses these changes by examining individual weather indicators, such as temperature or precipitation, in isolation, and averaging their values across the spatial surface. As a result, little is known about population exposure to changes in weather and how people experience and evaluate these changes considered together. Here we show that in the United States from 1974 to 2013, the weather conditions experienced by the vast majority of the population improved. Using previous research on how weather affects local population growth to develop an index of people’s weather preferences, we find that 80% of Americans live in counties that are experiencing more pleasant weather than they did four decades ago. Virtually all Americans are now experiencing the much milder winters that they typically prefer, and these mild winters have not been offset by markedly more uncomfortable summers or other negative changes. Climate change models predict that this trend is temporary, however, because US summers will eventually warm more than winters. Under a scenario in which greenhouse gas emissions proceed at an unabated rate (Representative Concentration Pathway 8.5), we estimate that 88% of the US public will experience weather at the end of the century that is less preferable than weather in the recent past. Our results have implications for the public’s understanding of the climate change problem, which is shaped in part by experiences with local weather. Whereas weather patterns in recent decades have served as a poor source of motivation for Americans to demand a policy response to climate change, public concern may rise once people’s everyday experiences of climate change effects start to become less pleasant.

  17. Recent improvement and projected worsening of weather in the United States

    NASA Astrophysics Data System (ADS)

    Egan, Patrick J.; Mullin, Megan

    2016-04-01

    As climate change unfolds, weather systems in the United States have been shifting in patterns that vary across regions and seasons. Climate science research typically assesses these changes by examining individual weather indicators, such as temperature or precipitation, in isolation, and averaging their values across the spatial surface. As a result, little is known about population exposure to changes in weather and how people experience and evaluate these changes considered together. Here we show that in the United States from 1974 to 2013, the weather conditions experienced by the vast majority of the population improved. Using previous research on how weather affects local population growth to develop an index of people’s weather preferences, we find that 80% of Americans live in counties that are experiencing more pleasant weather than they did four decades ago. Virtually all Americans are now experiencing the much milder winters that they typically prefer, and these mild winters have not been offset by markedly more uncomfortable summers or other negative changes. Climate change models predict that this trend is temporary, however, because US summers will eventually warm more than winters. Under a scenario in which greenhouse gas emissions proceed at an unabated rate (Representative Concentration Pathway 8.5), we estimate that 88% of the US public will experience weather at the end of the century that is less preferable than weather in the recent past. Our results have implications for the public’s understanding of the climate change problem, which is shaped in part by experiences with local weather. Whereas weather patterns in recent decades have served as a poor source of motivation for Americans to demand a policy response to climate change, public concern may rise once people’s everyday experiences of climate change effects start to become less pleasant.

  18. Rainmakers: why bad weather means good productivity.

    PubMed

    Lee, Jooa Julia; Gino, Francesca; Staats, Bradley R

    2014-05-01

    People believe that weather conditions influence their everyday work life, but to date, little is known about how weather affects individual productivity. Contrary to conventional wisdom, we predict and find that bad weather increases individual productivity and that it does so by eliminating potential cognitive distractions resulting from good weather. When the weather is bad, individuals appear to focus more on their work than on alternate outdoor activities. We investigate the proposed relationship between worse weather and higher productivity through 4 studies: (a) field data on employees' productivity from a bank in Japan, (b) 2 studies from an online labor market in the United States, and (c) a laboratory experiment. Our findings suggest that worker productivity is higher on bad-, rather than good-, weather days and that cognitive distractions associated with good weather may explain the relationship. We discuss the theoretical and practical implications of our research.

  19. Initial Evaluation of the Heat-Affected Zone, Local Embrittlement Phenomenon as it Applies to Nuclear Reactor Vessels

    SciTech Connect

    McCabe, D.E.

    1999-09-01

    The objective of this project was to determine if the local brittle zone (LBZ) problem, encountered in the testing of the heat-affected zone (HAZ) part of welds in offshore platform construction, can also be found in reactor pressure vessel (RPV) welds. Both structures have multipass welds and grain coarsening along the fusion line. Literature was obtained that described the metallurgical evidence and the type of research work performed on offshore structure welds.

  20. Transcription factor co-localization patterns affect human cell type-specific gene expression

    PubMed Central

    2012-01-01

    Background Cellular development requires the precise control of gene expression states. Transcription factors are involved in this regulatory process through their combinatorial binding with DNA. Information about transcription factor binding sites can help determine which combinations of factors work together to regulate a gene, but it is unclear how far the binding data from one cell type can inform about regulation in other cell types. Results By integrating data on co-localized transcription factor binding sites in the K562 cell line with expression data across 38 distinct hematopoietic cell types, we developed regression models to describe the relationship between the expression of target genes and the transcription factors that co-localize nearby. With K562 binding sites identifying the predictors, the proportion of expression explained by the models is statistically significant only for monocytic cells (p-value< 0.001), which are closely related to K562. That is, cell type specific binding patterns are crucial for choosing the correct transcription factors for the model. Comparison of predictors obtained from binding sites in the GM12878 cell line with those from K562 shows that the amount of difference between binding patterns is directly related to the quality of the prediction. By identifying individual genes whose expression is predicted accurately by the binding sites, we are able to link transcription factors FOS, TAF1 and YY1 to a sparsely studied gene LRIG2. We also find that the activity of a transcription factor may be different depending on the cell type and the identity of other co-localized factors. Conclusion Our approach shows that gene expression can be explained by a modest number of co-localized transcription factors, however, information on cell-type specific binding is crucial for understanding combinatorial gene regulation. PMID:22721266

  1. Parameters Affecting Loads on Buried Structures Subjected to Localized Blast Effects

    DTIC Science & Technology

    1992-04-01

    Structures Laboratory DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers 3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199...ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER US Army Engineer Waterways Experiment Station, Structures Laboratory, Technical Report SL-92-9...Loads on Buried Structures Subjected to Localized Blast Effects." These analyses were performed in the Structures Laboratory (SL), U.S. Army Engineer

  2. Should triple-negative breast cancer (TNBC) subtype affect local-regional therapy decision making?

    PubMed

    Moran, Meena S

    2014-01-01

    The more aggressive biologic characteristics and the current lack of targeted therapy for triple-negative breast cancer (TNBC) make local-regional management decisions challenging for physicians. TNBC is associated with patients of younger age, black race and BRCA1 mutation carriers. Distinctions between BRCA1-associated and sporadic TNBC include increased lifetime risk of ipsilateral and contralateral breast cancer after breast cancer therapy (BCT) for BRCA carriers, which is not shared by sporadic TNBC. However, the presence of a BRCA mutation should not preclude a breast-conservation approach in patients who are otherwise appropriate candidates for BCT. Data suggest that local-regional relapse (LRR) at baseline after BCT appears to be comparable for TNBC and the HER2-positive subgroups, but is about 50% greater than luminal tumors. LRR appears to be similarly increased after mastectomy; thus, TNBC should not be a contra-indication for BCT. Recent hypothesis-generating data suggest less LRR after BCT (where radiation is routinely delivered) than with mastectomy for early-stage TNBC. To date, no specific local-regional guideline recommendations for TNBC exist. Level I outcome data for TNBC using accelerated partial breast irradiation (APBI) and hypofractionated whole-breast irradiation (hWBRT) are lacking. TNBC should be treated with APBI only on clinical trials. Although hWBRT may be considered in TNBC, its association with younger age, advanced disease and use of systemic chemotherapy often precludes its use for this subtype. Until definitive treatment strategies are validated in large datasets and confirmed in randomized trials, TNBC subtype, in and of itself, should not direct local-regional management treatment decisions.

  3. Connecting the dots: how local structure affects global integration in infants.

    PubMed

    Palomares, Melanie; Pettet, Mark; Vildavski, Vladimir; Hou, Chuan; Norcia, Anthony

    2010-07-01

    Glass patterns are moirés created from a sparse random-dot field paired with its spatially shifted copy. Because discrimination of these patterns is not based on local features, they have been used extensively to study global integration processes. Here, we investigated whether 4- to 5.5-month-old infants are sensitive to the global structure of Glass patterns by measuring visual-evoked potentials. Although we found strong responses to the appearance of the constituent dots, we found sensitivity to the global structure of the Glass patterns in the infants only over a very limited range of spatial separation. In contrast, we observed robust responses in the infants when we connected the dot pairs of the Glass pattern with lines. Moreover, both infants and adults showed differential responses to exchanges between line patterns portraying different global structures. A control study varying luminance contrast in adults suggests that infant sensitivity to global structure is not primarily limited by reduced element visibility. Together our results suggest that the insensitivity to structure in conventional Glass patterns is due to inefficiencies in extracting the local orientation cues generated by the dot pairs. Once the local orientations are made unambiguous or when the interpolation span is small, infants can integrate these signals over the image.

  4. Connecting the dots: how local structure affects global integration in infants

    PubMed Central

    Palomares, Melanie; Pettet, Mark; Vildavski, Vladimir; Hou, Chuan; Norcia, Anthony

    2009-01-01

    Glass patterns are moirés created from a sparse random dot field paired with its spatially-shifted copy. Because discrimination of these patterns is not based on local features, they have been used extensively to study global integration processes. Here, we investigated whether 4–5.5 month old infants are sensitive to the global structure of Glass patterns by measuring Visual Evoked Potentials (VEPs). Although we found strong responses to the appearance of the constituent dots, we found sensitivity to the global structure of the Glass patterns in the infants only over a very limited range of spatial separation. In contrast, we observed robust responses in the infants when we connected the dot pairs of the Glass pattern with lines. Moreover, both infants and adults showed differential responses to exchanges between line patterns portraying different global structures. A control study varying luminance contrast in adults suggests that infant sensitivity to global structure is not primarily limited by reduced element visibility. Together our results suggest that the insensitivity to structure in conventional Glass patterns is due to inefficiencies in extracting the local orientation cues generated by the dot pairs. Once the local orientations are made unambiguous or when the interpolation span is small, infants can integrate these signals over the image. PMID:19642888

  5. Prognostic Factors Affecting Locally Recurrent Rectal Cancer and Clinical Significance of Hemoglobin

    SciTech Connect

    Rades, Dirk Kuhn, Hildegard; Schultze, Juergen; Homann, Nils; Brandenburg, Bernd; Schulte, Rainer; Krull, Andreas; Schild, Steven E.; Dunst, Juergen

    2008-03-15

    Purpose: To investigate potential prognostic factors, including hemoglobin levels before and during radiotherapy, for associations with survival and local control in patients with unirradiated locally recurrent rectal cancer. Patients and Methods: Ten potential prognostic factors were investigated in 94 patients receiving radiotherapy for recurrent rectal cancer: age ({<=}68 vs. {>=}69 years), gender, Eastern Cooperative Oncology Group performance status (0-1 vs. 2-3), American Joint Committee on Cancer (AJCC) stage ({<=}II vs. III vs. IV), grading (G1-2 vs. G3), surgery, administration of chemotherapy, radiation dose (equivalent dose in 2-Gy fractions: {<=}50 vs. >50 Gy), and hemoglobin levels before (<12 vs. {>=}12 g/dL) and during (majority of levels: <12 vs. {>=}12 g/dL) radiotherapy. Multivariate analyses were performed, including hemoglobin levels, either before or during radiotherapy (not both) because these are confounding variables. Results: Improved survival was associated with better performance status (p < 0.001), lower AJCC stage (p = 0.023), surgery (p = 0.011), chemotherapy (p = 0.003), and hemoglobin levels {>=}12 g/dL both before (p = 0.031) and during (p < 0.001) radiotherapy. On multivariate analyses, performance status, AJCC stage, and hemoglobin levels during radiotherapy maintained significance. Improved local control was associated with better performance status (p = 0.040), lower AJCC stage (p = 0.010), lower grading (p = 0.012), surgery (p < 0.001), chemotherapy (p < 0.001), and hemoglobin levels {>=}12 g/dL before (p < 0.001) and during (p < 0.001) radiotherapy. On multivariate analyses, chemotherapy, grading, and hemoglobin levels before and during radiotherapy remained significant. Subgroup analyses of the patients having surgery demonstrated the extent of resection to be significantly associated with local control (p = 0.011) but not with survival (p = 0.45). Conclusion: Predictors for outcome in patients who received radiotherapy for

  6. Weathering instability and landscape evolution

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan D.

    2005-04-01

    The argument in this paper is that the fundamental control on landscape evolution in erosional landscapes is weathering. The possibility of and evidence for instability in weathering at four scales is examined. The four scales are concerned with weathering processes, allocation of weathered products, the interrelations of weathering and denudation, and the topographic and isostatic responses to weathering-limited denudation (the regolith, hillslope, landscape unit, and landscape scales, respectively). The stability conditions for each model, and the circumstances under which the models themselves are relevant, are used to identify scale-related domains of stability and instability. At the regolith scale, the interactions among weathering rates, resistance, and moisture are unstable, but there are circumstances—over long timescales and where weathering is well advanced—under which the instability is irrelevant. At the hillslope scale, the system is stable when denudation is transport rather than weathering limited and where no renewal of exposure via regolith stripping occurs. At the level of landscape units, the stability model is based entirely on the mutual reinforcements of weathering and erosion. While this should generally lead to instability, the model would be stable where other, external controls of both weathering and erosion rates are stronger than the weathering-erosion feedbacks. At the broadest landscape scale, the inclusion of isostatic responses destabilizes erosion-topography-uplift relationships. Thus, if the spatial or temporal scale is such that isostatic responses are not relevant, the system may be stable. Essentially, instability is prevalent at local spatial scales at all but the longest timescales. Stability at intermediate spatial scales is contingent on whether weathering-erosion feedbacks are strong or weak, with stability being more likely at shorter and less likely at longer timescales. At the broadest spatial scales, instability is

  7. Factors Affecting Auditory Localization and Situational Awareness in the Urban Battlefield

    DTIC Science & Technology

    2005-04-01

    resolving spatial locations of several simultaneous sound sources such as various musical instruments playing together or two or more vehicles...and they can affect the perceived size of the sound source, its loudness, and its timbre (Blauert, 1999). 2.2 Elevation Sound source elevation and...occurred (Perrott & Musicant , 1977; Chandler & Grantham, 1992). 3. Acoustics of the Urban Environment When gathering data about the environment and

  8. Aerosol Radiative Forcing and Weather Forecasts in the ECMWF Model

    NASA Astrophysics Data System (ADS)

    Bozzo, A.; Benedetti, A.; Rodwell, M. J.; Bechtold, P.; Remy, S.

    2015-12-01

    Aerosols play an important role in the energy balance of the Earth system via direct scattering and absorpiton of short-wave and long-wave radiation and indirect interaction with clouds. Diabatic heating or cooling by aerosols can also modify the vertical stability of the atmosphere and influence weather pattern with potential impact on the skill of global weather prediction models. The Copernicus Atmosphere Monitoring Service (CAMS) provides operational daily analysis and forecast of aerosol optical depth (AOD) for five aerosol species using a prognostic model which is part of the Integrated Forecasting System of the European Centre for Medium-Range Weather Forecasts (ECMWF-IFS). The aerosol component was developed during the research project Monitoring Atmospheric Composition and Climate (MACC). Aerosols can have a large impact on the weather forecasts in case of large aerosol concentrations as found during dust storms or strong pollution events. However, due to its computational burden, prognostic aerosols are not yet feasible in the ECMWF operational weather forecasts, and monthly-mean climatological fields are used instead. We revised the aerosol climatology used in the operational ECMWF IFS with one derived from the MACC reanalysis. We analyse the impact of changes in the aerosol radiative effect on the mean model climate and in medium-range weather forecasts, also in comparison with prognostic aerosol fields. The new climatology differs from the previous one by Tegen et al 1997, both in the spatial distribution of the total AOD and the optical properties of each aerosol species. The radiative impact of these changes affects the model mean bias at various spatial and temporal scales. On one hand we report small impacts on measures of large-scale forecast skill but on the other hand details of the regional distribution of aerosol concentration have a large local impact. This is the case for the northern Indian Ocean where the radiative impact of the mineral

  9. The magnitude and dynamics of interocular suppression affected by monocular boundary contour and conflicting local features

    PubMed Central

    Su, Yong R.; He, Zijiang J.; Ooi, Teng Leng

    2010-01-01

    A monocular boundary contour (MBC) rivalry stimulus has two half-images, a homogeneous grating and the same homogeneous grating with an additional disc region. The outline/frame of the MBC disc is created by relative phase-shift, or orientation difference. We found the increment contrast threshold and reaction time to detect a monocular Gabor probe elevated on the homogeneous half-image pedestal. The interocular suppression begins as early as 80 msec upon stimulus onset. Moreover, the suppression magnitude is larger when the MBC disc is defined by orientation difference rather than phase-shift, revealing the suppression caused by competing local features in addition to MBC. PMID:20624411

  10. Local and serum IgE in patients affected by otitis media with effusion.

    PubMed

    Sanz, M L; Tabar, A I; Manrique, M; Oehling, A

    1986-01-01

    Various mechanisms intervene in the etiopathogenesis of otitis media with effusion (OME), but to date it is not clear which mechanism is the most important. We studied twenty children affected with persistent otitis media with effusion (OME) inspite of the indicated treatments, and the possible incidence of atopic features, total serum IgE and in effusion, obtained by myringotomy and aspiration were evaluated. In order to evaluate the presence of atopy, an allergic history and skin tests against the different suspected allergens (inhalants and foods) were realized.

  11. Intracellular degradation and localization of NS1 of TBEV affects its protective properties.

    PubMed

    Kuzmenko, Yulia; Starodubova, Elizaveta; Shevtsova, Anastasia; Chernokhaeva, Lubov; Latanova, Anastasia; Preobrazhenskaia, Olga; Timofeev, Andrey; Karganova, Galina; Karpov, Vadim

    2016-12-30

    Currently many DNA vaccines against infectious diseases are in clinical trials however their efficacy is needed to be improved. Potency of DNA immunogen can be optimized by targeting technologies. In a current study to increase the efficacy of NS1encoded by plasmid the proteasome targeting was applied. NS1 variants with or without translocation sequence and with signal of proteasomal degradation of ornithine decarboxylase were tested for expression, localization, protein turnover, proteasomal degradation and protection properties. Deletion of translocation signal abrogated presentation of NS1 on the cell surface and increased proteasomal processing of NS1. Fusion with ODC signal led to increase of protein turnover and proteasome degradation rate of NS1. Immunization with NS1 variants with increased proteasome processing protected mice from viral challenge only partially, however, the survival time of infected mice was prolonged in these groups. This data can give a presupposition for formulation of specific immune therapy for infected individuals.

  12. Hepatic Microenvironment Affects Oval Cell Localization in Albumin-Urokinase-Type Plasminogen Activator Transgenic Mice

    PubMed Central

    Braun, Kristin M.; Thompson, Anne W.; Sandgren, Eric P.

    2003-01-01

    Mice carrying an albumin-urokinase type plasminogen activator transgene (AL-uPA) develop liver disease secondary to uPA expression in hepatocytes. Transgene-expressing parenchyma is replaced gradually by clones of cells that have deleted transgene DNA and therefore are not subject to uPA-mediated damage. Diseased liver displays several abnormalities, including hepatocyte vacuolation and changes in nonparenchymal tissue. The latter includes increases in laminin protein within parenchyma and the appearance of cytokeratin 19-positive bile ductule-like cells (oval cells) both in portal regions and extending into the hepatic parenchyma. In this study, we subjected AL-uPA mice to two-thirds partial hepatectomy to identify the response of these livers to additional growth stimulation. We observed several changes in hepatic morphology. First, the oval cells increased in number and often formed ductules in the parenchyma. Second, this cellular change was accompanied by a further increase in laminin associated with single or clusters of oval cells. Third, desmin-positive Ito cells increased in number and maintained close association with oval cells. Fourth, these changes were localized precisely to uPA-expressing areas of liver. Regenerating clones of uPA-deficient cells appeared to be unaffected both by stromal and cellular alterations. Thus, additional growth stimulation of diseased uPA-expressing liver induces an oval cell-like response, as observed in other models of severe hepatic injury, but the localization of this response seems to be highly regulated by the hepatic microenvironment. PMID:12507902

  13. Missense mutations in Otopetrin 1 affect subcellular localization and inhibition of purinergic signaling in vestibular supporting cells.

    PubMed

    Kim, Euysoo; Hyrc, Krzysztof L; Speck, Judith; Salles, Felipe T; Lundberg, Yunxia W; Goldberg, Mark P; Kachar, Bechara; Warchol, Mark E; Ornitz, David M

    2011-03-01

    Otopetrin 1 (Otop1) encodes a protein that is essential for the development of otoconia. Otoconia are the extracellular calcium carbonate containing crystals that are important for vestibular mechanosensory transduction of linear motion and gravity. There are two mutant alleles of Otop1 in mice, titled (tlt) and mergulhador (mlh), which result in non-syndromic otoconia agenesis and a consequent balance defect. Biochemically, Otop1 has been shown to modulate purinergic control of intracellular calcium in vestibular supporting cells, which could be one of the mechanisms by which Otop1 participates in the mineralization of otoconia. To understand how tlt and mlh mutations affect the biochemical function of Otop1, we examined the purinergic response of COS7 cells expressing mutant Otop1 proteins, and dissociated sensory epithelial cells from tlt and mlh mice. We also examined the subcellular localization of Otop1 in whole sensory epithelia from tlt and mlh mice. Here we show that tlt and mlh mutations uncouple Otop1 from inhibition of P2Y receptor function. Although the in vitro biochemical function of the Otop1 mutant proteins is normal, in vivo they behave as null alleles. We show that in supporting cells the apical membrane localization of the mutant Otop1 proteins is lost. These data suggest that the tlt and mlh mutations primarily affect the localization of Otop1, which interferes with its ability to interact with other proteins that are important for its cellular and biochemical function.

  14. The inter-sample structural variability of regular tissue-engineered scaffolds significantly affects the micromechanical local cell environment

    PubMed Central

    Campos Marin, A.; Lacroix, D.

    2015-01-01

    Rapid prototyping techniques have been widely used in tissue engineering to fabricate scaffolds with controlled architecture. Despite the ability of these techniques to fabricate regular structures, the consistency with which these regular structures are produced throughout the scaffold and from one scaffold to another needs to be quantified. Small variations at the pore level can affect the local mechanical stimuli sensed by the cells thereby affecting the final tissue properties. Most studies assume rapid prototyping scaffolds as regular structures without quantifying the local mechanical stimuli at the cell level. In this study, a computational method using a micro-computed tomography-based scaffold geometry was developed to characterize the mechanical stimuli within a real scaffold at the pore level. Five samples from a commercial polycaprolactone scaffold were analysed and computational fluid dynamics analyses were created to compare local velocity and shear stress values at the same scaffold location. The five samples did not replicate the computer-aided design (CAD) scaffold and velocity and shear stress values were up to five times higher than the ones calculated in the CAD scaffold. In addition high variability among samples was found: at the same location velocity and shear stress values could be up to two times higher from sample to sample. This study shows that regular scaffolds need to be thoroughly analysed in order to quantify real cell mechanical stimuli so inspection methods should be included as part of the fabrication process. PMID:25844157

  15. Saturation deficit and deer density affect questing activity and local abundance of Ixodes ricinus (Acari, Ixodidae) in Italy.

    PubMed

    Tagliapietra, V; Rosà, R; Arnoldi, D; Cagnacci, F; Capelli, G; Montarsi, F; Hauffe, H C; Rizzoli, A

    2011-12-29

    The wood tick Ixodes ricinus, one of the most common arthropod-borne disease vectors, is of increasing relevance for human and animal health in Europe. The aim of this study was to determine the relative contribution of several abiotic and biotic factors potentially affecting questing activity and local abundance of I. ricinus in Italy, considering the scale at which these factors interact with the host-seeking ticks. Within EDEN, a large-scale EU collaborative project on eco-epidemiology of vector-borne diseases, we collected questing ticks for three consecutive years using a standard protocol at eleven sites in the Italian Alps and Apennines. A total of 25 447 I. ricinus were collected. All sites showed the same annual pattern of tick activity (bimodal for nymphs and unimodal for larvae and adults), although the abundance of nymphs was statistically different between sites and years. A Generalized Linear Mixed Model and a Linear Mixed Model fitted to data for nymphs, showed that while the principal variables affecting the local abundance of questing ticks were saturation deficit (an index combining temperature and relative humidity) and red deer density, the most important variable affecting questing nymph activity was saturation deficit. As for the timing of seasonal emergence, we confirmed that the threshold temperature at this latitude for larvae is 10°C (mean maximum) while that for nymphs is 8°C.

  16. Weathering processes and pickeringite formation in a sulfidic schist: a consideration in acid precipitation neutralization studies

    SciTech Connect

    Parnell, R.A. Jr.

    1983-01-01

    Extremely low abrasion pH values (2.8-3.3) characterize the weathering products of the Partridge Formation, a Middle-Ordovician metamorphosed, black, sulfidic shale. The local occurrence is observed of two sulfates that are rare in the Northeast: pickeringite and jarosite. X-ray diffraction studies of the weathering residues and the sulfate efflorescences have also identified dioctahedral and trioctahedral illite, kaolinite, vermiculite, and an 11-12 Angstrom phase, thought to be a type of randomly-interstratified biotite-vermiculite. From the mineralogical studies, qualitative weathering processes for the schist are formulated. A probable mechanism for the intense chemical weathering of the schist appears to be oxidation of iron sulfides to form iron oxide-hydroxides, sulfates, and sulfuric acid. This natural weathering process is proposed as an analog to anthropogenic low pH rock weathering resulting from acid precipitation. In the Northeast, natural weathering rates, may, in places, significantly affect the water chemistry and mineralogy used to quantify total (natural plus anthropogenic) weathering and leaching rates. 27 references, 4 figures.

  17. 34 CFR 222.121 - How does the affected Indian tribe or tribes request that payments to a local educational agency...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 1 2012-07-01 2012-07-01 false How does the affected Indian tribe or tribes request that payments to a local educational agency not be withheld? 222.121 Section 222.121 Education... § 222.121 How does the affected Indian tribe or tribes request that payments to a local...

  18. Nowcasting extreme weather events over Greece

    NASA Astrophysics Data System (ADS)

    Katsafados, Petros; Nomikou, Vera; Mavromatidis, Elias; Papadopoulos, Anastasios; Lagouvardos, Konstantinos; Kotroni, Vassiliki

    2014-05-01

    Accurate and consistent very short-term prediction (nowcasting) of high-impact weather events can lead to significant improvement in warnings and advisories providing a direct impact on the risk management. To this end, an advanced mesoscale meteorological data assimilation tool, the Local Analysis and Prediction System (LAPS), has been implemented in order to serve as an early warning system. LAPS incorporates surface and upper air observations (METAR, SYNOP, satellite, soundings, radar, aircraft etc) into large-scale gridded data (as background fields) and produces high spatial and temporal resolution analysis fields and early forecasts. This study presents the performance of the LAPS system in describing two unusual events of hazardous weather conditions over Greece. The first case study is characterized by the passage of a cyclonic system accompanied with cold fronts over Southern Greece. Heavy downpour, lightning and flooding were the main characteristics of the storm that affected Athens metropolitan area on February 22nd 2013. In the second case study the passage of a cold front over SE Aegean Sea led in a destructive and deadly flash flooding that affected the Northern areas of Rhodes Island on November 22nd 2013. This second flash flood event was triggered by the extreme precipitation (almost 100 mm in 4 hours) and killed 4 people making it the deadliest ever for the area. For both case studies, the conventional numerical weather prediction models operating at various research institutes and universities provided a rather insufficient spatiotemporal estimation of the extreme precipitation. For these cases, the LAPS-based nowcasting procedure has been applied with and without the ingestion of high resolution remote sensed precipitation estimates. The LAPS outputs have been evaluated against independent observations obtained from a dense network of surface meteorological stations. Results indicate that LAPS outputs were better than those obtained from the

  19. The International Space Weather Initiative

    NASA Technical Reports Server (NTRS)

    Nat, Gopalswamy; Joseph, Davila; Barbara, Thompson

    2010-01-01

    The International Space Weather Initiative (ISWI) is a program of international cooperation aimed at understanding the external drivers of space weather. The ISWI program has its roots in the successful International Heliophysical Year (IHY) program that ran during 2007 - 2009 and will continue with those aspects that directly affect life on Earth. The primary objective of the ISWI program is to advance the space weather science by a combination of instrument deployment, analysis and interpretation of space weather data from the deployed instruments in conjunction with space data, and communicate the results to the public and students. Like the IHY, the ISWI will be a grass roots organization with key participation from national coordinators in cooperation with an international steering committee. This presentation outlines the ISWI program including its organizational aspects and proposed activities. The ISWI observatory deployment and outreach activities are highly complementary to the CAWSES II activities of SCOSTEP.

  20. Space Weathering Processes on Mercury

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Pieters, C. M.

    2002-01-01

    Like the Moon, Mercury has no atmosphere to protect it from the harsh space environment and therefore it is expected that it will incur the effects of space weathering. These weathering processes are capable of both creating regolith and altering its optical properties. However, there are many important differences between the environments of Mercury and the Moon. These environmental differences will almost certainly affect the weathering processes as well as the products of those processes. It should be possible to observe the effects of these differences in Vis/NIR spectra of the type expected to be returned by MESSENGER. More importantly, understanding these weathering processes and their consequences is essential for evaluating the spectral data returned from MESSENGER and other missions in order to determine the mineralogy and the iron content of the Mercurian surface. Theoretical and experimental work has been undertaken in order to better understand these consequences.

  1. Forecasting the Weather.

    ERIC Educational Resources Information Center

    Bollinger, Richard

    1984-01-01

    Presents a computer program which predicts the weather based on student input of such weather data as wind direction and barometric pressure. Also provides procedures for several hands-on, weather-related activities. (JN)

  2. Weather in the News.

    ERIC Educational Resources Information Center

    Markle, Sandra

    1989-01-01

    A discussion of TV weather forecasting introduces this article which features several hands-on science activities involving observing, researching, and experimenting with the weather. A reproducible worksheet on the reliability of weather forecasts is included. (IAH)

  3. Space Weather

    NASA Video Gallery

    This lesson explores the origins, processes and risks associated with solar radiation including how it travels through the solar system, affects the Earth’s magnetosphere and poses a threat to as...

  4. Factors Affecting Mental Health of Local Staff Working in the Vanni Region, Sri Lanka

    PubMed Central

    Cardozo, Barbara Lopes; Crawford, Carol; Petit, Pilar; Ghitis, Frida; Sivilli, Teresa I.; Scholte, Willem F.; Ager, Alastair; Eriksson, Cynthia

    2016-01-01

    In the aftermath of the civil war that extended from 1983–2009, humanitarian organizations provided aid to the conflict-affected population of the Vanni region in northern Sri Lanka. In August, 2010, a needs assessment was conducted to determine the mental-health status of Sri Lankan national humanitarian aid staff working in conditions of stress and hardship, and consider contextual and organizational characteristics influencing such status. A total of 398 staff members from nine organizations working in the Vanni area participated in the survey, which assessed stress, work characteristics, social support, coping styles, and symptoms of psychological distress. Exposure to traumatic, chronic, and secondary stressors was common. Nineteen percent of the population met criteria for posttraumatic stress disorder (PTSD), 53% of participants reported elevated anxiety symptoms, and 58% reported elevated depression symptoms. Those reporting high levels of support from their organizations were less likely to suffer depression and PTSD symptoms than those reporting lower levels of staff support (OR =.23, p < .001) and (OR =.26, p < .001), respectively. Participants who were age 55 or older were significantly less likely to suffer anxiety symptoms than those who were between 15 and 34 years of age (OR =.13, p = .011). Having experienced travel difficulties was significantly associated with more anxiety symptoms (OR = 3.35, p < .001). It was recommended that organizations provide stress-management training and increase support to their staff. PMID:27099648

  5. LRRK2 Affects Vesicle Trafficking, Neurotransmitter Extracellular Level and Membrane Receptor Localization

    PubMed Central

    Spissu, Ylenia; Sanna, Giovanna; Xiong, Yulan; Dawson, Ted M.; Dawson, Valina L.; Galioto, Manuela; Rocchitta, Gaia; Biosa, Alice; Serra, Pier Andrea; Carri, Maria Teresa; Crosio, Claudia; Iaccarino, Ciro

    2013-01-01

    The leucine-rich repeat kinase 2 (LRRK2) gene was found to play a role in the pathogenesis of both familial and sporadic Parkinson’s disease (PD). LRRK2 encodes a large multi-domain protein that is expressed in different tissues. To date, the physiological and pathological functions of LRRK2 are not clearly defined. In this study we have explored the role of LRRK2 in controlling vesicle trafficking in different cellular or animal models and using various readouts. In neuronal cells, the presence of LRRK2G2019S pathological mutant determines increased extracellular dopamine levels either under basal conditions or upon nicotine stimulation. Moreover, mutant LRRK2 affects the levels of dopamine receptor D1 on the membrane surface in neuronal cells or animal models. Ultrastructural analysis of PC12-derived cells expressing mutant LRRK2G2019S shows an altered intracellular vesicle distribution. Taken together, our results point to the key role of LRRK2 to control vesicle trafficking in neuronal cells. PMID:24167564

  6. DOCUMENTATION OF NATIONAL WEATHER CONDITIONS AFFECTING LONG-TERM DEGRADATION OF COMMERCIAL SPENT NUCLEAR FUEL AND DOE SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTE

    SciTech Connect

    W. L. Poe, Jr.; P.F. Wise

    1998-11-01

    The U.S. Department of Energy (DOE) is preparing a proposal to construct, operate 2nd monitor, and eventually close a repository at Yucca Mountain in Nye County, Nevada, for the geologic disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). As part of this effort, DOE has prepared a viability assessment and an assessment of potential consequences that may exist if the repository is not constructed. The assessment of potential consequences if the repository is not constructed assumes that all SNF and HLW would be left at the generator sites. These include 72 commercial generator sites (three commercial facility pairs--Salem and Hope Creek, Fitzpatrick and Nine Mile Point, and Dresden and Morris--would share common storage due to their close proximity to each other) and five DOE sites across the country. DOE analyzed the environmental consequences of the effects of the continued storage of these materials at these sites in a report titled Continued Storage Analysis Report (CSAR; Reference 1 ) . The CSAR analysis includes a discussion of the degradation of these materials when exposed to the environment. This document describes the environmental parameters that influence the degradation analyzed in the CSAR. These include temperature, relative humidity, precipitation chemistry (pH and chemical composition), annual precipitation rates, annual number of rain-days, and annual freeze/thaw cycles. The document also tabulates weather conditions for each storage site, evaluates the degradation of concrete storage modules and vaults in different regions of the country, and provides a thermal analysis of commercial SNF in storage.

  7. Location of tumor affects local and distant immune cell type and number

    PubMed Central

    Hensel, Jonathan A.; Khattar, Vinayak; Ashton, Reading; Lee, Carnellia; Siegal, Gene P.

    2017-01-01

    Abstract Introduction Tumors comprise heterogeneous populations of cells, including immune infiltrates that polarize during growth and metastasis. Our preclinical studies on breast cancer (BCa) identified functional differences in myeloid‐derived suppressor cells based on tumor microenvironment (TME), prompting variations in host immune response to tumor growth, and dissemination based on tissue type. Methods In order to understand if such variations existed among other immune cells, and if such alteration occurs in response to tumor growth at the primary site or due to bone dissemination, we characterized immune cells, examining localized growth and in the tibia. In addition, immune cells from the spleen were examined from animals of both tumor locations by flow cytometry. Results The study demonstrates that location of tumor, and not simply the tumor itself, has a definitive role in regulating immune effectors. Among all immune cells characterized, macrophages were decreased and myeloid dendritic cell were increased in both tumor locations. This difference was more evident in subcutaneous tumors. Additionally, spleens from mice with subcutaneous tumors contained greater increases in both macrophages and myeloid dendritic cells than in mice with bone tumors. Furthermore, in subcutaneous tumors there was an increase in CD4+ and CD8+ T‐cell numbers, which was also observed in their spleens. Conclusions These data indicate that alterations in tumor‐reactive immune cells are more pronounced at the primary site, and exert a similar change at the major secondary lymphoid organ than in the bone TME. These findings could provide translational insight into designing therapeutic strategies that account for location of metastatic foci. PMID:28250928

  8. Newly identified CSP41b gene localized in chloroplasts affects leaf color in rice.

    PubMed

    Mei, Jiasong; Li, Feifei; Liu, Xuri; Hu, Guocheng; Fu, Yaping; Liu, Wenzhen

    2017-03-01

    A rice mutant with light-green leaves was discovered from a transgenic line of Oryza sativa. The mutant has reduced chlorophyll content and abnormal chloroplast morphology throughout its life cycle. Genetic analysis revealed that a single nuclear-encoded recessive gene is responsible for the mutation, here designated as lgl1. To isolate the lgl1 gene, a high-resolution physical map of the chromosomal region around the lgl1 gene was made using a mapping population consisting of 1984 mutant individuals. The lgl1 gene was mapped in the 76.5kb region between marker YG4 and marker YG5 on chromosome 12. Sequence analysis revealed that there was a 39bp deletion within the fourth exon of the candidate gene Os12g0420200 (TIGR locus Os12g23180) encoding a chloroplast stem-loop-binding protein of 41kDa b (CSP41b). The lgl1 mutation was rescued by transformation with the wild type CSP41b gene. Accordingly, the CSP41b gene is identified as the LGL1 gene. CSP41b was transcribed in various tissues and was mainly expressed in leaves. Expression of CSP41b-GFP fusion protein indicated that CSP41b is localized in chloroplasts. The expression levels of some key genes involved in chlorophyll biosynthesis and photosynthesis, such as ChlD, ChlI, Hema1, Ygl1, POR, Cab1R, Cab2R, PsaA, and rbcL, was significantly changed in the lgl1 mutant. Our results demonstrate that CSP41b is a novel gene required for normal leaf color and chloroplast morphology in rice.

  9. Perturbation of chromatin structure globally affects localization and recruitment of splicing factors.

    PubMed

    Schor, Ignacio E; Llères, David; Risso, Guillermo J; Pawellek, Andrea; Ule, Jernej; Lamond, Angus I; Kornblihtt, Alberto R

    2012-01-01

    Chromatin structure is an important factor in the functional coupling between transcription and mRNA processing, not only by regulating alternative splicing events, but also by contributing to exon recognition during constitutive splicing. We observed that depolarization of neuroblastoma cell membrane potential, which triggers general histone acetylation and regulates alternative splicing, causes a concentration of SR proteins in nuclear speckles. This prompted us to analyze the effect of chromatin structure on splicing factor distribution and dynamics. Here, we show that induction of histone hyper-acetylation results in the accumulation in speckles of multiple splicing factors in different cell types. In addition, a similar effect is observed after depletion of the heterochromatic protein HP1α, associated with repressive chromatin. We used advanced imaging approaches to analyze in detail both the structural organization of the speckle compartment and nuclear distribution of splicing factors, as well as studying direct interactions between splicing factors and their association with chromatin in vivo. The results support a model where perturbation of normal chromatin structure decreases the recruitment efficiency of splicing factors to nascent RNAs, thus causing their accumulation in speckles, which buffer the amount of free molecules in the nucleoplasm. To test this, we analyzed the recruitment of the general splicing factor U2AF65 to nascent RNAs by iCLIP technique, as a way to monitor early spliceosome assembly. We demonstrate that indeed histone hyper-acetylation decreases recruitment of U2AF65 to bulk 3' splice sites, coincident with the change in its localization. In addition, prior to the maximum accumulation in speckles, ∼20% of genes already show a tendency to decreased binding, while U2AF65 seems to increase its binding to the speckle-located ncRNA MALAT1. All together, the combined imaging and biochemical approaches support a model where chromatin

  10. Perturbation of Chromatin Structure Globally Affects Localization and Recruitment of Splicing Factors

    PubMed Central

    Risso, Guillermo J.; Pawellek, Andrea; Ule, Jernej; Lamond, Angus I.; Kornblihtt, Alberto R.

    2012-01-01

    Chromatin structure is an important factor in the functional coupling between transcription and mRNA processing, not only by regulating alternative splicing events, but also by contributing to exon recognition during constitutive splicing. We observed that depolarization of neuroblastoma cell membrane potential, which triggers general histone acetylation and regulates alternative splicing, causes a concentration of SR proteins in nuclear speckles. This prompted us to analyze the effect of chromatin structure on splicing factor distribution and dynamics. Here, we show that induction of histone hyper-acetylation results in the accumulation in speckles of multiple splicing factors in different cell types. In addition, a similar effect is observed after depletion of the heterochromatic protein HP1α, associated with repressive chromatin. We used advanced imaging approaches to analyze in detail both the structural organization of the speckle compartment and nuclear distribution of splicing factors, as well as studying direct interactions between splicing factors and their association with chromatin in vivo. The results support a model where perturbation of normal chromatin structure decreases the recruitment efficiency of splicing factors to nascent RNAs, thus causing their accumulation in speckles, which buffer the amount of free molecules in the nucleoplasm. To test this, we analyzed the recruitment of the general splicing factor U2AF65 to nascent RNAs by iCLIP technique, as a way to monitor early spliceosome assembly. We demonstrate that indeed histone hyper-acetylation decreases recruitment of U2AF65 to bulk 3′ splice sites, coincident with the change in its localization. In addition, prior to the maximum accumulation in speckles, ∼20% of genes already show a tendency to decreased binding, while U2AF65 seems to increase its binding to the speckle-located ncRNA MALAT1. All together, the combined imaging and biochemical approaches support a model where chromatin

  11. Tipburn in salt-affected lettuce (Lactuca sativa L.) plants results from local oxidative stress.

    PubMed

    Carassay, Luciano R; Bustos, Dolores A; Golberg, Alberto D; Taleisnik, Edith

    2012-02-15

    Tipburn in lettuce is a physiological disorder expressed as a necrosis in the margins of young developing leaves and is commonly observed under saline conditions. Tipburn is usually attributed to Ca(2+) deficiencies, and there has very limited research on other mechanisms that may contribute to tipburn development. This work examines whether symptoms are mediated by increased reactive oxygen species (ROS) production. Two butter lettuce (Lactuca sativa L.) varieties, Sunstar (Su) and Pontina (Po), with contrasting tipburn susceptibility were grown in hydroponics with low Ca(2+) (0.5 mM), and with or without 50 mM NaCl. Tipburn symptoms were observed only in Su, and only in the saline treatment. Tipburn incidence in response to topical treatments with Ca(2+) scavengers, Ca(2+) transport inhibitors, and antioxidants was assessed. All treatments were applied before symptom expression, and evaluated later, when symptoms were expected to occur. Superoxide presence in tissues was determined with nitro blue tetrazolium (NBT) and oxidative damage as malondialdehyde (MDA) content. Superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities were assayed. Under control and saline conditions, tipburn could be induced in both varieties by topical treatments with a Ca(2+) scavenger (EGTA) and Ca(2+) transport inhibitors (verapamil, LaCl(3)) and reduced by supplying Ca(2+) along with a ionophore (A 23187). Tipburn symptoms were associated with locally produced ROS. O(2)(·-) and oxidative damage significantly increased in leaf margins before symptom expression, while topical antioxidant applications (Tiron, DPI) reduced symptoms in treated leaves, but not in the rest of the plant. Antioxidant enzyme activity was higher in Po, and increased more in response to EGTA treatments, and may contribute to mitigating oxidative damage and tipburn expression in this variety.

  12. Neonatal local noxious insult affects gene expression in the spinal dorsal horn of adult rats.

    PubMed

    Ren, Ke; Novikova, Svetlana I; He, Fang; Dubner, Ronald; Lidow, Michael S

    2005-09-22

    Neonatal noxious insult produces a long-term effect on pain processing in adults. Rats subjected to carrageenan (CAR) injection in one hindpaw within the sensitive period develop bilateral hypoalgesia as adults. In the same rats, inflammation of the hindpaw, which was the site of the neonatal injury, induces a localized enhanced hyperalgesia limited to this paw. To gain an insight into the long-term molecular changes involved in the above-described long-term nociceptive effects of neonatal noxious insult at the spinal level, we performed DNA microarray analysis (using microarrays containing oligo-probes for 205 genes encoding receptors and transporters for glutamate, GABA, and amine neurotransmitters, precursors and receptors for neuropeptides, and neurotrophins, cytokines and their receptors) to compare gene expression profiles in the lumbar spinal dorsal horn (LDH) of adult (P60) male rats that received neonatal CAR treatment within (at postnatal day 3; P3) and outside (at postnatal 12; P12) of the sensitive period. The data were obtained both without inflammation (at baseline) and during complete Freund's adjuvant induced inflammation of the neonatally injured paw. The observed changes were verified by real-time RT-PCR. This study revealed significant basal and inflammation-associated aberrations in the expression of multiple genes in the LDH of adult animals receiving CAR injection at P3 as compared to their expression levels in the LDH of animals receiving either no injections or CAR injection at P12. In particular, at baseline, twelve genes (representing GABA, serotonin, adenosine, neuropeptide Y, cholecystokinin, opioid, tachykinin and interleukin systems) were up-regulated in the bilateral LDH of the former animals. The baseline condition in these animals was also characterized by up-regulation of seven genes (encoding members of GABA, cholecystokinin, histamine, serotonin, and neurotensin systems) in the LDH ipsilateral to the neonatally-injured paw. The

  13. Severe Weather Forecast Decision Aid

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Wheeler, Mark

    2005-01-01

    The Applied Meteorology Unit developed a forecast tool that provides an assessment of the likelihood of local convective severe weather for the day in order to enhance protection of personnel and material assets of the 45th Space Wing Cape Canaveral Air Force Station (CCAFS), and Kennedy Space Center (KSC).

  14. The Early Years: About the Weather

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2015-01-01

    Observing and documenting elements of weather teach children about using tools and their senses to learn about the environment. This column discusses resources and science topics related to students in grades preK to 2. This month's issue describes an activity where students indirectly document local weather by counting outdoor clothing types worn…

  15. Apoptin T108 phosphorylation is not required for its tumor-specific nuclear localization but partially affects its apoptotic activity

    SciTech Connect

    Lee, Y.-H.; Cheng, C.-M.; Chang, Y.-F.; Wang, T.-Y.; Yuo, C.-Y.; E-mail: m815006@kmu.edu.tw

    2007-03-09

    Apoptin, a chicken anemia virus-encoded protein, induces apoptosis in human tumor cells but not in normal cells. In addition, Apoptin also exhibits tumor-specific nuclear localization and tumor-specific phosphorylation on threonine 108 (T108). Here, we studied the effects of T108 phosphorylation on the tumor-specific nuclear localization and apoptotic activity of Apoptin. We first showed that a hemagglutinin (HA)-tagged Apoptin, but not the green fluorescent protein-fused Apoptin used in many previous studies, exhibited the same intracellular distribution pattern as native Apoptin. We then made and analyzed an HA-Apoptin mutant with its T108 phosphorylation site abolished. We found that Apoptin T108 phosphorylation is not required for its tumor-specific nuclear localization and abolishing the T108 phosphorylation of Apoptin does affect its apoptotic activity in tumor cells but only partially. Our results support the previous finding that Apoptin contains two distinct apoptosis domains located separately at the N- and C-terminal regions and suggest that the T108 phosphorylation may only be required for the apoptotic activity mediated through the C-terminal apoptosis domain.

  16. Noncatalytic, N-terminal Domains of DNA Polymerase Lambda Affect Its Cellular Localization and DNA Damage Response.

    PubMed

    Stephenson, Anthony A; Taggart, David J; Suo, Zucai

    2017-04-13

    Specialized DNA polymerases, such as DNA polymerase lambda (Polλ), are important players in DNA damage tolerance and repair pathways. Knowing how DNA polymerases are regulated and recruited to sites of DNA damage is imperative to understanding these pathways. Recent work has suggested that Polλ plays a role in several distinct DNA damage tolerance and repair pathways. In this paper, we report previously unknown roles of the N-terminal domains of human Polλ for modulating its involvement in DNA damage tolerance and repair. By using Western blot analysis, fluorescence microscopy, and cell survival assays, we found that the BRCA1 C-terminal (BRCT) and proline/serine-rich (PSR) domains of Polλ affect its cellular localization and DNA damage responses. The nuclear localization signal (NLS) of Polλ was necessary to overcome the impediment of its nuclear localization caused by its BRCT and PSR domains. Induction of DNA damage resulted in recruitment of Polλ to chromatin, which was controlled by its BRCT and PSR domains. In addition, the presence of both domains was required for Polλ-mediated tolerance of oxidative DNA damage but not DNA methylation damage. These findings suggest that the N-terminal domains of Polλ are important for regulating its responses to DNA damage.

  17. How local and state regulations affect the child care food environment: A qualitative study of child care center directors’ perspectives

    PubMed Central

    Byrd-Williams, C. E.; Camp, E. J.; Mullen, P. D.; Briley, M. E.; Hoelscher, D. M.

    2015-01-01

    Almost one-third of preschoolers spend regular time in child care centers where they can consume the majority of their daily dietary intake. The child care setting influences children’s dietary intake. Thus, it is important to examine factors, such as local and state regulations, that influence the food environment at the center. This qualitative study explored directors’ perceptions of how regulations influence the foods available at child care centers. Ten directors of centers in Travis County, Texas completed semi-structured interviews. Directors reported that changes in local health department regulations (e.g., kitchen specifications) result in less-healthful foods being served (e.g., more prepackaged foods). Directors of centers that do not participate in the federal Child and Adult Care Food Program (CACFP) said the state licensing regulations clarify the portion size and nutritional requirements for preschoolers thereby improving the nutritional quality of the food served. Directors of centers participating in CACFP said they are not affected by state mandates, because the CACFP regulations are more stringent. These findings suggest that state regulations that specify and quantify nutritional standards may beneficially impact preschoolers’ diets. However, local health department regulations enacted to improve food safety may negatively influence the nutritional value of food served in centers. PMID:26251694

  18. Novel and recurrent CIB2 variants, associated with nonsyndromic deafness, do not affect calcium buffering and localization in hair cells.

    PubMed

    Seco, Celia Zazo; Giese, Arnaud P; Shafique, Sobia; Schraders, Margit; Oonk, Anne M M; Grossheim, Mike; Oostrik, Jaap; Strom, Tim; Hegde, Rashmi; van Wijk, Erwin; Frolenkov, Gregory I; Azam, Maleeha; Yntema, Helger G; Free, Rolien H; Riazuddin, Saima; Verheij, Joke B G M; Admiraal, Ronald J; Qamar, Raheel; Ahmed, Zubair M; Kremer, Hannie

    2016-04-01

    Variants in CIB2 can underlie either Usher syndrome type I (USH1J) or nonsyndromic hearing impairment (NSHI) (DFNB48). Here, a novel homozygous missense variant c.196C>T and compound heterozygous variants, c.[97C>T];[196C>T], were found, respectively, in two unrelated families of Dutch origin. Besides, the previously reported c.272 T>C functional missense variant in CIB2 was identified in two families of Pakistani origin. The missense variants are demonstrated not to affect subcellular localization of CIB2 in vestibular hair cells in ex vivo expression experiments. Furthermore, these variants do not affect the ATP-induced calcium responses in COS-7 cells. However, based on the residues affected, the variants are suggested to alter αIIβ integrin binding. HI was nonsyndromic in all four families. However, deafness segregating with the c.272T>C variant in one Pakistani family is remarkably less severe than that in all other families with this mutation. Our results contribute to the insight in genotype-phenotype correlations of CIB2 mutations.

  19. Teaching Weather Concepts.

    ERIC Educational Resources Information Center

    Sebastian, Glenn R.

    Ten exercises based on the weather map provided in the national newspaper "U.S.A. Today" are used to teach intermediate grade students about weather. An overview describes the history of "U.S.A. Today," the format of the newspaper's weather map, and the map's suitability for teaching weather concepts. Specific exercises, which are briefly…

  20. Fun with Weather

    ERIC Educational Resources Information Center

    Yildirim, Rana

    2007-01-01

    This three-part weather-themed lesson for young learners connects weather, clothing, and feelings vocabulary. The target structures covered are: asking about the weather; comparing weather; using the modal auxiliary, should; and the question word, when. The lessons utilize all four skills and include such activities as going outside, singing,…

  1. Weather in Your Life.

    ERIC Educational Resources Information Center

    Kannegieter, Sandy; Wirkler, Linda

    Facts and activities related to weather and meteorology are presented in this unit. Separate sections cover the following topics: (1) the water cycle; (2) clouds; (3) the Beaufort Scale for rating the speed and force of wind; (4) the barometer; (5) weather prediction; (6) fall weather in Iowa (sleet, frost, and fog); (7) winter weather in Iowa…

  2. Relationships between Long-Term Demography and Weather in a Sub-Arctic Population of Common Eider.

    PubMed

    Jónsson, Jón Einar; Gardarsson, Arnthor; Gill, Jennifer A; Pétursdóttir, Una Krístín; Petersen, Aevar; Gunnarsson, Tómas Grétar

    2013-01-01

    Effects of local weather on individuals and populations are key drivers of wildlife responses to climatic changes. However, studies often do not last long enough to identify weather conditions that influence demographic processes, or to capture rare but extreme weather events at appropriate scales. In Iceland, farmers collect nest down of wild common eider Somateria mollissima and many farmers count nests within colonies annually, which reflects annual variation in the number of breeding females. We collated these data for 17 colonies. Synchrony in breeding numbers was generally low between colonies. We evaluated 1) demographic relationships with weather in nesting colonies of common eider across Iceland during 1900-2007; and 2) impacts of episodic weather events (aberrantly cold seasons or years) on subsequent breeding numbers. Except for episodic events, breeding numbers within a colony generally had no relationship to local weather conditions in the preceding year. However, common eider are sexually mature at 2-3 years of age and we found a 3-year time lag between summer weather and breeding numbers for three colonies, indicating a positive effect of higher pressure, drier summers for one colony, and a negative effect of warmer, calmer summers for two colonies. These findings may represent weather effects on duckling production and subsequent recruitment. Weather effects were mostly limited to a few aberrant years causing reductions in breeding numbers, i.e. declines in several colonies followed severe winters (1918) and some years with high NAO (1992, 1995). In terms of life history, adult survival generally is high and stable and probably only markedly affected by inclement weather or aberrantly bad years. Conversely, breeding propensity of adults and duckling production probably do respond more to annual weather variations; i.e. unfavorable winter conditions for adults increase probability of death or skipped breeding, whereas favorable summers can promote

  3. Integrating remote sensing data with WRF for improved simulations of oasis effects on local weather processes over an arid region in northwestern China

    NASA Astrophysics Data System (ADS)

    Wen, X.; Dong, W.; Liao, X.; Lu, S.; Jin, J.

    2012-12-01

    Land use/cover types derived by satellite remote sensing data from the Earth Observing System Moderate Resolution Imaging Spectroradiometer (MODIS) were used to replace the U.S. Survey (USGS) data in the Weather Research and Forecasting (WRF) model. Simulations in this study were further improved by modifying the initial fields of WRF with soil temperature and moisture observations, because these two variables are important to producing "cold-wet island" effects. These improvements enabled the WRF model to reproduce the observed "cold and wet island" effects of the oasis.; Location and landscape map of the Jinta oasis. Jinta oasis is an inverse triangle situated between 98°39‧E and 99°08‧E and 39°56‧N and 40°17‧N in the north-central Heihe River Basin in northwestern China (Fig. 1). The average annual total precipitation is about 59.5 mm and the annual potential evapotranspiration is about 2538.6 mm (Meng et al. 2009). The total area is about 1652 km2. Jinta oasis is a typical irrigated area in arid northwestern China. It has an undulating topography and varies in elevation by only 80 m. ; In the field, there were 4 automatic weather stations (AWSs) and 1 oasis meteorological tower station in the vegetated areas, and 1 Gobi meteorological tower station was located in the nonvegetated area. The four AWSs were at 2 m height, and the two tower stations were at 4 heights (1.8, 5.8, 13, and 18.9 m). This figure shows the comparison of land use/vegetation maps between the default (USGS) and modified MODIS data for the 1 km-resolution domain. Most of the oasis is irrigated cropland, with grassland decreasing rapidly in the interior and outer edges of the Jinta oasis and degrading to desert (Fig. 2b). With population growth, more and more grassland is used to plant crops, which results in the reduction of shrubland and grassland.

  4. CD147 mediates chemoresistance in breast cancer via ABCG2 by affecting its cellular localization and dimerization.

    PubMed

    Zhou, Shuangyuan; Liao, Liqiu; Chen, Chen; Zeng, Weiqi; Liu, Shuang; Su, Juan; Zhao, Shuang; Chen, Mingliang; Kuang, Yehong; Chen, Xiang; Li, Jie

    2013-09-01

    CD147 and ABCG2 both have been reported to mediate Multidrug resistance (MDR) in breast cancer. Recent study demonstrates that CD147 could form a complex with ABCG2 on the cell membrane in primary effusion lymphoma. However, whether these two molecules regulate each other in breast cancer and result in MDR is not clear. We established four MCF-7 cell lines transfected with CD147 and/or ABCG2 and found that CD147 could increase the expression and dimerization of ABCG2, affect its cellular localization and regulate its drug transporter function. The findings derived from cells were confirmed subsequently in clinic samples of chemotherapy-sensitive/resistant breast cancer.

  5. Mimicking the phosphorylation of Rsp5 in PKA site T761 affects its function and cellular localization.

    PubMed

    Jastrzebska, Zaneta; Kaminska, Joanna; Chelstowska, Anna; Domanska, Anna; Rzepnikowska, Weronika; Sitkiewicz, Ewa; Cholbinski, Piotr; Gourlay, Campbell; Plochocka, Danuta; Zoladek, Teresa

    2015-12-01

    Rsp5 ubiquitin ligase belongs to the Nedd4 family of proteins, which affect a wide variety of processes in the cell. Here we document that Rsp5 shows several phosphorylated variants of different mobility and the migration of the phosphorylated forms of Rsp5 was faster for the tpk1Δ tpk3Δ mutant devoid of two alternative catalytic subunits of protein kinase A (PKA), indicating that PKA possibly phosphorylates Rsp5 in vivo. We demonstrated by immunoprecipitation and Western blot analysis of GFP-HA-Rsp5 protein using the anti-phospho PKA substrate antibody that Rsp5 is phosphorylated in PKA sites. Rsp5 contains the sequence 758-RRFTIE-763 with consensus RRXS/T in the catalytic HECT domain and four other sites with consensus RXXS/T, which might be phosphorylated by PKA. The strain bearing the T761D substitution in Rsp5 which mimics phosphorylation grew more slowly at 28°C and did not grow at 37°C, and showed defects in pre-tRNA processing and protein sorting. The rsp5-T761D strain also demonstrated a reduced ability to form colonies, an increase in the level of reactive oxygen species (ROS) and hypersensitivity to ROS-generating agents. These results indicate that PKA may downregulate many functions of Rsp5, possibly affecting its activity. Rsp5 is found in the cytoplasm, nucleus, multivesicular body and cortical patches. The rsp5-T761D mutation led to a strongly increased cortical localization while rsp5-T761A caused mutant Rsp5 to locate more efficiently in internal spots. Rsp5-T761A protein was phosphorylated less efficiently in PKA sites under specific growth conditions. Our data suggests that Rsp5 may be phosphorylated by PKA at position T761 and that this regulation is important for its localization and function.

  6. A nice day for an infection? Weather conditions and social contact patterns relevant to influenza transmission.

    PubMed

    Willem, Lander; Van Kerckhove, Kim; Chao, Dennis L; Hens, Niel; Beutels, Philippe

    2012-01-01

    Although there is no doubt that significant morbidity and mortality occur during annual influenza epidemics, the role of contextual circumstances, which catalyze seasonal influenza transmission, remains unclear. Weather conditions are believed to affect virus survival, efficiency of transmission and host immunity, but seasonality may also be driven by a tendency of people to congregate indoors during periods of bad weather. To test this hypothesis, we combined data from a social contact survey in Belgium with local weather data. In the absence of a previous in-depth weather impact analysis of social contact patterns, we explored the possibilities and identified pitfalls. We found general dominance of day-type (weekend, holiday, working day) over weather conditions, but nonetheless observed an increase in long duration contacts ([Formula: see text]1 hour) on regular workdays with low temperatures, almost no precipitation and low absolute humidity of the air. Interestingly, these conditions are often assumed to be beneficial for virus survival and transmission. Further research is needed to establish the impact of the weather on social contacts. We recommend that future studies sample over a broad spectrum of weather conditions and day types and include a sufficiently large proportion of holiday periods and weekends.

  7. Localization and density of phoretic deutonymphs of the mite Uropoda orbicularis (Parasitiformes: Mesostigmata) on Aphodius beetles (Aphodiidae) affect pedicel length

    NASA Astrophysics Data System (ADS)

    Bajerlein, Daria; Witaliński, Wojciech

    2014-04-01

    The phoretic stage of Uropodina mites is a deutonymph with developed morphological adaptations for dispersal by insects. Phoretic deutonymphs are able to produce a pedicel, a stalk-like temporary attachment structure that connects the mite with the carrier. The aim of our study was to determine whether localization and density of phoretic deutonymphs on the carrier affect pedicel length. The study was conducted on a common phoretic mite— Uropoda orbicularis (Uropodina) and two aphodiid beetles— Aphodius prodromus and Aphodius distinctus. Our results show that pedicel length is influenced by the localization of deutonymphs on the body of the carrier. The longest pedicels are produced by deutonymphs attached to the upper part of elytra, whereas deutonymphs attached to femora and trochanters of the third pair of legs and the apex of elytra construct the shortest pedicels. In general, deutonymphs attached to more exposed parts of the carrier produce longer pedicels, whereas shorter pedicels are produced when deutonymphs are fixed to non-exposed parts of the carrier. A second factor influencing pedicel length is the density of attached deutonymphs. Mean pedicel length and deutonymph densities were highly correlated: higher deutonymph density leads to the formation of longer pedicels. The cause for this correlation is discussed, and we conclude that pedicel length variability can increase successful dispersal.

  8. G0/G1 switch gene-2 regulates human adipocyte lipolysis by affecting activity and localization of adipose triglyceride lipase.

    PubMed

    Schweiger, Martina; Paar, Margret; Eder, Christina; Brandis, Janina; Moser, Elena; Gorkiewicz, Gregor; Grond, Susanne; Radner, Franz P W; Cerk, Ines; Cornaciu, Irina; Oberer, Monika; Kersten, Sander; Zechner, Rudolf; Zimmermann, Robert; Lass, Achim

    2012-11-01

    The hydrolysis of triglycerides in adipocytes, termed lipolysis, provides free fatty acids as energy fuel. Murine lipolysis largely depends on the activity of adipose triglyceride lipase (ATGL), which is regulated by two proteins annotated as comparative gene identification-58 (CGI-58) and G0/G1 switch gene-2 (G0S2). CGI-58 activates and G0S2 inhibits ATGL activity. In contrast to mice, the functional role of G0S2 in human adipocyte lipolysis is poorly characterized. Here we show that overexpression or silencing of G0S2 in human SGBS adipocytes decreases and increases lipolysis, respectively. Human G0S2 is upregulated during adipocyte differentiation and inhibits ATGL activity in a dose-dependent manner. Interestingly, C-terminally truncated ATGL mutants, which fail to localize to lipid droplets, translocate to the lipid droplet upon coexpression with G0S2, suggesting that G0S2 anchors ATGL to lipid droplets independent of ATGL's C-terminal lipid binding domain. Taken together, our results indicate that G0S2 also regulates human lipolysis by affecting enzyme activity and intracellular localization of ATGL. Increased lipolysis is known to contribute to the pathogenesis of insulin resistance, and G0S2 expression has been shown to be reduced in poorly controlled type 2 diabetic patients. Our data indicate that downregulation of G0S2 in adipose tissue could represent one of the underlying causes leading to increased lipolysis in the insulin-resistant state.

  9. NMDA-dependent mechanisms only affect the BOLD response in the rat dentate gyrus by modifying local signal processing

    PubMed Central

    Tiede, Regina; Krautwald, Karla; Fincke, Anja; Angenstein, Frank

    2012-01-01

    The role of N-methyl--aspartate (NMDA) receptor-mediated mechanisms in the formation of a blood oxygen level-dependent (BOLD) response was studied using electrical stimulation of the right perforant pathway. Stimulation of this fiber bundle triggered BOLD responses in the right hippocampal formation and in the left entorhinal cortex. The perforant pathway projects to and activates the dentate gyrus monosynaptically, activation in the contralateral entorhinal cortex is multisynaptic and requires forwarding and processing of signals. Application of the NMDA receptor antagonist MK801 during stimulation had no effect on BOLD responses in the right dentate gyrus, but reduced the BOLD responses in the left entorhinal cortex. In contrast, application of MK801 before the first stimulation train reduced the BOLD response in both regions. Electrophysiological recordings revealed that the initial stimulation trains changed the local processing of the incoming signals in the dentate gyrus. This altered electrophysiological response was not further changed by a subsequent application of MK801, which is in agreement with an unchanged BOLD response. When MK801 was present during the first stimulation train, a dissimilar electrophysiological response pattern was observed and corresponds to an altered BOLD response, indicating that NMDA-dependent mechanisms indirectly affect the BOLD response, mainly via modifying local signal processing and subsequent propagation. PMID:22167232

  10. Nuclear localization of γ-tubulin affects E2F transcriptional activity and S-phase progression

    PubMed Central

    Höög, Greta; Zarrizi, Reihaneh; von Stedingk, Kristoffer; Jonsson, Kristina; Alvarado-Kristensson, Maria

    2011-01-01

    We show that the centrosome- and microtubule-regulating protein γ-tubulin interacts with E2 promoter binding factors (E2Fs) to modulate E2F transcriptional activity and thereby control cell cycle progression. γ-Tubulin contains a C-terminal signal that results in its translocation to the nucleus during late G1 to early S phase. γ-Tubulin mutants showed that the C terminus interacts with the transcription factor E2F1 and that the E2F1–γ-tubulin complex is formed during the G1/S transition, when E2F1 is transcriptionally active. Furthermore, E2F transcriptional activity is altered by reduced expression of γ-tubulin or by complex formation between γ-tubulin and E2F1, E2F2, or E2F3, but not E2F6. In addition, the γ-tubulin C terminus encodes a DNA-binding domain that interacts with E2F-regulated promoters, resulting in γ-tubulin-mediated transient activation of E2Fs. Thus, we report a novel mechanism regulating the activity of E2Fs, which can help explain how these proteins affect cell cycle progression in mammalian cells.—Höög, G., Zarrizi, R., von Stedingk, K., Jonsson, K., Alvarado-Kristensson, M. Nuclear localization of γ-tubulin affects E2F transcriptional activity and S-phase progression. PMID:21788450

  11. A Century of Monitoring Weather and Crops: The Weekly Weather and Crop Bulletin.

    NASA Astrophysics Data System (ADS)

    Heddinghaus, Thomas R.; Le Comte, Douglas M.

    1992-02-01

    Publication of a national weekly weather summary called the Weekly Weather Chronicle began in 1872. This summary was the precursor of today's Weekly Weather and Crop Bulletin (WWCB), a publication that reports global weather and climate conditions relevant to agricultural interests, as well as current national activities and assessments of crop and livestock conditions. The WWCB is produced by the Joint Agricultural Weather Facility (JAWF), a world agricultural weather information center located in the U.S. Department of Agriculture (USDA) headquarters in Washington, D.C., and jointly staffed by units of the National Oceanic and Atmospheric Administration's Climats. Analysis Center and USDA's World Agricultural Outlook Board and National Agricultural Statistics Service. Besides featuring charts and tables (e.g., temperature and precipitation maps and crop progress and condition tables), the WWCB contains summaries and special stories highlighting significant weather events affecting agriculture, such as droughts, torrential rains, floods, unusual warmth, heat waves, severe freezes, heavy snowfall, blizzards, damaging storms, and hurricanes.

  12. The effect of a sub-grid statistical cloud-cover scheme applied to the COSMO local numerical weather prediction model over the wider geographical domain of Greece

    NASA Astrophysics Data System (ADS)

    Avgoustoglou, Euripides; Tzeferi, Theodora

    2015-01-01

    The COSMO model uses operationally two sub-grid schemes for the evaluation of stratus clouds. A semi-empirical scheme based on relative humidity is used in the radiation module while a statistical scheme is used in the turbulence module. The objective is to investigate the possibility of the implementation of the statistical scheme also in the radiation module. The relative impact is presented in reference to a spring test case with synoptic conditions that favor stratiform clouds. The domain considered is the wider Balkan region around the Hellenic geographical area and is characterized by comparable sea and land partitions. This particular domain choice gives rise to a strong coexistence of continental as well as marine clouds which is one of the most challenging features regarding the operational use of numerical weather prediction models by the Hellenic Meteorological Service. The results are evaluated through direct comparisons with satellite data as well as the observed 2-m temperatures for an approximate total of fifty Greek synoptic meteorological stations. The implementation of the statistical scheme led to an underestimation of low cloud-cover by the model in contrast to the implementation of the default relative-humidity scheme, while regarding medium cloud-cover the situation was reversed. Also, the daily 2-meter minimum and maximum temperatures were slightly better simulated, but not conclusively, when the statistical scheme was implemented in the radiation module. Although the statistical scheme cannot in its present form replace operationally the relative-humidity scheme in the radiation module, it is an important asset to COSMO model invoking valuable insight to the physics of the model and can be used as a basis to support the ongoing research in this crucial area of atmospheric sciences.

  13. Pilot weather advisor

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Seth, S.; Crabill, N. L.; Shipley, S. T.; Graffman, I.; Oneill, J.

    1992-01-01

    The results of the work performed by ViGYAN, Inc., to demonstrate the Pilot Weather Advisor cockpit weather data system using a broadcast satellite communication system are presented. The Pilot Weather Advisor demonstrated that the technical problems involved with transmitting significant amount of weather data to an aircraft in-flight or on-the-ground via satellite are solvable with today's technology. The Pilot Weather Advisor appears to be a viable solution for providing accurate and timely weather information for general aviation aircraft.

  14. Space Weathering on Airless Bodies

    NASA Astrophysics Data System (ADS)

    Pieters, C. M.; Blewett, D. T.; Hiroi, T.; Marchi, S.; McFadden, L. A.; Noble, S. K.; De Sanctis, M. C.; Taylor, L. A.; Reddy, V.

    2012-12-01

    include the following general principles: A. Accumulation of nanophase opaque coatings on regolith grains with time is a common process and involves solar wind bombardment and/or micrometeoroid vaporization. This may be more dominant in the inner solar system. B. Although recent impacts often produce local heterogeneity at a crater, repeated impact mixing by smaller events results in apparent surficial homogenization over time. There is a suggestion that regolith mixing may be dominant for low-gravity regimes. Common related products involve impact darkening that creates and disperses micron-scale opaques [9] that darken but do not 'redden' the surface. C. Surface gravity and electrostatic forces strongly affect the development and retention of space weathering products. These are currently poorly quantified but steady-state processes appear to provide regional uniformity. References: 1. Keller & McKay, GCA, 1997; Taylor et al., JGR, 2001; 2010; Noble et al., MaPS, 2001. 2. Sasaki et al., Nature, 2001; Noble et al., Icarus, 2007. 3 Pieters et al., MaPS, 2000; Hapke JGR, 2001. 4. Clark et al., MaPS, 2001; Binzel et al., MaPS, 2001; Hiroi et al., Nature, 2006. 5. Trombke et al., Science, 2000; Nakamura et al., Science, 2011. 6. McCord et al., Science, 1970; De Sanctis et al., Science, 2012. 7. Pieters et al., Nature in press, 2012. 8. McCord et al., Nature in press; Reddy et al., Icarus, submitted. 9. Britt & Pieters, GCA, 1994.

  15. Detecting Anthropogenic Disturbance on Weathering and Erosion Processes

    NASA Astrophysics Data System (ADS)

    Vanacker, V.; Schoonejans, J.; Bellin, N.; Ameijeiras-Mariño, Y.; Opfergelt, S.; Christl, M.

    2014-12-01

    Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical erosion, with direct implications on local biogeochemical cycling. However, the feedback mechanisms between soil erosion, chemical weathering and biogeochemical cycling in response to anthropogenic forcing are not yet fully understood. In this paper, we analyze dynamic soil properties for a rapidly changing anthropogenic landscape in the Spanish Betic Cordillera; and focus on the coupling between physical erosion, soil production and soil chemical weathering. Modern erosion rates were quantified through analysis of sediment deposition volumes behind check dams, and represent catchment-average erosion rates over the last 10 to 50 years. Soil production rates are derived from in-situ produced 10Be nuclide concentrations, and represent long-term flux rates. In each catchment, soil chemical weathering intensities were calculated for two soil-regolith profiles. Although Southeast Spain is commonly reported as the European region that is most affected by land degradation, modern erosion rates are low (140 t ha-1 yr-1). About 50 % of the catchments are losing soils at a rate of less than 60 t km-2 yr-1. Our data show that modern erosion rates are roughly of the same magnitude as the long-term or cosmogenically-derived erosion rates in the Betic Cordillera. Soils developed on weathered metamorphic rocks have no well-developed profile characteristics, and are generally thin and stony. Nevertheless, soil chemical weathering intensities are high; and question the occurrence of past soil truncation.

  16. Interacting Virus Abundance and Transmission Intensity Underlie Tomato Spotted Wilt Virus Incidence: An Example Weather-Based Model for Cultivated Tobacco

    PubMed Central

    Chappell, Thomas M.; Beaudoin, Amanda L. P.; Kennedy, George G.

    2013-01-01

    Through a modeling approach, we investigated weather factors that affect the summer incidence of Tomato spotted wilt virus (TSWV), a virus vectored exclusively by thrips, in cultivated tobacco. Aspects of thrips and plant biology that affect disease spread were treated as functions of weather, leading to a model of disease incidence informed by thrips and plant biology, and dependent on weather input variables. We found that disease incidence during the summer was influenced by weather affecting thrips activity during the preceding year, especially during a time when thrips transmit TSWV to and from the plant hosts that constitute the virus’ natural reservoir. We identified an interaction between spring precipitation and earlier weather affecting thrips, relating this to virus abundance and transmission intensity as interacting factors affecting disease incidence. Throughout, weather is the basic driver of epidemiology in the system, and our findings allowed us to detect associations between atypically high- or low-incidence years and the local climatic deviations from normal weather patterns, brought about by El Niño Southern Oscillation transitions. PMID:23977384

  17. Interacting virus abundance and transmission intensity underlie tomato spotted wilt virus incidence: an example weather-based model for cultivated tobacco.

    PubMed

    Chappell, Thomas M; Beaudoin, Amanda L P; Kennedy, George G

    2013-01-01

    Through a modeling approach, we investigated weather factors that affect the summer incidence of Tomato spotted wilt virus (TSWV), a virus vectored exclusively by thrips, in cultivated tobacco. Aspects of thrips and plant biology that affect disease spread were treated as functions of weather, leading to a model of disease incidence informed by thrips and plant biology, and dependent on weather input variables. We found that disease incidence during the summer was influenced by weather affecting thrips activity during the preceding year, especially during a time when thrips transmit TSWV to and from the plant hosts that constitute the virus' natural reservoir. We identified an interaction between spring precipitation and earlier weather affecting thrips, relating this to virus abundance and transmission intensity as interacting factors affecting disease incidence. Throughout, weather is the basic driver of epidemiology in the system, and our findings allowed us to detect associations between atypically high- or low-incidence years and the local climatic deviations from normal weather patterns, brought about by El Niño Southern Oscillation transitions.

  18. Characterization of microstructure, local deformation and microchemistry in Alloy 690 heat-affected zone and stress corrosion cracking in high temperature water

    NASA Astrophysics Data System (ADS)

    Lu, Zhanpeng; Chen, Junjie; Shoji, Tetsuo; Takeda, Yoichi; Yamazaki, Seiya

    2015-10-01

    With increasing the distance from the weld fusion line in an Alloy 690 heat-affected zone, micro-hardness decreases, kernel average misorientation decreases and the fraction of Σ3 boundaries increases. Chromium depletion at grain boundaries in the Alloy 690 heat-affected zone is less significant than that in an Alloy 600 heat-affected zone. Alloy 690 heat-affected zone exhibits much higher IGSCC resistance than Alloy 600 heat-affected zone in simulated pressurized water reactor primary water. Heavily cold worked Alloy 690 exhibits localized intergranular stress corrosion cracking. The effects of metallurgical and mechanical properties on stress corrosion cracking in Alloy 690 are discussed.

  19. Local point sources that affect ground-water quality in the East Meadow area, Long Island, New York

    USGS Publications Warehouse

    Heisig, Paul M.

    1994-01-01

    The extent and chemical characteristics of ground water affected by three local point sources--a stormwater basin, uncovered road-salt-storage piles, and an abandoned sewage-treatment plant--were delineated during a 3-year study of the chemical characteristics and migration of a body of reclaimed wastewater that was applied to the watertable aquifer during recharge experiments from October 1982 through January 1984 in East Meadow. The timing, magnitude, and chemical quality of recharge from these point sources is highly variable, and all sources have the potential to skew determinations of the quality of ambient ground-water and of the reclaimed-wastewater plume if they are not taken into account. Ground water affected by recharge from the stormwater basin is characterized by low concentrations of nitrate + nitrite (less than 5 mg/L [milligrams per liter] as N) and sulfate (less than 40 mg/L) and is almost entirely within the upper glacial aquifer. The plume derived from road-salt piles is narrow, has high concentrations of chloride (greater than 50 mg/L) and sodium (greater than 75 mg/L), and also is limited to the upper glacial aquifer. The sodium, in high concentrations, could react with aquifer material and exchange for sorbed cations such as calcium, potassium, and magnesium. Water affected by secondary-treated sewage from the abandoned treatment plant extends 152 feet below land surface into the upper part of the Magothy aquifer and longitudinally beyond the southern edge of the study area, 7,750 feet south of the recharge site. Ground water affected by secondary-treated sewage within the study area typically contains elevated concentrations of reactive chemical constituents, such as potassium and ammonium, and low concentrations of dissolved oxygen. Conservative or minimally reactive constituents such as chloride and sodium have been transported out of the study area in the upper glacial aquifer and the intermediate (transitional) zone but remain in the less

  20. Cosmic rays: Space Weather Perspective

    NASA Astrophysics Data System (ADS)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    The concept of Space Weather was launched before a decade to describe the short-term variations in the different form of solar ac-tivity and their effect in the near Earth environ-ment. Space weather affects the Earth's atmos-phere in many ways and through various phe-nomena. Among them, geomagnetic storms and the variability of the galactic cosmic ray flux be-long to the most important ones as for the lower atmosphere. We have performed superposed ep-och analysis using hourly neutron monitor data for three different neutron-monitoring stations of different cut off rigidity as a measure of cosmic ray intensity. In the present study for superposed epoch analysis the time of occurrence of CMEs are defined as key time (zero or epoch hour/day). It is noteworthy that the use of cosmic ray data in space weather research plays a key role for its prediction. We have studied the cosmic ray, geo-magnetic and interplanetary plasma/field data to understand the physical mechanism responsible for Forbush decrease and geomagnetic storm that can be used as a signature to forecast space weather. Keywords: Space weather, cosmic ray, geomag-netic storm, forbush decrease

  1. Dynamically Evolving Sectors for Convective Weather Impact

    NASA Technical Reports Server (NTRS)

    Drew, Michael C.

    2010-01-01

    A new strategy for altering existing sector boundaries in response to blocking convective weather is presented. This method seeks to improve the reduced capacity of sectors directly affected by weather by moving boundaries in a direction that offers the greatest capacity improvement. The boundary deformations are shared by neighboring sectors within the region in a manner that preserves their shapes and sizes as much as possible. This reduces the controller workload involved with learning new sector designs. The algorithm that produces the altered sectors is based on a force-deflection mesh model that needs only nominal traffic patterns and the shape of the blocking weather for input. It does not require weather-affected traffic patterns that would have to be predicted by simulation. When compared to an existing optimal sector design method, the sectors produced by the new algorithm are more similar to the original sector shapes, resulting in sectors that may be more suitable for operational use because the change is not as drastic. Also, preliminary results show that this method produces sectors that can equitably distribute the workload of rerouted weather-affected traffic throughout the region where inclement weather is present. This is demonstrated by sector aircraft count distributions of simulated traffic in weather-affected regions.

  2. Does Weather Matter? The Effect of Weather Patterns and Temporal Factors on Pediatric Orthopedic Trauma Volume

    PubMed Central

    Livingston, Kristin S.; Miller, Patricia E.; Lierhaus, Anneliese; Matheney, Travis H.; Mahan, Susan T.

    2016-01-01

    Objectives: Orthopaedists often speculate how weather and school schedule may influence pediatric orthopedic trauma volume, but few studies have examined this. This study aims to determine: how do weather patterns, day, month, season and public school schedule influence the daily frequency of pediatric orthopedic trauma consults and admissions? Methods: With IRB approval, orthopedic trauma data from a level 1 pediatric trauma center, including number of daily orthopedic trauma consults and admissions, were collected from July 2009 to March 2012. Historical weather data (high temperatures, precipitation and hours of daylight), along with local public school schedule data were collected for the same time period. Univariate and multivariate regression models were used to show the average number of orthopedic trauma consults and admissions as a function of weather and temporal variables. Results: High temperature, precipitation, month and day of the week significantly affected the number of daily consults and admissions. The number of consults and admissions increased by 1% for each degree increase in temperature (p=0.001 and p<0.001, respectively), and decreased by 21% for each inch of precipitation (p<0.001, p=0.006). Daily consults on snowy days decreased by an additional 16% compared to days with no precipitation. November had the lowest daily consult and admission rate, while September had the highest. Daily consult rate was lowest on Wednesdays and highest on Saturdays. Holiday schedule was not independently significant. Conclusion: Pediatric orthopedic trauma consultations and admissions are highly linked to temperature and precipitation, as well as day of the week and time of year. PMID:27990193

  3. A relationship between acute respiratory illnesses and weather.

    PubMed

    Costilla-Esquivel, A; Corona-Villavicencio, F; Velasco-Castañón, J G; Medina-DE LA Garza, C E; Martínez-Villarreal, R T; Cortes-Hernández, D E; Ramírez-López, L E; González-Farías, G

    2014-07-01

    Weekly data from 7 years (2004-2010) of primary-care counts of acute respiratory illnesses (ARIs) and local weather readings were used to adjust a multivariate time-series vector error correction model with covariates (VECMX). Weather variables were included through a partial least squares index that consisted of weekly minimum temperature (coefficient = - 0·26), weekly median of relative humidity (coefficient = 0·22) and weekly accumulated rainfall (coefficient = 0·5). The VECMX long-term test reported significance for trend (0·01, P = 0·00) and weather index (1·69, P = 0·00). Short-term relationship was influenced by seasonality. The model accounted for 76% of the variability in the series (adj. R 2 = 0·76), and the co-integration diagnostics confirmed its appropriateness. The procedure is easily reproducible by researchers in all climates, can be used to identify relevant weather fluctuations affecting the incidence of ARIs, and could help clarify the influence of contact rates on the spread of these diseases.

  4. Oxidative stress affects FET proteins localization and alternative pre-mRNA processing in cellular models of ALS.

    PubMed

    Svetoni, Francesca; Caporossi, Daniela; Paronetto, Maria Paola

    2014-10-01

    FUS/TLS, EWS and TAF15 are members of the FET family of DNA and RNA binding proteins, involved in multiple steps of DNA and RNA processing and implicated in the regulation of gene expression and cell-signaling. All members of the FET family contribute to human pathologies, as they are involved in sarcoma translocations and neurodegenerative diseases. Mutations in FUS/TLS, in EWSR1 and in TAF15 genescause Amyotrophic Lateral Sclerosis (ALS), a fatal human neurodegenerative disease that affects primarily motor neurons and is characterized by the progressive loss of motor neurons and degradation of the neuromuscular junctions.ALS-associated FET mutations cause FET protein relocalization into cytoplasmic aggregates, thus impairing their normal function. Protein aggregation has been suggested as a co-opting factor during the disease pathogenesis. Cytoplasmic mislocalization of FET proteins contributes to the formation of cytoplasmic aggregates that may alter RNA processing and initiate motor neuron degeneration. Interestingly, oxidative stress, which is implicated in the pathogenesis of ALS, triggers the accumulation of mutant FUS in cytoplasmic stress granules where it binds and sequester wild-type FUS.In order to evaluate the role of FET proteins in ALS and their involvement in the response to oxidative stress, we have developed cellular models of ALS expressing ALS-related FET mutants in neuroblastoma cell lines. Upon treatment with sodium arsenite, cells were analysed by immunofluorescence to monitor the localization of wild-type and mutated FET proteins. Furthermore, we have characterized signal transduction pathways and cell survival upon oxidative stress in our cellular models of ALS. Interestingly, we found that EWS mutant proteins display a different localization from FUS mutants and neither wild-type nor mutated EWS protein translocate into stress granules upon oxidative stress treatment. Collectively, our data provide a new link between the oxidative stress

  5. Aging and aerobic fitness affect the contribution of noradrenergic sympathetic nerves to the rapid cutaneous vasodilator response to local heating.

    PubMed

    Tew, Garry A; Saxton, John M; Klonizakis, Markos; Moss, James; Ruddock, Alan D; Hodges, Gary J

    2011-05-01

    Sedentary aging results in a diminished rapid cutaneous vasodilator response to local heating. We investigated whether this diminished response was due to altered contributions of noradrenergic sympathetic nerves by assessing 1) the age-related decline and 2) the effect of aerobic fitness. Using laser-Doppler flowmetry, we measured skin blood flow (SkBF) in young (24 ± 1 yr) and older (64 ± 1 yr) endurance-trained and sedentary men (n = 7 per group) at baseline and during 35 min of local skin heating to 42°C at 1) untreated forearm sites, 2) forearm sites treated with bretylium tosylate (BT), which prevents neurotransmitter release from noradrenergic sympathetic nerves, and 3) forearm sites treated with yohimbine + propranolol (YP), which antagonizes α- and β-adrenergic receptors. SkBF was converted to cutaneous vascular conductance (CVC = SkBF/mean arterial pressure) and normalized to maximal CVC (%CVC(max)) achieved by skin heating to 44°C. Pharmacological agents were administered using microdialysis. In the young trained group, the rapid vasodilator response was reduced at BT and YP sites (P < 0.05); by contrast, in the young sedentary and older trained groups, YP had no effect (P > 0.05), but BT did (P > 0.05). Neither BT nor YP affected the rapid vasodilator response in the older sedentary group (P > 0.05). These data suggest that the age-related reduction in the rapid vasodilator response is due to an impairment of sympathetic-dependent mechanisms, which can be partly attenuated with habitual aerobic exercise. Rapid vasodilation involves noradrenergic neurotransmitters in young trained men and nonadrenergic sympathetic cotransmitters (e.g., neuropeptide Y) in young sedentary and older trained men, possibly as a compensatory mechanism. Finally, in older sedentary men, the rapid vasodilation appears not to involve the sympathetic system.

  6. Whole genome sequencing identifies a deletion in protein phosphatase 2A that affects its stability and localization in Chlamydomonas reinhardtii.

    PubMed

    Lin, Huawen; Miller, Michelle L; Granas, David M; Dutcher, Susan K

    2013-01-01

    Whole genome sequencing is a powerful tool in the discovery of single nucleotide polymorphisms (SNPs) and small insertions/deletions (indels) among mutant strains, which simplifies forward genetics approaches. However, identification of the causative mutation among a large number of non-causative SNPs in a mutant strain remains a big challenge. In the unicellular biflagellate green alga Chlamydomonas reinhardtii, we generated a SNP/indel library that contains over 2 million polymorphisms from four wild-type strains, one highly polymorphic strain that is frequently used in meiotic mapping, ten mutant strains that have flagellar assembly or motility defects, and one mutant strain, imp3, which has a mating defect. A comparison of polymorphisms in the imp3 strain and the other 15 strains allowed us to identify a deletion of the last three amino acids, Y313F314L315, in a protein phosphatase 2A catalytic subunit (PP2A3) in the imp3 strain. Introduction of a wild-type HA-tagged PP2A3 rescues the mutant phenotype, but mutant HA-PP2A3 at Y313 or L315 fail to rescue. Our immunoprecipitation results indicate that the Y313, L315, or YFLΔ mutations do not affect the binding of PP2A3 to the scaffold subunit, PP2A-2r. In contrast, the Y313, L315, or YFLΔ mutations affect both the stability and the localization of PP2A3. The PP2A3 protein is less abundant in these mutants and fails to accumulate in the basal body area as observed in transformants with either wild-type HA-PP2A3 or a HA-PP2A3 with a V310T change. The accumulation of HA-PP2A3 in the basal body region disappears in mated dikaryons, which suggests that the localization of PP2A3 may be essential to the mating process. Overall, our results demonstrate that the terminal YFL tail of PP2A3 is important in the regulation on Chlamydomonas mating.

  7. Winter Weather Checklists

    MedlinePlus

    ... About CDC.gov . Natural Disasters and Severe Weather Earthquakes Being Prepared Emergency Supplies Home Hazards Indoor Safety ... Matters What's New Preparation & Planning Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis Volcanoes ...

  8. Winter Weather: Frostbite

    MedlinePlus

    ... About CDC.gov . Natural Disasters and Severe Weather Earthquakes Being Prepared Emergency Supplies Home Hazards Indoor Safety ... Matters What's New Preparation & Planning Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis Volcanoes ...

  9. Winter Weather: Outdoor Safety

    MedlinePlus

    ... About CDC.gov . Natural Disasters and Severe Weather Earthquakes Being Prepared Emergency Supplies Home Hazards Indoor Safety ... Matters What's New Preparation & Planning Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis Volcanoes ...

  10. Winter Weather Emergencies

    MedlinePlus

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  11. Weatherization and Indoor Air Quality: Measured Impacts in Single Family Homes Under the Weatherization Assistance Program

    SciTech Connect

    Pigg, Scott; Cautley, Dan; Francisco, Paul; Hawkins, Beth A; Brennan, Terry M

    2014-09-01

    This report summarizes findings from a national field study of indoor air quality parameters in homes treated under the Weatherization Assistance Program (WAP). The study involved testing and monitoring in 514 single-family homes (including mobile homes) located in 35 states and served by 88 local weatherization agencies.

  12. Arabidopsis acyl-CoA-binding protein ACBP6 localizes in the phloem and affects jasmonate composition.

    PubMed

    Ye, Zi-Wei; Lung, Shiu-Cheung; Hu, Tai-Hua; Chen, Qin-Fang; Suen, Yung-Lee; Wang, Mingfu; Hoffmann-Benning, Susanne; Yeung, Edward; Chye, Mee-Len

    2016-12-01

    Arabidopsis thaliana ACYL-COA-BINDING PROTEIN6 (AtACBP6) encodes a cytosolic 10-kDa AtACBP. It confers freezing tolerance in transgenic Arabidopsis, possibly by its interaction with lipids as indicated by the binding of acyl-CoA esters and phosphatidylcholine to recombinant AtACBP6. Herein, transgenic Arabidopsis transformed with an AtACBP6 promoter-driven β-glucuronidase (GUS) construct exhibited strong GUS activity in the vascular tissues. Immunoelectron microscopy using anti-AtACBP6 antibodies showed AtACBP6 localization in the phloem especially in the companion cells and sieve elements. Also, the presence of gold grains in the plasmodesmata indicated its potential role in systemic trafficking. The AtACBP6 protein, but not its mRNA, was found in phloem exudate of wild-type Arabidopsis. Fatty acid profiling using gas chromatography-mass spectrometry revealed an increase in the jasmonic acid (JA) precursor, 12-oxo-cis,cis-10,15-phytodienoic acid (cis-OPDA), and a reduction in JA and/or its derivatives in acbp6 phloem exudates in comparison to the wild type. Quantitative real-time PCR showed down-regulation of COMATOSE (CTS) in acbp6 rosettes suggesting that AtACBP6 affects CTS function. AtACBP6 appeared to affect the content of JA and/or its derivatives in the sieve tubes, which is consistent with its role in pathogen-defense and in its wound-inducibility of AtACBP6pro::GUS. Taken together, our results suggest the involvement of AtACBP6 in JA-biosynthesis in Arabidopsis phloem tissues.

  13. American Weather Stories.

    ERIC Educational Resources Information Center

    Hughes, Patrick

    Weather has shaped United States' culture, national character and folklore; at times it has changed the course of history. The seven accounts compiled in this publication highlight some of the nation's weather experiences from the hurricanes that threatened Christopher Columbus to the peculiar run of bad weather that has plagued American…

  14. Aviation weather services

    NASA Technical Reports Server (NTRS)

    Sprinkle, C. H.

    1983-01-01

    The primary responsibilities of the National Weather Service (NWS) are to: provide warnings of severe weather and flooding for the protection of life and property; provide public forecasts for land and adjacent ocean areas for planning and operation; and provide weather support for: production of food and fiber; management of water resources; production, distribution and use of energy; and efficient and safe air operations.

  15. Weather Fundamentals: Meteorology. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) looks at how meteorologists gather and interpret current weather data collected from sources…

  16. Cold-Weather Sports

    MedlinePlus

    ... Surgery? A Week of Healthy Breakfasts Shyness Cold-Weather Sports KidsHealth > For Teens > Cold-Weather Sports Print A A A What's in this ... Equipment Ahh, winter! Shorter days. Frigid temperatures. Foul weather. What better time to be outdoors? Winter sports ...

  17. Hot Weather Tips

    MedlinePlus

    ... FCA - A A + A You are here Home HOT Weather Tips Printer-friendly version We all suffer in hot weather. However, for elderly and disabled people and ... stress and following these tips for dealing with hot weather. Wear cool clothing: See that the person ...

  18. Characterization of the Weatherization Assistance Program network. Weatherization Assistance Program

    SciTech Connect

    Mihlmester, P.E.; Koehler, W.C. Jr.; Beyer, M.A.; Brown, M.A.; Beschen, D.A. Jr.

    1992-02-01

    The Characterization of the Weatherization Assistance Program (WAP) Network was designed to describe the national network of State and local agencies that provide WAP services to qualifying low-income households. The objective of this study was to profile the current WAP network. To achieve the objective, two national surveys were conducted: one survey collected data from 49 State WAP agencies (including the coterminous 48 States and the District of Columbia), and the second survey collected data from 920 (or 81 percent) of the local WAP agencies.

  19. Weatherization and Intergovernmental Program - Weatherization Assistance Program

    SciTech Connect

    2010-06-01

    The U.S. Department of Energy’s (DOE) Weatherization Assistance Program reduces energy costs for low-income households by increasing the energy efficiency of their homes, while ensuring their health and safety.

  20. Does MRI-detected cranial nerve involvement affect the prognosis of locally advanced nasopharyngeal carcinoma treated with intensity modulated radiotherapy?

    PubMed

    Zong, Jingfeng; Lin, Shaojun; Chen, Yunbin; Wang, Bingyi; Xiao, Youping; Lin, Jin; Li, Rui; Pan, Jianji

    2014-01-01

    Nasopharyngeal carcinoma (NPC) is one of the common cancers in South China. It can easily invade into cranial nerves, especially in patients with local advanced disease. Despite the fact that the magnetic resonance imaging (MRI) findings are not always consistent with the symptoms of CN palsy, MRI is recommended for the detection of CN involvement (CNI). However, the prognostic impact of MRI-detected CNI in NPC patients is still controversial. To investigate the prognostic value of MRI detected CNI, we performed a retrospective analysis on the clinical data of 375 patients with NPC who were initially diagnosed by MRI. All patients had T3-4 disease and received radical intensity modulated radiation therapy (IMRT) as their primary treatment. The incidence of MRI-detected CNI was 60.8%. A higher incidence of MRI-detected CNI was observed in T4 disease compared with T3 disease (96.8% vs. 42.8%, P<0.001), and a higher incidence was also found in patients with Stage IV disease compared with those with Stage III disease (91.5% vs. 42.3%; P<0.001). The local relapse-free survival (LRFS), distant metastasis-free survival (DMFS), and overall survival (OS) of patients with T3 disease, with or without MRI-detected CNI, was superior to that of patients with T4 disease (P<0.05). No significant differences in LRFS, DMFS or OS were observed between T3 patients with or without MRI-detected CNI. The survival of Stage III patients with or without MRI-detected CNI was significantly superior to that of Stage IV patients (P<0.01), but there was no significant difference between Stage III patients with or without MRI-detected CNI for all endpoints. Therefore, when treated with IMRT, MRI-detected CNI in patients with NPC does not appear to affect the prognosis. In patients with clinical T3 disease, the presence of MRI-detected CNI is not sufficient evidence for defining T4 disease.

  1. Causal Factors Affecting Local Fiscal Stress in U.S. Northeast Counties. Cornell Rural Sociology Series. Bulletin No. 149.

    ERIC Educational Resources Information Center

    Eberts, Paul; Khawaja, Marwan

    Conceptualizing high local fiscal stress as a variable which includes low fiscal capacity, high local tax effort and high local need requires building a typology reflecting this conceptualization. This study builds such a typology for 166 counties in the northeastern United States and examines the effects of variables taken from a series of…

  2. Predicting the magnetospheric plasma of weather

    NASA Technical Reports Server (NTRS)

    Dawson, John M.

    1986-01-01

    The prediction of the plasma environment in time, the plasma weather, is discussed. It is important to be able to predict when large magnetic storms will produce auroras, which will affect the space station operating in low orbit, and what precautions to take both for personnel and sensitive control (computer) equipment onboard. It is also important to start to establish a set of plasma weather records and a record of the ability to predict this weather. A successful forecasting system requires a set of satellite weather stations to provide data from which predictions can be made and a set of plasma weather codes capable of accurately forecasting the status of the Earth's magnetosphere. A numerical magnetohydrodynamic fluid model which is used to model the flow in the magnetosphere, the currents flowing into and out of the auroral regions, the magnetopause, the bow shock location and the magnetotail of the Earth is discussed.

  3. A Geospatial Database that Supports Derivation of Climatological Features of Severe Weather

    NASA Astrophysics Data System (ADS)

    Phillips, M.; Ansari, S.; Del Greco, S.

    2007-12-01

    The Severe Weather Data Inventory (SWDI) at NOAA's National Climatic Data Center (NCDC) provides user access to archives of several datasets critical to the detection and evaluation of severe weather. These datasets include archives of: · NEXRAD Level-III point features describing general storm structure, hail, mesocyclone and tornado signatures · National Weather Service Storm Events Database · National Weather Service Local Storm Reports collected from storm spotters · National Weather Service Warnings · Lightning strikes from Vaisala's National Lightning Detection Network (NLDN) SWDI archives all of these datasets in a spatial database that allows for convenient searching and subsetting. These data are accessible via the NCDC web site, Web Feature Services (WFS) or automated web services. The results of interactive web page queries may be saved in a variety of formats, including plain text, XML, Google Earth's KMZ, standards-based NetCDF and Shapefile. NCDC's Storm Risk Assessment Project (SRAP) uses data from the SWDI database to derive gridded climatology products that show the spatial distributions of the frequency of various events. SRAP also can relate SWDI events to other spatial data such as roads, population, watersheds, and other geographic, sociological, or economic data to derive products that are useful in municipal planning, emergency management, the insurance industry, and other areas where there is a need to quantify and qualify how severe weather patterns affect people and property.

  4. Landslides as weathering reactors; links between physical erosion and weathering in rapidly eroding mountain belts

    NASA Astrophysics Data System (ADS)

    Emberson, R.; Hovius, N.; Galy, A.

    2014-12-01

    The link between physical erosion and chemical weathering is generally modelled with a surface-blanketing weathering zone, where the supply of fresh minerals is tied to the average rate of denudation. In very fast eroding environments, however, sediment production is dominated by landsliding, which acts in a stochastic fashion across the landscape, contrasting strongly with more uniform denudation models. If physical erosion is a driver of weathering at the highest erosion rates, then an alternative weathering model is required. Here we show that landslides can be effective 'weathering reactors'. Previous work modelling the effect of landslides on chemical weathering (Gabet 2007) considered the fresh bedrock surfaces exposed in landslide scars. However, fracturing during the landslide motion generates fresh surfaces, the total surface area of which exceeds that of the exposed scar by many orders of magnitude. Moreover, landslides introduce concavity into hillslopes, which acts to catch precipitation. This is funnelled into a deposit of highly fragmented rock mass with large reactive surface area and limited hydraulic conductivity (Lo et al. 2007). This allows percolating water reaction time for chemical weathering; any admixture of macerated organic debris could yield organic acid to further accelerate weathering. In the South island of New Zealand, seepage from recent landslide deposits has systematically high solute concentrations, far outstripping concentration in runoff from locations where soils are present. River total dissolved load in the western Southern Alps is highly correlated with the rate of recent (<35yrs) landsliding, suggesting that landslides are the dominant locus of weathering in this rapidly eroding landscape. A tight link between landsliding and weathering implies that localized weathering migrates through the landscape with physical erosion; this contrasts with persistent and ubiquitous weathering associated with soil production. Solute

  5. Strongly-motivated positive affects induce faster responses to local than global information of visual stimuli: an approach using large-size Navon letters.

    PubMed

    Noguchi, Yasuki; Tomoike, Kouta

    2016-01-12

    Recent studies argue that strongly-motivated positive emotions (e.g. desire) narrow a scope of attention. This argument is mainly based on an observation that, while humans normally respond faster to global than local information of a visual stimulus (global advantage), positive affects eliminated the global advantage by selectively speeding responses to local (but not global) information. In other words, narrowing of attentional scope was indirectly evidenced by the elimination of global advantage (the same speed of processing between global and local information). No study has directly shown that strongly-motivated positive affects induce faster responses to local than global information while excluding a bias for global information (global advantage) in a baseline (emotionally-neutral) condition. In the present study, we addressed this issue by eliminating the global advantage in a baseline (neutral) state. Induction of positive affects under this state resulted in faster responses to local than global information. Our results provided direct evidence that positive affects in high motivational intensity narrow a scope of attention.

  6. Space Weathering of Rocks

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  7. Towards a National Space Weather Predictive Capability

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Ryschkewitsch, M. G.; Merkin, V. G.; Stephens, G. K.; Gjerloev, J. W.; Barnes, R. J.; Anderson, B. J.; Paxton, L. J.; Ukhorskiy, A. Y.; Kelly, M. A.; Berger, T. E.; Bonadonna, L. C. M. F.; Hesse, M.; Sharma, S.

    2015-12-01

    National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review the space weather system developed for the Van Allen Probes mission, together with other datasets, tools and models that have resulted from research by scientists at JHU/APL. We will look at how these, and results from future missions such as Solar Probe Plus, could be applied to support space weather applications in coordination with other community assets and capabilities.

  8. Conditional Weather Resampling Method for Seasonal Ensemble Streamflow Prediction

    NASA Astrophysics Data System (ADS)

    Beckers, Joost; Weerts, Albrecht; Welles, Edwin

    2014-05-01

    Ensemble Streamflow Prediction (ESP) is a commonly used method for water resources planning on the seasonal time scale. The starting point for the ESP is the current state of the hydrological system, which is generated form a short historical simulation up to the time of forecast. Starting from this initial state, a hydrologic model is run to produce an ensemble of possible realizations of future streamflows, taking meteorological time series from historical years as input. It is assumed that these historical weather time series represent climatology. One disadvantage of the original ESP method is that an expected deviation from average climatology is not accounted for. Here, we propose a variation to the ESP, in which shorter periods from historical time years are resampled and assembled to generate additional possible realizations of future weather. The resampling is done in such a way as to incorporate statistical deviations from the average climate that are linked to climate modes, such as El Niño Southern Oscillation (ENSO) or Pacific Decadal Oscillation (PDO). These climate modes are known to affect the local weather in many regions around the world. The resampling of historical weather periods is conditioned on the climate mode indices, starting with the current climate index value and searching for historical years with similar climate indices. The resampled weather time series are used as input for the hydrological model, similar to the original ESP procedure. The method was implemented in the operational forecasting environment of Bonneville Power Administration (BPA), which based on Delft-FEWS. The method was run for 55 non-operational years of hindcasts (forecasts in retrospect) for the Columbia River in the North-West of the U.S. An increase in forecast skill up to 5% was found relative to the standard ESP for streamflow predictions at three test-locations.

  9. Tales of future weather

    NASA Astrophysics Data System (ADS)

    Hazeleger, W.; van den Hurk, B. J. J. M.; Min, E.; van Oldenborgh, G. J.; Petersen, A. C.; Stainforth, D. A.; Vasileiadou, E.; Smith, L. A.

    2015-02-01

    Society is vulnerable to extreme weather events and, by extension, to human impacts on future events. As climate changes weather patterns will change. The search is on for more effective methodologies to aid decision-makers both in mitigation to avoid climate change and in adaptation to changes. The traditional approach uses ensembles of climate model simulations, statistical bias correction, downscaling to the spatial and temporal scales relevant to decision-makers, and then translation into quantities of interest. The veracity of this approach cannot be tested, and it faces in-principle challenges. Alternatively, numerical weather prediction models in a hypothetical climate setting can provide tailored narratives for high-resolution simulations of high-impact weather in a future climate. This 'tales of future weather' approach will aid in the interpretation of lower-resolution simulations. Arguably, it potentially provides complementary, more realistic and more physically consistent pictures of what future weather might look like.

  10. Investigating Space Weather Events Impacting the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Cheng, Leo Y.; Hunt, Joseph C. Jr.; Stowers, Kennis; Lowrance, Patrick; Stewart, Andrzej; Travis, Paul

    2014-01-01

    Our understanding of the dynamical process in the space environment has increased dramatically. A relatively new field of study called "Space Weather" has emerged in the last few decades. Fundamental to the study of space weather is an understanding of how space weather events such as solar flares and coronal mass ejections impact spacecraft in varying orbits and distances around the Sun. Specialized space weather satellite monitoring systems operated by the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA) allow scientists to predict space weather events affecting critical systems on and orbiting the Earth. However, the Spitzer Space Telescope is in an orbit far outside the areas covered by those space weather monitoring systems. This poses a challenge for the Spitzer's Mission Operations Team in determining whether space weather events affect Spitzer.

  11. Weather and climate

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Recommendations for using space observations of weather and climate to aid in solving earth based problems are given. Special attention was given to: (1) extending useful forecasting capability of space systems, (2) reducing social, economic, and human losses caused by weather, (3) development of space system capability to manage and control air pollutant concentrations, and (4) establish mechanisms for the national examination of deliberate and inadvertent means for modifying weather and climate.

  12. Cockpit weather information needs

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1992-01-01

    The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe weather notice, AIRMET or SIGMET, is received. The cockpit weather display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical weather system so pilot review of weather along

  13. Pilot Weather Advisor System

    NASA Technical Reports Server (NTRS)

    Lindamood, Glenn; Martzaklis, Konstantinos Gus; Hoffler, Keith; Hill, Damon; Mehrotra, Sudhir C.; White, E. Richard; Fisher, Bruce D.; Crabill, Norman L.; Tucholski, Allen D.

    2006-01-01

    The Pilot Weather Advisor (PWA) system is an automated satellite radio-broadcasting system that provides nearly real-time weather data to pilots of aircraft in flight anywhere in the continental United States. The system was designed to enhance safety in two distinct ways: First, the automated receipt of information would relieve the pilot of the time-consuming and distracting task of obtaining weather information via voice communication with ground stations. Second, the presentation of the information would be centered around a map format, thereby making the spatial and temporal relationships in the surrounding weather situation much easier to understand

  14. Effects of ENSO on weather-type frequencies and properties at New Orleans, Louisiana, USA

    USGS Publications Warehouse

    McCabe, G.J.; Muller, R.A.

    2002-01-01

    Examination of historical climate records indicates a significant relation between the El Nin??o/Southern Oscillation (ENSO) and seasonal temperature and precipitation in Louisiana. In this study, a 40 yr record of twice daily (06:00 and 15:00 h local time) weather types are used to study the effects of ENSO variability on the local climate at New Orleans, Louisiana. Tropical Pacific sea-surface temperatures (SSTs) for the NINO3.4 region are used to define ENSO events (i.e. El Nin??o and La Nin??a events), and daily precipitation and temperature data for New Orleans are used to define weather-type precipitation and temperature properties. Data for winters (December through February) 1962-2000 are analyzed. The 39 winters are divided into 3 categories; winters with NINO3.4 SST anomalies 1??C (El Nin??o events), and neutral conditions (all other years). For each category, weather-type frequencies and properties (i.e. precipitation and temperature) are determined and analyzed. Results indicate that El Nin??o events primarily affect precipitation characteristics of weather types at New Orleans, whereas the effects of La Nin??a events are most apparent in weather-type frequencies. During El Nin??o events, precipitation for some of the weather types is greater than during neutral and La Nin??a conditions and is related to increased water vapor transport from the Tropics to the Gulf of Mexico. The changes in weather-type frequencies during La Nin??a events are indicative of a northward shift in storm tracks and/or a decrease in storm frequency in southern Louisiana.

  15. 34 CFR 222.121 - How does the affected Indian tribe or tribes request that payments to a local educational agency...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false How does the affected Indian tribe or tribes request that payments to a local educational agency not be withheld? 222.121 Section 222.121 Education Regulations of the Offices of the Department of Education OFFICE OF ELEMENTARY AND SECONDARY...

  16. Age-related hearing loss and ear morphology affect vertical but not horizontal sound-localization performance.

    PubMed

    Otte, Rik J; Agterberg, Martijn J H; Van Wanrooij, Marc M; Snik, Ad F M; Van Opstal, A John

    2013-04-01

    Several studies have attributed deterioration of sound localization in the horizontal (azimuth) and vertical (elevation) planes to an age-related decline in binaural processing and high-frequency hearing loss (HFHL). The latter might underlie decreased elevation performance of older adults. However, as the pinnae keep growing throughout life, we hypothesized that larger ears might enable older adults to localize sounds in elevation on the basis of lower frequencies, thus (partially) compensating their HFHL. In addition, it is not clear whether sound localization has already matured at a very young age, when the body is still growing, and the binaural and monaural sound-localization cues change accordingly. The present study investigated sound-localization performance of children (7-11 years), young adults (20-34 years), and older adults (63-80 years) under open-loop conditions in the two-dimensional frontal hemifield. We studied the effect of age-related hearing loss and ear size on localization responses to brief broadband sound bursts with different bandwidths. We found similar localization abilities in azimuth for all listeners, including the older adults with HFHL. Sound localization in elevation for the children and young adult listeners with smaller ears improved when stimuli contained frequencies above 7 kHz. Subjects with larger ears could also judge the elevation of sound sources restricted to lower frequency content. Despite increasing ear size, sound localization in elevation deteriorated in older adults with HFHL. We conclude that the binaural localization cues are successfully used well into later stages of life, but that pinna growth cannot compensate the more profound HFHL with age.

  17. Sunspots, Space Weather and Climate

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    Four hundred years ago this year the telescope was first used for astronomical observations. Within a year, Galileo in Italy and Harriot in England reported seeing spots on the surface of the Sun. Yet, it took over 230 years of observations before a Swiss amateur astronomer noticed that the sunspots increased and decreased in number over a period of about 11 years. Within 15 years of this discovery of the sunspot cycle astronomers made the first observations of a flare on the surface of the Sun. In the 150 years since that discovery we have learned much about sunspots, the sunspot cycle, and the Sun s explosive events - solar flares, prominence eruptions and coronal mass ejections that usually accompany the sunspots. These events produce what is called Space Weather. The conditions in space are dramatically affected by these events. Space Weather can damage our satellites, harm our astronauts, and affect our lives here on the surface of planet Earth. Long term changes in the sunspot cycle have been linked to changes in our climate as well. In this public lecture I will give an introduction to sunspots, the sunspot cycle, space weather, and the possible impact of solar variability on our climate.

  18. Applied environmental fluid mechanics: what's the weather in your backyard?

    NASA Astrophysics Data System (ADS)

    Chow, F. K.

    2011-12-01

    The microclimates of the San Francisco Bay Area can lead to 30-40F differences in temperature from the coast to just 30 miles inland. The reasons for this include local topography which affects development of the atmospheric boundary layer. A Bay Area resident's experience of fog, air pollution, and weather events therefore differs greatly depending on exactly where they live. Such local weather phenomena provide a natural topic for introduction to boundary layer processes and are the basis of a new course developed at the University of California, Berkeley. This course complements the PI's research focus on numerical methods applied to atmospheric boundary layer flow over complex terrain. This new outreach and research-based course was created to teach students about the boundary layer and teach them how to use a community weather prediction model, WRF, to simulate conditions in the local area, while at the same time being actively involved in public outreach. The course was offered in the Civil and Environmental Engineering department with the collaboration and support of the Lawrence Hall of Science, Berkeley's public science museum. The students chose topics such as air quality, wind energy, climate change, and plume dispersion, all applied to the local San Francisco Bay Area. The students conducted independent research on their team projects, involving literature reviews, numerical model setup, and analysis of model results through comparison with field observations. The outreach component of the course included website design and culminated in demonstrations at the Lawrence Hall of Science. The seven student teams presented hands-on demos to 300-400 visitors, mostly kids 4-9 years old and their parents. Involving students directly in outreach efforts is hoped to encourage continued integration of research and education in their own careers. Early exposure to numerical modeling also improves student technical skills for future career experiences . Given

  19. An OLR perspective on ENSO impacts on seasonal weather anomalies

    NASA Astrophysics Data System (ADS)

    Chiodi, Andrew; Harrison, Ed

    2014-05-01

    El Niño-Southern Oscillation (ENSO) impacts on seasonal weather anomalies form a basis for skillful statistical seasonal weather prediction in the regions around the globe where the statistical links between ENSO and seasonal weather anomalies are strong. Tropical Pacific sea surface temperature (SST), sea level pressure (SLP) and outgoing longwave radiation (OLR) all provide measures of the coupled ENSO anomaly state, but of these OLR is most closely connected to the tropical Pacific atmospheric heating anomalies that allow ENSO to influence seasonal atmospheric circulation and weather anomalies elsewhere. OLR shows a different sort of behavior over the tropical Pacific than SST or SLP (Chiodi and Harrison, 2010). A unique warm-ENSO (El Niño) index based on outgoing longwave radiation (OLR) conditions in the tropical Pacific has been shown to have an especially close statistical linkage to seasonal weather anomalies over North America (Chiodi and Harrison, 2013). A complimentary OLR-based cool-ENSO (La Niña) index has also been proposed and this pair of OLR-based ENSO indices is evaluated for their respective connections to interannual seasonal weather and atmospheric circulation anomalies around the globe using composite analysis. We find that since 1974, when satellite-based OLR observation became available, most of the useful (statistically significant and consistent from event to event) ENSO impacts on seasonal precipitation are due to the years distinguished by the OLR-based ENSO indices. The 4 "OLR El Niño" and 6 "OLR La Niña" events identified in the 1974-2012 period are a subset of those identified by the commonly used Niño 3.4-based ENSO definitions (roughly half). The other "non-OLR ENSO years" yield global seasonal weather anomaly composites that, in terms of amounts of locally statistically significant anomaly, are not much different than should be expected from the effects of chance alone. The OLR El Niño and OLR La Niña years are typically (9

  20. Weathering Database Technology

    ERIC Educational Resources Information Center

    Snyder, Robert

    2005-01-01

    Collecting weather data is a traditional part of a meteorology unit at the middle level. However, making connections between the data and weather conditions can be a challenge. One way to make these connections clearer is to enter the data into a database. This allows students to quickly compare different fields of data and recognize which…

  1. Designing a Weather Station

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The collection and analysis of weather data is crucial to the location of alternate energy systems like solar and wind. This article presents a design challenge that gives students a chance to design a weather station to collect data in advance of a large wind turbine installation. Data analysis is a crucial part of any science or engineering…

  2. KSC Weather and Research

    NASA Technical Reports Server (NTRS)

    Maier, Launa; Huddleston, Lisa; Smith, Kristin

    2016-01-01

    This briefing outlines the history of Kennedy Space Center (KSC) Weather organization, past research sponsored or performed, current organization, responsibilities, and activities, the evolution of weather support, future technologies, and an update on the status of the buoys located offshore of Cape Canaveral Air Force Station and KSC.

  3. Weather Fundamentals: Clouds. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) discusses how clouds form, the different types of clouds, and the important role they play in…

  4. Home Weatherization Visit

    ScienceCinema

    Chu, Steven

    2016-07-12

    Secretary Steven Chu visits a home that is in the process of being weatherized in Columbus, OH, along with Ohio Governor Ted Strickland and Columbus Mayor Michael Coleman. They discuss the benefits of weatherization and how funding from the recovery act is having a direct impact in communities across America.

  5. Weather Cardboard Carpentry

    ERIC Educational Resources Information Center

    DeBruin, Jerome E.

    1977-01-01

    Included are instructions and diagrams for building weather instruments (wind vane, Celsius temperature scale, and anemometer) from simple tools and Tri-Wall, a triple-thick corrugated cardboard. Ordering sources for Tri-Wall are listed. Additional weather instruments that can be constructed are suggested. (CS)

  6. Tracking Weather Satellites.

    ERIC Educational Resources Information Center

    Martin, Helen E.

    1996-01-01

    Describes the use of weather satellites in providing an exciting, cohesive framework for students learning Earth and space science and in providing a hands-on approach to technology in the classroom. Discusses the history of weather satellites and classroom satellite tracking. (JRH)

  7. Weatherizing a Structure.

    ERIC Educational Resources Information Center

    Metz, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with weatherizing a structure. Its objective is for the student to be able to analyze factors related to specific structures that indicate need for weatherizing activities and to determine steps to correct defects in structures that…

  8. Teacher's Weather Sourcebook.

    ERIC Educational Resources Information Center

    Konvicka, Tom

    This book is a teaching resource for the study of weather-related phenomena. A "weather unit" is often incorporated into school study because of its importance to our daily lives and because of its potential to cut across disciplinary content. This book consists of two parts. Part I covers the major topics of atmospheric science such as the modern…

  9. Mild and Wild Weather.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Presents background information and six activities that focus on clouds, precipitation, and stormy weather. Each activity includes an objective, recommended age level(s), subject area(s), and instructional strategies. Also provided are two ready-to-copy pages (a coloring page on lightning and a list of weather riddles to solve). (JN)

  10. Weather Fundamentals: Wind. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) describes the roles of the sun, temperature, and air pressure in creating the incredible power…

  11. World weather program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A brief description of the Global Weather Experiment is presented. The world weather watch program plan is described and includes a global observing system, a global data processing system, a global telecommunication system, and a voluntary cooperation program. A summary of Federal Agency plans and programs to meet the challenges of international meteorology for the two year period, FY 1980-1981, is presented.

  12. The Home Weather Station.

    ERIC Educational Resources Information Center

    Steinke, Steven D.

    1991-01-01

    Described is how an amateur weather observer measures and records temperature and precipitation at a well-equipped, backyard weather station. Directions for building an instrument shelter and a description of the instruments needed for measuring temperature and precipitation are included. (KR)

  13. Fabulous Weather Day

    ERIC Educational Resources Information Center

    Marshall, Candice; Mogil, H. Michael

    2007-01-01

    Each year, first graders at Kensington Parkwood Elementary School in Kensington, Maryland, look forward to Fabulous Weather Day. Students learn how meteorologists collect data about the weather, how they study wind, temperature, precipitation, basic types/characteristics of clouds, and how they forecast. The project helps the students grow in…

  14. Pain complaint and the weather: weather sensitivity and symptom complaints in chronic pain patients.

    PubMed

    Shutty, M S; Cundiff, G; DeGood, D E

    1992-05-01

    Chronic pain patients frequently report that weather conditions affect their pain; however, no standardized measures of weather sensitivity have been developed. We describe the development and use of the Weather and Pain Questionnaire (WPQ) which assess patient sensitivity to meteorologic variables defined by the National Weather Service (e.g., temperature, precipitation). Seventy chronic pain patients (59% females) with an average age of 43 years completed the WPQ. The instrument was revised using factor analysis to produce a Weather Sensitivity Index (WSI) (48% of variance) with high internal consistency (0.93) and test-retest reliability (r = 0.89). Reporting patterns suggested that patients could reliably identify which meteorologic variables influenced their pain but could not reliably determine which physical symptoms were consistently affected. The most frequently reported meteorologic variables which affect pain complaint were temperature (87%) and humidity (77%). The most frequently reported physical complaints associated with the weather were joint and muscle aches (82% and 79%, respectively). Patients labeled as being 'weather sensitive', defined by greater than median scores on the WPQ, reported significantly greater pain intensity, greater chronicity of pain problems, and more difficulties sleeping than patients with low scores on the WPQ. No differences in gender, education level, disability status, or global psychological distress were found. Results are discussed with respect to physiological and psychological mediating variables.

  15. Weather in Mountainous Terrain (Overcoming Scientific Barriers to Weather Support)

    DTIC Science & Technology

    2011-02-15

    Weather in Mountainous Terrain (Overcoming Scientific Barriers to Weather Support) Fiesta Resort & Conference Center Tempe, AZ February 1...Meteorology Overcoming Scientific Barriers to Weather Support Fiesta Resort & Conference Center Tempe, AZ February 1 & 2, 2010 Hosted by University

  16. Towards a National Space Weather Predictive Capability

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Lindstrom, K. L.; Ryschkewitsch, M. G.; Anderson, B. J.; Gjerloev, J. W.; Merkin, V. G.; Kelly, M. A.; Miller, E. S.; Sitnov, M. I.; Ukhorskiy, A. Y.; Erlandson, R. E.; Barnes, R. J.; Paxton, L. J.; Sotirelis, T.; Stephens, G.; Comberiate, J.

    2014-12-01

    National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review datasets, tools and models that have resulted from research by scientists at JHU/APL, and examine how they could be applied to support space weather applications in coordination with other community assets and capabilities.

  17. Space Weathering in the Mercurian Environment

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Pieters, C. M.

    2001-01-01

    Space weathering processes are known to be important on the Moon. These processes both create the lunar regolith and alter its optical properties. Like the Moon, Mercury has no atmosphere to protect it from the harsh space environment and therefore it is expected that it will also incur the effects of space weathering. However, there are many important differences between the environments of Mercury and the Moon. These environmental differences will almost certainly affect the weathering processes and the products of those processes. It should be possible to observe the effects of these differences in Vis (visible)/NIR (near infrared) spectra of the type expected to be returned by MESSENGER. More importantly, understanding these weathering processes and their consequences is essential for evaluating the spectral data returned from MESSENGER and other missions in order to determine the mineralogy and the Fe content of the Mercurian surface. Additional information is contained in the original extended abstract.

  18. Environmental Education Tips: Weather Activities.

    ERIC Educational Resources Information Center

    Brainard, Audrey H.

    1989-01-01

    Provides weather activities including questions, on weather, heating the earth's surface, air, tools of the meteorologist, clouds, humidity, wind, and evaporation. Shows an example of a weather chart activity. (RT)

  19. Weather--An Integrated Unit

    ERIC Educational Resources Information Center

    McConnell, Vivian

    1976-01-01

    Outlined is a two week unit on weather offered as independent study for sixth- and seventh-year students in Vancouver, Canada, schools. Included is a section on weather lore and a chart of weather symbols. (SL)

  20. Preliminary Results of a U.S. Deep South Warm Season Deep Convective Initiation Modeling Experiment using NASA SPoRT Initialization Datasets for Operational National Weather Service Local Model Runs

    NASA Technical Reports Server (NTRS)

    Medlin, Jeffrey M.; Wood, Lance; Zavodsky, Brad; Case, Jon; Molthan, Andrew

    2012-01-01

    The initiation of deep convection during the warm season is a forecast challenge in the relative high instability and low wind shear environment of the U.S. Deep South. Despite improved knowledge of the character of well known mesoscale features such as local sea-, bay- and land-breezes, observations show the evolution of these features fall well short in fully describing the location of first initiates. A joint collaborative modeling effort among the NWS offices in Mobile, AL, and Houston, TX, and NASA s Short-term Prediction Research and Transition (SPoRT) Center was undertaken during the 2012 warm season to examine the impact of certain NASA produced products on the Weather Research and Forecasting Environmental Modeling System. The NASA products were: a 4-km Land Information System data, a 1-km sea surface temperature analysis, and a 4-km greenness vegetation fraction analysis. Similar domains were established over the southeast Texas and Alabama coastlines, each with a 9 km outer grid spacing and a 3 km inner nest spacing. The model was run at each NWS office once per day out to 24 hours from 0600 UTC, using the NCEP Global Forecast System for initial and boundary conditions. Control runs without the NASA products were made at the NASA SPoRT Center. The NCAR Model Evaluation Tools verification package was used to evaluate both the forecast timing and location of the first initiates, with a focus on the impacts of the NASA products on the model forecasts. Select case studies will be presented to highlight the influence of the products.

  1. National Weatherization Assistance Program Impact Evaluation - Client Satisfaction Survey: WAP Service Delivery from the Client's Perspective

    SciTech Connect

    Miller, Carolyn; Carroll, David; Berger, Jacqueline; Driscoll, Colleen; Tonn, Bruce Edward

    2015-10-01

    This report presents the results of a survey of recipients to measure satisfaction with services provided by local weatherization agencies being supported by funding from Department of Energy's Weatherization Assistance Program.

  2. Variation at Local Government Level in the Support for Families of Severely Disabled Children and the Factors that Affect It

    ERIC Educational Resources Information Center

    Forsyth, Rob; McNally, Richard; James, Peter; Crossland, Kevin; Woolley, Mark; Colver, Allan

    2010-01-01

    Aim: The aim of this study was to examine geographical variability in the support for families caring for children with severe disabilities as well as the relationships between this variability and local government social and educational performance indicators. Method: Data were collected from a cross-sectional, self-completed postal survey of the…

  3. Health Issues and Space Weather

    NASA Astrophysics Data System (ADS)

    Crosby, N.

    2009-04-01

    The possibility that solar activity and variations in the Earth's magnetic field may affect human health has been debated for many decades but is still a "scientific topic" in its infancy. By learning whether and, if so, how much the Earth's space weather can influence the daily health of people will be of practical importance. Knowing whether human genetics, include regulating factors that take into account fluctuations of the Earth's magnetic field and solar disturbances, indeed exist will also benefit future interplanetary space travelers. Because the atmospheres on other planets are different from ours, as well as their interaction with the space environment, one may ask whether we are equipped with the genetics necessary to take this variability into account. The goal of this presentation is to define what is meant by space weather as a health risk and identify the long-term socio-economic effects on society that such health risks would have. Identifying the physical links between space weather sources and different effects on human health, as well as the parameters (direct and indirect) to be monitored, the potential for such a cross-disciplinary study will be invaluable, for scientists and medical doctors, as well as for engineers.

  4. Prevalence of weather sensitivity in Germany and Canada.

    PubMed

    von Mackensen, Sylvia; Hoeppe, Peter; Maarouf, Abdel; Tourigny, Pierre; Nowak, Dennis

    2005-01-01

    Several studies have shown that atmospheric conditions can affect well-being or disease, and that some individuals seem to be more sensitive to weather than others. Since epidemiological data on the prevalence of weather-related health effects are lacking, two representative weather sensitivity (WS) surveys were conducted independently in Germany and Canada. The objectives of this paper are: (1) to identify the prevalence of WS in Germany and Canada, (2) to describe weather-related symptoms and the corresponding weather conditions, and (3) to compare the findings in the two countries. In Germany 1,064 citizens (age >16 years) were interviewed in January 2001, and in Canada 1,506 persons (age >18 years) were interviewed in January 1994. The results showed that 19.2% of the German population thought that weather affected their health "to a strong degree," 35.3% that weather had "some influence on their health" (sum of both = 54.5% weather sensitive), whereas the remaining 45.5% did not consider that weather had an effect on their health status. In Canada 61% of the respondents considered themselves to be sensitive to the weather. The highest prevalence of WS (high + some influence) in Germans was found in the age group older than 60 years (68%), which was almost identical in the Canadian population (69%). The highest frequencies of weather-related symptoms were reported in Germany for stormy weather (30%) and when it became colder (29%). In Canada mainly cold weather (46%), dampness (21%) and rain (20%) were considered to affect health more than other weather types. The most frequent symptoms reported in Germany were headache/migraine (61%), lethargy (47%), sleep disturbances (46%), fatigue (42%), joint pain (40%), irritation (31%), depression (27%), vertigo (26%), concentration problems (26%) and scar pain (23%). Canadian weather-sensitive persons reported colds (29%), psychological effects (28%) and painful joints, muscles or arthritis (10%). In Germany 32% of the

  5. Prevalence of weather sensitivity in Germany and Canada

    NASA Astrophysics Data System (ADS)

    Mackensen, Sylvia; Hoeppe, Peter; Maarouf, Abdel; Tourigny, Pierre; Nowak, Dennis

    2005-01-01

    Several studies have shown that atmospheric conditions can affect well-being or disease, and that some individuals seem to be more sensitive to weather than others. Since epidemiological data on the prevalence of weather-related health effects are lacking, two representative weather sensitivity (WS) surveys were conducted independently in Germany and Canada. The objectives of this paper are: (1) to identify the prevalence of WS in Germany and Canada, (2) to describe weather-related symptoms and the corresponding weather conditions, and (3) to compare the findings in the two countries. In Germany 1,064 citizens (age >16 years) were interviewed in January 2001, and in Canada 1,506 persons (age >18 years) were interviewed in January 1994. The results showed that 19.2% of the German population thought that weather affected their health “to a strong degree,” 35.3% that weather had “some influence on their health” (sum of both = 54.5% weather sensitive), whereas the remaining 45.5% did not consider that weather had an effect on their health status. In Canada 61% of the respondents considered themselves to be sensitive to the weather. The highest prevalence of WS (high + some influence) in Germans was found in the age group older than 60 years (68%), which was almost identical in the Canadian population (69%). The highest frequencies of weather-related symptoms were reported in Germany for stormy weather (30%) and when it became colder (29%). In Canada mainly cold weather (46%), dampness (21%) and rain (20%) were considered to affect health more than other weather types. The most frequent symptoms reported in Germany were headache/migraine (61%), lethargy (47%), sleep disturbances (46%), fatigue (42%), joint pain (40%), irritation (31%), depression (27%), vertigo (26%), concentration problems (26%) and scar pain (23%). Canadian weather-sensitive persons reported colds (29%), psychological effects (28%) and painful joints, muscles or arthritis (10%). In Germany 32

  6. Managing the effects of the weather on the Equestrian Events of the 2008 Beijing Olympic Games.

    PubMed

    Jeffcott, Leo; Leung, Wing-Mo; Riggs, Christopher

    2009-12-01

    This paper describes a 3 year project to investigate and manage the effects of the local weather conditions on horses competing in the 2008 Olympic Games. The first part of the investigation involved estimating the expected heat load on horses during competition and suggesting measures to ensure their safety based on data collected from dedicated weather monitoring at both Olympic venues during August 2006, 2007 and 2008. The aim of the second part was to establish a reliable system of point forecasting to monitor and predict inclement weather that might affect the competitions. This involved setting up automatic monitoring systems and exploiting numerical weather prediction models. The monitoring and predicting capabilities were tested by running two 'virtual' or simulated cross country competitions in 2006 and 2007. They were further trialled with live horses during the Test Event in August 2007, when a rapid cooling system for horses using shade tents, misting fans and iced water was refined. The results of both parts yielded valuable information which was used to establish a protocol to ensure that horses would not become heat stressed or subjected to dangerous weather conditions. Despite some very high temperatures and humidity, a number of storms and two serious tropical cyclones, there were no disruptions to the competition schedule and no serious injuries or heat stress to the horses throughout the 2008 Equestrian Events.

  7. Weather and Climate Monitoring Protocol, Channel Islands National Park, California

    USGS Publications Warehouse

    McEachern, Kathryn; Power, Paula; Dye, Linda; Rudolph, Rocky

    2008-01-01

    Weather and climate are strong drivers of population dynamics, plant and animal spatial distributions, community interactions, and ecosystem states. Information on local weather and climate is crucial in interpreting trends and patterns in the natural environment for resource management, research, and visitor enjoyment. This document describes the weather and climate monitoring program at the Channel Islands National Park (fig. 1), initiated in the 1990s. Manual and automated stations, which continue to evolve as technology changes, are being used for this program. The document reviews the history of weather data collection on each of the five Channel Islands National Park islands, presents program administrative structure, and provides an overview of procedures for data collection, archival, retrieval, and reporting. This program overview is accompanied by the 'Channel Islands National Park Remote Automated Weather Station Field Handbook' and the 'Channel Islands National Park Ranger Weather Station Field Handbook'. These Handbooks are maintained separately at the Channel Island National Park as 'live documents' that are updated as needed to provide a current working manual of weather and climate monitoring procedures. They are available on request from the Weather Program Manager (Channel Islands National Park, 1901 Spinnaker Dr., Ventura, CA 93001; 805.658.5700). The two Field Handbooks describe in detail protocols for managing the four remote automated weather stations (RAWS) and the seven manual Ranger Weather Stations on the islands, including standard operating procedures for equipment maintenance and calibration; manufacturer operating manuals; data retrieval and archiving; metada collection and archival; and local, agency, and vendor contracts.

  8. Quantum efficiency affected by localized carrier distribution near the V-defect in GaN based quantum well

    SciTech Connect

    Cho, Yong-Hee Shim, Mun-Bo; Hwang, Sangheum; Kim, Sungjin; Kim, Jun-Youn; Kim, Jaekyun; Park, Young-Soo; Park, Seoung-Hwan

    2013-12-23

    It is known that due to the formation of in-plane local energy barrier, V-defects can screen the carriers which non-radiatively recombine in threading dislocations (TDs) and hence, enhance the internal quantum efficiency in GaN based light-emitting diodes. By a theoretical modeling capable of describing the inhomogeneous carrier distribution near the V-defect in GaN based quantum wells, we show that the efficient suppression of non-radiative (NR) recombination via TD requires the local energy barrier height of V-defect larger than ∼80 meV. The NR process in TD combined with V-defect influences the quantum efficiency mainly in the low injection current density regime suitably described by the linear dependence of carrier density. We provide a simple phenomenological expression for the NR recombination rate based on the model result.

  9. Coilin is rapidly recruited to UVA-induced DNA lesions and γ-radiation affects localized movement of Cajal bodies.

    PubMed

    Bártová, Eva; Foltánková, Veronika; Legartová, Soňa; Sehnalová, Petra; Sorokin, Dmitry V; Suchánková, Jana; Kozubek, Stanislav

    2014-01-01

    Cajal bodies are important nuclear structures containing proteins that preferentially regulate RNA-related metabolism. We investigated the cell-type specific nuclear distribution of Cajal bodies and the level of coilin, a protein of Cajal bodies, in non-irradiated and irradiated human tumor cell lines and embryonic stem (ES) cells. Cajal bodies were localized in different nuclear compartments, including DAPI-poor regions, in the proximity of chromocenters, and adjacent to nucleoli. The number of Cajal bodies per nucleus was cell cycle-dependent, with higher numbers occurring during G2 phase. Human ES cells contained a high coilin level in the nucleoplasm, but coilin-positive Cajal bodies were also identified in nuclei of mouse and human ES cells. Coilin, but not SMN, recognized UVA-induced DNA lesions, which was cell cycle-independent. Treatment with γ-radiation reduced the localized movement of Cajal bodies in many cell types and GFP-coilin fluorescence recovery after photobleaching was very fast in nucleoplasm in comparison with GFP-coilin recovery in DNA lesions. By contrast, nucleolus-localized coilin displayed very slow fluorescence recovery after photobleaching, which indicates very slow rates of protein diffusion, especially in nucleoli of mouse ES cells.

  10. N-linked glycans do not affect plasma membrane localization of multidrug resistance protein 4 (MRP4) but selectively alter its prostaglandin E2 transport activity.

    PubMed

    Miah, M Fahad; Conseil, Gwenaëlle; Cole, Susan P C

    2016-01-22

    Multidrug resistance protein 4 (MRP4) is a member of subfamily C of the ATP-binding cassette superfamily of membrane transport proteins. MRP4 mediates the ATP-dependent efflux of many endogenous and exogenous solutes across the plasma membrane, and in polarized cells, it localizes to the apical or basolateral plasma membrane depending on the tissue type. MRP4 is a 170 kDa glycoprotein and here we show that MRP4 is simultaneously N-glycosylated at Asn746 and Asn754. Furthermore, confocal immunofluorescence studies showed that N-glycans do not affect MRP4's apical membrane localization in polarized LLC-PK1 cells or basolateral membrane localization in polarized MDCKI cells. However, vesicular transport assays showed that N-glycans differentially affect MRP4's ability to transport prostaglandin E2, but not estradiol glucuronide. Together these data indicate that N-glycosylation at Asn746 and Asn754 is not essential for plasma membrane localization of MRP4 but cause substrate-selective effects on its transport activity.

  11. Weathering in a Cup.

    ERIC Educational Resources Information Center

    Stadum, Carol J.

    1991-01-01

    Two easy student activities that demonstrate physical weathering by expansion are described. The first demonstrates ice wedging and the second root wedging. A list of the needed materials, procedure, and observations are included. (KR)

  12. National Weather Service

    MedlinePlus

    ... SAFETY Floods Tsunami Beach Hazards Wildfire Cold Tornadoes Air Quality Fog Heat Hurricanes Lightning Safe Boating Rip Currents ... ACTIVE ALERTS FORECAST MAPS RADAR RIVERS, LAKES, RAINFALL AIR QUALITY SATELLITE PAST WEATHER " ); }); American Samoa Guam Puerto Rico/ ...

  13. Weather Information Processing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Science Communications International (SCI), formerly General Science Corporation, has developed several commercial products based upon experience acquired as a NASA Contractor. Among them are METPRO, a meteorological data acquisition and processing system, which has been widely used, RISKPRO, an environmental assessment system, and MAPPRO, a geographic information system. METPRO software is used to collect weather data from satellites, ground-based observation systems and radio weather broadcasts to generate weather maps, enabling potential disaster areas to receive advance warning. GSC's initial work for NASA Goddard Space Flight Center resulted in METPAK, a weather satellite data analysis system. METPAK led to the commercial METPRO system. The company also provides data to other government agencies, U.S. embassies and foreign countries.

  14. Weathering of Martian Evaporites

    NASA Technical Reports Server (NTRS)

    Wentworth, S. J.; Velbel, M. A.; Thomas-Keprta, K. L.; Longazo, T. G.; McKay, D. S.

    2001-01-01

    Evaporites in martian meteorites contain weathering or alteration features that may provide clues about the martian near-surface environment over time. Additional information is contained in the original extended abstract.

  15. Weather Radar Studies.

    DTIC Science & Technology

    1985-03-31

    National Center for Atmospheric Research JAWS program and the National Severe Storms Laboratory are being analyzed to develop low-altitude wind shear...public through low-altitude wind shear aviation weather products the National Technical Information Service, NEXR I turbulence., Springfield, VA 22161. 19...were analyzed preliminarily to determine wind shear characteristics in the Memphis area. Doppler weather radar data from the National Center for

  16. Weather-Related Mortality

    PubMed Central

    Anderson, Brooke G.; Bell, Michelle L.

    2012-01-01

    Background Many studies have linked weather to mortality; however, role of such critical factors as regional variation, susceptible populations, and acclimatization remain unresolved. Methods We applied time-series models to 107 US communities allowing a nonlinear relationship between temperature and mortality by using a 14-year dataset. Second-stage analysis was used to relate cold, heat, and heat wave effect estimates to community-specific variables. We considered exposure timeframe, susceptibility, age, cause of death, and confounding from pollutants. Heat waves were modeled with varying intensity and duration. Results Heat-related mortality was most associated with a shorter lag (average of same day and previous day), with an overall increase of 3.0% (95% posterior interval: 2.4%–3.6%) in mortality risk comparing the 99th and 90th percentile temperatures for the community. Cold-related mortality was most associated with a longer lag (average of current day up to 25 days previous), with a 4.2% (3.2%–5.3%) increase in risk comparing the first and 10th percentile temperatures for the community. Mortality risk increased with the intensity or duration of heat waves. Spatial heterogeneity in effects indicates that weather–mortality relationships from 1 community may not be applicable in another. Larger spatial heterogeneity for absolute temperature estimates (comparing risk at specific temperatures) than for relative temperature estimates (comparing risk at community-specific temperature percentiles) provides evidence for acclimatization. We identified susceptibility based on age, socioeconomic conditions, urbanicity, and central air conditioning. Conclusions Acclimatization, individual susceptibility, and community characteristics all affect heat-related effects on mortality. PMID:19194300

  17. Cockpit weather information system

    NASA Technical Reports Server (NTRS)

    Tu, Jeffrey Chen-Yu (Inventor)

    2000-01-01

    Weather information, periodically collected from throughout a global region, is periodically assimilated and compiled at a central source and sent via a high speed data link to a satellite communication service, such as COMSAT. That communication service converts the compiled weather information to GSDB format, and transmits the GSDB encoded information to an orbiting broadcast satellite, INMARSAT, transmitting the information at a data rate of no less than 10.5 kilobits per second. The INMARSAT satellite receives that data over its P-channel and rebroadcasts the GDSB encoded weather information, in the microwave L-band, throughout the global region at a rate of no less than 10.5 KB/S. The transmission is received aboard an aircraft by means of an onboard SATCOM receiver and the output is furnished to a weather information processor. A touch sensitive liquid crystal panel display allows the pilot to select the weather function by touching a predefined icon overlain on the display's surface and in response a color graphic display of the weather is displayed for the pilot.

  18. Weather or Not To Teach Junior High Meteorology.

    ERIC Educational Resources Information Center

    Knorr, Thomas P.

    1984-01-01

    Presents a technique for teaching meteorology allowing students to observe and analyze consecutive weather maps and relate local conditions; a model illustrating the three-dimensional nature of the atmosphere is employed. Instructional methods based on studies of daily weather maps to trace systems sweeping across the United States are discussed.…

  19. Does the personal lift-assist device affect the local dynamic stability of the spine during lifting?

    PubMed

    Graham, Ryan B; Sadler, Erin M; Stevenson, Joan M

    2011-02-03

    The personal lift-assist device (PLAD) is an on-body ergonomic aid that reduces low back physical demands through the restorative moment of an external spring element, which possesses a mechanical advantage over the erector spinae. Although the PLAD has proven effective at reducing low back muscular demand, spinal moments, and localized muscular fatigue during laboratory and industrial tasks, the effects of the device on the neuromuscular control of spinal stability during lifting have yet to be assessed. Thirty healthy subjects (15M, 15F) performed repetitive lifting for three minutes, at a rate of 10 lifts per minute, with and without the PLAD. Maximum finite-time Lyapunov exponents, representing short-term (λ(max-s)) and long-term (λ(max-l)) divergence were calculated from the measured trunk kinematics to estimate the local dynamic stability of the lumbar spine. Using a mixed-design repeated-measures ANOVA, it was determined that wearing the PLAD did not significantly change λ(max-s) (μ(NP)=0.335, μ(P)=0.321, p=0.225), but did significantly reduce λ(max-l) (μ(NP)=0.0024, μ(P)=-0.0011, p=0.014, η(2)=0.197). There were no between-subject effects of sex, or significant interactions (p>0.720). The present results indicated that λ(max-s) was not statistically different between the device conditions, but that the PLAD significantly reduced λ(max-l) to a negative (stable) value. This shows that subjects' neuromuscular systems were able to respond to local perturbations more effectively when wearing the device, reflecting a more stable control of spinal movements. These findings are important when recommending the PLAD for long-term industrial or clinical use.

  20. The Neogene Redbeds of Iceland - a High-Latitude Terrestrial Paleoclimate Monitor Driven by Chemical Weathering

    NASA Astrophysics Data System (ADS)

    Riishuus, M. S.; Bird, D. K.

    2012-12-01

    Chemical weathering of tephra and aeolian dust of basaltic composition produces clays and iron oxide/hydroxide minerals preserved in reddened layers referred to as redbeds, boles or paleosols. We propose that the extent of weathering of Neogene redbeds in Iceland and the isotopic composition of structurally bound water in associated weathering clay preserve records of high-latitude paleoclimatic and hydrologic conditions. In support we present whole-rock geochemistry and smectite D/H compositions of redbed horizons from Iceland for comparative analysis with global paleoclimate trends and local independent proxy data. Smectite δD values of 35 basaltic tephras in Iceland (~15-2 Ma) display a general decrease in δD compositions from -110 to -105 ‰ at ~15-13 Ma to -115 to -118 ‰ at ~3-2 Ma which correlates well with the global cooling trend from the Middle Miocene Climatic Optimum (17-15 Ma) to present day. Furthermore, the extent of weathering expressed by the Chemical Index of Weathering increases from 40-50 at 2-3 Ma to 80-90 at 15-16 Ma suggesting enhanced chemical weathering rates during the warmer climate conditions. The weathering extent of modern andosols in Iceland is temperature-dependant and allows construction of a paleo-climate proxy [1]. Application of this proxy suggests that mean annual temperatures (MATs) increased from ~0°C at ~2 Ma to ~9°C at 15-16 Ma in general agreement with independent local proxy data. The δD values of paleo meteoric waters in Iceland, estimated using a smectite-water fractionation factor and model MATs, decrease from -41 ‰ at 15-16 Ma (9°C) to -45 ‰ at 2 Ma (0°C). The paleo meteoric water compositions are increasingly enriched in deuterium relative to present day meteoric water in Iceland (δD ≤ -50 ‰). This is in agreement with global cooling since Middle Miocene toward ice-dominated conditions with greater equator-to-pole temperature contrasts, affecting the distillation process between ocean, atmosphere and

  1. The effect of weather on mood, productivity, and frequency of emotional crisis in a temperate continental climate

    NASA Astrophysics Data System (ADS)

    Barnston, A. G.

    1988-06-01

    A group of 62 mostly university student subjects kept structured diaries of their feelings and their productivity for six weeks in Illinois in early autumn. During the same period, daily frequency of telephone calls to a crisis intervention service in the same community was monitored, and complete daily weather data for the vicinity were provided by a local meteorological research facility. Major findings are as follows. The weather appears to influence mood and productivity, but only to a smallextent compared with the aggregate of all other controlling factors. Males show a relatively stronger effect than females. Psychologically troubled people generally appear to be more affected by weather than university students. The students and the crisis intervention service clients with “mild” problems tend to be stressed more when the weather is unstable, cloudy, warm and humid, and least stressed during sunny, dry, cool weather with rising barometric pressure. The crisis service clients with “severe” problems react oppositely to these two weather types. The meaning of these and other results and the strengths and weaknesses of this study's design are discussed.

  2. In search for coastal amplification of rock weathering in polar climates - pilot Schmidt hammer rock tests surveys from sheltered fjords of Svalbard and tsunami-affected coasts of Western Greenland.

    NASA Astrophysics Data System (ADS)

    Strzelecki, Matt

    2014-05-01

    Recent decade has seen the major advance in Arctic coastal geomorphology due to research progress along ice-rich permafrost coastlines of Siberia, Alaska and NW Canada. On the contrary little attention was paid to Arctic rocky coastlines and their response to the reduction of sea ice cover and increased number of storms reaching Arctic region. In this paper I present results from a pilot survey of rock resistance using Schmidt Hammer Rock Tests across rocky cliffs and shore platforms developed in: - sheltered bays of Billefjorden, Svalbard characterised by prolonged sea-ice conditions and very limited operation of wave and tidal action - Vaigat Strait and Isfjorden in W Greenland influenced by landslide-triggered tsunamis and waves induced by ice-berg roll events. The aim of a pilot study was to test the hypothesized coastal impact on the rate of rock weathering in polar climates. To do so I characterise the changes in the rock resistance on the following coastal landforms: - modern and uplifted wave-washed abrasion platforms- focusing on a relation between the degree of rock surface weathering and the distance from the shoreline as well as thickness of sediment cover on shore platform surface - modern and uplifted rocky cliffs - focusing on a relation between the degree of rock surface weathering and the distance from the shoreline as well as difference in height above the sea level and relation to rock lithology. The results present another line of argument supporting intensification of rock weathering processes in the Arctic coastal zone. This work is a contribution to the National Science Centre in Poland research project no. 2011/01/B/ST10/01553.

  3. Local variations in 14C - How is bomb-pulse dating of human tissues and cells affected?

    NASA Astrophysics Data System (ADS)

    Stenström, Kristina; Skog, Göran; Nilsson, Carl Magnus; Hellborg, Ragnar; Svegborn, Sigrid Leide; Georgiadou, Elisavet; Mattsson, Sören

    2010-04-01

    Atmospheric nuclear weapons testing in the late 1950s and early 1960s almost doubled the amount of 14C in the atmosphere. The resulting 14C "bomb-pulse" has been shown to provide useful age information in e.g. forensic and environmental sciences, biology and the geosciences. The technique is also currently being used for retrospective cell dating in man, in order to provide insight into the rate of formation of new cells in the human body. Bomb-pulse dating relies on precise measurements of the declining 14C concentration in atmospheric CO 2 collected at clean-air sites. However, it is not always recognized that the calculations can be complicated in some cases by significant local variations in the specific activity of 14C in carbon in the air and foodstuff. This paper presents investigations of local 14C variations in the vicinities of nuclear installations and laboratories using 14C. Levels of 14C in workers using this radioisotope are also discussed.

  4. Local adaptations to frost in marginal and central populations of the dominant forest tree Fagus sylvatica L. as affected by temperature and extreme drought in common garden experiments.

    PubMed

    Kreyling, Juergen; Buhk, Constanze; Backhaus, Sabrina; Hallinger, Martin; Huber, Gerhard; Huber, Lukas; Jentsch, Anke; Konnert, Monika; Thiel, Daniel; Wilmking, Martin; Beierkuhnlein, Carl

    2014-03-01

    Local adaptations to environmental conditions are of high ecological importance as they determine distribution ranges and likely affect species responses to climate change. Increased environmental stress (warming, extreme drought) due to climate change in combination with decreased genetic mixing due to isolation may lead to stronger local adaptations of geographically marginal than central populations. We experimentally observed local adaptations of three marginal and four central populations of Fagus sylvaticaL., the dominant native forest tree, to frost over winter and in spring (late frost). We determined frost hardiness of buds and roots by the relative electrolyte leakage in two common garden experiments. The experiment at the cold site included a continuous warming treatment; the experiment at the warm site included a preceding summer drought manipulation. In both experiments, we found evidence for local adaptation to frost, with stronger signs of local adaptation in marginal populations. Winter frost killed many of the potted individuals at the cold site, with higher survival in the warming treatment and in those populations originating from colder environments. However, we found no difference in winter frost tolerance of buds among populations, implying that bud survival was not the main cue for mortality. Bud late frost tolerance in April differed between populations at the warm site, mainly because of phenological differences in bud break. Increased spring frost tolerance of plants which had experienced drought stress in the preceding summer could also be explained by shifts in phenology. Stronger local adaptations to climate in geographically marginal than central populations imply the potential for adaptation to climate at range edges. In times of climate change, however, it needs to be tested whether locally adapted populations at range margins can successfully adapt further to changing conditions.

  5. Seafloor weathering buffering climate: numerical experiments

    NASA Astrophysics Data System (ADS)

    Farahat, N. X.; Archer, D. E.; Abbot, D. S.

    2013-12-01

    Continental silicate weathering is widely held to consume atmospheric CO2 at a rate controlled in part by temperature, resulting in a climate-weathering feedback [Walker et al., 1981]. It has been suggested that weathering of oceanic crust of warm mid-ocean ridge flanks also has a CO2 uptake rate that is controlled by climate [Sleep and Zahnle, 2001; Brady and Gislason, 1997]. Although this effect might not be significant on present-day Earth [Caldeira, 1995], seafloor weathering may be more pronounced during snowball states [Le Hir et al., 2008], during the Archean when seafloor spreading rates were faster [Sleep and Zahnle, 2001], and on waterworld planets [Abbot et al., 2012]. Previous studies of seafloor weathering have made significant contributions using qualitative, generally one-box, models, and the logical next step is to extend this work using a spatially resolved model. For example, experiments demonstrate that seafloor weathering reactions are temperature dependent, but it is not clear whether the deep ocean temperature affects the temperature at which the reactions occur, or if instead this temperature is set only by geothermal processes. Our goal is to develop a 2-D numerical model that can simulate hydrothermal circulation and resulting alteration of oceanic basalts, and can therefore address such questions. A model of diffusive and convective heat transfer in fluid-saturated porous media simulates hydrothermal circulation through porous oceanic basalt. Unsteady natural convection is solved for using a Darcy model of porous media flow that has been extensively benchmarked. Background hydrothermal circulation is coupled to mineral reaction kinetics of basaltic alteration and hydrothermal mineral precipitation. In order to quantify seafloor weathering as a climate-weathering feedback process, this model focuses on hydrothermal reactions that influence carbon uptake as well as ocean alkalinity: silicate rock dissolution, calcium and magnesium leaching

  6. Does the local food environment around schools affect diet? Longitudinal associations in adolescents attending secondary schools in East London

    PubMed Central

    2013-01-01

    Background The local retail food environment around schools may act as a potential risk factor for adolescent diet. However, international research utilising cross-sectional designs to investigate associations between retail food outlet proximity to schools and diet provides equivocal support for an effect. In this study we employ longitudinal perspectives in order to answer the following two questions. First, how has the local retail food environment around secondary schools changed over time and second, is this change associated with change in diet of students at these schools? Methods The locations of retail food outlets and schools in 2001 and 2005 were geo-coded in three London boroughs. Network analysis in a Geographic Information System (GIS) ascertained the number, minimum and median distances to food outlets within 400 m and 800 m of the school location. Outcome measures were ‘healthy’ and ‘unhealthy’ diet scores derived from adolescent self-reported data in the Research with East London Adolescents: Community Health Survey (RELACHS). Adjusted associations between distance from school to food retail outlets, counts of outlets near schools and diet scores were assessed using longitudinal (2001–2005 n=757) approaches. Results Between 2001 and 2005 the number of takeaways and grocers/convenience stores within 400 m of schools increased, with many more grocers reported within 800 m of schools in 2005 (p< 0.001). Longitudinal analyses showed a decrease of the mean healthy (−1.12, se 0.12) and unhealthy (−0.48, se 0.16) diet scores. There were significant positive relationships between the distances travelled to grocers and healthy diet scores though effects were very small (0.003, 95%CI 0.001 – 0.006). Significant negative relationships between proximity to takeaways and unhealthy diet scores also resulted in small parameter estimates. Conclusions The results provide some evidence that the local food environment around secondary schools

  7. Lead contamination of an old shooting range affecting the local ecosystem--A case study with a holistic approach.

    PubMed

    Rantalainen, Minna-Liisa; Torkkeli, Minna; Strömmer, Rauni; Setälä, Heikki

    2006-10-01

    The aim of this case study was to uncover the consequences of lead pellet-derived heavy lead contamination at a cast-off shooting range in southern Finland, covering aspects from soil chemistry and biology up to ecosystem level. The observed changes in the soil properties of the most contaminated areas suggest that the contamination may be disturbing processes of decomposition and nutrient mineralisation. Also two functionally important groups of soil organisms, microbes (as analysed using the PLFA analysis) and enchytraeid worms, were negatively affected by the contamination. Furthermore, there was an indication of reduced pine litter production at the contaminated areas. On the other hand, lead contamination appears not to have affected pine growth or soil-dwelling nematodes and microarthropods, and the general outlook of the whole ecosystem is that of a healthy forest. Thus, the boreal forest ecosystem studied as a whole appears to bear strong resistance to contamination, despite negative effects of lead on many of its components. This resistance may result from e.g. low bioavailability of lead, avoidance of the most contaminated soil horizons and microsites by the organisms, and functional redundancy and development of lead-tolerant populations amongst the organisms. The relative importance of these factors and the mechanisms behind them will be investigated in forthcoming studies.

  8. DOPPLER WEATHER SYSTEM

    SciTech Connect

    Berlin, Gary J.

    2002-08-05

    The SRS Doppler Weather System consists of a Doppler Server, A Master Server (also known as the Weather Server), several Doppler Slave Servers, and client-side software program called the Doppler Radar Client. This system is used to display near rel-time images taken from the SRS Weather Center's Doppler Radar computer. The Doppler Server is software that resides on the SRS Doppler Computer. It gathers raw data, 24-bit color weather images via screen scraping ever five minutes as requested by the Master Server. The Doppler Server then reduces the 24-bit color images to 8-bit color using a fixed color table for analysis and compression. This preserves the fidelity of the image color and arranges the colors in specific order for display. At the time of color reduction, the white color used for the city names on the background images are remapped to a different index (color) of white that the white on the weather scale. The Weather Server places a time stamp on the image, then compresses the image and passes it to all Doppler Slave servers. Each of the Doppler Slave servers mainitain a circular buffer of the eight most current images representing the last 40 minutes of weather data. As a new image is added, the oldest drops off. The Doppler Radar Client is an optional install program for any site-wide workstation. When a Client session is started, the Client requests Doppler Slave server assignment from the Master Server. Upon its initial request to the Slave Server, the Client obtains all eight current images and maintains its own circular buffer, updating its images every five minutes as the Doppler Slave is updated. Three background reference images are stored as part of the Client. The Client brings up the appropriate background image, decompresses the doppler data, and displays the doppler data on the background image.

  9. Intracellular degradation and localization of NS1 of tick-borne encephalitis virus affect its protective properties.

    PubMed

    Kuzmenko, Yulia V; Starodubova, Elizaveta S; Shevtsova, Anastasia S; Chernokhaeva, Liubov L; Latanova, Anastasia A; Preobrazhenskaia, Olga V; Timofeev, Andrey V; Karganova, Galina G; Karpov, Vadim L

    2017-01-01

    Currently, many DNA vaccines against infectious diseases are in clinical trials; however, their efficacy needs to be improved. The potency of DNA immunogen can be optimized by targeting technologies. In the current study, to increase the efficacy of NS1 encoded by plasmid, proteasome targeting was applied. NS1 variants with or without translocation sequence and with ornithine decarboxylase as a signal of proteasomal degradation were tested for expression, localization, protein turnover, proteasomal degradation and protection properties. Deletion of translocation signal abrogated presentation of NS1 on the cell surface and increased proteasomal processing of NS1. Fusion with ornithine decarboxylase led to an increase of protein turnover and the proteasome degradation rate of NS1. Immunization with NS1 variants with increased proteasome processing protected mice from viral challenge only partially; however, the survival time of infected mice was prolonged in these groups. These data can give a presupposition for formulation of specific immune therapy for infected individuals.

  10. Local overexpression of Su(H)-MAPK variants affects Notch target gene expression and adult phenotypes in Drosophila

    PubMed Central

    Auer, Jasmin S.; Nagel, Anja C.; Schulz, Adriana; Wahl, Vanessa; Preiss, Anette

    2015-01-01

    In Drosophila, Notch and EGFR signalling pathways are closely intertwined. Their relationship is mostly antagonistic, and may in part be based on the phosphorylation of the Notch signal transducer Suppressor of Hairless [Su(H)] by MAPK. Su(H) is a transcription factor that together with several cofactors regulates the expression of Notch target genes. Here we address the consequences of a local induction of three Su(H) variants on Notch target gene expression. To this end, wild-type Su(H), a phospho-deficient Su(H)MAPK-ko and a phospho-mimetic Su(H)MAPK-ac isoform were overexpressed in the central domain of the wing anlagen. The expression of the Notch target genes cut, wingless, E(spl)m8-HLH and vestigial, was monitored. For the latter two, reporter genes were used (E(spl)m8-lacZ, vgBE-lacZ). In general, Su(H)MAPK-ko induced a stronger response than wild-type Su(H), whereas the response to Su(H)MAPK-ac was very weak. Notch target genes cut, wingless and vgBE-lacZ were ectopically activated, whereas E(spl)m8-lacZ was repressed by overexpression of Su(H) proteins. In addition, in epistasis experiments an activated form of the EGF-receptor (DERact) or the MAPK (rlSEM) and individual Su(H) variants were co-overexpressed locally, to compare the resultant phenotypes in adult flies (thorax, wings and eyes) as well as to assay the response of the Notch target gene cut in cell clones. PMID:26702412

  11. Adaptation to local thermal regimes by crustose coralline algae does not affect rates of recruitment in coral larvae

    NASA Astrophysics Data System (ADS)

    Siboni, Nachshon; Abrego, David; Evenhuis, Christian; Logan, Murray; Motti, Cherie A.

    2015-12-01

    Crustose coralline algae (CCA) are well known for their ability to induce settlement in coral larvae. While their wide distribution spans reefs that differ substantially in temperature regimes, the extent of local adaptation to these regimes and the impact they have on CCA inductive ability are unknown. CCA Porolithon onkodes from Heron (southern) and Lizard (northern) islands on Australia's Great Barrier Reef (separated by 1181 km) were experimentally exposed to acute or prolonged thermal stress events and their thermal tolerance and recruitment capacity determined. A sudden onset bleaching model was developed to determine the health status of CCA based on the rate of change in the CCA live surface area (LSA). The interaction between location and temperature was significant ( F (2,119) = 6.74, p = 0.0017), indicating that thermally driven local adaptation had occurred. The southern population remained healthy after prolonged exposure to 28 °C and exhibited growth compared to the northern population ( p = 0.022), with its optimum temperature determined to be slightly below 28 °C. As expected, at the higher temperatures (30 and 32 °C) the Lizard Island population performed better that those from Heron Island, with an optimum temperature of 30 °C. Lizard Island CCA displayed the lowest bleaching rates at 30 °C, while levels consistently increased with temperature in their southern counterparts. The ability of those CCA deemed thermally tolerant (based on LSA) to induce Acropora millepora larval settlement was then assessed. While spatial differences influenced the health and bleaching levels of P. onkodes during prolonged and acute thermal exposure, thermally tolerant fragments, regardless of location, induced similar rates of coral larval settlement. This confirmed that recent thermal history does not influence the ability of CCA to induce settlement of A. millepora larvae.

  12. An Electronic Weather Vane for Field Science

    ERIC Educational Resources Information Center

    Burman, J.; Talbert, R.; Carlton, K.

    2014-01-01

    This paper details the construction of a weather vane for the measurement of wind direction in field situations. The purpose of its construction was to analyse how wind direction affected the attractiveness of an insect pheromone in a dynamic outdoor environment, where wind could be a significant contributor to odour movement. The apparatus…

  13. Structural and ultrastructural localization of NGF and NGF receptors in the thymus of subjects affected by myasthenia gravis.

    PubMed

    Marinova, Tsvetana T; Velikova, Kamelia K; Petrov, Danail B; Kutev, Nikolai S; Stankulov, Ivan S; Chaldakov, George N; Triaca, Viviana; Manni, Luigi; Aloe, Luigi

    2004-12-01

    We have previously reported that the thymus of patients affected by myasthenia gravis (MG) is characterized by an elevated level of nerve growth factor (NGF), an endogenous polypeptide which plays a marked role in the cell biology of nervous and immune system. A consistent number of studies has shown altered expression of NGF in diseases associated with inflammatory and/or autoimmune responses. To evaluate the biochemical and molecular mechanisms implicated in NGF action in human myasthenic thymus, it is important to identify the cellular and structural organization of NGF receptors. To address this question, we investigated, both at light and electron microscopic levels, the cellular distribution of immunoreactivity for NGF and its low-affinity receptors, (p75) and its high-affinity receptor (TrkA) in the thymus of patients with MG. The present investigation shows that NGF and NGF receptors are overexpressed in the thymic cells of patients with MG compared to control subjects.

  14. Chapman Conference accents success of space weather program

    NASA Astrophysics Data System (ADS)

    Siscoe, George; Song, Paul

    Over 160 scientists and students from more than a dozen countries attended the Chapman Conference on Space Weather: Progress and Challenges in Research and Applications to hear 70 talks and peruse 150 posters documenting achievements made during the first 5 years of the National Space Weather Program (NSWP).Since the advent of the NSWR, space weather research has expanded from a semi-private activity, pursued mostly to address operational concerns of industries and military branches affected by space weather, to a broad subject pursued in part for its capacity to integrate research across the divisions of the SPA community.

  15. Is It Going to Rain Today? Understanding the Weather Forecast.

    ERIC Educational Resources Information Center

    Allsopp, Jim; And Others

    1996-01-01

    Presents a resource for science teachers to develop a better understanding of weather forecasts, including outlooks, watches, warnings, advisories, severe local storms, winter storms, floods, hurricanes, nonprecipitation hazards, precipitation probabilities, sky condition, and UV index. (MKR)

  16. Determining optimum climate drivers for weather risk projections

    NASA Astrophysics Data System (ADS)

    Chavez, Erik; Kilian, Markus; Lucarini, Valerio

    2016-04-01

    In spite of the exponential increase of available data, the uncertainties of projections of weather variability, especially at local scale, have not decreased. This poses important challenges for the design of weather risk management strategies in various vulnerable sectors such as energy or agricultural production. This paper focuses on a two step methodology to enable projection of local weather risk in future climate scenarios. First, we focus on the optimum selection of drivers of regional weather patterns in order to project local weather variability risk estimates in future climate scenarios. This is carried out through the use of stochastic downscaling enabling conditional modelling of pixel-level distributions of weather variables as a function of inter-annual and inter-decadal climate variability drivers. Secondly, a statistical and physically-based climate model selection methodology is developed in order to produce a sub-ensemble of inter-annual and decadal variability drivers dataset that allows accurate and robust projection of weather variability. The case study of South Eastern Africa will be used. Datasets retrieved from CMIP5 repository in three RCP scenarios (historical, 8.5 and 2.5) are used as well as observed historical weather data.

  17. Diversity and Composition of the Leaf Mycobiome of Beech (Fagus sylvatica) Are Affected by Local Habitat Conditions and Leaf Biochemistry

    PubMed Central

    Unterseher, Martin; Siddique, Abu Bakar; Brachmann, Andreas; Peršoh, Derek

    2016-01-01

    Comparative investigations of plant-associated fungal communities (mycobiomes) in distinct habitats and under distinct climate regimes have been rarely conducted in the past. Nowadays, high-throughput sequencing allows routine examination of mycobiome responses to environmental changes and results at an unprecedented level of detail. In the present study, we analysed Illumina-generated fungal ITS1 sequences from European beech (Fagus sylvatica) originating from natural habitats at two different altitudes in the German Alps and from a managed tree nursery in northern Germany. In general, leaf-inhabiting mycobiome diversity and composition correlated significantly with the origin of the trees. Under natural condition the mycobiome was more diverse at lower than at higher elevation, whereas fungal diversity was lowest in the artificial habitat of the tree nursery. We further identified significant correlation of leaf chlorophylls and flavonoids with both habitat parameters and mycobiome biodiversity. The present results clearly point towards a pronounced importance of local stand conditions for the structure of beech leaf mycobiomes and for a close interrelation of phyllosphere fungi and leaf physiology. PMID:27078859

  18. GRP-3 and KAPP, encoding interactors of WAK1, negatively affect defense responses induced by oligogalacturonides and local response to wounding

    PubMed Central

    Gramegna, Giovanna; Modesti, Vanessa; Savatin, Daniel V.; Sicilia, Francesca; Cervone, Felice; De Lorenzo, Giulia

    2016-01-01

    Conserved microbe-associated molecular patterns (MAMPs) and damage-associated molecular patterns (DAMPs) act as danger signals to activate the plant immune response. These molecules are recognized by surface receptors that are referred to as pattern recognition receptors. Oligogalacturonides (OGs), DAMPs released from the plant cell wall homogalacturonan, have also been proposed to act as local signals in the response to wounding. The Arabidopsis Wall-Associated Kinase 1 (WAK1), a receptor of OGs, has been described to form a complex with a cytoplasmic plasma membrane-localized kinase-associated protein phosphatase (KAPP) and a glycine-rich protein (GRP-3) that we find localized mainly in the cell wall and, in a small part, on the plasma membrane. By using Arabidopsis plants overexpressing WAK1, and both grp-3 and kapp null insertional mutant and overexpressing plants, we demonstrate a positive function of WAK1 and a negative function of GRP-3 and KAPP in the OG-triggered expression of defence genes and the production of an oxidative burst. The three proteins also affect the local response to wounding and the basal resistance against the necrotrophic pathogen Botrytis cinerea. GRP-3 and KAPP are likely to function in the phasing out of the plant immune response. PMID:26748394

  19. Spaceborne weather radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kozu, Toshiaki

    1990-01-01

    The present work on the development status of spaceborne weather radar systems and services discusses radar instrument complementarities, the current forms of equations for the characterization of such aspects of weather radar performance as surface and mirror-image returns, polarimetry, and Doppler considerations, and such essential factors in spaceborne weather radar design as frequency selection, scanning modes, and the application of SAR to rain detection. Attention is then given to radar signal absorption by the various atmospheric gases, rain drop size distribution and wind velocity determinations, and the characteristics of clouds, as well as the range of available estimation methods for backscattering, single- and dual-wavelength attenuation, and polarimetric and climatological characteristics.

  20. Planetary Space Weather

    NASA Astrophysics Data System (ADS)

    Grande, M.

    2012-04-01

    Invited Talk - Space weather at other planets While discussion of space weather effects has so far largely been confined to the near-Earth environment, there are significant present and future applications to the locations beyond, and to other planets. Most obviously, perhaps, are the radiation hazards experienced by astronauts on the way to, and on the surface of, the Moon and Mars. Indeed, the environment experienced by planetary spacecraft in transit and at their destinations is of course critical to their design and successful operation. The case of forthcoming missions to Jupiter and Europa is an exreme example. Moreover, such craft can provide information which in turn increases our understanding of geospace. Indeed, space weather may be a significant factor in the habitability of other solar system and extrasolar planets, and the ability of life to travel between them.

  1. Altered sucrose synthase and invertase expression affects the local and systemic sugar metabolism of nematode-infected Arabidopsis thaliana plants.

    PubMed

    Cabello, Susana; Lorenz, Cindy; Crespo, Sara; Cabrera, Javier; Ludwig, Roland; Escobar, Carolina; Hofmann, Julia

    2014-01-01

    Sedentary endoparasitic nematodes of plants induce highly specific feeding cells in the root central cylinder. From these, the obligate parasites withdraw all required nutrients. The feeding cells were described as sink tissues in the plant's circulation system that are supplied with phloem-derived solutes such as sugars. Currently, there are several publications describing mechanisms of sugar import into the feeding cells. However, sugar processing has not been studied so far. Thus, in the present work, the roles of the sucrose-cleaving enzymes sucrose synthases (SUS) and invertases (INV) in the development of Heterodera schachtii were studied. Gene expression analyses indicate that both enzymes are regulated transcriptionally. Nematode development was enhanced on multiple INV and SUS mutants. Syncytia of these mutants were characterized by altered enzyme activity and changing sugar pool sizes. Further, the analyses revealed systemically affected sugar levels and enzyme activities in the shoots of the tested mutants, suggesting changes in the source-sink relationship. Finally, the development of the root-knot nematode Meloidogyne javanica was studied in different INV and SUS mutants and wild-type Arabidopsis plants. Similar effects on the development of both sedentary endoparasitic nematode species (root-knot and cyst nematode) were observed, suggesting a more general role of sucrose-degrading enzymes during plant-nematode interactions.

  2. Evidence of Space Weathering Processes Across the Surface of Vesta

    NASA Technical Reports Server (NTRS)

    Pieters, Carle M.; Blewett, David T.; Gaffey, Michael; Mittlefehldt, David W.; CristinaDeSanctis, Maria; Reddy, Vishnu; Coradini, Angioletta; Nathues, Andreas; Denevi, Brett W.; Li, Jian-Yang; McCord, Thomas B.; Marchi, Simone; Palmer, Eric E.; Sunshine, Jessica M.; Filacchione, Gianrico; Ammannito, Eleonora; Raymond, Carol A.; Russell, Christopher T.

    2011-01-01

    relatively strong mafic absorption features, suggesting either a concentration of mafic materials or that materials exposed have been less affected by space weathering products. These combined initial observations indicate some space weathering processes are active in this part of the main asteroid belt, but are highly variable across the surface of Vesta. Such processes include: impacts from wandering asteroidal debris and local mixing at both micro- and macro-scales, irradiation by solar wind and galactic particles, production and distribution of impact breccias or melt products, and local movement of materials to gravity lows (gradual as well as sudden).

  3. In silico identification of new putative pathogenic variants in the NEU1 sialidase gene affecting enzyme function and subcellular localization.

    PubMed

    Bonardi, Dario; Ravasio, Viola; Borsani, Giuseppe; d'Azzo, Alessandra; Bresciani, Roberto; Monti, Eugenio; Giacopuzzi, Edoardo

    2014-01-01

    The NEU1 gene is the first identified member of the human sialidases, glycohydrolitic enzymes that remove the terminal sialic acid from oligosaccharide chains. Mutations in NEU1 gene are causative of sialidosis (MIM 256550), a severe lysosomal storage disorder showing autosomal recessive mode of inheritance. Sialidosis has been classified into two subtypes: sialidosis type I, a normomorphic, late-onset form, and sialidosis type II, a more severe neonatal or early-onset form. A total of 50 causative mutations are reported in HGMD database, most of which are missense variants. To further characterize the NEU1 gene and identify new functionally relevant protein isoforms, we decided to study its genetic variability in the human population using the data generated by two large sequencing projects: the 1000 Genomes Project (1000G) and the NHLBI GO Exome Sequencing Project (ESP). Together these two datasets comprise a cohort of 7595 sequenced individuals, making it possible to identify rare variants and dissect population specific ones. By integrating this approach with biochemical and cellular studies, we were able to identify new rare missense and frameshift alleles in NEU1 gene. Among the 9 candidate variants tested, only two resulted in significantly lower levels of sialidase activity (p<0.05), namely c.650T>C and c.700G>A. These two mutations give rise to the amino acid substitutions p.V217A and p.D234N, respectively. NEU1 variants including either of these two amino acid changes have 44% and 25% residual sialidase activity when compared to the wild-type enzyme, reduced protein levels and altered subcellular localization. Thus they may represent new, putative pathological mutations resulting in sialidosis type I. The in silico approach used in this study has enabled the identification of previously unknown NEU1 functional alleles that are widespread in the population and could be tested in future functional studies.

  4. Wave Localization Does not Affect the Breakdown of a Schrödinger-Type Amplifier Driven by the Square of a Gaussian Field

    NASA Astrophysics Data System (ADS)

    Mounaix, Philippe; Collet, Pierre

    2010-05-01

    We study the divergence of the solution to a Schrödinger-type amplifier driven by the square of a Gaussian noise in presence of a random potential. We follow the same approach as Mounaix, Collet, and Lebowitz (MCL) in terms of a distributional formulation of the amplified field and the use of the Paley-Wiener theorem (Mounaix et al. in Commun. Math. Phys. 264:741-758, 2006, Erratum: ibid. 280:281-283, 2008). Our results show that the divergence is not affected by the random potential, in the sense that it occurs at exactly the same coupling constant as what was found by MCL without a potential. It follows a fortiori that the breakdown of the amplifier is not affected by the possible existence of a localized regime in the amplification free limit.

  5. Teichoic Acid Polymers Affect Expression and Localization of dl-Endopeptidase LytE Required for Lateral Cell Wall Hydrolysis in Bacillus subtilis

    PubMed Central

    Kasahara, Jun; Kiriyama, Yuuka; Miyashita, Mari; Kondo, Takuma; Yamada, Takeshi; Yazawa, Kazuya; Yoshikawa, Ritsuko

    2016-01-01

    ABSTRACT In Bacillus subtilis, the dl-endopeptidase LytE is responsible for lateral peptidoglycan hydrolysis during cell elongation. We found that σI-dependent transcription of lytE is considerably enhanced in a strain with a mutation in ltaS, which encodes a major lipoteichoic acid (LTA) synthase. Similar enhancements were observed in mutants that affect the glycolipid anchor and wall teichoic acid (WTA) synthetic pathways. Immunofluorescence microscopy revealed that the LytE foci were considerably increased in these mutants. The localization patterns of LytE on the sidewalls appeared to be helix-like in LTA-defective or WTA-reduced cells and evenly distributed on WTA-depleted or -defective cell surfaces. These results strongly suggested that LTA and WTA affect both σI-dependent expression and localization of LytE. Interestingly, increased LytE localization along the sidewall in the ltaS mutant largely occurred in an MreBH-independent manner. Moreover, we found that cell surface decorations with LTA and WTA are gradually reduced at increased culture temperatures and that LTA rather than WTA on the cell surface is reduced at high temperatures. In contrast, the amount of LytE on the cell surface gradually increased under heat stress conditions. Taken together, these results indicated that reductions in these anionic polymers at high temperatures might give rise to increases in SigI-dependent expression and cell surface localization of LytE at high temperatures. IMPORTANCE The bacterial cell wall is required for maintaining cell shape and bearing environmental stresses. The Gram-positive cell wall consists of mesh-like peptidoglycan and covalently linked wall teichoic acid and lipoteichoic acid polymers. It is important to determine if these anionic polymers are required for proliferation and environmental adaptation. Here, we demonstrated that these polymers affect the expression and localization of a peptidoglycan hydrolase LytE required for lateral cell wall

  6. Space Weather Workshop

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.

    2004-01-01

    This workshop will focus on what space weather is about and its impact on society. An overall picture will be "painted" describing the Sun's influence through the solar wind on the near-Earth space environment, including the aurora, killer electrons at geosynchronous orbit, million ampere electric currents through the ionosphere and along magnetic field lines, and the generation of giga-Watts of natural radio waves. Reference material in the form of Internet sites will be provided so that teachers can discuss space weather in the classroom and enable students to learn more about this topic.

  7. Healthy Housing Opportunities During Weatherization Work

    SciTech Connect

    Wilson, J.; Tohn, E.

    2011-03-01

    In the summer and early fall of 2010, the National Center for Healthy Housing interviewed people from a selection of state and local agencies that perform weatherizations on low-income housing in order to gauge their approach to improving the health and safety of the homes. The interviews provided a strong cross section of what work agencies can do, and how they go about funding this work when funds from the Weatherization Assistance Program (WAP) do not cover the full extent of the repairs. The report also makes recommendations for WAP in how to assist agencies to streamline and maximize the health and safety repairs they are able to make in the course of a standard weatherization.

  8. Modeling rock weathering in small watersheds

    NASA Astrophysics Data System (ADS)

    Pacheco, Fernando A. L.; Van der Weijden, Cornelis H.

    2014-05-01

    Many mountainous watersheds are conceived as aquifer media where multiple groundwater flow systems have developed (Tóth, 1963), and as bimodal landscapes where differential weathering of bare and soil-mantled rock has occurred (Wahrhaftig, 1965). The results of a weathering algorithm (Pacheco and Van der Weijden, 2012a, 2014), which integrates topographic, hydrologic, rock structure and chemical data to calculate weathering rates at the watershed scale, validated the conceptual models in the River Sordo basin, a small watershed located in the Marão cordillera (North of Portugal). The coupling of weathering, groundwater flow and landscape evolution analyses, as accomplished in this study, is innovative and represents a remarkable achievement towards regionalization of rock weathering at the watershed scale. The River Sordo basin occupies an area of approximately 51.2 km2 and was shaped on granite and metassediment terrains between the altitudes 185-1300 m. The groundwater flow system is composed of recharge areas located at elevations >700 m, identified on the basis of δ18O data. Discharge cells comprehend terminations of local, intermediate and regional flow systems, identified on the basis of spring density patterns, infiltration depth estimates based on 87Sr/86Sr data, and spatial distributions of groundwater pH and natural mineralization. Intermediate and regional flow systems, defined where infiltration depths >125 m, develop solely along the contact zone between granites and metassediments, because fractures in this region are profound and their density is very large. Weathering is accelerated where rocks are covered by thick soils, being five times faster relative to sectors of the basin where rocks are covered by thin soils. Differential weathering of bare and soil-mantled rock is also revealed by the spatial distribution of calculated aquifer hydraulic diffusivities and groundwater travel times.

  9. Dorsolateral prefrontal transcranial magnetic stimulation in patients with major depression locally affects alpha power of REM sleep

    PubMed Central

    Pellicciari, Maria Concetta; Cordone, Susanna; Marzano, Cristina; Bignotti, Stefano; Gazzoli, Anna; Miniussi, Carlo; De Gennaro, Luigi

    2013-01-01

    Sleep alterations are among the most important disabling manifestation symptoms of Major Depression Disorder (MDD). A critical role of sleep importance is also underlined by the fact that its adjustment has been proposed as an objective marker of clinical remission in MDD. Repetitive transcranial magnetic stimulation (rTMS) represents a relatively novel therapeutic tool for the treatment of drug-resistant depression. Nevertheless, besides clinical evaluation of the mood improvement after rTMS, we have no clear understanding of what are the neurophysiological correlates of such treatment. One possible marker underlying the clinical outcome of rTMS in MDD could be cortical changes on wakefulness and sleep activity. The aim of this open-label study was to evaluate the efficacy of a sequential bilateral rTMS treatment over the dorsolateral prefrontal cortex (DLPFC) to improve the mood in MDD patients, and to determine if rTMS can induce changes on the sleep structure, and if those changes can be used as a surrogate marker of the clinical state of the patient. Ten drug-resistant depressed patients participated to ten daily sessions of sequential bilateral rTMS with a low-frequency TMS (1 Hz) over right-DLPFC and a subsequent high-frequency (10 Hz) TMS over left-DLPFC. The clinical and neurophysiological effects induced by rTMS were evaluated, respectively by means of the Hamilton Depression Rating Scale (HDRS), and by comparing the sleep pattern modulations and the spatial changes of EEG frequency bands during both NREM and REM sleep, before and after the real rTMS treatment. The sequential bilateral rTMS treatment over the DLPFC induced topographical-specific decrease of the alpha activity during REM sleep over left-DLPFC, which is significantly associated to the clinical outcome. In line with the notion of a left frontal hypoactivation in MDD patients, the observed local decrease of alpha activity after rTMS treatment during the REM sleep suggests that alpha frequency

  10. Weather & Climate. Science Syllabus for Middle and Junior High Schools. Block E.

    ERIC Educational Resources Information Center

    Geer, Ira W.

    This syllabus is divided into three sections and three appendices. The first section lists program objectives with corresponding performance criteria for seven areas of weather/climate study: (1) broad-scale weather systems; (2) local weather; (3) the atmospheric environment; (4) energy and motion in the atmosphere; (5) water in the atmosphere;…

  11. Upgrade Summer Severe Weather Tool in MIDDS

    NASA Technical Reports Server (NTRS)

    Wheeler, Mark M.

    2010-01-01

    The goal of this task was to upgrade the severe weather database from the previous phase by adding weather observations from the years 2004 - 2009, re-analyze the data to determine the important parameters, make adjustments to the index weights depending on the analysis results, and update the MIDDS GUI. The added data increased the period of record from 15 to 21 years. Data sources included local forecast rules, archived sounding data, surface and upper air maps, and two severe weather event databases covering east-central Florida. Four of the stability indices showed increased severe weather predication. The Total Threat Score (TTS) of the previous work was verified for the warm season of 2009 with very good skill. The TTS Probability of Detection (POD) was 88% and the False alarm rate (FAR) of 8%. Based on the results of the analyses, the MIDDS Severe Weather Worksheet GUI was updated to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters and synoptic-scale dynamics.

  12. Weather forecasts, users' economic expenses and decision strategies

    NASA Technical Reports Server (NTRS)

    Carter, G. M.

    1972-01-01

    Differing decision models and operational characteristics affecting the economic expenses (i.e., the costs of protection and losses suffered if no protective measures have been taken) associated with the use of predictive weather information have been examined.

  13. Assessing preferences of beach users for certain aspects of weather and ocean conditions: case studies from Australia.

    PubMed

    Zhang, Fan; Wang, Xiao Hua

    2013-05-01

    Three well-known Australian beaches, Surfers Paradise Beach (Gold Coast), Narrowneck Beach (Gold Coast) and Bondi Beach (Sydney), were selected for analysis of beach user preferences for certain weather and ocean conditions. Regression methods were used to determine how the numbers of visitors to these beaches are affected by these conditions. Actual visitor numbers were counted at three times during the day over several months at each beach with the aid of web cameras. The corresponding weather and ocean conditions were obtained from the Australian Bureau of Meteorology and local government agencies. Weekly and seasonal factors were also considered. The conditions preferred by beach users, as found in this study, are: no precipitation, higher temperatures, light-to-moderate wind speed (less than 30 km/h) and low wave height (up to 1.25 m). This study, the first to provide an analysis of beach user preferences for both weather and ocean conditions, shows that ocean conditions play a significant role in explaining the demand for beach recreation in Australia. It is therefore necessary for tourism management authorities or local governments to provide accurate and timely weather and ocean information to local, domestic and international beach users.

  14. Weathering the Double Whammy.

    ERIC Educational Resources Information Center

    Wellman, Jane V.

    2002-01-01

    Discusses how governing boards can help their institutions weather the "double-whammy" of doing more with less: identify the institution's short-term and long-term challenges; refocus the institution's mission, planning, and programming; assess and integrate the institution's tuition, aid, and outreach strategies; redouble the…

  15. Weather Specialist (AFSC 25120).

    ERIC Educational Resources Information Center

    Air Univ., Gunter AFS, Ala. Extension Course Inst.

    This correspondence course is designed for self-study to help military personnel to attain the rating of weather specialist. The course is organized in three volumes. The first volume, containing seven chapters, covers background knowledge, meteorology, and climatology. In the second volume, which also contains seven chapters, surface…

  16. Microbial Weathering of Olivine

    NASA Technical Reports Server (NTRS)

    McKay, D. S.; Longazo, T. G.; Wentworth, S. J.; Southam, G.

    2002-01-01

    Controlled microbial weathering of olivine experiments displays a unique style of nanoetching caused by biofilm attachment to mineral surfaces. We are investigating whether the morphology of biotic nanoetching can be used as a biosignature. Additional information is contained in the original extended abstract.

  17. Weather and Flight Testing

    NASA Technical Reports Server (NTRS)

    Wiley, Scott

    2007-01-01

    This viewgraph document reviews some of the weather hazards involved with flight testing. Some of the hazards reviewed are: turbulence, icing, thunderstorms and winds and windshear. Maps, pictures, satellite pictures of the meteorological phenomena and graphs are included. Also included are pictures of damaged aircraft.

  18. Worldwide Marine Weather Broadcasts.

    ERIC Educational Resources Information Center

    Department of the Navy, Washington, DC.

    This publication is a source of marine weather broadcast information in all areas of the world where such service is provided. This publication was designed for the use of U.S. naval and merchant ships. Sections 1 through 4 contain details of radio telegraph, radio telephone, radio facsimile, and radio teleprinter transmissions, respectively. The…

  19. Weather at LANL

    SciTech Connect

    Bruggeman, David Alan

    2016-04-19

    This report gives general information about how to become a meteorologist and what kinds of jobs exist in that field. Then it goes into detail about why weather is monitored at LANL, how it is done, and where the data can be accessed online.

  20. Weather, Climate, and You.

    ERIC Educational Resources Information Center

    Blai, Boris, Jr.

    Information from the American Institute of Medical Climatologists on human responses to weather and climatic conditions, including clouds, winds, humidity, barometric pressure, heat, cold, and other variables that may exert a pervasive impact on health, behavior, disposition, and the level of efficiency with which individuals function is reviewed.…

  1. Shipboard Weather Observation.

    ERIC Educational Resources Information Center

    Palmaccio, Richard J.

    1983-01-01

    Details of how observers on a moving ship can furnish an accurate report of wind velocity are provided. A method employing vector addition and some trigonometry is covered. Wind velocity is initially indicated through an anemometer and a wind vane. Ships are urged to radio weather data. (MP)

  2. Rainy Weather Science.

    ERIC Educational Resources Information Center

    Reynolds, Karen

    1996-01-01

    Presents ideas on the use of rainy weather for activities in the earth, life, and physical sciences. Topics include formation and collision of raindrops, amount and distribution of rain, shedding of water by plants, mapping puddles and potholes, rainbow formation, stalking storms online, lightning, and comparing particles in the air before and…

  3. Weather in Motion.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The ATS-111 weather satellite, launched on November 18, 1967, in a synchronous earth orbit 22,000 miles above the equator, is described in this folder. The description is divided into these topics: the satellite, the camera, the display, the picture information, and the beneficial use of the satellite. Photographs from the satellite are included.…

  4. Satellite Weather Watch.

    ERIC Educational Resources Information Center

    Summers, R. Joe

    1982-01-01

    Describes an inexpensive (about $1,500) direct-readout ground station for use in secondary school science/mathematics programs. Includes suggested activities including, among others, developing map overlays, operating station equipment, interpreting satellite data, developing weather forecasts, and using microcomputers for data storage, orbit…

  5. Weatherization Works: An interim report of the National Weatherization Evaluation

    SciTech Connect

    Brown, M.A.; Berry, L.G.; Kinney, L.F.

    1993-11-01

    The National Weatherization Evaluation is the first comprehensive evaluation of the Weatherization Assistance Program since 1984. The evaluation was designed to accomplish the following goals: Estimate energy savings and cost effectiveness; Assess nonenergy impacts; Describe the weatherization network; Characterize the eligible population and resources; and Identify factors influencing outcomes and opportunities for the future. As a national program, weatherization incorporates considerable diversity due to regional differences. Therefore, evaluation results are presented both in aggregate and for three climate regions: cold, moderate and hot.

  6. Space weather forecasting: Past, Present, Future

    NASA Astrophysics Data System (ADS)

    Lanzerotti, L. J.

    2012-12-01

    There have been revolutionary advances in electrical technologies over the last 160 years. The historical record demonstrates that space weather processes have often provided surprises in the implementation and operation of many of these technologies. The historical record also demonstrates that as the complexity of systems increase, including their interconnectedness and interoperability, they can become more susceptible to space weather effects. An engineering goal, beginning during the decades following the 1859 Carrington event, has been to attempt to forecast solar-produced disturbances that could affect technical systems, be they long grounded conductor-based or radio-based or required for exploration, or the increasingly complex systems immersed in the space environment itself. Forecasting of space weather events involves both frontier measurements and models to address engineering requirements, and industrial and governmental policies that encourage and permit creativity and entrepreneurship. While analogies of space weather forecasting to terrestrial weather forecasting are frequently made, and while many of the analogies are valid, there are also important differences. This presentation will provide some historical perspectives on the forecast problem, a personal assessment of current status of several areas including important policy issues, and a look into the not-too-distant future.

  7. Knock-Down of a Tonoplast Localized Low-Affinity Nitrate Transporter OsNPF7.2 Affects Rice Growth under High Nitrate Supply

    PubMed Central

    Hu, Rui; Qiu, Diyang; Chen, Yi; Miller, Anthony J.; Fan, Xiaorong; Pan, Xiaoping; Zhang, Mingyong

    2016-01-01

    The large nitrate transporter 1/peptide transporter family (NPF) has been shown to transport diverse substrates, including nitrate, amino acids, peptides, phytohormones, and glucosinolates. However, the rice (Oryza sativa) root-specific family member OsNPF7.2 has not been functionally characterized. Here, our data show that OsNPF7.2 is a tonoplast localized low-affinity nitrate transporter, that affects rice growth under high nitrate supply. Expression analysis showed that OsNPF7.2 was mainly expressed in the elongation and maturation zones of roots, especially in the root sclerenchyma, cortex and stele. It was also induced by high concentrations of nitrate. Subcellular localization analysis showed that OsNPF7.2 was localized on the tonoplast of large and small vacuoles. Heterologous expression in Xenopus laevis oocytes suggested that OsNPF7.2 was a low-affinity nitrate transporter. Knock-down of OsNPF7.2 retarded rice growth under high concentrations of nitrate. Therefore, we deduce that OsNPF7.2 plays a role in intracellular allocation of nitrate in roots, and thus influences rice growth under high nitrate supply. PMID:27826301

  8. A weatherization manual for LIHEAP policy makers and program administrators

    SciTech Connect

    Witherspoon, M.J.; Marabate, R.; Weinhaus, M.; Eisenberg, J.F.

    1993-09-01

    This manual is designed to provide Low-Income Home Energy Assistance Program (LIHEAP) directors with information about weatherization and innovative ways they can utilize LIHEAP funds for weatherization activities. It contains a description of innovative weatherization programs which demonstrate creative uses of LIHEAP funds in weatherization activities. In many of the innovative examples, state and local administrators are coordinating their LIHEAP funds with the US Department of Energy (DOE) Low-Income Weatherization Assistance Program`s funding and with a variety of other federal, state and utility company resources. The innovative programs demonstrate how LIHEAP funds can be used in client education, targeting high energy users, staff training, assessment and audits for weatherization services. The reader will find in the appendices lists of contact persons and further descriptions of the programs highlighted. Although designed with LIHEAP directors in mind, the practices and programs highlighted in this manual are of practical use to any state, local or utility weatherization program administrator. The glossary at the end of the descriptive chapters will assist readers with the terminology used throughout the manual. This manual and the many resource entities cited in its appendices provide ready access to a wealth of state-of-the-art information which could lead to a more cost-effective expenditure of LIBEAP weatherization dollars.

  9. Climate change and health in Israel: adaptation policies for extreme weather events.

    PubMed

    Green, Manfred S; Pri-Or, Noemie Groag; Capeluto, Guedi; Epstein, Yoram; Paz, Shlomit

    2013-06-27

    Climatic changes have increased the world-wide frequency of extreme weather events such as heat waves, cold spells, floods, storms and droughts. These extreme events potentially affect the health status of millions of people, increasing disease and death. Since mitigation of climate change is a long and complex process, emphasis has recently been placed on the measures required for adaptation. Although the principles underlying these measures are universal, preparedness plans and policies need to be tailored to local conditions. In this paper, we conducted a review of the literature on the possible health consequences of extreme weather events in Israel, where the conditions are characteristic of the Mediterranean region. Strong evidence indicates that the frequency and duration of several types of extreme weather events are increasing in the Mediterranean Basin, including Israel. We examined the public health policy implications for adaptation to climate change in the region, and proposed public health adaptation policy options. Preparedness for the public health impact of increased extreme weather events is still relatively limited and clear public health policies are urgently needed. These include improved early warning and monitoring systems, preparedness of the health system, educational programs and the living environment. Regional collaboration should be a priority.

  10. Climate change and health in Israel: adaptation policies for extreme weather events

    PubMed Central

    2013-01-01

    Climatic changes have increased the world-wide frequency of extreme weather events such as heat waves, cold spells, floods, storms and droughts. These extreme events potentially affect the health status of millions of people, increasing disease and death. Since mitigation of climate change is a long and complex process, emphasis has recently been placed on the measures required for adaptation. Although the principles underlying these measures are universal, preparedness plans and policies need to be tailored to local conditions. In this paper, we conducted a review of the literature on the possible health consequences of extreme weather events in Israel, where the conditions are characteristic of the Mediterranean region. Strong evidence indicates that the frequency and duration of several types of extreme weather events are increasing in the Mediterranean Basin, including Israel. We examined the public health policy implications for adaptation to climate change in the region, and proposed public health adaptation policy options. Preparedness for the public health impact of increased extreme weather events is still relatively limited and clear public health policies are urgently needed. These include improved early warning and monitoring systems, preparedness of the health system, educational programs and the living environment. Regional collaboration should be a priority. PMID:23805950

  11. Bringing Weather into Your Classroom.

    ERIC Educational Resources Information Center

    Mogil, H. Michael

    1979-01-01

    Discusses meteorological resources available to classroom teachers. Describes in detail the National Oceanic and Atmospheric Administration (NOAA) Weather Radio and the A.M. Weather Show on Public Broadcasting Service (PBS). Includes addresses where teachers can get more information. (MA)

  12. Geography and Weather: Mountain Meterology.

    ERIC Educational Resources Information Center

    Mogil, H. Michael; Collins, H. Thomas

    1990-01-01

    Provided are 26 ideas to help children explore the effects of mountains on the weather. Weather conditions in Nepal and Colorado are considered separately. Nine additional sources of information are listed. (CW)

  13. Impact of Probabilistic Weather on Flight Routing Decisions

    NASA Technical Reports Server (NTRS)

    Sheth, Kapil; Sridhar, Banavar; Mulfinger, Daniel

    2006-01-01

    probabilistic description of weather (Ref. 9). This paper focuses on. specified probability in a local region for flight intrusion/deviation decision-making. The process uses a probabilistic weather description, implements that in a air traffic assessment system to study trajectories of aircraft crossing a cut-off probability contour. This value would be useful for meteorologists in creating optimum distribution profiles for severe weather, Once available, the expected values of flight path and aggregate delays are calculated for efficient operations. The current research, however, does not deal with the issue of multiple cell encounters, as well as echo tops, and will be a topic of future work.

  14. Weatherization Works--Summary of Findings from the Retrospective Evaluation of the U.S. DOE's Weatherization Assistance Program

    SciTech Connect

    Tonn, Bruce Edward; Carroll, David; Pigg, Scott; Blasnik, Michael; Dalhoff, Greg; Berger, Jacqueline; Rose, Erin M; Hawkins, Beth A.; Eisenberg, Joel Fred; Ucar, Ferit; Bensch, Ingo; Cowan, Claire

    2015-10-01

    This report presents a summary of the studies and analyses that compose the retrospective evaluation of the U.S. Department of Energy s low-income Weatherization Assistance Program (WAP). WAP provides grants to Grantees (i.e., states) that then provide grants to Subgrantees (i.e., local weatherization agencies) to weatherize low-income homes. This evaluation focused on the WAP Program Year 2008. The retrospective evaluation produced twenty separate reports, including this summary. Four separate reports address the energy savings, energy cost savings, and cost effectiveness of WAP across four housing types: single family, mobile home, small multifamily, and large multifamily. Other reports address the environmental emissions, macroeconomic, and health and household-related benefits attributable to WAP, and characterize the program, its recipients, and those eligible for the program. Major field studies are also summarized, including a major indoor air quality study and a follow-up ventilation study, an in-depth in-field assessment of weatherization work and quality, and a study that assesses reasons for variations in energy savings across homes. Results of surveys of weatherization staff, occupants, occupants satisfaction with weatherization services provided, and weatherization trainees are summarized. Lastly, this report summarizes a set of fifteen case studies of high-performing and unique local weatherization agencies.

  15. The space-weather enterprise: past, present, and future

    NASA Astrophysics Data System (ADS)

    Siscoe, G.

    2000-09-01

    Space-weather impacts society in diverse ways. Societies' responses have been correspondingly diverse. Taken together these responses constitute a space weather ``enterprise'', which has developed over time and continues to develop. Technological systems that space-weather affects have grown from isolated telegraph systems in the 1840s to ocean and continent-spanning cable communications systems, from a generator electrifying a few city blocks in the 1880s to continent-spanning networks of high-tension lines, from wireless telegraphy in the 1890s to globe-spanning communication by radio and satellites. To have a name for the global totality of technological systems that are vulnerable to space weather, I suggest calling it the cyberelectrosphere. When the cyberelectrosphere was young, scientists who study space weather, engineers who design systems that space weather affects, and operators of such systems - the personnel behind the space-weather enterprise - were relatively isolated. The space-weather enterprise was correspondingly incoherent. Now that the cyberelectrosphere has become pervasive and indispensable to most segments of society, the space weather enterprise has become systematic and coherent. At present it has achieved considerable momentum, but it has barely begun to realize the level of effectiveness to which it can aspire, as evidenced by achievements of a corresponding but more mature enterprise in meteorology, a field which provides useful lessons. The space-weather enterprise will enter a new phase after it matures roughly to where the tropospheric weather enterprise is now. Then it will become indispensable for humankind's further global networking through technology and for humankind's further utilization of and expansion into space.

  16. Weather Folklore: Fact or Fiction?

    ERIC Educational Resources Information Center

    Jones, Gail; Carter, Glenda

    1995-01-01

    Integrating children's weather-related family folklore with scientific investigation can be an effective way to involve elementary and middle level students in lessons spanning the disciplines of science, geography, history, anthropology, and language arts. Describes weather folklore studies and examples of weather investigations performed with…

  17. Weather Specialist/Aerographer's Mate.

    ERIC Educational Resources Information Center

    Chanute AFB Technical Training Center, IL.

    This course trains Air Force personnel to perform duties prescribed for weather specialists and aerographer's mates. Training includes meteorology, surface and ship observation, weather radar, operation of standard weather instruments and communications equipment, and decoding and plotting of surface and upper air codes upon standard maps and…

  18. Severe Weather Planning for Schools

    ERIC Educational Resources Information Center

    Watson, Barbara McNaught; Strong, Christopher; Bunting, Bill

    2008-01-01

    Flash floods, severe thunderstorms, and tornadoes occur with rapid onset and often no warning. Decisions must be made quickly and actions taken immediately. This paper provides tips for schools on: (1) Preparing for Severe Weather Emergencies; (2) Activating a Severe Weather Plan; (3) Severe Weather Plan Checklist; and (4) Periodic Drills and…

  19. Weather Fundamentals: Climate & Seasons. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes), describes weather patterns and cycles around the globe. The various types of climates around…

  20. Improved weather information and aviation

    NASA Technical Reports Server (NTRS)

    Hallahan, K.; Zdanys, V.

    1973-01-01

    The major impacts of weather forecasts on aviation are reviewed. Topics discussed include: (1) present and projected structure of American aviation, (2) weather problems considered particularly important for aviation, (3) projected needs for improved weather information by aviators, (4) safety and economics, and (5) future studies utilizing satellite meteorology.

  1. Ground cloud related weather modification effects. [heavy lift launch vehicles

    NASA Technical Reports Server (NTRS)

    Lee, J.

    1980-01-01

    The principal concerns about inadvertent weather modification by the solar power satellite system rocket effluents are discussed, namely the possibility that the ground cloud might temporarily modify local weather and the cumulative effects of nearly 500 launches per year. These issues are discussed through the consideration of (1) the possible alteration of the microphysical processes of clouds in the general area due to rocket effluents and debris and cooling water entrained during the launch and (2) the direct dynamical and thermodynamical responses to the inputs of thermal energy and moisture from the rocket exhaust for given ambient meteorological conditions. The huge amount of thermal energy contained in the exhaust of the proposed launch vehicle would in some situations induce a saturated, wet convective cloud or enhance an existing convective activity. Nevertheless, the effects would be limited to the general area of the launch site. The observed long lasting high concentrations of cloud condensation nuclei produced during and after a rocket launch may appreciably affect the frequency of occurrence and persistence of fogs and haze. In view of the high mission frequency proposed for the vehicle launches, a potential exists for a cumulative effect.

  2. Training Early Career Space Weather Researchers and other Space Weather Professionals at the CISM Space Weather Summer School

    NASA Astrophysics Data System (ADS)

    Gross, N. A.; Hughes, W.

    2011-12-01

    This talk will outline the organization of a summer school designed to introduce young professions to a sub-discipline of geophysics. Through out the 10 year life time of the Center for Integrated Space Weather Modeling (CISM) the CISM Team has offered a two week summer school that introduces new graduate students and other interested professional to the fundamentals of space weather. The curriculum covers basic concepts in space physics, the hazards of space weather, and the utility of computer models of the space environment. Graduate students attend from both inside and outside CISM, from all the sub-disciplines involved in space weather (solar, heliosphere, geomagnetic, and aeronomy), and from across the nation and around the world. In addition, between 1/4 and 1/3 of the participants each year are professionals involved in space weather in some way, such as: forecasters from NOAA and the Air Force, Air Force satellite program directors, NASA specialists involved in astronaut radiation safety, and representatives from industries affected by space weather. The summer school has adopted modern pedagogy that has been used successfully at the undergraduate level. A typical daily schedule involves three morning lectures followed by an afternoon lab session. During the morning lectures, student interaction is encouraged using "Timeout to Think" questions and peer instruction, along with question cards for students to ask follow up questions. During the afternoon labs students, working in groups of four, answer thought provoking questions using results from simulations and observation data from a variety of source. Through the interactions with each other and the instructors, as well as social interactions during the two weeks, students network and form bonds that will last them through out their careers. We believe that this summer school can be used as a model for summer schools in a wide variety of disciplines.

  3. The effects of weather on daily mood: a multilevel approach.

    PubMed

    Denissen, Jaap J A; Butalid, Ligaya; Penke, Lars; van Aken, Marcel A G

    2008-10-01

    The present study examines the effects of six weather parameters (temperature, wind power, sunlight, precipitation, air pressure, and photoperiod) on mood (positive affect, negative affect, and tiredness). Data were gathered from an online diary study (N = 1,233), linked to weather station data, and analyzed by means of multilevel analysis. Multivariate and univariate analyses enabled distinction between unique and shared effects. The results revealed main effects of temperature, wind power, and sunlight on negative affect. Sunlight had a main effect on tiredness and mediated the effects of precipitation and air pressure on tiredness. In terms of explained variance, however, the average effect of weather on mood was only small, though significant random variation was found across individuals, especially regarding the effect of photoperiod. However, these individual differences in weather sensitivity could not be explained by the Five Factor Model personality traits, gender, or age.

  4. Thermospheric Space Weather Modeling

    DTIC Science & Technology

    2007-06-01

    atmospheric temperature V = satellite velocity relative to the ambient gas ’ Senior physicist, Space Weather Center of Excellence, Mail Stop: VSBXT; Member...where temperature rises drastically to -600 - 2000 K. The density and hence drag in this region is driven mainly by two solar influences: directly by EUV...bulge that drives winds to transport heat away from the hot dayside toward the Earth’s cold nightside. Temperatures on the dayside are typically 30

  5. Weather Radar Studies.

    DTIC Science & Technology

    2014-09-26

    and Doppler weather radar data from the National Center for Atmospheric Research JAWS program and the National .Severe Storms Laboratory, are being...Atmospheric Research JAWS program and the National Severe Storms Laboratory, are being analyzed to develop low-altitude wind-shear detection algorithms...pictures, and dusted for fingerprints. The wind sensors, rain gauge, and antenna were destroyed but the DCP, solar panel, and other site components

  6. Space Weather Ballooning

    NASA Astrophysics Data System (ADS)

    Phillips, Tony; Johnson, Sam; Koske-Phillips, Amelia; White, Michael; Yarborough, Amelia; Lamb, Aaron; Herbst, Anna; Molina, Ferris; Gilpin, Justin; Grah, Olivia; Perez, Ginger; Reid, Carson; Harvey, Joey; Schultz, Jamie

    2016-10-01

    We have developed a "Space Weather Buoy" for measuring upper atmospheric radiation from cosmic rays and solar storms. The Buoy, which is carried to the stratosphere by helium balloons, is relatively inexpensive and uses off-the-shelf technology accessible to small colleges and high schools. Using this device, we have measured two Forbush Decreases and a small surge in atmospheric radiation during the St. Patrick's Day geomagnetic storm of March 2015.

  7. Salt Weathering on Mars

    NASA Astrophysics Data System (ADS)

    Jagoutz, E.

    2006-12-01

    Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974

  8. Weather Radar Technology Development

    DTIC Science & Technology

    1990-08-15

    uelocitV WMs ) data processing systems such as NEXRAD to have a reliable technique for removing ambiguities due to velocity aliasing. Performance of many...intended for automated implementation on radar systems such as the NEXt generation weather RADar ( NEXRAD ) system. Several research areas were addressed...with Doppler radar will soon be realized with the deployment of the NEXRAD radar systems. Some of these large scale storms can have devastating wind

  9. Benign Weather Modification

    DTIC Science & Technology

    2007-11-02

    The first Combat Search and Rescue (CSAR) attempt, scheduled for 6 September 1995, was canceled due to unsatisfactory launch site weather for the ...Such an RPV could clear the fog and search for the downed airman at the same time. To increase the odds of finding the airmen, several RPVs could fly...COBLE A THESIS PRESENTED TO THE FACULTY OF THE SCHOOL OF ADVANCED AIRPOWER STUDIES FOR COMPLETION OF GRADUATION

  10. Pilot based frameworks for Weather Research Forecasting

    NASA Astrophysics Data System (ADS)

    Ganapathi, Dinesh Prasanth

    The Weather Research Forecasting (WRF) domain consists of complex workflows that demand the use of Distributed Computing Infrastructure (DCI). Weather forecasting requires that weather researchers use different set of initial conditions and one or a combination of physics models on the same set of input data. For these type of simulations an ensemble based computing approach becomes imperative. Most DCIs have local job-schedulers that have no smart way of dealing with the execution of an ensemble type of computational problem as the job-schedulers are built to cater to the bare essentials of resource allocation. This means the weather scientists have to submit multiple jobs to the job-scheduler. In this dissertation we use Pilot-Job based tools to decouple work-load submission and resource allocation therefore streamlining the complex workflows in Weather Research and Forecasting domain and reduce their overall time to completion. We also achieve location independent job execution, data movement, placement and processing. Next, we create the necessary enablers to run an ensemble of tasks bearing the capability to run on multiple heterogeneous distributed computing resources there by creating the opportunity to minimize the overall time consumed in running the models. Our experiments show that the tools developed exhibit very good, strong and weak scaling characteristics. These results bear the potential to change the way weather researchers are submitting traditional WRF jobs to the DCIs by giving them a powerful weapon in their arsenal that can exploit the combined power of various heterogeneous DCIs that could otherwise be difficult to harness owing to interoperability issues.

  11. An introduction to Space Weather Integrated Modeling

    NASA Astrophysics Data System (ADS)

    Zhong, D.; Feng, X.

    2012-12-01

    The need for a software toolkit that integrates space weather models and data is one of many challenges we are facing with when applying the models to space weather forecasting. To meet this challenge, we have developed Space Weather Integrated Modeling (SWIM) that is capable of analysis and visualizations of the results from a diverse set of space weather models. SWIM has a modular design and is written in Python, by using NumPy, matplotlib, and the Visualization ToolKit (VTK). SWIM provides data management module to read a variety of spacecraft data products and a specific data format of Solar-Interplanetary Conservation Element/Solution Element MHD model (SIP-CESE MHD model) for the study of solar-terrestrial phenomena. Data analysis, visualization and graphic user interface modules are also presented in a user-friendly way to run the integrated models and visualize the 2-D and 3-D data sets interactively. With these tools we can locally or remotely analysis the model result rapidly, such as extraction of data on specific location in time-sequence data sets, plotting interplanetary magnetic field lines, multi-slicing of solar wind speed, volume rendering of solar wind density, animation of time-sequence data sets, comparing between model result and observational data. To speed-up the analysis, an in-situ visualization interface is used to support visualizing the data 'on-the-fly'. We also modified some critical time-consuming analysis and visualization methods with the aid of GPU and multi-core CPU. We have used this tool to visualize the data of SIP-CESE MHD model in real time, and integrated the Database Model of shock arrival, Shock Propagation Model, Dst forecasting model and SIP-CESE MHD model developed by SIGMA Weather Group at State Key Laboratory of Space Weather/CAS.

  12. Areosynchronous weather imager

    NASA Astrophysics Data System (ADS)

    Puschell, Jeffery J.; Lock, Robert

    2016-09-01

    Mars is characterized by rapidly changing, poorly understood weather that is a concern for future human missions. Future Areosynchronous Mars Orbit (AMO) communication satellites offer possible platforms for Mars weather imagers similar to the geosynchronous Earth orbit (GEO) weather imagers that have been observing Earth since 1966. This paper describes an AReosynchronous Environmental Suite (ARES) that includes two imagers: one with two emissive infrared bands (10.8 μm and 12.0 μm) at 4 km resolution and the other with three VNIR bands (500 nm, 700 nm, 900 nm) at 1 km resolution. ARES stares at Mars and provides full disk coverage as fast as every 40 sec in the VNIR bands and every 2 min in the emissive bands with good sensitivity (SNR 200 in the VNIR for typical radiances and NEDT 0.2K at 180 K scene temperature in the emissive infrared). ARES size, mass, power and data rate characteristics are compatible with expectations for hosted payloads onboard future AMO communication satellites. Nevertheless, more work is needed to optimize ARES for future missions, especially in terms of trades between data rate, full disk coverage rate, sensitivity, number of spectral bands and spatial resolution and in study of approaches for maintaining accurate line of sight knowledge during data collection.

  13. Kazakhstan Space Weather Initiative

    NASA Astrophysics Data System (ADS)

    Kryakunova, Olga

    2012-07-01

    Kazakhstan experimental complex is a center of experimental study of space weather. This complex is situated near Almaty, Kazakhstan and includes experimental setup for registration of cosmic ray intensity (neutron monitor) at altitude of 3340 m above sea level, geomagnetic observatory and setup for registration of solar flux density with frequency of 1 and 3 GHz with 1 second time resolution. Results of space environment monitoring in real time are accessible via Internet. This experimental information is used for space weather investigations and different cosmic ray effects. Almaty mountain cosmic ray station is one of the most suitable and sensitive stations for investigation and forecasting of the dangerous situations for satellites; for this reason Almaty cosmic ray station is included in the world-wide neutron monitor network for the real-time monitoring of the space weather conditions and European Database NMDB (www.nmdb.eu). All data are represented on the web-site of the Institute of Ionosphere (www.ionos.kz) in real time. Since July, 2006 the space environment prediction laboratory represents the forecast of geomagnetic activity every day on the same site (www.ionos.kz/?q=en/node/21).

  14. Great Historical Events That Were Significantly Affected by the Weather: Part 10, Crop Failure in Britain in 1799 and 1800 and the British Decision to Send a Naval Force to the Baltic Early in 1801.

    NASA Astrophysics Data System (ADS)

    Neumann, J.; Kington, J.

    1992-02-01

    In 1799 and 1800, crop failures struck the British Isles. The crop failure of 1799 was due to the combined effects of the cold winter of 1798-99 and the cool and rainy growing season of the year. The summer was characterized by the prevalence of low-pressure systems resembling cyclonic weather patterns of the winter.The crop failure of 1800 was mainly due to a drought early in summer. In July there was either no rain at all (especially in the south) or the amounts were negligible. The general synoptic situation indicated an extension of the Azores High to Britain and beyond to central Europe. In the London area the pressure in duly was never below 1020 mb.The wheat harvests of 1799 and 1800 were about one-half and three-quarters of the average, respectively. The deficiencies could not be made up by imports, for, at least in 1799, the weather conditions were also unfavorable to grain production in the countries of northern Europe that were "traditional" exporters of grain to Britain. We estimate that in the "bread-consumption year", October 1799 to September 1800, harvest and imports accounted for but 60% of the required quantity of wheat, the principal ingredient of bread in England and Wales at the time. In consequence of the bread scarcity, there were sharp rises in the price of bread and in bread riots. Some of the slogans of the rioters made mention of the French Revolution.In parallel with the increasing scarcity of bread, diplomatic relations between Britain and Russia worsened from 1799 on. Its significance on the bread crisis, as well as a crisis of naval supplies, was that the Baltic ports through which the grain of the northern countries (East Prussia, Poland, and Russia) was channeled for Britain stood under the tsar's direct or indirect control. The strained relations between Britain and Russia peaked in November 1800. On 18 November, Tsar Paul I imposed an embargo on British ships and their crews. This embargo meant that the bread scarcity was to

  15. Space Weathering of Lunar Rocks

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2012-01-01

    All materials exposed at the lunar surface undergo space weathering processes. On the Moon, boulders make up only a small percentage of the exposed surface, and areas where such rocks are exposed, like central peaks, are often among the least space weathered regions identified from remote sensing data. Yet space weathered surfaces (patina) are relatively common on returned rock samples, some of which directly sample the surface of larger boulders. Because, as witness plates to lunar space weathering, rocks and boulders experience longer exposure times compared to lunar soil grains, they allow us to develop a deeper perspective on the relative importance of various weathering processes as a function of time.

  16. Salt weathering on Mars

    NASA Astrophysics Data System (ADS)

    Jagoutz, E.

    Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974

  17. Weather dissemination and public usage

    NASA Technical Reports Server (NTRS)

    Stacey, M. S.

    1973-01-01

    The existing public usage of weather information was examined. A survey was conducted to substantiate the general public's needs for dissemination of current (0-12 hours) weather information, needs which, in a previous study, were found to be extensive and urgent. The goal of the study was to discover how the general public obtains weather information, what information they seek and why they seek it, to what use this information is put, and to further ascertain the public's attitudes and beliefs regarding weather reporting and the diffusion of weather information. Major findings from the study include: 1. The public has a real need for weather information in the 0-6 hour bracket. 2. The visual medium is preferred but due to the lack of frequent (0-6 hours) forecasts, the audio media only, i.e., telephone recordings and radio weathercasts, were more frequently used. 3. Weather information usage is sporadic.

  18. Space Weather Services of Korea

    NASA Astrophysics Data System (ADS)

    Yoon, KiChang; Kim, Jae-Hun; Kim, Young Yun; Kwon, Yongki; Wi, Gwan-sik

    2016-07-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  19. Space Weather Services of Korea

    NASA Astrophysics Data System (ADS)

    Yoon, K.; Hong, S.; Park, S.; Kim, Y. Y.; Wi, G.

    2015-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  20. Environmental Impact Specification for Direct Space Weathering of Kuiper Belt and Oort Cloud Objects

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2010-01-01

    The Direct Space Weathering Project of NASA's Outer Planets Research Program addresses specification of the plasma and energetic particle environments for irradiation and surface chemical processing of icy bodies in the outer solar system and the local interstellar medium. Knowledge of the radiation environments is being expanded by ongoing penetration of the twin Voyager spacecraft into the heliosheath boundary region of the outer heliosphere and expected emergence within the next decade into the very local interstellar medium. The Voyager measurements are being supplemented by remote sensing from Earth orbit of energetic neutral atom emission from this boundary region by NASA's Interstellar Boundary Explorer (IBEX). Although the Voyagers long ago passed the region of the Classical Kuiper Belt, the New Horizons spacecraft will encounter Pluto in 2015 and thereafter explore one or more KBOs, meanwhile providing updated measurements of the heliospheric radiation environment in this region. Modeling of ion transport within the heliosphere allows specification of time-integrated irradiation effects while the combination of Voyager and IBEX data supports projection of the in-situ measurements into interstellar space beyond the heliosheath. Transformation of model ion flux distributions into surface sputtering and volume ionization profiles provides a multi-layer perspective for space weathering impact on the affected icy bodies and may account for some aspects of color and compositional diversity. Other important related factors may include surface erosion and gardening by meteoritic impacts and surface renewal by cryovolcanism. Chemical products of space weathering may contribute to energy resources for the latter.

  1. Extensive sphingolipid depletion does not affect lipid raft integrity or lipid raft localization and efflux function of the ABC transporter MRP1

    PubMed Central

    Klappe, Karin; Dijkhuis, Anne-Jan; Hummel, Ina; vanDam, Annie; Ivanova, Pavlina T.; Milne, Stephen B.; Myers, David S.; Brown, H. Alex; Permentier, Hjalmar; Kok, Jan W.

    2013-01-01

    We show that highly efficient depletion of sphingolipids in two different cell lines does not abrogate the ability to isolate Lubrol-based DRMs (detergent-resistant membranes) or detergent-free lipid rafts from these cells. Compared with control, DRM/detergent-free lipid raft fractions contain equal amounts of protein, cholesterol and phospholipid, whereas the classical DRM/lipid raft markers Src, caveolin-1 and flotillin display the same gradient distribution. DRMs/detergent-free lipid rafts themselves are severely depleted of sphingolipids. The fatty acid profile of the remaining sphingolipids as well as that of the glycerophospholipids shows several differences compared with control, most prominently an increase in highly saturated C16 species. The glycerophospholipid headgroup composition is unchanged in sphingolipid-depleted cells and cell-derived detergent-free lipid rafts. Sphingolipid depletion does not alter the localization of MRP1 (multidrug-resistance-related protein 1) in DRMs/detergent-free lipid rafts or MRP1-mediated efflux of carboxyfluorescein. We conclude that extensive sphingolipid depletion does not affect lipid raft integrity in two cell lines and does not affect the function of the lipid-raft-associated protein MRP1. PMID:20604746

  2. Municipalities' Preparedness for Weather Hazards and Response to Weather Warnings

    PubMed Central

    Mehiriz, Kaddour; Gosselin, Pierre

    2016-01-01

    The study of the management of weather-related disaster risks by municipalities has attracted little attention even though these organizations play a key role in protecting the population from extreme meteorological conditions. This article contributes to filling this gap with new evidence on the level and determinants of Quebec municipalities’ preparedness for weather hazards and response to related weather warnings. Using survey data from municipal emergency management coordinators and secondary data on the financial and demographic characteristics of municipalities, the study shows that most Quebec municipalities are sufficiently prepared for weather hazards and undertake measures to protect the population when informed of imminent extreme weather events. Significant differences between municipalities were noted though. Specifically, the level of preparedness was positively correlated with the municipalities’ capacity and population support for weather-related disaster management policies. In addition, the risk of weather-related disasters increases the preparedness level through its effect on population support. We also found that the response to weather warnings depended on the risk of weather-related disasters, the preparedness level and the quality of weather warnings. These results highlight areas for improvement in the context of increasing frequency and/or severity of such events with current climate change. PMID:27649547

  3. Seasonal weather patterns drive population vital rates and persistence in a stream fish.

    PubMed

    Kanno, Yoichiro; Letcher, Benjamin H; Hitt, Nathaniel P; Boughton, David A; Wofford, John E B; Zipkin, Elise F

    2015-05-01

    Climate change affects seasonal weather patterns, but little is known about the relative importance of seasonal weather patterns on animal population vital rates. Even when such information exists, data are typically only available from intensive fieldwork (e.g., mark-recapture studies) at a limited spatial extent. Here, we investigated effects of seasonal air temperature and precipitation (fall, winter, and spring) on survival and recruitment of brook trout (Salvelinus fontinalis) at a broad spatial scale using a novel stage-structured population model. The data were a 15-year record of brook trout abundance from 72 sites distributed across a 170-km-long mountain range in Shenandoah National Park, Virginia, USA. Population vital rates responded differently to weather and site-specific conditions. Specifically, young-of-year survival was most strongly affected by spring temperature, adult survival by elevation and per-capita recruitment by winter precipitation. Low fall precipitation and high winter precipitation, the latter of which is predicted to increase under climate change for the study region, had the strongest negative effects on trout populations. Simulations show that trout abundance could be greatly reduced under constant high winter precipitation, consistent with the expected effects of gravel-scouring flows on eggs and newly hatched individuals. However, high-elevation sites would be less vulnerable to local extinction because they supported higher adult survival. Furthermore, the majority of brook trout populations are projected to persist if high winter precipitation occurs only intermittently (≤3 of 5 years) due to density-dependent recruitment. Variable drivers of vital rates should be commonly found in animal populations characterized by ontogenetic changes in habitat, and such stage-structured effects may increase population persistence to changing climate by not affecting all life stages simultaneously. Yet, our results also demonstrate that

  4. An electronic weather vane for field science

    NASA Astrophysics Data System (ADS)

    Burman, J.; Talbert, R.; Carlton, K.

    2014-01-01

    This paper details the construction of a weather vane for the measurement of wind direction in field situations. The purpose of its construction was to analyse how wind direction affected the attractiveness of an insect pheromone in a dynamic outdoor environment, where wind could be a significant contributor to odour movement. The apparatus described provides a cheap and easy-to-construct alternative to commercial wind vanes, and was shown to provide accurate and continuous measurement of wind direction.

  5. Using Satellite Data in Weather Forecasting: I

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Suggs, Ronnie J.; Lecue, Juan M.

    2006-01-01

    The GOES Product Generation System (GPGS) is a set of computer codes and scripts that enable the assimilation of real-time Geostationary Operational Environmental Satellite (GOES) data into regional-weather-forecasting mathematical models. The GPGS can be used to derive such geophysical parameters as land surface temperature, the amount of precipitable water, the degree of cloud cover, the surface albedo, and the amount of insolation from satellite measurements of radiant energy emitted by the Earth and its atmosphere. GPGS incorporates a priori information (initial guesses of thermodynamic parameters of the atmosphere) and radiometric measurements from the geostationary operational environmental satellites along with mathematical models of physical principles that govern the transfer of energy in the atmosphere. GPGS solves the radiative-transfer equation and provides the resulting data products in formats suitable for use by weather-forecasting computer programs. The data-assimilation capability afforded by GPGS offers the potential to improve local weather forecasts ranging from 3 hours to 2 days - especially with respect to temperature, humidity, cloud cover, and the probability of precipitation. The improvements afforded by GPGS could be of interest to news media, utility companies, and other organizations that utilize regional weather forecasts.

  6. Discussion of long-range weather prediction

    SciTech Connect

    Canavan, G.H.

    1998-09-10

    A group of scientists at Los Alamos have held a series of discussions of the issues in and prospects for improvements in Long-range Weather Predictions Enabled by Proving of the Atmosphere at High Space-Time Resolution. The group contained the requisite skills for a full evaluation, although this report presents only an informal discussion of the main technical issues. The group discussed all aspects of the proposal, which are grouped below into the headings: (1) predictability; (2) sensors and satellites, (3) DIAL and atmospheric sensing; (4) localized transponders; and (5) summary and integration. Briefly, the group agreed that the relative paucity of observations of the state of the atmosphere severely inhibits the accuracy of weather forecasts, and any program that leads to a more dense and uniform observational network is welcome. As shown in Long-range Weather more dense and uniform observational network is welcome. As shown in Long-range Weather Predictions, the pay-back of accurate long-range forecasts should more than justify the expenditure associated with improved observations and forecast models required. The essential step is to show that the needed technologies are available for field test and space qualification.

  7. Characterization of the Weatherization Assistance Program network

    SciTech Connect

    Mihlmester, P.E.; Koehler, W.C. Jr.; Beyer, M.A. . Applied Management Sciences Div.); Brown, M.A. ); Beschen, D.A. Jr. . Office of Weatherization Assistance Programs)

    1992-02-01

    The Characterization of the Weatherization Assistance Program (WAP) Network was designed to describe the national network of State and local agencies that provide WAP services to qualifying low-income households. The objective of this study was to profile the current WAP network. To achieve the objective, two national surveys were conducted: one survey collected data from 49 State WAP agencies (including the coterminous 48 States and the District of Columbia), and the second survey collected data from 920 (or 81 percent) of the local WAP agencies.

  8. Decreasing trend in severe weather occurrence over China during the past 50 years.

    PubMed

    Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing

    2017-02-17

    Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China.

  9. Decreasing trend in severe weather occurrence over China during the past 50 years

    NASA Astrophysics Data System (ADS)

    Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing

    2017-02-01

    Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China.

  10. Decreasing trend in severe weather occurrence over China during the past 50 years

    PubMed Central

    Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing

    2017-01-01

    Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China. PMID:28211465

  11. Negligible glacial-interglacial variation in continental chemical weathering rates.

    PubMed

    Foster, Gavin L; Vance, Derek

    2006-12-14

    Chemical weathering of the continents is central to the regulation of atmospheric carbon dioxide concentrations, and hence global climate. On million-year timescales silicate weathering leads to the draw-down of carbon dioxide, and on millennial timescales chemical weathering affects the calcium carbonate saturation state of the oceans and hence their uptake of carbon dioxide. However, variations in chemical weathering rates over glacial-interglacial cycles remain uncertain. During glacial periods, cold and dry conditions reduce the rate of chemical weathering, but intense physical weathering and the exposure of carbonates on continental shelves due to low sea levels may increase this rate. Here we present high-resolution records of the lead isotope composition of ferromanganese crusts from the North Atlantic Ocean that cover the past 550,000 years. Combining these records with a simple quantitative model of changes in the lead isotope composition of the deep North Atlantic Ocean in response to chemical weathering, we find that chemical weathering rates were two to three times lower in the glaciated interior of the North Atlantic Region during glacial periods than during the intervening interglacial periods. This decrease roughly balances the increase in chemical weathering caused by the exposure of continental shelves, indicating that chemical weathering rates remained relatively constant on glacial-interglacial timescales. On timescales of more than a million years, however, we suggest that enhanced weathering of silicate glacial sediments during interglacial periods results in a net draw-down of atmospheric carbon dioxide, creating a positive feedback on global climate that, once initiated, promotes cooling and further glaciation.

  12. Weather Forecasting Aid

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Weather forecasters are usually very precise in reporting such conditions as temperature, wind velocity and humidity. They also provide exact information on barometric pressure at a given moment, and whether the barometer is "rising" or "falling"- but not how rapidly or how slowly it is rising or falling. Until now, there has not been available an instrument which measures precisely the current rate of change of barometric pressure. A meteorological instrument called a barograph traces the historical ups and downs of barometric pressure and plots a rising or falling curve, but, updated every three hours, it is only momentarily accurate at each updating.

  13. Weather Radar Studies

    DTIC Science & Technology

    1988-03-31

    Reflectivity Core Recognition 68 IV-10 Middle-Level Precursor Recognition 69 IV-l I Early Microburst Hazard Declaration 70 IV-12 Example of Results from...Denver Test Bed 106 V-I Selected Product Types 14 V-2 Encoded Map Size (in ELMs ) for Terminal Map Data Set 119 V-3 Encoded Map Size (in ELMs ) for En...Route Data Sets 119 V-4 Encoded Map Size (in ELMs ) for Terminal Map Data Set 125 xiii WEATHER RADAR STUDIES 1. INTRODUCTION The principal areas of

  14. Briefing highlights space weather risks to GPS

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-07-01

    Solar storms, which are expected to increase as the Sun nears the most active phase of the solar cycle, can disrupt a variety of technologies on which society relies. Speakers at a 22 June briefing on Capitol Hill in Washington, D. C., focused on how space weather can affect the Global Positioning System (GPS), which is used in a wide range of industries, including commercial air travel, agriculture, national security, and emergency response. Rocky Stone, chief technical pilot for United Airlines, noted that GPS allows more aircraft to be in airspace, saves fuel, and helps aircraft move safely on runways. “Improvements in space weather forecasting need to be pursued,” he said. Precision GPS has also “changed the whole nature of farming,” said Ron Hatch, Director of Navigation Systems, NavCom Technology/John Deere. GPS makes it possible for tractors to be driven in the most efficient paths and for fertilizer and water to be applied precisely to the areas that most need them. Space weather-induced degradation of GPS signals can cause significant loss to farms that rely on GPS. Elizabeth Zimmerman, Deputy Associate Administrator for the Office of Response and Recovery at the Federal Emergency Management Agency (FEMA), described how FEMA relies on GPS for disaster recovery. The agency is developing an operations plan for dealing with space weather, she said.

  15. Oil sheen weathering post Deepwater Horizon

    NASA Astrophysics Data System (ADS)

    Kellermann, M. Y.; Redmond, M. C.; Reddy, C. M.; Aeppli, C.; Nelson, R. K.; Valentine, D. L.

    2013-12-01

    A recently published study identified the source of the reoccurred oil sheens close to the Deepwater Horizon (DWH) disaster site as a finite contamination most likely derived from tanks and pits on the DWH wreckage itself. Here we use geochemical fingerprinting and microbial community analysis to better understand the fate and weathering processes affecting these surface oils. Both, alkanes and polycyclic aromatic hydrocarbons (PAHs) are shown to reflect a linear decrease of hydrocarbon compounds with increasing distance to the DWH wreckage site (equivalent to exposure time on the sea surface). These results indicate that in the early stage of weathering the combined effects of dissolution and evaporation dominate the degradation of these surface oils. Sheen microbial communities were dominated by Cyanobacteria, Planctomycetes, Verrucomicrobia, Flavobacteria, Alphaproteobacteria, and Deltaproteobacteria, with low relative abundances of Gammaproteobacteria likely to be hydrocarbon degraders (no more than 15% of sequences in each sample). However, some of these Gammaproteobacteria were closely related to putative hydrocarbon degraders observed in abundance in deep water plumes during the primary Deepwater Horizon spill, suggesting that very low levels of biodegradation may be also occurring. This in situ weathering experiment provides new insights in hydrocarbon weathering dynamics and shows how chemical and biological changes can potentially be masked by large evaporative losses of compounds smaller than C18 n-alkanes.

  16. Communicating space weather to policymakers and the wider public

    NASA Astrophysics Data System (ADS)

    Ferreira, Bárbara

    2014-05-01

    As a natural hazard, space weather has the potential to affect space- and ground-based technological systems and cause harm to human health. As such, it is important to properly communicate this topic to policymakers and the general public alike, informing them (without being unnecessarily alarmist) about the potential impact of space-weather phenomena and how these can be monitored and mitigated. On the other hand, space weather is related to interesting phenomena on the Sun such as coronal-mass ejections, and incorporates one of the most beautiful displays in the Earth and its nearby space environment: aurora. These exciting and fascinating aspects of space weather should be cultivated when communicating this topic to the wider public, particularly to younger audiences. Researchers have a key role to play in communicating space weather to both policymakers and the wider public. Space scientists should have an active role in informing policy decisions on space-weather monitoring and forecasting, for example. And they can exercise their communication skills by talking about space weather to school children and the public in general. This presentation will focus on ways to communicate space weather to wider audiences, particularly policymakers. It will also address the role researchers can play in this activity to help bridge the gap between the space science community and the public.

  17. Space Weather: The Solar Perspective

    NASA Astrophysics Data System (ADS)

    Schwenn, Rainer

    2006-12-01

    The term space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that can affect human life and health. Our modern hi-tech society has become increasingly vulnerable to disturbances from outside the Earth system, in particular to those initiated by explosive events on the Sun: Flares release flashes of radiation that can heat up the terrestrial atmosphere such that satellites are slowed down and drop into lower orbits, solar energetic particles accelerated to near-relativistic energies may endanger astronauts traveling through interplanetary space, and coronal mass ejections are gigantic clouds of ionized gas ejected into interplanetary space that after a few hours or days may hit the Earth and cause geomagnetic storms. In this review, I describe the several chains of actions originating in our parent star, the Sun, that affect Earth, with particular attention to the solar phenomena and the subsequent effects in interplanetary space.

  18. NASA Space Weather Center Services: Potential for Space Weather Research

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.

    2012-01-01

    The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.

  19. Road Weather and Connected Vehicles

    NASA Astrophysics Data System (ADS)

    Pisano, P.; Boyce, B. C.

    2015-12-01

    On average, there are over 5.8 M vehicle crashes each year of which 23% are weather-related. Weather-related crashes are defined as those crashes that occur in adverse weather or on slick pavement. The vast majority of weather-related crashes happen on wet pavement (74%) and during rainfall (46%). Connected vehicle technologies hold the promise to transform road-weather management by providing improved road weather data in real time with greater temporal and geographic accuracy. This will dramatically expand the amount of data that can be used to assess, forecast, and address the impacts that weather has on roads, vehicles, and travelers. The use of vehicle-based measurements of the road and surrounding atmosphere with other, more traditional weather data sources, and create road and atmospheric hazard products for a variety of users. The broad availability of road weather data from mobile sources will vastly improve the ability to detect and forecast weather and road conditions, and will provide the capability to manage road-weather response on specific roadway links. The RWMP is currently demonstrating how weather, road conditions, and related vehicle data can be used for decision making through an innovative Integrated Mobile Observations project. FHWA is partnering with 3 DOTs (MN, MI, & NV) to pilot these applications. One is a mobile alerts application called the Motorists Advisories and Warnings (MAW) and a maintenance decision support application. These applications blend traditional weather information (e.g., radar, surface stations) with mobile vehicle data (e.g., temperature, brake status, wiper status) to determine current weather conditions. These weather conditions, and other road-travel-relevant information, are provided to users via web and phone applications. The MAW provides nowcasts and short-term forecasts out to 24 hours while the EMDSS application can provide forecasts up to 72 hours in advance. The three DOTs have placed readers and external

  20. Weatherization Apprenticeship Program

    SciTech Connect

    Watson, Eric J

    2012-12-18

    Weatherization improvement services will be provided to Native people by Native people. The proposed project will recruit, train and hire two full-time weatherization technicians who will improve the energy efficiency of homes of Alaska Natives/American Indians residing in the Indian areas, within the Cook Inlet Region of Alaska. The Region includes Anchorage as well as 8 small tribal villages: The Native Villages of Eklutna, Knik, Chickaloon, Seldovia, Ninilchik, Kenaitze, Salamatof, and Tyonek. This project will be a partnership between three entities, with Cook Inlet Tribal Council (CITC) as the lead agency: CITCA's Employment and Training Services Department, Cook Inlet Housing Authority and Alaska Works Partnership. Additionally, six of the eight tribal villages within the Cook Inlet Region of Alaska have agreed to work with the project in order to improve the energy efficiency of their tribally owned buildings and homes. The remaining three villages will be invited to participate in the establishment of an intertribal consortium through this project. Tribal homes and buildings within Anchorage fall under Cook Inlet Region, Inc. (CIRI) tribal authority.

  1. Weathering of rock 'Ginger'

    NASA Technical Reports Server (NTRS)

    1997-01-01

    One of the more unusual rocks at the site is Ginger, located southeast of the lander. Parts of it have the reddest color of any material in view, whereas its rounded lobes are gray and relatively unweathered. These color differences are brought out in the inset, enhanced at the upper right. In the false color image at the lower right, the shape of the visible-wavelength spectrum (related to the abundance of weathered ferric iron minerals) is indicated by the hue of the rocks. Blue indicates relatively unweathered rocks. Typical soils and drift, which are heavily weathered, are shown in green and flesh tones. The very red color in the creases in the rock surface correspond to a crust of ferric minerals. The origin of the rock is uncertain; the ferric crust may have grown underneath the rock, or it may cement pebbles together into a conglomerate. Ginger will be a target of future super-resolution studies to better constrain its origin.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  2. Weather forecasting expert system study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Weather forecasting is critical to both the Space Transportation System (STS) ground operations and the launch/landing activities at NASA Kennedy Space Center (KSC). The current launch frequency places significant demands on the USAF weather forecasters at the Cape Canaveral Forecasting Facility (CCFF), who currently provide the weather forecasting for all STS operations. As launch frequency increases, KSC's weather forecasting problems will be great magnified. The single most important problem is the shortage of highly skilled forecasting personnel. The development of forecasting expertise is difficult and requires several years of experience. Frequent personnel changes within the forecasting staff jeopardize the accumulation and retention of experience-based weather forecasting expertise. The primary purpose of this project was to assess the feasibility of using Artificial Intelligence (AI) techniques to ameliorate this shortage of experts by capturing aria incorporating the forecasting knowledge of current expert forecasters into a Weather Forecasting Expert System (WFES) which would then be made available to less experienced duty forecasters.

  3. CD4+ CD25+ regulatory T cells prevent type 1 diabetes preceded by dendritic cell-dominant invasive insulitis by affecting chemotaxis and local invasiveness of dendritic cells.

    PubMed

    Lee, Mi-Heon; Lee, Wen-Hui; Todorov, Ivan; Liu, Chih-Pin

    2010-08-15

    Development of type 1 diabetes (T1D) is preceded by invasive insulitis. Although CD4(+)CD25(+) regulatory T cells (nTregs) induce tolerance that inhibits insulitis and T1D, the in vivo cellular mechanisms underlying this process remain largely unclear. Using an adoptive transfer model and noninvasive imaging-guided longitudinal analyses, we found nTreg depletion did not affect systemic trafficking and tissue localization of diabetogenic CD4(+) BDC2.5 T (BDC) cells in recipient mice prior to development of T1D. In addition, neither the initial expansion/activation of BDC cells nor the number of CD11c(+) or NK cells in islets and pancreatic lymph nodes were altered. Unexpectedly, our results showed nTreg depletion led to accelerated invasive insulitis dominated by CD11c(+) dendritic cells (ISL-DCs), not BDC cells, which stayed in the islet periphery. Compared with control mice, the phenotype of ISL-DCs and their ability to stimulate BDC cells did not change during invasive insulitis development. However, ISL-DCs from nTreg-deficient recipient mice showed increased in vitro migration toward CCL19 and CCL21. These results demonstrated invasive insulitis dominated by DCs, not CD4(+) T cells, preceded T1D onset in the absence of nTregs, and suggested a novel in vivo function of nTregs in T1D prevention by regulating local invasiveness of DCs into islets, at least partly, through regulation of DC chemotaxis toward CCL19/CCL21 produced by the islets.

  4. National Weather Service Forecast Reference Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Osborne, H. D.; Palmer, C. K.; Krone-Davis, P.; Melton, F. S.; Hobbins, M.

    2013-12-01

    The National Weather Service (NWS), Weather Forecasting Offices (WFOs) are producing daily reference evapotranspiration (ETrc) forecasts or FRET across the Western Region and in other selected locations since 2009, using the Penman - Monteith Reference Evapotranspiration equation for a short canopy (12 cm grasses), adopted by the Environmental Water Resources Institute of the American Society of Civil Engineers (ASCE-EWRI, 2004). The sensitivity of these daily calculations to fluctuations in temperatures, humidity, winds, and sky cover allows forecasters with knowledge of local terrain and weather patterns to better forecast in the ETrc inputs. The daily FRET product then evolved into a suite of products, including a weekly ETrc forecast for better water planning and a tabular point forecast for easy ingest into local water management-models. The ETrc forecast product suite allows water managers, the agricultural community, and the public to make more informed water-use decisions. These products permit operational planning, especially with the impending drought across much of the West. For example, the California Department of Water Resources not only ingests the FRET into their soil moisture models, but uses the FRET calculations when determining the reservoir releases in the Sacramento and American Rivers. We will also focus on the expansion of FRET verification, which compares the daily FRET to the observations of ETo from the California Irrigation Management Information System (CIMIS) across California's Central Valley for the 2012 water year.

  5. Space Weather: What is it, and Why Should a Meteorologist Care?

    NASA Technical Reports Server (NTRS)

    SaintCyr, Chris; Murtagh, Bill

    2008-01-01

    "Space weather" is a term coined almost 15 years ago to describe environmental conditions ABOVE Earth's atmosphere that affect satellites and astronauts. As society has become more dependent on technology, we nave found that space weather conditions increasingly affect numerous commercial and infrastructure sectors: airline operations, the precision positioning industry, and the electric power grid, to name a few. Similar to meteorology where "weather" often refers to severe conditions, "space weather" includes geomagnetic storms, radiation storms, and radio blackouts. But almost all space weather conditions begin at the Sun--our middle-age, magnetically-variable star. At NASA, the science behind space weather takes place in the Heliophysics Division. The Space Weather Prediction Center in Boulder, Colorado, is manned jointly by NCAA and US Air Force personnel, and it provides space weather alerts and warnings for disturbances that can affect people and equipment working in space and on Earth. Organizationally, it resides in NOAA's National Weather Service as one of the National Centers for Environmental Prediction. In this seminar we hope to give the audience a brief introduction to the causes of space weather, discuss some of the effects, and describe the state of the art in forecasting. Our goal is to highlight that meteorologists are increasingly becoming the "first responders" to questions about space weather causes and effects.

  6. The Origin of "Space Weather"

    NASA Astrophysics Data System (ADS)

    Cade, William B.; Chan-Park, Christina

    2015-02-01

    Although "space weather" is a fairly recent term, there is a rich history of similar terms being used beginning in the middle to late 1800s. "Solar meteorology," "magnetic weather," and "cosmic meteorology" all appeared during that time frame. The actual first appearance of space weather can be attributed to the publication Science News Letter in 1957 (with the first modern usage in 1959) and was possibly coined by the editor at the time, Watson Davis.

  7. Climate signal and weather noise

    SciTech Connect

    Leith, C.E.

    1995-04-01

    A signal of small climate change in either the real atmosphere or numerical simulation of it tends to be obscured by chaotic weather fluctuations. Time-lagged covariances of such weather processes are used to estimate the sampling errors of time average estimates of climate parameters. Climate sensitivity to changing external influences may also be estimated using the fluctuation dissipation relation of statistical mechanics. Answers to many climate questions could be provided by a realistic stochastic model of weather and climate.

  8. Space Weathering: An Ultraviolet Indicator

    NASA Technical Reports Server (NTRS)

    Hendrix, A. R.; Vilas, F.

    2003-01-01

    We present evidence suggesting that the spectral slope of airless bodies in the UV-visible wavelength range can be used as an indicator of exposure to space weathering. While space weathering generally produces a reddening of spectra in the visible-NIR spectral regions, it tends to result in a bluing of the UV-visible portion of the spectrum, and may in some cases produce a spectral reversal. The bluing effect may be detectable with smaller amounts of weathering than are necessary to detect the longer-wavelength weathering effects.

  9. Space Weathering: An Ultraviolet Indicator

    NASA Technical Reports Server (NTRS)

    Hendrix, A. R.; Vilas, F.

    2004-01-01

    We present evidence suggesting that the spectral slope of airless bodies in the UV-visible wavelength range can be used as an indicator of exposure to space weathering. While space weathering generally produces a reddening of spectra in the visible-NIR spectral regions, it tends to result in a bluing of the UV-visible portion of the spectrum, and may in some cases produce a spectral reversal. The bluing effect may be detectable with smaller amounts of weathering than are necessary to detect the longer-wavelength weathering effects.

  10. AWE: Aviation Weather Data Visualization

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Lodha, Suresh K.

    2001-01-01

    The two official sources for aviation weather reports both require the pilot to mentally visualize the provided information. In contrast, our system, Aviation Weather Environment (AWE) presents aviation specific weather available to pilots in an easy to visualize form. We start with a computer-generated textual briefing for a specific area. We map this briefing onto a grid specific to the pilot's route that includes only information relevant to his flight route that includes only information relevant to his flight as defined by route, altitude, true airspeed, and proposed departure time. By modifying various parameters, the pilot can use AWE as a planning tool as well as a weather briefing tool.

  11. Solar weather/climate predictions

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.; Goldberg, R. A.; Mitchell, J. M.; Olson, R.; Schaefer, J.; Silverman, S.; Wilcox, J.; Williams, G.

    1979-01-01

    Solar variability influences upon terrestrial weather and climate are addressed. Both the positive and negative findings are included and specific predictions, areas of further study, and recommendations listed.

  12. Small Sensors for Space Weather

    NASA Astrophysics Data System (ADS)

    Nicholas, A. C.

    2015-12-01

    The Naval Research Laboratory is actively pursuing enhancing the nation's space weather sensing capability. One aspect of this plan is the concept of flying Space Weather sensor suites on host spacecraft as secondary payloads. The emergence and advancement of the CubeSat spacecraft architecture has produced a viable platform for scientifically and operationally relevant Space Weather sensing. This talk will provide an overview of NRL's low size weight and power sensor technologies targeting Space Weather measurements. A summary of on-orbit results of past and current missions will be presented, as well as an overview of future flights that are manifested and potential constellation missions.

  13. Bishop Paiute Weatherization Training Program

    SciTech Connect

    Carlos Hernandez

    2010-01-28

    The DOE Weatherization Training Grant assisted Native American trainees in developing weatherization competencies, creating employment opportunities for Bishop Paiute tribal members in a growing field. The trainees completed all the necessary training and certification requirements and delivered high-quality weatherization services on the Bishop Paiute Reservation. Six tribal members received all three certifications for weatherization; four of the trainees are currently employed. The public benefit includes (1) development of marketable skills by low-income Native individuals, (2) employment for low-income Native individuals in a growing industry, and (3) economic development opportunities that were previously not available to these individuals or the Tribe.

  14. Weather explains high annual variation in butterfly dispersal.

    PubMed

    Kuussaari, Mikko; Rytteri, Susu; Heikkinen, Risto K; Heliölä, Janne; von Bagh, Peter

    2016-07-27

    Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark-release-recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79-91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming.

  15. Weather variability and paediatric infectious gastroenteritis.

    PubMed

    Onozuka, D; Hashizume, M

    2011-09-01

    Investigations of the relationship between weather variability and infectious gastroenteritis (IG) are becoming increasingly important in light of international interest in the potential health effects of climate change. However, few studies have examined the impact on children, despite the fact that children are considered particularly vulnerable to climate change. We acquired data about cases of IG in children aged <15 years and about weather variability in Fukuoka, Japan from 2000 to 2008 and used time-series analyses to assess how weather variability affected IG cases, adjusting for confounding factors. The temperature-IG relationship had an inverted V shape, with fewer cases at temperatures lower and higher than ~13°C. Every 1°C increase in temperature below the threshold (13°C) was associated with a 23·2% [95% confidence interval (CI) 16·6-30·2] increase, while every 1°C increase in temperature above the threshold (13°C) was associated with an 11·8% (95% CI 6·6-17·3) decrease in incidence. The increase in cases per 1% drop in relative humidity was 3·9% (95% CI 2·8-5·0). The percentage increase of IG cases was greatest in the 0-4 years age group and tended to decrease with increasing age. We found a progressive reduction in weather-related IG cases in children aged >4 years. Our results suggest that public health interventions aimed at controlling weather-related IG may be most effective when focused on young children.

  16. Corn response to nitrogen is influenced by soil texture and weather

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil properties and weather conditions are known to affect soil nitrogen (N) availability and plant N uptake. However, studies examining N response as affected by soil and weather sometimes give conflicting results. Meta-analysis is a statistical method for estimating treatment effects in a series o...

  17. Corn response to nitrogen is influenced by soil texture and weather

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil properties and weather conditions are known to affect soil nitrogen (N) availability and plant N uptake. However, studies examining N response as affected by soil and weather sometimes give conflicting results. Meta-analysis is a statistical method for estimating treatment effects in a se...

  18. Meta-analysis reveals an association of PTPN22 C1858T with autoimmune diseases, which depends on the localization of the affected tissue.

    PubMed

    Zheng, J; Ibrahim, S; Petersen, F; Yu, X

    2012-12-01

    Protein tyrosine phosphatase non-receptor type 22 (PTPN22) is a strong susceptibility gene shared by many autoimmune diseases. The aim of this study was to explore the mechanisms underlying this relationship. We performed a comprehensive analysis of the association between PTPN22 polymorphism C1858T and autoimmune diseases. The results showed a remarkable pattern; PTPN22 C1858T was strongly associated with type I diabetes, rheumatoid arthritis, immune thrombocytopenia, generalized vitiligo with concomitant autoimmune diseases, idiopathic inflammatory myopathies, Graves' disease, juvenile idiopathic arthritis, myasthenia gravis, systemic lupus erythematosus, anti-neutrophil cytoplasmic antibody-associated vasculitis and Addison's disease. By contrast, PTPN22 C1858T showed a negligible association with systemic sclerosis, celiac disease, multiple sclerosis, psoriasis, ankylosing spondylitis, pemphigus vulgaris, ulcerative colitis, primary sclerosing cholangitis, primary biliary cirrhosis, Crohn's disease and acute anterior uveitis. Further analysis revealed a clear distinction between the two groups of diseases with regard to their targeted tissues: most autoimmune diseases showing an insignificant association with PTPN22 C1858T manifest in skin, the gastrointestinal tract or in immune privileged sites. These results showed that the association of PTPN22 polymorphism with autoimmune diseases depends on the localization of the affected tissue, suggesting a role of targeted organ variation in the disease manifestations.

  19. Intelligent Weather Agent

    NASA Technical Reports Server (NTRS)

    Spirkovska, Liljana (Inventor)

    2006-01-01

    Method and system for automatically displaying, visually and/or audibly and/or by an audible alarm signal, relevant weather data for an identified aircraft pilot, when each of a selected subset of measured or estimated aviation situation parameters, corresponding to a given aviation situation, has a value lying in a selected range. Each range for a particular pilot may be a default range, may be entered by the pilot and/or may be automatically determined from experience and may be subsequently edited by the pilot to change a range and to add or delete parameters describing a situation for which a display should be provided. The pilot can also verbally activate an audible display or visual display of selected information by verbal entry of a first command or a second command, respectively, that specifies the information required.

  20. Global weather research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Modeling, prediction, and analysis of global meteorological phenomena influencing the large scale behavior of the atmosphere are summarized. Prediction of global weather phenomena based on satellite data is discussed and models of global phenomena developed. The atmospheric general circulation model (AGCE) is reviewed, axisymmetric flow calculated, and axisymmetric states in cylindrical, spherical, three dimensional, and spin up numerical models for AGCE described. The role of latent heat release in baroclinic waves, latent heat and cyclonic systems, and a theoretical study of baroclinic flow related to the AGCE and the flow regime were studied with a simplified general circulation model. AGCE and the geophysical fluid flow cell (GFFC) instrumentation are discussed. Investigation of solar and planetary convection for GFFC is described. The utilization of satellite cloud observations to diagnose the energy state and transformations in extratropical cyclones is reviewed.

  1. Terminal weather information management

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.

    1990-01-01

    Since the mid-1960's, microburst/windshear events have caused at least 30 aircraft accidents and incidents and have killed more than 600 people in the United States alone. This study evaluated alternative means of alerting an airline crew to the presence of microburst/windshear events in the terminal area. Of particular interest was the relative effectiveness of conventional and data link ground-to-air transmissions of ground-based radar and low-level windshear sensing information on microburst/windshear avoidance. The Advanced Concepts Flight Simulator located at Ames Research Center was employed in a line oriented simulation of a scheduled round-trip airline flight from Salt Lake City to Denver Stapleton Airport. Actual weather en route and in the terminal area was simulated using recorded data. The microburst/windshear incident of July 11, 1988 was re-created for the Denver area operations. Six experienced airline crews currently flying scheduled routes were employed as test subjects for each of three groups: (1) A baseline group which received alerts via conventional air traffic control (ATC) tower transmissions; (2) An experimental group which received alerts/events displayed visually and aurally in the cockpit six miles (approx. 2 min.) from the microburst event; and (3) An additional experimental group received displayed alerts/events 23 linear miles (approx. 7 min.) from the microburst event. Analyses of crew communications and decision times showed a marked improvement in both situation awareness and decision-making with visually displayed ground-based radar information. Substantial reductions in the variability of decision times among crews in the visual display groups were also found. These findings suggest that crew performance will be enhanced and individual differences among crews due to differences in training and prior experience are significantly reduced by providing real-time, graphic display of terminal weather hazards.

  2. Micro Weather Station

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.

    1999-01-01

    Improved in situ meteorological measurements in the troposphere and stratosphere are needed for studies of weather and climate, both as a primary data source and as validation for remote sensing instruments. Following the initial development and successful flight validation of the surface acoustic wave (SAW) hygrometer, the micro weather station program was directed toward the development of an integrated instrument, capable of accurate, in situ profiling of the troposphere, and small enough to fly on a radiosonde balloon for direct comparison with standard radiosondes. On April 23, 1998, working with Frank Schmidlin and Bob Olson of Wallops Island Flight Facility, we flew our instrument in a dual payload experiment, for validation and direct comparison with a Vaisala radiosonde. During that flight, the SAW dewpoint hygrometer measured frostpoint down to -76T at 44,000 feet. Using a laptop computer in radio contact with the balloon, we monitored data in real time, issued the cutdown command, and recovered the payload less than an hour after landing in White Sands Missile Range, 50 miles from the launch site in Hatch, New Mexico. Future flights will extend the intercomparison, and attempt to obtain in situ meteorological profiles from the surface through the tropopause. The SAW hygrometer was successfully deployed on the NASA DC8 as part of NASA's Third Convection and Moisture Experiment (CAMEX-3) during August and September, 1998. This field campaign was devoted to the study of hurricane tracking and intensification using NASA-funded aircraft. In situ humidity data from the SAW hygrometer are currently being analyzed and compared with data from other instruments on the DC8 and ER2 aircraft. Additional information is contained in the original.

  3. Weather Extremes, Climate Change and Adaptive Governance

    NASA Astrophysics Data System (ADS)

    Veland, S.; Lynch, A. H.

    2014-12-01

    Human societies have become a geologic agent of change, and with this is an increasing awareness of the environment risks that confront human activities and values. More frequent and extreme hydroclimate events, anomalous tropical cyclone seasons, heat waves and droughts have all been documented, and many rigorously attributed to fossil fuel emissions (e.g. DeGaetano 2009; Hoyos et al. 2006). These extremes, however, do not register themselves in the abstract - they occur in particular places, affecting particular populations and ecosystems (Turner et al. 2003). This can be considered to present a policy window to decrease vulnerability and enhance emergency management. However, the asymmetrical character of these events may lead some to treat remote areas or disenfranchised populations as capable of absorbing the environmental damage attributable to the collective behavior of those residing in wealthy, populous, industrialized societies (Young 1989). Sound policies for adaptation to changing extremes must take into account the multiple interests and resource constraints for the populations affected and their broader contexts. Minimizing vulnerability to weather extremes is only one of many interests in human societies, and as noted, this interest competes with the others for limited time, attention, funds and other resources. Progress in reducing vulnerability also depends on policy that integrates the best available local and scientific knowledge and experience elsewhere. This improves the chance that each policy will succeed, but there are no guarantees. Each policy must be recognized as a matter of trial and error to some extent; surprises are inevitable. Thus each policy should be designed to fail gracefully if it fails, to learn from the experience, and to leave resources sufficient to implement the lessons learned. Overall policy processes must be quasi-evolutionary, avoiding replication without modification of failed policies and building on the successes

  4. Communicating Climate Change - Weather Forecast Need Assessment and Information Dissemination Mechanism to Farmers in Nepal

    NASA Astrophysics Data System (ADS)

    Panthi, J., Sr.

    2014-12-01

    Climate Change is becoming one of the major threats to the fragile Himalayan ecosystem. It is affecting all sectors mainly fresh water, agriculture, forest, biodiversity and species. The subsistence agriculture system of Nepal is mainly rain-fed; therefore, climate change and climate extremes do have direct impacts on it. Weather extremes like droughts, floods and landslides long-lasting fog, hot and cold waves are affecting the agriculture sectors of Nepal. As human-induced climate change has already showing its impacts and it is going to be there for a long time to come, it is paramount importance to move towards the adaptation. Early warning system is an effective way for reducing the impacts of disasters. Forecasting of weather parameters (temperature, precipitation, and wind) helps farmers for their preparedness activities. With consultation with farmers and other relevant institutions, a research project was carried out, for the first time in Nepal, to identify the forecast information need to farmers and their dissemination mechanism. Community consultation workshops, key informant survey, and field observations were the techniques used for this research. Two ecological locations: Bageshwori VDC in Banke (plain) and Dhaibung VDC in Rasuwa (mountain) were taken as the pilot sites for this assessment. People in both the districts are dependent highly on agriculture and the weather extremes like hailstone, untimely rainfall; droughts are affecting their agriculture practices. They do not have confidence in the weather forecast information disseminated by the government of Nepal currently being done because it is a general forecast not done for a smaller domain and the forecast is valid only for 24 hours. The weather forecast need to the farmers in both the sites are: rainfall (intensity, duration and time), drought, and hailstone but in Banke, people wished to have the information of heat and cold waves too as they are affecting their wheat and tomato crops

  5. Weatherization Assistance Program Technical Assistance Center

    SciTech Connect

    Robert Adams

    2009-01-07

    The following is a synopsis of the major achievements attributed to the operation of the Weatherization Assistance Program Technical Assistance Center (WAPTAC) by the National Association for State Community Services Programs (NASCSP). During the past five years, the WAPTAC has developed into the premier source for information related to operating the Weatherization Assistance Program (WAP) at the state and local levels. The services provide through WAPTAC include both virtual technical support as well as hands-on training and instruction in classroom and in the field. The WAPTAC achieved several important milestones during its operation including the establishment of a national Weatherization Day now celebrated in most states, the implementation of a comprehensive Public Information Campaign (PIC) to raise the awareness of the Program among policy makers and the public, the training of more than 150 new state managers and staff as they assume their duties in state offices around the country, and the creation and support of a major virtual information source on the Internet being accessed by thousands of staff each month. The Weatherization Assistance Program Technical Assistance Center serves the Department of Energy's (DOE) Office of Weatherization and Intergovernmental Program as a valuable training and technical assistance resource for the network of 54 direct state grantees (50 states, District of Columbia and three Native American tribes) and the network of 900 local subgrantees (comprised of community action agencies, units of local government, and other non-profit organizations). The services provided through WAPTAC focus on standardizing and improving the daily management of the WAP. Staff continually identify policies changes and best practices to help the network improve its effectiveness and enhance the benefits of the Program for the customers who receive service and the federal and private investors. The operations of WAPTAC are separated into six

  6. Weather Fundamentals: Hurricanes & Tornadoes. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) features information on the deadliest and most destructive storms on Earth. Through satellite…

  7. Now, Here's the Weather Forecast...

    ERIC Educational Resources Information Center

    Richardson, Mathew

    2013-01-01

    The Met Office has a long history of weather forecasting, creating tailored weather forecasts for customers across the world. Based in Exeter, the Met Office is also home to the Met Office Hadley Centre, a world-leading centre for the study of climate change and its potential impacts. Climate information from the Met Office Hadley Centre is used…

  8. FREEZING WEATHER IN PENINSULAR FLORIDA,

    DTIC Science & Technology

    The synoptic situations which bring serious freezing weather to the Florida Peninsula are discussed generally by presenting various weather charts...scheme is presented which might permanently eliminate serious freezing in the Florida Peninsula. Before any solution can be reached, it t necessary to be

  9. Weather to Make a Decision

    ERIC Educational Resources Information Center

    Hoyle, Julie E.; Mjelde, James W.; Litzenberg, Kerry K.

    2006-01-01

    DECIDE is a teacher-friendly, integrated approach designed to stimulate learning by allowing students to make decisions about situations they face in their lives while using scientific weather principles. This learning unit integrates weather science, decision theory, mathematics, statistics, geography, and reading in a context of decision…

  10. Weather Fundamentals: Rain & Snow. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) gives concise explanations of the various types of precipitation and describes how the water…

  11. The pioneers of weather forecasting

    NASA Astrophysics Data System (ADS)

    Ballard, Susan

    2016-01-01

    In The Weather Experiment author Peter Moore takes us on a compelling journey through the early history of weather forecasting, bringing to life the personalities, lives and achievements of the men who put in place the building blocks required for forecasts to be possible.

  12. Aviation Weather Information Requirements Study

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.; Stancil, Charles E.; Eckert, Clifford A.; Brown, Susan M.; Gimmestad, Gary G.; Richards, Mark A.; Schaffner, Philip R. (Technical Monitor)

    2000-01-01

    The Aviation Safety Program (AvSP) has as its goal an improvement in aviation safety by a factor of 5 over the next 10 years and a factor of 10 over the next 20 years. Since weather has a big impact on aviation safety and is associated with 30% of all aviation accidents, Weather Accident Prevention (WxAP) is a major element under this program. The Aviation Weather Information (AWIN) Distribution and Presentation project is one of three projects under this element. This report contains the findings of a study conducted by the Georgia Tech Research Institute (GTRI) under the Enhanced Weather Products effort, which is a task under AWIN. The study examines current aviation weather products and there application. The study goes on to identify deficiencies in the current system and to define requirements for aviation weather products that would lead to an increase in safety. The study also provides an overview the current set of sensors applied to the collection of aviation weather information. New, modified, or fused sensor systems are identified which could be applied in improving the current set of weather products and in addressing the deficiencies defined in the report. In addition, the study addresses and recommends possible sensors for inclusion in an electronic pilot reporting (EPIREP) system.

  13. Regional-seasonal weather forecasting

    SciTech Connect

    Abarbanel, H.; Foley, H.; MacDonald, G.; Rothaus, O.; Rudermann, M.; Vesecky, J.

    1980-08-01

    In the interest of allocating heating fuels optimally, the state-of-the-art for seasonal weather forecasting is reviewed. A model using an enormous data base of past weather data is contemplated to improve seasonal forecasts, but present skills do not make that practicable. 90 references. (PSB)

  14. Smooth Sailing for Weather Forecasting

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Through a cooperative venture with NASA's Stennis Space Center, WorldWinds, Inc., developed a unique weather and wave vector map using space-based radar satellite information and traditional weather observations. Called WorldWinds, the product provides accurate, near real-time, high-resolution weather forecasts. It was developed for commercial and scientific users. In addition to weather forecasting, the product's applications include maritime and terrestrial transportation, aviation operations, precision farming, offshore oil and gas operations, and coastal hazard response support. Target commercial markets include the operational maritime and aviation communities, oil and gas providers, and recreational yachting interests. Science applications include global long-term prediction and climate change, land-cover and land-use change, and natural hazard issues. Commercial airlines have expressed interest in the product, as it can provide forecasts over remote areas. WorldWinds, Inc., is currently providing its product to commercial weather outlets.

  15. International Space Weather Initiative (ISWI)

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat; Davila, Joseph M.

    2010-01-01

    The International Space Weather Initiative (ISWI) is an international scientific program to understand the external drivers of space weather. The science and applications of space weather has been brought to prominence because of the rapid development of space based technology that is useful for all human beings. The ISWI program has its roots in the successful International Heliophysical Year (IHY) program that ran during 2007 - 2009. The primary objective of the ISWI program is to advance the space weather science by a combination of instrument deployment, analysis and interpretation of space weather data from the deployed instruments in conjunction with space data, and communicate the results to the public and students. Like the IHY, the ISWI will be a grass roots organization with key participation from national coordinators in cooperation with an international steering committee. This talk outlines the ISWI program including its organization and proposed activities.

  16. Upgrade Summer Severe Weather Tool

    NASA Technical Reports Server (NTRS)

    Watson, Leela

    2011-01-01

    The goal of this task was to upgrade to the existing severe weather database by adding observations from the 2010 warm season, update the verification dataset with results from the 2010 warm season, use statistical logistic regression analysis on the database and develop a new forecast tool. The AMU analyzed 7 stability parameters that showed the possibility of providing guidance in forecasting severe weather, calculated verification statistics for the Total Threat Score (TTS), and calculated warm season verification statistics for the 2010 season. The AMU also performed statistical logistic regression analysis on the 22-year severe weather database. The results indicated that the logistic regression equation did not show an increase in skill over the previously developed TTS. The equation showed less accuracy than TTS at predicting severe weather, little ability to distinguish between severe and non-severe weather days, and worse standard categorical accuracy measures and skill scores over TTS.

  17. National Weatherization Assistance Program Characterization Describing the Recovery Act Period

    SciTech Connect

    Tonn, Bruce Edward; Rose, Erin M.; Hawkins, Beth A.

    2015-10-01

    This report characterizes the U.S. Department of Energy s Weatherization Assistance Program (WAP) during the American Recovery and Reinvestment Act of 2009 (Recovery Act) period. This research was one component of the Recovery Act evaluation of WAP. The report presents the results of surveys administered to Grantees (i.e., state weatherization offices) and Subgrantees (i.e., local weatherization agencies). The report also documents the ramp up and ramp down of weatherization production and direct employment during the Recovery Act period and other challenges faced by the Grantees and Subgrantees during this period. Program operations during the Recovery Act (Program Year 2010) are compared to operations during the year previous to the Recovery Act (Program Year 2008).

  18. SEASAT economic assessment. Volume 9: Ports and harbors case study and generalization. [economic benefits of SEASAT satellites to harbors and shipping industries through improved weather forecasting

    NASA Technical Reports Server (NTRS)

    1975-01-01

    This case study and generalization quantify benefits made possible through improved weather forecasting resulting from the integration of SEASAT data into local weather forecasts. The major source of avoidable economic losses to shipping from inadequate weather forecasting data is shown to be dependent on local precipitation forecasting. The ports of Philadelphia and Boston were selected for study.

  19. PV powering a weather station for severe weather

    SciTech Connect

    Young, W. Jr.; Schmidt, J.

    1997-12-31

    A natural disaster, such as Hurricane Andrew, destroys thousands of homes and businesses. The destruction from this storm left thousands of people without communications, potable water, and electrical power. This prompted the Florida Solar Energy Center to study the application of solar electric power for use in disasters. During this same period, volunteers at the Tropical Prediction Center at the National Hurricane Center (NHC), Miami, Florida and the Miami Office of the National Weather Service (NWS) were working to increase the quantity and quality of observations received from home weather stations. Forecasters at NHC have found surface reports from home weather stations a valuable tool in determining the size, strength and course of hurricanes. Home weather stations appear able to record the required information with an adequate level of accuracy. Amateur radio, utilizing the Automatic Packet Report System, (APRS) can be used to transmit this data to weather service offices in virtually real time. Many weather data collecting stations are at remote sites which are not readily serviced by dependable commercial power. Photovoltaic (solar electric) modules generate electricity and when connected to a battery can operate as a stand alone power system. The integration of these components provides an inexpensive standalone system. The system is easy to install, operates automatically and has good communication capabilities. This paper discusses the design criteria, operation, construction and deployment of a prototype solar powered weather station.

  20. The Planeterrella: an Analog Model for Teaching About the Invisible Electromagnetic Processes Driving Space Weather

    NASA Astrophysics Data System (ADS)

    Masongsong, E. V.; Glesener, G. B.; Angelopoulos, V.; Lilensten, J.; Bingley, L.

    2015-12-01

    The Planeterrella can be used as an analog to help students visualize and understand the electromagnetic processes driving space weather that affect our daily lives. Solar storms and solar wind charged particles (plasma) cause "space weather" via their interaction with Earth's protective magnetic shield, the magnetosphere. The Planeterrella uses magnetized spheres in a vacuum chamber to demonstrate solar wind energy transfer to Earth and planets, with polar localization of aurora due to charged particles traveling along geomagnetic field lines. The Planeterrella provides a unique opportunity to experience and manipulate plasma, the dominant form of matter in our universe, yet seldom observable on Earth. Severe space weather events produce spectacular auroral displays as well as devastating consequences: radiation exposure to air and space travelers, prolonged radio blackouts, and damage to critical GPS and communications satellites. We will (1) discuss ways in which the Planeterrella may be most useful in classroom settings, including large lecture halls, laboratories, and small discussion sessions; (2) provide information on how instructors can produce their own Planeterrella for their courses; and (3) invite meeting attendees to engage in a discussion on how we might be able to improve on the current design of the Planeterrella, and how to reach students in more parts of the world.

  1. November 2004 space weather events: Real-time observations and forecasts

    NASA Astrophysics Data System (ADS)

    Trichtchenko, L.; Zhukov, A.; van der Linden, R.; Stankov, S. M.; Jakowski, N.; StanisłAwska, I.; Juchnikowski, G.; Wilkinson, P.; Patterson, G.; Thomson, A. W. P.

    2007-06-01

    Space weather events with their solar origin and their distribution through the heliosphere affect the whole magnetosphere-ionosphere-Earth system. Their real-time monitoring and forecasting are important for science and technology. Here we discuss one of the largest space weather events of Solar Cycle 23, in November 2004, which was also one of the most difficult periods to forecast. Nine halo coronal mass ejections (CMEs), interacting on their way through the interplanetary medium and forming two geoeffective interplanetary structures, exemplify the complexity of the event. Real-time and quasi-real-time observations of the ground geomagnetic field show rapid and extensive expansion of the auroral oval to 55° in geomagnetic latitude accompanied by great variability of the ionosphere. Geomagnetically induced currents (GICs) seen in ground networks, such as power grids and pipelines, were significant during the event, although no problems were reported. Forecasts of the CME propagation, global and local ground geomagnetic activity, and ionospheric parameters, issued by several regional warning centers, revealed certain deficiencies in predictions of the interplanetary characteristics of the CME, size of the geomagnetic disturbances, and complexity of the ionospheric variations produced by this event. This paper is a collective report based on the materials presented at the splinter session on November 2004 events during the first European Space Weather Week.

  2. Capturing the WUnder: Using weather stations and WeatherUnderground to increase middle school students' understanding and interest in science

    NASA Astrophysics Data System (ADS)

    Schild, K. M.; Dunne, P.

    2014-12-01

    New models of elementary- and middle-school level science education are emerging in response to the need for science literacy and the development of the Next Generation Science Standards. One of these models is fostered through the NSF's Graduate Teaching Fellows in K-12 Education (GK-12) program, which pairs a graduate fellow with a science teacher at a local school for an entire school year. In our project, a PhD Earth Sciences student was paired with a local middle school science teacher with the goal of installing a weather station, and incorporating the station data into the 8th grade science curriculum. Here we discuss how we were able to use a school weather station to introduce weather and climate material, engage and involve students in the creative process of science, and motivate students through inquiry-based lessons. In using a weather station as the starting point for material, we were able to make science tangible for students and provide an opportunity for each student to experience the entire process of scientific inquiry. This hands-on approach resulted in a more thorough understanding the system beyond a knowledge of the components, and was particularly effective in challenging prior weather and climate misconceptions. We were also able to expand the reach of the lessons by connecting with other weather stations in our region and even globally, enabling the students to become members of a larger system.

  3. One motif to bind them: A small-XXX-small motif affects transmembrane domain 1 oligomerization, function, localization, and cross-talk between two yeast GPCRs.

    PubMed

    Lock, Antonia; Forfar, Rachel; Weston, Cathryn; Bowsher, Leo; Upton, Graham J G; Reynolds, Christopher A; Ladds, Graham; Dixon, Ann M

    2014-12-01

    G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors in mammals and facilitate a range of physiological responses triggered by a variety of ligands. GPCRs were thought to function as monomers, however it is now accepted that GPCR homo- and hetero-oligomers also exist and influence receptor properties. The Schizosaccharomyces pombe GPCR Mam2 is a pheromone-sensing receptor involved in mating and has previously been shown to form oligomers in vivo. The first transmembrane domain (TMD) of Mam2 contains a small-XXX-small motif, overrepresented in membrane proteins and well-known for promoting helix-helix interactions. An ortholog of Mam2 in Saccharomyces cerevisiae, Ste2, contains an analogous small-XXX-small motif which has been shown to contribute to receptor homo-oligomerization, localization and function. Here we have used experimental and computational techniques to characterize the role of the small-XXX-small motif in function and assembly of Mam2 for the first time. We find that disruption of the motif via mutagenesis leads to reduction of Mam2 TMD1 homo-oligomerization and pheromone-responsive cellular signaling of the full-length protein. It also impairs correct targeting to the plasma membrane. Mutation of the analogous motif in Ste2 yielded similar results, suggesting a conserved mechanism for assembly. Using co-expression of the two fungal receptors in conjunction with computational models, we demonstrate a functional change in G protein specificity and propose that this is brought about through hetero-dimeric interactions of Mam2 with Ste2 via the complementary small-XXX-small motifs. This highlights the potential of these motifs to affect a range of properties that can be investigated in other GPCRs.

  4. A Temperature-Sensitive Lesion in the N-Terminal Domain of the Rotavirus Polymerase Affects Its Intracellular Localization and Enzymatic Activity.

    PubMed

    McKell, Allison O; LaConte, Leslie E W; McDonald, Sarah M

    2017-04-01

    Temperature-sensitive (ts) mutants of simian rotavirus (RV) strain SA11 have been previously created to investigate the functions of viral proteins during replication. One mutant, SA11-tsC, has a mutation that maps to the gene encoding the VP1 polymerase and shows diminished growth and RNA synthesis at 39°C compared to that at 31°C. In the present study, we sequenced all 11 genes of SA11-tsC, confirming the presence of an L138P mutation in the VP1 N-terminal domain and identifying 52 additional mutations in four other viral proteins (VP4, VP7, NSP1, and NSP2). To investigate whether the L138P mutation induces a ts phenotype in VP1 outside the SA11-tsC genetic context, we employed ectopic expression systems. Specifically, we tested whether the L138P mutation affects the ability of VP1 to localize to viroplasms, which are the sites of RV RNA synthesis, by expressing the mutant form as a green fluorescent protein (GFP) fusion protein (VP1L138P-GFP) (i) in wild-type SA11-infected cells or (ii) in uninfected cells along with viroplasm-forming proteins NSP2 and NSP5. We found that VP1L138P-GFP localized to viroplasms and interacted with NSP2 and/or NSP5 at 31°C but not at 39°C. Next, we tested the enzymatic activity of a recombinant mutant polymerase (rVP1L138P) in vitro and found that it synthesized less RNA at 39°C than at 31°C, as well as less RNA than the control at all temperatures. Together, these results provide a mechanistic basis for the ts phenotype of SA11-tsC and raise important questions about the role of leucine 138 in supporting key protein interactions and the catalytic function of the VP1 polymerase.IMPORTANCE RVs cause diarrhea in the young of many animal species, including humans. Despite their medical and economic importance, gaps in knowledge exist about how these viruses replicate inside host cells. Previously, a mutant simian RV (SA11-tsC) that replicates worse at higher temperatures was identified. This virus has an amino acid mutation in VP

  5. The Weather of the Future: Heat Waves, Extreme Storms, and Other Scenes from a Climate-Changed Planet

    NASA Astrophysics Data System (ADS)

    Cullen, H. M.

    2010-12-01

    In The Weather of the Future, Dr. Heidi Cullen puts a vivid face on climate change, offering a new way of seeing this phenomenon not just as an event set to happen in the distant future but as something happening right now in our own backyards. Arguing that we must connect the weather of today with the climate change of tomorrow, Cullen combines the latest research from scientists on the ground with state-of-the-art climate model projections to create climate-change scenarios for seven of the most at-risk locations around the world. From the Central Valley of California, where coming droughts will jeopardize the entire state’s water supply, to Greenland, where warmer temperatures will give access to mineral wealth buried beneath ice sheets for millennia, Cullen illustrates how, if left unabated, climate change will transform every corner of the world by midcentury. What emerges is a mosaic of changing weather patterns that collectively spell out the range of risks posed by global warming—whether it’s New York City, whose infrastructure is extremely vulnerable even to a relatively weak Category 3 hurricane or to Bangladesh, a country so low-lying that millions of people could become climate refugees thanks to rising sea levels. The Weather of the Future makes climate change local, showing how no two regions of the country or the world will be affected in quite the same way and demonstrating that melting ice is just the beginning.

  6. Improving High-resolution Weather Forecasts using the Weather Research and Forecasting (WRF) Model with Upgraded Kain-Fritsch Cumulus Scheme

    EPA Science Inventory

    High-resolution weather forecasting is affected by many aspects, i.e. model initial conditions, subgrid-scale cumulus convection and cloud microphysics schemes. Recent 12km grid studies using the Weather Research and Forecasting (WRF) model have identified the importance of inco...

  7. Weatherization assistance program. Annual report for 1980

    SciTech Connect

    1980-11-01

    This addresses three major areas of concern relating to weatherization activities: (1) extent of progress being made toward achievement of national energy-conservation goals; (2) adequacy and costs of materials; and (3) need for and desirability of modifying weatherization activities and of extending such activities to a broader range of income groups, including changes to the legislation necessary to accomplish these modifications. The report concentrates on the efforts of the Department of Energy's (DOE) program for Weatherization Assistance for Low-Income Persons. Among the most-significant innovations introduced to the program in 1980 are: performance funding (granting funds on the basis of proven production capability), payment for labor and contractors, inexpensive interim measures, and more flexibility in determining eligibility for multi-family buildings. In addition, the program improved communications with the Department of Labor (DOL) and the Community Services Administration (CSA) as well as with representatives of the local program operators. Headquarters staffing was strengthened in 1980, and a management agreement was signed.

  8. Seasonal and Weather Effects on Older Drivers' Trip Distances.

    PubMed

    Smith, Glenys A; Porter, Michelle M; Cull, Andrew W; Mazer, Barbara L; Myers, Anita M; Naglie, Gary; Bédard, Michel; Tuokko, Holly A; Vrkljan, Brenda H; Gélinas, Isabelle; Marshall, Shawn C; Rapoport, Mark J

    2016-04-05

    The purpose of this study was to determine if season or weather affected the objectively measured trip distances of older drivers (≥ 70 years; n = 279) at seven Canadian sites. During winter, for all trips taken, trip distance was 7 per cent shorter when controlling for site and whether the trip occurred during the day. In addition, for trips taken within city limits, trip distance was 1 per cent shorter during winter and 5 per cent longer during rain when compared to no precipitation when controlling for weather (or season respectively), time of day, and site. At night, trip distance was about 30 per cent longer when controlling for season and site (and weather), contrary to expectations. Together, these results suggest that older Canadian drivers alter their trip distances based on season, weather conditions, and time of day, although not always in the expected direction.

  9. Uncertainty Comparison of Visual Sensing in Adverse Weather Conditions†

    PubMed Central

    Lo, Shi-Wei; Wu, Jyh-Horng; Chen, Lun-Chi; Tseng, Chien-Hao; Lin, Fang-Pang; Hsu, Ching-Han

    2016-01-01

    This paper focuses on flood-region detection using monitoring images. However, adverse weather affects the outcome of image segmentation methods. In this paper, we present an experimental comparison of an outdoor visual sensing system using region-growing methods with two different growing rules—namely, GrowCut and RegGro. For each growing rule, several tests on adverse weather and lens-stained scenes were performed, taking into account and analyzing different weather conditions with the outdoor visual sensing system. The influence of several weather conditions was analyzed, highlighting their effect on the outdoor visual sensing system with different growing rules. Furthermore, experimental errors and uncertainties obtained with the growing rules were compared. The segmentation accuracy of flood regions yielded by the GrowCut, RegGro, and hybrid methods was 75%, 85%, and 87.7%, respectively. PMID:27447642

  10. Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroidal Space Weathering Studies

    NASA Technical Reports Server (NTRS)

    Domingue, Deborah L.; Chapman, Clark. R.; Killen, Rosemary M.; Zurbuchen, Thomas H.; Gilbert, Jason A.; Sarantos, Menelaos; Benna, Mehdi; Slavin, James A.; Schriver, David; Travnicek, Pavel M.; Orlando, Thomas M.; Sprague, Ann L.; Blewett, David T.; Gillis-Davis, Jeffrey J.; Feldman, William C.; Lawrence, David J.; Ho, George C.; Ebel, Denton S.; Nittler, Larry R.; Vilas, Faith; Pieters, Carle M.; Solomon, Sean C.; Johnson, Catherine L.; Winslow, Reka M..; Helbert, Jorn; Peplowski, Patrick N.; Weider, Shoshana Z.; Mouawad, Nelly; Izenberg, Noam R.; McClintock, William E.

    2014-01-01

    Mercury's regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury's exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury's regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury's regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury's regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury's dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of

  11. Cold-Weather Sports and Your Family

    MedlinePlus

    ... Feeding Your 1- to 2-Year-Old Cold-Weather Sports and Your Family KidsHealth > For Parents > Cold- ... once the weather turns frosty. Beating the Cold-Weather Blahs Once a chill is in the air, ...

  12. Geography and Weather: OCEANS.

    ERIC Educational Resources Information Center

    Collins, H. Thomas; Mogil, H. Michael

    1990-01-01

    Provided are suggestions for 23 different activities which can be used to discuss and investigate ocean currents and how they affect human activity. Several maps and charts accompany the activities. A list of 15 resources is included. (CW)

  13. Weather Data Receiver

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Northern Video Graphics, Inc. developed a low-cost satellite receiving system for users such as independent meteorologists, agribusiness firms, small airports or flying clubs, marine vessels and small TV stations. Called Video Fax, it is designed for use with certain satellites; the GOES (Geostationary Operational Environmental Satellite) spacecraft operated by the National Oceanic and Atmospheric Administration, the European Space Agency's Meteosat and Japan's Geostationary Meteorological Satellite. By dictum of the World Meteorological Organization, signals from satellites are available to anyone without cost so the Video Fax user can acquire signals directly from the satellite and cut out the middle man, enabling savings. Unit sells for about one-fifth the cost of the equipment used by TV stations. It consists of a two-meter antenna; a receiver; a microprocessor-controlled display computer; and a video monitor. Computer stores data from the satellites and converts it to an image which is displayed on the monitor. Weather map can be preserved as signal data on tape, or it can be stored in a video cassette as a permanent image.

  14. Ozone trends and their relationship to characteristic weather patterns.

    PubMed

    Austin, Elena; Zanobetti, Antonella; Coull, Brent; Schwartz, Joel; Gold, Diane R; Koutrakis, Petros

    2015-01-01

    Local trends in ozone concentration may differ by meteorological conditions. Furthermore, the trends occurring at the extremes of the Ozone distribution are often not reported even though these may be very different than the trend observed at the mean or median and they may be more relevant to health outcomes. Classify days of observation over a 16-year period into broad categories that capture salient daily local weather characteristics. Determine the rate of change in mean and median O3 concentrations within these different categories to assess how concentration trends are impacted by daily weather. Further examine if trends vary for observations in the extremes of the O3 distribution. We used k-means clustering to categorize days of observation based on the maximum daily temperature, standard deviation of daily temperature, mean daily ground level wind speed, mean daily water vapor pressure and mean daily sea-level barometric pressure. The five cluster solution was determined to be the appropriate one based on cluster diagnostics and cluster interpretability. Trends in cluster frequency and pollution trends within clusters were modeled using Poisson regression with penalized splines as well as quantile regression. There were five characteristic groupings identified. The frequency of days with large standard deviations in hourly temperature decreased over the observation period, whereas the frequency of warmer days with smaller deviations in temperature increased. O3 trends were significantly different within the different weather groupings. Furthermore, the rate of O3 change for the 95th percentile and 5th percentile was significantly different than the rate of change of the median for several of the weather categories.We found that O3 trends vary between different characteristic local weather patterns. O3 trends were significantly different between the different weather groupings suggesting an important interaction between changes in prevailing weather

  15. Ozone Trends and their Relationship to Characteristic Weather Patterns

    PubMed Central

    Austin, Elena; Zanobetti, Antonella; Coull, Brent; Schwartz, Joel; Gold, Diane; Koutrakis, Petros

    2016-01-01

    Background Local trends in ozone concentration may differ by meteorological conditions. Furthermore, the trends occurring at the extremes of the Ozone distribution are often not reported even though these may be very different than the trend observed at the mean or median and they may be more relevant to health outcomes. Aims Classify days of observation over a 16 year period into broad categories that capture salient daily local weather characteristics. Determine the rate of change in mean and median O3 concentrations within these different categories to assess how concentration trends are impacted by daily weather. Further examine if trends vary for observations in the extremes of the O3 distribution. Methods We used k-means clustering to categorize days of observation based on the maximum daily temperature, standard deviation of daily temperature, mean daily ground level wind speed, mean daily water vapor pressure and mean daily sea-level barometric pressure. The five cluster solution was determined to be the appropriate one based on cluster diagnostics and cluster interpretability. Trends in cluster frequency and pollution trends within clusters were modeled using Poisson regression with penalized splines as well as quantile regression. Results There were five characteristic groupings identified. The frequency of days with large standard deviations in hourly temperature decreased over the observation period, whereas the frequency of warmer days with smaller deviations in temperature increased. O3 trends were significantly different within the different weather groupings. Furthermore, the rate of O3 change for the 95th percentile and 5th percentile was significantly different than the rate of change of the median for several of the weather categories. Conclusions We found that O3 trends vary between different characteristic local weather patterns. O3 trends were significantly different between the different weather groupings suggesting an important interaction

  16. Widespread Surface Weathering on Early Mars

    NASA Astrophysics Data System (ADS)

    Loizeau, Damien; Carter, John; Mangold, Nicolas; Poulet, François; Rossi, Angelo; Allemand, Pascal; Quantin, Cathy; Bibring, Jean-Pierre

    2014-05-01

    The recent discovery of widespread hydrous clays on Mars indicates that diverse and widespread aqueous environments existed on Mars, from the surface to kilometric depths [1,2]. The study of the past habitability and past climates of the planet requires assessing the importance of sustained surface water vs. subsurface water in its aqueous history. Using remote sensing data, we propose that surface weathering existed on Mars, suggesting that Mars experienced durable episodes of sustained liquid water on its surface. Weathering profiles are identified as vertical sequences of Al-rich clays and Fe/Mg-rich clays in the top tens of meters of the surface, similar to cases of pedogenesis on Earth (e.g. [3,4]). Such localized clay sequences have been reported by other works in 3 regions of Mars [5-8] and a similar origin was also proposed. Their frequency is however likely underestimated due to limitations of orbital investigations and re-surfacing processes. A large survey of the CRISM dataset leaded to a down-selection of ~100 deposits with clear vertical sequences, widely distributed over the southern highlands and grouped in regional clusters [9]. These putative weathering sequences are found either on inter-crater plateaus, on the floor of craters and large basins, or on crater ejectas. We investigated the thickness of the altered sequences, the age of the altered units and the different geological contexts to further understand the weathering process(es). Using few HiRISE DEMs where possible, and CTX DEMs, we find that the thickness of the exposed Al clays is on average of the order of several meters to few tens of meters. The clay sequences reported here are consistent with terrestrial weathering sequences which form under wet climates over geological timescales (>105-107 years). The combined age assessment of the altered unit and the unaltered capping (where present) provides constraints on the age of the weathering itself. All investigated cases point to an

  17. Widespread Surface Weathering on Early Mars

    NASA Astrophysics Data System (ADS)

    Loizeau, D.; Carter, J.; Mangold, N.; Poulet, F.; Rossi, A.; Allemand, P.; Quantin, C.; Bibring, J.

    2013-12-01

    The recent discovery of widespread hydrous clays on Mars indicates that diverse and widespread aqueous environments existed on Mars, from the surface to kilometric depths [1,2]. The study of the past habitability of the planet requires assessing the importance of sustained surface water vs. subsurface water in its aqueous history. Using remote sensing data, we propose that surface weathering existed on Mars, suggesting that Mars experienced durable episodes of sustained liquid water on its surface. Weathering profiles are identified as vertical sequences of Al-rich clays and Fe/Mg-rich clays in the top tens of meters of the surface, similar to cases of pedogenesis on Earth (e.g. [3,4]). Such localized clay sequences have been reported by other works in 3 regions of Mars [5-8] and a similar origin was also proposed. Their frequency is however likely underestimated due to limitations of orbital investigations and re-surfacing processes. A large survey of the CRISM dataset leaded to a down-selection of 104 deposits with clear vertical sequences, widely distributed over the southern highlands and grouped in regional clusters [9]. These putative weathering sequences are found either on inter-crater plateaus, on the floor of craters and large basins, or on crater ejectas. We investigated the thickness of the altered sequences, the age of the altered units and the different geological contexts to further understand the weathering process(es). Using few HiRISE DEMs where possible, and CTX DEMs, we find that the thickness of the exposed Al clays is on average of the order of several meters to few tens of meters. The clay sequences reported here are consistent with terrestrial weathering sequences which form under wet climates over geological timescales (> 105-107 years). The combined age assessment of the altered unit and the unaltered capping (where present) provides constraints on the age of the weathering itself. All investigated cases point to an active weathering

  18. High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician.

    PubMed

    Porada, P; Lenton, T M; Pohl, A; Weber, B; Mander, L; Donnadieu, Y; Beer, C; Pöschl, U; Kleidon, A

    2016-07-07

    It has been hypothesized that predecessors of today's bryophytes significantly increased global chemical weathering in the Late Ordovician, thus reducing atmospheric CO2 concentration and contributing to climate cooling and an interval of glaciations. Studies that try to quantify the enhancement of weathering by non-vascular vegetation, however, are usually limited to small areas and low numbers of species, which hampers extrapolating to the global scale and to past climatic conditions. Here we present a spatially explicit modelling approach to simulate global weathering by non-vascular vegetation in the Late Ordovician. We estimate a potential global weathering flux of 2.8 (km(3) rock) yr(-1), defined here as volume of primary minerals affected by chemical transformation. This is around three times larger than today's global chemical weathering flux. Moreover, we find that simulated weathering is highly sensitive to atmospheric CO2 concentration. This implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate.

  19. Innovative Near Real-Time Data Dissemination Tools Developed by the Space Weather Research Center

    NASA Astrophysics Data System (ADS)

    Mullinix, R.; Maddox, M. M.; Berrios, D.; Kuznetsova, M.; Pulkkinen, A.; Rastaetter, L.; Zheng, Y.

    2012-12-01

    Space weather affects virtually all of NASA's endeavors, from robotic missions to human exploration. Knowledge and prediction of space weather conditions are therefore essential to NASA operations. The diverse nature of currently available space environment measurements and modeling products compels the need for a single access point to such information. The Integrated Space Weather Analysis (iSWA) System provides this single point access along with the capability to collect and catalog a vast range of sources including both observational and model data. NASA Goddard Space Weather Research Center heavily utilizes the iSWA System daily for research, space weather model validation, and forecasting for NASA missions. iSWA provides the capabilities to view and analyze near real-time space weather data from any where in the world. This presentation will describe the technology behind the iSWA system and describe how to use the system for space weather research, forecasting, training, education, and sharing.

  20. High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    NASA Astrophysics Data System (ADS)

    Porada, P.; Lenton, T. M.; Pohl, A.; Weber, B.; Mander, L.; Donnadieu, Y.; Beer, C.; Pöschl, U.; Kleidon, A.

    2016-07-01

    It has been hypothesized that predecessors of today's bryophytes significantly increased global chemical weathering in the Late Ordovician, thus reducing atmospheric CO2 concentration and contributing to climate cooling and an interval of glaciations. Studies that try to quantify the enhancement of weathering by non-vascular vegetation, however, are usually limited to small areas and low numbers of species, which hampers extrapolating to the global scale and to past climatic conditions. Here we present a spatially explicit modelling approach to simulate global weathering by non-vascular vegetation in the Late Ordovician. We estimate a potential global weathering flux of 2.8 (km3 rock) yr-1, defined here as volume of primary minerals affected by chemical transformation. This is around three times larger than today's global chemical weathering flux. Moreover, we find that simulated weathering is highly sensitive to atmospheric CO2 concentration. This implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate.