Science.gov

Sample records for affect mechanical properties

  1. Do Non-Collagenous Proteins Affect Skeletal Mechanical Properties?

    PubMed Central

    Morgan, Stacyann; Poundarik, Atharva A.; Vashishth, Deepak

    2015-01-01

    The remarkable mechanical behavior of bone is attributed to its complex nanocomposite structure that, in addition to mineral and collagen, comprises a variety of non-collagenous matrix proteins or NCPs. Traditionally, NCPs have been studied as signaling molecules in biological processes including bone formation, resorption and turnover. Limited attention has been given to their role in determining the mechanical properties of bone. Recent studies have highlighted that NCPs can indeed be lost or modified with aging, diseases and drug therapies. Homozygous and heterozygous mice models of key NCP provide a useful approach to determine the impact of NCPs on bone morphology as well as matrix quality, and to carry out detailed mechanical analysis for elucidating the pathway by which NCPs can affect the mechanical properties of bone. In this article, we present a systematic analysis of a large cohort of NCPs on bone’s structural and material hierarchy, and identify three principal pathways by which they determine bone’s mechanical properties. These pathways include alterations of bone morphological parameters crucial for bone’s structural competency, bone quality changes in key matrix parameters (mineral and collagen), and a direct role as load bearing structural proteins. PMID:26048282

  2. Mechanical Properties of Heat Affected Zone of High Strength Steels

    NASA Astrophysics Data System (ADS)

    Sefcikova, K.; Brtnik, T.; Dolejs, J.; Keltamaki, K.; Topilla, R.

    2015-11-01

    High Strength Steels became more popular as a construction material during last decade because of their increased availability and affordability. On the other hand, even though general use of Advanced High Strength Steels (AHSS) is expanding, the wide utilization is limited because of insufficient information about their behaviour in structures. The most widely used technique for joining steels is fusion welding. The welding process has an influence not only on the welded connection but on the area near this connection, the so-called heat affected zone, as well. For that reason it is very important to be able to determine the properties in the heat affected zone (HAZ). This area of investigation is being continuously developed in dependence on significant progress in material production, especially regarding new types of steels available. There are currently several types of AHSS on the world market. Two most widely used processes for AHSS production are Thermo-Mechanically Controlled Processing (TMCP) and Quenching in connection with Tempering. In the presented study, TMCP and QC steels grade S960 were investigated. The study is focused on the changes of strength, ductility, hardness and impact strength in heat affected zone based on the used amount of heat input.

  3. How Molecular Structure Affects Mechanical Properties of an Advanced Polymer

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.

    2000-01-01

    density was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength all as a function of molecular weight and test temperature were determined. For the uncrosslinked SI material, it was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. For the crosslinked PETI-SI material, it was shown that the effect of crosslinking significantly enhances the mechanical performance of the low molecular weight material; comparable to that exhibited by the high molecular weight material.

  4. Hydration affects the physical and mechanical properties of baleen tissue

    PubMed Central

    Harriss, Robert W.; Rosario, Michael V.; George, J. Craig; Sformo, Todd L.

    2016-01-01

    Baleen, an anisotropic oral filtering tissue found only in the mouth of mysticete whales and made solely of alpha-keratin, exhibits markedly differing physical and mechanical properties between dried or (as in life) hydrated states. On average baleen is 32.35% water by weight in North Atlantic right whales (Eubalaena glacialis) and 34.37% in bowhead whales (Balaena mysticetus). Baleen's wettability measured by water droplet contact angles shows that dried baleen is hydrophobic whereas hydrated baleen is highly hydrophilic. Three-point flexural bending tests of mechanical strength reveal that baleen is strong yet ductile. Dried baleen is brittle and shatters at about 20–30 N mm−2 but hydrated baleen is less stiff; it bends with little force and absorbed water is squeezed out when force is applied. Maximum recorded stress was 4× higher in dried (mean 14.29 N mm−2) versus hydrated (mean 3.69 N mm−2) baleen, and the flexural stiffness was >10× higher in dried (mean 633N mm−2) versus hydrated (mean 58 N mm−2) baleen. In addition to documenting hydration's powerful effects on baleen, this study indicates that baleen is far more pliant and malleable than commonly supposed, with implications for studies of baleen's structure and function as well as its susceptibility to oil or other hydrophobic pollutants. PMID:27853579

  5. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    NASA Astrophysics Data System (ADS)

    Chevalier, N. R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-02-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.

  6. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    PubMed Central

    Chevalier, N.R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-01-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development. PMID:26887292

  7. Sample, testing and analysis variables affecting liver mechanical properties: A review.

    PubMed

    Mattei, Giorgio; Ahluwalia, Arti

    2016-11-01

    Given the critical role of liver mechanics in regulating cell response and directing the development of tissue fibrosis, accurately characterising its mechanical behaviour is of relevance for both diagnostic purposes as well as for tissue engineering and for the development of in-vitro models. Determining and quantifying the mechanical behaviour of soft biological tissues is, however, highly challenging due to their intrinsic labile nature. Indeed, a unique set of values of liver mechanical properties is still lacking to date; testing conditions can significantly affect sample status and hence the measured behaviour and reported results are strongly dependent on the adopted testing method and configuration as well as sample type and status. This review aims at summarising the bulk mechanical properties of liver described in the literature, discussing the possible sources of variation and their implications on the reported results. We distinguish between the intrinsic mechanical behaviour of hepatic tissue, which depends on sample variables, and the measured mechanical properties which also depend on the testing and analysis methods. Finally, the review provides guidelines on tissue preparation and testing conditions for generating reproducible data which can be meaningfully compared across laboratories.

  8. Mechanical Properties and Microstructural Evolution of Simulated Heat-Affected Zones in Wrought Eglin Steel

    NASA Astrophysics Data System (ADS)

    Leister, Brett M.; DuPont, John N.; Watanabe, Masashi; Abrahams, Rachel A.

    2015-12-01

    A comprehensive study was performed to correlate the mechanical properties and microstructural evolution in the heat-affected zone of Eglin steel. A Gleeble 3500 thermo-mechanical simulator was used to simulate weld thermal cycles with different peak temperatures at a heat input of 1500 J/mm. These samples underwent mechanical testing to determine strength and toughness in the as-welded and post-weld heat-treated conditions. The inter-critical heat-affected zone (HAZ) had the lowest strength following thermal simulation, while the fine-grain and coarse-grain heat-affected zone exhibited increased strength when compared to the inter-critical HAZ. The toughness of the heat-affected zone in the as-simulated condition is lower than that of the base metal in all regions of the HAZ. Post-weld heat treatments (PWHTs) increased the toughness of the HAZ, but at the expense of strength. In addition, certain combinations of PWHTs within specific HAZ regions exhibited low toughness caused by tempered martensite embrittlement or intergranular failure. Synchrotron X-ray diffraction data have shown that Eglin steel has retained austenite in the fine-grain HAZ in the as-simulated condition. In addition, alloy carbides (M23C6, M2C, M7C3) have been observed in the diffraction spectra for the fine-grain and coarse-grain HAZ following a PWHT of 973 K (700 °C)/4 hours.

  9. Line defects in graphene: How doping affects the electronic and mechanical properties

    NASA Astrophysics Data System (ADS)

    Berger, Daniel; Ratsch, Christian

    2016-06-01

    Graphene and carbon nanotubes have extraordinary mechanical and electronic properties. Intrinsic line defects such as local nonhexagonal reconstructions or grain boundaries, however, significantly reduce the tensile strength, but feature exciting electronic properties. Here, we address the properties of line defects in graphene from first principles on the level of full-potential density-functional theory, and assess doping as one strategy to strengthen such materials. We carefully disentangle the global and local effect of doping by comparing results from the virtual crystal approximation with those from local substitution of chemical species, in order to gain a detailed understanding of the breaking and stabilization mechanisms. We find that doping primarily affects the occupation of the frontier orbitals. Occupation through n -type doping or local substitution with nitrogen increases the ultimate tensile strength significantly. In particular, it can stabilize the defects beyond the ultimate tensile strength of the pristine material. We therefore propose this as a key strategy to strengthen graphenic materials. Furthermore, we find that doping and/or applying external stress lead to tunable and technologically interesting metal/semiconductor transitions.

  10. Relaxin Affects Smooth Muscle Biophysical Properties and Mechanical Activity of the Female Mouse Colon.

    PubMed

    Squecco, Roberta; Garella, Rachele; Idrizaj, Eglantina; Nistri, Silvia; Francini, Fabio; Baccari, Maria Caterina

    2015-12-01

    The hormone relaxin (RLX) has been reported to influence gastrointestinal motility in mice. However, at present, nothing is known about the effects of RLX on the biophysical properties of the gastrointestinal smooth muscle cells (SMCs). Other than extending previous knowledge of RLX on colonic motility, the purpose of this study was to investigate the ability of the hormone to induce changes in resting membrane potential (RMP) and on sarcolemmal ion channels of colonic SMCs of mice that are related to its mechanical activity. To this aim, we used a combined mechanical and electrophysiological approach. In the mechanical experiments, we observed that RLX caused a decay of the basal tone coupled to an increase of the spontaneous contractions, completely abolished by the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]-quinoxalin-1-one (ODQ). The electrophysiological results indicate for the first time that RLX directly affects the SMC biophysical properties inducing hyperpolarization of RMP and cycles of slow hyperpolarization/depolarization oscillations. The effects of RLX on RMP were abolished by ODQ as well as by a specific inhibitor of the cGMP-dependent protein kinase, KT5823. RLX reduced Ca(2+) entry through the voltage-dependent L-type channels and modulated either voltage- or ATP-dependent K(+) channels. These effects were abolished by ODQ, suggesting the involvement of the nitric oxide/guanylate cyclase pathway in the effects of RLX on RMP and ion channel modulation. These actions of RLX on membrane properties may contribute to the regulation of the proximal colon motility by the nitric oxide/cGMP/cGMP-dependent protein kinase pathway.

  11. [Aging effect on mechanical properties in fluid resin. (Part 1). Affection of residual monomer (author's transl)].

    PubMed

    Horiuchi, A

    1979-07-01

    Aging effect on the mechanical properties in fluid resins was pointed out, but little was studied on this point. Relationship between amount of residual monomer in the samples prepared by fluid resin and the mechanical properties, brinell hardness, tensile strength, were studied. Test pieces just as polymerized in the size were used. Weights of specimens kept at three different circumstances, in the air at 20 degrees C, in a water bath at 37 degrees C and in a desiccator at 11 mmHg and 40 degrees C, was checked at the prescribed time to clarify the amount of residual monomer and the mechanical properties were measured at the same time. Amount of weight loss, due to evaporation of MMA, must improve the mechanical properties. The improvement by postpolymerization could be neglected. Rate of the weight loss suggests that residual monomer must mainly be at the surface. Molecular weight of PMMA, 86.4 X 10(4) did not have any effect on the mechanical properties and on the evaporation rate of monomers from polymerized specimens. To improve the mechanical properties of fluid resin must be to decrease residual monomer as much as possible in the fluid resin especially at the surface area.

  12. How do changes at the cell level affect the mechanical properties of epithelial monolayers?

    PubMed

    Xu, Guang-Kui; Liu, Yang; Li, Bo

    2015-12-07

    Epithelial monolayers play a vital role in gastrulation, tumor metastasis and wound healing, and protect the tissue from pathogens. During these processes, the monolayers sense, generate, and exert mechanical forces to perform their biological functions, but their mechanical properties are rarely known. Here, we use the vertex dynamics models to investigate the mechanical behaviors of an epithelial monolayer and the configurations of the cells within the monolayer during stretch. It was found that the epithelial monolayer exhibited elastic and plastic properties, due to the geometric extension of cells and cell division, respectively. Moreover, the elasticity of monolayers was increased by enhancing the cell adhesion or by reducing the active contractility of actin-myosin rings. This study furthers our understanding of the relationship between the mechanical properties of individual cells and of their monolayers, and may shed light on linking cell behavior to the patterning and morphogenesis of tissues.

  13. The affect of densification and dehydroxylation on the mechanical properties of stoichiometric hydroxyapatite bioceramics

    SciTech Connect

    Laasri, S.; Taha, M.; Laghzizil, A.; Hlil, E.K.; Chevalier, J.

    2010-10-15

    This paper reports the effects of processing densification on the mechanical properties of hydroxyapatite bioceramics. Densification of synthetic hydroxyapatite is conducted in the range 1000-1300 {sup o}C. X-ray diffraction and SEM microscopy are used to check the microstructure transformations. Vickers hardness, toughness and Young's modulus are analyzed versus the density and grain size. The sintering temperature and the particle size influence strongly the densification and the resulting mechanical properties. In addition, the critical sintering temperature appears around 1200 {sup o}C and the declined strength at the temperature up to 1200 {sup o}C is found sensitive to the dehydroxylation process of hydroxyapatite.

  14. In vivo loading increases mechanical properties of scaffold by affecting bone formation and bone resorption rates.

    PubMed

    Roshan-Ghias, Alireza; Lambers, Floor M; Gholam-Rezaee, Mehdi; Müller, Ralph; Pioletti, Dominique P

    2011-12-01

    A successful bone tissue engineering strategy entails producing bone-scaffold constructs with adequate mechanical properties. Apart from the mechanical properties of the scaffold itself, the forming bone inside the scaffold also adds to the strength of the construct. In this study, we investigated the role of in vivo cyclic loading on mechanical properties of a bone scaffold. We implanted PLA/β-TCP scaffolds in the distal femur of six rats, applied external cyclic loading on the right leg, and kept the left leg as a control. We monitored bone formation at 7 time points over 35 weeks using time-lapsed micro-computed tomography (CT) imaging. The images were then used to construct micro-finite element models of bone-scaffold constructs, with which we estimated the stiffness for each sample at all time points. We found that loading increased the stiffness by 60% at 35 weeks. The increase of stiffness was correlated to an increase in bone volume fraction of 18% in the loaded scaffold compared to control scaffold. These changes in volume fraction and related stiffness in the bone scaffold are regulated by two independent processes, bone formation and bone resorption. Using time-lapsed micro-CT imaging and a newly-developed longitudinal image registration technique, we observed that mechanical stimulation increases the bone formation rate during 4-10 weeks, and decreases the bone resorption rate during 9-18 weeks post-operatively. For the first time, we report that in vivo cyclic loading increases mechanical properties of the scaffold by increasing the bone formation rate and decreasing the bone resorption rate.

  15. Nature's amazing biopolymer: basic mechanical and hydrological properties of soil affected by plant exudates

    NASA Astrophysics Data System (ADS)

    Naveed, Muhammad; Roose, Tiina; Raffan, Annette; George, Timothy; Bengough, Glyn; Brown, Lawrie; Keyes, Sam; Daly, Keith; Hallett, Paul

    2016-04-01

    Plant exudates are known to have a very large impact on soil physical properties through changes in mechanical and hydrological processes driven by long-chain polysaccharides and surface active compounds. Whilst these impacts are well known, the basic physical properties of these exudates have only been reported in a small number of studies. We present data for exudates obtained from barley roots and chia seeds, incorporating treatments examining biological decomposition of the exudates. When these exudates were added to a sandy loam soil, contact angle and drop penetration time increased exponentially with increasing exudate concentration. These wetting properties were strongly correlated with both exudate density and zero-shear viscosity, but not with exudate surface tension. Water holding capacity and water repellency of exudate mixed soil tremendously increased with exudate concentration, however they were significantly reduced on decomposition when measured after 14 days of incubation at 16C. Mechanical stability greatly increased with increasing exudate amendment to soils, which was assessed using a rheological amplitude sweep test near saturation, at -50 cm matric potential (field capacity) using indentation test, and at air-dry condition using the Brazilian test. This reflects that exudates not only attenuate plant water stress but also impart mechanical stability to the rhizosphere. These data are highly relevant to the understanding and modelling of rhizosphere development, which is the next phase of our research.

  16. Study on parameters affecting the mechanical properties of dry fiber bundles during continuous composite manufacturing processes

    NASA Astrophysics Data System (ADS)

    Maier, A.; Schledjewski, R.

    2016-07-01

    For continuous manufacturing processes mechanical preloading of the fibers occurs during the delivery of the fibers from the spool creel to the actual manufacturing process step. Moreover preloading of the dry roving bundles might be mandatory, e.g. during winding, to be able to produce high quality components. On the one hand too high tensile loads within dry roving bundles might result in a catastrophic failure and on the other hand the part produced under too low pre-tension might have low quality and mechanical properties. In this work, load conditions influencing mechanical properties of dry glass fiber bundles during continuous composite manufacturing processes were analyzed. Load conditions, i.e. fiber delivery speed, necessary pre-tension and other effects of the delivery system during continuous fiber winding, were chosen in process typical ranges. First, the strain rate dependency under static tensile load conditions was investigated. Furthermore different free gauge lengths up to 1.2 m, interactions between fiber points of contact regarding influence of sizing as well as impregnation were tested and the effect of twisting on the mechanical behavior of dry glass fiber bundles during the fiber delivery was studied.

  17. Dynamic loading affects the mechanical properties and failure site of porcine spines.

    PubMed

    Yingling, Vanessa R; Callaghan, Jack P; McGill, Stuart M

    1997-07-01

    OBJECTIVE: The purpose of this study was to investigate the effect of load rate on the mechanical characteristics of spinal motion segments under compressive loading. DESIGN: An in vitro experiment using a porcine model which ensured a homogeneous population for age, weight, genetic background and physical activity. BACKGROUND: Spinal motion segments comprise of viscoelastic materials, and as a result the rate of loading will modulate mechanical characteristics and fracture patterns of the segments. METHODS: Twenty-six cervical porcine spines were excised immediately post-mortem with all soft tissue intact. Spines were then separated into two specimens each consisting of three vertebral bodies and the two intervening intervertebral discs (C2-C4 and C5-C7) and loaded to failure under five loading rates (100, 1000, 3000, 10 000 and 16 000 N s(-1)). After the specimens failed, they were dissected to determine the mode of failure. RESULTS: Dynamic loading increases the ultimate load compared with quasi-static loading (100 N s(-1)), whereas the magnitude of dynamic loading (1000-16 000 N s(-1)) appears not to have a significant affect. Stiffness behaved in a similar manner. The displacement to failure of specimens decreased as load rate increased, although there was a diminishing effect at high load rates. Furthermore, failure at low load rates occurred exclusively in the endplate, whereas failure of the vertebral body appeared with greater frequency at higher load rates. CONCLUSIONS: The mechanical characteristics and resulting injuries of porcine spinal motion segments were affected as the loading rates changed from quasi-static to dynamic. The modulating factors of the mechanical characteristics of the spine need to be understood if valid models are to be designed which will increase the understanding of spinal function, and are important for choosing better injury prevention and rehabilitation programmes.

  18. A comparative study on industrial waste fillers affecting mechanical properties of polymer-matrix composites

    NASA Astrophysics Data System (ADS)

    Erkliğ, Ahmet; Alsaadi, Mohamad; Bulut, Mehmet

    2016-10-01

    This paper investigates the mechanical properties of the various inorganic filler-filled polymer composites. Sewage sludge ash (SSA), fly ash (FA) and silicon carbide (SiC) micro-particles were used as filler in the polyester resin. Composite samples were prepared with various filler content of 5, 10, 15 and 20 wt%. The results indicated that the tensile and flexural strength increased at the particle content of 5 wt% and then followed a decreasing trend with further particle inclusion. The tensile and flexural modulus values of the particulate polyester composites were significantly enhanced compared with the unfilled polyester composite. SEM micrograph results showed good indication for dispersion of FA, SSA and SiC particles within the polymer matrix.

  19. Inertial properties and loading rates affect buckling modes and injury mechanisms in the cervical spine.

    PubMed

    Nightingale, R W; Camacho, D L; Armstrong, A J; Robinette, J J; Myers, B S

    2000-02-01

    Cervical spine injuries continue to be a costly societal problem. Future advancements in injury prevention depend on improved physical and computational models which, in turn, are predicated on a better understanding of the responses of the neck during dynamic loading. Previous studies have shown that the tolerance of the neck is dependent on its initial position and its buckling behavior. This study uses a computational model to examine the mechanical factors influencing buckling behavior during impact to the neck. It was hypothesized that the inertial properties of the cervical spine influence the dynamics during compressive axial loading. The hypothesis was tested by performing parametric analyses of vertebral mass, mass moments of inertia, motion segment stiffness, and loading rate. Increases in vertebral mass resulted in increasingly complex kinematics and larger peak loads and impulses. Similar results were observed for increases in stiffness. Faster loading rates were associated with higher peak loads and higher-order buckling modes. The results demonstrate that mass has a great deal of influence on the buckling behavior of the neck, particularly with respect to the expression of higher-order modes. Injury types and mechanisms may be substantially altered by loading rate because inertial effects may influence whether the cervical spine fails in a compressive mode, or a bending mode.

  20. Fundamental Studies of Phase Transformations and Mechanical Properties in the Heat Affected Zone of 10 wt% Nickel Steel

    NASA Astrophysics Data System (ADS)

    Barrick, Erin J.

    United States naval applications require the use of steels with high strength and resistance to fracture at low temperatures to provide good ballistic properties. In recent years, 10 wt% Ni steel has been developed with strength and toughness values exceeding those of steels currently used, and is now being considered as a candidate material to replace existing high-strength, low alloy steels. This steel has excellent toughness from the mechanically induced transformation of interlath austenite films to martensite. These austenite films are formed via a carefully developed quenching, lamellarizing, and tempering heat treatment. However, before 10 wt% Ni steel can be implemented for full-scale applications, the effects of the rapid heating and cooling rates associated with welding thermal cycles on phase transformations and mechanical properties must be understood. In this research, a fundamental understanding of phase transformations and mechanical properties in the heat-affected zone of fusion welds in 10 wt% Ni steel was developed through heating and cooling rate dilatometry experiments, gas tungsten arc welding, and simulation of gas metal arc welding. First, an investigation into the effects of heating and cooling rate on the phase transformations in 10 wt% Ni steel was performed. The Ac1 and Ac3 temperatures during heating were determined as a function of heating rate, and sluggish transformation during fast heating rates manifested itself as a high Ac3 temperature of 1050°C as opposed to a temperature of 850°C at slow heating rates. A continuous cooling transformation diagram produced for 10 wt% Ni steel reveals that martensite will form over a very wide range of cooling rates, which reflects a very high hardenability of this alloy. This is significant because the range of cooling rates for which the diagram was constructed over easily covers the range associated with fusion welding, so there would not be the need for precise control over the weld

  1. Mechanical properties of Rene-41 affected by rate of cooling after solution annealing

    NASA Technical Reports Server (NTRS)

    Prager, M.

    1970-01-01

    Investigation of Rene-41 cooling rate from 1975 to 1400 degrees F reveals that slow cooling improves high-temperature ductility and provides more uniform properties throughout a manifold. Ambient elongation and impact resistance are not significantly changed.

  2. Stiff Mutant Genes of Phycomyces Affect Turgor Pressure and Wall Mechanical Properties to Regulate Elongation Growth Rate

    PubMed Central

    Ortega, Joseph K. E.; Munoz, Cindy M.; Blakley, Scott E.; Truong, Jason T.; Ortega, Elena L.

    2012-01-01

    Regulation of cell growth is paramount to all living organisms. In plants, algae and fungi, regulation of expansive growth of cells is required for development and morphogenesis. Also, many sensory responses of stage IVb sporangiophores of Phycomyces blakesleeanus are produced by regulating elongation growth rate (growth responses) and differential elongation growth rate (tropic responses). “Stiff” mutant sporangiophores exhibit diminished tropic responses and are found to be defective in at least five genes; madD, E, F, G, and J. Prior experimental research suggests that the defective genes affect growth regulation, but this was not verified. All the growth of the single-celled stalk of the stage IVb sporangiophore occurs in a short region termed the “growth zone.” Prior experimental and theoretical research indicates that elongation growth rate of the stage IVb sporangiophore can be regulated by controlling the cell wall mechanical properties within the growth zone and the magnitude of the turgor pressure. A quantitative biophysical model for elongation growth rate is required to elucidate the relationship between wall mechanical properties and turgor pressure during growth regulation. In this study, it is hypothesized that the mechanical properties of the wall within the growth zone of stiff mutant sporangiophores are different compared to wild type (WT). A biophysical equation for elongation growth rate is derived for fungal and plant cells with a growth zone. Two strains of stiff mutants are studied, C149 madD120 (−) and C216 geo- (−). Experimental results demonstrate that turgor pressure is larger but irreversible wall deformation rates within the growth zone and growth zone length are smaller for stiff mutant sporangiophores compared to WT. These findings can explain the diminished tropic responses of the stiff mutant sporangiophores. It is speculated that the defective genes affect the amount of wall-building material delivered to the inner cell

  3. Stiff mutant genes of phycomyces affect turgor pressure and wall mechanical properties to regulate elongation growth rate.

    PubMed

    Ortega, Joseph K E; Munoz, Cindy M; Blakley, Scott E; Truong, Jason T; Ortega, Elena L

    2012-01-01

    Regulation of cell growth is paramount to all living organisms. In plants, algae and fungi, regulation of expansive growth of cells is required for development and morphogenesis. Also, many sensory responses of stage IVb sporangiophores of Phycomyces blakesleeanus are produced by regulating elongation growth rate (growth responses) and differential elongation growth rate (tropic responses). "Stiff" mutant sporangiophores exhibit diminished tropic responses and are found to be defective in at least five genes; madD, E, F, G, and J. Prior experimental research suggests that the defective genes affect growth regulation, but this was not verified. All the growth of the single-celled stalk of the stage IVb sporangiophore occurs in a short region termed the "growth zone." Prior experimental and theoretical research indicates that elongation growth rate of the stage IVb sporangiophore can be regulated by controlling the cell wall mechanical properties within the growth zone and the magnitude of the turgor pressure. A quantitative biophysical model for elongation growth rate is required to elucidate the relationship between wall mechanical properties and turgor pressure during growth regulation. In this study, it is hypothesized that the mechanical properties of the wall within the growth zone of stiff mutant sporangiophores are different compared to wild type (WT). A biophysical equation for elongation growth rate is derived for fungal and plant cells with a growth zone. Two strains of stiff mutants are studied, C149 madD120 (-) and C216 geo- (-). Experimental results demonstrate that turgor pressure is larger but irreversible wall deformation rates within the growth zone and growth zone length are smaller for stiff mutant sporangiophores compared to WT. These findings can explain the diminished tropic responses of the stiff mutant sporangiophores. It is speculated that the defective genes affect the amount of wall-building material delivered to the inner cell wall.

  4. Ultraviolet Radiation Affects Thoratec HeartMate II Driveline Mechanical Properties: A Pilot Experiment.

    PubMed

    Evans, Annicka C; Wright, G Andrew; McCandless, Sean P; Stoker, Sandi; Miller, Dylan; Reid, Bruce B; Horne, Benjamin D; Afshar, Kia; Kfoury, Abdallah G

    2015-01-01

    Longevity and quality of life for left ventricular assist device (LVAD) patients are plagued by driveline exit site infections. Ultraviolet (UV) radiation, a current treatment in wound healing clinics, could potentially treat LVAD exit site infections. However, the effect of UV radiation on the tensile properties of HeartMate II (HMII) driveline material is unknown. The sleeve of a single HMII driveline was distributed into six exposure groups (n = 10/group). The six groups were further divided into two treatment cohorts designed to replicate wound treatment schedules of postimplant LVAD patients. Strip biaxial tensile tests were performed on both unexposed and exposed samples to analyze changes in material elasticity (Young's modulus), point of deformation (yield strength), and breaking point. Our data suggest that UV exposure changes the elasticity of the HMII driveline. However, the material endured aberrantly large forces and the properties remained within the safety threshold of device performance. This study warrants further examination of the effect of UV light on driveline material, to determine safety, reliability, and efficacy of UV treatment on exit site infections.

  5. Mechanical properties and microstructure of frozen carrots during storage as affected by blanching in water and sugar solutions.

    PubMed

    Neri, Lilia; Hernando, Isabel; Pérez-Munuera, Isabel; Sacchetti, Giampiero; Mastrocola, Dino; Pittia, Paola

    2014-02-01

    Raw carrots and carrots blanched in water and in 4% trehalose and maltose solutions at 75°C for 3 (A) and 10 min (C) and at 90°C for 3 (B) and 10 min (D) were frozen and stored at -18°C for eight months. The effects of heating conditions and exogenous added sugars on the mechanical properties and microstructure of the vegetable after blanching and during frozen storage were studied. By scanning electron microscopy (SEM) analysis no significant differences were observed among samples A and B water-blanched and raw carrot while a thermo-protective effect due to the sugars addition was evidenced in sample D, undergone to the most severe thermal treatment. Freezing and frozen storage determined several fractures on both raw and blanched carrots due to ice crystals formation and re-crystallisation. The cryo-protective effect of the sugars on the vegetable microstructure was observed only in the 'over-blanched' sample D. The mechanical properties of carrots were affected by blanching which caused a hardness decrease but after freezing and one month of frozen storage, all samples showed a further dramatic reduction of hardness. Only samples characterised by a pectinesterase residual activity showed a softening also after one month of frozen storage likely for a competitive effect of the thermo-protective ability of trehalose on this enzyme. The exogenous trehalose was able to limit the hardness loss of carrots undergone to B, C and D blanching pre-treatments.

  6. The mechansims by which solute nitrogen affects phase transformations and mechanical properties of automotive dual-phase sheet steel

    NASA Astrophysics Data System (ADS)

    Brown, Tyson W.

    Dual-phase steels have seen increased use in automotive applications in recent years, in order to meet the goals of weight reduction and occupant safety. Variations in nitrogen content that may be encountered in steel sourced from a basic oxygen furnace process compared to an electric arc furnace process require that dual-phase steel producers understand the ways that nitrogen affects processing and properties. In the current work, the distribution of nitrogen was investigated in a dual-phase steel with a base chemistry of 0.1 C, 2.0 Mn, 0.2 Cr, 0.2 Mo (wt pct) across a range of nitrogen contents (30-159 ppm) with Al (0.2 and 0.08 wt pct), and Ti (0.02 wt pct) additions used for precipitation control of nitrogen amounts. The distribution of nitrogen amongst trapping sites, including precipitates, grain boundaries, dislocations, and interstitial sites (away from other types of defects) was determined from a combination of electrolytic dissolution, internal friction, and three-dimensional atom probe tomography experiments. Various mechanisms by which different amounts and locations of nitrogen affect phase transformations and mechanical properties were identified from quantitative metallography, dilatometric measurement of phase transformations, tensile testing, and nanoindentation hardness testing. Results indicate nitrogen that is not precipitated with Ti or Al (free nitrogen) partitions to austenite (and thus martensite) during typical intercritical annealing treatments, and is mostly contained in Cottrell atmospheres in martensite. Due to the austenite stabilizing effect of nitrogen, the presence of free nitrogen during intercritical annealing leads to a higher austenite fraction in certain conditions. Thus, the presence of free nitrogen in a dual-phase microstructure will lead to an increase in tensile and yield strengths from both an increase in martensite fraction, and an increase in martensite hardness due to solid solution strengthening. Despite the presence

  7. Hydraulic and mechanical properties affecting ground-water flow and aquifer-system compaction, San Joaquin Valley, California

    USGS Publications Warehouse

    Sneed, Michelle

    2001-01-01

    This report summarizes hydraulic and mechanical properties affecting ground-water flow and aquifer-system compaction in the San Joaquin Valley, a broad alluviated intermontane structural trough that constitutes the southern two-thirds of the Central Valley of California. These values will be used to constrain a coupled ground-water flow and aquifer-system compaction model of the western San Joaquin Valley called WESTSIM. A main objective of the WESTSIM model is to evaluate potential future land subsidence that might occur under conditions in which deliveries of imported surface water for agricultural use are reduced and ground-water pumping is increased. Storage values generally are components of the total aquifer-system storage and include inelastic and elastic skeletal storage values of the aquifers and the aquitards that primarily govern the potential amount of land subsidence. Vertical hydraulic conductivity values generally are for discrete thicknesses of sediments, usually aquitards, that primarily govern the rate of land subsidence. The data were compiled from published sources and include results of aquifer tests, stress-strain analyses of borehole extensometer observations, laboratory consolidation tests, and calibrated models of aquifer-system compaction.

  8. The study on microstructural and mechanical properties of weld heat affected zone of 7075-T651 aluminum alloy

    SciTech Connect

    Hwang, R.Y.; Chou, C.P.

    1997-12-22

    Aluminum alloys play an important role in aerospace industry due to their high strength and low density. The general accepted precipitation behavior of 7075 alloy was represented as: supersaturated solid solution {alpha}{sub ss} {yields} Gp zones {yields} {eta}{prime}(MgZn{sub 2}) {yields} {eta}(MgZn{sub 2}). The Addition of Cu in Al-Zn-Mg alloy would promote the transformation of GP zones into {eta}{prime}(MgZn{sub 2}) phase and stabilize the {eta}(MgZn{sub 2}) phase. The T6 temper has the maximum strength but lower ductility. The T73 temper may lose some strength, but can gain higher corrosion resistance and lower susceptibility to stress corrosion cracking as compared to the T6 temper. The welding fabrication can produce thermal cycling on the weldment. In the heat affected zone (HAZ) beside the fusion zone, different temperatures can be obtained. This would cause change of microstructure in the HAZ of aluminum alloy weldment. Many workers studied the behavior of weld HAZ by cutting the HAZ into many small pieces or using short time isothermal heat treatment to simulate the HAZ. This may lose some information, especially near the fusion zone, because high temperature gradient occurred in this region. In this study, the Gleeble system was used to simulate the weld HAZ. It can accurately simulate every point of weld HAZ by heating and cooling the specimen to the thermal history of weld HAZ as the same as measured. The microstructural and mechanical properties of weld HAZ of 7075-T651 alloy were investigated.

  9. Variations in tendon stiffness due to diets with different glycotoxins affect mechanical properties in the muscle-tendon unit.

    PubMed

    Grasa, J; Calvo, B; Delgado-Andrade, C; Navarro, M P

    2013-03-01

    Passive elastic behavior of tendon tissue from rats subjected to different dietary treatments was characterized. For that purpose, twenty-four weanling Wistar rats (41.02 ± 0.16 g) were randomly distributed into four groups. During 88 days each group was fed on different diets: control diet and diets containing advanced glycation end products (AGEs) from glucose-lysine model system, from bread crust and bread dough, respectively. After the trial animals were sacrificed and tendon samples were extracted and tested mechanically to fracture in a uniaxial tensile test machine. A transversely-hyperelastic model was formulated based on stress-strain relationships and its parameters were fit to the experimental data using the Levenberg-Marquardt optimization algorithm. Material parameters were incorporated in a finite element model to study different stress-strain distributions in a muscle-tendon unit. Results show higher strains and stresses in the muscle belly when properties of a stiffer tendon associated with a diet rich in AGEs are included in the model. A real increase in this mechanical response of the tissue could imply possible pain in joint mobility.

  10. Mechanical Properties of Aerogels

    NASA Technical Reports Server (NTRS)

    Parmenter, Kelly E.; Milstein, Frederick

    1995-01-01

    Aerogels are extremely low density solids that are characterized by a high porosity and pore sizes on the order of nanometers. Their low thermal conductivity and sometimes transparent appearance make them desirable for applications such as insulation in cryogenic vessels and between double paned glass in solar architecture. An understanding of the mechanical properties of aerogels is necessary before aerogels can be used in load bearing applications. In the present study, the mechanical behavior of various types of fiber-reinforced silica aerogels was investigated with hardness, compression, tension and shear tests. Particular attention was paid to the effects of processing parameters, testing conditions, storage environment, and age on the aerogels' mechanical response. The results indicate that the addition of fibers to the aerogel matrix generally resulted in softer, weaker materials with smaller elastic moduli. Furthermore, the testing environment significantly affected compression results. Tests in ethanol show an appreciable amount of scatter, and are not consistent with results for tests in air. In fact, the compression specimens appeared to crack and begin to dissolve upon exposure to the ethanol solution. This is consistent with the inherent hydrophobic nature of these aerogels. In addition, the aging process affected the aerogels' mechanical behavior by increasing their compressive strength and elastic moduli while decreasing their strain at fracture. However, desiccation of the specimens did not appreciably affect the mechanical properties, even though it reduced the aerogel density by removing trapped moisture. Finally, tension and shear test results indicate that the shear strength of the aerogels exceeds the tensile strength. This is consistent with the response of brittle materials. Future work should concentrate on mechanical testing at cryogenic temperatures, and should involve more extensive tensile tests. Moreover, before the mechanical response

  11. Mechanical Properties of Cells

    NASA Technical Reports Server (NTRS)

    Bradley, Robert; Becerril, Joseph; Jeevarajan, Anthony

    2007-01-01

    Many physiologic and pathologic processes alter the biomechanical properties of the tissue they affect, and these changes may be manifest at the single cell level. The normal and abnormal mechanical properties of a given cell type can be established with the aid of an atomic force microscope (AFM), nonetheless, consistency in the area of the tip has been a mayor limitation of using the AFM for quantitative measurements of mechanical properties. This project attempts to overcome this limitation by using materials with a known elastic modulus, which resembles the one of the cell, to create force-deformation curves to calculate the area of indentation by means of Hooke s Law (sigma = E(epsilon)), which states that stress (sigma) is proportional to the strain (epsilon) where the constant of proportionality, E, is called the Young s modulus, also referred as the elastic modulus. Hook s Law can be rearranged to find the area of indentation (Area= Force/ E(epsilon)), where the indentation force is defined by the means of the added mass spring calibration method.

  12. Mechanical and water barrier properties of isolated soy protein composite edible films as affected by carvacrol and cinnamaldehyde micro and nanoemulsions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Edible films may be used in food packaging, for which they must deliver good barrier and mechanical properties. Films based on proteins have good gas barrier and mechanical properties, but poor water barrier properties. Films made from lipids have good water barrier properties, but poor mechanical p...

  13. Mechanical Properties of Polymers.

    ERIC Educational Resources Information Center

    Aklonis, J. J.

    1981-01-01

    Mechanical properties (stress-strain relationships) of polymers are reviewed, taking into account both time and temperature factors. Topics include modulus-temperature behavior of polymers, time dependence, time-temperature correspondence, and mechanical models. (JN)

  14. Opioid receptor agonists may favorably affect bone mechanical properties in rats with estrogen deficiency-induced osteoporosis.

    PubMed

    Janas, Aleksandra; Folwarczna, Joanna

    2017-02-01

    The results of epidemiological, clinical, and in vivo and in vitro experimental studies on the effect of opioid analgesics on bone are inconsistent. The aim of the present study was to investigate the effect of morphine (an agonist of opioid receptors), buprenorphine (a partial μ opioid receptor agonist and κ opioid receptor antagonist), and naloxone (an antagonist of opioid receptors) on the skeletal system of female rats in vivo. The experiments were carried out on 3-month-old Wistar rats, divided into two groups: nonovariectomized (intact; NOVX) rats and ovariectomized (OVX) rats. The bilateral ovariectomy was performed 7 days before the start of drug administration. Morphine hydrochloride (20 mg/kg/day s.c.), buprenorphine (0.05 mg/kg/day s.c.), or naloxone hydrochloride dihydrate (2 mg/kg/day s.c.) were administered for 4 weeks to NOVX and OVX rats. In OVX rats, the use of morphine and buprenorphine counteracted the development of osteoporotic changes in the skeletal system induced by estrogen deficiency. Morphine and buprenorphine beneficially affected also the skeletal system of NOVX rats, but the effects were much weaker than those in OVX rats. Naloxone generally did not affect the rat skeletal system. The results confirmed the role of opioid receptors in the regulation of bone remodeling processes and demonstrated, in experimental conditions, that the use of opioid analgesics at moderate doses may exert beneficial effects on the skeletal system, especially in estrogen deficiency.

  15. Mechanical properties of viruses.

    PubMed

    de Pablo, Pedro J; Mateu, Mauricio G

    2013-01-01

    Structural biology techniques have greatly contributed to unveil the relationships between structure, properties and functions of viruses. In recent years, classic structural approaches are being complemented by single-molecule techniques such as atomic force microscopy and optical tweezers to study physical properties and functions of viral particles that are not accessible to classic structural techniques. Among these features are mechanical properties such as stiffness, intrinsic elasticity, tensile strength and material fatigue. The field of virus mechanics is contributing to materials science by investigating some physical parameters of "soft" biological matter and biological nano-objects. Virus mechanics studies are also starting to unveil the biological implications of physical properties of viruses. Growing evidence indicate that viruses are subjected to internal and external forces, and that they may have adapted to withstand and even use those forces. This chapter describes what is known on the mechanical properties of virus particles, their structural determinants, and possible biological implications, of which several examples are provided.

  16. Effects of alloying elements on mechanical and fracture properties of base metals and simulated heat-affected zones of SA 508 steels

    NASA Astrophysics Data System (ADS)

    Kim, Sangho; Lee, Sunghak; Im, Young-Roc; Lee, Hu-Chul; Oh, Yong Jun; Hong, Jun Hwa

    2001-04-01

    This study was aimed at developing low-alloy steels for nuclear reactor pressure vessels by investigating the effects of alloying elements on mechanical and fracture properties of base metals and heat-affected zones (HAZs). Four steels whose compositions were variations of the composition specification for SA 508 steel (class 3) were fabricated by vacuum-induction melting and heat treatment, and their tensile properties and Charpy impact toughness were evaluated. Microstructural analyses indicated that coarse M3C-type carbides and fine M2C-type carbides were precipitated along lath boundaries and inside laths, respectively. In the steels having decreased carbon content and increased molybdenum content, the amount of fine M2C carbides was greatly increased, while that of coarse M3C carbides was decreased, thereby leading to the improvement of tensile properties and impact toughness. Their simulated HAZs also had sufficient impact toughness after postweld heat treatment (PWHT). These findings suggested that the low-alloy steels with high strength and toughness could be processed by decreasing carbon and manganese contents and by increasing molybdenum content.

  17. Repeated freeze-thaw cycles reduce the survival rate of osteocytes in bone-tendon constructs without affecting the mechanical properties of tendons.

    PubMed

    Suto, Kaori; Urabe, Ken; Naruse, Kouji; Uchida, Kentaro; Matsuura, Terumasa; Mikuni-Takagaki, Yuko; Suto, Mitsutoshi; Nemoto, Noriko; Kamiya, Kentaro; Itoman, Moritoshi

    2012-03-01

    Frozen bone-patellar tendon bone allografts are useful in anterior cruciate ligament reconstruction as the freezing procedure kills tissue cells, thereby reducing immunogenicity of the grafts. However, a small portion of cells in human femoral heads treated by standard bone-bank freezing procedures survive, thus limiting the effectiveness of allografts. Here, we characterized the survival rates and mechanisms of cells isolated from rat bones and tendons that were subjected to freeze-thaw treatments, and evaluated the influence of these treatments on the mechanical properties of tendons. After a single freeze-thaw cycle, most cells isolated from frozen bone appeared morphologically as osteocytes and expressed both osteoblast- and osteocyte-related genes. Transmission electron microscopic observation of frozen cells using freeze-substitution revealed that a small number of osteocytes maintained large nuclei with intact double membranes, indicating that these osteocytes in bone matrix were resistant to ice crystal formation. We found that tendon cells were completely killed by a single freeze-thaw cycle, whereas bone cells exhibited a relatively high survival rate, although survival was significantly reduced after three freeze-thaw cycles. In patella tendons, the ultimate stress, Young's modulus, and strain at failure showed no significant differences between untreated tendons and those subjected to five freeze-thaw cycles. In conclusion, we identified that cells surviving after freeze-thaw treatment of rat bones were predominantly osteocytes. We propose that repeated freeze-thaw cycles could be applied for processing bone-tendon constructs prior to grafting as the treatment did not affect the mechanical property of tendons and drastically reduced surviving osteocytes, thereby potentially decreasing allograft immunogenecity.

  18. Microstructural Evolution and Mechanical Properties of Simulated Heat-Affected Zones in Cast Precipitation-Hardened Stainless Steels 17-4 and 13-8+Mo

    NASA Astrophysics Data System (ADS)

    Hamlin, Robert J.; DuPont, John N.

    2017-01-01

    Cast precipitation-hardened (PH) stainless steels 17-4 and 13-8+Mo are used in applications that require a combination of high strength and moderate corrosion resistance. Many such applications require fabrication and/or casting repair by fusion welding. The purpose of this work is to develop an understanding of microstructural evolution and resultant mechanical properties of these materials when subjected to weld thermal cycles. Samples of each material were subjected to heat-affected zone (HAZ) thermal cycles in the solution-treated and aged condition (S-A-W condition) and solution-treated condition with a postweld thermal cycle age (S-W-A condition). Dilatometry was used to establish the onset of various phase transformation temperatures. Light optical microscopy (LOM), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) were used to characterize the microstructures, and comparisons were made to gas metal arc welds that were heat treated in the same conditions. Tensile testing was also performed. MatCalc thermodynamic and kinetic modeling software was used to predict the evolution of copper (Cu)-rich body center cubic precipitates in 17-4 and β-NiAl precipitates in 13-8+Mo. The yield strength was lower in the simulated HAZ samples of both materials prepared in the S-A-W condition when compared to their respective base metals. Samples prepared in the S-W-A condition had higher and more uniform yield strengths for both materials. Significant changes were observed in the matrix microstructure of various HAZ regions depending on the peak temperature, and these microstructural changes were interpreted with the aid of dilatometry results, LOM, SEM, and EDS. Despite these significant changes to the matrix microstructure, the changes in mechanical properties appear to be governed primarily by the precipitation behavior. The decrease in strength in the HAZ samples prepared in the S-A-W condition was attributed to the dissolution of precipitates

  19. Does nutrition affect bone porosity and mineral tissue distribution in deer antlers? The relationship between histology, mechanical properties and mineral composition.

    PubMed

    Landete-Castillejos, T; Currey, J D; Ceacero, F; García, A J; Gallego, L; Gomez, S

    2012-01-01

    It is well known that porosity has an inverse relationship with the mechanical properties of bones. We examined cortical and trabecular porosity of antlers, and mineral composition, thickness and mechanical properties in the cortical wall. Samples belonged to two deer populations: a captive population of an experimental farm having a high quality diet, and a free-ranging population feeding on plants of lower nutritive quality. As shown for minerals and mechanical properties in previous studies by our group, cortical and trabecular porosity increased from the base distally. Cortical porosity was always caused by the presence of incomplete primary osteons. Porosity increased along the length of the antler much more in deer with lower quality diet. Despite cortical porosity being inversely related to mechanical properties and positively with K, Zn and other minerals indicating physiological effort, it was these minerals and not porosity that statistically better explained variability in mechanical properties. Histochemistry showed that the reason for this is that Zn is located around incomplete osteons and also in complete osteons that were still mineralizing, whereas K is located in non-osteonal bone, which constitutes a greater proportion of bone where osteons are incompletely mineralized. This suggests that, K, Zn and other minerals indicate reduction in mechanical performance even with little porosity. If a similar process occurred in internal bones, K, Zn and other minerals in the bone may be an early indicator of decrease in mechanical properties and future osteoporosis. In conclusion, porosity is related to diet and physiological effort in deer.

  20. Promethazine affects autonomic cardiovascular mechanisms minimally

    NASA Technical Reports Server (NTRS)

    Brown, T. E.; Eckberg, D. L.

    1997-01-01

    Promethazine hydrochloride, Phenergan, is a phenothiazine derivative with antihistaminic (H1), sedative, antiemetic, anticholinergic, and antimotion sickness properties. These properties have made promethazine a candidate for use in environments such as microgravity, which provoke emesis and motion sickness. Recently, we evaluated carotid baroreceptor-cardiac reflex responses during two Space Shuttle missions 18 to 20 hr after the 50 mg intramuscular administration of promethazine. Because the effects of promethazine on autonomic cardiovascular mechanisms in general and baroreflex function in particular were not known, we were unable to exclude a possible influence of promethazine on our results. Our purpose was to determine the ground-based effects of promethazine on autonomic cardiovascular control. Because of promethazine's antihistaminic and anticholinergic properties, we expected that a 50-mg intramuscular injection of promethazine would affect sympathetically and vagally mediated cardiovascular mechanisms. Eight healthy young subjects, five men and three women, were studied at rest in recumbency. All reported drowsiness as a result of the promethazine injection; most also reported nervous excitation, dry mouth, and fatigue. Three subjects had significant reactions: two reported excessive anxiety and one reported dizziness. Measurements were performed immediately prior to injection and 3.1 +/- 0.1 and 19.5 +/- 0.4 hr postinjection. We found no significant effect of promethazine on resting mean R-R interval, arterial pressure, R-R interval power spectra, carotid baroreflex function, and venous plasma catecholamine levels.

  1. Microstructures and Mechanical Properties of Weld Metal and Heat-Affected Zone of Electron Beam-Welded Joints of HG785D Steel

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Han, Jianmin; Tan, Caiwang; Yang, Zhiyong; Wang, Junqiang

    2016-12-01

    Vacuum electron beam welding (EBW) process was employed to butt weld 10-mm-thick HG785D high-strength steels. The penetration into the steel was adjusted by beam current. Microstructures at weld metal and heat-affected zone (HAZ) regions were comparatively observed. Mechanical properties of the EBWed joints including Vickers hardness, tensile and Charpy impact tests were evaluated. The results indicated that microstructures at the weld metal consisted of coarse lath martensite and a small amount of acicular martensite, while that in the HAZ was tempered sorbite and martensite. The grain size in the weld metal was found to be larger than that in the HAZ, and its proportion in weld metal was higher. The hardness in the weld metal was higher than the HAZ and base metal. The tensile strength and impact toughness in the HAZ was higher than that in the weld metal. All the behaviors were related to microstructure evolution caused by higher cooling rates and state of base metal. The fracture surfaces of tensile and impact tests on the optimized joint were characterized by uniform and ductile dimples. The results differed significantly from that obtained using arc welding process.

  2. Enhancement of mechanical properties of 123 superconductors

    DOEpatents

    Balachandran, Uthamalingam

    1995-01-01

    A composition and method of preparing YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T.sub.c. About 5-20% additions give rise to substantially improved mechanical properties.

  3. Enhancement of mechanical properties of 123 superconductors

    DOEpatents

    Balachandran, U.

    1995-04-25

    A composition and method are disclosed of preparing YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T{sub c}. About 5-20% additions give rise to substantially improved mechanical properties.

  4. Mechanical Properties of MEMS Materials

    DTIC Science & Technology

    2004-03-01

    thermal strain for polysilicon (data points) compared with bulk silicon (Thermophysical Properties of Matter, Volume 13, Y. S. Touloukian , Editor...AFRL-IF-RS-TR-2004-76 Final Technical Report March 2004 MECHANICAL PROPERTIES OF MEMS MATERIALS Johns Hopkins University...TITLE AND SUBTITLE MECHANICAL PROPERTIES OF MEMS MATERIALS 6. AUTHOR(S) W. N. Sharpe, Jr., K. J. Hemker - Dept of Mechanical Engineering R. L

  5. RIC-3 affects properties and quantity of nicotinic acetylcholine receptors via a mechanism that does not require the coiled-coil domains.

    PubMed

    Ben-Ami, Hagit Cohen; Yassin, Lina; Farah, Hanna; Michaeli, Avner; Eshel, Margalit; Treinin, Millet

    2005-07-29

    Members of the RIC-3 gene family are effectors of nicotinic acetylcholine receptor (nAChR) expression in vertebrates and invertebrates. In Caenorhabditis elegans RIC-3 is needed for functional expression of multiple nAChRs, including the DEG-3/DES-2 nAChR. Effects of RIC-3 on DEG-3/DES-2 functional expression are found in vivo and following heterologous expression in Xenopus leavis oocytes. We now show that in X. leavis oocytes RIC-3 also affects the kinetics and agonist affinity properties of the DEG-3/DES-2 receptor. Because these effects are mimicked by increasing the ratio of DEG-3 subunits within DEG-3/DES-2 receptors, this suggests that RIC-3 may preferentially promote maturation of DEG-3-rich receptors. Indeed, effects of RIC-3 on functional expression of DEG-3/DES-2 positively correlate with the DEG-3 to DES-2 ratio. All RIC-3 family members have two transmembrane domains followed by one or two coiled-coil domains. Here we show that the effects of RIC-3 on functional expression and on receptor properties are mediated by the transmembrane domains and do not require the coiled-coil domains. In agreement with this, mammals express a RIC-3 transcript lacking the coiled-coil domain that is capable of promoting DEG-3/DES-2 functional expression. Last, we show that RIC-3 affects DEG-3 quantity, suggesting stabilization of receptors or receptor intermediates by RIC-3. Together our results suggest that subunit-specific interactions of RIC-3 with nAChR subunits, mediated by the transmembrane domains, are sufficient for the effects of RIC-3 on nAChR quantity and quality.

  6. Mechanisms affecting swelling in alloys with precipitates

    SciTech Connect

    Mansur, L.K.; Haynes, M.R.; Lee, E.H.

    1980-01-01

    In alloys under irradiation many mechanisms exist that couple phase instability to cavity swelling. These are compounded with the more familiar mechanisms associated with point defect behavior and the evolution of microstructure. The mechanisms may be classified according to three modes of operation. Some affect cavity swelling directly by cavity-precipitate particle association, others operate indirectly by precipitate-induced changes in sinks other than cavities and finally there are mechanisms that are mediated by precipitate-induced changes in the host matrix. The physics of one mechanism of each type is developed in detail and the results compared where possible to experimental measurements. In particular, we develop the theory necessary to treat the effects on swelling of precipitation-induced changes in overall sink density; precipitation-induced changes in point defect trapping by solute depletion and creation of precipitate particle-matrix interfacial trap sites.

  7. Mechanical Properties of Axons

    NASA Astrophysics Data System (ADS)

    Bernal, Roberto; Pullarkat, Pramod A.; Melo, Francisco

    2007-07-01

    The mechanical response of PC12 neurites under tension is investigated using a microneedle technique. Elastic response, viscoelastic relaxation, and active contraction are observed. The mechanical model proposed by Dennerll et al. [J. Cell Biol. 109, 3073 (1989).JCLBA30021-952510.1083/jcb.109.6.3073], which involves three mechanical devices—a stiff spring κ coupled with a Voigt element that includes a less stiff spring k and a dashpot γ—has been improved by adding a new element to describe the main features of the contraction of axons. This element, which represents the action of molecular motors, acts in parallel with viscous forces defining a global tension response of axons T against elongation rates δ˙k. Under certain conditions, axons show a transition from a viscoelastic elongation to active contraction, suggesting the presence of a negative elongation rate sensitivity in the curve T vs δ˙k.

  8. Mechanical properties of warped membranes

    NASA Astrophysics Data System (ADS)

    Kosmrlj, Andrej; Xiao, Kechao; Weaver, James C.; Vlassak, Joost J.; Nelson, David R.

    2014-03-01

    We explore how a frozen background metric affects the mechanical properties of solid planar membranes at zero temperature. Our focus is a special class of ``warped membranes'' with a preferred random height profile characterized by random Gaussian variables h(q) in Fourier space with zero mean and variance < | h(q) | 2 > q-m . Using statistical physics tools to treat this quenched random disorder, we find that in the linear response regime, similar to thermally fluctuating polymerized membranes, an increasing scale-dependent effective bending rigidity, while the Young and the shear moduli are reduced. Compared to flat plates of the same thickness t, the bending rigidity of warped membranes is increased by a factor hv / t while the in-plane elastic moduli are reduced by t /hv , where hv =√{< | h(x) | 2 > } describes the frozen height fluctuations. Interestingly, hv is system size dependent for warped membranes characterized with m > 2 . Numerical results show good agreement with theoretical predictions, which are now being tested experimentally, where warped membranes are prepared with 3D printers.

  9. Mechanical properties of graphene papers

    NASA Astrophysics Data System (ADS)

    Liu, Yilun; Xie, Bo; Zhang, Zhong; Zheng, Quanshui; Xu, Zhiping

    2012-04-01

    Graphene-based paper materials attract particular interests recently owing to their outstanding properties, the key of which is their layer-by-layer hierarchical structures similar to many biological materials such as bone, teeth and nacre, combining intralayer strong sp2 bonds and interlayer crosslinks for efficient load transfer. Here we firstly study the mechanical properties of various interlayer and intralayer crosslinks through first-principles calculations, and then perform continuum model analysis for the overall mechanical properties of graphene-based paper materials. We find that there is a characteristic length scale l0, defined as √{Dh0/4G}, where D is the stiffness of the graphene sheet, h0 and G are height of interlayer crosslink and shear modulus respectively. When the size of the graphene sheets exceeds 3l0, the tension-shear (TS) chain model, which is widely used for nanocomposites, fails to predict the overall mechanical properties of the graphene-based papers. Instead we proposed here a deformable tension-shear (DTS) model by considering elastic deformation of graphene sheets, also the interlayer and intralayer crosslinks. The DTS is then applied to predict the mechanical properties of graphene papers under tensile loading. According to the results we thus obtain, optimal design strategies are proposed for graphene papers with ultrahigh stiffness, strength and toughness.

  10. A comparison of dynamic mechanical properties of processing-tomato peel as affected by hot lye and infrared radiation heating for peeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the viscoelastic characteristics of tomato skins subjected to conventional hot lye peeling and emerging infrared-dry peeling by using dynamic mechanical analysis (DMA). Three DMA testing modes, including temperature ramp, frequency sweep, and creep behavior test, were conduct...

  11. Population properties affect inbreeding avoidance in moose.

    PubMed

    Herfindal, Ivar; Haanes, Hallvard; Røed, Knut H; Solberg, Erling J; Markussen, Stine S; Heim, Morten; Sæther, Bernt-Erik

    2014-12-01

    Mechanisms reducing inbreeding are thought to have evolved owing to fitness costs of breeding with close relatives. In small and isolated populations, or populations with skewed age- or sex distributions, mate choice becomes limited, and inbreeding avoidance mechanisms ineffective. We used a unique individual-based dataset on moose from a small island in Norway to assess whether inbreeding avoidance was related to population structure and size, expecting inbreeding avoidance to be greater in years with larger populations and even adult sex ratios. The probability that a potential mating event was realized was negatively related to the inbreeding coefficient of the potential offspring, with a stronger relationship in years with a higher proportion or number of males in the population. Thus, adult sex ratio and population size affect the degree of inbreeding avoidance. Consequently, conservation managers should aim for sex ratios that facilitate inbreeding avoidance, especially in small and isolated populations.

  12. Mechanical Properties of Doubly Stabilized Microtubule Filaments

    PubMed Central

    Hawkins, Taviare L.; Sept, David; Mogessie, Binyam; Straube, Anne; Ross, Jennifer L.

    2013-01-01

    Microtubules are cytoskeletal filaments responsible for cell morphology and intracellular organization. Their dynamical and mechanical properties are regulated through the nucleotide state of the tubulin dimers and the binding of drugs and/or microtubule-associated proteins. Interestingly, microtubule-stabilizing factors have differential effects on microtubule mechanics, but whether stabilizers have cumulative effects on mechanics or whether one effect dominates another is not clear. This is especially important for the chemotherapeutic drug Taxol, an important anticancer agent and the only known stabilizer that reduces the rigidity of microtubules. First, we ask whether Taxol will combine additively with another stabilizer or whether one stabilizer will dominate another. We call microtubules in the presence of Taxol and another stabilizer, doubly stabilized. Second, since Taxol is often added to a number of cell types for therapeutic purposes, it is important from a biomedical perspective to understand how Taxol added to these systems affects the mechanical properties in treated cells. To address these questions, we use the method of freely fluctuating filaments with our recently developed analysis technique of bootstrapping to determine the distribution of persistence lengths of a large population of microtubules treated with different stabilizers, including Taxol, guanosine-5′ [(α, β)-methyleno] triphosphate, guanosine-5′-O-(3-thiotriphosphate), tau, and MAP4. We find that combinations of these stabilizers have novel effects on the mechanical properties of microtubules. PMID:23561528

  13. Mechanical properties of doubly stabilized microtubule filaments.

    PubMed

    Hawkins, Taviare L; Sept, David; Mogessie, Binyam; Straube, Anne; Ross, Jennifer L

    2013-04-02

    Microtubules are cytoskeletal filaments responsible for cell morphology and intracellular organization. Their dynamical and mechanical properties are regulated through the nucleotide state of the tubulin dimers and the binding of drugs and/or microtubule-associated proteins. Interestingly, microtubule-stabilizing factors have differential effects on microtubule mechanics, but whether stabilizers have cumulative effects on mechanics or whether one effect dominates another is not clear. This is especially important for the chemotherapeutic drug Taxol, an important anticancer agent and the only known stabilizer that reduces the rigidity of microtubules. First, we ask whether Taxol will combine additively with another stabilizer or whether one stabilizer will dominate another. We call microtubules in the presence of Taxol and another stabilizer, doubly stabilized. Second, since Taxol is often added to a number of cell types for therapeutic purposes, it is important from a biomedical perspective to understand how Taxol added to these systems affects the mechanical properties in treated cells. To address these questions, we use the method of freely fluctuating filaments with our recently developed analysis technique of bootstrapping to determine the distribution of persistence lengths of a large population of microtubules treated with different stabilizers, including Taxol, guanosine-5' [(α, β)-methyleno] triphosphate, guanosine-5'-O-(3-thiotriphosphate), tau, and MAP4. We find that combinations of these stabilizers have novel effects on the mechanical properties of microtubules.

  14. Isotropic microscale mechanical properties of coral skeletons

    PubMed Central

    Pasquini, Luca; Molinari, Alan; Fantazzini, Paola; Dauphen, Yannicke; Cuif, Jean-Pierre; Levy, Oren; Dubinsky, Zvy; Caroselli, Erik; Prada, Fiorella; Goffredo, Stefano; Di Giosia, Matteo; Reggi, Michela; Falini, Giuseppe

    2015-01-01

    Scleractinian corals are a major source of biogenic calcium carbonate, yet the relationship between their skeletal microstructure and mechanical properties has been scarcely studied. In this work, the skeletons of two coral species: solitary Balanophyllia europaea and colonial Stylophora pistillata, were investigated by nanoindentation. The hardness HIT and Young's modulus EIT were determined from the analysis of several load–depth data on two perpendicular sections of the skeletons: longitudinal (parallel to the main growth axis) and transverse. Within the experimental and statistical uncertainty, the average values of the mechanical parameters are independent on the section's orientation. The hydration state of the skeletons did not affect the mechanical properties. The measured values, EIT in the 76–77 GPa range, and HIT in the 4.9–5.1 GPa range, are close to the ones expected for polycrystalline pure aragonite. Notably, a small difference in HIT is observed between the species. Different from corals, single-crystal aragonite and the nacreous layer of the seashell Atrina rigida exhibit clearly orientation-dependent mechanical properties. The homogeneous and isotropic mechanical behaviour of the coral skeletons at the microscale is correlated with the microstructure, observed by electron microscopy and atomic force microscopy, and with the X-ray diffraction patterns of the longitudinal and transverse sections. PMID:25977958

  15. Woven TPS Mechanical Property Evaluation

    NASA Technical Reports Server (NTRS)

    Gonzales, Gregory Lewis; Kao, David Jan-Woei; Stackpoole, Margaret M.

    2013-01-01

    Woven Thermal Protection Systems (WTPS) is a relatively new program funded by the Office of the Chief Technologist (OCT). The WTPS approach to producing TPS architectures uses precisely engineered 3-D weaving techniques that allow tailoring material characteristics needed to meet specific mission requirements. A series of mechanical tests were performed to evaluate performance of different weave types, and get a better understanding of failure modes expected in these three-dimensional architectures. These properties will aid in material down selection and guide selection of the appropriate WTPS for a potential mission.

  16. Mechanical Properties of Niobium Cavities

    SciTech Connect

    Ciovati, Gianluigi; Dhakal, Pashupati; Matalevich, Joseph R.; Myneni, Ganapati Rao

    2015-09-01

    The mechanical stability of bulk Nb cavity is an important aspect to be considered in relation to cavity material, geometry and treatments. Mechanical properties of Nb are typically obtained from uniaxial tensile tests of small samples. In this contribution we report the results of measurements of the resonant frequency and local strain along the contour of single-cell cavities made of ingot and fine-grain Nb of different purity subjected to increasing uniform differential pressure, up to 6 atm. Measurements have been done on cavities subjected to different heat treatments. Good agreement between finite element analysis simulations and experimental data in the elastic regime was obtained with a single set of values of Young’s modulus and Poisson’s ratio. The experimental results indicate that the yield strength of medium-purity ingot Nb cavities is higher than that of fine-grain, high-purity Nb.

  17. Mechanical Properties of Viral Capsids

    NASA Astrophysics Data System (ADS)

    Zandi, Roya; Reguera, David

    2005-03-01

    Viral genomes, whether they involve RNA or DNA molecules, are invariably protected by a rigid, single-protein-thick, shell referred to as ``capsid.'' Viral capsids are known to tolerate wide ranges of pH and salt conditions and to withstand internal pressures as high as 100 atms. We study the mechanical properties of viral capsids, calling explicit attention to the inhomogeneity of the shells that is inherent in their being discrete/polyhedral rather than continuous/spherical. We analyze the distribution of stress in these capsids due to isotropic internal pressure (arising, for instance, from genome confinement and/or osmotic activity), and compare the results with appropriate generalizations of classical elasticity theory. We also examine the competing mechanisms for viral shell failure, e.g., in-plane crack formation vs radial bursting. The biological consequences of the special stabilities and stress distributions of viral capsids are also discussed.

  18. Compositional Determinants of Mechanical Properties of Enamel

    PubMed Central

    Baldassarri, M.; Margolis, H.C.; Beniash, E.

    2008-01-01

    Dental enamel is comprised primarily of carbonated apatite, with less than 1% w/w organic matter and 4-5% w/w water. To determine the influence of each component on the microhardness and fracture toughness of rat incisor enamel, we mechanically tested specimens in which water and organic matrix were selectively removed. Tests were performed in mid-sagittal and transverse orientations to assess the effect of the structural organization on enamel micromechanical properties. While removal of organic matrix resulted in up to a 23% increase in microhardness, and as much as a 46% decrease in fracture toughness, water had a significantly lesser effect on these properties. Moreover, removal of organic matrix dramatically weakened the dentino-enamel junction (DEJ). Analysis of our data also showed that the structural organization of enamel affects its micromechanical properties. We anticipate that these findings will help guide the development of bio-inspired nanostructured materials for mineralized tissue repair and regeneration. PMID:18573984

  19. Mechanical properties of metal dihydrides

    SciTech Connect

    Schultz, Peter A.; Snow, Clark S.

    2016-02-04

    First-principles calculations are used to characterize the bulk elastic properties of cubic and tetragonal phase metal dihydrides, $\\text{M}{{\\text{H}}_{2}}$ {$\\text{M}$ = Sc, Y, Ti, Zr, Hf, lanthanides} to gain insight into the mechanical properties that govern the aging behavior of rare-earth di-tritides as the constituent 3H, tritium, decays into 3He. As tritium decays, helium is inserted in the lattice, the helium migrates and collects into bubbles, that then can ultimately create sufficient internal pressure to rupture the material. The elastic properties of the materials are needed to construct effective mesoscale models of the process of bubble growth and fracture. Dihydrides of the scandium column and most of the rare-earths crystalize into a cubic phase, while dihydrides from the next column, Ti, Zr, and Hf, distort instead into the tetragonal phase, indicating incipient instabilities in the phase and potentially significant changes in elastic properties. We report the computed elastic properties of these dihydrides, and also investigate the off-stoichiometric phases as He or vacancies accumulate. As helium builds up in the cubic phase, the shear moduli greatly soften, converting to the tetragonal phase. Conversely, the tetragonal phases convert very quickly to cubic with the removal of H from the lattice, while the cubic phases show little change with removal of H. Finally, the source and magnitude of the numerical and physical uncertainties in the modeling are analyzed and quantified to establish the level of confidence that can be placed in the computational results, and this quantified confidence is used to justify using the results to augment and even supplant experimental measurements.

  20. Mechanical properties of metal dihydrides

    DOE PAGES

    Schultz, Peter A.; Snow, Clark S.

    2016-02-04

    First-principles calculations are used to characterize the bulk elastic properties of cubic and tetragonal phase metal dihydrides,more » $$\\text{M}{{\\text{H}}_{2}}$$ {$$\\text{M}$$ = Sc, Y, Ti, Zr, Hf, lanthanides} to gain insight into the mechanical properties that govern the aging behavior of rare-earth di-tritides as the constituent 3H, tritium, decays into 3He. As tritium decays, helium is inserted in the lattice, the helium migrates and collects into bubbles, that then can ultimately create sufficient internal pressure to rupture the material. The elastic properties of the materials are needed to construct effective mesoscale models of the process of bubble growth and fracture. Dihydrides of the scandium column and most of the rare-earths crystalize into a cubic phase, while dihydrides from the next column, Ti, Zr, and Hf, distort instead into the tetragonal phase, indicating incipient instabilities in the phase and potentially significant changes in elastic properties. We report the computed elastic properties of these dihydrides, and also investigate the off-stoichiometric phases as He or vacancies accumulate. As helium builds up in the cubic phase, the shear moduli greatly soften, converting to the tetragonal phase. Conversely, the tetragonal phases convert very quickly to cubic with the removal of H from the lattice, while the cubic phases show little change with removal of H. Finally, the source and magnitude of the numerical and physical uncertainties in the modeling are analyzed and quantified to establish the level of confidence that can be placed in the computational results, and this quantified confidence is used to justify using the results to augment and even supplant experimental measurements.« less

  1. Factors affecting mechanical (nociceptive) thresholds in piglets

    PubMed Central

    Janczak, Andrew M; Ranheim, Birgit; Fosse, Torunn K; Hild, Sophie; Nordgreen, Janicke; Moe, Randi O; Zanella, Adroaldo J

    2012-01-01

    Objective To evaluate the stability and repeatability of measures of mechanical (nociceptive) thresholds in piglets and to examine potentially confounding factors when using a hand held algometer. Study design Descriptive, prospective cohort. Animals Forty-four piglets from four litters, weighing 4.6 ± 1.0 kg (mean ± SD) at 2 weeks of age. Methods Mechanical thresholds were measured twice on each of 2 days during the first and second week of life. Data were analyzed using a repeated measures design to test the effects of behavior prior to testing, sex, week, day within week, and repetition within day. The effect of body weight and the interaction between piglet weight and behaviour were also tested. Piglet was entered into the model as a random effect as an additional test of repeatability. The effect of repeated testing was used to test the stability of measures. Pearson correlations between repeated measures were used to test the repeatability of measures. Variance component analysis was used to describe the variability in the data. Results Variance component analysis indicated that piglet explained only 17% of the variance in the data. All variables in the model (behaviour prior to testing, sex, week, day within week, repetition within day, body weight, the interaction between body weight and behaviour, piglet identity) except sex had a significant effect (p < 0.04 for all). Correlations between repeated measures increased from the first to the second week. Conclusions and Clinical relevance Repeatability was acceptable only during the second week of testing and measures changed with repeated testing and increased with increasing piglet weight, indicating that time (age) and animal body weight should be taken into account when measuring mechanical (nociceptive) thresholds in piglets. Mechanical (nociceptive) thresholds can be used both for testing the efficacy of anaesthetics and analgesics, and for assessing hyperalgesia in chronic pain states in research and

  2. Design of monoliths through their mechanical properties.

    PubMed

    Podgornik, Aleš; Savnik, Aleš; Jančar, Janez; Krajnc, Nika Lendero

    2014-03-14

    Chromatographic monoliths have several interesting properties making them attractive supports for analytics but also for purification, especially of large biomolecules and bioassemblies. Although many of monolith features were thoroughly investigated, there is no data available to predict how monolith mechanical properties affect its chromatographic performance. In this work, we investigated the effect of porosity, pore size and chemical modification on methacrylate monolith compression modulus. While a linear correlation between pore size and compression modulus was found, the effect of porosity was highly exponential. Through these correlations it was concluded that chemical modification affects monolith porosity without changing the monolith skeleton integrity. Mathematical model to describe the change of monolith permeability as a function of monolith compression modulus was derived and successfully validated for monoliths of different geometries and pore sizes. It enables the prediction of pressure drop increase due to monolith compressibility for any monolith structural characteristics, such as geometry, porosity, pore size or mobile phase properties like viscosity or flow rate, based solely on the data of compression modulus and structural data of non-compressed monolith. Furthermore, it enables simple determination of monolith pore size at which monolith compressibility is the smallest and the most robust performance is expected. Data of monolith compression modulus in combination with developed mathematical model can therefore be used for the prediction of monolith permeability during its implementation but also to accelerate the design of novel chromatographic monoliths with desired hydrodynamic properties for particular application.

  3. Emergent properties of patch shapes affect edge permeability to animals.

    PubMed

    Nams, Vilis O

    2011-01-01

    Animal travel between habitat patches affects populations, communities and ecosystems. There are three levels of organization of edge properties, and each of these can affect animals. At the lowest level are the different habitats on each side of an edge, then there is the edge itself, and finally, at the highest level of organization, is the geometry or structure of the edge. This study used computer simulations to (1) find out whether effects of edge shapes on animal behavior can arise as emergent properties solely due to reactions to edges in general, without the animals reacting to the shapes of the edges, and to (2) generate predictions to allow field and experimental studies to test mechanisms of edge shape response. Individual animals were modeled traveling inside a habitat patch that had different kinds of edge shapes (convex, concave and straight). When animals responded edges of patches, this created an emergent property of responding to the shape of the edge. The response was mostly to absolute width of the shapes, and not the narrowness of them. When animals were attracted to edges, then they tended to collect in convexities and disperse from concavities, and the opposite happened when animals avoided edges. Most of the responses occurred within a distance of 40% of the perceptual range from the tip of the shapes. Predictions were produced for directionality at various locations and combinations of treatments, to be used for testing edge behavior mechanisms. These results suggest that edge shapes tend to either concentrate or disperse animals, simply because the animals are either attracted to or avoid edges, with an effect as great as 3 times the normal density. Thus edge shape could affect processes like pollination, seed predation and dispersal and predator abundance.

  4. Mechanical Properties of Nanocrystal Supercrystals

    SciTech Connect

    Tam, Enrico; Podsiadlo, Paul; Shevchenko, Elena; Ogletree, D. Frank; Delplancke-Ogletree, Marie-Paule; Ashby, Paul D.

    2009-12-30

    Colloidal nanocrystals attract significant interest due to their potential applications in electronic, magnetic, and optical devices. Nanocrystal supercrystals (NCSCs) are particularly appealing for their well ordered structure and homogeneity. The interactions between organic ligands that passivate the inorganic nanocrystal cores critically influence their self-organization into supercrystals, By investigating the mechanical properties of supercrystals, we can directly characterize the particle-particle interactions in a well-defined geometry, and gain insight into both the self-assembly process and the potential applications of nanocrystal supercrystals. Here we report nanoindentation studies of well ordered lead-sulfide (Pbs) nanocrystal supercrystals. Their modulus and hardness were found to be similar to soft polymers at 1.7 GPa and 70 MPa respectively and the fractures toughness was 39 KPa/m1/2, revealing the extremely brittle nature of these materials.

  5. Mechanical Properties of Primary Cilia

    NASA Astrophysics Data System (ADS)

    Battle, Christopher; Schmidt, Christoph F.

    2013-03-01

    Recent studies have shown that the primary cilium, long thought to be a vestigial cellular appendage with no function, is involved in a multitude of sensory functions. One example, interesting from both a biophysical and medical standpoint, is the primary cilium of kidney epithelial cells, which acts as a mechanosensitive flow sensor. Genetic defects in ciliary function can cause, e.g., polycystic kidney disease (PKD). The material properties of these non-motile, microtubule-based 9 +0 cilia, and the way they are anchored to the cell cytoskeleton, are important to know if one wants to understand the mechano-electrochemical response of these cells, which is mediated by their cilia. We have probed the mechanical properties, boundary conditions, and dynamics of the cilia of MDCK cells using optical traps and DIC/fluorescence microscopy. We found evidence for both elastic relaxation of the cilia themselves after bending and for compliance in the intracellular anchoring structures. Angular and positional fluctuations of the cilia reflect both thermal excitations and cellular driving forces.

  6. Tillage system affects microbiological properties of soil

    NASA Astrophysics Data System (ADS)

    Delgado, A.; de Santiago, A.; Avilés, M.; Perea, F.

    2012-04-01

    Soil tillage significantly affects organic carbon accumulation, microbial biomass, and subsequently enzymatic activity in surface soil. Microbial activity in soil is a crucial parameter contributing to soil functioning, and thus a basic quality factor for soil. Since enzymes remain soil after excretion by living or disintegrating cells, shifts in their activities reflect long-term fluctuations in microbial biomass. In order to study the effects of no-till on biochemical and microbiological properties in comparison to conventional tillage in a representative soil from South Spain, an experiment was conducted since 1982 on the experimental farm of the Institute of Agriculture and Fisheries Research of Andalusia (IFAPA) in Carmona, SW Spain (37o24'07''N, 5o35'10''W). The soil at the experimental site was a very fine, montomorillonitic, thermic Chromic Haploxerert (Soil Survey Staff, 2010). A randomized complete block design involving three replications and the following two tillage treatments was performed: (i) Conventional tillage, which involved mouldboard plowing to a depth of 50 cm in the summer (once every three years), followed by field cultivation to a depth of 15 cm before sowing; crop residues being burnt, (ii) No tillage, which involved controlling weeds before sowing by spraying glyphosate and sowing directly into the crop residue from the previous year by using a planter with double-disk openers. For all tillage treatments, the crop rotation (annual crops) consisted of winter wheat, sunflower, and legumes (pea, chickpea, or faba bean, depending on the year), which were grown under rainfed conditions. Enzymatic activities (ß-glucosidase, dehydrogenase, aryl-sulphatase, acid phosphatase, and urease), soil microbial biomass by total viable cells number by acridine orange direct count, the density of cultivable groups of bacteria and fungi by dilution plating on semi-selective media, the physiological profiles of the microbial communities by BiologR, and the

  7. Physical and chemical properties of industrial mineral oils affecting lubrication

    SciTech Connect

    Godfrey, D.; Herguth, W.R.

    1996-02-01

    The lubricating properties of mineral oils, and contaminants which affect those properties, are discussed. A contaminant is any material not in the original fresh oil, whether it is generated within the system or ingested. 5 refs.

  8. Physical and chemical properties of industrial mineral oils affecting lubrication

    SciTech Connect

    Godfrey, D.; Herguth, W.R.

    1995-05-01

    The physical and chemical properties of mineral oils that affect lubrication are reviewed. Recognition of these properties is useful for designing lubrication systems, diagnostics, friction and wear problems, and selecting appropriate test methods.

  9. Mechanical properties of UV irradiated rat tail tendon (RTT) collagen.

    PubMed

    Sionkowska, Alina; Wess, Tim

    2004-04-01

    The mechanical properties of RTT collagen tendon before and after UV irradiation have been investigated by mechanical testing (Instron). Air-dried tendon were submitted to treatment with UV irradiation (wavelength 254 nm) for different time intervals. The changes in such mechanical properties as breaking strength and percentage elongation have been investigated. The results have shown, that the mechanical properties of the tendon were greatly affected by time of UV irradiation. Ultimate tensile strength and ultimate percentage elongation decreased after UV irradiation of the tendon. Increasing UV irradiation leads to a decrease in Young's modulus of the tendon.

  10. Factors Affecting the Textural Properties of Pork

    ERIC Educational Resources Information Center

    Holmer, Sean Frederick

    2009-01-01

    Research concerning rate and extent of tenderization has focused on beef or lamb. However, it is critical to understand these processes in pork, especially as retailers move towards minimally processed or non-enhanced product. The objectives of this experiment were to evaluate the textural properties of pork (firmness and tenderness) by examining…

  11. City snow's physicochemical property affects snow disposal

    NASA Astrophysics Data System (ADS)

    Dovbysh, V. O.; Sharukha, A. V.; Evtin, P. V.; Vershinina, S. V.

    2015-10-01

    At the present day the industrial cities run into severe problem: fallen snow in a city it's a concentrator of pollutants and their quantity is constantly increasing by technology development. Pollution of snow increases because of emission of gases to the atmosphere by cars and factories. Large accumulation of polluted snow engenders many vexed ecological problems. That's why we need a new, non-polluting, scientifically based method of snow disposal. This paper investigates polluted snow's physicochemical property effects on snow melting. A distinctive feature of the ion accelerators with self-magnetically insulated diode is that there.

  12. Research on mechanical properties of corn stalk

    NASA Astrophysics Data System (ADS)

    Zhang, Kaifei; He, Yujing; Zhang, Hongmei; Li, He

    2017-03-01

    Many domestic scholars have studied on straw utilization from lodging resistance, by breeding agricultural experts to optimization parameters, which selected by agricultural mechanical experts and efficient utilization after the harvest crush. Therefore, the study of the mechanical properties of corn stalks has great prospects. It can provide the basis for the design of agricultural machinery and comprehensive utilization of straw that study the relationship between the properties of the corn stalk and the mechanical properties. In this paper, the radial compression and bending mechanical properties of corn stalk was conducted by universal material testing machine, which contributes to the increase of corn crop and provides basis for the development of equipment.

  13. Influence of initial flaws on the mechanical properties of nacre.

    PubMed

    Anup, S

    2015-06-01

    Nacre is a bio-composite made up of hard mineral and soft protein, and has excellent mechanical properties. This paper examines the effect of naturally occurring defects (initial flaws) in nacre on its mechanical properties such as toughness and strength. A random fuse model is developed incorporating initial flaws. Numerical simulations show that initial flaws affect different mechanical properties at different rates. The variation in the experimentally obtained mechanical properties of nacre reported in the literature is shown to be due to initial flaws. The stress in the mineral and protein increases due to initial flaws, but by different amounts. The results obtained in this study are useful for gaining insight into the failure of nacre and development of nacre-inspired composites.

  14. Characterising Mechanical Properties of Braided and Woven Textile Composite Beams

    NASA Astrophysics Data System (ADS)

    Dauda, Benjamin; Oyadiji, S. Olutunde; Potluri, Prasad

    2009-02-01

    The focus of this paper is on the manufacture of textile composite beams and on the determination of their mechanical properties. This includes investigating the effects of fibre orientation on the mechanical properties of braided and woven textile composites. Composites were manufactured from nominally identical constituents and identical consolidation processes, leaving as the only variables, variations caused by the different fibre architecture of the preform. The repeatability and, hence, reliability of this approach is demonstrated. Results obtained show that fibre architecture affects composite strength and extensibility. Composites with woven preforms are practically linear up to catastrophic failure while composites with braided preforms exhibit non-linearity prior to failure. Also the mechanical properties of the textile composite beams were determined. Results show that by tailoring the braid angle and pick density of braided and woven composite performs, the mechanical properties of the composite beams can be controlled to suit end-use requirement.

  15. Localized Mechanical Properties of Friction Stir Processed Sensitized 5456-H116 Al

    DTIC Science & Technology

    2013-04-01

    FSP is applied to a sensitized 5456-H116 aluminum plate and the resulting microstructure is linked to local mechanical properties (0.2% yield...have negatively affected the mechanical properties 15. SUBJECT TERMS Aluminum Alloys, Friction Stir Processing, Sensitization, Mechanical Testing... aluminum 5456-H116 (wt. %) ..............................................3 Table 2. Bulk base material properties for H116, O, and sensitized H116

  16. Nonmetallic impurities improve mechanical properties of vapor-deposited tungsten

    NASA Technical Reports Server (NTRS)

    Chin, J.; Weinberg, A. F.; Lindgren, J. R.

    1972-01-01

    Mechanical properties of vapor deposited tungsten are improved by selective incorporation of various nonmetallic impurities. Addition of trace quantities of carbon, nitrogen, or oxygen can significantly increase both low and high temperature yield strength without greatly affecting ductile-to-brittle transition temperature.

  17. Thermal treatment and mechanical properties of aluminum-2021

    NASA Technical Reports Server (NTRS)

    Brennecke, M. W.

    1970-01-01

    Mechanical properties, after thermal treatments, are summarized for sheet and plate of copper-rich, high-strength, heat-treatable aluminum-2021. The alloy is quench sensitive, quench rate and variations in aging affect corrosion behavior. Aging effects on yield strength, tensile strength, and elongation of sheet and plate are compared.

  18. Mechanical property characterization of intraply hybrid composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sinclair, J. H.

    1979-01-01

    An investigation of the mechanical properties of intraply hybrids made from graphite fiber/epoxy matrix hybridized with secondary S-glass or Kevlar 49 fiber composites is presented. The specimen stress-strain behavior was determined, showing that mechanical properties of intraply hybrid composites can be measured with available methods such as the ten-degree off-axis test for intralaminar shear, and conventional tests for tensile, flexure, and Izod impact properties. The results also showed that combinations of high modulus graphite/S-glass/epoxy matrix composites exist which yield intraply hybrid laminates with the best 'balanced' properties, and that the translation efficiency of mechanical properties from the constituent composites to intraply hybrids may be assessed with a simple equation.

  19. Mechanical deformation mechanisms and properties of amyloid fibrils.

    PubMed

    Choi, Bumjoon; Yoon, Gwonchan; Lee, Sang Woo; Eom, Kilho

    2015-01-14

    Amyloid fibrils have recently received attention due to their remarkable mechanical properties, which are highly correlated with their biological functions. We have studied the mechanical deformation mechanisms and properties of amyloid fibrils as a function of their length scales by using atomistic simulations. It is shown that the length of amyloid fibrils plays a role in their deformation and fracture mechanisms in such a way that the competition between shear and bending deformations is highly dependent on the fibril length, and that as the fibril length increases, so does the bending strength of the fibril while its shear strength decreases. The dependence of rupture force for amyloid fibrils on their length is elucidated using the Bell model, which suggests that the rupture force of the fibril is determined from the hydrogen bond rupture mechanism that critically depends on the fibril length. We have measured the toughness of amyloid fibrils, which is shown to depend on the fibril length. In particular, the toughness of the fibril with its length of ∼3 nm is estimated to be ∼30 kcal mol(-1) nm(-3), comparable to that of a spider silk crystal with its length of ∼2 nm. Moreover, we have shown the important effect of the pulling rate on the mechanical deformation mechanisms and properties of amyloid fibril. It is found that as the pulling rate increases, so does the contribution of the shear effect to the elastic deformation of the amyloid fibril with its length of <10 nm. However, we found that the deformation mechanism of the amyloid fibril with its length of >15 nm is almost independent of the pulling rate. Our study sheds light on the role of the length scale of amyloid fibrils and the pulling rate in their mechanical behaviors and properties, which may provide insights into how the excellent mechanical properties of protein fibrils can be determined.

  20. Mechanical properties that influence antimicrobial peptide activity in lipid membranes.

    PubMed

    Marín-Medina, Nathaly; Ramírez, Diego Alejandro; Trier, Steve; Leidy, Chad

    2016-12-01

    Antimicrobial peptides are small amphiphilic proteins found in animals and plants as essential components of the innate immune system and whose function is to control bacterial infectious activity. In order to accomplish their function, antimicrobial peptides use different mechanisms of action which have been deeply studied in view of their potential exploitation to treat antibiotic-resistant bacterial infections. One of the main mechanisms of action of these peptides is the disruption of the bacterial membrane through pore formation, which, in some cases, takes place via a monomer to oligomer cooperative transition. Previous studies have shown that lipid composition, and the presence of exogenous components, such as cholesterol in model membranes or carotenoids in bacteria, can affect the potency of distinct antimicrobial peptides. At the same time, considering the membrane as a two-dimensional material, it has been shown that membrane composition defines its mechanical properties which might be relevant in many membrane-related processes. Nevertheless, the correlation between the mechanical properties of the membrane and antimicrobial peptide potency has not been considered according to the importance it deserves. The relevance of these mechanical properties in membrane deformation due to peptide insertion is reviewed here for different types of pores in order to elucidate if indeed membrane composition affects antimicrobial peptide activity by modulation of the mechanical properties of the membrane. This would also provide a better understanding of the mechanisms used by bacteria to overcome antimicrobial peptide activity.

  1. Mechanical properties of low tantalum alloys

    NASA Technical Reports Server (NTRS)

    Kortovich, C. S.

    1982-01-01

    The mechanical property behavior of equiaxed cast B-1900 + Hf alloy as a function of tantalum content was studied. Tensile and stress rupture characterization was conducted on cast to size test bars containing tantalum at the 4.3% (standard level), 2.2% and 0% levels. Casting parameters were selected to duplicate conditions used to prepare test specimens for master metal heat qualification. The mechanical property results as well as results of microstructural/phase analysis of failed test bars are presented.

  2. Neuroscience of affect: brain mechanisms of pleasure and displeasure.

    PubMed

    Berridge, Kent C; Kringelbach, Morten L

    2013-06-01

    Affective neuroscience aims to understand how affect (pleasure or displeasure) is created by brains. Progress is aided by recognizing that affect has both objective and subjective features. Those dual aspects reflect that affective reactions are generated by neural mechanisms, selected in evolution based on their real (objective) consequences for genetic fitness. We review evidence for neural representation of pleasure in the brain (gained largely from neuroimaging studies), and evidence for the causal generation of pleasure (gained largely from brain manipulation studies). We suggest that representation and causation may actually reflect somewhat separable neuropsychological functions. Representation reaches an apex in limbic regions of prefrontal cortex, especially orbitofrontal cortex, influencing decisions and affective regulation. Causation of core pleasure or 'liking' reactions is much more subcortically weighted, and sometimes surprisingly localized. Pleasure 'liking' is especially generated by restricted hedonic hotspot circuits in nucleus accumbens (NAc) and ventral pallidum. Another example of localized valence generation, beyond hedonic hotspots, is an affective keyboard mechanism in NAc for releasing intense motivations such as either positively valenced desire and/or negatively valenced dread.

  3. Mechanical Properties of Infrared Transmitting Materials

    DTIC Science & Technology

    1978-01-01

    72-0170, 1972. Touloukian , Y. S., Ed., "Thermophysical Properties of Matter" series. A Comprehensive Compilation of Data by the Thermophysical...Research Projects Agency, 675 North Randolph Street, Arlington, VA 22203-2114. DARPA ltr, 20 Mar 1980 RIA-78-0291 2 01010695 2 Iviecnanica Properties of...336 2. GOVT ACCESSION NO 3. RECIPIENT’S CATALOG NUMBER 4. TITLE (end Subtitle) Mechanical Properties of Infrared Transmitting Materials 5

  4. Force distribution affects vibrational properties in hard-sphere glasses.

    PubMed

    DeGiuli, Eric; Lerner, Edan; Brito, Carolina; Wyart, Matthieu

    2014-12-02

    We theoretically and numerically study the elastic properties of hard-sphere glasses and provide a real-space description of their mechanical stability. In contrast to repulsive particles at zero temperature, we argue that the presence of certain pairs of particles interacting with a small force f soften elastic properties. This softening affects the exponents characterizing elasticity at high pressure, leading to experimentally testable predictions. Denoting P(f) ~ f(θ(e)), the force distribution of such pairs and ϕ(c) the packing fraction at which pressure diverges, we predict that (i) the density of states has a low-frequency peak at a scale ω*, rising up to it as D(ω) ~ ω(2+a), and decaying above ω* as D(ω) ~ ω(-a) where a = (1 - θ(e))/(3 + θ(e)) and ω is the frequency, (ii) shear modulus and mean-squared displacement are inversely proportional with ⟨δR²⟩ ~ 1/μ ~ (ϕ(c) - ϕ)(κ), where κ = 2 - 2/(3 + θ(e)), and (iii) continuum elasticity breaks down on a scale ℓ(c) ~ 1/√(δz) ~ (ϕ(c) - ϕ)(-b), where b = (1 + θ(e))/(6 + 2θ(e)) and δz = z - 2d, where z is the coordination and d the spatial dimension. We numerically test (i) and provide data supporting that θ(e) ≈ 0.41 in our bidisperse system, independently of system preparation in two and three dimensions, leading to κ ≈ 1.41, a ≈ 0.17, and b ≈ 0.21. Our results for the mean-square displacement are consistent with a recent exact replica computation for d = ∞, whereas some observations differ, as rationalized by the present approach.

  5. Dissociable early attentional control mechanisms underlying cognitive and affective conflicts

    PubMed Central

    Chen, Taolin; Kendrick, Keith M.; Feng, Chunliang; Sun, Shiyue; Yang, Xun; Wang, Xiaogang; Luo, Wenbo; Yang, Suyong; Huang, Xiaoqi; Valdés-Sosa, Pedro A.; Gong, Qiyong; Fan, Jin; Luo, Yue-Jia

    2016-01-01

    It has been well documented that cognitive conflict is sensitive to the relative proportion of congruent and incongruent trials. However, few studies have examined whether affective conflict processing is modulated as a function of proportion congruency (PC). To address this question we recorded event-related potentials (ERP) while subjects performed both cognitive and affective face-word Stroop tasks. By varying the proportion of congruent and incongruent trials in each block, we examined the extent to which PC impacts both cognitive and affective conflict control at different temporal stages. Results showed that in the cognitive task an anteriorly localized early N2 component occurred predominantly in the low proportion congruency context, whereas in the affective task it was found to occur in the high proportion congruency one. The N2 effects across the two tasks were localized to the dorsolateral prefrontal cortex, where responses were increased in the cognitive task but decreased in the affective one. Furthermore, high proportions of congruent items produced both larger amplitude of a posteriorly localized sustained potential component and a larger behavioral Stroop effect in cognitive and affective tasks. Our findings suggest that cognitive and affective conflicts engage early dissociable attentional control mechanisms and a later common conflict response system. PMID:27892513

  6. Dissociable early attentional control mechanisms underlying cognitive and affective conflicts.

    PubMed

    Chen, Taolin; Kendrick, Keith M; Feng, Chunliang; Sun, Shiyue; Yang, Xun; Wang, Xiaogang; Luo, Wenbo; Yang, Suyong; Huang, Xiaoqi; Valdés-Sosa, Pedro A; Gong, Qiyong; Fan, Jin; Luo, Yue-Jia

    2016-11-28

    It has been well documented that cognitive conflict is sensitive to the relative proportion of congruent and incongruent trials. However, few studies have examined whether affective conflict processing is modulated as a function of proportion congruency (PC). To address this question we recorded event-related potentials (ERP) while subjects performed both cognitive and affective face-word Stroop tasks. By varying the proportion of congruent and incongruent trials in each block, we examined the extent to which PC impacts both cognitive and affective conflict control at different temporal stages. Results showed that in the cognitive task an anteriorly localized early N2 component occurred predominantly in the low proportion congruency context, whereas in the affective task it was found to occur in the high proportion congruency one. The N2 effects across the two tasks were localized to the dorsolateral prefrontal cortex, where responses were increased in the cognitive task but decreased in the affective one. Furthermore, high proportions of congruent items produced both larger amplitude of a posteriorly localized sustained potential component and a larger behavioral Stroop effect in cognitive and affective tasks. Our findings suggest that cognitive and affective conflicts engage early dissociable attentional control mechanisms and a later common conflict response system.

  7. Physical and mechanical properties of stony meteorites

    NASA Astrophysics Data System (ADS)

    Slyuta, E. N.

    2017-01-01

    The method for experimental research of physical and mechanical properties of stony meteorites is considered. Experimental data on the physical and mechanical properties of samples of three ordinary chondrites are reported. Ordinary chondrites are characterized by a well-defined three-dimensional (spatial) anisotropy of physical and mechanical properties, when a compression strength in one of the directions significantly exceeds that in the other two directions. A measured compression strength of ordinary chondrites is in the range from 105 to 203 MPa, while a tensile strength is in the range from 18 to 31 MPa. As follows from the available published data on the strength of carbonaceous chondrites, they are drastically different in properties from ordinary chondrites. The observed critical aerodynamic loads do not exceed a measured tensile strength value of ordinary chondrites, which is actually the upper limit restricting the maximum aerodynamic load for ordinary chondrites.

  8. Mechanical Properties of Crystalline Silicon Carbide Nanowires.

    PubMed

    Zhang, Huan; Ding, Weiqiang; Aidun, Daryush K

    2015-02-01

    In this paper, the mechanical properties of crystalline silicon carbide nanowires, synthesized with a catalyst-free chemical vapor deposition method, were characterized with nanoscale tensile testing and mechanical resonance testing methods inside a scanning electron microscope. Tensile testing of individual silicon carbide nanowire was performed to determine the tensile properties of the material including the tensile strength, failure strain and Young's modulus. The silicon carbide nanowires were also excited to mechanical resonance in the scanning electron microscope vacuum chamber using mechanical excitation and electrical excitation methods, and the corresponding resonance frequencies were used to determine the Young's modulus of the material according to the simple beam theory. The Young's modulus values from tensile tests were in good agreement with the ones obtained from the mechanical resonance tests.

  9. Assessing mechanical properties from cone indentation hardness

    NASA Astrophysics Data System (ADS)

    Dicarlo, Anthony Albert

    This dissertation investigates methods for assessing the mechanical properties of materials using hardness values obtained from cone indentations. A broad range of isotropic metallic materials was simulated using finite element analysis. In particular, the elastic and plastic bulk properties, which define the stress-strain behavior of materials that exhibit power law hardening, are studied. Other investigators have found that the Young's modulus, E, can be determined from the unloading data of a cone indentation. Therefore, the remaining properties of interest, in this study, are the yield strength, Y, and the work hardening exponent, n. Atkins and Tabor have conducted pioneering work in the area of determining the stress-strain behavior of a metallic material from cone indentation experiments. This work has been re-visited in this study using computational models implementing an expanded range of mechanical properties. Consequently, discrepancies in this prediction method were uncovered when the mechanical properties were outside of the original range studied. As a result, two new prediction methods have been developed using the data collected from the finite element simulations in conjunction with a regression technique. The first method correlates the non-dimensional hardness values, H/E, collected from five cone indentations to the non-dimensional mechanical properties, Y/E and n. The second method is similar in principle, but uses two hardness values as opposed to five. The yield strength can be estimated with a priori knowledge of E. Both of these methods are compared to the method developed by Atkins and Tabor. Although the majority of the work mentioned is focused on the macro-scale, bulk mechanical properties, there is some investigation of meso-scale cone indentations. At the meso-scale, the number of geometric dislocations is significant enough to noticeably increase the strength of a material. This length scale effect is studied for various angled cone

  10. Biomolecular motor modulates mechanical property of microtubule.

    PubMed

    Kabir, Arif Md Rashedul; Inoue, Daisuke; Hamano, Yoshimi; Mayama, Hiroyuki; Sada, Kazuki; Kakugo, Akira

    2014-05-12

    The microtubule (MT) is the stiffest cytoskeletal filamentous protein that takes part in a wide range of cellular activities where its mechanical property plays a crucially significant role. How a single biological entity plays multiple roles in cell has been a mystery for long time. Over the recent years, it has been known that modulation of the mechanical property of MT by different cellular agents is the key to performing manifold in vivo activities by MT. Studying the mechanical property of MT thus has been a prerequisite in understanding how MT plays such diversified in vivo roles. However, the anisotropic structure of MT has been an impediment in obtaining a precise description of the mechanical property of MT along its longitudinal and lateral directions that requires employment of distinct experimental approach and has not been demonstrated yet. In this work, we have developed an experimental system that enabled us to investigate the effect of tensile stress on MT. By using our newly developed system, (1) we have determined the Young's modulus of MT considering its deformation under applied tensile stress and (2) a new role of MT associated motor protein kinesin in modulating the mechanical property of MT was revealed for the first time. Decrease in Young's modulus of MT with the increase in interaction with kinesin suggests that kinesin has a softening effect on MT and thereby can modulate the rigidity of MT. This work will be an aid in understanding the modulation of mechanical property of MTs by MT associated proteins and might also help obtain a clear insight of the endurance and mechanical instability of MTs under applied stress.

  11. Neural Affective Mechanisms Predict Market-Level Microlending.

    PubMed

    Genevsky, Alexander; Knutson, Brian

    2015-09-01

    Humans sometimes share with others whom they may never meet or know, in violation of the dictates of pure self-interest. Research has not established which neuropsychological mechanisms support lending decisions, nor whether their influence extends to markets involving significant financial incentives. In two studies, we found that neural affective mechanisms influence the success of requests for microloans. In a large Internet database of microloan requests (N = 13,500), we found that positive affective features of photographs promoted the success of those requests. We then established that neural activity (i.e., in the nucleus accumbens) and self-reported positive arousal in a neuroimaging sample (N = 28) predicted the success of loan requests on the Internet, above and beyond the effects of the neuroimaging sample's own choices (i.e., to lend or not). These findings suggest that elicitation of positive arousal can promote the success of loan requests, both in the laboratory and on the Internet. They also highlight affective neuroscience's potential to probe neuropsychological mechanisms that drive microlending, enhance the effectiveness of loan requests, and forecast market-level behavior.

  12. Mechanical properties of nanoparticles: basics and applications

    NASA Astrophysics Data System (ADS)

    Guo, Dan; Xie, Guoxin; Luo, Jianbin

    2014-01-01

    The special mechanical properties of nanoparticles allow for novel applications in many fields, e.g., surface engineering, tribology and nanomanufacturing/nanofabrication. In this review, the basic physics of the relevant interfacial forces to nanoparticles and the main measuring techniques are briefly introduced first. Then, the theories and important results of the mechanical properties between nanoparticles or the nanoparticles acting on a surface, e.g., hardness, elastic modulus, adhesion and friction, as well as movement laws are surveyed. Afterwards, several of the main applications of nanoparticles as a result of their special mechanical properties, including lubricant additives, nanoparticles in nanomanufacturing and nanoparticle reinforced composite coating, are introduced. A brief summary and the future outlook are also given in the final part.

  13. Physical and mechanical properties of hemp seed

    NASA Astrophysics Data System (ADS)

    Taheri-Garavand, A.; Nassiri, A.; Gharibzahedi, S.

    2012-04-01

    The current study was conducted to investigate the effect of moisture content on the post-harvest physical and mechanical properties of hemp seed in the range of 5.39 to 27.12% d.b. Results showed that the effect of moisture content on the most physical properties of the grain was significant (P<0.05). The results of mechanical tests demonstrated that the effect of loading rate on the mechanical properties of hemp seed was not significant. However, the moisture content effect on rupture force and energy was significant (P<0.01). The lowest value of rupture force was obtained at the highest loading rate (3mm min-1)and in the moisture content of 27.12% d.b. Moreover, the interaction effects of loading rate and moisture content on the rupture force and energy of hemp seed were significant (P<0.05).

  14. Mechanical properties of septal cartilage homografts

    SciTech Connect

    Glasgold, M.J.; Kato, Y.P.; Christiansen, D.; Hauge, J.A.; Glasgold, A.I.; Silver, F.H.

    1988-10-01

    The compressive mechanical properties of untreated and chemically and physically treated nasal septum homografts were determined. Mechanical properties of control, saline-, thimerosal (Merthiolate)- and Alcide-treated specimens were similar. At high strains, the stiffness of treated cartilage ranged from 12.8 to 22.5 MPa and was unaffected by storage time. In comparison, irradiated and freeze-dried nasal septum exhibited stiffnesses of 35 and 37.5 MPa, respectively, after approximately 1 month of storage. These values of stiffness were significantly different from controls at a 0.95 confidence level. On the basis of these results, it was concluded that Alcide and Merthiolate treatment did not alter the compressive mechanical properties of cartilage and that a combination of these treatments may adequately sterilize and preserve nasal septum homografts.

  15. Nutrient enrichment affects the mechanical resistance of aquatic plants

    PubMed Central

    Puijalon, Sara

    2012-01-01

    For many plant species, nutrient availability induces important anatomical responses, particularly the production of low-density tissues to the detriment of supporting tissues. Due to the contrasting biomechanical properties of plant tissues, these anatomical responses may induce important modifications in the biomechanical properties of plant organs. The aim of this study was to determine the effects of nutrient enrichment on the anatomical traits of two freshwater plant species and its consequences on plant biomechanical performance. Two plant species were grown under controlled conditions in low versus high nutrient levels. The anatomical and biomechanical traits of the plant stems were measured. Both species produced tissues with lower densities under nutrient-rich conditions, accompanied by modifications in the structure of the aerenchyma for one species. As expected, nutrient enrichment also led to important modifications in the biomechanical properties of the stem for both species. In particular, mechanical resistance (breaking force and strength) and stiffness of stems were significantly reduced under nutrient rich conditions. The production of weaker stem tissues as a result of nutrient enrichment may increase the risk of plants to mechanical failure, thus challenging plant maintenance in mechanically stressful or disturbed habitats. PMID:23028018

  16. How forest fire affects the chemical properties of Andisols

    NASA Astrophysics Data System (ADS)

    Neris, Jonay; Hernández-Moreno, José Manuel; Tejedor, Marisa; Jiménez, Concepción

    2013-04-01

    Forest fires affect soil physical, chemical and mineralogical properties. However, the magnitude of these changes depends on both fire properties, such as the peak temperature reached and duration or depth achieved; and initial soil properties (soil type) as for example soil moisture, organic matter content or soil structure characteristics. Although many works have studied the effects of fire on the chemical properties of different soil types, its effects on Andisols properties have been omitted until now. Taking into account the high susceptibility to drying processes showed by the properties of Andisols affected by land use changes, it could be expected that the fire effects on their chemical properties may differ from those shown by other types of soil. In this study, the main chemical properties in addition to the specific andic properties of burned pine forest Andisols were compared to their unburned control. The chemical properties of ashes found after fire at the soil surface were also studied. The results show a slightly increase in EC and pH after the fire due mainly to the higher content of cations of the soil solution. Ashes derived from the vegetation and soil organic matter consumption by fire could be the main source of these elements in the soils after a fire, as they showed a high cation content. However, the rise in EC and pH is lower than the reported by most authors for other soil types. This behaviour could be related to the higher organic matter content of this soils, even after fire, and the buffering effect of organic compounds on the soil EC and pH changes after the fire. As other authors have shown, a decrease in both the total and active organic content after the fire was also observed as a result of the fire event. The specific andic properties of Andisols were also affected. The P retention of these soils slightly declines as a consequence of fire, while the content of short-range-order products was also modified, but no statistically

  17. Build-in Electric Field Induced Mechanical Property Change

    NASA Astrophysics Data System (ADS)

    Chien, Te-Yu; Liu, Jian; Yost, Andrew J.; Chakhalian, Jacques; Freeland, John W.; Guisinger, Nathan P.

    Mechanical properties describe how materials respond to external stress. Microscopically, many intrinsic and extrinsic factors, such as bond length and strength (intrinsic) and grain boundaries (extrinsic), may affect the mechanical property of the materials. In this study, we observed a change of fracturing behavior of Nb-doped SrTiO3 in a Schottky barrier near the interfaces with metallic LaNiO3 films. Through cross-sectional scanning tunneling microscopy and spectroscopy (XSTM/S) experiments and theoretical analysis, the observed fractured topography could be explained by the change of the bond length caused alternation of mechanical property inside the Schottky barrier. Same model could also explain the widely observed dielectric dead layer for SrTiO3 in contact with metal electrodes.

  18. Mechanical properties and fiber type composition of chronically inactive muscles

    NASA Technical Reports Server (NTRS)

    Roy, R. R.; Zhong, H.; Monti, R. J.; Vallance, K. A.; Kim, J. A.; Edgerton, V. R.

    2000-01-01

    A role for neuromuscular activity in the maintenance of skeletal muscle properties has been well established. However, the role of activity-independent factors is more difficult to evaluate. We have used the spinal cord isolation model to study the effects of chronic inactivity on the mechanical properties of the hindlimb musculature in cats and rats. This model maintains the connectivity between the motoneurons and the muscle fibers they innervate, but the muscle unit is electrically "silent". Consequently, the measured muscle properties are activity-independent and thus the advantage of using this model is that it provides a baseline level (zero activity) from which regulatory factors that affect muscle cell homeostasis can be defined. In the present paper, we will present a brief review of our findings using the spinal cord isolation model related to muscle mechanical and fiber type properties.

  19. Mechanical Properties of Ingot Nb Cavities

    SciTech Connect

    Ciovati, Gianluigi; Dhakal, Pashupati; Kneisel, Peter; Mammosser, John; Matalevich, Joseph; Rao Myneni, Ganapati

    2014-07-01

    This contribution presents the results of measurements of the resonant frequency and of strain along the contour of a single-cell cavity made of ingot Nb subjected to increasing uniform differential pressure, up to 6 atm. The data were used to infer mechanical properties of this material after cavity fabrication, by comparison with the results from simulation calculations done with ANSYS. The objective is to provide useful information about the mechanical properties of ingot Nb cavities which can be used in the design phase of SRF cavities intended to be built with this material.

  20. Stainless Steel Microstructure and Mechanical Properties Evaluation

    SciTech Connect

    Switzner, Nathan T

    2010-06-01

    A nitrogen strengthened 21-6-9 stainless steel plate was spinformed into hemispherical test shapes. A battery of laboratory tests was used to characterize the hemispheres. The laboratory tests show that near the pole (axis) of a spinformed hemisphere the yield strength is the lowest because this area endures the least “cold-work” strengthening, i.e., the least deformation. The characterization indicated that stress-relief annealing spinformed stainless steel hemispheres does not degrade mechanical properties. Stress-relief annealing reduces residual stresses while maintaining relatively high mechanical properties. Full annealing completely eliminates residual stresses, but reduces yield strength by about 30%.

  1. Mechanical properties of polygonal carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Huang, Ling; Cao, Dapeng

    2012-08-01

    A group of polygonal carbon nanotubes (P-CNTs) have been designed and their mechanical behavior was investigated by classical molecular dynamics simulations. The research aimed at exploring the effects of structure, temperature, and strain rate on the mechanical properties. The results indicate that the Young's modulus of P-CNTs is lower than those of circumcircle carbon nanotubes (C-CNT). Moreover, with an increase in the number of sides to the polygons, the Young's modulus increases and is much closer to that of C-CNT. The effects of temperature and strain rate on the mechanical properties of P-CNTs show that the higher temperature and slower strain rate result in a lower critical strain and weaker tensile strength. In addition, it was found that the critical strains of P-CNTs are dependent on the tube size. Finally, we used the transition-state theory model to predict the critical strain of P-CNTs at given experimental conditions. It is expected that this work could provide feasible means to manipulate the mechanical properties of novel P-CNTs and facilitate the mechanical application of nanostructures as potential electronic devices.A group of polygonal carbon nanotubes (P-CNTs) have been designed and their mechanical behavior was investigated by classical molecular dynamics simulations. The research aimed at exploring the effects of structure, temperature, and strain rate on the mechanical properties. The results indicate that the Young's modulus of P-CNTs is lower than those of circumcircle carbon nanotubes (C-CNT). Moreover, with an increase in the number of sides to the polygons, the Young's modulus increases and is much closer to that of C-CNT. The effects of temperature and strain rate on the mechanical properties of P-CNTs show that the higher temperature and slower strain rate result in a lower critical strain and weaker tensile strength. In addition, it was found that the critical strains of P-CNTs are dependent on the tube size. Finally, we used the

  2. Laminar Tendon Composites with Enhanced Mechanical Properties

    PubMed Central

    Alberti, Kyle A.; Sun, Jeong-Yun; Illeperuma, Widusha R.; Suo, Zhigang; Xu, Qiaobing

    2015-01-01

    Purpose A strong isotropic material that is both biocompatible and biodegradable is desired for many biomedical applications, including rotator cuff repair, tendon and ligament repair, vascular grafting, among others. Recently, we developed a technique, called “bioskiving” to create novel 2D and 3D constructs from decellularized tendon, using a combination of mechanical sectioning, and layered stacking and rolling. The unidirectionally aligned collagen nanofibers (derived from sections of decellularized tendon) offer good mechanical properties to the constructs compared with those fabricated from reconstituted collagen. Methods In this paper, we studied the effect that several variables have on the mechanical properties of structures fabricated from tendon slices, including crosslinking density and the orientation in which the fibers are stacked. Results We observed that following stacking and crosslinking, the strength of the constructs is significantly improved, with crosslinked sections having an ultimate tens ile strength over 20 times greater than non-crosslinked samples, and a modulus nearly 50 times higher. The mechanism of the mechanical failure mode of the tendon constructs with or without crosslinking was also investigated. Conclusions The strength and fiber organization, combined with the ability to introduce transversely isotropic mechanical properties makes the laminar tendon composites a biocompatiable material that may find future use in a number of biomedical and tissue engineering applications. PMID:25691802

  3. Probing cell mechanical properties with microfluidic devices

    NASA Astrophysics Data System (ADS)

    Rowat, Amy

    2012-02-01

    Exploiting flow on the micron-scale is emerging as a method to probe cell mechanical properties with 10-1000x advances in throughput over existing technologies. The mechanical properties of cells and the cell nucleus are implicated in a wide range of biological contexts: for example, the ability of white blood cells to deform is central to immune response; and malignant cells show decreased stiffness compared to benign cells. We recently developed a microfluidic device to probe cell and nucleus mechanical properties: cells are forced to deform through a narrow constrictions in response to an applied pressure; flowing cells through a series of constrictions enables us to probe the ability of hundreds of cells to deform and relax during flow. By tuning the constriction width so it is narrower than the width of the cell nucleus, we can specifically probe the effects of nuclear physical properties on whole cell deformability. We show that the nucleus is the rate-limiting step in cell passage: inducing a change in its shape to a multilobed structure results in cells that transit more quickly; increased levels of lamin A, a nuclear protein that is key for nuclear shape and mechanical stability, impairs the passage of cells through constrictions. We are currently developing a new class of microfluidic devices to simultaneously probe the deformability of hundreds of cell samples in parallel. Using the same soft lithography techniques, membranes are fabricated to have well-defined pore distribution, width, length, and tortuosity. We design the membranes to interface with a multiwell plate, enabling simultaneous measurement of hundreds of different samples. Given the wide spectrum of diseases where altered cell and nucleus mechanical properties are implicated, such a platform has great potential, for example, to screen cells based on their mechanical phenotype against a library of drugs.

  4. Mechanical Properties of Unsaturated Polyester / Montmorillonite Composites

    DTIC Science & Technology

    2001-11-01

    Montmorillonite Composites DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Nanophase and...Mechanical Properties of Unsaturated Polyester / Montmorillonite Composites A. Baran Inceoglu and Ulku Yilmazer Middle East Technical University, Chemical...analysed the nature of the curing agent on structure. Kornmann, Berglund and Giannelis [8] studied nanocomposites based on montmorillonite modified

  5. Improvement of mechanical properties of glass substrates

    NASA Astrophysics Data System (ADS)

    Karbay, Ismail Hakki Cengizhan; Budakoglu, Refika; Zayim, Esra Ozkan

    2015-12-01

    This paper aims to enhance the mechanical and optical properties of glass substrates with thin films by the sol-gel method. TiO2-SiO2 binary system and Ta2O5 were deposited on glass substrates with high transparency. Ring-on-ring flexure and scratch tests were the main mechanical characterization tests. Herein, we report that the thin films can be used to enhance the mechanical properties of the glass substrates efficiently and effectively. TiO2-SiO2 binary system shows more than two times and Ta2O5 thin films show nearly three times better ultimate strength in the ring-on-ring flexure test. Besides, Ta2O5 thin film samples show superior scratch resistance. Additionally, the finite element method was also used to check the conformity in the application of mechanical properties of composite materials. It is also worth noting that, the finite element method can be used to accurately analyze the mechanical stability of composite materials. The use of the finite element method can reduce the total number of experimental trials without losing reliability.

  6. Characterization of mechanical and biochemical properties of developing embryonic tendon

    PubMed Central

    Marturano, Joseph E.; Arena, Jeffrey D.; Schiller, Zachary A.; Georgakoudi, Irene; Kuo, Catherine K.

    2013-01-01

    Tendons have uniquely high tensile strength, critical to their function to transfer force from muscle to bone. When injured, their innate healing response results in aberrant matrix organization and functional properties. Efforts to regenerate tendon are challenged by limited understanding of its normal development. Consequently, there are few known markers to assess tendon formation and parameters to design tissue engineering scaffolds. We profiled mechanical and biological properties of embryonic tendon and demonstrated functional properties of developing tendon are not wholly reflected by protein expression and tissue morphology. Using force volume-atomic force microscopy, we found that nano- and microscale tendon elastic moduli increase nonlinearly and become increasingly spatially heterogeneous during embryonic development. When we analyzed potential biochemical contributors to modulus, we found statistically significant but weak correlation between elastic modulus and collagen content, and no correlation with DNA or glycosaminoglycan content, indicating there are additional contributors to mechanical properties. To investigate collagen cross-linking as a potential contributor, we inhibited lysyl oxidase-mediated collagen cross-linking, which significantly reduced tendon elastic modulus without affecting collagen morphology or DNA, glycosaminoglycan, and collagen content. This suggests that lysyl oxidase-mediated cross-linking plays a significant role in the development of embryonic tendon functional properties and demonstrates that changes in cross-links alter mechanical properties without affecting matrix content and organization. Taken together, these data demonstrate the importance of functional markers to assess tendon development and provide a profile of tenogenic mechanical properties that may be implemented in tissue engineering scaffold design to mechanoregulate new tendon regeneration. PMID:23576745

  7. Mechanical Properties of Polymer Nano-composites

    NASA Astrophysics Data System (ADS)

    Srivastava, Iti

    Thermoset polymer composites are increasingly important in high-performance engineering industries due to their light-weight and high specific strength, finding cutting-edge applications such as aircraft fuselage material and automobile parts. Epoxy is the most widely employed thermoset polymer, but is brittle due to extensive cross-linking and notch sensitivity, necessitating mechanical property studies especially fracture toughness and fatigue resistance, to ameliorate the low crack resistance. Towards this end, various nano and micro fillers have been used with epoxy to form composite materials. Particularly for nano-fillers, the 1-100 nm scale dimensions lead to fascinating mechanical properties, oftentimes proving superior to the epoxy matrix. The chemical nature, topology, mechanical properties and geometry of the nano-fillers have a profound influence on nano-composite behavior and hence are studied in the context of enhancing properties and understanding reinforcement mechanisms in polymer matrix nano-composites. Using carbon nanotubes (CNTs) as polymer filler, uniquely results in both increased stiffness as well as toughness, leading to extensive research on their applications. Though CNTs-polymer nano-composites offer better mechanical properties, at high stress amplitude their fatigue resistance is lost. In this work covalent functionalization of CNTs has been found to have a profound impact on mechanical properties of the CNT-epoxy nano-composite. Amine treated CNTs were found to give rise to effective fatigue resistance throughout the whole range of stress intensity factor, in addition to significantly enhancing fracture toughness, ductility, Young's modulus and average hardness of the nano-composite by factors of 57%, 60%, 30% and 45% respectively over the matrix as a result of diminished localized cross-linking. Graphene, a one-atom-thick sheet of atoms is a carbon allotrope, which has garnered significant attention of the scientific community and is

  8. Food mechanical properties and dietary ecology.

    PubMed

    Berthaume, Michael A

    2016-01-01

    Interdisciplinary research has benefitted the fields of anthropology and engineering for decades: a classic example being the application of material science to the field of feeding biomechanics. However, after decades of research, discordances have developed in how mechanical properties are defined, measured, calculated, and used due to disharmonies between and within fields. This is highlighted by "toughness," or energy release rate, the comparison of incomparable tests (i.e., the scissors and wedge tests), and the comparison of incomparable metrics (i.e., the stress and displacement-limited indices). Furthermore, while material scientists report on a myriad of mechanical properties, it is common for feeding biomechanics studies to report on just one (energy release rate) or two (energy release rate and Young's modulus), which may or may not be the most appropriate for understanding feeding mechanics. Here, I review portions of materials science important to feeding biomechanists, discussing some of the basic assumptions, tests, and measurements. Next, I provide an overview of what is mechanically important during feeding, and discuss the application of mechanical property tests to feeding biomechanics. I also explain how 1) toughness measures gathered with the scissors, wedge, razor, and/or punch and die tests on non-linearly elastic brittle materials are not mechanical properties, 2) scissors and wedge tests are not comparable and 3) the stress and displacement-limited indices are not comparable. Finally, I discuss what data gathered thus far can be best used for, and discuss the future of the field, urging researchers to challenge underlying assumptions in currently used methods to gain a better understanding between primate masticatory morphology and diet.

  9. Correlation of Cell and Substrate Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Setton, Tedhar; Levine, Joshua; Levine, Joseph; Guan, E.; Collazo, Lourdes; Ge, Shouren; Entcheva, Emilia; Rafailovich, Miriam

    2003-03-01

    The mechanical properties of neonatal rat ventricular fibroblasts plated onto elastomer surfaces were studied in vitro and correlated to the mechanical response of the substrate. In order to differentiate the response of the cells to mechanical as opposed to mechanical modifications in their environment, only the rheological properties of the substrates were modified. In the case of entangled polymers this can be accomplished either by varying the molecular weight or the thickness of polymer films spun cast onto rigid supports. Scanning lateral force microscopy, which has been shown to be an effective technique for measuring relative modulii of surfaces(1) was used to track the mechanical response of the substrates as a function of processing procedures, molecular weight, both in liquid, air, and following fibronectin incubation. The response of the living cells was then compared to that of the underlying substrate. The samples were then stained and the distribution of actin correlated to the mechanical response. 1. S. Ge et al. Phys. Rev. Lett. 11, (2000)2340

  10. Microstructure and Mechanical Properties of Porous Mullite

    NASA Astrophysics Data System (ADS)

    Hsiung, Chwan-Hai Harold

    Mullite (3 Al2O3 : 2 SiO2) is a technologically important ceramic due to its thermal stability, corrosion resistance, and mechanical robustness. One variant, porous acicular mullite (ACM), has a unique needle-like microstructure and is the material platform for The Dow Chemical Company's diesel particulate filter AERIFY(TM). The investigation described herein focuses on the microstructure-mechanical property relationships in acicular mullites as well as those with traditional porous microstructures with the goal of illuminating the critical factors in determining their modulus, strength, and toughness. Mullites with traditional pore morphologies were made to serve as references via slipcasting of a kaolinite-alumina-starch slurry. The starch was burned out to leave behind a pore network, and the calcined body was then reaction-sintered at 1600C to form mullite. The samples had porosities of approximately 60%. Pore size and shape were altered by using different starch templates, and pore size was found to influence the stiffness and toughness. The ACM microstructure was varied along three parameters: total porosity, pore size, and needle size. Total porosity was found to dominate the mechanical behavior of ACM, while increases in needle and pore size increased the toughness at lower porosities. ACM was found to have much improved (˜130%) mechanical properties relative to its non-acicular counterpart at the same porosity. A second set of investigations studied the role of the intergranular glassy phase which wets the needle intersections of ACM. Removal of the glassy phase via an HF etch reduced the mechanical properties by ˜30%, highlighting the intergranular phase's importance to the enhanced mechanical properties of ACM. The composition of the glassy phase was altered by doping the ACM precursor with magnesium and neodymium. Magnesium doping resulted in ACM with greatly reduced fracture strength and toughness. Studies showed that the mechanical properties of the

  11. Mechanical Properties of Fe-Ni Meteorites

    NASA Astrophysics Data System (ADS)

    Roberta, Mulford; El Dasher, B.

    2010-10-01

    Iron-nickel meteorites exhibit a unique lamellar microstructure, Widmanstatten patterns, consisting of small regions with steep-iron-nickel composition gradients.1,2 The microstructure arises as a result of extremely slow cooling in a planetary core or other large mass. Mechanical properties of these structures have been investigated using microindentation, x-ray fluorescence, and EBSD. Observation of local mechanical properties in these highly structured materials supplements bulk measurements, which can exhibit large variation in dynamic properties, even within a single sample. 3 Accurate mechanical properties for meteorites may enable better modeling of planetary cores, the likely origin of these objects. Appropriate values for strength are important in impact and crater modeling and in understanding the consequences of observed impacts on planetary crusts. Previous studies of the mechanical properties of a typical iron-nickel meteorite, a Diablo Canyon specimen, indicated that the strength of the composite was higher by almost an order of magnitude than values obtained from laboratory-prepared specimens.4 This was ascribed to the extreme work-hardening evident in the EBSD measurements. This particular specimen exhibited only residual Widmanstatten structures, and may have been heated and deformed during its traverse of the atmosphere. Additional specimens from the Canyon Diablo fall (type IAB, coarse octahedrite) and examples from the Muonionalusta meteorite and Gibeon fall ( both IVA, fine octahedrite), have been examined to establish a range of error on the previously measured yield, to determine the extent to which deformation upon re-entry contributes to yield, and to establish the degree to which the strength varies as a function of microstructure. 1. A. Christiansen, et.al., Physica Scripta, 29 94-96 (1984.) 2. Goldstein and Ogilvie, Geochim Cosmochim Acta, 29 893-925 (1965.) 3. M. D. Furnish, M.B. Boslough, G.T. Gray II, and J.L. Remo, Int. J. Impact Eng

  12. Cyclic cryopreservation affects the nanoscale material properties of trabecular bone.

    PubMed

    Landauer, Alexander K; Mondal, Sumona; Yuya, Philip A; Kuxhaus, Laurel

    2014-11-07

    Tissues such as bone are often stored via freezing, or cryopreservation. During an experimental protocol, bone may be frozen and thawed a number of times. For whole bone, the mechanical properties (strength and modulus) do not significantly change throughout five freeze-thaw cycles. Material properties at the trabecular and lamellar scales are distinct from whole bone properties, thus the impact of freeze-thaw cycling at this scale is unknown. To address this, the effect of repeated freezing on viscoelastic material properties of trabecular bone was quantified via dynamic nanoindentation. Vertebrae from five cervine spines (1.5-year-old, male) were semi-randomly assigned, three-to-a-cycle, to 0-10 freeze-thaw cycles. After freeze-thaw cycling, the vertebrae were dissected, prepared and tested. ANOVA (factors cycle, frequency, and donor) on storage modulus, loss modulus, and loss tangent, were conducted. Results revealed significant changes between cycles for all material properties for most cycles, no significant difference across most of the dynamic range, and significant differences between some donors. Regression analysis showed a moderate positive correlation between cycles and material property for loss modulus and loss tangent, and weak negative correlation for storage modulus, all correlations were significant. These results indicate that not only is elasticity unpredictably altered, but also that damping and viscoelasticity tend to increase with additional freeze-thaw cycling.

  13. Processing dependence of mechanical properties of metallic glass nanowires

    SciTech Connect

    Zhang, Qi; Li, Mo; Li, Qi-Kai

    2015-02-16

    Compared to their crystalline counterparts, nanowires made of metallic glass have not only superb properties but also remarkable processing ability. They can be processed easily and cheaply like plastics via a wide range of methods. To date, the underlying mechanisms of how these different processing routes affect the wires' properties as well as the atomic structure remains largely unknown. Here, by using atomistic modeling, we show that different processing methods can greatly influence the mechanical properties. The nanowires made via focused ion beam milling and embossing exhibit higher strength but localized plastic deformation, whereas that made by casting from liquid shows excellent ductility with homogeneous deformation but reduced strength. The different responses are reflected sensitively in the underlying atomic structure and packing density, some of which have been observed experimentally. The presence of the gradient of alloy concentration and surface effect will be discussed.

  14. Elastic proteins: biological roles and mechanical properties.

    PubMed Central

    Gosline, John; Lillie, Margo; Carrington, Emily; Guerette, Paul; Ortlepp, Christine; Savage, Ken

    2002-01-01

    The term 'elastic protein' applies to many structural proteins with diverse functions and mechanical properties so there is room for confusion about its meaning. Elastic implies the property of elasticity, or the ability to deform reversibly without loss of energy; so elastic proteins should have high resilience. Another meaning for elastic is 'stretchy', or the ability to be deformed to large strains with little force. Thus, elastic proteins should have low stiffness. The combination of high resilience, large strains and low stiffness is characteristic of rubber-like proteins (e.g. resilin and elastin) that function in the storage of elastic-strain energy. Other elastic proteins play very different roles and have very different properties. Collagen fibres provide exceptional energy storage capacity but are not very stretchy. Mussel byssus threads and spider dragline silks are also elastic proteins because, in spite of their considerable strength and stiffness, they are remarkably stretchy. The combination of strength and extensibility, together with low resilience, gives these materials an impressive resistance to fracture (i.e. toughness), a property that allows mussels to survive crashing waves and spiders to build exquisite aerial filters. Given this range of properties and functions, it is probable that elastic proteins will provide a wealth of chemical structures and elastic mechanisms that can be exploited in novel structural materials through biotechnology. PMID:11911769

  15. Mechanical properties of carbon fiber composites for applications in space

    NASA Astrophysics Data System (ADS)

    Hana, P.; Inneman, A.; Daniel, V.; Sieger, L.; Petru, M.

    2015-01-01

    This article describes method of measurement mechanical properties of carbon fiber composites in space. New material structures are specifically designed for use on space satellites. Composite structures will be exposed to cosmic radiation in Earth orbit on board of a '2U CubeSat' satellite. Piezoelectric ceramic sensors are used for detection mechanical vibrations of composite test strip. A great deal of attention is paid to signal processing using 8-bit microcontroler. Fast Fourier Transformation is used. Fundamental harmonic frequencies and damping from on-board measurements will serve as the input data for terrestrial data processing. The other step of elaboration data is creation of the physical model for evaluating mechanical properties of Carbon composite - Piezoelectric ceramic system. Evaluation of anisotropic mechanical properties of piezoelectric ceramics is an interesting secondary outcome of the investigation. Extreme changes in temperature and the effect of cosmic rays will affect the mechanical properties and durability of the material used for the external construction of satellites. Comparative terrestrial measurements will be performed.

  16. AFM Manipulation of Viruses: Substrate Interactions and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Falvo, M. R.; Superfine, R.; Washburn, S.; Finch, M.; Taylor, R. M.; Chi, V.; Brooks, F. P.; Ferrari, F.; Samulski, R.

    1996-03-01

    Using an AFM tip as a manipulation tool, we have translated, rotated, and dissected individual Tobacco Mosaic Virus (TMV) and Adenovirus particles. We have implemented a teleoperation system which allows manual control of the relative tip-sample position while also allowing conventional AFM operation for imaging resulting structure. Using simple tip trajectories to bend the rod-shaped TMV, we observed a variety of resulting structures and mechanical failures. The distributed adhesive interaction between the virus and the sample surface, as well as the local tip-virus interaction affect the distortion in the shape of the virus. Experiments were performed in air as well as in liquid on graphite and Si substrates. The in-liquid experiments allow tuning of the environmental conditions, including osmolarity and pH, which are known to profoundly affect the virus structure. A continuum mechanical model relating mechanical properties to observations provides insight into the constraints for successful nondestructive manipulation.

  17. Mechanical properties of crosslinked polymer coatings

    NASA Technical Reports Server (NTRS)

    Csernica, Jeffrey

    1994-01-01

    The objectives of this experiment are to: fabricate and test thin films to explore relations between a polymer's structure and its mechanical properties; expose students to testing methods for hardness and impact energy that are simple to perform and which have results that are easy to comprehend; show importance of polymer properties in materials that students frequently encounter; illustrate a system which displays a tradeoff between strength and impact resistance, the combination of which would need to be optimized for a particular application; and to expose students to coatings technology and testing.

  18. Dynamic Mechanical Properties of Natural Rubber/Polyaniline Composites

    NASA Astrophysics Data System (ADS)

    Najidha, S.; Predeep, P.; Saxena, N. S.

    2008-04-01

    The Dynamic Mechanical properties of polymer composite containing Natural Rubber (NR) as the matrix and polyaniline as filler has been studied. The composites were prepared by mechanical mixing in a roll mill and vulcanized in a hot press. The dynamic modulus such as tanδ, storage modulus and loss modulus of the composite were evaluated. The glass transition (Tg) temperature of the Natural Rubber phase in the composite was shifted to lower temperature indicating that the polyaniline content strongly affects the behavior of the composite. Addition of polyaniline lowered the crosslinking degree, but produced a reinforcing effect in the elastomer.

  19. Mechanical properties of intra-ocular lenses

    NASA Astrophysics Data System (ADS)

    Ehrmann, Klaus; Kim, Eon; Parel, Jean-Marie

    2008-02-01

    Cataract surgery usually involves the replacement of the natural crystalline lens with a rigid or foldable intraocular lens to restore clear vision for the patient. While great efforts have been placed on optimising the shape and optical characteristics of IOLs, little is know about the mechanical properties of these devices and how they interact with the capsular bag once implanted. Mechanical properties measurements were performed on 8 of the most commonly implanted IOLs using a custom build micro tensometer. Measurement data will be presented for the stiffness of the haptic elements, the buckling resistance of foldable IOLs, the dynamic behaviour of the different lens materials and the axial compressibility. The biggest difference between the lens types was found between one-piece and 3-piece lenses with respect to the flexibility of the haptic elements

  20. Advanced mechanical properties of graphene paper

    NASA Astrophysics Data System (ADS)

    Ranjbartoreh, Ali R.; Wang, Bei; Shen, Xiaoping; Wang, Guoxiu

    2011-01-01

    Graphene paper (GP) has been prepared by flow-directed assembly of graphene nanosheets. The mechanical properties of as-prepared GPs were investigated by tensile, indentation, and bending tests. Heat treated GPs demonstrate superior hardness, ten times that of synthetic graphite, and two times that of carbon steel; besides, their yielding strength is significantly higher than that of carbon steel. GPs show extremely high modulus of elasticity during bending test; in the range of a few terapascal. The high strength and stiffness of GP is ascribed to the interlocking-tile microstructure of individual graphene nanosheets in the paper. These outstanding mechanical properties of GPs could lead to a wide range of engineering applications.

  1. Rhenium Mechanical Properties and Joining Technology

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Biaglow, James A.

    1996-01-01

    Iridium-coated rhenium (Ir/Re) provides thermal margin for high performance and long life radiation cooled rockets. Two issues that have arisen in the development of flight Ir/Re engines are the sparsity of rhenium (Re) mechanical property data (particularly at high temperatures) required for engineering design, and the inability to directly electron beam weld Re chambers to C103 nozzle skirts. To address these issues, a Re mechanical property database is being established and techniques for creating Re/C103 transition joints are being investigated. This paper discusses the tensile testing results of powder metallurgy Re samples at temperatures from 1370 to 2090 C. Also discussed is the evaluation of Re/C103 transition pieces joined by both, explosive and diffusion bonding. Finally, the evaluation of full size Re transition pieces, joined by inertia welding, as well as explosive and diffusion bonding, is detailed.

  2. Mechanical properties of functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhang, Z. Q.; Liu, B.; Chen, Y. L.; Jiang, H.; Hwang, K. C.; Huang, Y.

    2008-10-01

    Carbon nanotubes (CNTs) used to reinforce polymer matrix composites are functionalized to form covalent bonds with the polymer in order to enhance the CNT/polymer interfaces. These bonds destroy the perfect atomic structures of a CNT and degrade its mechanical properties. We use atomistic simulations to study the effect of hydrogenization on the mechanical properties of single-wall carbon nanotubes. The elastic modulus of CNTs gradually decreases with the increasing functionalization (percentage of C-H bonds). However, both the strength and ductility drop sharply at a small percentage of functionalization, reflecting their sensitivity to C-H bonds. The cluster C-H bonds forming two rings leads to a significant reduction in the strength and ductility. The effect of carbonization has essentially the same effect as hydrogenization.

  3. Investigation of Mechanical Properties and Interfacial Mechanics of Crystalline Nanomaterials

    NASA Astrophysics Data System (ADS)

    Qin, Qingquan

    Nanowires (NWs) and nanotubes (NTs) are critical building blocks of nanotechnologies. The operation and reliability of these nanomaterials based devices depend on their mechanical properties of the nanomaterials, which is therefore important to accurately measure the mechanical properties. Besides, the NW--substrate interfaces also play a critical role in both mechanical reliability and electrical performance of these nanodevices, especially when the size of the NW is small. In this thesis, we focus on the mechanical properties and interface mechanics of three important one dimensional (1D) nanomaterials: ZnO NWs, Ag NWs and Si NWs. For the size effect study, this thesis presents a systematic experimental investigation on the elastic and failure properties of ZnO NWs under different loading modes: tension and buckling. Both tensile modulus (from tension) and bending modulus (from buckling) were found to increase as the NW diameter decreased from 80 to 20 nm. The elastic modulus also shows loading mode dependent; the bending modulus increases more rapidly than the tensile modulus. The tension experiments showed that fracture strain and strength of ZnO NWs increase as the NW diameter decrease. A resonance testing setup was developed to measure elastic modulus of ZnO NWs to confirm the loading mode dependent effect. A systematic study was conducted on the effect of clamping on resonance frequency and thus measured Young's modulus of NWs via a combined experiment and simulation approach. A simple scaling law was provided as guidelines for future designs to accurate measure elastic modulus of a cantilevered NW using the resonance method. This thesis reports the first quantitative measurement of a full spectrum of mechanical properties of five-fold twinned Ag NWs including Young's modulus, yield strength and ultimate tensile strength. In situ tensile testing of Ag NWs with diameters between 34 and 130 nm was carried out inside a SEM. Young's modulus, yield strength and

  4. Artery buckling affects the mechanical stress in atherosclerotic plaques

    PubMed Central

    2015-01-01

    Background Tortuous arteries are often seen in patients with hypertension and atherosclerosis. While the mechanical stress in atherosclerotic plaque under lumen pressure has been studied extensively, the mechanical stability of atherosclerotic arteries and subsequent effect on the plaque stress remain unknown. To this end, we investigated the buckling and post-buckling behavior of model stenotic coronary arteries with symmetric and asymmetric plaque. Methods Buckling analysis for a model coronary artery with symmetric and asymmetric plaque was conducted using finite element analysis based on the dimensions and nonlinear anisotropic materials properties reported in the literature. Results Artery with asymmetric plaque had lower critical buckling pressure compared to the artery with symmetric plaque and control artery. Buckling increased the peak stress in the plaque and led to the development of a high stress concentration in artery with asymmetric plaque. Stiffer calcified tissue and severe stenosis increased the critical buckling pressure of the artery with asymmetric plaque. Conclusions Arteries with atherosclerotic plaques are prone to mechanical buckling which leads to a high stress concentration in the plaques that can possibly make the plaques prone to rupture. PMID:25603490

  5. Mechanical Properties of Palm Fiber Mattress

    NASA Astrophysics Data System (ADS)

    Li, Yu-Qian; Wu, Jia-Yu; Gu, Hao-Wei; Chen, Zong-Yong; Shi, Xiao-Bing; Liao, Ting-Mao; An, Cheng; Yuan, Hong; Liu, Ren-Huai

    2016-05-01

    Palm fiber mattress is increasingly accepted by many families. This study aims at evaluating the mechanical properties of palm fiber mattress. Two experiments were conduct to investigate the Young's modulus of palm fiber mattress in three directions. In addition, finite element models were established to characterize palm fiber mattress under uniform distributed pressure. Finally, results from finite element analysis are presented to illustrate that the thick mattress will stick with human body curve perfectly, which can support vertebral column effectively.

  6. Mechanical property characterization of intraply hybrid composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sinclair, J. H.

    1979-01-01

    An investigation was conducted to characterize the mechanical properties of intraply hybrids made from graphite fiber/epoxy matrix (primary composites) hybridized with varying amounts of secondary composites made from S-glass or Kevlar 49 fibers. The tests were conducted using thin laminates having the same thickness. The specimens for these tests were instrumented with strain gages to determine stress-strain behavior. Significant results are included.

  7. Treatment with Medications Affecting Dopaminergic and Serotonergic Mechanisms: Effects on Fluency and Anxiety in Persons Who Stutter

    ERIC Educational Resources Information Center

    Stager, Sheila V.; Calis, Karim; Grothe, Dale; Bloch, Meir; Berensen, Nannette M.; Smith, Paul J.; Braun, Allen

    2005-01-01

    Medications with dopamine antagonist properties, such as haloperidol, and those with serotonin reuptake inhibitor properties, such as clomipramine, have been shown to improve fluency. To examine the degree to which each of these two pharmacological mechanisms might independently affect fluency, a selective serotonin reuptake inhibitor, paroxetine,…

  8. Determinants of the mechanical properties of bones

    NASA Technical Reports Server (NTRS)

    Martin, R. B.

    1991-01-01

    The mechanical properties of bones are governed by the same principles as those of man-made load-bearing structures, but the organism is able to adapt its bone structure to changes in skeletal loading. In this overview of the determinants of the strength and stiffness of bone, a continuum approach has been taken, in which the behavior of a macroscopic structure depends on its shape and size, and on the mechanical properties of the material within. The latter are assumed to depend on the composition (porosity and mineralization) and organization (trabecular or cortical bone architecture, collagen fiber orientation, fatigue damage) of the bone. The effects of each of these factors are reviewed. Also, the possible means of non-invasively estimating the strength or other mechanical properties of a bone are reviewed, including quantitative computed tomography, photon absorptiometry, and ultrasonic measurements. The best estimates of strength have been obtained with photon absorptiometry and computed tomography, which at best are capable of accounting for 90% of the strength variability in a simple in vitro test, but results from different laboratories have been highly variable.

  9. Evaluation of different factors affecting antimicrobial properties of chitosan.

    PubMed

    Hosseinnejad, Mahmoud; Jafari, Seid Mahdi

    2016-04-01

    Chitosan as one of the natural biopolymers with antimicrobial activities could be a good choice to be applied in many areas including pharmaceuticals, foods, cosmetics, chemicals, agricultural crops, etc. There have been many studies in the literature which show this superb polymer is dependent on many factors to display its antimicrobial properties including the environmental conditions such as pH, type of microorganism, and neighbouring components; and its structural conditions such as molecular weight, degree of deacetylation, derivative form, its concentration, and original source. In this review, after a brief explanation of antimicrobial activity of chitosan and its importance, we will discuss the factors affecting the antimicrobial properties of this biopolymer based on recent studies.

  10. Database of Mechanical Properties of Textile Composites

    NASA Technical Reports Server (NTRS)

    Delbrey, Jerry

    1996-01-01

    This report describes the approach followed to develop a database for mechanical properties of textile composites. The data in this database is assembled from NASA Advanced Composites Technology (ACT) programs and from data in the public domain. This database meets the data documentation requirements of MIL-HDBK-17, Section 8.1.2, which describes in detail the type and amount of information needed to completely document composite material properties. The database focuses on mechanical properties of textile composite. Properties are available for a range of parameters such as direction, fiber architecture, materials, environmental condition, and failure mode. The composite materials in the database contain innovative textile architectures such as the braided, woven, and knitted materials evaluated under the NASA ACT programs. In summary, the database contains results for approximately 3500 coupon level tests, for ten different fiber/resin combinations, and seven different textile architectures. It also includes a limited amount of prepreg tape composites data from ACT programs where side-by-side comparisons were made.

  11. Bedding material affects mechanical thresholds, heat thresholds and texture preference

    PubMed Central

    Moehring, Francie; O’Hara, Crystal L.; Stucky, Cheryl L.

    2015-01-01

    It has long been known that the bedding type animals are housed on can affect breeding behavior and cage environment. Yet little is known about its effects on evoked behavior responses or non-reflexive behaviors. C57BL/6 mice were housed for two weeks on one of five bedding types: Aspen Sani Chips® (standard bedding for our institute), ALPHA-Dri®, Cellu-Dri™, Pure-o’Cel™ or TEK-Fresh. Mice housed on Aspen exhibited the lowest (most sensitive) mechanical thresholds while those on TEK-Fresh exhibited 3-fold higher thresholds. While bedding type had no effect on responses to punctate or dynamic light touch stimuli, TEK-Fresh housed animals exhibited greater responsiveness in a noxious needle assay, than those housed on the other bedding types. Heat sensitivity was also affected by bedding as animals housed on Aspen exhibited the shortest (most sensitive) latencies to withdrawal whereas those housed on TEK-Fresh had the longest (least sensitive) latencies to response. Slight differences between bedding types were also seen in a moderate cold temperature preference assay. A modified tactile conditioned place preference chamber assay revealed that animals preferred TEK-Fresh to Aspen bedding. Bedding type had no effect in a non-reflexive wheel running assay. In both acute (two day) and chronic (5 week) inflammation induced by injection of Complete Freund’s Adjuvant in the hindpaw, mechanical thresholds were reduced in all groups regardless of bedding type, but TEK-Fresh and Pure-o’Cel™ groups exhibited a greater dynamic range between controls and inflamed cohorts than Aspen housed mice. PMID:26456764

  12. Sterilizing elastomeric chains without losing mechanical properties. Is it possible?

    PubMed Central

    Pithon, Matheus Melo; Ferraz, Caio Souza; Rosa, Francine Cristina Silva; Rosa, Luciano Pereira

    2015-01-01

    OBJECTIVE: To investigate the effects of different sterilization/disinfection methods on the mechanical properties of orthodontic elastomeric chains. METHODS: Segments of elastomeric chains with 5 links each were sent for sterilization by cobalt 60 (Co60) (20 KGy) gamma ray technology. After the procedure, the elastomeric chains were contaminated with clinical samples of Streptococcus mutans. Subsequently, the elastomeric chains were submitted to sterilization/disinfection tests carried out by means of different methods, forming six study groups, as follows: Group 1 (control - without contamination), Group 2 (70°GL alcohol), Group 3 (autoclave), Group 4 (ultraviolet), Group 5 (peracetic acid) and Group 6 (glutaraldehyde). After sterilization/disinfection, the effectiveness of these methods, by Colony forming units per mL (CFU/mL), and the mechanical properties of the material were assessed. Student's t-test was used to assess the number of CFUs while ANOVA and Tukey's test were used to assess elastic strength. RESULTS: Ultraviolet treatment was not completely effective for sterilization. No loss of mechanical properties occurred with the use of the different sterilization methods (p > 0.05). CONCLUSION: Biological control of elastomeric chains does not affect their mechanical properties. PMID:26154462

  13. Bisphenol A affects androgen receptor function via multiple mechanisms.

    PubMed

    Teng, Christina; Goodwin, Bonnie; Shockley, Keith; Xia, Menghang; Huang, Ruili; Norris, John; Merrick, B Alex; Jetten, Anton M; Austin, Christopher P; Tice, Raymond R

    2013-05-25

    Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR.

  14. Mechanisms of Divalent Metal Toxicity in Affective Disorders

    PubMed Central

    Menon, Archita Venugopal; Chang, JuOae; Kim, Jonghan

    2016-01-01

    Metals are required for proper brain development and play an important role in a number of neurobiological functions. The Divalent Metal Transporter 1 (DMT1) is a major metal transporter involved in the absorption and metabolism of several essential metals like iron and manganese. However, non-essential divalent metals are also transported through this transporter. Therefore, altered expression of DMT1 can modify the absorption of toxic metals and metal-induced toxicity. An accumulating body of evidence has suggested that increased metal stores in the brain are associated with elevated oxidative stress mediated by the ability of metals to catalyze redox reactions, resulting in abnormal neurobehavioral function and the progression of neurodegenerative diseases. Metal overload has also been implicated in impaired emotional behavior, although the underlying mechanisms are not well understood with limited information. The current review focuses on psychiatric dysfunction associated with imbalanced metabolism of metals that are transported by DMT1. The investigations with respect to the toxic effects of metal overload on behavior and their underlying mechanisms of toxicity could provide several new therapeutic targets to treat metal-associated affective disorders. PMID:26551072

  15. Silicified structures affect leaf optical properties in grasses and sedge.

    PubMed

    Klančnik, Katja; Vogel-Mikuš, Katarina; Gaberščik, Alenka

    2014-01-05

    Silicon (Si) is an important structural element that can accumulate at high concentrations in grasses and sedges, and therefore Si structures might affect the optical properties of the leaves. To better understand the role of Si in light/leaf interactions in species rich in Si, we examined the total Si and silica phytoliths, the biochemical and morphological leaf properties, and the reflectance and transmittance spectra in grasses (Phragmites australis, Phalaris arundinacea, Molinia caerulea, Deschampsia cespitosa) and sedge (Carex elata). We show that these grasses contain >1% phytoliths per dry mass, while the sedge contains only 0.4%. The data reveal the variable leaf structures of these species and significant differences in the amount of Si and phytoliths between developing and mature leaves within each species and between grasses and sedge, with little difference seen among the grass species. Redundancy analysis shows the significant roles of the different near-surface silicified leaf structures (e.g., prickle hairs, cuticle, epidermis), phytoliths and Si contents, which explain the majority of the reflectance and transmittance spectra variability. The amount of explained variance differs between mature and developing leaves. The transmittance spectra are also significantly affected by chlorophyll a content and calcium levels in the leaf tissue.

  16. Machining as a mechanical property test revisited

    NASA Astrophysics Data System (ADS)

    Smith, David L.

    There is much need for data on mechanical behavior of metals at high strains and strain rates. This need is dictated by modeling of processes like forming and machining, wherein the material in the deformation zone is subjected to severe deformation conditions atypical of conventional material property tests such as tension and torsion. Accurate flow stress data is an essential input for robust prediction of process outputs. Similar requirements arise from applications in high speed ballistic penetration and design of materials for armor. Since the deformation zone in cutting of metals is characterized by unique and extreme combinations of strain, strain rate and temperature, an opportunity exists for using plane-strain cutting as a mechanical property test for measuring flow properties of metals. The feasibility of using plane-strain cutting to measure flow properties of metals is revisited in the light of recent data showing controllability of the deformation conditions in chip formation by systematic variation of process input parameters. A method is outlined as to how the deformation conditions can be varied by changing the process parameters. The method is applied to cutting of commercially pure copper (FCC), iron (BCC) and zinc (HCP). Forces and chip geometries are measured, in conjunction with particle image velocimetry characterization of the deformation using high speed image sequences. The flow stresses are estimated from these measurements. The measured flow stress and its dependence on strain are shown to agree well with prior measurements of these parameters using conventional tests, and flow stress inferred from hardness characterization. The method is also demonstrated to be able to measure properties of metals that recrystallize at room temperature (zinc), wherein quasi-static tests predict much lower strength. Sources of variability and uncertainty in the application of this measurement technique are discussed. Future work in the context of further

  17. Do toxic heavy metals affect antioxidant defense mechanisms in humans?

    PubMed

    Wieloch, Monika; Kamiński, Piotr; Ossowska, Anna; Koim-Puchowska, Beata; Stuczyński, Tomasz; Kuligowska-Prusińska, Magdalena; Dymek, Grażyna; Mańkowska, Aneta; Odrowąż-Sypniewska, Grażyna

    2012-04-01

    The aim of this study was to prove whether anthropogenic pollution affects antioxidant defense mechanisms such as superoxide dismutase (SOD) and catalase (CAT) activity, ferritin (FRT) concentration and total antioxidant status (TAS) in human serum. The study area involves polluted and salted environment (Kujawy region; northern-middle Poland) and Tuchola Forestry (unpolluted control area). We investigated 79 blood samples of volunteers from polluted area and 82 from the control in 2008 and 2009. Lead, cadmium and iron concentrations were measured in whole blood by the ICP-MS method. SOD and CAT activities were measured in serum using SOD and CAT Assay Kits by the standardized colorimetric method. Serum TAS was measured spectrophotometrically by the modified Benzie and Strain (1996) method and FRT concentration-by the immunonefelometric method. Pb and Cd levels and SOD activity were higher in volunteers from polluted area as compared with those from the control (0.0236 mg l(-1) vs. 0.014 mg l(-1); 0.0008 mg l(-1) vs. 0.0005 mg l(-1); 0.137 Um l(-1) vs. 0.055 Um l(-1), respectively). Fe level, CAT activity and TAS were lower in serum of volunteers from polluted area (0.442 g l(-1) vs. 0.476 gl(-1); 3.336 nmol min(-1)ml(-1) vs. 6.017 nmol min(-1)ml(-1); 0.731 Trolox-equivalents vs. 0.936 Trolox-equivalents, respectively), whilst differences in FRT concentration were not significant (66.109 μg l(-1) vs. 37.667 μg l(-1), p=0.3972). Positive correlations between Pb (r=0.206), Cd (r=0.602) and SOD in the inhabitants of polluted area, and between Cd and SOD in the control (r=0.639) were shown. In volunteers from both studied environments TAS-FRT (polluted: r=0.625 vs. control: r=0.837) and Fe-FRT (polluted area: r=0.831 vs. control: r=0.407) correlations, and Pb-FRT (r=0.360) and Pb-TAS (r=0.283) in the control were stated. The higher lead and cadmium concentrations in blood cause an increase of SOD activity. It suggests that this is one of the defense mechanisms of an

  18. PICA Variants with Improved Mechanical Properties

    NASA Technical Reports Server (NTRS)

    Thornton, Jeremy; Ghandehari, Ehson M.; Fan, Wenhong; Stackpoole, Margaret; Chavez-Garcia, Jose

    2011-01-01

    Phenolic Impregnated Carbon Ablator (PICA) is a member of the family of Lightweight Ceramic Ablators (LCAs) and was developed at NASA Ames Research Center as a thermal protection system (TPS) material for the Stardust mission probe that entered the Earth s atmosphere faster than any other probe or vehicle to date. PICA, carbon fiberform base and phenolic polymer, shows excellent thermal insulative properties at heating rates from about 250 W/sq cm to 1000 W/sq cm. The density of standard PICA - 0.26 g/cu cm to 0.28 g/cu cm - can be changed by changing the concentration of the phenolic resin. By adding polymers to the phenolic resin before curing it is possible to significantly improve the mechanical properties of PICA without significantly increasing the density.

  19. Design and mechanical properties of insect cuticle.

    PubMed

    Vincent, Julian F V; Wegst, Ulrike G K

    2004-07-01

    Since nearly all adult insects fly, the cuticle has to provide a very efficient and lightweight skeleton. Information is available about the mechanical properties of cuticle-Young's modulus of resilin is about 1 MPa, of soft cuticles about 1 kPa to 50 MPa, of sclerotised cuticles 1-20 GPa; Vicker's Hardness of sclerotised cuticle ranges between 25 and 80 kgf mm(-2); density is 1-1.3 kg m(-3)-and one of its components, chitin nanofibres, the Young's modulus of which is more than 150 GPa. Experiments based on fracture mechanics have not been performed although the layered structure probably provides some toughening. The structural performance of wings and legs has been measured, but our understanding of the importance of buckling is lacking: it can stiffen the structure (by elastic postbuckling in wings, for example) or be a failure mode. We know nothing of fatigue properties (yet, for instance, the insect wing must undergo millions of cycles, flexing or buckling on each cycle). The remarkable mechanical performance and efficiency of cuticle can be analysed and compared with those of other materials using material property charts and material indices. Presented in this paper are four: Young's modulus-density (stiffness per unit weight), specific Young's modulus-specific strength (elastic hinges, elastic energy storage per unit weight), toughness-Young's modulus (fracture resistance under various loading conditions), and hardness (wear resistance). In conjunction with a structural analysis of cuticle these charts help to understand the relevance of microstructure (fibre orientation effects in tendons, joints and sense organs, for example) and shape (including surface structure) of this fibrous composite for a given function. With modern techniques for analysis of structure and material, and emphasis on nanocomposites and self-assembly, insect cuticle should be the archetype for composites at all levels of scale.

  20. Linking properties to microstructure through multiresolution mechanics

    NASA Astrophysics Data System (ADS)

    McVeigh, Cahal James

    The macroscale mechanical and physical properties of materials are inherently linked to the underlying microstructure. Traditional continuum mechanics theories have focused on approximating the heterogeneous microstructure as a continuum, which is conducive to a partial differential equation mathematical description. Although this makes large scale simulation of material much more efficient than modeling the detailed microstructure, the relationship between microstructure and macroscale properties becomes unclear. In order to perform computational materials design, material models must clearly relate the key underlying microstructural parameters (cause) to macroscale properties (effect). In this thesis, microstructure evolution and instability events are related to macroscale mechanical properties through a new multiresolution continuum analysis approach. The multiresolution nature of this theory allows prediction of the evolving magnitude and scale of deformation as a direct function of the changing microstructure. This is achieved via a two-pronged approach: (a) Constitutive models which track evolving microstructure are developed and calibrated to direct numerical simulations (DNS) of the microstructure. (b) The conventional homogenized continuum equations of motion are extended via a virtual power approach to include extra coupled microscale stresses and stress couples which are active at each characteristic length scale within the microstructure. The multiresolution approach is applied to model the fracture toughness of a cemented carbide, failure of a steel alloy under quasi-static loading conditions and the initiation and velocity of adiabatic shear bands under high speed dynamic loading. In each case the multiresolution analysis predicts the important scale effects which control the macroscale material response. The strain fields predicted in the multiresolution continuum analyses compare well to those observed in direct numerical simulations of the

  1. Mechanical properties of low dimensional materials

    NASA Astrophysics Data System (ADS)

    Saini, Deepika

    Recent advances in low dimensional materials (LDMs) have paved the way for unprecedented technological advancements. The drive to reduce the dimensions of electronics has compelled researchers to devise newer techniques to not only synthesize novel materials, but also tailor their properties. Although micro and nanomaterials have shown phenomenal electronic properties, their mechanical robustness and a thorough understanding of their structure-property relationship are critical for their use in practical applications. However, the challenges in probing these mechanical properties dramatically increase as their dimensions shrink, rendering the commonly used techniques inadequate. This dissertation focuses on developing techniques for accurate determination of elastic modulus of LDMs and their mechanical responses under tensile and shear stresses. Fibers with micron-sized diameters continuously undergo tensile and shear deformations through many phases of their processing and applications. Significant attention has been given to their tensile response and their structure-tensile properties relations are well understood, but the same cannot be said about their shear responses or the structure-shear properties. This is partly due to the lack of appropriate instruments that are capable of performing direct shear measurements. In an attempt to fill this void, this dissertation describes the design of an inexpensive tabletop instrument, referred to as the twister, which can measure the shear modulus (G) and other longitudinal shear properties of micron-sized individual fibers. An automated system applies a pre-determined twist to the fiber sample and measures the resulting torque using a sensitive optical detector. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers. Two industrially important fibers, IM7 carbon fiber and KevlarRTM 119, were found to have G = 17 and 2.4 GPa, respectively. In addition to measuring the shear

  2. Passive mechanical properties of ovine rumen tissue

    NASA Astrophysics Data System (ADS)

    Waite, Stephen J.; Cater, John E.; Walker, Cameron G.; Amirapu, Satya; Waghorn, Garry C.; Suresh, Vinod

    2016-05-01

    Mechanical and structural properties of ovine rumen tissue have been determined using uniaxial tensile testing of tissue from four animals at five rumen locations and two orientations. Animal and orientation did not have a significant effect on the stress-strain response, but there was a significant difference between rumen locations. Histological studies showed two orthogonal muscle layers in all regions except the reticulum, which has a more isotropic structure. A quasi-linear viscoelastic model was fitted to the relaxation stage for each region. Model predictions of the ramp stage had RMS errors of 13-24% and were within the range of the experimental data.

  3. Mechanical properties of phosphorene nanoribbons and oxides

    SciTech Connect

    Hao, Feng; Chen, Xi

    2015-12-21

    Mechanical properties of phosphorene nanoribbons and oxides are investigated by using density functional theory. It is found that the ideal strength of nanoribbon decreases in comparison with that of 2D phosphorene. The Young's modulus of armchair nanoribbon has a remarkable size effect because of the edge relaxations. The analysis of the stress-strain relation indicates that, owing to chemisorbed oxygen atoms, the ideal strength and Young's modulus of 2D phosphorene oxide are greatly reduced along the zigzag direction, especially upon high oxidation ratios. In addition, strain and oxidation have significant impacts on phonon dispersion.

  4. Physical and Mechanical Properties of Glass--Reinforced Plastics,

    DTIC Science & Technology

    REINFORCED PLASTICS , REVIEWS), GLASS TEXTILES, MECHANICAL PROPERTIES, ELECTRICAL PROPERTIES, SILICONE PLASTICS , POLYESTER PLASTICS , PHENOLIC... PLASTICS , EPOXY RESINS, TEST METHODS, NONDESTRUCTIVE TESTING, FIRE RESISTANT MATERIALS, POLYVINYL CHLORIDE, USSR

  5. Botryticides affect grapevine leaf photosynthesis without inducing defense mechanisms.

    PubMed

    Petit, Anne-Noëlle; Wojnarowiez, Geneviève; Panon, Marie-Laure; Baillieul, Fabienne; Clément, Christophe; Fontaine, Florence; Vaillant-Gaveau, Nathalie

    2009-02-01

    The effects of the two botryticides, fludioxonil (fdx) and fenhexamid (fhd), were investigated on grapevine leaves (Vitis vinifera L. cv. Pinot noir) following photosynthesis and defense mechanisms. Treatments were carried out in vineyard at the end of flowering. Phytotoxicity of both fungicides was evaluated by measuring variations of leaf photosynthetic parameters and correlated expression of photosynthesis-related genes. Results demonstrated that similar decrease in photosynthesis was caused by fdx and fhd applications. Moreover, the mechanism leading to photosynthesis alteration seems to be the same for both fungicides. Stomatal limitation to photosynthetic gas exchange did not change following treatments indicating that inhibition of photosynthesis was mostly attributed to non-stomatal factors. Nevertheless, fungicides-induced depression of photosynthesis was related neither to a decrease in Rubisco carboxylation efficiency and in the capacity for regeneration of ribulose 1,5-bisphosphate nor to loss in PSII activity. However, fdx and fhd treatments generated repression of genes encoding proteins involved in the photosynthetic process. Indeed, decreased photosynthesis was coupled with repression of PsbP subunit of photosystem II (psbP1), chlorophyll a/b binding protein of photosystem I (cab) and Rubisco small subunit (rbcS) genes. A repression of these genes may participate in the photosynthesis alteration. To our knowledge, this is the first study of photosynthesis-related gene expression following fungicide stress. In the meantime, defense responses were followed by measuring chitinase activity and expression of varied defense-related genes encoding proteins involved in phenylpropanoid synthesis (PAL) or octadecanoid synthesis (LOX), as well as pathogenesis-related protein (Chi4C). No induction of defense was observed in botryticides-treated leaves. To conclude, the photosynthesis is affected without any triggering of plant defense responses.

  6. Mechanisms affecting water quality in an intermittent piped water supply.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2014-01-01

    Drinking water distribution systems throughout the world supply water intermittently, leaving pipes without pressure between supply cycles. Understanding the multiple mechanisms that affect contamination in these intermittent water supplies (IWS) can be used to develop strategies to improve water quality. To study these effects, we tested water quality in an IWS system with infrequent and short water delivery periods in Hubli-Dharwad, India. We continuously measured pressure and physicochemical parameters and periodically collected grab samples to test for total coliform and E. coli throughout supply cycles at 11 sites. When the supply was first turned on, water with elevated turbidity and high concentrations of indicator bacteria was flushed out of pipes. At low pressures (<10 psi), elevated indicator bacteria were frequently detected even when there was a chlorine residual, suggesting persistent contamination had occurred through intrusion or backflow. At pressures between 10 and 17 psi, evidence of periodic contamination suggested that transient intrusion, backflow, release of particulates, or sloughing of biofilms from pipe walls had occurred. Few total coliform and no E. coli were detected when water was delivered with a chlorine residual and at pressures >17 psi.

  7. Braiding Simulation and Prediction of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Pickett, Anthony K.; Sirtautas, Justas; Erber, Andreas

    2009-12-01

    Rotary braiding is a cost effective method to manufacture near net shaped preforms that generally have a closed section and may have an arbitrary shape if braiding is performed over a shaped mandrel. The reinforcement architecture can be varied by the number and spacing of active bobbins, and by the speeds used to ‘take-up’ the braid and move the circumferential bobbins. Analytical methods are available that can reliably predict yarn paths and the final braid meso-structure for simple regular sections, and further analytical methods have been proposed to estimate composite braid elastic mechanical properties. A full simulation chain using the explicit Finite Element (FE) technique is presented for composite braid manufacture and mechanical stiffness prediction of the final composite. First simulation of the braiding process provides detailed information on yarns paths and braid meso-structure, from which Representative Volume Elements (RVE) of the braid may be constructed for analysis of stiffness properties. The techniques are general and can be applied to any braid geometry. A specific problem of meshing the yarn structure and interspersed resin volumes is overcome using conventional solid elements for the yarns and Smooth Particle Hydrodynamics for the resin, with link element to join the two constituents. Details of the background theory, braid simulation methods, meso- model analysis and validation again analytical and test measurements are presented.

  8. Mechanical properties of 3D ceramic nanolattices

    NASA Astrophysics Data System (ADS)

    Meza, Lucas

    Developments in advanced nanoscale fabrication techniques have allowed for the creation of 3-dimensional hierarchical structural meta-materials that can be designed with arbitrary geometry. These structures can be made on length scales spanning multiple orders of magnitude, from tens of nanometers to hundreds of microns. The smallest features are controllable on length scales where materials have been shown to exhibit size effects in their mechanical properties. Combining novel nanoscale mechanical properties with a 3-dimensional architecture enables the creation of new classes of materials with tunable and unprecedented mechanical properties. We present the fabrication and mechanical deformation of hollow tube alumina nanolattices that were fabricated using two-photon lithography direct laser writing (DLW), atomic layer deposition (ALD), and oxygen plasma etching. Nanolattices were designed in a number of different geometries including octet-truss, octahedron, and 3D Kagome. Additionally, a number of structural parameters were varied including tube wall thickness (t) , tube major axis (a) , and unit cell size (L) . The resulting nanolattices had a range of densities from ρ = 4 to 250 mg/cm3. Uniaxial compression and cyclic loading tests were performed on the nanolattices to obtain the yield strength and modulus. In these tests, a marked change in the deformation response was observed when the wall thickness was reduced below 20nm; thick-walled nanolattices (t>20nm) underwent catastrophic, brittle failure, which transitioned to a gradual, ductile-like deformation as wall thickness was reduced. Thick-walled nanolattices also exhibited no recovery after compression, while thin-walled structures demonstrated notable recovery, with some recovering by 98% after compression to 50% strain and by 80% when compressed to 90% strain. Across all geometries, unit cell sizes, and wall thicknesses, we found a consistent power law relation between strength and modulus with

  9. Mechanical properties of the beetle elytron, a biological composite material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined the relationship between composition and mechanical properties of elytral (modified forewing) cuticle of the beetles Tribolium castaneum and Tenebrio molitor. Elytra of both species have similar mechanical properties at comparable stages of maturation (tanning). Shortly after adult ecl...

  10. Mechanical Properties of Oil Palm Empty Fruit Bunch Fiber

    NASA Astrophysics Data System (ADS)

    Gunawan, Fergyanto E.; Homma, Hiroomi; Brodjonegoro, Satryo S.; Hudin, Afzer Bin Baseri; Zainuddin, Aryanti Binti

    In tropical countries such as Indonesia and Malaysia, the empty fruit bunches are wastes of the oil palm industry. The wastes are abundantly available and has reached a level that severely threats the environment. Therefore, it is a great need to find useful applications of those waste materials; but firstly, the mechanical properties of the EFB fiber should be quantified. In this work, a small tensile test machine is manufactured, and the tensile test is performed on the EFB fibers. The results show that the strength of the EFB fiber is strongly affected by the fiber diameter; however, the fiber strength is relatively low in comparison to other natural fibers.

  11. Mechanical properties of hydroxyapatite/mica composite.

    PubMed

    Nordström, E G; Herø, H; Jørgensen, R B

    1994-01-01

    Bend specimens of the inorganic synthetic materials hydroxyapatite (HA) and a composite of hydroxyapatite/muscovite mica have been prepared and tested mechanically. Sintering followed by hot isostatic pressing (HIP) without encapsulation gave an increased strength for HA alone, but no significant increase in strength compared with sintering alone for HA/mica composites. The bend strength of the HA/mica composite was inferior to that of HA alone, the reason being inadequate bonding between HA and mica. HIP in glass capsules and an increased cold compaction pressure tended to improve the bend strength of the composite. Corrosion in tris for 7 d did not affect the bend strength of the investigated materials significantly.

  12. Relationships between supercontraction and mechanical properties of spider silk.

    PubMed

    Liu, Yi; Shao, Zhengzhong; Vollrath, Fritz

    2005-12-01

    Typical spider dragline silk tends to outperform other natural fibres and most man-made filaments. However, even small changes in spinning conditions can have large effects on the mechanical properties of a silk fibre as well as on its water uptake. Absorbed water leads to significant shrinkage in an unrestrained dragline fibre and reversibly converts the material into a rubber. This process is known as supercontraction and may be a functional adaptation for the silk's role in the spider's web. Supercontraction is thought to be controlled by specific motifs in the silk proteins and to be induced by the entropy-driven recoiling of molecular chains. In analogy, in man-made fibres thermal shrinkage induces changes in mechanical properties attributable to the entropy-driven disorientation of 'unfrozen' molecular chains (as in polyethylene terephthalate) or the 'broken' intermolecular hydrogen bonds (as in nylons). Here we show for Nephila major-ampullate silk how in a biological fibre the spinning conditions affect the interplay between shrinkage and mechanical characteristics. This interaction reveals design principles linking the exceptional properties of silk to its molecular orientation.

  13. Relationships between supercontraction and mechanical properties of spider silk

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Shao, Zhengzhong; Vollrath, Fritz

    2005-12-01

    Typical spider dragline silk tends to outperform other natural fibres and most man-made filaments. However, even small changes in spinning conditions can have large effects on the mechanical properties of a silk fibre as well as on its water uptake. Absorbed water leads to significant shrinkage in an unrestrained dragline fibre and reversibly converts the material into a rubber. This process is known as supercontraction and may be a functional adaptation for the silk's role in the spider's web. Supercontraction is thought to be controlled by specific motifs in the silk proteins and to be induced by the entropy-driven recoiling of molecular chains. In analogy, in man-made fibres thermal shrinkage induces changes in mechanical properties attributable to the entropy-driven disorientation of `unfrozen' molecular chains (as in polyethylene terephthalate) or the `broken' intermolecular hydrogen bonds (as in nylons). Here we show for Nephila major-ampullate silk how in a biological fibre the spinning conditions affect the interplay between shrinkage and mechanical characteristics. This interaction reveals design principles linking the exceptional properties of silk to its molecular orientation.

  14. Mechanical properties of icosahedral virus capsids

    NASA Astrophysics Data System (ADS)

    Vliegenthart, G. A.; Gompper, G.

    2007-12-01

    Virus capsids are self-assembled protein shells in the size range of 10 to 100 nanometers. The shells of DNA-viruses have to sustain large internal pressures while encapsulating and protecting the viral DNA. We employ computer simulations to study the mechanical properties of crystalline shells with icosahedral symmetry that serve as a model for virus capsids. The shells are positioned on a substrate and deformed by a uni-axial force excerted by a small bead. We predict the elastic response for small deformations, and the buckling transitions at large deformations. Both are found to depend strongly on the number N of elementary building blocks (capsomers), and the Föppl-von Kármán number γ which characterizes the relative importance of shear and bending elasticity.

  15. Mechanical properties of high-strength concrete

    NASA Astrophysics Data System (ADS)

    Mokhtarzadeh, Alireza

    This report summarizes an experimental program conducted to investigate production techniques and mechanical properties of high strength concrete in general and to provide recommendations for using these concretes in manufacturing precast/prestressed bridge girders. Test variables included total amount and composition of cementitious material (portland cement, fly ash, and silica fume), type and brand of cement, type of silica fume (dry densified and slurry), type and brand of high-range water-reducing admixture, type of aggregate, aggregate gradation, maximum aggregate size, and curing. Tests were conducted to determine the effects of these variables on changes in compressive strength and modulus of elasticity over time, splitting tensile strength, modulus of rupture, creep, shrinkage, and absorption potential (as an indirect indicator of permeability). Also investigated were the effects of test parameters such as mold size, mold material, and end condition. Over 6,300 specimens were cast from approximately 140 mixes over a period of 3 years.

  16. Maternal nutrient restriction affects properties of skeletal muscle in offspring

    PubMed Central

    Zhu, Mei J; Ford, Stephen P; Means, Warrie J; Hess, Bret W; Nathanielsz, Peter W; Du, Min

    2006-01-01

    Maternal nutrient restriction (NR) affects fetal development with long-term consequences on postnatal health of offspring, including predisposition to obesity and diabetes. Most studies have been conducted in fetuses in late gestation, and little information is available on the persistent impact of NR from early to mid-gestation on properties of offspring skeletal muscle, which was the aim of this study. Pregnant ewes were subjected to 50% NR from day 28–78 of gestation and allowed to deliver. The longissimus dorsi muscle was sampled from 8-month-old offspring. Maternal NR during early to mid-gestation decreased the number of myofibres in the offspring and increased the ratio of myosin IIb to other isoforms by 17.6 ± 4.9% (P < 0.05) compared with offspring of ad libitum fed ewes. Activity of carnitine palmitoyltransferase-1, a key enzyme controlling fatty acid oxidation, was reduced by 24.7 ± 4.5% (P < 0.05) in skeletal muscle of offspring of NR ewes and would contribute to increased fat accumulation observed in offspring of NR ewes. Intramuscular triglyceride content (IMTG) was increased in skeletal muscle of NR lambs, a finding which may be linked to predisposition to diabetes in offspring of NR mothers, since enhanced IMTG predisposes to insulin resistance in skeletal muscle. Proteomic analysis by two-dimensional gel electrophoresis demonstrated downregulation of several catabolic enzymes in 8-month-old offspring of NR ewes. These data demonstrate that the early to mid-gestation period is important for skeletal muscle development. Impaired muscle development during this stage of gestation affects the number and composition of fibres in offspring which may lead to long-term physiological consequences, including predisposition to obesity and diabetes. PMID:16763001

  17. Mechanical properties of nanocrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Shen, Z. H.; Hess, P.; Huang, J. P.; Lin, Y. C.; Chen, K. H.; Chen, L. C.; Lin, S. T.

    2006-06-01

    Nanocrystalline diamond (NCD) films with thicknesses in the range of 0.12-1.5 μm were deposited on silicon substrates in CH4/H2/O2 gas mixtures by microwave plasma-enhanced chemical vapor deposition. The morphology and structure of these NCD films were analyzed by field-emission scanning electron microscopy, x-ray diffraction (XRD), and ultraviolet-Raman spectroscopy. The lower limit of the grain size in the NCD films was estimated to be 10 nm from the XRD measurements. These grains are embedded in a columnar-type structure. The elastic and mechanical properties of the NCD films were determined by measuring the dispersion of laser-induced surface acoustic waves. The densities were in the range of 3.41+/-0.11 g/cm3 and Young's moduli varied between 674+/-34 and 953+/-48 GPa, depending on the growth time and deposition conditions. It is concluded that oxygen may have a significant positive effect on the elastic properties of NCD films. The growth rate decreases sharply for an oxygen content in the source gas in excess of about 4%.

  18. Mechanical properties of semiconductors and their alloys

    NASA Astrophysics Data System (ADS)

    Sher, A.; Berding, M. A.; Paxton, A. T.; Krishnamurthy, S.; Chen, A.-B.

    1992-02-01

    A wide range of subjects have been treated in this contract. We have devoted time to the development and applications of two first principles computational methods: one, the full-potential linear muffin tin orbital (FP-LMTO) method is somewhat mature and highly accurate, while the other, linear combination of atomic orbitals (LCAO), is less accurate but more flexible and is easily incorporated into the other calculations we have in place, e.g., surface Green's function methods and CPA. Tight binding has also been used. These methods have been applied to solve a host of mechanical-property problems including elastic constants, cleavage energies, sublimation energies, interactions between surface atoms relating to their surface order-disorder state and growth theory, surface segregation, bulk order-disorder theory and phase stability, the effect of dislocations on electronic transport and electro-optic properties of semiconductors, the Ni-Al intermetallic phase diagram, planar fault energies in L12 alloys, high-performance structural metal alloy design, and a contribution to understanding the Jones theory of metal alloying. Many of these subjects have been brought to publishable conclusions. Whenever possible, we have presented our detailed results in the form of preprints and reprints, with only brief summaries of the work given here. In instances where the research is incomplete, we have given somewhat longer expositions.

  19. Mechanical properties of nanostructure of biological materials

    NASA Astrophysics Data System (ADS)

    Ji, Baohua; Gao, Huajian

    2004-09-01

    Natural biological materials such as bone, teeth and nacre are nanocomposites of protein and mineral with superior strength. It is quite a marvel that nature produces hard and tough materials out of protein as soft as human skin and mineral as brittle as classroom chalk. What are the secrets of nature? Can we learn from this to produce bio-inspired materials in the laboratory? These questions have motivated us to investigate the mechanics of protein-mineral nanocomposite structure. Large aspect ratios and a staggered alignment of mineral platelets are found to be the key factors contributing to the large stiffness of biomaterials. A tension-shear chain (TSC) model of biological nanostructure reveals that the strength of biomaterials hinges upon optimizing the tensile strength of the mineral crystals. As the size of the mineral crystals is reduced to nanoscale, they become insensitive to flaws with strength approaching the theoretical strength of atomic bonds. The optimized tensile strength of mineral crystals thus allows a large amount of fracture energy to be dissipated in protein via shear deformation and consequently enhances the fracture toughness of biocomposites. We derive viscoelastic properties of the protein-mineral nanostructure and show that the toughness of biocomposite can be further enhanced by the viscoelastic properties of protein.

  20. Biodegradable compounds: Rheological, mechanical and thermal properties

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.

    2015-12-01

    Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.

  1. Photopatterning the mechanical properties of polydimethylsiloxane films

    NASA Astrophysics Data System (ADS)

    Cotton, D. P. J.; Popel, A.; Graz, I. M.; Lacour, S. P.

    2011-03-01

    Silicone rubber films with graded and localized mechanical properties are prepared using two-part polydimethylsiloxane (PDMS) elastomer, photoinhibitor compounds and conventional photolithography. First the un-cross-linked PDMS is mixed with benzophenone. The resulting positive photosensitive material is then exposed through a mask to UV light from a conventional mask aligner. Cross-linking of the UV exposed elastomer is inhibited, leading to softer regions than the surrounding unexposed matrix. By empirically fitting the nonlinear, hyperelastic Mooney-Rivlin model to experimentally measured stress-strain curves we determine the equivalent tensile modulus (E) of the rubber film. We show the PDMS tensile modulus can then be adjusted in the 0.65-2.9 MPa range by decreasing the UV exposure dose (from 24 000 to 0 mJ cm-2). Further, using a patterned UV mask, we can locally define differential regions of tensile modulus within a single PDMS rubber film. We demonstrate that "hard islands" (E ≈ 2.9 MPa) of 100 μm minimum diameter can be patterned within a 100-μm-thick, single "soft" PDMS rubber membrane (E ≈ 0.65 MPa) cured at 150 °C for 24 h. Thin gold film conductors patterned directly onto the photopatterned PDMS are stretchable and withstand uniaxial cycling to tens of percent strain. The mechanically "pixellated" PDMS rubber film provides an improved substrate with built-in strain relief for stretchable electronics.

  2. Mechanical properties of DNA-like polymers

    PubMed Central

    Peters, Justin P.; Yelgaonkar, Shweta P.; Srivatsan, Seergazhi G.; Tor, Yitzhak; James Maher, L.

    2013-01-01

    The molecular structure of the DNA double helix has been known for 60 years, but we remain surprisingly ignorant of the balance of forces that determine its mechanical properties. The DNA double helix is among the stiffest of all biopolymers, but neither theory nor experiment has provided a coherent understanding of the relative roles of attractive base stacking forces and repulsive electrostatic forces creating this stiffness. To gain insight, we have created a family of double-helical DNA-like polymers where one of the four normal bases is replaced with various cationic, anionic or neutral analogs. We apply DNA ligase-catalyzed cyclization kinetics experiments to measure the bending and twisting flexibilities of these polymers under low salt conditions. Interestingly, we show that these modifications alter DNA bending stiffness by only 20%, but have much stronger (5-fold) effects on twist flexibility. We suggest that rather than modifying DNA stiffness through a mechanism easily interpretable as electrostatic, the more dominant effect of neutral and charged base modifications is their ability to drive transitions to helical conformations different from canonical B-form DNA. PMID:24013560

  3. Trabecular Bone Mechanical Properties and Fractal Dimension

    NASA Technical Reports Server (NTRS)

    Hogan, Harry A.

    1996-01-01

    Countermeasures for reducing bone loss and muscle atrophy due to extended exposure to the microgravity environment of space are continuing to be developed and improved. An important component of this effort is finite element modeling of the lower extremity and spinal column. These models will permit analysis and evaluation specific to each individual and thereby provide more efficient and effective exercise protocols. Inflight countermeasures and post-flight rehabilitation can then be customized and targeted on a case-by-case basis. Recent Summer Faculty Fellowship participants have focused upon finite element mesh generation, muscle force estimation, and fractal calculations of trabecular bone microstructure. Methods have been developed for generating the three-dimensional geometry of the femur from serial section magnetic resonance images (MRI). The use of MRI as an imaging modality avoids excessive exposure to radiation associated with X-ray based methods. These images can also detect trabecular bone microstructure and architecture. The goal of the current research is to determine the degree to which the fractal dimension of trabecular architecture can be used to predict the mechanical properties of trabecular bone tissue. The elastic modulus and the ultimate strength (or strain) can then be estimated from non-invasive, non-radiating imaging and incorporated into the finite element models to more accurately represent the bone tissue of each individual of interest. Trabecular bone specimens from the proximal tibia are being studied in this first phase of the work. Detailed protocols and procedures have been developed for carrying test specimens through all of the steps of a multi-faceted test program. The test program begins with MRI and X-ray imaging of the whole bones before excising a smaller workpiece from the proximal tibia region. High resolution MRI scans are then made and the piece further cut into slabs (roughly 1 cm thick). The slabs are X-rayed again

  4. Mechanisms linking employee affective delivery and customer behavioral intentions.

    PubMed

    Tsai, Wei-Chi; Huang, Yin-Mei

    2002-10-01

    Past empirical evidence has indicated that employee affective delivery can influence customer reactions (e.g., customer satisfaction, service quality evaluation). This study extends previous research by empirically examining mediating processes underlying the relationship between employee affective delivery and customer behavioral intentions. Data were collected from 352 employee-customer pairs in 169 retail shoe stores in Taiwan. Results showed that the influence of employee affective delivery on customers' willingness to return to the store and pass positive comments to friends was indirect through the mediating processes of customer in-store positive moods and perceived friendliness. The study also indicated that employee affective delivery influences customers' time spent in store, which, in turn, influences customer behavioral intentions.

  5. Mechanical Properties and Failure of Biopolymers: Atomistic Reactions to Macroscale Response.

    PubMed

    Jung, GangSeob; Qin, Zhao; Buehler, Markus J

    2015-01-01

    The behavior of chemical bonding under various mechanical loadings is an intriguing mechanochemical property of biological materials, and the property plays a critical role in determining their deformation and failure mechanisms. Because of their astonishing mechanical properties and roles in constituting the basis of a variety of physiologically relevant materials, biological protein materials have been intensively studied. Understanding the relation between chemical bond networks (structures) and their mechanical properties offers great possibilities to enable new materials design in nanotechnology and new medical treatments for human diseases. Here we focus on how the chemical bonds in biological systems affect mechanical properties and how they change during mechanical deformation and failure. Three representative cases of biomaterials related to the human diseases are discussed in case studies, including: amyloids, intermediate filaments, and collagen, each describing mechanochemical features and how they relate to the pathological conditions at multiple scales.

  6. Leaf biomechanical properties in Arabidopsis thaliana polysaccharide mutants affect drought survival.

    PubMed

    Balsamo, Ronald; Boak, Merewyn; Nagle, Kayla; Peethambaran, Bela; Layton, Bradley

    2015-11-26

    Individual sugars are the building blocks of cell wall polysaccharides, which in turn comprise a plant׳s overall architectural structure. But which sugars play the most prominent role in maintaining a plant׳s mechanical stability during large cellular deformations induced by drought? We investigated the individual contributions of several genes that are involved in the synthesis of monosaccharides which are important for cell wall structure. We then measured drought tolerance and mechanical integrity during simulated drought in Arabidopsis thaliana. To assess mechanical properties, we designed a small-scale tensile tester for measuring failure strain, ultimate tensile stress, work to failure, toughness, and elastic modulus of 6-week-old leaves in both hydrated and drought-simulated states. Col-0 mutants used in this study include those deficient in lignin, cellulose, components of hemicellulose such as xylose and fucose, the pectic components arabinose and rhamnose, as well as mutants with enhanced arabinose and total pectin content. We found that drought tolerance is correlated to the mechanical and architectural stability of leaves as they experience dehydration. Of the mutants, S096418 with mutations for reduced xylose and galactose was the least drought tolerant, while the arabinose-altered CS8578 mutants were the least affected by water loss. There were also notable correlations between drought tolerance and mechanical properties in the diminished rhamnose mutant, CS8575 and the dehydrogenase-disrupted S120106. Our findings suggest that components of hemicellulose and pectins affect leaf biomechanical properties and may play an important role in the ability of this model system to survive drought.

  7. Mechanical properties of thermal protection system materials.

    SciTech Connect

    Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul; Hofer, John H.

    2005-06-01

    An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPS materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.

  8. Intrinsic and extrinsic mechanical properties related to the differentiation of mesenchymal stem cells.

    PubMed

    Lee, Jin-Ho; Park, Hun-Kuk; Kim, Kyung Sook

    2016-05-06

    Diverse intrinsic and extrinsic mechanical factors have a strong influence on the regulation of stem cell fate. In this work, we examined recent literature on the effects of mechanical environments on stem cells, especially on differentiation of mesenchymal stem cells (MSCs). We provide a brief review of intrinsic mechanical properties of single MSC and examined the correlation between the intrinsic mechanical property of MSC and the differentiation ability. The effects of extrinsic mechanical factors relevant to the differentiation of MSCs were considered separately. The effect of nanostructure and elasticity of the matrix on the differentiation of MSCs were summarized. Finally, we consider how the extrinsic mechanical properties transfer to MSCs and then how the effects on the intrinsic mechanical properties affect stem cell differentiation.

  9. Mechanical Properties of Nuclear Fuel Surrogates using Picosecond Laser Ultrasonics

    SciTech Connect

    David Hurley; Marat Khafizov; Farhad Farzbod; Eric Burgett

    2013-05-01

    Detailed understanding between microstructure evolution and mechanical properties is important for designing new high burnup nuclear fuels. In this presentation we discuss the use of picosecond ultrasonics to measure localize changes in mechanical properties of fuel surrogates. We develop measurement techniques that can be applied to investigate heterogeneous elastic properties caused by localize changes in chemistry, grain microstructure caused by recrystallization, and mechanical properties of small samples prepared using focused ion beam sample preparation. Emphasis is placed on understanding the relationship between microstructure and mechanical properties

  10. Fluid Mechanical Properties of Silkworm Fibroin Solutions

    NASA Astrophysics Data System (ADS)

    Matsumoto, Akira

    2005-11-01

    The aqueous solution behavior of silk fibroin is of interest due to the assembly and processing of this protein related to the spinning of protein fibers that exhibit remarkable mechanical properties. To gain insight into the origins of this functional feature, it is desired to determine how the protein behaves under a range of solution conditions. Pure fibroin at different concentrations in water was studied for surface tension, as a measure of surfactancy. In addition, shear induced changes on these solutions in terms of structure and morphology was also determined. Fibroin solutions exhibited shear rate-sensitive viscosity changes and precipitated at a critical shear rate where a dramatic increase of 75-150% of the initial value was observed along with a decrease in viscosity. In surface tension measurements, critical micelle concentrations were in the range of 3-4% w/v. The influence of additional factors, such as sericin protein, divalent and monovalent cations, and pH on the solution behavior in relation to structural and morphological features will also be described.

  11. Mechanical properties of lattice grid composites

    NASA Astrophysics Data System (ADS)

    Fan, Hualin; Fang, Daining; Jin, Fengnian

    2008-08-01

    An equivalent continuum method only considering the stretching deformation of struts was used to study the in-plane stiffness and strength of planar lattice grid composite materials. The initial yield equations of lattices were deduced. Initial yield surfaces were depicted separately in different 3D and 2D stress spaces. The failure envelope is a polyhedron in 3D spaces and a polygon in 2D spaces. Each plane or line of the failure envelope is corresponding to the yield or buckling of a typical bar row. For lattices with more than three bar rows, subsequent yield of the other bar row after initial yield made the lattice achieve greater limit strength. The importance of the buckling strength of the grids was strengthened while the grids were relative sparse. The integration model of the method was used to study the nonlinear mechanical properties of strain hardening grids. It was shown that the integration equation could accurately model the complete stress-strain curves of the grids within small deformations.

  12. Mechanical Properties of the Upper Airway

    PubMed Central

    Strohl, Kingman P.; Butler, James P.; Malhotra, Atul

    2013-01-01

    The importance of the upper airway (nose, pharynx, and larynx) in health and in the pathogenesis of sleep apnea, asthma, and other airway diseases, discussed elsewhere in the Comprehensive Physiology series, prompts this review of the biomechanical properties and functional aspects of the upper airway. There is a literature based on anatomic or structural descriptions in static circumstances, albeit studied in limited numbers of individuals in both health and disease. As for dynamic features, the literature is limited to studies of pressure and flow through all or parts of the upper airway and to the effects of muscle activation on such features; however, the links between structure and function through airway size, shape, and compliance remain a topic that is completely open for investigation, particularly through analyses using concepts of fluid and structural mechanics. Throughout are included both historically seminal references, as well as those serving as signposts or updated reviews. This article should be considered a resource for concepts needed for the application of biomechanical models of upper airway physiology, applicable to understanding the pathophysiology of disease and anticipated results of treatment interventions. PMID:23723026

  13. Primary cilia mechanics affects cell mechanosensation: A computational study.

    PubMed

    Khayyeri, Hanifeh; Barreto, Sara; Lacroix, Damien

    2015-08-21

    Primary cilia (PC) are mechanical cell structures linked to the cytoskeleton and are central to how cells sense biomechanical signals from their environment. However, it is unclear exactly how PC mechanics influences cell mechanosensation. In this study we investigate how the PC mechanical characteristics are involved in the mechanotransduction process whereby cilium deflection under fluid flow induces strains on the internal cell components that regulate the cell׳s mechanosensitive response. Our investigation employs a computational approach in which a finite element model of a cell consisting of a nucleus, cytoplasm, cortex, microtubules, actin bundles and a primary cilium was used together with a finite element representation of a flow chamber. Fluid-structure interaction analysis was performed by simulating perfusion flow of 1mm/s on the cell model. Simulations of cells with different PC mechanical characteristics, showed that the length and the stiffness of PC are responsible for the transmission of mechanical stimuli to the cytoskeleton. Fluid flow deflects the cilium, with the highest strains found at the base of the PC and in the cytoplasm. The PC deflection created further strains on the cell nucleus but did not influence microtubules and actin bundles significantly. Our results indicate that PC deflection under fluid flow stimulation transmits mechanical strain primarily to other essential organelles in the cytoplasm, such as the Golgi complex, that regulate cells' mechanoresponse. The simulations further suggest that cell mechanosensitivity can be altered by targeting PC length and rigidity.

  14. Cell Mechanosensitivity: Mechanical Properties and Interaction with Gravitational Field

    PubMed Central

    Ogneva, I. V.

    2013-01-01

    This paper addressed the possible mechanisms of primary reception of a mechanical stimulus by different cells. Data concerning the stiffness of muscle and nonmuscle cells as measured by atomic force microscopy are provided. The changes in the mechanical properties of cells that occur under changed external mechanical tension are presented, and the initial stages of mechanical signal transduction are considered. The possible mechanism of perception of different external mechanical signals by cells is suggested. PMID:23509748

  15. The effects of different size gold nanoparticles on mechanical properties of vascular smooth muscle cells under mechanical stretching

    NASA Astrophysics Data System (ADS)

    Kieu, Tri Minh

    Nanotechnology is an emerging and promising frontier for medicine and biomedical research due to its potential for applications such as drug delivery, imaging enhancement, and cancer treatment. While these materials may possess significant possibilities, the effects of these particles in the body and how the particles affect the cells is not fully understood. In this study, vascular smooth muscle cells (VSMCs) will be exposed to 5 and 20 nm diameter citrate AuNPs under mechanical conditions. The cytotoxicity properties of these particles will be investigated using LDH and MTT assays. Atomic force microscopy will be used to study how the size of the nanoparticles affect the mechanical properties of the VSMCs. Immunofluorescence staining for alpha actin will also be performed to enhance understanding of the phenotypic shift. The LDH and MTT cytotoxicity assay results demonstrated that neither 5 nor 20 nm diameter nanoparticles are cytotoxic to the cells. However, the mechanical properties and cell morphology of the VSMCs was altered. Under static conditions, both AuNP treatments decreased the mechanical properties of the cells. The size of the nanoparticles had a softening effect on elastic modulus of the cell and sign of a synthetic phenotype was observed. The VSMCs subjected to mechanical stretching exhibited higher elastic modulus compared to the static experimental groups. Again, both AuNPs treatments decreased the mechanical properties of the cells and signs of more synthetic phenotype was seen. However, the size of the nanoparticles did not have any influence on cell's elastic modulus unlike the static treated cells. The mechanical testing condition provided a better look at how these particles would affect the cells in vivo. While the nanoparticles are not cytotoxic to the VSMCs, they are altering the mechanical properties and phenotype of the cell.

  16. Auxetic oesophageal stents: structure and mechanical properties.

    PubMed

    Ali, Murtaza Najabat; Busfield, James J C; Rehman, Ihtesham U

    2014-02-01

    Oesophageal cancer is the ninth leading cause of malignant cancer death and its prognosis remains poor, ranking as the sixth most frequent cause of death in the world. This research work aims to adopt an Auxetic (rotating-squares) geometry device, that had previously been examined theoretically and analysed by Grima and Evans (J Mater Sci Lett 19(17):1563-1565, 2000), to produce a novel Auxetic oesophageal stent and stent-grafts relevant to the palliative treatment of oesophageal cancer and also for the prevention of dysphagia. This paper discusses the manufacture of a small diameter Auxetic oesophageal stent and stent-graft. The oral deployment of such an Auxetic stent would be simplest if a commercial balloon dilatational catheter was used as this obviates the need for an expensive dedicated delivery system. A novel manufacturing route was employed in this research to develop both Auxetic films and Auxetic oesophageal stents, which ranged from conventional subtractive techniques to a new additive manufacturing method. Polyurethane was selected as a material for the fabrication of Auxetic films and Auxetic oesophageal stents because of its good biocompatibility and non-toxicological properties. The Auxetic films were later used for the fabrication of seamed Auxetic oesophageal stents. The flexible polyurethane tubular grafts were also attached to the inner luminal side of the seamless Auxetic oesophageal stents, in order to prevent tumour in-growth. Scanning electron microscopy was used to conduct surface morphology study by using different Auxetic specimens developed from different conventional and new additive manufacturing techniques. Tensile testing of the Auxetic films was performed to characterise their mechanical properties. The stent expansion tests of the Auxetic stents were done to analyse the longitudinal extension and radial expansion of the Auxetic stent at a range of radial pressures applied by the balloon catheter, and to also identify the pressure

  17. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.

    PubMed

    Chen, Mian; Zhang, Erlin; Zhang, Lan

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti-Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti-Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti-Ag phase, residual pure Ag and Ti were the mainly phases in Ti-Ag(S75) sintered alloy while Ti2Ag was synthesized in Ti-Ag(S10) sintered alloy. The mechanical test indicated that Ti-Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti-Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti-Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti2Ag and its distribution.

  18. Mechanical properties of monocrystalline and polycrystalline monolayer black phosphorus

    NASA Astrophysics Data System (ADS)

    Cao, Pinqiang; Wu, Jianyang; Zhang, Zhisen; Ning, Fulong

    2017-01-01

    The mechanical properties of monocrystalline and polycrystalline monolayer black phosphorus (MBP) are systematically investigated using classic molecular dynamic simulations. For monocrystalline MBP, it is found that the shear strain rate, sample dimensions, temperature, atomic vacancies and applied statistical ensemble affect the shear behaviour. The wrinkled morphology is closely connected with the direction of the in-plane shear, dimensions of the samples, and applied ensembles. Particularly, small samples subjected to loading/unloading of the shear deformation along the armchair direction demonstrate a clear mechanical hysteresis loop. For polycrystalline MBP, the maximum shear stress as a function of the average grain size follows an inverse pseudo Hall-Petch type relationship under an isothermal-isobaric (NPT) ensemble, whereas under a canonical (NVT) ensemble, the maximum shear stress of polycrystalline MBP exhibits a ‘flipped’ behaviour. Furthermore, polycrystalline MBP subjected to uniaxial tension also exhibits a strongly grain size-dependent mechanical response, and it can fail by brittle intergranular and transgranular fractures because of its weaker grain boundary structures and the direction-dependent edge energy, respectively. These findings provide useful insight into the mechanical design of BP for nanoelectronic devices.

  19. Mechanical Properties of Several Magnesium and Aluminum Composites

    DTIC Science & Technology

    1992-12-01

    34AD-A262 481 ARMY RESEARCH LABORATORY Mechanical Properties of Several Magnesium and Aluminum Composites Nikos Tsangarakis and Barmac Taleghani ARL...ESJEI L .PwmOM N.ajmns Mechanical Properties of Several Magnesium and Aluminum Composites 2.AUIwORU Nikos Tsangarakis and Barmac Taleghani 7. PERONUMMN...Several composites of magnesiumn and aluminum alloys were tested In order to assess and evaluate their mechanical properties . The magnesium alloys were

  20. Effects of loading misalignment and tapering angle on the measured mechanical properties of nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Yujie; An, Xianghai; Liao, Xiaozhou; Mai, Yiu-Wing

    2015-10-01

    Loading misalignment and tapering of nanowires are usually unavoidable factors in compression and tensile mechanical property testing of nanowires. Herein, we report quantitative finite element analyses and experimental measurements on how these two factors affect the measured compression and tensile mechanical properties if they are not included in the data analysis. The results obtained show that ignoring these two factors leads to different degrees of underestimation of the critical load, Young’s modulus and tensile fracture strength.

  1. The effects of starches on mechanical properties of paracetamol tablet formulations. I. Pregelatinization of starch binders.

    PubMed

    Alebiowu, Gbenga; Itiola, Oludele Adelanwa

    2003-09-01

    A study has been made of the effects of pregelatinization of native sorghum and plantain starches on the mechanical properties of a paracetamol tablet formulation in comparison with corn starch BP. The mechanical properties tested, viz. tensile strength (T) and brittle fracture index (BFI) of the paracetamol tablets were affected by pregelatinization of the starch. The results suggest that pregelatinized starches may be useful as binders when a particular degree of bond strength and brittleness is desired.

  2. 7 CFR 1955.105 - Real property affected (CONACT).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...). (a) Loan types. Sections 1955.106-1955.109 of this subpart prescribe procedures for the sale of inventory real property which secured any of the following type of loans (referred to as CONACT property in... Drainage; Shift-in-Land Use (Grazing Association); and loans to Indian Tribes and Tribal...

  3. 7 CFR 1955.105 - Real property affected (CONACT).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...). (a) Loan types. Sections 1955.106-1955.109 of this subpart prescribe procedures for the sale of inventory real property which secured any of the following type of loans (referred to as CONACT property in... Drainage; Shift-in-Land Use (Grazing Association); and loans to Indian Tribes and Tribal...

  4. 7 CFR 1955.105 - Real property affected (CONACT).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...). (a) Loan types. Sections 1955.106-1955.109 of this subpart prescribe procedures for the sale of inventory real property which secured any of the following type of loans (referred to as CONACT property in... Drainage; Shift-in-Land Use (Grazing Association); and loans to Indian Tribes and Tribal...

  5. 7 CFR 1955.105 - Real property affected (CONACT).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Loan types. Sections 1955.106-1955.109 of this subpart prescribe procedures for the sale of inventory real property which secured any of the following type of loans (referred to as CONACT property in this... Drainage; Shift-in-Land Use (Grazing Association); and loans to Indian Tribes and Tribal...

  6. 7 CFR 1955.105 - Real property affected (CONACT).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...). (a) Loan types. Sections 1955.106-1955.109 of this subpart prescribe procedures for the sale of inventory real property which secured any of the following type of loans (referred to as CONACT property in... Drainage; Shift-in-Land Use (Grazing Association); and loans to Indian Tribes and Tribal...

  7. Physicochemical properties of quinoa flour as affected by starch interactions.

    PubMed

    Li, Guantian; Zhu, Fan

    2017-04-15

    There has been growing interest in whole grain quinoa flour for new product development due to the unique nutritional benefits. The quality of quinoa flour is much determined by the properties of its major component starch as well as non-starch components. In this study, composition and physicochemical properties of whole grain flour from 7 quinoa samples have been analyzed. Flour properties have been correlated to the flour composition and the properties of isolated quinoa starches through chemometrics. Great variations in chemical composition, swelling power, water soluble index, enzyme susceptibility, pasting, gel texture, and thermal properties of the flour have been observed. Correlation analysis showed that thermal properties and enzyme susceptibility of quinoa flour are highly influenced by the starch. Interactions of starch with non-starch components, including lipids, protein, dietary fibre, phenolics, and minerals, greatly impacted the flour properties. For example, peak gelatinization temperature of the flour is positively correlated to that of the starch (r=0.948, p<0.01) and negatively correlated to the lipid content (r=-0.951, p<0.01). Understanding the roles of starch and other components in physicochemical properties of quinoa flour provides a basis for better utilization of this specialty crop.

  8. Scanning Probe Evaluation of Electronic, Mechanical and Structural Material Properties

    NASA Astrophysics Data System (ADS)

    Virwani, Kumar

    2011-03-01

    We present atomic force microscopy (AFM) studies of a range of properties from three different classes of materials: mixed ionic electronic conductors, low-k dielectrics, and polymer-coated magnetic nanoparticles. (1) Mixed ionic electronic conductors are being investigated as novel diodes to drive phase-change memory elements. Their current-voltage characteristics are measured with direct-current and pulsed-mode conductive AFM (C-AFM). The challenges to reliability of the C-AFM method include the electrical integrity of the probe, the sample and the contacts, and the minimization of path capacitance. The role of C-AFM in the optimization of these electro-active materials will be presented. (2) Low dielectric constant (low-k) materials are used in microprocessors as interlayer insulators, a role directly affected by their mechanical performance. The mechanical properties of nanoporous silicate low-k thin films are investigated in a comparative study of nanomechanics measured by AFM and by traditional nanoindentation. Both methods are still undergoing refinement as reliable analytical tools for determining nanomechanical properties. We will focus on AFM, the faster of the two methods, and its developmental challenges of probe shape, cantilever force constant, machine compliance and calibration standards. (3) Magnetic nanoparticles are being explored for their use in patterned media for magnetic storage. Current methods for visualizing the core-shell structure of polymer-coated magnetic nanoparticles include dye-staining the polymer shell to provide contrast in transmission electron microscopy. AFM-based fast force-volume measurements provide direct visualization of the hard metal oxide core within the soft polymer shell based on structural property differences. In particular, the monitoring of adhesion and deformation between the AFM tip and the nanoparticle, particle-by-particle, provides a reliable qualitative tool to visualize core-shell contrast without the use

  9. Beneficial microbes affect endogenous mechanisms controlling root development

    PubMed Central

    Verbon, Eline H.; Liberman, Louisa M.

    2016-01-01

    Plants have incredible developmental plasticity, enabling them to respond to a wide range of environmental conditions. Among these conditions is the presence of plant growth-promoting rhizobacteria (PGPR) in the soil. Recent studies show that PGPR affect root growth and development within Arabidopsis thaliana root. These effects lead to dramatic changes in root system architecture, that significantly impact aboveground plant growth. Thus, PGPR may promote shoot growth via their effect on root developmental programs. This review focuses on contextualizing root developmental changes elicited by PGPR in light of our understanding of plant-microbe interactions and root developmental biology. PMID:26875056

  10. Improvement of Mechanical Properties of Spheroidized 1045 Steel by Induction Heat Treatment

    NASA Astrophysics Data System (ADS)

    Kim, Minwook; Shin, Jung-Ho; Choi, Young; Lee, Seok-Jae

    2016-04-01

    The effects of induction heat treatment on the formation of carbide particles and mechanical properties of spheroidized 1045 steel were investigated by means of microstructural analysis and tensile testing. The induction spheroidization accelerated the formation of spherical cementite particles and effectively softened the steel. The volume fraction of cementite was found to be a key factor that affected the mechanical properties of spheroidized steels. Further tests showed that sequential spheroidization by induction and furnace heat treatments enhanced elongation within a short spheroidization time, resulting in better mechanical properties. This was due to the higher volume fraction of spherical cementite particles that had less diffusion time for particle coarsening.

  11. Correlation of microstructure and thermo-mechanical properties of a novel hydrogen transport membrane

    NASA Astrophysics Data System (ADS)

    Zhang, Yongjun

    A key part of the FutureGen concept is to support the production of hydrogen to fuel a "hydrogen economy," with the use of clean burning hydrogen in power-producing fuel cells, as well as for use as a transportation fuel. One of the key technical barriers to FutureGen deployment is reliable and efficient hydrogen separation technology. Most Hydrogen Transport Membrane (HTM) research currently focuses on separation technology and hydrogen flux characterization. No significant work has been performed on thermo-mechanical properties of HTMs. The objective of the thesis is to understand the structure-property correlation of HTM and to characterize (1) thermo mechanical properties under different reducing environments and thermal cycles (thermal shock), and (2) evaluate the stability of the novel HTM material. A novel HTM cermet bulk sample was characterized for its physical and mechanical properties at both room temperature and at elevated temperature up to 1000°C. Micro-structural properties and residual stresses were evaluated in order to understand the changing mechanism of the microstructure and its effects on the mechanical properties of materials. A correlation of the microstructural and thermo mechanical properties of the HTM system was established for both HTM and the substrate material. Mechanical properties of both selected structural ceramics and the novel HTM cermet bulk sample are affected mainly by porosity and microstructural features, such as grain size and pore size-distribution. The Young's Modulus (E-value) is positively correlated to the flexural strength for materials with similar crystallographic structure. However, for different crystallographic materials, physical properties are independent of mechanical properties. Microstructural properties, particularly, grain size and crystallographic structure, and thermodynamic properties are the main factors affecting the mechanical properties at both room and high temperatures. The HTM cermet behaves

  12. Electronic and Mechanical Properties of Hydrogenated Irradiated and Amorphous Graphene

    NASA Astrophysics Data System (ADS)

    Weerasinghe, Asanka; Ramasubramaniam, Ashwin; Maroudas, Dimitrios

    Defect engineering and chemical functionalization of graphene are promising routes for fabrication of carbon nanostructures and 2D metamaterials with unique properties and function. Here, we use hydrogenation of irradiated, including irradiation-induced amorphous, graphene as a means of studying chemical functionalization effects on its electronic structure and mechanical response. We use molecular-dynamics simulations based on a reliable bond-order potential to prepare the hydrogenated configurations and carry out dynamic deformation tests at constant strain rate and temperature. Our mechanical tests show that hydrogenation does not affect the ultimate tensile strength (UTS) of the irradiated graphene sheet if the hydrogenated C atoms remain sp2-hybridized; however, upon inducing sp3 hybridization of these C atoms, UTS decreases by about 10 GPa. Furthermore, the fracture strain of the irradiated structure decreases by up to 30% upon hydrogenation independent of the hybridization type. We also report results for the electronic structure of hydrogenated configurations based on a density-functional tight-binding approach and assess the potential for tuning the electronic properties of these defective, functionalized graphenes.

  13. Affective stimulus properties influence size perception and the Ebbinghaus illusion

    PubMed Central

    Semin, Gün R.; Oudejans, Raôul R. D.; Beek, Peter J.

    2007-01-01

    In the New Look literature of the 1950s, it has been suggested that size judgments are dependent on the affective content of stimuli. This suggestion, however, has been ‘discredited’ due to contradictory findings and methodological problems. In the present study, we revisited this forgotten issue in two experiments. The first experiment investigated the influence of affective content on size perception by examining judgments of the size of target circles with and without affectively loaded (i.e., positive, neutral, and negative) pictures. Circles with a picture were estimated to be smaller than circles without a picture, and circles with a negative picture were estimated to be larger than circles with a positive or a neutral picture confirming the suggestion from the 1950s that size perception is influenced by affective content, an effect notably confined to negatively loaded stimuli. In a second experiment, we examined whether affective content influenced the Ebbinghaus illusion. Participants judged the size of a target circle whereby target and flanker circles differed in affective loading. The results replicated the first experiment. Additionally, the Ebbinghaus illusion was shown to be weakest for a negatively loaded target with positively loaded and blank flankers. A plausible explanation for both sets of experimental findings is that negatively loaded stimuli are more attention demanding than positively loaded or neutral stimuli. PMID:17410379

  14. Mechanical properties of non-woven glass fiber geopolymer composites

    NASA Astrophysics Data System (ADS)

    Rieger, D.; Kadlec, J.; Pola, M.; Kovářík, T.; Franče, P.

    2017-02-01

    This experimental research focuses on mechanical properties of non-woven glass fabric composites bound by geopolymeric matrix. This study investigates the effect of different matrix composition and amount of granular filler on the mechanical properties of final composites. Matrix was selected as a metakaolin based geopolymer hardened by different amount of potassium silicate activator. The ceramic granular filler was added into the matrix for investigation of its impact on mechanical properties and workability. Prepared pastes were incorporated into the non-woven fabrics by hand roller and final composites were stacked layer by layer to final thickness. The early age hardening of prepared pastes were monitored by small amplitude dynamic rheology approach and after 28 days of hardening the mechanical properties were examined. The electron microscopy was used for detail description of microstructural properties. The imaging methods revealed good wettability of glass fibers by geopolymeric matrix and results of mechanical properties indicate usability of these materials for constructional applications.

  15. Mechanical properties of 3D printed warped membranes

    NASA Astrophysics Data System (ADS)

    Kosmrlj, Andrej; Xiao, Kechao; Weaver, James C.; Vlassak, Joost J.; Nelson, David R.

    2015-03-01

    We explore how a frozen background metric affects the mechanical properties of solid planar membranes. Our focus is a special class of ``warped membranes'' with a preferred random height profile characterized by random Gaussian variables h (q) in Fourier space with zero mean and variance < | h (q) | 2 > q-m . It has been shown theoretically that in the linear response regime, this quenched random disorder increases the effective bending rigidity, while the Young's and shear moduli are reduced. Compared to flat plates of the same thickness t, the bending rigidity of warped membranes is increased by a factor hv / t while the in-plane elastic moduli are reduced by t /hv , where hv =√{< | h (x) | 2 > } describes the frozen height fluctuations. Interestingly, hv is system size dependent for warped membranes characterized with m > 2 . We present experimental tests of these predictions, using warped membranes prepared via high resolution 3D printing.

  16. Mechanical properties and microstructure of pressureless sintered duophase sialon

    SciTech Connect

    Lee, Ran-Rong; Novich, B.E.; Franks, G.; Quellette, D. ); Ferber, M.K.; Hubbard, C.R.; More, K. )

    1991-01-01

    Duophase ({alpha}{prime}/{beta}{prime}) sialon is being developed for ceramic engine applications by using the Quickset{trademark} injection molding process, followed by pressureless sintering and a thermal treatment. The sialon had an average four-point flexural strength of 670 MPa at room temperature and 490 MPa at 1370{degree}C. It survived the flexural stress rupture test at 1300{degree}C and 340 MPa for 190 hours. X-ray diffraction (XRD) and transmission electron microscopy (TEM) characterization showed that crystallization of the grain boundary phase improved the high temperature flexural strength of this sialon material. The creep behavior was also found to be affected by the crystallized grain boundary phases. The formation of a yttrium aluminum garnet (YAG) phase and elongated grains yielded better creep resistance. The correlation between mechanical properties and microstructure is discussed. 13 refs., 7 figs.

  17. Mechanical properties of carbon fiber composites for environmental applications

    SciTech Connect

    Andrews, R.; Grulke, E.

    1996-10-01

    Activated carbon fiber composites show great promise as fixed-bed catalytic reactors for use in environmental applications such as flue gas clean-up and ground water decontamination. A novel manufacturing process produces low density composites from chopped carbon fibers and binders. These composites have high permeability, can be activated to have high surface area, and have many potential environmental applications. This paper reports the mechanical and flow properties of these low density composites. Three point flexural strength tests were used to measure composite yield strength and flexural moduli. Composites containing over 10 pph binder had an adequate yield strength of about 200 psi at activations up to 40% weight loss. The composites were anisotropic, having along-fiber to cross-fiber yield strength ratios between 1.2 and 2.0. The friction factor for flow through the composites can be correlated using the fiber Reynolds number, and is affected by the composite bulk density.

  18. TRITIUM EFFECTS ON DYNAMIC MECHANICAL PROPERTIES OF POLYMERIC MATERIALS

    SciTech Connect

    Clark, E

    2008-11-12

    Dynamic mechanical analysis has been used to characterize the effects of tritium gas (initially 1 atm. pressure, ambient temperature) exposure over times up to 2.3 years on several thermoplastics-ultrahigh molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE), and Vespel{reg_sign} polyimide, and on several formulations of elastomers based on ethylene propylene diene monomer (EPDM). Tritium exposure stiffened the elastic modulus of UHMW-PE up to about 1 year and then softened it, and reduced the viscous response monotonically with time. PTFE initially stiffened, however the samples became too weak to handle after nine months exposure. The dynamic properties of Vespel{reg_sign} were not affected. The glass transition temperature of the EPDM formulations increased approximately 4 C. following three months tritium exposure.

  19. Affective and cognitive mechanisms of risky decision making.

    PubMed

    Shimp, Kristy G; Mitchell, Marci R; Beas, B Sofia; Bizon, Jennifer L; Setlow, Barry

    2015-01-01

    The ability to make advantageous decisions under circumstances in which there is a risk of adverse consequences is an important component of adaptive behavior; however, extremes in risk taking (either high or low) can be maladaptive and are characteristic of a number of neuropsychiatric disorders. To better understand the contributions of various affective and cognitive factors to risky decision making, cohorts of male Long-Evans rats were trained in a "Risky Decision making Task" (RDT), in which they made discrete trial choices between a small, "safe" food reward and a large, "risky" food reward accompanied by varying probabilities of footshock. Experiment 1 evaluated the relative contributions of the affective stimuli (i.e., punishment vs. reward) to RDT performance by parametrically varying the magnitudes of the footshock and large reward. Varying the shock magnitude had a significant impact on choice of the large, "risky" reward, such that greater magnitudes were associated with reduced choice of the large reward. In contrast, varying the large, "risky" reward magnitude had minimal influence on reward choice. Experiment 2 compared individual variability in RDT performance with performance in an attentional set shifting task (assessing cognitive flexibility), a delayed response task (assessing working memory), and a delay discounting task (assessing impulsive choice). Rats characterized as risk averse in the RDT made more perseverative errors on the set shifting task than did their risk taking counterparts, whereas RDT performance was not related to working memory abilities or impulsive choice. In addition, rats that showed greater delay discounting (greater impulsive choice) showed corresponding poorer performance in the working memory task. Together, these results suggest that reward-related decision making under risk of punishment is more strongly influenced by the punishment than by the reward, and that risky and impulsive decision making are associated with

  20. Ultrasonic evaluations of Achilles tendon mechanical properties poststroke

    PubMed Central

    Zhao, Heng; Ren, Yupeng; Wu, Yi-Ning; Liu, Shu Q.; Zhang, Li-Qun

    2009-01-01

    Spasticity, contracture, and muscle weakness are commonly observed poststroke in muscles crossing the ankle. However, it is not clear how biomechanical properties of the Achilles tendon change poststroke, which may affect functions of the impaired muscles directly. Biomechanical properties of the Achilles tendon, including the length and cross-sectional area, in the impaired and unimpaired sides of 10 hemiparetic stroke survivors were evaluated using ultrasonography. Elongation of the Achilles tendon during controlled isometric ramp-and-hold and ramping up then down contractions was determined using a block-matching method. Biomechanical changes in stiffness, Young's modulus, and hysteresis of the Achilles tendon poststroke were investigated by comparing the impaired and unimpaired sides of the 10 patients. The impaired side showed increased tendon length (6%; P = 0.04), decreased stiffness (43%; P < 0.001), decreased Young's modulus (38%; P = 0.005), and increased mechanical hysteresis (1.9 times higher; P < 0.001) compared with the unimpaired side, suggesting Achilles tendon adaptations to muscle spasticity, contracture, and/or disuse poststroke. In vivo quantitative characterizations of the tendon biomechanical properties may help us better understand changes of the calf muscle-tendon unit as a whole and facilitate development of more effective treatments. PMID:19118156

  1. Ultrasonic evaluations of Achilles tendon mechanical properties poststroke.

    PubMed

    Zhao, Heng; Ren, Yupeng; Wu, Yi-Ning; Liu, Shu Q; Zhang, Li-Qun

    2009-03-01

    Spasticity, contracture, and muscle weakness are commonly observed poststroke in muscles crossing the ankle. However, it is not clear how biomechanical properties of the Achilles tendon change poststroke, which may affect functions of the impaired muscles directly. Biomechanical properties of the Achilles tendon, including the length and cross-sectional area, in the impaired and unimpaired sides of 10 hemiparetic stroke survivors were evaluated using ultrasonography. Elongation of the Achilles tendon during controlled isometric ramp-and-hold and ramping up then down contractions was determined using a block-matching method. Biomechanical changes in stiffness, Young's modulus, and hysteresis of the Achilles tendon poststroke were investigated by comparing the impaired and unimpaired sides of the 10 patients. The impaired side showed increased tendon length (6%; P = 0.04), decreased stiffness (43%; P < 0.001), decreased Young's modulus (38%; P = 0.005), and increased mechanical hysteresis (1.9 times higher; P < 0.001) compared with the unimpaired side, suggesting Achilles tendon adaptations to muscle spasticity, contracture, and/or disuse poststroke. In vivo quantitative characterizations of the tendon biomechanical properties may help us better understand changes of the calf muscle-tendon unit as a whole and facilitate development of more effective treatments.

  2. Microstructure and Mechanical Properties of Composite Actin Networks

    NASA Astrophysics Data System (ADS)

    Gardel, Margaret; Shin, Jennifer; Mahadevan, L.; Matsudaira, Paul; Weitz, D. A.

    2003-03-01

    There exits a family of actin-binding proteins (ABPs) and each protein has a distinct function for bundling, networking, gelating, capping, or simply binding to actin. Whether actin serves as a structural or motile component, its mechanical properties are determined by its degree and kinds of association with different ABPs and these properties are often closely related to its functional needs. For instance, in a cell actin is highly crosslinked with multiple ABPs (fimbrin, alpha-actinin, etc.) to generate thrust and strength for locomotion. In the acrosomal reaction of horseshoe crab sperm, actin exists as a bundle of preassembled filaments crosslinked with scruin to form a rigid structure to penetrate into an egg without yielding. We study the effects three different ABPs (scruin,fimbrin and alpha-actinin) have on the rheology and microstructure of actin networks using multiparticle tracking, imaging, and bulk rheology. From these experiments we can deduce how an evolving microstructure affects the bulk rheological properties and the role different concentrations and kinds of ABPs have in these changes.

  3. Chitosan fibers with improved biological and mechanical properties for tissue engineering applications.

    PubMed

    Albanna, Mohammad Z; Bou-Akl, Therese H; Blowytsky, Oksana; Walters, Henry L; Matthew, Howard W T

    2013-04-01

    The low mechanical properties of hydrogel materials such as chitosan hinder their broad utility for tissue engineering applications. Previous research efforts improved the mechanical properties of chitosan fiber through chemical and physical modifications; however, unfavorable toxicity effects on cells were reported. In this paper, we report the preparation of chitosan fibers with improved mechanical and biocompatibility properties. The structure-property relationships of extruded chitosan fibers were explored by varying acetic acid (AA) concentration, ammonia concentration, annealing temperature and degree of heparin crosslinking. Results showed that optimizing AA concentration to 2vol% improved fiber strength and stiffness by 2-fold. Extruding chitosan solution into 25wt% of ammonia solution reduced fiber diameters and improved fiber strength by 2-fold and stiffness by 3-fold, due to an increase in crystallinity as confirmed by XRD. Fiber annealing further reduced fiber diameter and improved fiber strength and stiffness as temperature increased. Chitosan fibers crosslinked with heparin had increased diameter but lower strength and stiffness properties and higher breaking strain values. When individual parameters were combined, further improvement in fiber mechanical properties was achieved. All mechanically improved fibers and heparin crosslinked fibers promoted valvular interstitial cells (VIC) attachment and growth over 10 day cultures. Our results demonstrate the ability to substantially improve the mechanical properties of chitosan fibers without adversely affecting their biological properties. The investigated treatments offer numerous advantages over previous physical/chemical modifications and thus are expected to expand the utility of chitosan fibers with tunable mechanical properties in various tissue engineering applications.

  4. Process Formulations And Curing Conditions That Affect Saltstone Properties

    SciTech Connect

    Reigel, M. M.; Pickenheim, B. R.; Daniel, W. E.

    2012-09-28

    The first objective of this study was to analyze saltstone fresh properties to determine the feasibility of reducing the formulation water to premix (w/p) ratio while varying the amount of extra water and admixtures used during processing at the Saltstone Production Facility (SPF). The second part of this study was to provide information for understanding the impact of curing conditions (cure temperature, relative humidity (RH)) and processing formulation on the performance properties of cured saltstone.

  5. Mechanical Properties of High Purity Niobium - Novel Measurements

    SciTech Connect

    Ganapati Myneni

    2003-09-01

    One of the procedures to improve the performance of superconducting niobium cavities is a heat treatment for several hours in an ultrahigh vacuum at temperatures between 800C and 1400C for hydrogen degassing or post-purification, respectively. However, it was recently observed with Spallation Neutron Source Project (SNS) prototype cavities, that a heat treatment at 800 C for even 1 hour degraded the mechanical properties of RRR niobium, in particular the yield strength. This lower strength resulted in cavity deformations during handling thus affecting both their resonant frequency and field profile. In addition to lowering the yield strength, it was observed in some lots of material that the Young's modulus was also apparently reduced by a factor of 2 as a result of the hydrogen outgassing at 800 C. Surprisingly, material received at other national laboratories exhibited similar anomalous behavior even without any heat treatments in vacuum. Based on these observations a multi-institutional collaborative basic research activity on high RRR niobium (determination of Nb yield strength as a function of grain size, work hardening, chemical composition, and heat treatment temperature) has been initiated by JLAB to gain a better understanding of the material properties affecting the mechanical behavior In this contribution, a brief review of the measurements at JLAB, at the Materials Science and Engineering Department of the University of Virginia, at the Analytical Chemistry and Metallurgy Divisions of the National Institute of Standard and Technology, Gaithersburg and in the Department of Physics, SUNY, Albany are presented. The measurements include yield strength, hardness, ultrasonic velocity, crystallographic structure, microstructure, determination of interstitial contents using internal friction; particular emphasis is placed on determining the hydrogen concentration in the niobium via Cold Neutron Prompt Gamma-Ray Activation Analysis and Neutron Incoherent

  6. Mechanical properties determination of AM components

    NASA Astrophysics Data System (ADS)

    Dzugan, J.; Sibr, M.; Konopík, P.; Procházka, R.; Rund, M.

    2017-02-01

    Characterisation of engineering materials and components is a crucial part for design and save service life utilization. Due to components processing technologies and exploitation conditions local properties can significantly vary from location to location over larger components as well as over small material volumes with gradual material changes such as welds, coatings or additively manufactured parts. The current paper is dealing with local properties characterisation for additively manufacture (AM) components by micro tensile test (M-TT). Components produced by additive manufacturing techniques yield properties variation in dependence of the considered location within the component regarding to direction in relation to deposition process. Properties vary over the thickness, length, angle or contacts with the supporting structures necessary for a successful components production by additive manufacturing techniques. The properties differences are mainly related to varying heating/reheating and cooling conditions at various locations of usually very complex parts produced mainly by these technologies. The standard testing procedures fail to characterize such local properties of complex shaped objects due to large size requirements on specimens. Therefore, new techniques have to be established for such detailed local characterizations. Results of miniaturized tensile tests application for local properties and orientations are shown here.

  7. Control of mechanically activated polymersome fusion: Factors affecting fusion

    DOE PAGES

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the sizemore » of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.« less

  8. Control of mechanically activated polymersome fusion: Factors affecting fusion

    SciTech Connect

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the size of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.

  9. Physical Exercise Affects Attentional Orienting Behavior through Noradrenergic Mechanisms

    PubMed Central

    Robinson, Andrea M.; Buttolph, Thomas; Green, John T.; Bucci, David J.

    2015-01-01

    Spontaneously Hypertensive Rats (SHRs), a commonly-used animal model of ADHD, exhibit little habituation of the orienting response to repeated presentations of a non-reinforced visual stimulus. However, SHRs that have access to a running wheel for 5, 10, or 21 days exhibit robust habituation that is indistinguishable from normo-active rats. Two days of exercise, in comparison, was not sufficient to affect habituation. Here we tested the hypothesis that the effect of exercise on orienting behavior in SHRs is mediated by changes in noradrenergic function. In Experiment 1, we found that 5, 10, or 21 days of access to a running wheel, but not 2 days, significantly reduced levels of the norepinephrine transporter (NET) in medial prefrontal cortex. In Experiment 2, we tested for a causal relationship between changes in noradrenergic function and orienting behavior by blocking noradrenergic receptors during exercise. Rats that received propranolol (beta adrenergic/noradrenergic receptor blocker) during 10 days of exercise failed to exhibit an exercise-induced reduction in orienting behavior. The results inform a growing literature regarding the effects of exercise on behavior and the potential use of exercise as a treatment for mental disorders. PMID:26030434

  10. Temperature Affects Human Sweet Taste via At Least Two Mechanisms.

    PubMed

    Green, Barry G; Nachtigal, Danielle

    2015-07-01

    The reported effects of temperature on sweet taste in humans have generally been small and inconsistent. Here, we describe 3 experiments that follow up a recent finding that cooling from 37 to 21 °C does not reduce the initial sweetness of sucrose but increases sweet taste adaptation. In experiment 1, subjects rated the sweetness of sucrose, glucose, and fructose solutions at 5-41 °C by dipping the tongue tip into the solutions after 0-, 3-, or 10-s pre-exposures to the same solutions or to H2O; experiment 2 compared the effects of temperature on the sweetness of 3 artificial sweeteners (sucralose, aspartame, and saccharin); and experiment 3 employed a flow-controlled gustometer to rule out the possibility the effects of temperature in the preceding experiments were unique to dipping the tongue into a still taste solution. The results (i) confirmed that mild cooling does not attenuate sweetness but can increase sweet taste adaptation; (ii) demonstrated that cooling to 5-12 °C can directly reduce sweetness intensity; and (iii) showed that both effects vary across stimuli. These findings have implications for the TRPM5 hypothesis of thermal effects on sweet taste and raise the possibility that temperature also affects an earlier step in the T1R2-T1R3 transduction cascade.

  11. Temperature Affects Human Sweet Taste via At Least Two Mechanisms

    PubMed Central

    Nachtigal, Danielle

    2015-01-01

    The reported effects of temperature on sweet taste in humans have generally been small and inconsistent. Here, we describe 3 experiments that follow up a recent finding that cooling from 37 to 21 °C does not reduce the initial sweetness of sucrose but increases sweet taste adaptation. In experiment 1, subjects rated the sweetness of sucrose, glucose, and fructose solutions at 5–41 °C by dipping the tongue tip into the solutions after 0-, 3-, or 10-s pre-exposures to the same solutions or to H2O; experiment 2 compared the effects of temperature on the sweetness of 3 artificial sweeteners (sucralose, aspartame, and saccharin); and experiment 3 employed a flow-controlled gustometer to rule out the possibility the effects of temperature in the preceding experiments were unique to dipping the tongue into a still taste solution. The results (i) confirmed that mild cooling does not attenuate sweetness but can increase sweet taste adaptation; (ii) demonstrated that cooling to 5–12 °C can directly reduce sweetness intensity; and (iii) showed that both effects vary across stimuli. These findings have implications for the TRPM5 hypothesis of thermal effects on sweet taste and raise the possibility that temperature also affects an earlier step in the T1R2–T1R3 transduction cascade. PMID:25963040

  12. A coupled mechanical and chemical damage model for concrete affected by alkali–silica reaction

    SciTech Connect

    Pignatelli, Rossella; Comi, Claudia; Monteiro, Paulo J.M.

    2013-11-15

    To model the complex degradation phenomena occurring in concrete affected by alkali–silica reaction (ASR), we formulate a poro-mechanical model with two isotropic internal variables: the chemical and the mechanical damage. The chemical damage, related to the evolution of the reaction, is caused by the pressure generated by the expanding ASR gel on the solid concrete skeleton. The mechanical damage describes the strength and stiffness degradation induced by the external loads. As suggested by experimental results, degradation due to ASR is considered to be localized around reactive sites. The effect of the degree of saturation and of the temperature on the reaction development is also modeled. The chemical damage evolution is calibrated using the value of the gel pressure estimated by applying the electrical diffuse double-layer theory to experimental values of the surface charge density in ASR gel specimens reported in the literature. The chemo-damage model is first validated by simulating expansion tests on reactive specimens and beams; the coupled chemo-mechanical damage model is then employed to simulate compression and flexure tests results also taken from the literature. -- Highlights: •Concrete degradation due to ASR in variable environmental conditions is modeled. •Two isotropic internal variables – chemical and mechanical damage – are introduced. •The value of the swelling pressure is estimated by the diffuse double layer theory. •A simplified scheme is proposed to relate macro- and microscopic properties. •The chemo-mechanical damage model is validated by simulating tests in literature.

  13. Mechanical Properties of Degraded PMR-15 Resin

    NASA Technical Reports Server (NTRS)

    Tsuji, Luis C.; McManus, Hugh L.; Bowles, Kenneth J.

    1998-01-01

    Thermo-oxidative aging produces a non-uniform degradation state in PMR-15 resin. A surface layer, usually attributed to oxidative degradation, forms. This surface layer has different properties from the inner material. A set of material tests was designed to separate the properties of the oxidized surface layer from the properties of interior material. Test specimens were aged at 316 C in either air or nitrogen, for durations of up to 800 hours. The thickness of the oxidized surface layer in air aged specimens, and the shrinkage and Coefficient of Thermal Expansion (CTE) of nitrogen aged specimens were measured directly. Four-point-bend tests were performed to determine modulus of both the oxidized surface layer and the interior material. Bimaterial strip specimens consisting of oxidized surface material and unoxidized interior material were constructed and used to determine surface layer shrinkage and CTE. Results confirm that the surface layer and core materials have substantially different properties.

  14. Wave-Mechanical Properties of Stationary States.

    ERIC Educational Resources Information Center

    Holden, Alan

    This monograph is a review of the quantum mechanical concepts presented in two other monographs, "The Nature of Atoms" and "Bonds Between Atoms," by the same author. It is assumed the reader is familiar with these ideas. The monograph sketches only those aspects of quantum mechanics that are of most direct use in picturing and calculating the…

  15. Transcriptional and Epigenetic Regulatory Mechanisms Affecting HTLV-1 Provirus.

    PubMed

    Miyazato, Paola; Matsuo, Misaki; Katsuya, Hiroo; Satou, Yorifumi

    2016-06-16

    Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with human diseases, such as adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/Tropic spastic paraparesis (HAM/TSP). As a retrovirus, its life cycle includes a step where HTLV-1 is integrated into the host genomic DNA and forms proviral DNA. In the chronic phase of the infection, HTLV‑1 is known to proliferate as a provirus via the mitotic division of the infected host cells. There are generally tens of thousands of infected clones within an infected individual. They exist not only in peripheral blood, but also in various lymphoid organs. Viral proteins encoded in HTLV-1 genome play a role in the proliferation and survival of the infected cells. As is the case with other chronic viral infections, HTLV-1 gene expression induces the activation of the host immunity against the virus. Thus, the transcription from HTLV-1 provirus needs to be controlled in order to evade the host immune surveillance. There should be a dynamic and complex regulation in vivo, where an equilibrium between viral antigen expression and host immune surveillance is achieved. The mechanisms regulating viral gene expression from the provirus are a key to understanding the persistent/latent infection with HTLV-1 and its pathogenesis. In this article, we would like to review our current understanding on this topic.

  16. Transcriptional and Epigenetic Regulatory Mechanisms Affecting HTLV-1 Provirus

    PubMed Central

    Miyazato, Paola; Matsuo, Misaki; Katsuya, Hiroo; Satou, Yorifumi

    2016-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with human diseases, such as adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/Tropic spastic paraparesis (HAM/TSP). As a retrovirus, its life cycle includes a step where HTLV-1 is integrated into the host genomic DNA and forms proviral DNA. In the chronic phase of the infection, HTLV‑1 is known to proliferate as a provirus via the mitotic division of the infected host cells. There are generally tens of thousands of infected clones within an infected individual. They exist not only in peripheral blood, but also in various lymphoid organs. Viral proteins encoded in HTLV-1 genome play a role in the proliferation and survival of the infected cells. As is the case with other chronic viral infections, HTLV-1 gene expression induces the activation of the host immunity against the virus. Thus, the transcription from HTLV-1 provirus needs to be controlled in order to evade the host immune surveillance. There should be a dynamic and complex regulation in vivo, where an equilibrium between viral antigen expression and host immune surveillance is achieved. The mechanisms regulating viral gene expression from the provirus are a key to understanding the persistent/latent infection with HTLV-1 and its pathogenesis. In this article, we would like to review our current understanding on this topic. PMID:27322309

  17. Mechanical properties of a polyamide 6-reinforced PTFE composite

    NASA Astrophysics Data System (ADS)

    Li, J.

    2009-05-01

    Polytetrafluoroethylene (PTFE) blends with polyamide 6 (PA6) in various ratios were prepared in a corotating twin-screw extruder, where PTFE acted as a polymer matrix and PA6 as a disperse phase, and the morphology and mechanical properties of the blends were investigated by using SEM. With increasing content of PA6 in the blends, their flexural properties improved. The interfacial adhesion promoted the creation of an interphase between the PTFE and PA6 and led to improved mechanical properties of the material. The mechanical properties of the blends were optimum at 30 vol.% PA6.

  18. Recycled Fiber Properties as Affected by Contaminants and Removal Processes.

    DTIC Science & Technology

    Five materials were applied to either a kraft pulp furnish or to a kraft paper and were removed by conventional removal processes. Uncontaminated... kraft paper subjected to the same removal processes determined that the process, not the contaminant, was responsible for changes in sheet properties

  19. Mechanical and physical properties of plasma-sprayed stabilized zirconia

    NASA Technical Reports Server (NTRS)

    Siemers, P. A.; Mehan, R. L.

    1983-01-01

    Physical and mechanical properties were determined for plasma-sprayed MgO- or Y2O3-stabilized ZrO2 thermal barrier coatings. Properties were determined for the ceramic coating in both the freestanding condition and as-bonded to a metal substrate. The properties of the NiCrAlY bond coating were also investigated.

  20. Electronic, thermal and mechanical properties of carbon nanotubes.

    PubMed

    Dresselhaus, M S; Dresselhaus, G; Charlier, J C; Hernández, E

    2004-10-15

    A review of the electronic, thermal and mechanical properties of nanotubes is presented, with particular reference to properties that differ from those of the bulk counterparts and to potential applications that might result from the special structure and properties of nanotubes. Both experimental and theoretical aspects of these topics are reviewed.

  1. Functional groups affect physical and biological properties of dextran-based hydrogels.

    PubMed

    Sun, Guoming; Shen, Yu-I; Ho, Chia Chi; Kusuma, Sravanti; Gerecht, Sharon

    2010-06-01

    Modification of dextran backbone allows the development of a hydrogel with specific characteristics. To enhance their functionality for tissue-engineered scaffolds, a series of dextran-based macromers was synthesized by incorporating various functional groups, including allyl isocyanate (Dex-AI), ethylamine (Dex-AE), chloroacetic acid (Dex-AC), or maleic-anhydride (Dex-AM) into dextrans. The dextran-based biodegradable hybrid hydrogels are developed by integrating polyethylene glycol diacrylate (PEGDA). To explore the effect of different derivatives on hydrogel properties, three different ratios of Dex/PEGDA are examined: low (20/80), medium (40/60), and high (60/40). Differences in physical and biological properties of the hydrogels are found, including swelling, degradation rate, mechanics, crosslinking density, biocompatibility (in vitro and in vivo), and vascular endothelial growth factor release. The results also indicate that the incorporation of amine groups into dextran gives rise to hydrogels with better biocompatible and release properties. We, therefore, conclude that the incorporation of different functional groups affects the fundamental properties of a dextran-based hydrogel network, and that amine groups are preferred to generate hydrogels for biomedical use.

  2. Mechanical Properties of Degraded PMR-15 Resin

    NASA Technical Reports Server (NTRS)

    Tsuji, Luis C.

    2000-01-01

    Thermo-oxidative aging produces a nonuniform degradation state in PMR-15 resin. A surface layer, usually attributed to oxidative degradation, forms. This surface layer has different properties from the inner material. A set of material tests was designed to separate the properties of the oxidized surface layer from the properties of interior material. Test specimens were aged at 316 C in either air or nitrogen, for durations of up to 800 hr. The thickness of the oxidized surface layer in air aged specimens, and the shrinkage and coefficient of thermal expansion (CTE) of nitrogen aged specimens were measured directly. The nitrogen-aged specimens were assumed to have the same properties as the interior material in the air-aged specimens. Four-point-bend tests were performed to determine modulus of both the oxidized surface layer and the interior material. Bimaterial strip specimens consisting of oxidized surface material and unoxidized interior material were constructed and used to determine surface layer shrinkage and CTE. Results confirm that the surface layer and core materials have substantially different properties.

  3. Mechanical properties of natural cartilage and tissue-engineered constructs.

    PubMed

    Little, Christopher James; Bawolin, Nahshon Kenneth; Chen, Xiongbiao

    2011-08-01

    There has been much research over the past two decades with the aim of engineering cartilage constructs for repairing or restoring damaged cartilage. To engineer healthy neocartilage, the constructs must have mechanical properties matching those of native cartilage as well as appropriate for the loading conditions of the joint. This article discusses the mechanical behavior of native cartilage and surveys different types of tensile, compressive, and shear tests with their limitations. It also comprehensively reviews recent work and achievements in developing the mathematical models representing the mechanical properties of both native and engineered cartilage. Different methods for enhancing the mechanical properties of engineered cartilage are also discussed, including scaffold design, mechanical stimulation, and chemical stimulation. This article concludes with recommendations for future research aimed at achieving engineered cartilage with mechanical properties matching those found in native cartilage.

  4. How divergence mechanisms influence disassortative mixing property in biology

    NASA Astrophysics Data System (ADS)

    Xu, Chunsui; Liu, Zengrong; Wang, Ruiqi

    2010-02-01

    The duplication-divergence mechanism of network growth has been widely investigated, especially in gene and protein networks. Both the duplication and divergence have a key role in biological network evolution. However, the relative roles of these mechanisms in the influence of disassortative property in protein interaction networks remain to be clarified. It has been shown that duplication can indeed make protein networks evolve towards disassortative networks. To make the relationship between the disassortative property and the duplication-divergence mechanism more clear, we further discuss how the divergence mechanism influences the disassortative property. We tested four different divergence mechanisms, i.e., node deletion, edge deletion, edge addition, and edge rewiring to study their effects on disassortative property. Our study highlights the crucial roles of different divergence evolution mechanisms.

  5. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms.

    PubMed

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-10-05

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs.

  6. Soil properties affecting wheat yields following drilling-fluid application.

    PubMed

    Bauder, T A; Barbarick, K A; Ippolito, J A; Shanahan, J F; Ayers, P D

    2005-01-01

    Oil and gas drilling operations use drilling fluids (mud) to lubricate the drill bit and stem, transport formation cuttings to the surface, and seal off porous geologic formations. Following completion of the well, waste drilling fluid is often applied to cropland. We studied potential changes in soil compaction as indicated by cone penetration resistance, pH, electrical conductivity (EC(e)), sodium adsorption ratio (SAR), extractable soil and total straw and grain trace metal and nutrient concentrations, and winter wheat (Triticum aestivum L. 'TAM 107') grain yield following water-based, bentonitic drilling-fluid application (0-94 Mg ha(-1)) to field test plots. Three methods of application (normal, splash-plate, and spreader-bar) were used to study compaction effects. We measured increasing SAR, EC(e), and pH with drilling-fluid rates, but not to levels detrimental to crop production. Field measurements revealed significantly higher compaction within areas affected by truck travel, but also not enough to affect crop yield. In three of four site years, neither drilling-fluid rate nor application method affected grain yield. Extractions representing plant availability and plant analyses results indicated that drilling fluid did not significantly increase most trace elements or nutrient concentrations. These results support land application of water-based bentonitic drilling fluids as an acceptable practice on well-drained soils using controlled rates.

  7. Lunar soil properties and soil mechanics

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Houston, W. N.

    1974-01-01

    The long-range objectives were to develop methods of experimentation and analysis for the determination of the physical properties and engineering behavior of lunar surface materials under in situ environmental conditions. Data for this purpose were obtained from on-site manned investigations, orbiting and softlanded spacecraft, and terrestrial simulation studies. Knowledge of lunar surface material properties are reported for the development of models for several types of lunar studies and for the investigation of lunar processes. The results have direct engineering application for manned missions to the moon.

  8. Biochar physico-chemical properties as affected by environmental exposure.

    PubMed

    Sorrenti, Giovambattista; Masiello, Caroline A; Dugan, Brandon; Toselli, Moreno

    2016-09-01

    To best use biochar as a sustainable soil management and carbon (C) sequestration technique, we must understand the effect of environmental exposure on its physical and chemical properties because they likely vary with time. These properties play an important role in biochar's environmental behavior and delivery of ecosystem services. We measured biochar before amendment and four years after amendment to a commercial nectarine orchard at rates of 5, 15 and 30tha(-1). We combined two pycnometry techniques to measure skeletal (ρs) and envelope (ρe) density and to estimate the total pore volume of biochar particles. We also examined imbibition, which can provide information about soil hydraulic conductivity. Finally, we investigated the chemical properties, surface, inner layers atomic composition and C1s bonding state of biochar fragments through X-ray photoelectron spectroscopy (XPS). Ageing increased biochar skeletal density and reduced the water imbibition rate within fragments as a consequence of partial pore clogging. However, porosity and the volume of water stored in particles remained unchanged. Exposure reduced biochar pH, EC, and total C, but enhanced total N, nitrate-N, and ammonium-N. X-ray photoelectron spectroscopy analyses showed an increase of O, Si, N, Na, Al, Ca, Mn, and Fe surface (0-5nm) atomic composition (at%) and a reduction of C and K in aged particles, confirming the interactions of biochar with soil inorganic and organic phases. Oxidation of aged biochar fragments occurred mainly in the particle surface, and progressively decreased down to 75nm. Biochar surface chemistry changes included the development of carbonyl and carboxylate functional groups, again mainly on the particle surface. However, changes were noticeable down to 75nm, while no significant changes were measured in the deepest layer, up to 110nm. Results show unequivocal shifts in biochar physical and chemical properties/characteristics over short (~years) timescales.

  9. Properties of nanoparticles affecting simulation of fibrous gas filter performance

    NASA Astrophysics Data System (ADS)

    Tronville, Paolo; Rivers, Richard

    2015-05-01

    Computational Fluid Dynamics (CFD) codes allow detailed simulation of the flow of gases through fibrous filter media. When the pattern of gas flow between fibers has been established, simulated particles of any desired size can be “injected” into the entering gas stream, and their paths under the influence of aerodynamic drag, Brownian motion and electrostatic forces tracked. Particles either collide with a fiber, or pass through the entire filter medium. They may bounce off the fiber surface, or adhere firmly to the surface or to particles previously captured. Simulated injection of many particles at random locations in the entering stream allows the average probability of capture to be calculated. Many particle properties must be available as parameters for the equations defining the forces on particles in the gas stream, at the moment of contact with a fiber, and after contact. Accurate values for all properties are needed, not only for predicting particle capture in actual service, but also to validate models for media geometries and computational procedures used in CFD. We present a survey of existing literature on the properties influencing nanoparticle dynamics and adhesion.

  10. Mechanical Properties of Normal and Diseased Cerebrovascular System

    PubMed Central

    Ebrahimi, Ali P.

    2009-01-01

    Background: Blood vessel mechanics has traditionally been of interest to researchers and clinicians. Changes in mechanical properties of arteries have been associated with various diseases. Objective: To provide a comprehensive review directed towards understanding the basic biomechanical properties of cerebral arteries under normal and diseased conditions. Methods: Literature review supplemented by personal knowledge. Results: The mechanical properties of vascular tissue may depend on several factors including macromolecular volume fraction, molecular orientation, and volume or number of cells such as smooth muscle cells. Mechanical properties of a blood vessel have been characterized using different methods such as in vitro tensile testing, non-invasive ultrasound examination, and mathematical models. Experiments are complicated by the variation in properties and content of materials that make up the vessel wall and more challenging as the size of the vessel of interest decreases. Therapeutic interventions aiming to alter the mechanical response are either pharmaceutical: including calcium channel blockers, angiotensin converting enzyme inhibitors (ACEI), angiotensin receptor blockers (ARB), and β-blockers; or, mechanical interventions such as angioplasty, stent placement, mechanical thrombectomy, or embolization procedures. Conclusion: It is apparent from the literature that macromolecular and cellular mechanics of blood vessels are not fully understood. Therefore, further studies are necessary to better understand contribution of these mechanisms to the overall mechanics of the vascular tissue. PMID:22518247

  11. Physical and mechanical properties of icebergs

    SciTech Connect

    Gammon, P.H.; Bobby, W.; Gagnon, R.E.; Russell, W.E.

    1983-05-01

    Physical and mechanical characteristics of iceberg ice were studied from samples collected near the shores of eastern Newfoundland. Although the physical characteristics show considerable diversity, iceberg ice has some common features and is generally porous, lacks significant concentrations of dissolved materials, contains internal cracks and has an irregular interlocking grain structure. A review of mechanical testing of ice was carried out and an experimental setup was devised to reduce effects of improper contact between specimen and loading apparatus. Uniaxial compressive strength for iceberg ice was determined and compared with that for lake ice. The strength of iceberg ice was higher than that of lake ice but Young's Modulus for lake ice was higher.

  12. Physical characteristics affecting the tensile failure properties of compact bone.

    PubMed

    Currey, J D

    1990-01-01

    Compact bone specimens from a wide variety of reptiles, birds, and mammals were tested in tension, and their failure properties related to mineral volume fraction, porosity and histological orientation. The principal findings were that the ultimate strain and the work under the stress-strain curve declined sharply with mineralisation, as did the stress and strain appearing after the specimen had yielded. Ultimate tensile strength was not simply related to any combination of the possible explanatory variables, but some relatively poorly mineralised bones, notably antlers, had high stresses at failure. These high strengths were allowed by a great increase in stress after the bones had yielded at quite low stresses.

  13. Mechanical properties of various two-dimensional silicon carbide sheets: An atomistic study

    NASA Astrophysics Data System (ADS)

    Nguyen, Danh-Truong; Le, Minh-Quy

    2016-10-01

    We investigate through molecular dynamics finite element method with Tersoff potential the mechanical properties of 13 SimCn sheets under uniaxial tension in the armchair and zigzag directions. It is found that the presence and dispersion of silicon atoms in SimCn sheets affect strongly the mechanical properties and the anisotropy of these sheets. The Young's modulus and fracture stress of the SimCn sheet decrease in general when the silicon concentration increases from 0 to 0.2. In contrast, the mechanical properties (Young's modulus, fracture stress, and fracture strain) increase slightly when the silicon concentration increases from 0.3 to 0.5 due to an increase of the degree of dispersion of silicon atoms in the SimCn sheet. The mechanical properties of the sheet are relatively high when the silicon concentration is low or silicon atoms are well dispersed.

  14. Supramolecular Polymer Nanocomposites - Improvement of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Hinricher, Jesse; Neikirk, Colin; Priestley, Rodney

    2015-03-01

    Supramolecular polymers differ from traditional polymers in that their repeat units are connected by hydrogen bonds that can reversibly break and form under various stimuli. They can be more easily recycled than conventional materials, and their highly temperature dependent viscosities result in reduced energy consumption and processing costs. Furthermore, judicious selection of supramolecular polymer architecture and functionality allows the design of advanced materials including shape memory and self-healing materials. Supramolecular polymers have yet to see widespread use because they can't support much weight due to their inherent mechanical weakness. In order to address this issue, the mechanical strength of supramolecular polymer nanocomposites based on ureidopyrmidinone (UPy) telechelic poly(caprolactone) doped with surface activated silica nanoparticles was investigated by tensile testing and dynamic mechanical analysis. The effects of varying amounts and types of nanofiller surface functionality were investigated to glean insight into the contributions of filler-filler and filler-matrix interactions to mechanical reinforcement in supramolecular polymer nanocomposites. MRSEC NSF DMR 0819860 (PI: Prof. N. Phuan Ong) REU Site Grant: NSF DMR-1156422 (PI: Prof. Mikko Haataja)

  15. Composite propellant technology research: Mechanical property characterization

    NASA Technical Reports Server (NTRS)

    Bower, Mark V.

    1991-01-01

    Proof for the existence of a single Poisson's ratio function in isotropic linear viscoelastic materials is presented. An in-depth discussion is given of three dimensional viscoelastic material properties and their relationships to linear isotropic and orthotropic viscoelastic materials. A discussion of the alternate invariant definition as used by Abaqus and how it relates to the form used by Dr. S. Peng is presented.

  16. Mechanical and chemical properties of cysteine-modified kinesin molecules.

    PubMed

    Iwatani, S; Iwane, A H; Higuchi, H; Ishii, Y; Yanagida, T

    1999-08-10

    To probe the structural changes within kinesin molecules, we made the mutants of motor domains of two-headed kinesin (4-411 aa) in which either all the five cysteines or all except Cys45 were mutated. A residual cysteine (Cys45) of the kinesin mutant was labeled with an environment-sensitive fluorescent probe, acrylodan. ATPase activity, mechanical properties, and fluorescence intensity of the mutants were measured. Upon acrylodan-labeled kinesin binding to microtubules in the presence of 1 mM AMPPNP, the peak intensity was enhanced by 3.4-fold, indicating the structural change of the kinesin head by the binding. Substitution of cysteines decreased both the maximum microtubule-activated ATPase and the sliding velocity to the same extent. However, the maximum force and the step size were not affected; the force produced by a single molecule was 6-6.5 pN, and a step size due to the hydrolysis of one ATP molecule by kinesin molecules was about 10 nm for all kinesins. This step size was close to a unitary step size of 8 nm. Thus, the mechanical events of kinesin are tightly coupled with the chemical events.

  17. Modulation of GLO1 Expression Affects Malignant Properties of Cells.

    PubMed

    Hutschenreuther, Antje; Bigl, Marina; Hemdan, Nasr Y A; Debebe, Tewodros; Gaunitz, Frank; Birkenmeier, Gerd

    2016-12-18

    The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect) characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO). Consequently, the rate of detoxification of this reactive glycolytic byproduct needs to be increased in order to prevent deleterious effects to the cells. This is brought about by an increased expression of glyoxalase 1 (GLO1) that is the rate-limiting enzyme of the MGO-detoxifying glyoxalase system. Here, we overexpressed GLO1 in HEK 293 cells and silenced it in MCF-7 cells using shRNA. Tumor-related properties of wild type and transformed cells were compared and key glycolytic enzyme activities assessed. Furthermore, the cells were subjected to hypoxic conditions to analyze the impact on cell proliferation and enzyme activities. Our results demonstrate that knockdown of GLO1 in the cancer cells significantly reduced tumor-associated properties such as migration and proliferation, whereas no functional alterations where found by overexpression of GLO1 in HEK 293 cells. In contrast, hypoxia caused inhibition of cell growth of all cells except of those overexpressing GLO1. Altogether, we conclude that GLO1 on one hand is crucial to maintaining tumor characteristics of malignant cells, and, on the other hand, supports malignant transformation of cells in a hypoxic environment when overexpressed.

  18. Modulation of GLO1 Expression Affects Malignant Properties of Cells

    PubMed Central

    Hutschenreuther, Antje; Bigl, Marina; Hemdan, Nasr Y. A.; Debebe, Tewodros; Gaunitz, Frank; Birkenmeier, Gerd

    2016-01-01

    The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect) characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO). Consequently, the rate of detoxification of this reactive glycolytic byproduct needs to be increased in order to prevent deleterious effects to the cells. This is brought about by an increased expression of glyoxalase 1 (GLO1) that is the rate-limiting enzyme of the MGO-detoxifying glyoxalase system. Here, we overexpressed GLO1 in HEK 293 cells and silenced it in MCF-7 cells using shRNA. Tumor-related properties of wild type and transformed cells were compared and key glycolytic enzyme activities assessed. Furthermore, the cells were subjected to hypoxic conditions to analyze the impact on cell proliferation and enzyme activities. Our results demonstrate that knockdown of GLO1 in the cancer cells significantly reduced tumor-associated properties such as migration and proliferation, whereas no functional alterations where found by overexpression of GLO1 in HEK 293 cells. In contrast, hypoxia caused inhibition of cell growth of all cells except of those overexpressing GLO1. Altogether, we conclude that GLO1 on one hand is crucial to maintaining tumor characteristics of malignant cells, and, on the other hand, supports malignant transformation of cells in a hypoxic environment when overexpressed. PMID:27999356

  19. Does severity of dermatochalasis in aging affect corneal biomechanical properties?

    PubMed Central

    Atalay, Kurşat; Gurez, Ceren; Kirgiz, Ahmet; Serefoglu Cabuk, Kubra

    2016-01-01

    Purpose The aim of this study was to investigate the possibility of a relationship between corneal biomechanical properties and different grades of dermatochalasis. Patients and methods Patients were assigned to four groups according to the severity of their dermatochalasis: normal (Group 1), mild (Group 2), moderate (Group 3), and severe (Group 4). An Ocular Response Analyzer device was used to measure corneal hysteresis (CH), corneal resistance factor (CRF), and corneal-compensated intraocular pressure (IOPcc). Results We found no significant differences in the mean values of the CH, CRF, and IOPcc of all groups (P=0.75, P=0.93, and P=0.11, respectively). However, CH and IOPcc were negatively correlated in Group 1, Group 2, and Group 3 patients (P=0.013, r=−0.49; P=0.015, r=−0.52; and P=0.011, r=−0.47, respectively), but this correlation was not apparent in the Group 4 patients (P=0.57, r=0.12). CRF and IOPcc were correlated, but only in Group 4 (P=0.001, r=0.66). Conclusion Severe dermatochalasis was associated with altered corneal biomechanical properties. Some of the important visual consequences of dermatochalasis and related diseases (such as floppy eyelid syndrome) can be understood by considering corneal biomechanical alterations. PMID:27274214

  20. Manufacturing and mechanical properties of calcium phosphate biomaterials

    NASA Astrophysics Data System (ADS)

    Laasri, S.; Taha, M.; Hlil, E. K.; Laghzizil, A.; Hajjaji, A.

    2012-10-01

    In this study, the influence of powder manufacturing and sintering temperature on densification, microstructure and mechanical properties of dense β-tricalcium phosphate (β-TCP) bioceramic has been studied. Densification results show that the β-TCP can be sintered at 1160 °C for 3 hours to have good density and high performance mechanic properties (Vickers hardness, toughness and Young's modulus). X-ray diffraction and SEM microscopy are used to check the microstructure changes during the sintering temperature. The used processing of β-TCP ceramic improved its densification, microstructure homogeneity and mechanical properties.

  1. Quality properties of fruits as affected by drying operation.

    PubMed

    Omolola, Adewale O; Jideani, Afam I O; Kapila, Patrick F

    2017-01-02

    The increasing consumption of dried fruits requires further attention on the quality parameters. Drying has become necessary because most fruits are highly perishable owing to their high moisture content and the need to make them available all year round and at locations where they are not produced. In addition to preservation, the reduced weight and bulk of dehydrated products decreases packaging, handling and transportation costs. Quality changes associated with drying of fruit products include physical, sensory, nutritional, and microbiological. Drying gives rise to low or moderate glycemic index (GI) products with high calorie, vitamin and mineral contents. This review examines the nutritional benefits of dried fruits, protective compounds present in dried fruits, GI, overview of some fruit drying methods and effects of drying operations on the quality properties such as shrinkage, porosity, texture, color, rehydration, effective moisture diffusivity, nutritional, sensory, microbiological and shelf stability of fruits.

  2. Dietary levels of acrylamide affect rat cardiomyocyte properties.

    PubMed

    Walters, Brandan; Hariharan, Venkatesh; Huang, Hayden

    2014-09-01

    The toxic effects of acrylamide on cytoskeletal integrity and ion channel balance is well-established in many cell types, but there has been little examination regarding the effects of acrylamide on primary cardiomyocytes, despite the importance of such components in their function. Furthermore, acrylamide toxicity is generally examined using concentrations higher than those found in vivo under starch-rich diets. Accordingly, we sought to characterize the dose-dependent effects of acrylamide on various properties, including cell morphology, contraction patterns, and junctional connexin 43 staining, in primary cardiomyocytes. We show that several days exposure to 1-100 μM acrylamide resulted in altered morphology, irregular contraction patterns, and an increase in the amount of immunoreactive signal for connexin 43 at cell junctions. We conclude that dietary levels of acrylamide may alter cellular function with prolonged exposure, in primary cardiomyocytes.

  3. Elastic properties and mechanical tension of graphene

    NASA Astrophysics Data System (ADS)

    Ramírez, R.; Herrero, C. P.

    2017-01-01

    Room-temperature simulations of graphene have been performed as a function of the mechanical tension of the layer. Finite-size effects are accurately reproduced by an acoustic dispersion law for the out-of-plane vibrations that, in the long-wave limit, behaves as ρ ω2=σ k2+κ k4 . The fluctuation tension σ is finite (˜0.1 N/m) even when the external mechanical tension vanishes. Transverse vibrations imply a duplicity in the definition of the elastic constants of the layer, as observables related to the real area of the surface may differ from those related to the in-plane projected area. This duplicity explains the variability of experimental data on the Young modulus of graphene based on electron spectroscopy, interferometric profilometry, and indentation experiments.

  4. Investigation of mechanical properties of pavement through electromagnetic techniques

    NASA Astrophysics Data System (ADS)

    Benedetto, Andrea; Tosti, Fabio; D'Amico, Fabrizio

    2014-05-01

    Ground-penetrating radar (GPR) is considered as one of the most flexible geophysical tools that can be effectively and efficiently used in many different applications. In the field of pavement engineering, GPR can cover a wide range of uses, spanning from physical to geometrical inspections of pavements. Traditionally, such inferred information are integrated with mechanical measurements from other traditional (e.g. plate bearing test) or non-destructive (e.g. falling weight deflectometer) techniques, thereby resulting, respectively, in time-consuming and low-significant measurements, or in a high use of technological resources. In this regard, the new challenge of retrieving mechanical properties of road pavements and materials from electromagnetic measurements could represent a further step towards a greater saving of economic resources. As far as concerns unpaved and bound layers it is well-known that strength and deformation properties are mostly affected, respectively, by inter-particle friction and cohesion of soil particles and aggregates, and by bitumen adhesion, whose variability is expressed by the Young modulus of elasticity. In that respect, by assuming a relationship between electromagnetic response (e.g. signal amplitudes) and bulk density of materials, a reasonable correlation between mechanical and electric properties of substructure is therefore expected. In such framework, a pulse GPR system with ground-coupled antennae, 600 MHz and 1600 MHz centre frequencies was used over a 4-m×30-m test site composed by a flexible pavement structure. The horizontal sampling resolution amounted to 2.4×10-2 m. A square regular grid mesh of 836 nodes with a 0.40-m spacing between the GPR acquisition tracks was surveyed. Accordingly, a light falling weight deflectometer (LFWD) was used for measuring the elastic modulus of pavement at each node. The setup of such instrument consisted of a 10-kg falling mass and a 100-mm loading plate so that the influence domain

  5. Mechanical properties of intermediate filament proteins

    PubMed Central

    Charrier, Elisabeth E.; Janmey, Paul A.

    2016-01-01

    Purified intermediate filament proteins can be reassembled in vitro to produce polymers closely resembling those found in cells, and these filament form viscoelastic gels. The crosslinks holding IFs together in the network include specific bonds between polypeptides extending from the filament surface and ionic interactions mediated by divalent cations. IF networks exhibit striking non-linear elasticity with stiffness, as quantified by shear modulus, increasing an order of magnitude as the networks are deformed to large stains resembling those that soft tissues undergo in vivo. Individual Ifs can be stretched to more than 2 or 3 times their resting length without breaking. At least ten different rheometric methods have been used to quantify the viscoelasticity of IF networks over a wide range of timescales and strain magnitudes. The mechanical roles of different classes of IF on mesenchymal and epithelial cells in culture have also been studied by an even wider range of microrheological methods. These studies have documented the effects on cell mechanics when IFs are genetically or pharmacologically disrupted or when normal or mutant IF proteins are exogenously expressed in cells. Consistent with in vitro rheology, the mechanical role of IFs is more apparent as cells are subjected to larger and more frequent deformations. PMID:26795466

  6. Mechanical properties of alumina porcelain during heating

    NASA Astrophysics Data System (ADS)

    Šín, Peter; Podoba, Rudolf; ŠtubÅa, Igor; Trník, Anton

    2014-11-01

    The mechanical strength and Young's modulus of green alumina porcelain (50 wt. % of kaolin, 25 wt. % of Al2O3, and 25 wt. % of feldspar) were measured during heating up to 900 °C and 1100 °C, respectively. To this end, we used the three point-bending method and modulated force thermomechanical analysis (mf-TMA). The loss liberation - of the physically bound water (20 - 250 °C) strengthens the sample and Young's modulus increases its values significantly. The dehydroxylation that takes place in the range of 400 - 650 °C causes a slight decrease in Young's modulus. On the other hand, the mechanical strength slightly increases in this temperature range, although it has a sudden drop at 420 °C. Beyond the dehydroxylation range, above 650 °C, both Young's modulus and mechanical strength increase. Above 950 °C, a sharp increase of Young's modulus is caused by the solid-state sintering and the new structure created by the high-temperature reactions in metakaolinite.

  7. The mechanical and strength properties of diamond.

    PubMed

    Field, J E

    2012-12-01

    Diamond is an exciting material with many outstanding properties; see, for example Field J E (ed) 1979 The Properties of Diamond (London: Academic) and Field J E (ed) 1992 The Properties of Natural and Synthetic Diamond (London: Academic). It is pre-eminent as a gemstone, an industrial tool and as a material for solid state research. Since natural diamonds grew deep below the Earth's surface before their ejection to mineable levels, they also contain valuable information for geologists. The key to many of diamond's properties is the rigidity of its structure which explains, for example, its exceptional hardness and its high thermal conductivity. Since 1953, it has been possible to grow synthetic diamond. Before then, it was effectively only possible to have natural diamond, with a small number of these found in the vicinity of meteorite impacts. Techniques are now available to grow gem quality synthetic diamonds greater than 1 carat (0.2 g) using high temperatures and pressures (HTHP) similar to those found in nature. However, the costs are high, and the largest commercially available industrial diamonds are about 0.01 carat in weight or about 1 mm in linear dimension. The bulk of synthetic diamonds used industrially are 600 µm or less. Over 75% of diamond used for industrial purposes today is synthetic material. In recent years, there have been two significant developments. The first is the production of composites based on diamond; these materials have a significantly greater toughness than diamond while still maintaining very high hardness and reasonable thermal conductivity. The second is the production at low pressures by metastable growth using chemical vapour deposition techniques. Deposition onto non-diamond substrates was first demonstrated by Spitsyn et al 1981 J. Cryst. Growth 52 219-26 and confirmed by Matsumoto et al 1982 Japan J. Appl. Phys. 21 L183-5. These developments have added further to the versatility of diamond. Two other groups of

  8. The mechanical and strength properties of diamond

    NASA Astrophysics Data System (ADS)

    Field, J. E.

    2012-12-01

    Diamond is an exciting material with many outstanding properties; see, for example Field J E (ed) 1979 The Properties of Diamond (London: Academic) and Field J E (ed) 1992 The Properties of Natural and Synthetic Diamond (London: Academic). It is pre-eminent as a gemstone, an industrial tool and as a material for solid state research. Since natural diamonds grew deep below the Earth's surface before their ejection to mineable levels, they also contain valuable information for geologists. The key to many of diamond's properties is the rigidity of its structure which explains, for example, its exceptional hardness and its high thermal conductivity. Since 1953, it has been possible to grow synthetic diamond. Before then, it was effectively only possible to have natural diamond, with a small number of these found in the vicinity of meteorite impacts. Techniques are now available to grow gem quality synthetic diamonds greater than 1 carat (0.2 g) using high temperatures and pressures (HTHP) similar to those found in nature. However, the costs are high, and the largest commercially available industrial diamonds are about 0.01 carat in weight or about 1 mm in linear dimension. The bulk of synthetic diamonds used industrially are 600 µm or less. Over 75% of diamond used for industrial purposes today is synthetic material. In recent years, there have been two significant developments. The first is the production of composites based on diamond; these materials have a significantly greater toughness than diamond while still maintaining very high hardness and reasonable thermal conductivity. The second is the production at low pressures by metastable growth using chemical vapour deposition techniques. Deposition onto non-diamond substrates was first demonstrated by Spitsyn et al 1981 J. Cryst. Growth 52 219-26 and confirmed by Matsumoto et al 1982 Japan J. Appl. Phys. 21 L183-5. These developments have added further to the versatility of diamond. Two other groups of materials

  9. On the mechanical properties of tooth enamel under spherical indentation.

    PubMed

    Chai, Herzl

    2014-11-01

    The mechanical properties of tooth enamel generally exhibit large variations, which reflect its structural and material complexity. Some key properties were evaluated under localized contact, simulating actual functioning conditions. Prominent cusps of extracted human molar teeth were polished down ~0.7 mm below the cusp tip and indented by tungsten carbide balls. The internal damage was assessed after unloading from longitudinal or transverse sections. The ultimate tensile stress (UTS) was determined using a novel bilayer specimen. The damage is characterized by penny-like radial cracks driven by hoop stresses and cylindrical cracks driven along protein-rich interrod materials by shear stresses. Shallow cone cracks typical of homogeneous materials which may cause rapid tooth wear under repeat contact are thus avoided. The mean stress vs. indentation strain curve is highly nonlinear, attributable to plastic shearing of protein between and within enamel rods. This curve is also affected by damage, especially radial cracks, the onset of which depends on ball radius. Several material properties were extracted from the tests, including shear strain at the onset of ring cracks γ(F) (=0.14), UTS (=119 MPa), toughness K(C) (=0.94 MPa m(1/2)), a crack propagation law and a constitutive response determined by trial and error with the aid of a finite-element analysis. These quantities, which are only slightly sensitive to anatomical location within the enamel region tested, facilitate a quantitative assessment of crown failure. Causes for variations in published UTS and K(C) values are discussed.

  10. Mechanical property characterization of polymeric composites reinforced by continuous microfibers

    NASA Astrophysics Data System (ADS)

    Zubayar, Ali

    Innumerable experimental works have been conducted to study the effect of polymerization on the potential properties of the composites. Experimental techniques are employed to understand the effects of various fibers, their volume fractions and matrix properties in polymer composites. However, these experiments require fabrication of various composites which are time consuming and cost prohibitive. Advances in computational micromechanics allow us to study the various polymer based composites by using finite element simulations. The mechanical properties of continuous fiber composite strands are directional. In traditional continuous fiber laminated composites, all fibers lie in the same plane. This provides very desirable increases in the in-plane mechanical properties, but little in the transverse mechanical properties. The effect of different fiber/matrix combinations with various orientations is also available. Overall mechanical properties of different micro continuous fiber reinforced composites with orthogonal geometry are still unavailable in the contemporary research field. In this research, the mechanical properties of advanced polymeric composite reinforced by continuous micro fiber will be characterized based on analytical investigation and FE computational modeling. Initially, we have chosen IM7/PEEK, Carbon Fiber/Nylon 6, and Carbon Fiber/Epoxy as three different case study materials for analysis. To obtain the equivalent properties of the micro-hetero structures, a concept of micro-scale representative volume elements (RVEs) is introduced. Five types of micro scale RVEs (3 square and 2 hexagonal) containing a continuous micro fiber in the polymer matrix were designed. Uniaxial tensile, lateral expansion and transverse shear tests on each RVE were designed and conducted by the finite element computer modeling software ANSYS. The formulae based on elasticity theory were derived for extracting the equivalent mechanical properties (Young's moduli, shear

  11. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing

    PubMed Central

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  12. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    PubMed

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  13. Quantifying tissue mechanical properties using photoplethysmography

    SciTech Connect

    Akl, Tony; Wilson, Mark A.; Ericson, Milton Nance; Cote, Gerard L.

    2014-01-01

    Photoplethysmography (PPG) is a non-invasive optical method that can be used to detect blood volume changes in the microvascular bed of tissue. The PPG signal comprises two components; a pulsatile waveform (AC) attributed to changes in the interrogated blood volume with each heartbeat, and a slowly varying baseline (DC) combining low frequency fluctuations mainly due to respiration and sympathetic nervous system activity. In this report, we investigate the AC pulsatile waveform of the PPG pulse for ultimate use in extracting information regarding the biomechanical properties of tissue and vasculature. By analyzing the rise time of the pulse in the diastole period, we show that PPG is capable of measuring changes in the Young s Modulus of tissue mimicking phantoms with a resolution of 4 KPa in the range of 12 to 61 KPa. In addition, the shape of the pulse can potentially be used to diagnose vascular complications by differentiating upstream from downstream complications. A Windkessel model was used to model changes in the biomechanical properties of the circulation and to test the proposed concept. The modeling data confirmed the response seen in vitro and showed the same trends in the PPG rise and fall times with changes in compliance and vascular resistance.

  14. Physicochemical properties of foal meat as affected by cooking methods.

    PubMed

    Lorenzo, José M; Cittadini, Aurora; Munekata, Paulo E; Domínguez, Rubén

    2015-10-01

    The present study deals with the effect of four different cooking techniques (roasting, grilling, microwave baking and frying with olive oil) on physicochemical parameters (cooking loss, WHC, texture and colour) and lipid oxidation (by TBARS measurement) of foal meat. Thermal treatments induced water loss (P<0.001), being lower in foal steaks cooked in the grill (25.8%) and higher in foal samples cooked in the microwave (39.5%). As it was expected, all the cooking methods increased TBARS index, since high temperature during cooking seems to cause an increase of the lipid oxidation in foal steaks. Statistical analysis displayed that WHC was affected (P<0.001) by thermal treatment, since the smallest WHC values were observed in samples from microwave treatment. Thermal treatment also caused a significant (P<0.001) increase in the force needed to cut the foal steaks. Regarding colour parameter, cooking led to an increase of L*-value (lightness) and b*-value (yellowness), while a*-value (redness) markedly decreased in all samples.

  15. Mechanical Properties and Microstructural Evolution of Welded Eglin Steel

    NASA Astrophysics Data System (ADS)

    Leister, Brett M.

    Eglin steel is a new ultra-high strength steel that has been developed at Eglin Air Force Base in the early 2000s. This steel could be subjected to a variety of processing steps during fabrication, each with its own thermal history. This article presents a continuous cooling transformation diagram developed for Eglin steel to be used as a guideline during processing. Dilatometry techniques performed on a Gleeble thermo-mechanical simulator were combined with microhardness results and microstructural characterization to develop the diagram. The results show that four distinct microstructures form within Eglin steel depending on the cooling rate. At cooling rates above about 1 °C/s, a predominately martensitic microstructure is formed with hardness of ˜520 HV. Intermediate cooling rates of 1 °C/s to 0.2 °C/s produce a mixed martensitic/bainitic microstructure with a hardness that ranges from 520 - 420 HV. Slower cooling rates of 0.1 °C/s to 0.03 °C/s lead to the formation of a bainitic microstructure with a hardness of ˜420 HV. The slowest cooling rate of 0.01 °C/s formed a bainitic microstructure with pearlite at the prior austenite grain boundaries. A comprehensive study was performed to correlate the mechanical properties and the microstructural evolution in the heat affected zone of thermally simulated Eglin steel. A Gleeble 3500 thermo-mechanical simulator was used to resistively heat samples of wrought Eglin steel according to calculated thermal cycles with different peak temperatures at a heat input of 1500 J/mm. These samples underwent mechanical testing to determine strength and toughness, in both the `as-simulated' condition and also following post-weld heat treatments. Mechanical testing has shown that the inter-critical heat affected zone (HAZ) has the lowest strength following thermal simulation, and the fine-grain and coarse-grain heat affected zone having an increased strength when compared to the inter-critical HAZ. The toughness of the heat

  16. Spatial variation of acoustic properties is related with mechanical properties of trabecular bone

    NASA Astrophysics Data System (ADS)

    Riekkinen, O.; Hakulinen, M. A.; Töyräs, J.; Jurvelin, J. S.

    2007-12-01

    In clinical applications, ultrasound parameters are measured as an average value over a region of interest (ROI) or as a value at a single measurement point. Due to natural adaptation to loading conditions, trabecular bone is structurally, compositionally and mechanically heterogeneous and anisotropic. Thus, spatial variation of ultrasound parameters within ROI may contain valuable information on the mechanical integrity of trabecular bone. However, this issue has not been thoroughly investigated. In the present study, we aimed at investigating the significance of the spatial variation of ultrasound parameters for the prediction of mechanical properties of human trabecular bone. For this aim, parametric maps of apparent integrated backscattering (AIB), integrated reflection coefficient (IRC), speed of sound (SOS), average attenuation (AA) and normalized broadband ultrasound attenuation (nBUA) were calculated for femoral and tibial bone cylinders (n = 19-20). Further, the effect of time window length on the AIB, variation of AIB within ROI and association between AIB and bone mechanical properties were characterized. Based on linear correlation analysis, spatial variation of AIB, assessed as standard deviation of measurements within ROI, was a strong predictor of bone ultimate strength (r = -0.82, n = 19, p < 0.01). Further, the time window length affected absolute values of AIB and strength of correlation between AIB and bone ultimate strength. Interestingly, linear combination of mean IRC and spatial variation of AIB within ROI was the strongest predictor of bone ultimate strength (r = 0.92, n = 19, p < 0.01). In conclusion, our findings suggest that the measurement of two-dimensional parametric maps of ultrasound parameters could yield information on bone status not extractable from single point measurements. This highlights the potential of parametric imaging in osteoporosis diagnostics.

  17. Effects of Microwave Radiation on Selected Mechanical Properties of Silk

    NASA Astrophysics Data System (ADS)

    Reed, Emily Jane

    Impressive mechanical properties have served to peak interest in silk as an engineering material. In addition, the ease with which silk can be altered through processing has led to its use in various biomaterial applications. As the uses of silk branch into new territory, it is imperative (and inevitable) to discover the boundary conditions beyond which silk no longer performs as expected. These boundary conditions include factors as familiar as temperature and humidity, but may also include other less familiar contributions, such as exposure to different types of radiation. The inherent variations in mechanical properties of silk, as well as its sensitivity to moisture, suggest that in an engineering context silk is best suited for use in composite materials; that way, silk can be shielded from ambient moisture fluctuations, and the surrounding matrix allows efficient load transfer from weaker fibers to stronger ones. One such application is to use silk as a reinforcing fiber in epoxy composites. When used in this way, there are several instances in which exposure to microwave radiation is likely (for example, as a means of speeding epoxy cure rates), the effects of which remain mostly unstudied. It will be the purpose of this dissertation to determine whether selected mechanical properties of B. mori cocoon silk are affected by exposure to microwave radiation, under specified temperature and humidity conditions. Results of our analyses are directly applicable wherever exposure of silk to microwave radiation is possible, including in fiber reinforced epoxy composites (the entire composite may be microwaved to speed epoxy cure time), or when silk is used as a component in the material used to construct the radome of an aircraft (RADAR units use frequencies in the microwave range of the electromagnetic spectrum), or when microwave energy is used to sterilize biomaterials (such as cell scaffolds) made of silk. In general, we find that microwave exposure does not

  18. Porosity and mechanical properties of zirconium ceramics

    SciTech Connect

    Kalatur, Ekaterina Narikovich, Anton; Buyakova, Svetlana E-mail: kulkov@ispms.tsc.ru; Kulkov, Sergey E-mail: kulkov@ispms.tsc.ru

    2014-11-14

    The article studies the porous ceramics consisting of ultra-fine ZrO{sub 2} powders. The porosity of ceramic samples varied from 15% to 80%. The structure of the ceramic materials had a cellular configuration. The distinctive feature of all experimentally obtained strain diagrams is their nonlinearity at low deformations characterized by the parabolic law. It was shown that the observed nonlinear elasticity for low deformations shown in strain diagrams is due to the mechanical instability of cellular elements of the ceramic framework.

  19. Structure and Mechanical Properties of Welded Joints of Gas Transmission Pipes

    NASA Astrophysics Data System (ADS)

    Khotinov, V. A.; Farber, V. M.; Morozova, A. N.; Valov, M. A.; Sharipov, G. A.

    2014-09-01

    Astudy is made of the structure and mechanical properties of welded joints of pipes of strength class K60 produced by three different manufacturers. A detailed analysis of the microstructure of the central weld, heat-affected zone, and base metal is performed with a scanning electron microscope by the method of electron back-scattered diffraction.

  20. Pyridoxine deficiency affects biomechanical properties of chick tibial bone

    NASA Technical Reports Server (NTRS)

    Masse, P. G.; Rimnac, C. M.; Yamauchi, M.; Coburn, S. P.; Rucker, R. B.; Howell, D. S.; Boskey, A. L.

    1996-01-01

    The mechanical integrity of bone is dependent on the bone matrix, which is believed to account for the plastic deformation of the tissue, and the mineral, which is believed to account for the elastic deformation. The validity of this model is shown in this study based on analysis of the bones of vitamin B6-deficient and vitamin B6-replete chick bones. In this model, when B6-deficient and control animals are compared, vitamin B6 deficiency has no effect on the mineral content or composition of cortical bone as measured by ash weight (63 +/- 6 vs. 58 +/- 3); mineral to matrix ratio of the FTIR spectra (4.2 +/- 0.6 vs. 4.5 +/- 0.2), line-broadening analyses of the X-ray diffraction 002 peak (beta 002 = 0.50 +/- 0.1 vs. 0.49 +/- 0.01), or other features of the infrared spectra. In contrast, collagen was significantly more extractable from vitamin B6-deficient chick bones (20 +/- 2% of total hydroxyproline extracted vs. 10 +/- 3% p < or = 0.001). The B6-deficient bones also contained an increased amount of the reducible cross-links DHLNL, dehydro-dihydroxylysinonorleucine, (1.03 +/- 0.07 vs. 0.84 +/- 0.13 p < or = 0.001); and a nonsignificant increase in HLNL, dehydro-hydroxylysinonorleucine, (0.51 +/- 0.03 vs. 0.43 +/- 0.03, p < or = 0.10). There were no significant changes in bone length, bone diameter, or area moment of inertia. In four-point bending, no significant changes in elastic modulus, stiffness, offset yield deflection, or fracture deflection were detected. However, fracture load in the B6-deficient animals was decreased from 203 +/- 35 MPa to 151 +/- 23 MPa, p < or = 0.01, and offset yield load was decreased from 165 +/- 9 MPa to 125 +/- 14 MPa, p < or = 0.05. Since earlier histomorphometric studies had demonstrated that the B6-deficient bones were osteopenic, these data suggest that although proper cortical bone mineralization occurred, the alterations of the collagen resulted in changes to bone mechanical performance.

  1. Tailoring of mechanical properties of hydroformed aluminum tubes

    SciTech Connect

    Hong, Sung-tae; Lavender, Curt A.

    2007-07-06

    Tailoring of the mechanical properties of hydroformed aluminum 6063-T4 tubes to those of aluminum 6063-T6 was performed by heat treatment. Quasi-static tensile tests and a SEM analysis were conducted to evaluate the change of the mechanical properties. The experimental results of the hydroformed tubes in T4 condition (before the heat treatment) show significant variations of the mechanical properties along the length due to the different extents of work hardening by hydroforming. The experimental results of the hydroformed tubes in T6 condition (after the heat treatment) show that the precipitation hardening successfully removed the effects of the non-uniform work hardening and resulted in the uniform mechanical properties in the tube.

  2. Mechanical properties of plastics predetermined by empirical method

    NASA Technical Reports Server (NTRS)

    Lohr, J. J.; Parker, J. A.

    1964-01-01

    To predetermine the mechanical properties of rigid plastics as a function of plasticizer content and composition, a set of equations has been empirically derived. These relate strain rate, yield stress, temperature, and weight fraction of the plasticizer.

  3. Modified Polypropylene with Improved Physical-Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Chervakov, D. O.; Bashtanyk, P. I.; Burmistr, M. V.

    2015-03-01

    The use of mixtures of benzoyl peroxide and polysiloxane polyol compounds as polypropylene modifiers is suggested. It is established that, in such a way, its physical-mechanical properties can be changed purposefully.

  4. Primate dietary ecology in the context of food mechanical properties.

    PubMed

    Coiner-Collier, Susan; Scott, Robert S; Chalk-Wilayto, Janine; Cheyne, Susan M; Constantino, Paul; Dominy, Nathaniel J; Elgart, Alison A; Glowacka, Halszka; Loyola, Laura C; Ossi-Lupo, Kerry; Raguet-Schofield, Melissa; Talebi, Mauricio G; Sala, Enrico A; Sieradzy, Pawel; Taylor, Andrea B; Vinyard, Christopher J; Wright, Barth W; Yamashita, Nayuta; Lucas, Peter W; Vogel, Erin R

    2016-09-01

    Substantial variation exists in the mechanical properties of foods consumed by primate species. This variation is known to influence food selection and ingestion among non-human primates, yet no large-scale comparative study has examined the relationships between food mechanical properties and feeding strategies. Here, we present comparative data on the Young's modulus and fracture toughness of natural foods in the diets of 31 primate species. We use these data to examine the relationships between food mechanical properties and dietary quality, body mass, and feeding time. We also examine the relationship between food mechanical properties and categorical concepts of diet that are often used to infer food mechanical properties. We found that traditional dietary categories, such as folivory and frugivory, did not faithfully track food mechanical properties. Additionally, our estimate of dietary quality was not significantly correlated with either toughness or Young's modulus. We found a complex relationship among food mechanical properties, body mass, and feeding time, with a potential interaction between median toughness and body mass. The relationship between mean toughness and feeding time is straightforward: feeding time increases as toughness increases. However, when considering median toughness, the relationship with feeding time may depend upon body mass, such that smaller primates increase their feeding time in response to an increase in median dietary toughness, whereas larger primates may feed for shorter periods of time as toughness increases. Our results emphasize the need for additional studies quantifying the mechanical and chemical properties of primate diets so that they may be meaningfully compared to research on feeding behavior and jaw morphology.

  5. Processing effects on the mechanical properties of tungsten heavy alloys

    NASA Technical Reports Server (NTRS)

    Kishi, Toshihito; German, R. M.

    1990-01-01

    Tungsten heavy alloys exhibit significant mechanical property sensitivities to the fabrication variables. These sensitivities are illustrated in this examination of vacuum sintering and the effects of composition, sintering temperature, and sintering time on the mechanical properties of tungsten heavy alloys. Measurements were conducted to assess the density, strength, hardness, and elongation dependencies. A detrimental aspect of vacuum sintering is matrix phase evaporation, although vacuum sintering does eliminate the need for postsintering heat treatments.

  6. Microstructure and mechanical properties of neoprene montmorillonite nanocomposites

    NASA Astrophysics Data System (ADS)

    Yeh, Meng-Heng; Hwang, Weng-Sing; Cheng, Lin-Ri

    2007-03-01

    To investigate the microstructure and mechanical properties of neoprene-montmorillonite nanocomposite, three modified montmorillonite are used. An X-ray diffractometer is used to measure the corresponding change in d-spacing. Scanning electron microscopy is employed to investigate the morphology of the various composites. Transmission electron microscopy is employed to investigate the composite of montmorillonite and neoprene. The results indicate that the addition of montmorillonite enhances the mechanical properties of neoprene significantly.

  7. Mechanical properties of henequen fibre/epoxy resin composites

    NASA Astrophysics Data System (ADS)

    Gonzalez-Murillo, C.; Ansell, M. P.

    2009-07-01

    By using surface-treated and untreated henequen fibres and an epoxy resin, composites were made by compression moulding, and their mechanical properties and failure modes were determined experimentally in tension, bending, and impact loading. The results obtained show that the treatment of fibre surface does not improve the bond between the fibres and the resin matrix, and the general mechanical properties of the composites are similar.

  8. Effective elastic mechanical properties of single layer graphene sheets.

    PubMed

    Scarpa, F; Adhikari, S; Srikantha Phani, A

    2009-02-11

    The elastic moduli of single layer graphene sheet (SLGS) have been a subject of intensive research in recent years. Calculations of these effective properties range from molecular dynamic simulations to use of structural mechanical models. On the basis of mathematical models and calculation methods, several different results have been obtained and these are available in the literature. Existing mechanical models employ Euler-Bernoulli beams rigidly jointed to the lattice atoms. In this paper we propose truss-type analytical models and an approach based on cellular material mechanics theory to describe the in-plane linear elastic properties of the single layer graphene sheets. In the cellular material model, the C-C bonds are represented by equivalent mechanical beams having full stretching, hinging, bending and deep shear beam deformation mechanisms. Closed form expressions for Young's modulus, the shear modulus and Poisson's ratio for the graphene sheets are derived in terms of the equivalent mechanical C-C bond properties. The models presented provide not only quantitative information about the mechanical properties of SLGS, but also insight into the equivalent mechanical deformation mechanisms when the SLGS undergoes small strain uniaxial and pure shear loading. The analytical and numerical results from finite element simulations show good agreement with existing numerical values in the open literature. A peculiar marked auxetic behaviour for the C-C bonds is identified for single graphene sheets under pure shear loading.

  9. Interfacial Mechanical Properties of Graphene on Self-Assembled Monolayers: Experiments and Simulations.

    PubMed

    Tu, Qing; Kim, Ho Shin; Oweida, Thomas J; Parlak, Zehra; Yingling, Yaroslava G; Zauscher, Stefan

    2017-03-22

    Self-assembled monolayers (SAMs) have been widely used to engineer the electronic properties of substrate-supported graphene devices. However, little is known about how the surface chemistry of SAMs affects the interfacial mechanical properties of graphene supported on SAMs. Fluctuations and changes in these properties affect the stress transfer between substrate and the supported graphene and thus the performance of graphene-based devices. The changes in interfacial mechanical properties can be characterized by measuring the out-of-plane elastic properties. Combining contact resonance atomic force microcopy experiments with molecular dynamics simulations, we show that the head group chemistry of a SAM, which affects the interfacial interactions, can have a significant effect on the out-of-plane elastic modulus of the graphene-SAM heterostructure. Graphene supported on hydrophobic SAMs leads to heterostructures stiffer than those of graphene supported on hydrophilic SAMs, which is largely due to fewer water molecules present at the graphene-SAM interface. Our results provide an important, and often overlooked, insight into the mechanical properties of substrate-supported graphene electronics.

  10. Mechanical properties of rare earth stannate pyrochlores

    NASA Astrophysics Data System (ADS)

    Feng, J.; Xiao, B.; Qu, Z. X.; Zhou, R.; Pan, W.

    2011-11-01

    The RE2Sn2O7 series compounds (RE = La, Nb, Sm, Gd, Er, Yb) with a pyrochlore structure are prepared by co-precipitation method. The bulk, shear, Young's moduli, B/G, and Poisson's ratios are calculated using density functional theory and also measured by ultrasonic resonance method. The theoretical values of lattice constants and mechanical moduli are smaller than experimental results. The electronic structures of RE2Sn2O7 are analogous to RE2Zr2O7. La2Sn2O7 exhibits stronger ionic bonds than others. The covalent interactions are slightly enhanced in the heavy rare earth stannate pyrochlores. The Vickers harnesses of RE2Sn2O7 are measured experimentally, which are smaller than theoretical predictions.

  11. Analgesic Drugs Alter Connective Tissue Remodeling and Mechanical Properties

    PubMed Central

    Carroll, Chad C.

    2015-01-01

    Exercising individuals commonly consume analgesics but these medications alter tendon and skeletal muscle connective tissue properties, possibly limiting a person from realizing the full benefits of exercise training. I detail the novel hypothesis that analgesic medications alter connective tissue structure and mechanical properties by modifying fibroblast production of growth factors and matrix enzymes, which are responsible for extracellular matrix remodeling. PMID:26509485

  12. Analgesic Drugs Alter Connective Tissue Remodeling and Mechanical Properties.

    PubMed

    Carroll, Chad C

    2016-01-01

    Exercising individuals commonly consume analgesics, but these medications alter tendon and skeletal muscle connective tissue properties, possibly limiting a person from realizing the full benefits of exercise training. I detail the novel hypothesis that analgesic medications alter connective tissue structure and mechanical properties by modifying fibroblast production of growth factors and matrix enzymes, which are responsible for extracellular matrix remodeling.

  13. Mechanical properties of Inconel 617 and 618

    SciTech Connect

    McCoy, H E; King, J F

    1985-02-01

    Inconel 617 and 618 were evaluated for application in high-temperature gas-cooled reactors (HTGRs). Techniques were developed for making sound welds, and tests were performed on base and weld metals. Specimens of both materials were aged to 20,000 h to evaluate thermal stability. Short-term tensile tests on alloy 617 showed that aging severely reduced the strain at fracture at both ambient and elevated temperatures. The impact energy at ambient temperature was severely degraded by aging. Creep tests showed that fracture occurred at 593 through 704{sup 0}C after only 1 to 2% strain, and higher strains were noted at higher temperatures. There was no detectable difference between the creep behavior in air and that in HTGR helium environments. Inconel alloy 618 had excellent stability during aging. Fracture strains in short-term tensile tests and impact energies in impact tests remained high after aging. The creep properties of alloy 618 were equivalent in air and in HTGR helium. Both alloys were carburized during creep testing in HTGR helium, and the rate of carburization became rather high at 760{sup 0}C and higher temperatures. 49 figures, 20 tables.

  14. Porosity and mechanical properties of zirconium ceramics

    NASA Astrophysics Data System (ADS)

    Buyakova, S.; Sablina, T.; Kulkov, S.

    2015-11-01

    Has been studied a porous ceramics obtained from ultra-fine powders. Porous ceramic ZrO2(MgO), ZrO2(Y2O3) powder was prepared by pressing and subsequent sintering of compacts homologous temperatures ranging from 0.63 to 0.56 during the isothermal holding duration of 1 to 5 hours. The porosity of ceramic samples was from 15 to 80%. The structure of the ceramic materials produced from plasma-sprayed ZrO2 powder was represented as a system of cell and rod structure elements. Cellular structure formed by stacking hollow powder particles can be easily seen at the images of fracture surfaces of obtained ceramics. There were three types of pores in ceramics: large cellular hollow spaces, small interparticle pores which are not filled with powder particles and the smallest pores in the shells of cells. The cells generally did not have regular shapes. The size of the interior of the cells many times exceeded the thickness of the walls which was a single-layer packing of ZrO2 grains. A distinctive feature of all deformation diagrams obtained in the experiment was their nonlinearity at low deformations which was described by the parabolic law. It was shown that the observed nonlinear elasticity for low deformation on deformation diagrams is due to mechanical instability of the cellular elements in the ceramic carcass.

  15. Mechanical Properties of Nanoscopic Lipid Domains

    SciTech Connect

    Nickels, Jonathan D.; Cheng, Xiaolin; Mostofian, Barmak; Stanley, Christopher; Lindner, Benjamin; Heberle, Frederick A.; Perticaroli, Stefania; Feygenson, Mikhail; Egami, Takeshi; Standaert, Robert F.; Smith, Jeremy C.; Myles, Dean A. A.; Ohl, Michael; Katsaras, John

    2015-09-28

    We found that the lipid raft hypothesis presents insight into how the cell membrane organizes proteins and lipids to accomplish its many vital functions. Yet basic questions remain about the physical mechanisms that lead to the formation, stability, and size of lipid rafts. Thus, much interest has been generated in the study of systems that contain similar lateral heterogeneities, or domains. In the current work we present an experimental approach that is capable of isolating the bending moduli of lipid domains. This is accomplished using neutron scattering and its unique sensitivity to the isotopes of hydrogen. Combining contrast matching approaches with inelastic neutron scattering, we isolate the bending modulus of ~13 nm diameter domains residing in 60 nm unilamellar vesicles, whose lipid composition mimics the mammalian plasma membrane outer leaflet. Importantly, the bending modulus of the nanoscopic domains differs from the modulus of the continuous phase surrounding them. Moreover, from additional structural measurements and all-atom simulations, we also determine that nanoscopic domains are in-register across the bilayer leaflets. Taken together, these results inform a number of theoretical models of domain/raft formation and highlight the fact that mismatches in bending modulus must be accounted for when explaining the emergence of lateral heterogeneities in lipid systems and biological membranes.

  16. Mechanical Properties of Nanoscopic Lipid Domains

    DOE PAGES

    Nickels, Jonathan D.; Cheng, Xiaolin; Mostofian, Barmak; ...

    2015-09-28

    We found that the lipid raft hypothesis presents insight into how the cell membrane organizes proteins and lipids to accomplish its many vital functions. Yet basic questions remain about the physical mechanisms that lead to the formation, stability, and size of lipid rafts. Thus, much interest has been generated in the study of systems that contain similar lateral heterogeneities, or domains. In the current work we present an experimental approach that is capable of isolating the bending moduli of lipid domains. This is accomplished using neutron scattering and its unique sensitivity to the isotopes of hydrogen. Combining contrast matching approachesmore » with inelastic neutron scattering, we isolate the bending modulus of ~13 nm diameter domains residing in 60 nm unilamellar vesicles, whose lipid composition mimics the mammalian plasma membrane outer leaflet. Importantly, the bending modulus of the nanoscopic domains differs from the modulus of the continuous phase surrounding them. Moreover, from additional structural measurements and all-atom simulations, we also determine that nanoscopic domains are in-register across the bilayer leaflets. Taken together, these results inform a number of theoretical models of domain/raft formation and highlight the fact that mismatches in bending modulus must be accounted for when explaining the emergence of lateral heterogeneities in lipid systems and biological membranes.« less

  17. Porosity and mechanical properties of zirconium ceramics

    SciTech Connect

    Buyakova, S. Kulkov, S.; Sablina, T.

    2015-11-17

    Has been studied a porous ceramics obtained from ultra-fine powders. Porous ceramic ZrO{sub 2}(MgO), ZrO{sub 2}(Y{sub 2}O{sub 3}) powder was prepared by pressing and subsequent sintering of compacts homologous temperatures ranging from 0.63 to 0.56 during the isothermal holding duration of 1 to 5 hours. The porosity of ceramic samples was from 15 to 80%. The structure of the ceramic materials produced from plasma-sprayed ZrO{sub 2} powder was represented as a system of cell and rod structure elements. Cellular structure formed by stacking hollow powder particles can be easily seen at the images of fracture surfaces of obtained ceramics. There were three types of pores in ceramics: large cellular hollow spaces, small interparticle pores which are not filled with powder particles and the smallest pores in the shells of cells. The cells generally did not have regular shapes. The size of the interior of the cells many times exceeded the thickness of the walls which was a single-layer packing of ZrO{sub 2} grains. A distinctive feature of all deformation diagrams obtained in the experiment was their nonlinearity at low deformations which was described by the parabolic law. It was shown that the observed nonlinear elasticity for low deformation on deformation diagrams is due to mechanical instability of the cellular elements in the ceramic carcass.

  18. Mechanical properties of lanthanum and yttrium chromites

    SciTech Connect

    Paulik, S.W.; Armstrong, T.R.

    1996-12-31

    In an operating high-temperature (1000{degrees}C) solid oxide fuel cell (SOFC), the interconnect separates the fuel (P(O{sub 2}){approx}10{sup -16} atm) and the oxidant (P(O2){approx}10{sup 0.2} atm), while being electrically conductive and connecting the cells in series. Such severe atmospheric and thermal demands greatly reduce the number of viable candidate materials. Only two materials, acceptor substituted lanthanum chromite and yttrium chromite, meet these severe requirements. In acceptor substituted chromites (Sr{sup 2+} or Ca{sup 2+} for La{sup 3+}), charge compensation is primarily electronic in oxidizing conditions (through the formation of Cr{sup 4+}). Under reducing conditions, ionic charge compensation becomes significant as the lattice becomes oxygen deficient. The formation of oxygen vacancies is accompanied by the reduction of Cr{sup 4+} ions to Cr{sup 3+} and a resultant lattice expansion. The lattice expansion observed in large chemical potential gradients is not desirable and has been found to result in greatly reduced mechanical strength.

  19. Fluid mechanical properties of flames in enclosures

    SciTech Connect

    Rotman, D.A.; Pindera, M.Z.; Oppenheim, A.K.

    1988-07-01

    In an enclosure where the reacting medium is initially at rest, the flame first generates a flowfield that then gets stretched, i.e., its front is pulled along the surface by the flowfield in which it then finds itself residing. A methodology developed for numerical modeling of such fields is described. Of key significance in this respect is the zero Mach number model/endash/a reasonable idealization in view of the relatively high temperature, and hence sound speed, that exists, concomitantly with a comparatively low particle velocity, in the confinement of a combustion chamber. According to this model, the density gradient in the field is nullified, while across the flame front it approaches infinity. One has thus two regimes: one of the unburned medium and the other of the burned gas, each of spatially uniform density, separated by a flame front interface. The latter is endowed with four properties, of which the first two are purely kinematic and the others dynamic in nature, namely: 1) it is advected at the local velocity of flow; 2) it self-advances at the normal burning speed, the eigenvalue of the system; 3) it acts as the velocity source due to the exothermicity of the combustion process; and 4) it acts as the vorticity source due to the baroclinic effect generated by the pressure gradient along its surface and the density gradient across it. A solution obtained for a flame propagating in an oblong rectangular enclosure demonstrates that the latter has a significant influence upon the formation of the well known tulip shape. 12 refs., 4 figs.

  20. Mechanical properties of dental investment materials.

    PubMed

    Low, D; Swain, M V

    2000-07-01

    Measurement of the elastic modulus (E) of investment materials has been difficult because of their low strength. However, these values are essential for engineering simulation and there are many methods available to assess the elasticity of materials. The present study compared two different methods with one of the methods being non-destructive in nature and can be used for specimens prepared for other tests. Two different types of investment materials were selected, gypsum-and phosphate-bonded. Method 1 is a traditional three-point bending test. Twelve rectangular bars with dimension of (70 x 9 x 3 mm) were prepared and placed on supports 56.8 mm apart. The test was conducted at a cross-head speed of 1 mm/min by use of a universal testing machine. The load applied to the test specimen and the corresponding deflection were measured until the specimen fractured. The E value was calculated from a linear part of the stress-strain plot. Method 2 is an ultra micro-indentation system to determine near surface properties of materials with nanometer resolution. The measurement procedure was programmed such that the specimens were indented with an initial contact force of 5 mN then followed by a maximum force of 500 mN. Measurement consisted of 10 indentations conducted with a spherical stainless steel indenter (R = 250 microm) that were equally spaced (500 microm). The E value rose asymptotically with depth of penetration and would approach the three-point bending test value at approximately four time's maximum contact depth for both materials. Both methods are practical ways of measuring the E of investment materials.

  1. Dynamic monitoring of cell mechanical properties using profile microindentation

    PubMed Central

    Guillou, L.; Babataheri, A.; Puech, P.-H.; Barakat, A. I.; Husson, J.

    2016-01-01

    We have developed a simple and relatively inexpensive system to visualize adherent cells in profile while measuring their mechanical properties using microindentation. The setup allows simultaneous control of cell microenvironment by introducing a micropipette for the delivery of soluble factors or other cell types. We validate this technique against atomic force microscopy measurements and, as a proof of concept, measure the viscoelastic properties of vascular endothelial cells in terms of an apparent stiffness and a dimensionless parameter that describes stress relaxation. Furthermore, we use this technique to monitor the time evolution of these mechanical properties as the cells’ actin is depolymerized using cytochalasin-D. PMID:26857265

  2. Mechanical Properties of Continuous Fiber Reinforced Zirconium Diboride Matrix Composites

    NASA Technical Reports Server (NTRS)

    Stuffle, Kevin; Creegan, Peter; Nowell, Steven; Bull, Jeffrey D.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    Continuous fiber reinforced zirconium diboride matrix composites, SCS-9a-(RBSiCZrB2)matrix, are being developed for leading edge, rocket nozzle and turbine engine applications. Recently, the composite materials have been characterized for tensile properties to 1250 C, the highest temperature tested. The tensile properties are fiber dominated as the matrix is microcracked on fabrication, but favorable failure characteristic are observed. Compression and shear mechanical testing results will be reported if completed. The effects of fiber volume fraction and matrix density on mechanical properties will be discussed. The target applications of the materials will be discussed. Specific testing being performed towards qualification for these applications will be included.

  3. Mechanical and biological properties of keratose biomaterials.

    PubMed

    de Guzman, Roche C; Merrill, Michelle R; Richter, Jillian R; Hamzi, Rawad I; Greengauz-Roberts, Olga K; Van Dyke, Mark E

    2011-11-01

    The oxidized form of extractable human hair keratin proteins, commonly referred to as keratose, is gaining interest as a biomaterial for multiple tissue engineering studies including those directed toward peripheral nerve, spinal cord, skin, and bone regeneration. Unlike its disulfide cross-linked counterpart, kerateine, keratose does not possess a covalently cross-linked network structure and consequently displays substantially different characteristics. In order to understand its mode(s) of action and potential for clinical translatability, detailed characterization of the composition, physical properties, and biological responses of keratose biomaterials are needed. Keratose was obtained from end-cut human hair fibers by peracetic acid treatment, followed by base extraction, and subsequent dialysis. Analysis of lyophilized keratose powder determined that it contains 99% proteins by mass with amino acid content similar to human hair cortex. Metallic elements were also found in minute quantities. Protein oxidation led to disulfide bond cleavage and drastic reduction of free thiols due to conversion of sulfhydryl to sulfonic acid, chain fragmentation, and amino acid modifications. Mass spectrometry identified the major protein constituents as a heterogeneous mixture of 15 hair keratins (type I: K31-35 and K37-39, and type II: K81-86) with small amounts of epithelial keratins which exist in monomeric, dimeric, multimeric, and even degraded forms. Re-hydration with PBS enabled molecular assembly into an elastic solid-like hydrogel. Highly-porous scaffolds formed by lyophilization of the gel had the compression behavior of a cellular foam material and reverted back to gel upon wetting. Cytotoxicity assays showed that the EC50 for various cell lines were attained at 8-10 mg/mL keratose, indicating the non-toxic nature of the material. Implantation in mouse subcutaneous tissue pockets demonstrated that keratose resorption follows a rectangular hyperbolic regression

  4. Interactive effects of mechanical stress, sand burial and defoliation on growth and mechanical properties in Cynanchum komarovii.

    PubMed

    Xu, L; Yu, F-H; Werger, M; Dong, M; Anten, N P R

    2013-01-01

    In drylands, wind, sand burial and grazing are three important factors affecting growth and mechanical properties of plants, but their interactive effects have not yet been investigated. Plants of the semi-shrub Cynanchum komarovii, common in semi-arid parts of NE Asia, were subjected to brushing, burial and defoliation. We measured biomass allocation and relative increment rates of dry mass (RGR(m)), height (RGR(h)) and basal diameter (RGR(d)). We also measured the stem mechanical properties, Young's modulus (E), second moment of area (I), flexural stiffness (EI) and breaking stress (σ(b)), and scaled these traits to the whole-plant level to determine the maximum lateral force (F(lateral)) and the buckling safety factor (BSF). Brushing increased RGR(m); neither burial nor defoliation independently affected RGR(m), but together they reduced it. Among buried plants, brushing positively affected stem rigidity and strength through increasing RGR(d), E, I and EI, and at whole plant level this resulted in a larger BSF and F(lateral). However, among unburied plants this pattern was not observed. Our results thus show that effects of mechanical stress and grazing on plants can be strongly modified by burial, and these interactions should be taken into account when considering adaptive significance of plant mechanical traits in drylands.

  5. Assessment of structural, thermal, and mechanical properties of portlandite through molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Hajilar, Shahin; Shafei, Behrouz

    2016-12-01

    The structural, thermal, and mechanical properties of portlandite, the primary solid phase of ordinary hydrated cement paste, are investigated using the molecular dynamics method. To understand the effects of temperature on the structural properties of portlandite, the coefficients of thermal expansion of portlandite are determined in the current study and validated with what reported from the experimental tests. The atomic structure of portlandite equilibrated at various temperatures is then subjected to uniaxial tensile strains in the three orthogonal directions and the stress-strain curves are developed. Based on the obtained results, the effect of the direction of straining on the mechanical properties of portlandite is investigated in detail. Structural damage analysis is performed to reveal the failure mechanisms in different directions. The energies of the fractured surfaces are calculated in different directions and compared to those of the ideal surfaces available in the literature. The key mechanical properties, including tensile strength, Young's modulus, and fracture strain, are extracted from the stress-strain curves. The sensitivity of the obtained mechanical properties to temperature and strain rate is then explored in a systematic way. This leads to valuable information on how the structural and mechanical properties of portlandite are affected under various exposure conditions and loading rates.

  6. Mechanical Properties of Isotactic Polypropylene Modified with Thermoplastic Potato Starch

    NASA Astrophysics Data System (ADS)

    Knitter, M.; Dobrzyńska-Mizera, M.

    2015-05-01

    In this paper selected mechanical properties of isotactic polypropylene (iPP) modified with potato starch have been presented. Thermoplastic starch (TPS) used as a modifier in the study was produced from potato starch modified with glycerol. Isotactic polypropylene/thermoplastic potato starch composites (iPP/TPS) that contained 10, 30, 50 wt.% of modified starch were examined using dynamic mechanical-thermal analysis, static tensile, Brinell hardness, and Charpy impact test. The studies indicated a distinct influence of a filler content on the mechanical properties of composites in comparison with non-modified polypropylene.

  7. Mechanical properties of carbon nanotube/polymer composites

    NASA Astrophysics Data System (ADS)

    Arash, B.; Wang, Q.; Varadan, V. K.

    2014-10-01

    The remarkable mechanical properties of carbon nanotubes, such as high elastic modulus and tensile strength, make them the most ideal and promising reinforcements in substantially enhancing the mechanical properties of resulting polymer/carbon nanotube composites. It is acknowledged that the mechanical properties of the composites are significantly influenced by interfacial interactions between nanotubes and polymer matrices. The current challenge of the application of nanotubes in the composites is hence to determine the mechanical properties of the interfacial region, which is critical for improving and manufacturing the nanocomposites. In this work, a new method for evaluating the elastic properties of the interfacial region is developed by examining the fracture behavior of carbon nanotube reinforced poly (methyl methacrylate) (PMMA) matrix composites under tension using molecular dynamics simulations. The effects of the aspect ratio of carbon nanotube reinforcements on the elastic properties, i.e. Young's modulus and yield strength, of the interfacial region and the nanotube/polymer composites are investigated. The feasibility of a three-phase micromechanical model in predicting the elastic properties of the nanocomposites is also developed based on the understanding of the interfacial region.

  8. Mechanical properties of carbon nanotube/polymer composites

    PubMed Central

    Arash, B.; Wang, Q.; Varadan, V. K.

    2014-01-01

    The remarkable mechanical properties of carbon nanotubes, such as high elastic modulus and tensile strength, make them the most ideal and promising reinforcements in substantially enhancing the mechanical properties of resulting polymer/carbon nanotube composites. It is acknowledged that the mechanical properties of the composites are significantly influenced by interfacial interactions between nanotubes and polymer matrices. The current challenge of the application of nanotubes in the composites is hence to determine the mechanical properties of the interfacial region, which is critical for improving and manufacturing the nanocomposites. In this work, a new method for evaluating the elastic properties of the interfacial region is developed by examining the fracture behavior of carbon nanotube reinforced poly (methyl methacrylate) (PMMA) matrix composites under tension using molecular dynamics simulations. The effects of the aspect ratio of carbon nanotube reinforcements on the elastic properties, i.e. Young's modulus and yield strength, of the interfacial region and the nanotube/polymer composites are investigated. The feasibility of a three-phase micromechanical model in predicting the elastic properties of the nanocomposites is also developed based on the understanding of the interfacial region. PMID:25270167

  9. Mechanical properties of carbon nanotubes and their polymer nanocomposites.

    PubMed

    Miyagawa, Hiroaki; Misra, Manjusri; Mohanty, Amar K

    2005-10-01

    More than 10 years have passed since carbon nanotubes (CNT) have been found during observations by transmission electron microscopy (TEM). Since then, one of the major applications of the CNT is the reinforcements of plastics in processing composite materials, because it was found by experiments that CNT possessed splendid mechanical properties. Various experimental methods are conducted in order to understand the mechanical properties of varieties of CNT and CNT-based composite materials. The systematized data of the past research results of CNT and their nanocomposites are extremely useful to improve processing and design criteria for new nanocomposites in further studies. Before the CNT observations, vapor grown carbon fibers (VGCF) were already utilized for composite applications, although there have been only few experimental data about the mechanical properties of VGCF. The structure of VGCF is similar to that of multi-wall carbon nanotubes (MWCNT), and the major benefit of VGCF is less commercial price. Therefore, this review article overviews the experimental results regarding the various mechanical properties of CNT, VGCF, and their polymer nanocomposites. The experimental methods and results to measure the elastic modulus and strength of CNT and VGCF are first discussed in this article. Secondly, the different surface chemical modifications for CNT and VGCF are reviewed, because the surface chemical modifications play an important role for polymer nanocomposite processing and properties. Thirdly, fracture and fatigue properties of CNT/polymer nanocomposites are reviewed, since these properties are important, especially when these new nanocomposite materials are applied for structural applications.

  10. Lithophysal Rock Mass Mechanical Properties of the Repository Host Horizon

    SciTech Connect

    D. Rigby

    2004-11-10

    The purpose of this calculation is to develop estimates of key mechanical properties for the lithophysal rock masses of the Topopah Spring Tuff (Tpt) within the repository host horizon, including their uncertainties and spatial variability. The mechanical properties to be characterized include an elastic parameter, Young's modulus, and a strength parameter, uniaxial compressive strength. Since lithophysal porosity is used as a surrogate property to develop the distributions of the mechanical properties, an estimate of the distribution of lithophysal porosity is also developed. The resulting characterizations of rock parameters are important for supporting the subsurface design, developing the preclosure safety analysis, and assessing the postclosure performance of the repository (e.g., drift degradation and modeling of rockfall impacts on engineered barrier system components).

  11. A simple auxetic tubular structure with tuneable mechanical properties

    NASA Astrophysics Data System (ADS)

    Ren, Xin; Shen, Jianhu; Ghaedizadeh, Arash; Tian, Hongqi; Xie, Yi Min

    2016-06-01

    Auxetic materials and structures are increasingly used in various fields because of their unusual properties. Auxetic tubular structures have been fabricated and studied due to their potential to be adopted as oesophageal stents where only tensile auxetic performance is required. However, studies on compressive mechanical properties of auxetic tubular structures are limited in the current literature. In this paper, we developed a simple tubular structure which exhibits auxetic behaviour in both compression and tension. This was achieved by extending a design concept recently proposed by the authors for generating 3D metallic auxetic metamaterials. Both compressive and tensile mechanical properties of the auxetic tubular structure were investigated. It was found that the methodology for generating 3D auxetic metamaterials could be effectively used to create auxetic tubular structures as well. By properly adjusting certain parameters, the mechanical properties of the designed auxetic tubular structure could be easily tuned.

  12. Mechanical Properties and Durability of "Waterless Concrete"

    NASA Technical Reports Server (NTRS)

    Toutanji, Houssam; Grugel, Richard N.

    2008-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and by oxidation soil iron and sulfur can be produced. Iron can be used to reinforce the sulfur concrete. Sulfur concrete specimens were cycled between liquid nitrogen (approximately 191 C) and room temperature (approximately 21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (approximately 21 C) and approximately 101 C. Test results showed that due to temperature cycling, compressive strength of cycled specimens was 20% of those non-cycled. Microscopic examination of the fracture surfaces from the cycled samples showed clear de-bonding of the sulfur from the aggregate material whereas it was seen well bonded in those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibers. The glass fibers from lunar regolith simulant was melted in a 25 cc Pt-Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to 1 hour. Glass fibers were cast from the melt into graphite crucibles and were annealed for a couple of hours at 600 C. Glass fibers and small rods were pulled from the melt. The glass melt wets the ceramic rod and long continuous glass fibers were easily hand drawn. The glass fibers were immediately coated with a protective polymer to maintain the mechanical strength. The glass fibers were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Prisms beams strengthened with glass fibers were tested in 4-point bending test. Beams strengthened with glass fiber showed to

  13. Mechanical and Electrical Properties of Organogels with Multiwall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Mohammad; Winey, Karen

    2008-03-01

    Organogels are fascinating thermally reversible viscoelastic materials that are comprised of an organic liquid and low concentrations (typically <2 wt %) of low molecular mass organic gelators. We have fabricated the first organogel/carbon nanotube composites using 12-hydroxystearic acid (HSA) as the gelator molecule and pristine and carboxylated multi-wall carbon nanotubes as the nanofillers and 1,2-dichlorobenzene as the organic solvent. We have achieved significant improvements in the mechanical and electrical properties of organogels by incorporating these carbon nanotubes. For example, the linear viscoelastic regime of the HSA organogel, an indicator of the strength of the gel, extends by a factor of 4 with the incorporation of 0.2 wt% of the carboxylated nanotubes. Also, the carbon nanotubes (specially the pristine tubes) improve the electrical conductivity of the organogels, e.g. six orders of magnitude enhancement in electrical conductivity with 0.2 wt% of pristine tubes. Differential scanning calorimetry experiments indicate that the nanotubes do not affect the thermoreversibility of the organogels.

  14. Mechanical properties of new dental pulp-capping materials.

    PubMed

    Nielsen, Matthew J; Casey, Jeffery A; VanderWeele, Richard A; Vandewalle, Kraig S

    2016-01-01

    The mechanical properties of pulp-capping materials may affect their resistance to fracture during placement of a final restorative material or while supporting an overlying restoration over time. The purpose of this study was to compare the compressive strength, flexural strength, and flexural modulus of 2 new pulp-capping materials (TheraCal LC and Biodentine), mineral trioxide aggregate (MTA), and calcium hydroxide over time. Specimens were created in molds and tested to failure in a universal testing machine after 15 minutes, 3 hours, and 24 hours. The MTA specimens did not set at 15 minutes. At all time periods, TheraCal LC had the greatest compressive and flexural strengths. After 3 and 24 hours, Biodentine had the greatest flexural modulus. TheraCal LC had greater early strength to potentially resist fracture during immediate placement of a final restorative material. Biodentine had greater stiffness after 3 hours to potentially provide better support of an overlying restoration under function over time.

  15. Mechanical properties of anodized coatings over molten aluminum alloy.

    PubMed

    Grillet, Anne M; Gorby, Allen D; Trujillo, Steven M; Grant, Richard P; Hodges, V Carter; Parson, Ted B; Grasser, Thomas W

    2008-01-01

    A method to measure interfacial mechanical properties at high temperatures and in a controlled atmosphere has been developed to study anodized aluminum surface coatings at temperatures where the interior aluminum alloy is molten. This is the first time that the coating strength has been studied under these conditions. We have investigated the effects of ambient atmosphere, temperature, and surface finish on coating strength for samples of aluminum alloy 7075. Surprisingly, the effective Young's modulus or strength of the coating when tested in air was twice as high as when samples were tested in an inert nitrogen or argon atmosphere. Additionally, the effective Young's modulus of the anodized coating increased with temperature in an air atmosphere but was independent of temperature in an inert atmosphere. The effect of surface finish was also examined. Sandblasting the surface prior to anodization was found to increase the strength of the anodized coating with the greatest enhancement noted for a nitrogen atmosphere. Machining marks were not found to significantly affect the strength.

  16. Mechanical Properties Comparing Composite Fiber Length to Amalgam

    PubMed Central

    Petersen, Richard C.; Liu, Perng-Ru

    2016-01-01

    Photocure fiber-reinforced composites (FRCs) with varying chopped quartz-fiber lengths were incorporated into a dental photocure zirconia-silicate particulate-filled composite (PFC) for mechanical test comparisons with a popular commercial spherical-particle amalgam. FRC lengths included 0.5-mm, 1.0 mm, 2.0 mm, and 3.0 mm all at a constant 28.2 volume percent. Four-point fully articulated fixtures were used according to American Standards Test Methods with sample dimensions of 2×2×50 mm3 across a 40 mm span to provide sufficient Euler flexural bending and prevent top-load compressive shear error. Mechanical properties for flexural strength, modulus, yield strength, resilience, work of fracture, critical strain energy release, critical stress intensity factor, and strain were obtained for comparison. Fiber length subsequently correlated with increasing all mechanical properties, p < 1.1×10−5. Although the modulus was significantly statistically higher for amalgam than all composites, all FRCs and even the PFC had higher values than amalgam for all other mechanical properties. Because amalgams provide increased longevity during clinical use compared to the standard PFCs, modulus would appear to be a mechanical property that might sufficiently reduce margin interlaminar shear stress and strain-related microcracking that could reduce failure rates. Also, since FRCs were tested with all mechanical properties that statistically significantly increased over the PFC, new avenues for future development could be provided toward surpassing amalgam in clinical longevity. PMID:27642629

  17. Cell wall pectic arabinans influence the mechanical properties of Arabidopsis thaliana inflorescence stems and their response to mechanical stress.

    PubMed

    Verhertbruggen, Yves; Marcus, Susan E; Chen, Jianshe; Knox, J Paul

    2013-08-01

    Little is known of the dynamics of plant cell wall matrix polysaccharides in response to the impact of mechanical stress on plant organs. The capacity of the imposition of a mechanical stress (periodic brushing) to reduce the height of the inflorescence stem of Arabidopsis thaliana seedlings has been used to study the role of pectic arabinans in the mechanical properties and stress responsiveness of a plant organ. The arabinan-deficient-1 (arad1) mutation that affects arabinan structures in epidermal cell walls of inflorescence stems is demonstrated to reduce the impact on inflorescence stem heights caused by mechanical stress. The arabinan-deficient-2 (arad2) mutation, that does not have detectable impact on arabinan structures, is also shown to reduce the impact on stem heights caused by mechanical stress. The LM13 linear arabinan epitope is specifically detected in epidermal cell walls of the younger, flexible regions of inflorescence stems and increases in abundance at the base of inflorescence stems in response to an imposed mechanical stress. The strain (percentage deformation) of stem epidermal cells in the double mutant arad1 × arad2 is lower in unbrushed plants than in wild-type plants, but rises to wild-type levels in response to brushing. The study demonstrates the complexity of arabinan structures within plant cell walls and also that their contribution to cell wall mechanical properties is a factor influencing responsiveness to mechanical stress.

  18. Mechanics of intraply hybrid composites - Properties, analysis and design

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1979-01-01

    A mechanics theory is developed for predicting the physical thermal, hygral and mechanical properties (including various strengths) of unidirectional intraply hybrid composites (UIHC) based on unidirectional properties of the constituent composites. Procedures are described which can use this theory in conjunction with composite mechanics computer codes and general purpose structural analysis finite element programs for the analysis/design of structural components made from intraply hybrid angleplied laminates (IHAL). Comparisons with limited data show that this theory predicts mechanical properties of UIHC and flexural stiffnesses of IHAL which are in good agreement with experimental data. The theory developed herein makes it possible to design and optimize structural components from IHAL based on a large class of available constituent fibers.

  19. Processing, texture and mechanical properties of sintered silicon carbide

    NASA Technical Reports Server (NTRS)

    Landfermann, H.; Hausner, H.

    1988-01-01

    With regard to its favorable properties, in particular those shown at high temperatures, silicon carbide is of great interest for applications related to the construction of engines and turbines. Thus, silicon carbide could replace heat-resisting alloys with the objective to achieve a further increase in operational temperature. The present investigation is concerned with approaches which can provide silicon carbide material with suitable properties for the intended applications, taking into account the relations between characteristics of the raw material, material composition, sinter conditions, and results of the sintering process. The effects of density and texture formation on the mechanical properties are studied. It is found that a dense material with a fine-grained microstructure provides optimal mechanical properties, while any deviation from this ideal condition can lead to a considerable deterioration with respect to the material properties.

  20. Mechanical properties of jennite: A theoretical and experimental study

    SciTech Connect

    Moon, Juhyuk; Yoon, Seyoon; Monteiro, Paulo J.M.

    2015-05-15

    The objective of this study is to determine the mechanical properties of jennite. To date, several hypotheses have been proposed to predict the structural properties of jennite. For the first time as reported herein, the isothermal bulk modulus of jennite was measured experimentally. Synchrotron-based high-pressure x-ray diffraction experiments were performed to observe the variation of lattice parameters under pressure. First-principles calculations were applied to compare with the experimental results and predict additional structural properties. Accurately measured isothermal bulk modulus herein (K{sub 0} = 64(2) GPa) and the statistical assessment on experimental and theoretical results suggest reliable mechanical properties of shear and Young's modulus, Poisson's ratio, and elastic tensor coefficients. Determination of these fundamental structural properties is the first step toward greater understanding of calcium–silicate–hydrate, as well as provides a sound foundation for forthcoming atomic level simulations.

  1. Affective Properties of Mothers' Speech to Infants with Hearing Impairment and Cochlear Implants

    ERIC Educational Resources Information Center

    Kondaurova, Maria V.; Bergeson, Tonya R.; Xu, Huiping; Kitamura, Christine

    2015-01-01

    Purpose: The affective properties of infant-directed speech influence the attention of infants with normal hearing to speech sounds. This study explored the affective quality of maternal speech to infants with hearing impairment (HI) during the 1st year after cochlear implantation as compared to speech to infants with normal hearing. Method:…

  2. Psychometric Properties of the Affect Intensity and Reactivity Measure Adapted for Youth (AIR-Y)

    ERIC Educational Resources Information Center

    Jones, Rachel E.; Leen-Feldner, Ellen W.; Olatunji, Bunmi O.; Reardon, Laura E.; Hawks, Erin

    2009-01-01

    A valid and reliable instrument for measuring affect intensity does not exist for adolescents; such a measure may help to refine understanding of emotion among youths. The purpose of the current study was to evaluate the psychometric properties and clinical relevance of a measure of affect intensity adapted for youths. Two hundred five community…

  3. Microstructural and mechanical properties of camel longissimus dorsi muscle during roasting, braising and microwave heating.

    PubMed

    Yarmand, M S; Nikmaram, P; Djomeh, Z Emam; Homayouni, A

    2013-10-01

    This study was conducted to investigate the effects of various heating methods, including roasting, braising and microwave heating, on mechanical properties and microstructure of longissimus dorsi (LD) muscle of the camel. Shear value and compression force increased during microwave heating more than roasting and braising. Results obtained from scanning electron microscopy (SEM) showed more damage from roasting than in either braising or microwave heating. Granulation and fragmentation were clear in muscle fibers after roasting. The perimysium membrane of connective tissue was damaged during braising, while roasting left the perimysium membrane largely intact. The mechanical properties and microstructure of muscle can be affected by changes in water content during cooking.

  4. Mechanical and thermal properties of green polylactide composites with natural fillers.

    PubMed

    Lezak, Emil; Kulinski, Zbigniew; Masirek, Robert; Piorkowska, Ewa; Pracella, Mariano; Gadzinowska, Krystyna

    2008-12-08

    Green composites of PLA with micropowders derived from agricultural by-products such as oat husks, cocoa shells, and apple solids that remain after pressing have been prepared by melt mixing. The thermal and mechanical properties of the composites, including the effect of matrix crystallization and plasticization with poly(propylene glycol), have been studied. All fillers nucleated PLA crystallization and decreased the cold-crystallization temperature. They also affected the mechanical properties of the compositions, increasing the modulus of elasticity but decreasing the elongation at break and tensile impact strength although with few exceptions. Plasticization of the PLA matrix improved the ductility of the composites.

  5. Structural properties for determining mechanisms of toxic action

    SciTech Connect

    Bradbury, S.P.; Lipnick, R.L.

    1989-01-01

    The results of a workshop co-sponsored by EPA through the Health and Environmental Review Division, Office of Toxic Substances and the Environmental Research Laboratory-Duluth, of the Office of Research and Development are briefly summarized as an introduction to a series of manuscripts dealing with the structural properties of chemicals that determine their toxic mechanisms. Results of the workshop are intended to be incorporated in an expert system to predict mechanisms from chemical structure and aid in predictive toxicology applications in the Agency. The goal of the workshop was to review current understanding of fundamental mechanisms, and develop an initial knowledge base on chemical features and properties from which toxic mechanisms could be predicted from structure. Areas addressed included general anesthesia, or narcosis, oxidative phosphorylation uncoupling, electrophile and free-radical reactivity, and a variety of pesticide-based mechanisms.

  6. Metal Additive Manufacturing: A Review of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Lewandowski, John J.; Seifi, Mohsen

    2016-07-01

    This article reviews published data on the mechanical properties of additively manufactured metallic materials. The additive manufacturing techniques utilized to generate samples covered in this review include powder bed fusion (e.g., EBM, SLM, DMLS) and directed energy deposition (e.g., LENS, EBF3). Although only a limited number of metallic alloy systems are currently available for additive manufacturing (e.g., Ti-6Al-4V, TiAl, stainless steel, Inconel 625/718, and Al-Si-10Mg), the bulk of the published mechanical properties information has been generated on Ti-6Al-4V. However, summary tables for published mechanical properties and/or key figures are included for each of the alloys listed above, grouped by the additive technique used to generate the data. Published values for mechanical properties obtained from hardness, tension/compression, fracture toughness, fatigue crack growth, and high cycle fatigue are included for as-built, heat-treated, and/or HIP conditions, when available. The effects of test orientation/build direction on properties, when available, are also provided, along with discussion of the potential source(s) (e.g., texture, microstructure changes, defects) of anisotropy in properties. Recommendations for additional work are also provided.

  7. Mechanical properties of basement membrane in health and disease.

    PubMed

    Miller, R Tyler

    2017-01-01

    Physical properties are differentiated characteristics of tissues that are essential to their function. For example, the function of bone depends on its rigidity, and the function of skin depends on its elasticity. The aggregate physical properties of tissues are determined by a collaborative relationship between their cells and matrix and are the product of genetic programs, circulating chemical signals, physical signals, and age. The mechanical properties of matrix and basement membranes in biologic systems are difficult to understand in detail because of their complexity and technical limitations of measurements. Matrix may contain fibrillary collagens, network collagens, other fibrillar proteins such as elastin, fibronectin, and laminins, proteoglycans, and can be a reservoir for growth factors. In each tissue and in different regions of the same tissue, matrix composition can vary. The goal of measuring the mechanical properties of matrix is to understand the physical environment experienced by specific cell types to be able to control cell behavior in vivo and for tissue engineering. At this time, such precise analysis is not possible. The general elastic properties of tissues are now better characterized, and model systems using limited numbers of matrix constituents permit improved understanding of the physical behavior of matrix and its effects on cells. This review will describe model systems for understanding problems of matrix elasticity, focus on a relatively new aspect of matrix mechanics, strain-stiffening, and the interactions of cells with matrix to produce overall tissue mechanical properties.

  8. The fracture properties and toughening mechanisms of bone and dentin

    NASA Astrophysics Data System (ADS)

    Koester, Kurt John

    The mechanical properties of bone and dentin and in particular their fracture properties, are the subject of intense research. The relevance of these properties is increasing as our population ages and fracture incidence impacts the lives of a greater portion of the population. A robust framework is needed to understand the fracture properties of bone and dentin to guide researchers as they attempt to characterize the effects of aging, disease, and pharmaceutical treatments on the properties of these mineralized tissues. In the present work, this framework is provided and applied to human bone, human dentin, and animal bone. In situ electron microscopy was also used to identify the salient toughening mechanisms in bone and dentin. It was found that bone and dentin are extrinsically toughened materials and consequently their fracture properties are best characterized utilizing a crack-growth resistance approach. A description of the different mechanical measurements commonly employed when using small animal models (rats and mice) to evaluate the influence of drug therapies on bone fragility is provided. A study where these properties were measured for a large population of wild-type rats and mice was also conducted. Given my findings, it was determined that for the most complete understanding of small animal bone it was necessary to measure strength and toughness. Strength measurements probe the flaw distribution and toughness measurements to evaluate the resistance to facture in the presence of a single dominant worst-case flaw.

  9. Mechanical, Thermal and Dynamic Mechanical Properties of PP/GF/xGnP Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ashenai Ghasemi, F.; Ghorbani, A.; Ghasemi, I.

    2017-03-01

    The mechanical, thermal, and dynamic mechanical properties of ternary nanocomposites based on polypropylene, short glass fibers, and exfoliated graphene nanoplatelets were studied. To investigate the mechanical properties, uniaxial tensile and Charpy impact tests were carried out. To study the crystallinity of the compositions, a DSC test was performed. A dynamic mechanical analysis was used to characterize the storage modulus and loss factor (tan δ). The morphology of the composites was studied by a scanning electron microscope (SEM). The results obtained are presented in tables and graphics.

  10. Microstructural influences on the mechanical properties of solder

    SciTech Connect

    Morris, J.W. Jr.; Goldstein, J.L.F.; Mei, Z.

    1993-04-01

    Intent of this book is to review analytic methods for predicting behavior of solder joints, based on continuum mechanics. The solder is treated as a continuous, homogeneous body, or composite of such bodies, whose mechanical behavior is uniform and governed by simple constitutive equations. The microstructure of a solder joint influences its mechanical properties in 3 ways: it governs deformation and failure; common solders deform inhomogeneously; and common solders are microstructurally unstable. The variety of microstructures often found in solder joints are briefly reviewed, and some of the ways are discussed in which the microstructure influences the common types of high-temperature mechanical behavior. 25 figs, 40 refs.

  11. Opposite effect of conflict context modulation on neural mechanisms of cognitive and affective control.

    PubMed

    Chen, Taolin; Kendrick, Keith Maurice; Feng, Chunliang; Yang, Suyong; Wang, Xiaogang; Yang, Xun; Lei, Du; Wu, Min; Huang, Xiaoqi; Gong, Qiyong; Luo, Yuejia

    2014-05-01

    This study investigated the neural effect of conflict context modulation of cognitive and affective conflict processing by recording evoked-response potentials in cognitive and affective versions of a flanker task. By varying the proportion of congruent and incongruent trials in a block, we found different patterns of the context effect on evoked potentials during cognitive and affective conflict processing. For posterior N1 amplitude, frequent incongruent trials produced a larger effect only in the affective task. The opposite pattern of the context effect was observed for the central N450, which was enhanced by frequent cognitive but reduced by frequent affective contexts. We found similar context effect on the parietal sustained potential in both tasks. Overall, our findings suggest that cognitive and affective conflict processing engage a context-dependent attentional control mechanism but a common conflict response system.

  12. Heat-induced aggregation of thylakoid membranes affect their interfacial properties.

    PubMed

    Östbring, Karolina; Rayner, Marilyn; Albertsson, Per-Åke; Erlanson-Albertsson, Charlotte

    2015-04-01

    Many of our most popular lipid containing foods are in emulsion form. These foods are often highly palatable with high caloric density, that subsequently increases the risk of overconsumption and possibly lead to obesity. Regulating the lipid bioavailability of high-fat foods is one approach to prevent overconsumption. Thylakoids, the chloroplast membrane, creates a barrier around lipid droplets, which prolong lipolysis and increase satiety as demonstrated both in animal and human studies. However, a reduced lipase inhibiting capacity has been reported after heat treatment but the mechanism has not yet been fully established. The aim of this study was to investigate thylakoids' emulsifying properties post heat-treatment and possible links to alterations in lipase inhibiting capacity and chlorophyll degradation. Heat-treatment of thylakoids at either 60 °C, 75 °C or 90 °C for time interval ranging from 15 s to 4 min reduced ability to stabilise emulsions, having increased lipid droplets sizes, reduced emulsification capacity, and elevated surface load as consequence. Emulsifying properties were also found to display a linear relationship to both chlorophyll and lipase inhibiting capacity. The correlations support the hypothesis that heat-treatment induce chlorophyll degradation which promote aggregation within proteins inside the thylakoid membrane known to play a decisive role in interfacial processes. Therefore, heat-treatment of thylakoids affects both chlorophyll content, lipase inhibiting capacity and ability to stabilise the oil-water interface. Since the thylakoid's appetite reducing properties are a surface-related phenomenon, the results are useful to optimize the effect of thylakoids as an appetite reducing agent.

  13. Varying whole body vibration amplitude differentially affects tendon and ligament structural and material properties.

    PubMed

    Keller, Benjamin V; Davis, Matthew L; Thompson, William R; Dahners, Laurence E; Weinhold, Paul S

    2013-05-31

    Whole Body Vibration (WBV) is becoming increasingly popular for helping to maintain bone mass and strengthening muscle. Vibration regimens optimized for bone maintenance often operate at hypogravity levels (<1G) and regimens for muscle strengthening often employ hypergravity (>1G) vibrations. The effect of vibratory loads on tendon and ligament properties is unclear though excessive vibrations may be injurious. Our objective was to evaluate how tendon gene expression and the mechanical/histological properties of tendon and ligament were affected in response to WBV in the following groups: no vibration, low vibration (0.3G peak-to-peak), and high vibration (2G peak-to-peak). Rats were vibrated for 20 min a day, 5 days a week, for 5 weeks. Upon sacrifice, the medial collateral ligament (MCL), patellar tendon (PT), and the Achilles Tendon (AT) were isolated with insertion sites intact. All tissues were tensile tested to determine structural and material properties or used for histology. Patellar tendon was also subjected to quantitative RT-PCR to evaluate expression of anabolic and catabolic genes. No differences in biomechanical data between the control and the low vibration groups were found. There was evidence of significant weakness in the MCL with high vibration, but no significant effect on the PT or AT. Histology of the MCL and PT showed a hypercellular tissue response and some fiber disorganization with high vibration. High vibration caused an increase in collagen expression and a trend for an increase in IGF-1 expression suggesting a potential anabolic response to prevent tendon overuse injury.

  14. Influence of physiological effort of growth and chemical composition on antler bone mechanical properties.

    PubMed

    Landete-Castillejos, T; Currey, J D; Estevez, J A; Gaspar-López, E; Garcia, A; Gallego, L

    2007-11-01

    Antler is a good model to study bone biology both because it is accessible and because it grows and is shed every year. Previous studies have shown that chemical composition changes as the antler is grown, implying constraints in mineral availability and the physiological effort made to grow it. This study aimed at examining antler mechanical properties to assess whether they reflect physiological effort and whether they are associated with precise mineral bone composition rather than just ash content, which is usually the main factor affecting mechanical properties. We examined Young's modulus of elasticity (E), strength, and work to maximum load, as well as bone mineral composition, along the antler shaft. Then we compared trends between antlers from two populations: captive, well-fed, health-managed deer (n=15), and free-ranging deer with lower food quality and no health treatment (n=10). Greater E, strength and work were found for better fed and health managed deer. In addition, antler chemical composition of both populations differed in Na, Mg, K, Fe and Si, and marginally in Zn, but not in ash or Ca content. Significant and clear divergent trends in mechanical properties supporting greater physiological exhaustion in free-ranging deer were found for all mechanical variables. Detailed models showed that, in addition to ash content, independent factors extracted from principal component analyses on composition affected E and strength, but not work to maximum load. The results suggest that there is an association between bone chemical composition and mechanical properties independently of ash content.

  15. Constitutive model of friction stir weld with consideration of its inhomogeneous mechanical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Min, Junying; Wang, Bin; Lin, Jianping; Li, Fangfang; Liu, Jing

    2016-03-01

    In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming.

  16. Evaluation of Mechanical Properties of Nuclear Materials Using Non-Destructive Ball Indentation Technique

    SciTech Connect

    Mathew, M.D.; Linga Murty, K.

    2002-07-01

    Integrity of structural components depends on the deformation and fracture behavior of materials. For evaluating the material condition in-service, it is generally not feasible or practical or advisable to cut samples from operating structures. Non-destructive testing (NDT) techniques are required to evaluate the mechanical properties. Although several NDT techniques such as ultrasound, magnetic strength, Barkhausen noise, microhardness etc., are employed for estimating the mechanical property degradation, these methodologies are generally empirical and indirect. Automated Ball Indentation (ABI) is a non-destructive testing technique for direct measurement of mechanical and fracture properties of metallic engineering materials. Because of the small area over which the test is carried out, it is possible to determine point to point variations in the mechanical and fracture properties, such as those that exist in weldments. Although ABI technique is non-intrusive, it is a state-of-the-art mechanical test that measures directly the current/local deformation behavior of the material. In this paper, we present results from studies on the application of ABI technique to determine tensile and fracture properties of ferritic steels, an austenitic stainless steel, a nickel base superalloy and Zircaloy in different thermo-mechanical conditions. The effects of aging and cold work on these properties were determined from the ABI tests. Gradients in mechanical properties of ferritic steel welds, particularly in the narrow heat-affected zone, were clearly established. ABI technique was found to be useful in determining the anisotropy in the tensile properties of Zircaloy cladding tubes. The technique has potential as a non-destructive method for assessing structural integrity of aged components. (authors)

  17. Bioinspired Reductionistic Peptide Engineering for Exceptional Mechanical Properties.

    PubMed

    Avinash, M B; Raut, Devaraj; Mishra, Manish Kumar; Ramamurty, Upadrasta; Govindaraju, T

    2015-11-03

    A simple solution-processing and self-assembly approach that exploits the synergistic interactions between multiple hydrogen bonded networks and aromatic interactions was utilized to synthesize molecular crystals of cyclic dipeptides (CDPs), whose molecular weights (~0.2 kDa) are nearly three orders of magnitude smaller than that of natural structural proteins (50-300 kDa). Mechanical properties of these materials, measured using the nanoindentation technique, indicate that the stiffness and strength are comparable and sometimes better than those of natural fibres. The measured mechanical responses were rationalized by recourse to the crystallographic structural analysis and intermolecular interactions in the self-assembled single crystals. With this work we highlight the significance of developing small molecule based bioinspired design strategies to emulate biomechanical properties. A particular advantage of the successfully demonstrated reductionistic strategy of the present work is its amenability for realistic industrial scale manufacturing of designer biomaterials with desired mechanical properties.

  18. Bioinspired Reductionistic Peptide Engineering for Exceptional Mechanical Properties

    PubMed Central

    Avinash, M. B.; Raut, Devaraj; Mishra, Manish Kumar; Ramamurty, Upadrasta; Govindaraju, T.

    2015-01-01

    A simple solution-processing and self-assembly approach that exploits the synergistic interactions between multiple hydrogen bonded networks and aromatic interactions was utilized to synthesize molecular crystals of cyclic dipeptides (CDPs), whose molecular weights (~0.2 kDa) are nearly three orders of magnitude smaller than that of natural structural proteins (50–300 kDa). Mechanical properties of these materials, measured using the nanoindentation technique, indicate that the stiffness and strength are comparable and sometimes better than those of natural fibres. The measured mechanical responses were rationalized by recourse to the crystallographic structural analysis and intermolecular interactions in the self-assembled single crystals. With this work we highlight the significance of developing small molecule based bioinspired design strategies to emulate biomechanical properties. A particular advantage of the successfully demonstrated reductionistic strategy of the present work is its amenability for realistic industrial scale manufacturing of designer biomaterials with desired mechanical properties. PMID:26525957

  19. Passive and active mechanical properties of biotemplated ceramics revisited.

    PubMed

    Van Opdenbosch, Daniel; Fritz-Popovski, Gerhard; Plank, Johann; Zollfrank, Cordt; Paris, Oskar

    2016-10-13

    Living nature and human technology apply different principles to create hard, strong and tough materials. In this review, we compare and discuss prominent aspects of these alternative strategies, and demonstrate for selected examples that nanoscale-precision biotemplating is able to produce uncommon mechanical properties as well as actuating behavior, resembling to some extent the properties of the original natural templates. We present and discuss mechanical testing data showing for the first time that nanometer-precision biotemplating can lead to porous ceramic materials with deformation characteristics commonly associated with either biological or highly advanced technical materials. We also review recent findings on the relation between hierarchical structuring and humidity-induced directional motion. Finally, we discuss to which extent the observed behavior is in agreement with previous results and theories on the mechanical properties of multiscale hierarchical materials, as well as studies of highly disperse technical materials, together with an outlook for further lines of investigation.

  20. Bioinspired Reductionistic Peptide Engineering for Exceptional Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Avinash, M. B.; Raut, Devaraj; Mishra, Manish Kumar; Ramamurty, Upadrasta; Govindaraju, T.

    2015-11-01

    A simple solution-processing and self-assembly approach that exploits the synergistic interactions between multiple hydrogen bonded networks and aromatic interactions was utilized to synthesize molecular crystals of cyclic dipeptides (CDPs), whose molecular weights (~0.2 kDa) are nearly three orders of magnitude smaller than that of natural structural proteins (50-300 kDa). Mechanical properties of these materials, measured using the nanoindentation technique, indicate that the stiffness and strength are comparable and sometimes better than those of natural fibres. The measured mechanical responses were rationalized by recourse to the crystallographic structural analysis and intermolecular interactions in the self-assembled single crystals. With this work we highlight the significance of developing small molecule based bioinspired design strategies to emulate biomechanical properties. A particular advantage of the successfully demonstrated reductionistic strategy of the present work is its amenability for realistic industrial scale manufacturing of designer biomaterials with desired mechanical properties.

  1. Method of predicting mechanical properties of decayed wood

    DOEpatents

    Kelley, Stephen S.

    2003-07-15

    A method for determining the mechanical properties of decayed wood that has been exposed to wood decay microorganisms, comprising: a) illuminating a surface of decayed wood that has been exposed to wood decay microorganisms with wavelengths from visible and near infrared (VIS-NIR) spectra; b) analyzing the surface of the decayed wood using a spectrometric method, the method generating a first spectral data of wavelengths in VIS-NIR spectra region; and c) using a multivariate analysis to predict mechanical properties of decayed wood by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of wavelengths in VIS-NIR spectra obtained from a reference decay wood, the second spectral data being correlated with a known mechanical property analytical result obtained from the reference decayed wood.

  2. The relationships between deformation mechanisms and mechanical properties of additively manufactured porous biomaterials.

    PubMed

    Kadkhodapour, J; Montazerian, H; Darabi, A Ch; Zargarian, A; Schmauder, S

    2016-09-16

    Modulating deformation mechanism through manipulating morphological parameters of scaffold internal pore architecture provides potential to tailor the overall mechanical properties under physiological loadings. Whereas cells sense local strains, cell differentiation is also impressed by the elastic deformations. In this paper, structure-property relations were developed for Ti6-Al-4V scaffolds designed based on triply periodic minimal surfaces. 10mm cubic scaffolds composed of 5×5×5 unit cells formed of F-RD (bending dominated) and I-WP (stretching dominated) architectures were additively manufactured at different volume fractions and subjected to compressive tests. The first stages of deformation for stretching dominated structure, was accompanied by bilateral layer-by-layer failure of unit cells owing to the buckling of micro-struts, while for bending dominated structure, namely F-RD, global shearing bands appeared since the shearing failure of struts in the internal architecture. Promoted mechanical properties were found for stretching dominated structure since the global orientation of struts were parallel to loading direction while inclination of struts diminished specific properties for bending dominated structure. Moreover, elastic-plastic deformation was computationally studied by applying Johnson-Cook damage model to the voxel-based models in FE analysis. Scaling analysis was performed for mechanical properties with respect to the relative density thereby failure mechanism was correlated to the constants of power law describing mechanical properties.

  3. Controlling Mechanical Properties of Bis-leucine Oxalyl Amide Gels

    NASA Astrophysics Data System (ADS)

    Chang, William; Carvajal, Daniel; Shull, Kenneth

    2011-03-01

    is-leucine oxalyl amide is a low molecular weight gelator capable of gelling polar and organic solvents. A fundamental understanding of self-assembled systems can lead to new methods in drug delivery and the design of new soft material systems. An important feature of self-assembled systems are the intermolecular forces between solvent and gelator molecule; by changing the environment the gel is in, the mechanical properties also change. In this project two variables were considered: the degree of neutralization present for the gelator molecule from neutral to completely ionized, and the concentration of the gelator molecule, from 1 weight percent to 8 weight percent in 1-butanol. Mechanical properties were studied using displacement controlled indentation techniques and temperature sweep rheometry. It has been found that properties such as the storage modulus, gelation temperature and maximum stress allowed increase with bis-leucine oxalyl amide concentration. The results from this study establish a 3-d contour map between the gelator concentration, the gelator degree of ionization and mechanical properties such as storage modulus and maximum stress allowed. The intermolecular forces between the bis-leucine low molecular weight gelator and 1-butanol govern the mechanical properties of the gel system, and understanding these interactions will be key to rationally designed self-assembled systems.

  4. Investigation of mechanical properties of cryogenically treated music wire

    NASA Astrophysics Data System (ADS)

    Heptonstall, A.; Waller, M.; Robertson, N. A.

    2015-08-01

    It has been reported that treating music wire (high carbon steel wire) by cooling to cryogenic temperatures can enhance its mechanical properties with particular reference to those properties important for musical performance. We use such wire for suspending many of the optics in Advanced LIGO, the upgrade to LIGO—the Laser Interferometric Gravitational-Wave Observatory. Two properties that particularly interest us are mechanical loss and breaking strength. A decrease in mechanical loss would directly reduce the thermal noise associated with the suspension, thus enhancing the noise performance of mirror suspensions within the detector. An increase in strength could allow thinner wire to be safely used, which would enhance the dilution factor of the suspension, again leading to lower suspension thermal noise. In this article, we describe the results of an investigation into some of the mechanical properties of music wire, comparing untreated wire with the same wire which has been cryogenically treated. For the samples we studied, we conclude that there is no significant difference in the properties of interest for application in gravitational wave detectors.

  5. Transient dynamic mechanical properties of resilin-based elastomeric hydrogels

    PubMed Central

    Li, Linqing; Kiick, Kristi L.

    2014-01-01

    The outstanding high-frequency properties of emerging resilin-like polypeptides (RLPs) have motivated their development for vocal fold tissue regeneration and other applications. Recombinant RLP hydrogels show efficient gelation, tunable mechanical properties, and display excellent extensibility, but little has been reported about their transient mechanical properties. In this manuscript, we describe the transient mechanical behavior of new RLP hydrogels investigated via both sinusoidal oscillatory shear deformation and uniaxial tensile testing. Oscillatory stress relaxation and creep experiments confirm that RLP-based hydrogels display significantly reduced stress relaxation and improved strain recovery compared to PEG-based control hydrogels. Uniaxial tensile testing confirms the negligible hysteresis, reversible elasticity and superior resilience (up to 98%) of hydrated RLP hydrogels, with Young's modulus values that compare favorably with those previously reported for resilin and that mimic the tensile properties of the vocal fold ligament at low strain (<15%). These studies expand our understanding of the properties of these RLP materials under a variety of conditions, and confirm the unique applicability, for mechanically demanding tissue engineering applications, of a range of RLP hydrogels. PMID:24809044

  6. Impact of Wetting/Oven-Drying Cycles on the Mechanical and Physical Properties of Birch Plywood

    NASA Astrophysics Data System (ADS)

    Sooru, M.; Kasepuu, K.; Kask, R.; Lille, H.

    2015-11-01

    The objective of this study was to explore some physical and mechanical properties and the dimensional stability of birch (Betula sp.) nine-ply veneers glued with phenol-formaldehyde (PF) after 10 cycles of soaking/oven-drying. The properties to be determined were bending strength (BS), modulus of elasticity in bending (MOE), Janka hardness (JH) and thickness swelling (TS), which were tested according to the European Standards (EN). An analytical equation was used for approximation of the change in the physical and mechanical properties of the samples depending on the number of cycles. It was shown that the values of the studied properties were affected most by the first soaking and drying cycles after which BS and MOE decreased continuously while the values of JH and TS stabilized. After 10 cycles the final values of BS, MOE, JH and TS accounted for 75-81%, 95%, 82% and 98.5% of the initial values, respectively.

  7. Mechanical Properties and Fractography of Electroslag Remelted 300M Steel.

    DTIC Science & Technology

    1983-03-01

    the minimum requirements. Charpy impact energy values shown in Table 3 varied from a high of 22 ft-lb for the L-T orientation to 9 ft-lb for the S-L...specimen orientations are shown in Figures la and lb. 3 ’ab 4. MECHANICAL PROPERTIES OF 300M AND 4340 STEELS Impact emp. Orien- i.?% Y.S. U.T.S. Eon...AMMRC TR 83-13 IAD II MECHANICAL PROPERTIES AND FRACTOGRAPHY OF ELECTROSLAG REMELTED 300M STEEL 0 f ALBERT A. ANCTIL METALS RESEARCH DIVISION March

  8. MICROSTRUCTURAL FEATURES AFFECTING PROPERTIES AND AGING OF TRITIUM-EXPOSED AUSTENTIC STAINLESS STEEL

    SciTech Connect

    Subramanian, K; Michael Morgan, M

    2004-01-10

    banding and nitrogen concentration were also included as features of interest. The microstructural features of interest included (1) grain size, shape, and orientation; (2) dislocation structure and distribution, or recovered vs. un-recovered. The grain size and orientation affect the grain boundary fracture stress and the hydrogen solubility and diffusion paths. The dislocation structure and distribution play a role in hydrogen trapping as well as potentially affecting the hydrogen assisted fracture path. The initial mechanical and physical properties that are to be included in the investigation are yield stress, fracture toughness, work-hardening capacity, threshold hydrogen cracking stress intensity and stacking-fault energy.

  9. Characterization of High Temperature Mechanical Properties Using Laser Ultrasound

    SciTech Connect

    David Hurley; Stephen Reese; Farhad Farzbod; Rory Kennedy

    2012-05-01

    Mechanical properties are controlled to a large degree by defect structures such as dislocations and grain boundaries. These microstructural features involve a perturbation of the perfect crystal lattice (i.e. strain fields). Viewed in this context, high frequency strain waves (i.e. ultrasound) provide a natural choice to study microstructure mediated mechanical properties. In this presentation we use laser ultrasound to probe mechanical properties of materials. This approach utilizes lasers to excite and detect ultrasonic waves, and as a consequence has unique advantages over other methods—it is noncontacting, requires no couplant or invasive sample preparation (other than that used in metallurgical analysis), and has the demonstrated capability to probe microstructure on a micron scale. Laser techniques are highly reproducible enabling sophisticated, microstructurally informed data analysis. Since light is being used for generation and detection of the ultrasonic wave, the specimen being examined is not mechanically coupled to the transducer. As a result, laser ultrasound can be carried out remotely, an especially attractive characteristic for in situ measurements in severe environments. Several examples involving laser ultrasound to measure mechanical properties in high temperature environments will be presented. Emphasis will be place on understanding the role of grain microstructure.

  10. Mechanical and Electrical Properties of Cryo-worked Cu

    NASA Astrophysics Data System (ADS)

    Bettinali, Livio; Tosti, Silvano; Pizzuto, Aldo

    2014-01-01

    For manufacturing the magnets of fusion machines pure copper of both high mechanical resistance and electrical conductivity is required. Though high purity copper guarantees high electrical conductivity, its mechanical properties may be not suitable for the applications in tokamaks. In this view, a new procedure developed for obtaining high purity copper with excellent mechanical strength is described in this work. Samples of oxygen free copper (OFC) have been worked by pressing in liquid nitrogen (77 K). It has been verified that the mechanical properties of the worked metal are strongly dependent on the strain rate. Very low strain rates permitted to attain values of tensile yield strength (550 MPa) significantly higher than those obtained by traditional cold-working at room temperature (450 MPa). The electrical conductivity of the cryo-worked Cu decreases with the tensile yield strength even though the hardest samples of tensile yield strength of 550 MPa exhibit still acceptable values of conductivity (about 94 % IACS at room temperature).

  11. The hydro-mechanical properties of sealing horizons consisting of mechanical multilayers

    NASA Astrophysics Data System (ADS)

    Giorgetti, Carolina; Scuderi, Marco M.; Barchi, Massimiliano R.; Collettini, Cristiano

    2016-04-01

    Sealing horizons are often sedimentary sequences characterized by alternating strong and weak clay-rich lithologies. When involved in fracturing and faulting processes mechanical multilayers, characterized by competence contrasts, develop complex fault geometries that strongly influence their sealing maintenance. Here we investigate fault initiation and evolution integrating field observations, on outcropping faults affecting a mechanical multilayer, and rock deformation experiments, on the lithologies collected in the field. Faults initiate with a staircase trajectory that partially reflects the mechanical properties of the involved lithologies, as suggested by triaxial and biaxial deformation experiments. However, the small angles of fault initiation in calcite-rich (i.e. θi = 5° -20°) and the high angles in clay-rich layers (i.e. θi = 45° -86°) indicate an important role played by structural inheritance, i.e. joints and foliation, at the onset of fault development. With increasing displacement (5 cm - 20 m), faults evolve towards more straight trajectories and wider fault zones. At early stages fault rock consists of a calcite-rich cataclasite. Then it evolves toward a well-organized marly foliated fault rock that embeds sigmoidal fragments of limestones and localizes slip along surfaces where ultra-cataclasite forms. The angles of fault reactivation concentrated between 30° and 60° , consistently with the low friction coefficient (μs = 0.3) measured in our laboratory experiments, indicates that clay minerals exert a main control on fault friction. Moreover, the presence of calcite mineralization in all the investigated faults, i.e. within cataclastic fault rocks, dilational jogs and in form of slikenfibers, suggests that faulting is the main mechanism allowing fluid flow within the sealing horizon. This is supported by our triaxial deformation experiments showing fluid flow across the sealing lithology only during the development of a thoroughgoing

  12. Surface Effects on the Mechanical Properties of Si-nanorods

    NASA Astrophysics Data System (ADS)

    Wu, Shi-Yu; Liu, Shudun; Jayanthi, C. S.; Zhang, Zhenyu

    2000-03-01

    Mechanical properties of Si-nanorods of various sizes are studied using an order(N) non-orthogonal tight-binding molecular dynamics [1]. As the size of the nanorod decreases, we find an evolution in the surface reconstruction pattern and change in the structural and elastic properties. In particular, we examine how the surface effects modify and eventually lead to the break down of the scaling behavior of the elastic properties of Si-nanorods. [1] C.S. Jayanthi, S.Y. Wu, J. Cocks, N.S. Luo, Z.L. Xie, M. Menon and G. Yang, Phys. Rev. B57, 3799(1998).

  13. Mechanical And Thermal Properties Of Optical Materials - A Review

    NASA Astrophysics Data System (ADS)

    Ballard, Stanley S.

    1980-02-01

    In selecting an optical material, the instrument designer's first consideration is optical properties, especially transmission region but also homogeneity, freedom from birefringence, perhaps refractive index and dispersion. Next in his hierarchy are the other physical properties: mechanical, thermal, and chemical (solubility, for example). In this review article, the several properties are listed, and data sources are given. No single compilation or handbook contains all the desired data, so many references are quoted. This review covers materials useful in the ultraviolet and esuecially the infrared spectral regions; it does not include the standard glasses used in the visible region.

  14. Investigating the mechanisms underlying affective priming effects using a conditional pronunciation task.

    PubMed

    Pecchinenda, Anna; Ganteaume, Christiane; Banse, Rainer

    2006-01-01

    Recently, using a conditional pronunciation task, De Houwer and Randell (2004) reported evidence of affective priming effects only when pronunciation depended on the semantic category of targets. Although these findings support the notion that spreading of activation is the mechanism underlying affective priming effects, an explanation in terms of postlexical mechanism could not be ruled out. To clarify this point, we conducted two experiments in which nouns for both the to-be-pronounced as well as the not-to-be pronounced targets were used and all stimuli were affectively valenced words. In Experiment 1, the to-be-pronounced targets were object-words, and the not-to-be-pronounced targets were person-words, whereas in Experiment 2, the instructions were reversed. Results of experiment 1 showed affective priming effects only when pronunciation of target words was conditional upon their semantic category. Most importantly, affective priming effects were observed for both object-words (Experiment 1) and person-words (Experiment 2). These results are compatible with a spreading activation account, but not with a postlexical mechanism account of affective priming effects in the pronunciation task.

  15. Quadriceps Muscle Mechanical Simulator for Training of Vastus Medialis Obliquus and Vastus Lateralis Obliquus Mechanical Properties

    PubMed Central

    Irmak, Rafet; Irmak, Ahsen; Biçer, Gökhan

    2014-01-01

    Objectives: In classical anatomy quadriceps muscle has four heads. Clinical studies have demostrated 6 heads of this muscle. These heads were demostrated seperately not only by their functional properties,but also by innervation and kinesiological properties. In our previous study we have developed and demostrated electrophysiological properties of vastus medialis obliquus by an electronic patient simulator. The purpose of this study is to develop a mechanical simulator which can be used to demostrate mechanical properties of 6 heads of quadriceps muscle and the screw home mechanism. Methods: Quadriceps femoris muscle has 6 heads: rectus femoris, vastus intermedius, vastus medialis obliquus, vastus medialis longus, vastus lateralis obliquus and vastus lateralis longus. The fundamental mechanical properties of each head is seperated by insersio and angle of pull. Main design principle was to demostrate all heads with insersio and angle of pull properties. Second design principle was to demostrate the screw-home mechanism which is the result of difference in articular surfaces of medial and lateral of condyles of femur. Results: Final design of the simulator consists of three planes for demostration of angle of pull and pulling forces (patellar plane, proximal and distal planes) of each heads. On each plane channels were graved as origo and insersio for demostration of angle of pull. Distal plane was movable for demostration of pulling forces in different angels of knee flexion and extention. Also proximal plane was adjustable to demostrate different sitting and standing positions. Srew home mechanism was demostrated by specially designed hingle mechanism. Left and right side hingle mechanisms have different radii as femoral condyles and this difference can cause rotation in terminal extension as in the screw home mechanism. Conclusion: Vastus medialis obliquus, vastus lateralis obliquus and screw-home mechanism have clinical significance. We were not able to find

  16. Modified Gellan Gum hydrogels with tunable physical and mechanical properties

    PubMed Central

    Coutinho, Daniela F.; Sant, Shilpa; Shin, Hyeongho; Oliveira, João T.; Gomes, Manuela E.; Neves, Nuno M.; Khademhosseini, Ali; Reis, Rui L.

    2010-01-01

    Gellan Gum (GG) has been recently proposed for tissue engineering applications. GG hydrogels are produced by physical crosslinking methods induced by temperature variation or by the presence of divalent cations. However, physical crosslinking methods may yield hydrogels that become weaker in physiological conditions due to the exchange of divalent cations by monovalent ones. Hence, this work presents a new class of GG hydrogels crosslinkable by both physical and chemical mechanisms. Methacrylate groups were incorporated in the GG chain, leading to the production of a methacrylated gellan gum (MeGG) hydrogel with highly tunable physical and mechanical properties. The chemical modification was confirmed by proton nuclear magnetic resonance (1H-NMR) and Fourier transform infrared spectroscopy (FTIR-ATR). The mechanical properties of the developed hydrogel networks, with Young’s modulus values between 0.15 and 148 kPa, showed to be tuned by the different crosslinking mechanisms used. The in vitro swelling kinetics and hydrolytic degradation rate was dependent on the crosslinking mechanisms used to form the hydrogels. Three-dimensional (3D) encapsulation of NIH-3T3 fibroblast cells in MeGG networks demonstrated in vitro biocompatibility confirmed by high cell survival. Given the highly tunable mechanical and degradation properties of MeGG, it may be applicable for a wide range of tissue engineering approaches. PMID:20663552

  17. Patterns and determinants of wood physical and mechanical properties across major tree species in China.

    PubMed

    Zhu, JiangLing; Shi, Yue; Fang, LeQi; Liu, XingE; Ji, ChengJun

    2015-06-01

    The physical and mechanical properties of wood affect the growth and development of trees, and also act as the main criteria when determining wood usage. Our understanding on patterns and controls of wood physical and mechanical properties could provide benefits for forestry management and bases for wood application and forest tree breeding. However, current studies on wood properties mainly focus on wood density and ignore other wood physical properties. In this study, we established a comprehensive database of wood physical properties across major tree species in China. Based on this database, we explored spatial patterns and driving factors of wood properties across major tree species in China. Our results showed that (i) compared with wood density, air-dried density, tangential shrinkage coefficient and resilience provide more accuracy and higher explanation power when used as the evaluation index of wood physical properties. (ii) Among life form, climatic and edaphic variables, life form is the dominant factor shaping spatial patterns of wood physical properties, climatic factors the next, and edaphic factors have the least effects, suggesting that the effects of climatic factors on spatial variations of wood properties are indirectly induced by their effects on species distribution.

  18. Designed biomaterials to mimic the mechanical properties of muscles.

    PubMed

    Lv, Shanshan; Dudek, Daniel M; Cao, Yi; Balamurali, M M; Gosline, John; Li, Hongbin

    2010-05-06

    The passive elasticity of muscle is largely governed by the I-band part of the giant muscle protein titin, a complex molecular spring composed of a series of individually folded immunoglobulin-like domains as well as largely unstructured unique sequences. These mechanical elements have distinct mechanical properties, and when combined, they provide the desired passive elastic properties of muscle, which are a unique combination of strength, extensibility and resilience. Single-molecule atomic force microscopy (AFM) studies demonstrated that the macroscopic behaviour of titin in intact myofibrils can be reconstituted by combining the mechanical properties of these mechanical elements measured at the single-molecule level. Here we report artificial elastomeric proteins that mimic the molecular architecture of titin through the combination of well-characterized protein domains GB1 and resilin. We show that these artificial elastomeric proteins can be photochemically crosslinked and cast into solid biomaterials. These biomaterials behave as rubber-like materials showing high resilience at low strain and as shock-absorber-like materials at high strain by effectively dissipating energy. These properties are comparable to the passive elastic properties of muscles within the physiological range of sarcomere length and so these materials represent a new muscle-mimetic biomaterial. The mechanical properties of these biomaterials can be fine-tuned by adjusting the composition of the elastomeric proteins, providing the opportunity to develop biomaterials that are mimetic of different types of muscles. We anticipate that these biomaterials will find applications in tissue engineering as scaffold and matrix for artificial muscles.

  19. Through what mechanisms do protected areas affect environmental and social outcomes?

    PubMed

    Ferraro, Paul J; Hanauer, Merlin M

    2015-11-05

    To develop effective protected area policies, scholars and practitioners must better understand the mechanisms through which protected areas affect social and environmental outcomes. With strong evidence about mechanisms, the key elements of success can be strengthened, and the key elements of failure can be eliminated or repaired. Unfortunately, empirical evidence about these mechanisms is limited, and little guidance for quantifying them exists. This essay assesses what mechanisms have been hypothesized, what empirical evidence exists for their relative contributions and what advances have been made in the past decade for estimating mechanism causal effects from non-experimental data. The essay concludes with a proposed agenda for building an evidence base about protected area mechanisms.

  20. Through what mechanisms do protected areas affect environmental and social outcomes?

    PubMed Central

    Ferraro, Paul J.; Hanauer, Merlin M.

    2015-01-01

    To develop effective protected area policies, scholars and practitioners must better understand the mechanisms through which protected areas affect social and environmental outcomes. With strong evidence about mechanisms, the key elements of success can be strengthened, and the key elements of failure can be eliminated or repaired. Unfortunately, empirical evidence about these mechanisms is limited, and little guidance for quantifying them exists. This essay assesses what mechanisms have been hypothesized, what empirical evidence exists for their relative contributions and what advances have been made in the past decade for estimating mechanism causal effects from non-experimental data. The essay concludes with a proposed agenda for building an evidence base about protected area mechanisms. PMID:26460122

  1. Establishing whether the structural feature controlling the mechanical properties of starch films is molecular or crystalline.

    PubMed

    Li, Ming; Xie, Fengwei; Hasjim, Jovin; Witt, Torsten; Halley, Peter J; Gilbert, Robert G

    2015-03-06

    The effects of molecular and crystalline structures on the tensile mechanical properties of thermoplastic starch (TPS) films from waxy, normal, and high-amylose maize were investigated. Starch structural variations were obtained through extrusion and hydrothermal treatment (HTT). The molecular and crystalline structures were characterized using size-exclusion chromatography and X-ray diffractometry, respectively. TPS from high-amylose maize showed higher elongation at break and tensile strength than those from normal maize and waxy maize starches when processed with 40% plasticizer. Within the same amylose content, the mechanical properties were not affected by amylopectin molecular size or the crystallinity of TPS prior to HTT. This lack of correlation between the molecular size, crystallinity and mechanical properties may be due to the dominant effect of the plasticizer on the mechanical properties. Further crystallization of normal maize TPS by HTT increased the tensile strength and Young's modulus, while decreasing the elongation at break. The results suggest that the crystallinity from the remaining ungelatinized starch granules has less significant effect on the mechanical properties than that resulting from starch recrystallization, possibly due to a stronger network from leached-out amylose surrounding the remaining starch granules.

  2. Mechanical Properties of Chicken Embryo Somites to Analyze Cell Migration during Somitegenesis

    NASA Astrophysics Data System (ADS)

    Zhukovsky, Sarit; Taneyhill, Lisa; Wu, Chyong; Aranda-Espinoza, Helim

    2013-03-01

    Somites develop as round segments on the sides of the neural tube and are responsible for the development of the vertebrae and other structures. Using Atomic Force Microscopy and Micropipette techniques, we were able to apply a known force to obtain data about the differences in the mechanical properties of the somites. Using contact mode in AFM, we obtained graphs that relate distance travelled by the cantilever versus deflection of the sample. We then used Matlab to analyze the data and find the material properties of the somites. We measured the Young's modulus of the anterior and posterior parts of the somites to be around 2 +/- 0.8 kPa, but further data is needed to finalize our conclusion. Finding the mechanical properties of the posterior and anterior parts of the somites helped us to mimic those mechanical properties on polyacrylamide gels with different stiffness to determine the physiological functions of the somites and predict any mechanical abnormalities that might affect the migration of stem cells. By observing the major steps of migration, we were able to better understand how cell migration orchestrates embryonic morphogenesis with respect to their known mechanical properties.

  3. The influence of large deformations on mechanical properties of sinusoidal ligament structures

    NASA Astrophysics Data System (ADS)

    Strek, Tomasz; Jopek, Hubert; Wojciechowski, Krzysztof W.

    2016-05-01

    Studies of mechanical properties of materials, both theoretical and experimental, usually deal with linear characteristics assuming a small range of deformations. In particular, not much research has been published devoted to large deformations of auxetic structures - i.e. structures exhibiting negative Poisson’s ratio. This paper is focused on mechanical properties of selected structures that are subject to large deformations. Four examples of structure built of sinusoidal ligaments are studied and for each geometry the impact of deformation size and geometrical parameters on the effective mechanical properties of these structures are investigated. It is shown that some of them are auxetic when compressed and non-auxetic when stretched. Geometrical parameters describing sinusoidal shape of ligaments strongly affect effective mechanical properties of the structure. In some cases of deformation, the increase of the value of amplitude of the sinusoidal shape decreases the effective Poisson’s ratio by 0.7. Therefore the influence of geometry, as well as the arrangement of ligaments allows for smart control of mechanical properties of the sinusoidal ligament structure being considered. Given the large deformation of the structure, both a linear elastic material model, and a hyperelastic Neo-Hookean material model are used.

  4. The Effect of Thermo-mechanical Processing on the Mechanical Properties of Molybdenum-2 Volume%Lanthana

    SciTech Connect

    A.J. Mueller; R.W. Buckman,Jr.; A.J. Shields,Jr

    2001-03-14

    Variations in oxide species and consolidation method have been shown to have a significant effect on the mechanical properties of oxide dispersion strengthened (ODS) molybdenum material. The mechanical behavior of molybdenum - 2 Volume % La[sub]2O[sub]3 mill product forms, produced by a wet doping process, were characterized over the temperature range of -150 degrees C to 1800 degrees C. The various mill product forms evaluated ranged from thin sheet stock to bar stock. Tensile properties of the material in the various product forms were not significantly affected by the vast difference in total cold work. Creep properties, however, were sensitive to the total amount of cold work as well as the starting microstructure. Stress-relieved material had superior creep rupture properties to recrystallized material at 1200 degrees C, while at 1500 degrees C and above the opposite was observed. Thus it is necessary to match the appropriate thermo-mechanical processing and microstructure of molybdenum - 2 volume % LA[sub]2O[sub]3 to the demands of the application being considered.

  5. Relationship of the optical absorption and scattering properties with mechanical and structural properties of apple tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optical absorption and scattering properties of fruit change with the physiological and biochemical activities in the tissue during ripening and postharvest storage. But it has not been well understood on how these changes are related to the structural and mechanical properties of fruit. This resear...

  6. Mechanical properties of tricalcium phosphate-alumina composites

    NASA Astrophysics Data System (ADS)

    Sakka, S.; Ben Ayed, F.; Bouaziz, J.

    2012-02-01

    Tricalcium phosphate and alumina powder were mixed in order to elaborate biphasic ceramics composites. This study deals to produce bioceramics composites sintered at various temperatures for differents times. The characterization of samples, before and after the sintering process was investigated, using X-Ray diffraction, scanning electronic microscopy, 31P and 27Al nuclear magnetic resonance and differential thermal analysis. Mechanical properties of biphasic composites were studied using Brazilian test. The tricalcium phosphate - 75 wt% alumina composites mechanical resistance increased with sintered temperature. The mechanical resistance reach it's optimum value (8.6 MPa) at 1550°C for two hours.

  7. Mechanical behavior and elastic properties of prestrained columnar ice

    NASA Astrophysics Data System (ADS)

    Snyder, Scott Aaron

    Experiments on columnar-grained ice at --10 °C reveal changes to its mechanical behavior and elastic properties due to compressive prestrain. Laboratory-grown (152-mm cube) specimens of freshwater and saline ice were prestrained under uniaxial across-column compression (to levels from epsilon p = 0.003 to epsilonp = 0.20, at constant strain rates in the ductile regime) and then reloaded, again under uniaxial across-column compression (at rates from 1x10--6 s--1 to 3 x 10--2s--1). Prestrain caused solid-state recrystallization as well as damage in the form of non-propagating microcracks. These microstructural changes were quantified by analysis of thin sections. Elastic properties in across-column directions, both parallel (x1) and perpendicular ( x2) to the initial loading direction, were obtained from P-wave and S-wave ultrasonic velocities. As a result (and depending on the level) of the prestrain imparted in both materials, Young's modulus E was reduced by as much as 30%; the ductile-to-brittle (D--B) transition strain rate epsilon D/B was increased up to a factor of 3 to 10; and the ductile behavior with respect to loading along a direction within the horizontal ( x1-x2) plane of the parent ice sheet changed from isotropic to anisotropic. As the prestrain rate approached the nominal D--B transition rate of initially undamaged material, the magnitudes of prestrain effects on elastic compliance increased. The shift in the D--B transition, on the other hand, was less sensitive to the prestrain rate. The results are interpreted within the framework of a recent model that predicts the transition strain rate based on the micromechanical boundary between creep and fracture processes. Prestrain primarily affected certain parameters in the model, specifically the power-law creep coefficient B (more so than the creep exponent n), Young's modulus E and, by extension, the fracture toughness KIc. The physical implications of these effects are discussed.

  8. Interspecific comparison of the mechanical properties of mussel byssus.

    PubMed

    Brazee, Shanna L; Carrington, Emily

    2006-12-01

    Byssally tethered mussels are found in a variety of habitats, including rocky intertidal, salt marsh, subtidal, and hydrothermal vents. One key to the survival of mussels in these communities is a secure attachment, achieved by the production of byssal threads. Although many studies have detailed the unique biomechanical properties of byssal threads, only a few prevalent species have been examined. This study assesses the variation in the mechanical properties of byssus in a broad range of mussel species from diverse environments, including intertidal and subtidal Mytilus edulis, Modiolus modiolus, Geukensia demissa, Bathymodiolus thermophilus, and Dreissena polymorpha. A tensometer was used to measure quasi-static and dynamic mechanical properties of individual threads, and several aspects of morphology were quantified. The results indicate that thread mechanical properties vary among mussel species, and several novel properties were observed. For example, of the species examined, D. polymorpha threads were the strongest, stiffest, least resilient, and fastest to recover after partial deformation. Threads of M. modiolus were characterized by the presence of two distinct yield regions prior to tensile failure. This comparative study not only provides insight into the ecological limitations and evolution of mussels, but also suggests new models for the design of novel biomimetic polymers.

  9. Physical and mechanical properties of the lunar soil (a review)

    NASA Astrophysics Data System (ADS)

    Slyuta, E. N.

    2014-09-01

    We review the data on the physical and mechanical properties of the lunar soil that were acquired in the direct investigations on the lunar surface carried out in the manned and automatic missions and in the laboratory examination of the lunar samples returned to the Earth. In justice to the American manned program Apollo, we show that a large volume of the data on the properties of the lunar soil was also obtained in the Soviet automatic program Lunokhod and with the automatic space stations Luna-16, -20, and -24 that returned the lunar soil samples to the Earth. We consider all of the main physical and mechanical properties of the lunar soil, such as the granulometric composition, density and porosity, cohesion and adhesion, angle of internal friction, shear strength of loose soil, deformation characteristics (the deformation modulus and Poisson ratio), compressibility, and the bearing capacity, and show the change of some properties versus the depth. In most cases, the analytical dependence of the main parameters is presented, which is required in developing reliable engineering models of the lunar soil. The main physical and mechanical properties are listed in the summarizing table, and the currently available models and simulants of the lunar soil are reviewed.

  10. Variations in the mechanical properties of Alouatta palliata molar enamel.

    PubMed

    Darnell, Laura A; Teaford, Mark F; Livi, Kenneth J T; Weihs, Timothy P

    2010-01-01

    Teeth have provided insights into many topics including primate diet, paleobiology, and evolution, due to the fact that they are largely composed of inorganic materials and may remain intact long after an animal is deceased. Previous studies have reported that the mechanical properties, chemistry, and microstructure of human enamel vary with location. This study uses nanoindentation to map out the mechanical properties of Alouatta palliata molar enamel on an axial cross-section of an unworn permanent third molar, a worn permanent first molar, and a worn deciduous first molar. Variations were then correlated with changes in microstructure and chemistry using scanning electron microscopy and electron microprobe techniques. The hardness and Young's modulus varied with location throughout the cross-sections from the occlusal surface to the dentin-enamel junction (DEJ), from the buccal to lingual sides, and also from one tooth to another. These changes in mechanical properties correlated with changes in the organic content of the tooth, which was shown to increase from approximately 6% near the occlusal surface to approximately 20% just before the DEJ. Compared to human enamel, the Alouatta enamel showed similar microstructures, chemical constituents, and magnitudes of mechanical properties, but showed less variation in hardness and Young's modulus, despite the very different diet of this species.

  11. A biodegradable polymer nanocomposite: Mechanical and barrier properties

    NASA Astrophysics Data System (ADS)

    Lilichenko, N.; Maksimov, R. D.; Zicans, J.; Merijs Meri, R.; Plume, E.

    2008-01-01

    The preparation of an environmentally friendly nanocomposite based on plasticized potato starch and unmodified montmorillonite clay is described. Data on the influence of montmorillonite concentration on the mechanical properties of the materials obtained are reported. The effective elastic constants of the nanocomposites are calculated. The calculation results are compared with experimental data. The influence of montmorillonite content on the moisture permeability is also investigated.

  12. Barrier and Mechanical Properties of Starch-Clay Nanocomposite Films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The poor barrier and mechanical properties of biopolymer-based food packaging can potentially be enhanced by the use of layered silicates (nanoclay) to produce nanocomposites. In this study, starch-clay nano-composites were synthesized by a melt extrusion method. Natural (MMT) and organically modifi...

  13. Mechanical shear and tensile properties of selected biomass stems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignocellulosic biomass, such as big bluestem, corn stalk, intermediate wheat grass and switchgrass stem are abundant and dominant species in the Midwest region of US. There is a need to understand the mechanical properties for these crops for better handling and processing of the biomass feedstocks...

  14. Mechanical and physical properties of modern boron fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1978-01-01

    The results of accurate measurements of the modern boron fiber's Young's modulus, flexural modulus, shear modulus, and Poisson's ratio are reported. Physical property data concerning fiber density, thermal expansion, and resistance obtained during the course of the mechanical studies are also given.

  15. Psychometric properties of the Chinese version of the Affective Style Questionnaire and its role as a moderator of the relationship between stress and negative affect.

    PubMed

    Wang, Jianping; Xu, Wei; Fu, Zhongfang; Yu, Wei; He, Li; Sun, Ling; He, Jiao; Hofmann, Stefan

    2016-11-21

    The Affective Style Questionnaire is a self-report instrument for assessing affective style. Study 1 investigated the psychometric properties of the Chinese Affective Style Questionnaire in a sample of 459 Chinese participants. The confirmatory factor analysis supported a three-factor structure. Study 1 indicated that the Chinese Affective Style Questionnaire can be used as a simple, reliable, and valid scale for measuring individual differences in affective style. Study 2 examined the moderating role of different affective styles in the relationship between stress and negative affect. Concealing and tolerating moderated the relationship between stress and anxiety, and adjusting moderated the relationship between stress and depression.

  16. A review of mechanical and electromechanical properties of piezoelectric nanowires.

    PubMed

    Espinosa, Horacio D; Bernal, Rodrigo A; Minary-Jolandan, Majid

    2012-09-04

    Piezoelectric nanowires are promising building blocks in nanoelectronic, sensing, actuation and nanogenerator systems. In spite of great progress in synthesis methods, quantitative mechanical and electromechanical characterization of these nanostructures is still limited. In this article, the state-of-the art in experimental and computational studies of mechanical and electromechanical properties of piezoelectric nanowires is reviewed with an emphasis on size effects. The review covers existing characterization and analysis methods and summarizes data reported in the literature. It also provides an assessment of research needs and opportunities. Throughout the discussion, the importance of coupling experimental and computational studies is highlighted. This is crucial for obtaining unambiguous size effects of nanowire properties, which truly reflect the effect of scaling rather than a particular synthesis route. We show that such a combined approach is critical to establish synthesis-structure-property relations that will pave the way for optimal usage of piezoelectric nanowires.

  17. Determining the Mechanical Properties of Lattice Block Structures

    NASA Technical Reports Server (NTRS)

    Wilmoth, Nathan

    2013-01-01

    Lattice block structures and shape memory alloys possess several traits ideal for solving intriguing new engineering problems in industries such as aerospace, military, and transportation. Recent testing at the NASA Glenn Research Center has investigated the material properties of lattice block structures cast from a conventional aerospace titanium alloy as well as lattice block structures cast from nickel-titanium shape memory alloy. The lattice block structures for both materials were sectioned into smaller subelements for tension and compression testing. The results from the cast conventional titanium material showed that the expected mechanical properties were maintained. The shape memory alloy material was found to be extremely brittle from the casting process and only compression testing was completed. Future shape memory alloy lattice block structures will utilize an adjusted material composition that will provide a better quality casting. The testing effort resulted in baseline mechanical property data from the conventional titanium material for comparison to shape memory alloy materials once suitable castings are available.

  18. Moisture effect on mechanical properties of polymeric composite materials

    NASA Astrophysics Data System (ADS)

    Airale, A. G.; Carello, M.; Ferraris, A.; Sisca, L.

    2016-05-01

    The influence of moisture on the mechanical properties of fibre-reinforced polymer matrix composites (PMCs) was investigated. Four materials had been take into account considering: both 2×2-Twill woven carbon fibre or glass fibre, thermosetting matrix (Epoxy Resin) or thermoplastic matrix (Polyphenylene Sulfide). The specimens were submitted for 1800 hours to a hygrothermic test to evaluate moisture absorption on the basis of the Fick's law and finally tested to verify the mechanical properties (ultimate tensile strength). The results showed that the absorbed moisture decreases those properties of composites which were dominated by the matrix or the interface, while was not detectable the influence of water on the considered fibre. An important result is that the diffusion coefficient is highest for glass/PPS and lowest for carbon/epoxy composite material. The results give useful suggestions for the design of vehicle components that are exposed to environmental conditions (rain, snow and humidity).

  19. Mechanical property determination of high conductivity metals and alloys

    NASA Technical Reports Server (NTRS)

    Harrod, D. L.; Vandergrift, E.; France, L.

    1973-01-01

    Pertinent mechanical properties of three high conductivity metals and alloys; namely, vacuum hot pressed grade S-200E beryllium, OFHC copper and beryllium-copper alloy no. 10 were determined. These materials were selected based on their possible use in rocket thrust chamber and nozzle hardware. They were procured in a form and condition similar to that which might be ordered for actual hardware fabrication. The mechanical properties measured include (1) tension and compression stress strain curves at constant strain rate (2) tensile and compressive creep, (3) tensile and compressive stress-relaxation behavior and (4) elastic properties. Tests were conducted over the temperature range of from 75 F to 1600 F. The resulting data is presented in both graphical and tabular form.

  20. On the Environmental Factors Affecting the Structural and Cytotoxic Properties of IAPP Peptides

    PubMed Central

    Tomasello, Marianna Flora; Sinopoli, Alessandro; Pappalardo, Giuseppe

    2015-01-01

    Pancreatic islets in type 2 diabetes mellitus (T2DM) patients are characterized by reduced β-cells mass and diffuse extracellular amyloidosis. Amyloid deposition involves the islet amyloid polypeptide (IAPP), a neuropancreatic hormone cosecreted with insulin by β-cells. IAPP is physiologically involved in glucose homeostasis, but it may turn toxic to β-cells owing to its tendency to misfold giving rise to oligomers and fibrils. The process by which the unfolded IAPP starts to self-assemble and the overall factors promoting this conversion are poorly understood. Other open questions are related to the nature of the IAPP toxic species and how exactly β-cells die. Over the last decades, there has been growing consensus about the notion that early molecular assemblies, notably small hIAPP oligomers, are the culprit of β-cells decline. Numerous environmental factors might affect the conformational, aggregation, and cytotoxic properties of IAPP. Herein we review recent progress in the field, focusing on the influences that membranes, pH, and metal ions may have on the conformational conversion and cytotoxicity of full-length IAPP as well as peptide fragments thereof. Current theories proposed for the mechanisms of toxicity will be also summarized together with an outline of the underlying molecular links between IAPP and amyloid beta (Aβ) misfolding. PMID:26582441

  1. On the Environmental Factors Affecting the Structural and Cytotoxic Properties of IAPP Peptides.

    PubMed

    Tomasello, Marianna Flora; Sinopoli, Alessandro; Pappalardo, Giuseppe

    2015-01-01

    Pancreatic islets in type 2 diabetes mellitus (T2DM) patients are characterized by reduced β-cells mass and diffuse extracellular amyloidosis. Amyloid deposition involves the islet amyloid polypeptide (IAPP), a neuropancreatic hormone cosecreted with insulin by β-cells. IAPP is physiologically involved in glucose homeostasis, but it may turn toxic to β-cells owing to its tendency to misfold giving rise to oligomers and fibrils. The process by which the unfolded IAPP starts to self-assemble and the overall factors promoting this conversion are poorly understood. Other open questions are related to the nature of the IAPP toxic species and how exactly β-cells die. Over the last decades, there has been growing consensus about the notion that early molecular assemblies, notably small hIAPP oligomers, are the culprit of β-cells decline. Numerous environmental factors might affect the conformational, aggregation, and cytotoxic properties of IAPP. Herein we review recent progress in the field, focusing on the influences that membranes, pH, and metal ions may have on the conformational conversion and cytotoxicity of full-length IAPP as well as peptide fragments thereof. Current theories proposed for the mechanisms of toxicity will be also summarized together with an outline of the underlying molecular links between IAPP and amyloid beta (Aβ) misfolding.

  2. Administration of caffeic acid worsened bone mechanical properties in female rats.

    PubMed

    Zych, Maria; Folwarczna, Joanna; Pytlik, Maria; Sliwiński, Leszek; Gołden, Magdalena A; Burczyk, Jan; Trzeciak, Henryk I

    2010-03-01

    Natural phenolic acids, commonly present in plants that are normally consumed in the diet, have been reported to exert antiresorptive and/or bone formation increasing activity. The aim of the present study was to investigate the effects of ferulic, caffeic, P-coumaric, and chlorogenic acids on the skeletal system of normal, mature female rats. The phenolic acids (10 mg/kg p. o. daily for 4 weeks) were administered to 3-month-old female Wistar Cmd:(WI)WU rats. Bone mass, mineral and calcium content, macrometric and histomorphometric parameters, and mechanical properties were examined. Phenolic acids had differential effects on the rat skeletal system. Although none of them affected bone macrometric parameters, mass and mineralization, all of them increased the width of femoral trabeculae. Administration of caffeic acid worsened bone mechanical properties (decreasing ultimate load sustained by the femur in three-point bending test). In conclusion, high intake of caffeic acid may unfavorably affect the skeletal system.

  3. Influence of mechanical activation of steel powder on its properties

    NASA Astrophysics Data System (ADS)

    Vaulina, O. Yu; Darenskaia, E. A.; Myachin, Y. V.; Vasilyeva, I. E.; Kulkov, S. N.

    2017-02-01

    It has been studied properties of stainless steel based powders after mechanical activation using planetary ball milling technique. It have been shown that after one minute mechanical activation porosity of sintered steel is less than 5%, which is less than the porosity of the sintered steel powder without mechanical activation. The sample without activation has austenite state, which changes after activation toaustenite and ferrite mixtures. X-ray analysis confirmed that the mechanical activation leads to a change in the phase state of the samples: the samples without activation of the FCC structure (γ-Fe), after activation - FCC (γ-Fe) and BCC (α-Fe). The hardness increases at increasing activation time from 800 MPa for the sample without mechanical activation to 1250 MPa for the sample with the activation time of 10 minutes.

  4. Brillouin microspectroscopy of nanostructured biomaterials: photonics assisted tailoring mechanical properties

    NASA Astrophysics Data System (ADS)

    Meng, Zhaokai; Jaiswal, Manish K.; Chitrakar, Chandani; Thakur, Teena; Gaharwar, Akhilesh K.; Yakovlev, Vladislav V.

    2016-03-01

    Developing new biomaterials is essential for the next-generation of materials for bioenergy, bioelectronics, basic biology, medical diagnostics, cancer research, and regenerative medicine. Specifically, recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. The physical properties of nanocomposite biomaterials, including elasticity and viscosity, play key roles in controlling cell fate, which underlines therapeutic success. Conventional mechanical tests, including uniaxial compression and tension, dynamic mechanical analysis and shear rheology, require mechanical forces to be directly exerted onto the sample and therefore may not be suitable for in situ measurements or continuous monitoring of mechanical stiffness. In this study, we employ spontaneous Brillouin spectroscopy as a viscoelasticity-specific probing technique. We utilized a Brillouin spectrometer to characterize biomaterial's microscopic elasticity and correlated those with conventional mechanical tests (e.g., rheology).

  5. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties.

    PubMed

    Farhat, Walid A; Chen, Jun; Haig, Jennifer; Antoon, Roula; Litman, Jessica; Sherman, Christopher; Derwin, Kathleen; Yeger, Herman

    2008-06-01

    Experimentally, porcine bladder acellular matrix (ACM) that mimics extracellular matrix has excellent potential as a bladder substitute. Herein we investigated the spatial localization and expression of different key cellular and extracellular proteins in the ACM; furthermore, we evaluated the inherent mechanical properties of the resultant ACM prior to implantation. Using a proprietary decellularization method, the DNA contents in both ACM and normal bladder were measured; in addition we used immunohistochemistry and western blots to quantify and localize the different cellular and extracellular components, and finally the mechanical testing was performed using a uniaxial mechanical testing machine. The mean DNA content in the ACM was significantly lower in the ACM compared to the bladder. Furthermore, the immunohistochemical and western blot analyses showed that collagen I and IV were preserved in the ACM, but possibly denatured collagen III in the ACM. Furthermore, elastin, laminin and fibronectin were mildly reduced in the ACM. Although the ACM did not exhibit nucleated cells, residual cellular components (actin, myosin, vimentin and others) were still present. There was, on the other hand, no significant difference in the mean stiffness between the ACM and the bladder. Although our decellularization method is effective in removing nuclear material from the bladder while maintaining its inherent mechanical properties, further work is mandatory to determine whether these residual DNA and cellular remnants would lead to any immune reaction, or if the mechanical properties of the ACM are preserved upon implantation and cellularization.

  6. Mechanical Properties of Non-Accreting Neutron Star Crusts

    NASA Astrophysics Data System (ADS)

    Hoffman, Kelsey L.; Heyl, J. S.

    2013-01-01

    The mechanical properties of a neutron star crust, such as breaking strain and shear modulus, have implications for the detection of gravitational waves from a neutron star as well as bursts from Soft Gamma-ray Repeaters (SGRs). These properties are calculated here for three different crustal compositions for a non-accreting neutron star that results from three different cooling histories, as well as for a pure iron crust. A simple shear is simulated using molecular dynamics to the crustal compositions by deforming the simulation box. The breaking strain and shear modulus are found to be similar in the four cases, with a breaking strain of ˜0.1 and a shear modulus of ˜1030 dyne cm-2 at a density of ρ = 1014g cm-3 for simulations with an initially perfect BCC lattice. With these crustal properties and the observed properties of PSR J2124-3358 the predicted strain amplitude of gravitational waves for a maximally deformed crust is found to be greater than the observational upper limits from LIGO. This suggests that the neutron star crust in this case may not be maximally deformed or it may not have a perfect BCC lattice structure. The implications of the calculated crustal properties of bursts from SGRs are also explored. The mechanical properties found for a perfect BCC lattice structure find that crustal events alone can not be ruled out for triggering the energy in SGR bursts.

  7. Mechanical properties of non-accreting neutron star crusts

    NASA Astrophysics Data System (ADS)

    Hoffman, Kelsey; Heyl, Jeremy

    2012-11-01

    The mechanical properties of a neutron star crust, such as breaking strain and shear modulus, have implications for the detection of gravitational waves from a neutron star as well as bursts from soft Gamma-ray repeaters (SGRs). These properties are calculated here for three different crustal compositions for a non-accreting neutron star that results from three different cooling histories, as well as for a pure iron crust. A simple shear is simulated using molecular dynamics to the crustal compositions by deforming the simulation box. The breaking strain and shear modulus are found to be similar in the four cases, with a breaking strain of ˜0.1 and a shear modulus of ˜1030 dyne cm-2 at a density of ρ = 1014 g cm-3 for simulations with an initially perfect body-centred cubic (BCC) lattice. With these crustal properties and the observed properties of PSR J2124-3358, the predicted strain amplitude of gravitational waves for a maximally deformed crust is found to be greater than the observational upper limits from LIGO. This suggests that the neutron star crust in this case may not be maximally deformed or it may not have a perfect BCC lattice structure. The implications of the calculated crustal properties of bursts from SGRs are also explored. The mechanical properties found for a perfect BCC lattice structure find that crustal events alone cannot be ruled out for triggering the energy in SGR bursts.

  8. Optical and mechanical properties of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Marcus, Matthew S.

    The experiments presented in this thesis provide insight into the optical and mechanical properties of carbon nanotubes. In the process of studying the properties of carbon nanotube structures we also discovered some interesting features of intermittent contact atomic force microscopy. Phase data from non-contact AFM reveals in-plane material properties . In the process of characterizing carbon nanotubes with an intermittent contact AFM (ICAFM), we discovered something quite interesting: ICAFM is sensitive to in-plane properties. We found that phase contrast in ICAFM reveals in-plane mechanical properties of the poly-di-acetylene films. Our measurements are possible because, during ICAFM, the cantilever tip oscillates not just perpendicular but also parallel to the sample surface along the long axis of the cantilever. Understanding photo-induced conductivity changes in carbon nanotubes . The basic process for using a nanotube as a photo-detector involves using light to change the conductivity of the nanotube, typically measured as a change in current. We review the different mechanisms for how light changes the conductivity of a nanotube, and then focus on a photo-gating mechanism. In a photo-gating mechanism, light interacts with the nanotube's environment changing the conductivity of the nanotube. Thermally driven oscillations play a significant role in chemical vapor deposition growth. The elevated temperatures during the CVD growth thermally drive nanotube oscillations with amplitudes on the order of 80nm. Nanotubes suspended a small distance above the substrate will often oscillate with an amplitude as large as the suspension height and interact with the substrate. The large binding energy between the nanotube and the substrate causes the nanotube to become stuck: the nanotube is no longer suspended. Using data from CVD growths on our suspended structures we are able to extract a Young's modulus value for our nanotubes which both validates the thermally driven

  9. Ultrasonic evaluation of the physical and mechanical properties of granites.

    PubMed

    Vasconcelos, G; Lourenço, P B; Alves, C A S; Pamplona, J

    2008-09-01

    Masonry is the oldest building material that survived until today, being used all over the world and being present in the most impressive historical structures as an evidence of spirit of enterprise of ancient cultures. Conservation, rehabilitation and strengthening of the built heritage and protection of human lives are clear demands of modern societies. In this process, the use of nondestructive methods has become much common in the diagnosis of structural integrity of masonry elements. With respect to the evaluation of the stone condition, the ultrasonic pulse velocity is a simple and economical tool. Thus, the central issue of the present paper concerns the evaluation of the suitability of the ultrasonic pulse velocity method for describing the mechanical and physical properties of granites (range size between 0.1-4.0 mm and 0.3-16.5 mm) and for the assessment of its weathering state. The mechanical properties encompass the compressive and tensile strength and modulus of elasticity, and the physical properties include the density and porosity. For this purpose, measurements of the longitudinal ultrasonic pulse velocity with distinct natural frequency of the transducers were carried out on specimens with different size and shape. A discussion of the factors that induce variations on the ultrasonic velocity is also provided. Additionally, statistical correlations between ultrasonic pulse velocity and mechanical and physical properties of granites are presented and discussed. The major output of the work is the confirmation that ultrasonic pulse velocity can be effectively used as a simple and economical nondestructive method for a preliminary prediction of mechanical and physical properties, as well as a tool for the assessment of the weathering changes of granites that occur during the serviceable life. This is of much interest due to the usual difficulties in removing specimens for mechanical characterization.

  10. An Introduction to the Mechanical Properties of Ceramics

    NASA Astrophysics Data System (ADS)

    Green, David J.

    1998-09-01

    Over the past twenty-five years ceramics have become key materials in the development of many new technologies as scientists have been able to design these materials with new structures and properties. An understanding of the factors that influence their mechanical behavior and reliability is essential. This book will introduce the reader to current concepts in the field. It contains problems and exercises to help readers develop their skills. This is a comprehensive introduction to the mechanical properties of ceramics, and is designed primarily as a textbook for advanced undergraduates in materials science and engineering. It will also be of value as a supplementary text for more general courses and to industrial scientists and engineers involved in the development of ceramic-based products, materials selection and mechanical design.

  11. Chirality-Mediated Mechanical and Structural Properties of Oligopeptide Hydrogels

    SciTech Connect

    Taraban, Marc B.; Feng, Yue; Hammouda, Boualem; Hyland, Laura L.; Yu, Y. Bruce

    2012-10-29

    The origin and the effects of homochirality in the biological world continuously stimulate numerous hypotheses and much debate. This work attempts to look at the biohomochirality issue from a different angle - the mechanical properties of the bulk biomaterial and their relation to nanoscale structures. Using a pair of oppositely charged peptides that co-assemble into hydrogels, we systematically investigated the effect of chirality on the mechanical properties of these hydrogels through different combinations of syndiotactic and isotactic peptides. It was found that homochirality confers mechanical advantage, resulting in a higher elastic modulus and strain yield value. Yet, heterochirality confers kinetic advantage, resulting in faster gelation. Structurally, both homochiral and heterochiral hydrogels are made of fibers interconnected by lappet-like webs, but the homochiral peptide fibers are thicker and denser. These results highlight the possible role of biohomochirality in the evolution and/or natural selection of biomaterials.

  12. Mechanical Properties of Nanotextured Titanium Orthopedic Screws for Clinical Applications.

    PubMed

    Descamps, Stephane; Awitor, Komla O; Raspal, Vincent; Johnson, Matthew B; Bokalawela, Roshan S P; Larson, Preston R; Doiron, Curtis F

    2013-06-01

    In this work, we modified the topography of commercial titanium orthopedic screws using electrochemical anodization in a 0.4 wt% hydrofluoric acid solution to produce titanium dioxide nanotube layers. The morphology of the nanotube layers were characterized using scanning electron microscopy. The mechanical properties of the nanotube layers were investigated by screwing and unscrewing an anodized screw into several different types of human bone while the torsional force applied to the screwdriver was measured using a torque screwdriver. The range of torsional force applied to the screwdriver was between 5 and [Formula: see text]. Independent assessment of the mechanical properties of the same surfaces was performed on simple anodized titanium foils using a triboindenter. Results showed that the fabricated nanotube layers can resist mechanical stresses close to those found in clinical situations.

  13. Nano-palpation AFM and its quantitative mechanical property mapping.

    PubMed

    Nakajima, Ken; Ito, Makiko; Wang, Dong; Liu, Hao; Nguyen, Hung Kim; Liang, Xiaobin; Kumagai, Akemi; Fujinami, So

    2014-06-01

    We review nano-palpation atomic force microscopy, which offers quantitative mechanical property mapping especially for soft materials. The method measures force-deformation curves on the surfaces of soft materials. The emphasis is placed on how both Hertzian and Derjaguin-Muller-Toporov contact mechanics fail to reproduce the experimental curves and, alternatively, how the Johnson-Kendall-Roberts model does. We also describe the force-volume technique for obtaining a two-dimensional map of mechanical properties, such as the elastic modulus and adhesive energy, based on the above-mentioned analysis. Finally, we conclude with several counterpart measurements, which describe the viscoelastic nature of soft materials, and give examples, including vulcanized isoprene rubber and the current status of ISO standardization.

  14. Mechanical Properties of Iron Alumininides Intermetallic Alloy with Molybdenum Addition

    SciTech Connect

    Zuhailawati, H.; Fauzi, M. N. A.

    2010-03-11

    In this work, FeAl-based alloys with and without molybdenum addition were fabricated by sintering of mechanically alloyed powders in order to investigate the effect of molybdenum on iron aluminide mechanical properties. Bulk samples were prepared by mechanical alloying for 4 hours, pressing at 360 MPa and sintering at 1000 deg. C for 2 hours. The specimens were tested in compression at room temperature using Instron machine. The phase identification and microstructure of the consolidated material was examined by x-ray diffraction and scanning electron microscope correspondingly. Results show that 2.5 wt%Mo addition significantly increased the ultimate stress and ultimate strain in compressive mode due to solid solution hardening. However, the addition of Mo more than 2.5 wt% was accompanied by a reduction in both properties caused by the presence of Mo-rich precipitate particles.

  15. Mechanical Properties of Materials with Nanometer Scale Microstructures

    SciTech Connect

    William D. Nix

    2004-10-31

    We have been engaged in research on the mechanical properties of materials with nanometer-scale microstructural dimensions. Our attention has been focused on studying the mechanical properties of thin films and interfaces and very small volumes of material. Because the dimensions of thin film samples are small (typically 1 mm in thickness, or less), specialized mechanical testing techniques based on nanoindentation, microbeam bending and dynamic vibration of micromachined structures have been developed and used. Here we report briefly on some of the results we have obtained over the past three years. We also give a summary of all of the dissertations, talks and publications completed on this grant during the past 15 years.

  16. Mechanical Properties of the TiAl IRIS Alloy

    NASA Astrophysics Data System (ADS)

    Voisin, Thomas; Monchoux, Jean-Philippe; Thomas, Marc; Deshayes, Christophe; Couret, Alain

    2016-12-01

    This paper presents a study of the mechanical properties at room and high temperature of the boron and tungsten containing IRIS alloy (Ti-48Al-2W-0.08B at. pct). This alloy was densified by Spark Plasma Sintering (SPS). The resultant microstructure consists of small lamellar colonies surrounded by γ regions containing B2 precipitates. Tensile tests are performed from room temperature to 1273 K (1000 °C). Creep properties are determined at 973 K (700 °C)/300 MPa, 1023 K (750 °C)/120 MPa, and 1023 K (750 °C)/200 MPa. The tensile strength and the creep resistance at high temperature are found to be very high compared to the data reported in the current literature while a plastic elongation of 1.6 pct is preserved at room temperature. A grain size dependence of both ductility and strength is highlighted at room temperature. The deformation mechanisms are studied by post-mortem analyses on deformed samples and by in situ straining experiments, both performed in a transmission electron microscope. In particular, a low mobility of non-screw segments of dislocations at room temperature and the activation of a mixed-climb mechanism during creep have been identified. The mechanical properties of this IRIS alloy processed by SPS are compared to those of other TiAl alloys developed for high-temperature structural applications as well as to those of similar tungsten containing alloys obtained by more conventional processing techniques. Finally, the relationships between mechanical properties and microstructural features together with the elementary deformation mechanisms are discussed.

  17. Structures and Mechanical Properties of Natural and Synthetic Diamonds

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1998-01-01

    A revolution in the diamond technology is in progress, as the low-pressure process becomes an industrial reality. It will soon be possible to take advantage of the demanding properties of diamond to develop a myriad of new applications, particularly for self-lubricating, wear-resistant, and superhard coatings. The production of large diamond films or sheets at low cost, a distinct possibility in the not-too-distant future, may drastically change tribology technology, particularly regarding solid lubricants and lubricating materials and systems. This paper reviews the structures and properties of natural and synthetic diamonds to gain a better understanding of the tribological properties of diamond and related materials. Atomic and crystal structure, impurities, mechanical properties, and indentation hardness of diamond are described.

  18. Manipulating cinnamyl alcohol dehydrogenase (CAD) expression in flax affects fibre composition and properties

    PubMed Central

    2014-01-01

    Background In recent decades cultivation of flax and its application have dramatically decreased. One of the reasons for this is unpredictable quality and properties of flax fibre, because they depend on environmental factors, retting duration and growing conditions. These factors have contribution to the fibre composition, which consists of cellulose, hemicelluloses, lignin and pectin. By far, it is largely established that in flax, lignin reduces an accessibility of enzymes either to pectin, hemicelluloses or cellulose (during retting or in biofuel synthesis and paper production). Therefore, in this study we evaluated composition and properties of flax fibre from plants with silenced CAD (cinnamyl alcohol dehydrogenase) gene, which is key in the lignin biosynthesis. There is evidence that CAD is a useful tool to improve lignin digestibility and/or to lower the lignin levels in plants. Results Two studied lines responded differentially to the introduced modification due to the efficiency of the CAD silencing. Phylogenetic analysis revealed that flax CAD belongs to the “bona-fide” CAD family. CAD down-regulation had an effect in the reduced lignin amount in the flax fibre cell wall and as FT-IR results suggests, disturbed lignin composition and structure. Moreover introduced modification activated a compensatory mechanism which was manifested in the accumulation of cellulose and/or pectin. These changes had putative correlation with observed improved fiber’s tensile strength. Moreover, CAD down-regulation did not disturb at all or has only slight effect on flax plants’ development in vivo, however, the resistance against flax major pathogen Fusarium oxysporum decreased slightly. The modification positively affected fibre possessing; it resulted in more uniform retting. Conclusion The major finding of our paper is that the modification targeted directly to block lignin synthesis caused not only reduced lignin level in fibre, but also affected amount and

  19. DNA origami compliant nanostructures with tunable mechanical properties.

    PubMed

    Zhou, Lifeng; Marras, Alexander E; Su, Hai-Jun; Castro, Carlos E

    2014-01-28

    DNA origami enables fabrication of precise nanostructures by programming the self-assembly of DNA. While this approach has been used to make a variety of complex 2D and 3D objects, the mechanical functionality of these structures is limited due to their rigid nature. We explore the fabrication of deformable, or compliant, objects to establish a framework for mechanically functional nanostructures. This compliant design approach is used in macroscopic engineering to make devices including sensors, actuators, and robots. We build compliant nanostructures by utilizing the entropic elasticity of single-stranded DNA (ssDNA) to locally bend bundles of double-stranded DNA into bent geometries whose curvature and mechanical properties can be tuned by controlling the length of ssDNA strands. We demonstrate an ability to achieve a wide range of geometries by adjusting a few strands in the nanostructure design. We further developed a mechanical model to predict both geometry and mechanical properties of our compliant nanostructures that agrees well with experiments. Our results provide a basis for the design of mechanically functional DNA origami devices and materials.

  20. Effect of organically modified clay on mechanical properties, cytotoxicity and bactericidal properties of poly(ɛ-caprolactone) nanocomposites

    NASA Astrophysics Data System (ADS)

    Kumar, Sachin; Mishra, Anupam; Chatterjee, Kaushik

    2014-12-01

    The objective of this study was to evaluate the use of organically-modified clay nanoparticles in poly(ɛ-caprolactone) (PCL) for developing biodegradable composites. PCL nanocomposites reinforced with two different types of organically-modified clay (Cloisite 30B, C30B and Cloisite 93A, C93A) were prepared by melt-mixing. Morphology of PCL/clay nanocomposites characterized by scanning electron microscopy indicated good dispersion of nanoclay in the PCL matrix. Reinforcement of nanoclay in PCL enhanced mechanical properties without affecting thermal and degradation properties of PCL. Cytocompatibility of PCL/clay nanocomposites was studied using both osteoblasts and endothelial cells in vitro. Both composites (PCL/C30B and PCL/C93A) were cytotoxic with high toxicity observed for C30B even at low content of 1 wt %. The cytotoxicity was found to arise due to leachables from PCL/clay composites. Electrical conductivity measurements of aqueous media confirmed leaching of cationic surfactant from the PCL/clay composites PCL matrix. Both composites were found to be bactericidal but C30B was more effective than C93A. Taken together, it was observed that organically-modified nanoclay as fillers in PCL improves mechanical properties and imparts bactericidal properties but with increased risk of toxicity. These PCL/clay composites may be useful as stronger packaging material with antibacterial properties but are not suited as biomedical implants or for food packaging applications.

  1. Corrosion behavior and mechanical properties of bioactive sol-gel coatings on titanium implants.

    PubMed

    Catauro, M; Bollino, F; Papale, F; Giovanardi, R; Veronesi, P

    2014-10-01

    Organic-inorganic hybrid coatings based on zirconia and poly (ε-caprolactone) (PCL) were prepared by means of sol-gel dip-coating technique and used to coat titanium grade 4 implants (Ti-4) in order to improve their wear and corrosion resistance. The coating chemical composition has been analysed by ATR-FTIR. The influence of the PCL amount has been investigated on the microstructure, mechanical properties of the coatings and their ability to inhibit the corrosion of titanium. SEM analysis has shown that all coatings have a nanostructured nature and that the films with high PCL content are crack-free. Mechanical properties of the coatings have been studied using scratch and nano-indentation tests. The results have shown that the Young's modulus of the coatings decreases in presence of large amounts of the organic phase, and that PCL content affects also the adhesion of the coatings to the underlying Ti-4 substrate. However, the presence of cracks on the PCL-free coatings affects severely the mechanical response of the samples at high loads. The electrochemical behavior and corrosion resistance of the coated and uncoated substrate has been investigated by polarization tests. The results have shown that both the coatings with or without PCL don't affect significantly the already excellent passivation properties of titanium.

  2. Mechanical properties of Municipal Solid Waste by SDMT

    SciTech Connect

    Castelli, Francesco; Maugeri, Michele

    2014-02-15

    Highlights: • The adoption of the SDMT for the measurements of MSW properties is proposed. • A comparison between SDMT results and laboratory tests was carried out. • A good reliability has been found in deriving waste properties by SDMT. • Results seems to be promising for the friction angle and Young’s modulus evaluation. - Abstract: In the paper the results of a geotechnical investigation carried on Municipal Solid Waste (MSW) materials retrieved from the “Cozzo Vuturo” landfill in the Enna area (Sicily, Italy) are reported and analyzed. Mechanical properties were determined both by in situ and laboratory large-scale one dimensional compression tests. While among in situ tests, Dilatomer Marchetti Tests (DMT) is used widely in measuring soil properties, the adoption of the DMT for the measurements of MSW properties has not often been documented in literature. To validate its applicability for the estimation of MSW properties, a comparison between the seismic dilatometer (SDMT) results and the waste properties evaluated by laboratory tests was carried out. Parameters for “fresh” and “degraded waste” have been evaluated. These preliminary results seems to be promising as concerns the assessment of the friction angle of waste and the evaluation of the S-wave in terms of shear wave velocity. Further studies are certainly required to obtain more representative values of the elastic parameters according to the SDMT measurements.

  3. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  4. Mechanical Properties in a Bamboo Fiber/PBS Biodegradable Composite

    NASA Astrophysics Data System (ADS)

    Ogihara, Shinji; Okada, Akihisa; Kobayashi, Satoshi

    In recent years, biodegradable plastics which have low effect on environment have been developed. However, many of them have lower mechanical properties than conventional engineering plastics. Reinforcing them with a natural fiber is one of reinforcing methods without a loss of their biodegradability. In the present study, we use a bamboo fiber as the reinforcement and polybutylenesuccinate (PBS) as the matrix. We fabricate long fiber unidirectional composites and cross-ply laminate with different fiber weight fractions (10, 20, 30, 40 and 50wt%). We conduct tensile tests to evaluate the mechanical properties of these composites. In addition, we measure bamboo fiber strength distribution. We discuss the experimentally-obtained properties based on the mechanical properties of the constituent materials. Young's modulus and tensile strength in unidirectional composite and cross-ply laminate increase with increasing fiber weight fraction. However, the strain at fracture showed decreasing tendency. Young's modulus in fiber and fiber transverse directions are predictable by the rules of mixture. Tensile strength in fiber direction is lower than Curtin's prediction of strength which considers distribution of fiber strength. Young's modulus in cross-ply laminate is predictable by the laminate theory. However, analytical prediction of Poisson's ratio in cross-ply laminate by the laminate theory is lower than the experimental results.

  5. Mechanical properties and microstructure of centrifugally cast alloy 718

    NASA Astrophysics Data System (ADS)

    Michel, D. J.; Smith, H. H.

    1985-07-01

    The relationship between the microstructure and mechanical properties of alloy 718 was investigated for two discs centrifugally cast at 50 and 200 rpm and given a duplex age heat treatment. The results of mechanical property tests at temperatures from 426 to 649 °C showed that the tensile yield and ultimate strength levels of both castings were similar. However, the creep-rupture properties were considerably enhanced for the casting produced at 200 rpm. Comparison of the radial and transverse creep properties of each disc indicated that creep life was generally independent of orientation, but ductility was greatest for specimens oriented transverse to the radial direction of the casting. Fatigue crack propagation performance was not greatly influenced by orientation or mold speed parameters and was comparable to wrought alloy 718 when compared on the basis of stress intensity factor range. The centrifugal casting process was found to produce a homogeneous microstructure free of porosity but with the expected segregation of solute alloying elements to Laves and carbide phases. The effect of the as-cast microstructure on the mechanical behavior and the potential influence of hot isostatic pressing to improve the microstructure are discussed.

  6. Evolution of mechanical properties in ErT2 films.

    SciTech Connect

    Browning, James Frederick; Bond, Gillian Mary; Knapp, James Arthur

    2010-04-01

    The mechanical properties of rare earth tritide films evolve as tritium decays into {sup 3}He, which forms bubbles that influence long-term film stability in applications such as neutron generators. Ultralow load nanoindentation, combined with finite-element modeling to separate the mechanical properties of the thin films from their substrates, has been used to follow the mechanical properties of model ErT{sub 2} films as they aged. The size of the growing {sup 3}He bubbles was followed with transmission electron microscopy, while ion beam analysis was used to monitor total T and {sup 3}He content. The observed behavior is divided into two regimes: a substantial increase in layer hardness but elasticity changed little over {approx}18 months, followed by a decrease in elastic stiffness and a modest decease in hardness over the final 24 months. We show that the evolution of properties is explained by a combination of dislocation pinning by the bubbles, elastic softening as the bubbles occupy an increasing fraction of the material, and details of bubble growth modes.

  7. Mechanical properties of several iron-nickel meteorites

    SciTech Connect

    Mulford, Roberta N; El - Dasher, Bassem

    2011-01-06

    Iron-nickel meteorites exhibit a unique lamellar microstructure, consisting of small regions with steep-iron-nickel composition gradients. The microstructure arises as a result of slow cooling in a planetary core or other large mass. The microstructure is further influenced by variable concentrations of other elements such as phosphorous which may have influenced cooling and phase separation. Mechanical properties of these composite structures have been investigated using Vickers and spherical indentation, x-ray fluorescence, and EBSD. Direct observation of mechanical properties in these highly structured materials provides a valuable supplement to bulk measurements, which frequently exhibit large variation in dynamic properties, even within a single sample. Previous studies of the mechanical properties of a typical iron-nickel meteorite, a Diablo Canyon specimen, indicated that the strength of the composite was higher by almost an order of magnitude than values obtained from laboratory-prepared specimens. This was ascribed to the extreme work-hardening evident in the EBSD measurements. Additional specimens from the Canyon Diablo fall (type IAB, coarse octahedrite) and several fine octahedrite meteorites, from the Muonionalusta meteorite (IVA) and Gibeon fall (IVA), have been examined to establish a range of error on the previously measured yield, to determine the extent to which deformation upon reentry contributes to yield, and to establish the degree to which the strength varies as a function of microstructure.

  8. Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid)

    PubMed Central

    Liu, Xingxun; Wang, Tongxin; Chow, Laurence C.; Yang, Mingshu; Mitchell, James W.

    2015-01-01

    Addition of filler to polylactic acid (PLA) may affect its crystallization behavior and mechanical properties. The effects of talc and hydroxyapatite (HA) on the thermal and mechanical properties of two types of PLA (one amorphous and one semicrystalline) have been investigated. The composites were prepared by melt blending followed by injection molding. The molecular weight, morphology, mechanical properties, and thermal properties have been characterized by gel permeation chromatography (GPC), scanning electron microscope (SEM), instron tensile tester, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It was found that the melting blending led to homogeneous distribution of the inorganic filler within the PLA matrix but decreased the molecular weight of PLA. Regarding the filler, addition of talc increased the crystallinity of PLA, but HA decreased the crystallinity of PLA. The tensile strength of the composites depended on the crystallinity of PLA and the interfacial properties between PLA and the filler, but both talc and HA filler increased the toughness of PLA. PMID:25717339

  9. Mechanical properties of high-temperature brazed titanium materials

    SciTech Connect

    Lugscheider, E.; Broich, U.

    1995-05-01

    The mechanical properties of commercial titanium CPTi and Ti-Al6-V4 joints, brazed with Ti-based filler metals in the system Ti(Zr)-Cu-Ni-(Pd) are evaluated by tensile test at various temperatures, as well as by fatigue test at room temperature. The influence of the microstructure in the brazing zone on the mechanical properties of the joints was assessed by conducting metallographic analysis. A vacuum furnace and an induction heating furnace were used for the production of the metallographic and tensile samples. The results from the mechanical and metallographic investigations revealed a strong dependence of the tensile strength of the titanium joints on the microstructure of the brazing zone. The presence of the brittle intermetallic Ti-Cu and Ti-Ni phases in the brazing zone leads to the weakening of the joint. However, for the formation of these intermetallic phases can be avoided by using adequate brazing process parameters and by optimizing the joint clearance. In that case, it is possible to fabricate titanium joints with Ti-based filler metals that have excellent mechanical properties comparable to those of the base metal.

  10. Loops determine the mechanical properties of mitotic chromosomes

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Heermann, Dieter W.

    2013-03-01

    In mitosis, chromosomes undergo a condensation into highly compacted, rod-like objects. Many models have been put forward for the higher-order organization of mitotic chromosomes including radial loop and hierarchical folding models. Additionally, mechanical properties of mitotic chromosomes under different conditions were measured. However, the internal organization of mitotic chromosomes still remains unclear. Here we present a polymer model for mitotic chromosomes and show how chromatin loops play a major role for their mechanical properties. The key assumption of the model is the ability of the chromatin fibre to dynamically form loops with the help of binding proteins. Our results show that looping leads to a tight compaction and significantly increases the bending rigidity of chromosomes. Moreover, our qualitative prediction of the force elongation behaviour is close to experimental findings. This indicates that the internal structure of mitotic chromosomes is based on self-organization of the chromatin fibre. We also demonstrate how number and size of loops have a strong influence on the mechanical properties. We suggest that changes in the mechanical characteristics of chromosomes can be explained by an altered internal loop structure. YZ gratefully appreciates funding by the German National Academic Foundation (Studienstiftung des deutschen Volkes) and support by the Heidelberg Graduate School for Mathematical and Computational Methods in the Sciences (HGS MathComp).

  11. Reasons for superior mechanical and corrosion properties of 2219 aluminum alloy electron beam welds

    SciTech Connect

    Koteswara Rao, S.R. . E-mail: sajjarkr@yahoo.com; Madhusudhan Reddy, G.; Srinivasa Rao, K.; Kamaraj, M.; Prasad Rao, K.

    2005-11-15

    Electron beam welds of aluminum alloy 2219 offer much higher strength compared to gas tungsten arc welds of the same alloy and the reasons for this have not been fully explored. In this study both types of welds were made and mechanical properties were evaluated by tensile testing and pitting corrosion resistance by potentio dynamic polarization tests. It is shown that electron beam welds exhibit superior mechanical and corrosion properties. The weld metals have been characterized by scanning electron microscopy; transmission electron microscopy and electron probe micro analysis. Presence of partially disintegrated precipitates in the weld metal, finer micro porosity and uniform distribution of copper in the matrix were found to be the reasons for superior properties of electron beam welds apart from the fine equiaxed grain structure. Transmission electron micrographs of the heat affected zones revealed the precipitate disintegration and over aging in gas tungsten arc welds.

  12. Woven glass fabric reinforced laminates based on polyolefin wastes: Thermal, mechanical and dynamic-mechanical properties

    NASA Astrophysics Data System (ADS)

    Russo, Pietro; Acierno, Domenico; Simeoli, Giorgio; Lopresto, Valentina

    2014-05-01

    Potentialities of polyolefin wastes in place of virgin polypropylene to produce composite laminates have been investigated. Plaques reinforced with a woven glass fabric were prepared by film-stacking technique and systematically analyzed in terms of thermal, mechanical and dynamic-mechanical properties. In case of PP matrices, the use of a typical compatibilizer to improve the adhesion at the interface has been considered. Thermal properties emphasized the chemical nature of plastic wastes. About mechanical properties, static tests showed an increase of flexural parameters for compatibilized systems due to the coupling effect between grafted maleic anhydride and silane groups on the surface of the glass fabric. These effects, maximized for composites based on car bumper wastes, is perfectly reflected in terms of storage modulus and damping ability of products as determined by single-cantilever bending dynamic tests.

  13. Mechanical properties of normal versus cancerous breast cells

    PubMed Central

    Smelser, Amanda M.; Macosko, Jed C.; O’Dell, Adam P.; Smyre, Scott; Bonin, Keith

    2016-01-01

    A cell’s mechanical properties are important in determining its adhesion, migration, and response to the mechanical properties of its microenvironment and may help explain behavioral differences between normal and cancerous cells. Using fluorescently labeled peroxisomes as microrheological probes, the interior mechanical properties of normal breast cells were compared to a metastatic breast cell line, MDA-MB-231. To estimate the mechanical properties of cell cytoplasms from the motions of their peroxisomes, it was necessary to reduce the contribution of active cytoskeletal motions to peroxisome motion. This was done by treating the cells with blebbistatin, to inhibit myosin II, or with sodium azide and 2-deoxy-D-glucose, to reduce intracellular ATP. Using either treatment, the peroxisomes exhibited normal diffusion or subdiffusion, and their mean squared displacements (MSDs) showed that the MDA-MB-231 cells were significantly softer than normal cells. For these two cell types, peroxisome MSDs in treated and untreated cells converged at high frequencies, indicating that cytoskeletal structure was not altered by the drug treatment. The MSDs from ATP-depleted cells were analyzed by the generalized Stokes–Einstein relation to estimate the interior viscoelastic modulus G* and its components, the elastic shear modulus G′ and viscous shear modulus G″, at angular frequencies between 0.126 and 628rad/s. These moduli are the material coefficients that enter into stress–strain relations and relaxation times in quantitative mechanical models such as the poroelastic model of the interior regions of cancerous and non-cancerous cells. PMID:25929519

  14. Mechanical and tribological properties of ion beam-processed surfaces

    SciTech Connect

    Kodali, Padma

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness.

  15. Mechanical properties and biocompatibility of two polyepoxy matrices: DGEBA-DDM and DGEBA-IPD.

    PubMed

    Berruet, R; Vinard, E; Calle, A; Tighzert, H L; Chabert, B; Magloire, H; Eloy, R

    1987-05-01

    The aim of this paper was to study the biocompatibility and mechanical properties of materials for orthopaedic and odontologic surgical use. The products used were obtained by polycondensation of a diepoxy resin (DGEBA) with two curing agents (DDM or IPD). The materials present a slight swelling in liquid medium and their thermomechanical properties are hardly affected after 12 month implantation. The absence of molecular desorption in isotonic liquid and human serum confirms their hydrolytic stability and thus their inertia. These materials do not give rise to an intolerance reaction by neighbouring tissues during implantation time (1 d to 12 month).

  16. The effect of fullerene fillers on the mechanical properties of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Zuev, V. V.; Kostromin, S. V.; Shlykov, A. V.

    2010-07-01

    The effect of fullerene and carbon fillers on the mechanical properties of polymer nanocomposites based on thermoreactive (epoxy resin) and thermoplastic (polyamide-12) matrices was investigated. It was found that the introduction of these fillers did not affect the properties of the thermoreactive blends, but Young's modulus and the tensile strength of the thermoplastic ones increased by about 30-40% upon addition of 0.02-0.08 wt.% fullerene materials. The best results were obtained for a mixture of C 60/ C 70.

  17. The mechanical and tribological properties of UHMWPE loaded ALN after mechanical activation for joint replacements.

    PubMed

    Gong, Kemeng; Qu, Shuxin; Liu, Yumei; Wang, Jing; Zhang, Yongchao; Jiang, Chongxi; Shen, Ru

    2016-08-01

    Ultra-high molecular weight polyethylene (UHMWPE) loaded with alendronate sodium (ALN) has tremendous potential as an orthopeadic biomaterial for joint replacements. However, poor mechanical and tribological properties of UHMWPE-ALN are still obstacle for further application. The purpose of this study was to investigate the effect and mechanism of mechanical activation on mechanical and tribological properties of 1wt% ALN-loaded UHMWPE (UHMWPE-ALN-ma). In this study, tensile test, small punch test and reciprocating sliding wear test were applied to characterize the mechanical and tribological properties of UHMWPE-ALN-ma. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) were employed to characterize UHMWPE-ALN-ma. Tensile test and small punch test showed that Young׳s modulus, tensile strength and work-to-failure (WTF) of UHMWPE-ALN-ma increased significantly compared to those of UHMWPE-ALN. The friction coefficients and wear factors of UHMWPE-ALN-ma both decreased significantly compared to those of UHMWPE-ALN. Mechanical activation obviously reduced type 1 (void) and type 2 (the disconnected and dislocated machining marks) fusion defects of UHMWPE-ALN-ma, which were revealed by SEM images of freeze fracture surfaces after etching and lateral surfaces of specimens after extension to fracture, respectively. It was attributed to peeled-off layers and chain scission of molecular chains of UHMWPE particles after mechanical activation, which were revealed by SEM images and FTIR spectra of UHMWPE-ALN-ma and UHMWPE-ALN, respectively. Moreover, EDS spectra revealed the more homogeneous distribution of ALN in UHMWPE-ALN-ma compared to that of UHMWPE-ALN. The present results showed that mechanical activation was a potential strategy to improve mechanical and tribological properties of UHMWPE-ALN-ma as an orthopeadic biomaterial for joint replacements.

  18. Mechanical properties of native and tissue-engineered cartilage depend on carrier permeability: a bioreactor study.

    PubMed

    Hoenig, Elisa; Leicht, Uta; Winkler, Thomas; Mielke, Gabriela; Beck, Katharina; Peters, Fabian; Schilling, Arndt F; Morlock, Michael M

    2013-07-01

    The implantation of osteochondral constructs-tissue-engineered (TE) cartilage on a bone substitute carrier-is a promising method to treat defects in articular cartilage. Currently, however, the TE cartilage's mechanical properties are clearly inferior to those of native cartilage. Their improvement has been the subject of various studies, mainly focusing on growth factors and physical loading during cultivation. With the approach of osteochondral constructs another aspect arises: the permeability of the carrier materials. The purpose of this study was to investigate whether and how the permeability of the subchondral bone influences the properties of native cartilage and whether the bone substitute carrier's permeability influences the TE cartilage of osteochondral constructs accordingly. Consequently, the influence of the subchondral bone's permeability on native cartilage was determined: Native porcine cartilage-bone cylinders were cultivated for 2 weeks in a bioreactor under mechanical loading with and without restricted permeability of the bone. For the TE cartilage these two permeability conditions were investigated using permeable and impermeable tricalciumphosphate carriers under equivalent cultivation conditions. All specimens were evaluated mechanically, biochemically, and histologically. The restriction of the bone's permeability significantly decreased the Young's modulus of native cartilage in vitro. No biochemical differences were found. This finding was confirmed for TE cartilage: While the biochemical parameters were not affected, a permeable carrier improved the cell morphology and mechanical properties in comparison to an impermeable one. In conclusion, the carrier permeability was identified as a determining factor for the mechanical properties of TE cartilage of osteochondral constructs.

  19. Micro-mechanical properties of bio-materials

    NASA Astrophysics Data System (ADS)

    Zakiev, V.; Markovsky, A.; Aznakayev, E.; Zakiev, I.; Gursky, E.

    2005-09-01

    Investigation of physical-mechanical characteristics of stomatologic materials (ceramics for crowns, silver amalgam, cements and materials on a polymeric basis) properties by the modern methods and correspondence their physical-mechanical properties to the physical-mechanical properties of native teeth is represented. The universal device "Micron-Gamma" is built for this purpose. This device allows investigate the physical-mechanical characteristics of stomatologic materials (an elastic modulus, micro-hardness, destruction energy, resistance to scratching) by the methods of continuous indentation, scanning and pricking. A new effective method as well as its device application for the investigation of surface layers of materials and their physical-mechanical properties by means of the constant indenting of an indenter is realized. This method is based on the automatic registration of loading (P) on the indenter with the simultaneous measurement of its indentation depth (h). The results of investigations are presented on a loading diagram P=f(h) and as a digital imaging on the PC. This diagram allows get not only more diverse characteristics in the real time regime but also gives new information about the stomatologic material properties. Therefore, we can to investigate the wide range of the physical-mechanical properties of stomatologic materials. "Micron-alpha" is digital detection device for light imaging applications. It enables to detect the very low material surface relief heights and restoration of surface micro topography by a sequence data processing of interferential data of partially coherent light also. "Micron-alpha" allows: to build 2D and 3D imaging of a material surface; to estimate the quantitatively characteristics of a material surface; to observe the imaging interferential pictures both in the white and in the monochromatic light; to carry out the investigation of blood cells, microbes and biological macromolecules profiles. The method allows

  20. Brain Mechanical Property Measurement Using MRE with Intrinsic Activation

    PubMed Central

    Pattison, Adam J.; McGarry, Matthew D.; Perreard, Irina M.; Swienckowski, Jessica G.; Eskey, Clifford J.; Lollis, S. Scott; Paulsen, Keith D.

    2013-01-01

    Problem Addressed Many pathologies alter the mechanical properties of tissue. Magnetic resonance elastography (MRE) has been developed to noninvasively characterize these quantities in vivo. Typically, small vibrations are induced in the tissue of interest with an external mechanical actuator. The resulting displacements are measured with phase contrast sequences and are then used to estimate the underlying mechanical property distribution. Several MRE studies have quantified brain tissue properties. However, the cranium and meninges, especially the dura, are very effective at damping externally applied vibrations from penetrating deeply into the brain. Here, we report a method, termed ‘intrinsic activation’, that eliminates the requirement for external vibrations by measuring the motion generated by natural blood vessel pulsation. Methodology A retrospectively gated phase contrast MR angiography sequence was used to record the tissue velocity at eight phases of the cardiac cycle. The velocities were numerically integrated via the Fourier transform to produce the harmonic displacements at each position within the brain. The displacements were then reconstructed into images of the shear modulus based on both linear elastic and poroelastic models. Results, Significance and Potential Impact The mechanical properties produced fall within the range of brain tissue estimates reported in the literature and, equally important, the technique yielded highly reproducible results. The mean shear modulus was 8.1 kPa for linear elastic reconstructions and 2.4 kPa for poroelastic reconstructions where fluid pressure carries a portion of the stress. Gross structures of the brain were visualized, particularly in the poroelastic reconstructions. Intra-subject variability was significantly less than the inter-subject variability in a study of 6 asymptomatic individuals. Further, larger changes in mechanical properties were observed in individuals when examined over time than when

  1. Structural and mechanical properties of mandibular condylar bone.

    PubMed

    van Eijden, T M G J; van der Helm, P N; van Ruijven, L J; Mulder, L

    2006-01-01

    The trabecular bone of the mandibular condyle is structurally anisotropic and heterogeneous. We hypothesized that its apparent elastic moduli are also anisotropic and heterogeneous, and depend on trabecular density and orientation. Eleven condyles were scanned with a micro-CT system. Volumes of interest were selected for the construction of finite element models. We simulated compressive and shear tests to determine the principal mechanical directions and the apparent elastic moduli. Compressive moduli were relatively large in directions acting in the sagittal plane, and small in the mediolateral direction. The degree of mechanical anisotropy ranged from 4.7 to 10.8. Shear moduli were largest in the sagittal plane and smallest in the transverse plane. The magnitudes of the moduli varied with the condylar region and were proportional to the bone volume fraction. Furthermore, principal mechanical direction correlated significantly with principal structural direction. It was concluded that variation in trabecular structure coincides with variation in apparent mechanical properties.

  2. Enzymatic treatment of mechanical pulp fibers for improving papermaking properties.

    PubMed

    Wong, K K; Richardson, J D; Mansfield, S D

    2000-01-01

    Three enzyme preparations (crude cellulase, laccase, and proteinase) were evaluated for their potential to improve the papermaking properties of mechanical pulp. After treating a long fibre-rich fraction of the pulp with enzyme, the fibres were recombined with untreated fines for handsheet making and testing. None of the enzymes altered the retention of fines or the consolidation of the furnish mix during handsheet formation. All three enzymes increased tensile stiffness index, which is a measure of the initial resistance of the handsheets to strain. Only the laccase preparation, an enzyme that modifies pulp lignin, consistently increased fibre bonding to enhance other strength properties of the handsheets.

  3. Constitutive Modeling of the Mechanical Properties of Optical Fibers

    NASA Technical Reports Server (NTRS)

    Moeti, L.; Moghazy, S.; Veazie, D.; Cuddihy, E.

    1998-01-01

    Micromechanical modeling of the composite mechanical properties of optical fibers was conducted. Good agreement was obtained between the values of Young's modulus obtained by micromechanics modeling and those determined experimentally for a single mode optical fiber where the wave guide and the jacket are physically coupled. The modeling was also attempted on a polarization-maintaining optical fiber (PANDA) where the wave guide and the jacket are physically decoupled, and found not to applicable since the modeling required perfect bonding at the interface. The modeling utilized constituent physical properties such as the Young's modulus, Poisson's ratio, and shear modulus to establish bounds on the macroscopic behavior of the fiber.

  4. Imaging and mechanical property measurements of kerogen via nanoindentation

    NASA Astrophysics Data System (ADS)

    Zeszotarski, Jonathan C.; Chromik, Richard R.; Vinci, Richard P.; Messmer, Marie C.; Michels, Raymond; Larsen, John W.

    2004-10-01

    Most analyses of kerogens rely on samples that have been isolated by dissolving the rock matrix. The properties of the kerogen before and after such isolation may be different and all sample orientation information is lost. We report a method of measuring kerogen mechanical properties in the rock matrix without isolation. An atomic force microscope (AFM) based nanoindenter is used to measure the hardness and reduced modulus of the kerogen within Woodford shale. The same instrument also provides useful images of polished rock sections on a submicrometer scale. Measurements were carried out both parallel and perpendicular to the bedding plane.

  5. Hydraulic properties affected by topsoil thickness in switchgrass and corn-soybean cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Loss of productive topsoil by soil erosion over time can reduce the productive capacity of soil and can significantly affect soil hydraulic properties. This study evaluated the effects of reduced topsoil thickness and perennial switchgrass (Panicum virgatum L.) versus corn (Zea mays L.)/soybean [Gly...

  6. Ozone gas affects the physical and chemical properties of wheat (Triticum aestivum L.) starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ozone can oxidize hydroxyl groups present at C2, C3, and C6 positions on the starch molecule and affect its physicochemical properties. In this experiment, bread wheat flour and isolated wheat starch were treated with ozone gas (1,500 ppm, gas flow rate 2.5 L/minutes) for 45 minutes and 30 minutes, ...

  7. Scale Dependence of the Mechanical Properties and Microstructure of Crustaceans Thin Films as Biomimetic Materials

    NASA Astrophysics Data System (ADS)

    Verma, Devendra; Qu, Tao; Tomar, Vikas

    2015-04-01

    The exoskeletons of crustacean species in the form of thin films have been investigated by several researchers to better understand the role played by the exoskeletal structure in affecting the functioning of species such as shrimps, crabs, and lobsters. These species exhibit similar designs in their exoskeleton microstructure, such as a Bouligand pattern (twisted plywood structure), layers of different thickness across cross section, change in mineral content through the layers, etc. Different parts of crustaceans exhibit a significant variation in mechanical properties based on the variation in the above-mentioned parameters. This change in mechanical properties has been analyzed by using imaging techniques such as scanning electron microscopy and energy-dispersive x-ray spectroscopy, and by using mechanical characterization techniques such as nanoindentation and atomic force microscopy. In this article, the design principles of these biological composites are discussed based on two shrimp species: Rimicaris exoculata and Pandalus platyceros.

  8. Electromagnetic shielding effectiveness and mechanical properties of graphite-based polymeric films

    NASA Astrophysics Data System (ADS)

    Kenanakis, G.; Vasilopoulos, K. C.; Viskadourakis, Z.; Barkoula, N.-M.; Anastasiadis, S. H.; Kafesaki, M.; Economou, E. N.; Soukoulis, C. M.

    2016-09-01

    Modern electronics have nowadays evolved to offer highly sophisticated devices. It is not rare; however, their operation can be affected or even hindered by the surrounding electromagnetic radiation. In order to provide protection from undesired external electromagnetic sources and to ensure their unaffected performance, electromagnetic shielding is thus necessary. In this work, both the electromagnetic and mechanical properties of graphite-based polymeric films are studied. The investigated films show efficient electromagnetic shielding performance along with good mechanical stiffness for a certain graphite concentration. To the best of our knowledge, the present study illustrates for the first time both the electromagnetic shielding and mechanical properties of the polymer composite samples containing graphite filler at such high concentrations (namely 60-70 %). Our findings indicate that these materials can serve as potential candidates for several electronics applications.

  9. Effect of brief heat-curing on microstructure and mechanical properties in fresh cement based mortars

    SciTech Connect

    Ballester, P.; Hidalgo, A.; Marmol, I.; Morales, J.; Sanchez, L.

    2009-07-15

    The effect of temperature on fresh mortar and cement paste was evaluated by simulating the curing conditions of external buildings plastering applied under extremely hot weather. The specimens were heated at controlled temperatures in the 40-80 {sup o}C range by exposure to IR radiation over short periods. The effect of soaking for a short time was also examined. The results of compressive strength tests, scanning electron microscopy, infrared spectroscopy and mercury porosimetry helped to characterize the mechanical and physico-chemical properties of the studied sample. Early age behaviour (28 days) in neat cement was barely affected by the temperature. By contrast, exposure to high temperatures caused significant microstructural changes in the mortar. However, successive soaking over short periods was found to reactivate the mechanism of curing and restore the expected mechanical properties. Based on the results, application of cement based mortar at high temperatures is effective when followed by a short, specific soaking process.

  10. The Effects of Fluid Absorption on the Mechanical Properties of Joint Prostheses Components

    NASA Astrophysics Data System (ADS)

    Yarbrough, David; Viano, Ann

    2010-02-01

    Ultra-high-molecular-weight polyethylene (UHMWPE) is the material playing the role of cartilage in human prosthetic joints. Wear debris from UHMWPE is a common reason for joint arthroplasty failure, and the exact mechanism responsible for wear remains an area of investigation. In this study, the microstructure of UHMWPE was examined as a function of fluid absorption. Samples with varying exposure to e-beam radiation (as part of the manufacturing process) were soaked for forty days in saline or artificial synovial fluid, under zero or 100 lbs load. Samples were then tensile-tested according to ASTM D-3895. The post-stressed material was then examined by transmission electron microscopy to evaluate the molecular response to stress, which correlates with macroscopic mechanical properties. Three parameters of the crystalline lamellae were measured: thickness, stacking ratio, and alignment to stress direction. Results indicate that fluid absorption does affect the mechanical properties of UHMWPE at both the microscopic and microscopic levels. )

  11. Review of research on the mechanical properties of the human tooth

    PubMed Central

    Zhang, Ya-Rong; Du, Wen; Zhou, Xue-Dong; Yu, Hai-Yang

    2014-01-01

    ‘Bronze teeth' reflect the mechanical properties of natural teeth to a certain extent. Their mechanical properties resemble those of a tough metal, and the gradient of these properties lies in the direction from outside to inside. These attributes confer human teeth with effective mastication ability. Understanding the various mechanical properties of human teeth and dental materials is the basis for the development of restorative materials. In this study, the elastic properties, dynamic mechanical properties (visco-elasticity) and fracture mechanical properties of enamel and dentin were reviewed to provide a more thorough understanding of the mechanical properties of human teeth. PMID:24743065

  12. Electrical and dielectric properties of bovine trabecular bone--relationships with mechanical properties and mineral density.

    PubMed

    Sierpowska, J; Töyräs, J; Hakulinen, M A; Saarakkala, S; Jurvelin, J S; Lappalainen, R

    2003-03-21

    Interrelationships of trabecular bone electrical and dielectric properties with mechanical characteristics and density are poorly known. While electrical stimulation is used for healing fractures, better understanding of these relations has clinical importance. Furthermore, earlier studies have suggested that bone electrical and dielectric properties depend on the bone density and could, therefore, be used to predict bone strength. To clarify these issues, volumetric bone mineral density (BMDvol), electrical and dielectric as well as mechanical properties were determined from 40 cylindrical plugs of bovine trabecular bone. Phase angle, relative permittivity, loss factor and conductivity of wet bovine trabecular bone were correlated with Young's modulus, yield stress, ultimate strength, resilience and BMDvol. The reproducibility of in vitro electrical and dielectric measurements was excellent (standardized coefficient of variation less than 1%, for all parameters), especially at frequencies higher than 1 kHz. Correlations of electrical and dielectric parameters with the bone mechanical properties or density were frequency-dependent. The relative permittivity showed the strongest linear correlations with mechanical parameters (r > 0.547, p < 0.01, n = 40, at 50 kHz) and with BMDvol (r = 0.866, p < 0.01, n = 40, at 50 kHz). In general, linear correlations between relative permittivity and mechanical properties or BMDvol were highest at frequencies over 6 kHz. In addition, a significant site-dependent variation of electrical and dielectric characteristics, mechanical properties and BMDvol was revealed in bovine femur (p < 0.05, Kruskall-Wallis H-test). Based on the present results, we conclude that the measurement of electrical and dielectric properties provides quantitative information that is related to bone quantity and quality.

  13. Evaluation of the compressive mechanical properties of endoluminal metal stents.

    PubMed

    Schrader, S C; Beyar, R

    1998-06-01

    The mechanical properties of metal stents are important parameters in the consideration of stent design, matched to resist arterial recoil and vascular spasm. The purpose of this study was to develop a system for a standardized quantitative evaluation of the mechanical characteristics of various coronary stents. Several types of stents were compressed by external hydrostatic pressure. The stent diameter was assessed by placing a pair of small ultrasonic sono-crystals on the stent. From pressure-strain diagrams the ultimate strength and radial stiffness for each stent were determined. For all stents, except the MICRO-II and the Wiktor stent, the diameter decreased homogeneously until an ultimate compressive strength was exceeded, causing an abrupt collapse. Expanded to 3 mm, the mechanical behavior of the beStent, the Crown and the Palmaz-Schatz stent (PS153-series) were comparable. The spiral articulated Palmaz-Schatz stent showed twice the strength (1.26 atm) of the PS-153 (0.65 atm). The NIR stent yielded a maximum strength of 1.05 atm. The MICRO-II and the Wiktor stent did not collapse abruptly but rather showed a continuous decline of diameter with increasing external pressure. The Cardiocoil stent behaved in a fully elastic manner and showed the largest radial stiffness. Difference in mechanical properties between stents were documented using a new device specifically developed for that purpose. These mechanical stent parameters may have important clinical implications.

  14. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Taminger, Karen M. B.; Begley, Matthew

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties have been demonstrated for electron beam deposited aluminum and titanium alloys that are comparable to wrought products, although the microstructures of the deposits exhibit features more typical of cast material. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. In the current study, mechanical properties and resulting microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Material performance was evaluated based on tensile properties and results were compared with properties of Al 2219 wrought products. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains, typically with interior dendritic structures, which were described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  15. Crosstalk between focal adhesions and material mechanical properties governs cell mechanics and functions.

    PubMed

    Fusco, Sabato; Panzetta, Valeria; Embrione, Valerio; Netti, Paolo A

    2015-09-01

    Mechanical properties of materials strongly influence cell fate and functions. Focal adhesions are involved in the extremely important processes of mechanosensing and mechanotransduction. To address the relationship between the mechanical properties of cell substrates, focal adhesion/cytoskeleton assembly and cell functions, we investigated the behavior of NIH/3T3 cells over a wide range of stiffness (3-1000kPa) using two of the most common synthetic polymers for cell cultures: polyacrylamide and polydimethylsiloxane. An overlapping stiffness region was created between them to compare focal adhesion characteristics and cell functions, taking into account their different time-dependent behavior. Indeed, from a rheological point of view, polyacrylamide behaves like a strong gel (elastically), whereas polydimethylsiloxane like a viscoelastic solid. First, focal adhesion characteristics and dynamics were addressed in terms of material stiffness, then cell spreading area, migration rate and cell mechanical properties were correlated with focal adhesion size and assembly. Focal adhesion size was found to increase in the whole range of stiffness and to be in agreement in the overlapping rigidity region for the investigated materials. Cell mechanics directly correlated with focal adhesion lengths, whereas migration rate followed an inverse correlation. Cell spreading correlated with the substrate stiffness on polyacrylamide hydrogel, while no specific trend was found on polydimethylsiloxane. Substrate mechanics can be considered as a key physical cue that regulates focal adhesion assembly, which in turn governs important cellular properties and functions.

  16. Simulated Hail Ice Mechanical Properties and Failure Mechanism at Quasi-Static Strain Rates

    NASA Astrophysics Data System (ADS)

    Swift, Jonathan M.

    Hail is a significant threat to aircraft both on the ground and in the air. Aeronautical engineers are interested in better understanding the properties of hail to improve the safety of new aircraft. However, the failure mechanism and mechanical properties of hail, as opposed to clear ice, are not well understood. A literature review identifies basic mechanical properties of ice and a failure mechanism based upon the state of stress within an ice sphere is proposed. To better understand the properties of Simulated Hail Ice (SHI), several tests were conducted using both clear and cotton fiber reinforced ice. Pictures were taken to show the internal crystal structure of SHI. SHI crush tests were conducted to identify the overall force-displacement trends at various quasi-static strain rates. High speed photography was also used to visually track the failure mechanism of spherical SHI. Compression tests were done to measure the compression strength of SHI and results were compared to literature data. Fracture toughness tests were conducted to identify the crack resistance of SHI. Results from testing clear ice samples were successfully compared to previously published literature data to instill confidence in the testing methods. The methods were subsequently used to test and characterize the cotton fiber reinforced ice.

  17. Stretchable polyurethane sponge reinforced magnetorheological material with enhanced mechanical properties

    NASA Astrophysics Data System (ADS)

    Ge, Lin; Xuan, Shouhu; Liao, Guojiang; Yin, Tiantian; Gong, Xinglong

    2015-03-01

    A stretchable magnetorheological material (SMRM) consisting of micro-meter carbonyl iron (CI) particles, low cross-linking polyurethane (PU) polymer and porous PU sponge has been developed. Due to the presence of the PU sponge, the high-performance MR material can be reversibly stretched or bent, just as MR elastomers. When the CI content increases to 80 wt%, the magnetic induced modulus of the MR material can reach as high as 7.34 MPa and the corresponding relative MR effect increases to 820%. A possible strengthening mechanism of the SMRM was proposed. The attractive mechanical properties make the SMRM a promising candidate for future high-performance devices.

  18. Failure criterion for materials with spatially correlated mechanical properties.

    PubMed

    Faillettaz, J; Or, D

    2015-03-01

    The role of spatially correlated mechanical elements in the failure behavior of heterogeneous materials represented by fiber bundle models (FBMs) was evaluated systematically for different load redistribution rules. Increasing the range of spatial correlation for FBMs with local load sharing is marked by a transition from ductilelike failure characteristics into brittlelike failure. The study identified a global failure criterion based on macroscopic properties (external load and cumulative damage) that is independent of spatial correlation or load redistribution rules. This general metric could be applied to assess the mechanical stability of complex and heterogeneous systems and thus provide an important component for early warning of a class of geophysical ruptures.

  19. Structure and mechanical properties of liquid crystalline filaments

    SciTech Connect

    Eremin, Alexey; Nemes, Alexandru; Stannarius, Ralf; Schulz, Mario; Nadasi, Hajnalka; Weissflog, Wolfgang

    2005-03-01

    The formation of stable freely suspended filaments is an interesting peculiarity of some liquid crystal phases. So far, little is known about their structure and stability. Similarly to free-standing smectic films, an internal molecular structure of the mesophase stabilizes these macroscopically well-ordered objects with length to diameter ratios of 10{sup 3} and above. In this paper, we report observations of smectic liquid crystal fibers formed by bent-shaped molecules in different mesophases. Our study, employing several experimental techniques, focuses on mechanical and structural aspects of fiber formation such as internal structure, stability, and mechanical and optical properties.

  20. Effective mechanical properties of hexagonal boron nitride nanosheets.

    PubMed

    Boldrin, L; Scarpa, F; Chowdhury, R; Adhikari, S

    2011-12-16

    We propose an analytical formulation to extract from energy equivalence principles the equivalent thickness and in-plane mechanical properties (tensile and shear rigidity, and Poisson's ratio) of hexagonal boron nitride (h-BN) nanosheets. The model developed provides not only very good agreement with existing data available in the open literature from experimental, density functional theory (DFT) and molecular dynamics (MD) simulations, but also highlights the specific deformation mechanisms existing in boron nitride sheets, and their difference with carbon-based graphitic systems.

  1. Performance pressure and caffeine both affect cognitive performance, but likely through independent mechanisms.

    PubMed

    Boere, Julia J; Fellinger, Lizz; Huizinga, Duncan J H; Wong, Sebastiaan F; Bijleveld, Erik

    2016-02-01

    A prevalent combination in daily life, performance pressure and caffeine intake have both been shown to impact people's cognitive performance. Here, we examined the possibility that pressure and caffeine affect cognitive performance via a shared pathway. In an experiment, participants performed a modular arithmetic task. Performance pressure and caffeine intake were orthogonally manipulated. Findings indicated that pressure and caffeine both negatively impacted performance. However, (a) pressure vs. caffeine affected performance on different trial types, and (b) there was no hint of an interactive effect. So, though the evidence is indirect, findings suggest that pressure and caffeine shape performance via distinct mechanisms, rather than a shared one.

  2. Evolution of microstructure and mechanical properties during Q&P processing of medium-carbon steels with different silicon levels

    NASA Astrophysics Data System (ADS)

    Jenicek, S.; Vorel, I.; Kana, J.; Opatova, K.; Rubesova, K.; Kotesovec, V.; Masek, B.

    2017-03-01

    Evolution of microstructure during heat treatment plays a fundamental role in the resulting mechanical properties of steel. Today, mechanical properties in conjunction with technological properties, such as weldability, formability, and machinability, and their optimum combinations, are widely discussed in a number of mechanical engineering disciplines. In this manner, requirements arise for developing steels which could offer high strength and good formability, and which could be used for making parts with high resistance to failure and with a long life. One present-day example of such steels involves Q&P-processed martensitic steels. Their properties are dictated by their treatment, as well as their alloying, particularly by the silicon content. Silicon fundamentally affects microstructure evolution during Q&P processing and, as a result, mechanical properties. With this way it is possible to receive microstructures consinsting of martensite and retained austenite with an ultimate tensile stress of more than 1600 MPa and a uniform elongation of more than 12 %.

  3. Prediction of Mechanical Properties of Polymers With Various Force Fields

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The effect of force field type on the predicted elastic properties of a polyimide is examined using a multiscale modeling technique. Molecular Dynamics simulations are used to predict the atomic structure and elastic properties of the polymer by subjecting a representative volume element of the material to bulk and shear finite deformations. The elastic properties of the polyimide are determined using three force fields: AMBER, OPLS-AA, and MM3. The predicted values of Young s modulus and shear modulus of the polyimide are compared with experimental values. The results indicate that the mechanical properties of the polyimide predicted with the OPLS-AA force field most closely matched those from experiment. The results also indicate that while the complexity of the force field does not have a significant effect on the accuracy of predicted properties, small differences in the force constants and the functional form of individual terms in the force fields determine the accuracy of the force field in predicting the elastic properties of the polyimide.

  4. Quantitative ultrasonic evaluation of mechanical properties of engineering materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1978-01-01

    Current progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength properties of engineering materials is reviewed. Even where conventional NDE techniques have shown that a part is free of overt defects, advanced NDE techniques should be available to confirm the material properties assumed in the part's design. There are many instances where metallic, composite, or ceramic parts may be free of critical defects while still being susceptible to failure under design loads due to inadequate or degraded mechanical strength. This must be considered in any failure prevention scheme that relies on fracture analysis. This review will discuss the availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions.

  5. A Review of the Mechanical Properties of Concrete Containing Biofillers

    NASA Astrophysics Data System (ADS)

    Ezdiani Mohamad, Mazizah; Mahmood, Ali A.; Min, Alicia Yik Yee; Khalid, Nur Hafizah A.

    2016-11-01

    Sustainable construction is a rapidly increasing research area. Investigators of all backgrounds are using industrial and agro wastes to replace Portland cement in concrete to reduce greenhouse emissions and the corresponding decline in general health. Many types of wastes have been used as cement replacements in concrete including: fly ash, slag and rice husk ash in addition to others. This study investigates the possibility of producing a sustainable approach to construction through the partial replacement of concrete using biofillers. This will be achieved by studying the physical and mechanical properties of two widely available biological wastes in Malaysia; eggshell and palm oil fuel ash (POFA). The mechanical properties tests that were studied and compared are the compression, tensile and flexural tests.

  6. On the mechanical properties of selenite glass nanocomposites

    NASA Astrophysics Data System (ADS)

    Bar, Arun Kr.; Kundu, Ranadip; Roy, Debasish; Bhattacharya, Sanjib

    2016-05-01

    In this paper the room temperature micro-hardness of selenite glass-nanocomposites has been measured using a Vickers and Knoop micro hardness tester where the applied load varies from 0.01N to 0.98 N. A significant indentation size effect was observed for each sample at relatively low indentation test loads. The classical Meyer's law and the proportional specimen resistance model were used to analyze the micro-hardness behavior. It was found that the selenite glass-nanocomposite becomes harder with increasing CuI composition and the work hardening coefficient and mechanical properties like Young modulus, E, were also calculated. Our results open the way for the preparation, application and investigation of significant mechanical properties of new type of glass-nanocomposites.

  7. Computer simulations of the mechanical properties of metals.

    PubMed

    Schiøtz, J; Vegge, T

    1999-01-01

    Atomic-scale computer simulations can be used to gain a better understanding of the mechanical properties of materials. In this paper we demonstrate how this can be done in the case of nanocrystalline copper, and give a brief overview of how simulations may be extended to larger length scales. Nanocrystline metals are metals with grain sizes in the nanometre range, they have a number of technologically interesting properties such as much increased hardness and yield strength. Our simulations show that the deformation mechanisms are different in these materials than in coarse-grained materials. The main deformation is occurring in the grain boundaries, and only little dislocation activity is seen inside the grains. This leads to a hardening of the material as the grain size is increased, and the volume fraction of grain boundaries is decreased.

  8. Ultrasound Study of the Mechanical Properties of the Arterial Wall

    NASA Astrophysics Data System (ADS)

    Bernal Restrepo, Miguel

    Arterial elasticity has become an important predictor of cardiovascular diseases and mortality in the past few of decades. Several in vivo and ex vivo techniques have been developed to characterize the elastic properties of vessels. In vivo approaches, even though have shown correlation of diseases and mortality with arterial elasticity in population studies, are not widely used as a clinical tool for the diagnosis and follow up of patients. Ex vivo techniques have focused their efforts on studying the mechanical properties of the arterial tissue in different axes. These techniques are usually destructive testing methods which can not be applied in an in vivo setting. In this work we present two different approaches to the characterization of the mechanical properties of arterial wall. One of the methodologies presented here uses piezoelectric elements attached to the arterial wall to measure the strain and the stresses in two directions (circumferential and longitudinal) as the arteries are pressurized. The second part of this works focuses on a technique that uses ultrasound radiation force to generate mechanical waves in the arterial wall. These waves are measured and analyzed in the frequency domain to determine the different modes of propagation and from there, estimate the material properties of the wall tissue. This technique has a high temporal resolution which will allow the dynamic study of the elastic and viscous properties throughout the heart cycle. At the same time the method posses a high spatial resolution allowing the characterization of different vascular segments within the arterial tree. We are currently working on the implementation of this methodology in a clinical system for the translation into a clinical setting.

  9. Mechanical properties of polymeric composites with carbon dioxide particles

    NASA Astrophysics Data System (ADS)

    Moskalyuk, O. A.; Samsonov, A. M.; Semenova, I. V.; Smirnova, V. E.; Yudin, V. E.

    2017-02-01

    Nanocomposites consisting of a polymethylmethacrylate or polystyrene matrix with embedded silicon dioxide nanoparticles surface-modified by silazanes have been prepared by melting technology. The influence of particles on viscoelastic properties of the nanocomposites has been studied using dynamic mechanical analysis. It has been revealed that the addition of 20 wt % of SiO2 raises the flexural modulus of the nanocomposites by 30%.

  10. ORMOSIL thin films: tuning mechanical properties via a nanochemistry approach.

    PubMed

    Palmisano, Giovanni; Le Bourhis, Eric; Ciriminna, Rosaria; Tranchida, Davide; Pagliaro, Mario

    2006-12-19

    The mechanical properties (hardness and elastic modulus) of organically modified silicate thin films can be finely tuned by varying the degree of alkylation and thus the fraction of six- and four-membered siloxane rings in the organosilica matrix. This opens the way to large tunability of parameters that are of crucial practical importance for films that are finding increasing application in numerous fields ranging from microelectronics to chemical sensing.

  11. Mechanical and thermophysical properties of hot-pressed SYNROC B

    SciTech Connect

    Hoenig, C.L.; Newkirk, H.W.; Otto, R.A.; Brady, R.L.; Brown, A.E.; Ulrich, A.R.; Lum, R.C.

    1981-05-06

    The optimal SYNROC compositons for use with commercial waste are reviewed. Large amounts of powder (about 2.5 kg) were prepared by convention al ceramic operations to test the SYNROC concept on a processing scale. Samples, 15.2 cm in diameter, were hot pressed in graphite, and representative samples were cut for microstructural evaluations. Measured mechanical and thermophysical properties did not vary significantly as a function of sample location and were typical of titanate ceramic materials.

  12. High Strain Rate Mechanical Properties of Glassy Polymers

    DTIC Science & Technology

    2012-07-25

    Force Materiel Command  United States Air Force  Eglin Air Force Base AFRL-RW-EG-TP-2012-008 High Strain Rate...TITLE AND SUBTITLE High Strain Rate Mechanical Properties of Glassy Polymers 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...1990s, a range of experimental data has been generated describing the response of glassy polymers to high strain rate loading in compression. More

  13. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry

    NASA Astrophysics Data System (ADS)

    Aho, Johnathon M.; Qiang, Bo; Wigle, Dennis A.; Tschumperlin, Daniel J.; Urban, Matthew W.

    2016-07-01

    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal-submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa-submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered esophageal

  14. Mechanical properties of D0 Run IIB silicon detector staves

    SciTech Connect

    Lanfranco, Giobatta; Fast, James; /Fermilab

    2001-06-01

    A proposed stave design for the D0 Run IIb silicon tracker outer layers featuring central cooling channels and a composite shell mechanical structure is evaluated for self-deflection and deflection due to external loads. This paper contains an introduction to the stave structure, a section devoted to composite lamina and laminate properties and finally a section discussing the beam deflections expected for assembled staves using these laminates.

  15. Interface Characteristics and the Mechanical Properties of Metal Matrix Composites.

    DTIC Science & Technology

    1987-09-28

    oxide were identified to most probably be y - A120 3 or the MgAI20 4 type spinel. Details are given in Appendix K. Summary -. The research reported ...Zecas aT Austit. INTERFACE CHARACTERISTICS AND THE MECHANICAL PROPERTIES OF METAL MATRIX COMPOSITES UTCMSE-87-3 Office of Naval Research Technical Report ...THIS PAGE (When Date Entered) READ INSTRUCTIONSREPORT DOCUMENTATION PAGE I RE COSPLETIOR~BEFORE MPLETING FORM VI REPORT NUMBER 2. GOVT ACCESSION NO., 3

  16. Effect of Preheating on the Mechanical Properties of Resin Composites

    PubMed Central

    Uctasli, Mine Betül; Arisu, Hacer Deniz; Lasilla, Lippo VJ; Valittu, Pekka K.

    2008-01-01

    Objectives The purpose of this study was to compare the flexural strength and modulus of two commercial resin composites, at room temperature and 40, 45 and 50°C prior to light polymerization with standard and step-cure protocols. Methods One nanohybrid (Grandio, VOCO, Cuxhaven, Germany), and microhybrid composite resin (Filtek Z250, 3M ESPE, St. Paul, MN, USA) were used. The materials were inserted into rectangular moulds at room temperature or preheated to a temperature of 40, 45 or 50°C and cured with standard or step-cure protocols with high intensity halogen (Elipar Highlight, 3M-ESPE, St. Paul, MN, USA). Ten specimens were prepared for each preheating and light curing protocol. A three-point bending test was performed using a universal testing machine at a crosshead speed of 1 mm/min. The data were analyzed by one-way analysis of variance and Tukey’s post hoc tests (P<.05) to examine the effect of curing protocol and preheating. Pearson’s correlation test was used to determine the correlation between tested mechanical properties and preheating. Results There were no statistically significant difference between tested mechanical properties of the materials, curing protocols and temperature of the materials. No significant correlation was found between preheating and tested mechanical properties. Conclusions The mechanical properties of the tested materials did not changed by preheating so the tested materials could be preheated because of the other potential clinical advantages like more adaptation to the cavity walls. PMID:19212532

  17. The mechanical properties of density graded hemp/polyethylene composites

    NASA Astrophysics Data System (ADS)

    Dauvegis, Raphaël; Rodrigue, Denis

    2015-05-01

    In this work, the production and mechanical characterization of density graded biocomposites based on high density polyethylene and hemp fibres was performed. The effect of coupling agent addition (maleated polyethylene) and hemp content (0-30%) was studied to determine the effect of hemp distribution (graded content) inside the composite (uniform, linear, V and Λ). Tensile and flexural properties are reported to compare the structures, especially in terms of their stress-strain behaviors under tensile loading.

  18. A comparison of mechanical properties of some foams and honeycombs

    NASA Technical Reports Server (NTRS)

    Bhat, Balakrishna T.; Wang, T. G.

    1990-01-01

    A comparative study is conducted of the mechanical properties of foam-core and honeycomb-core sandwich panels, using a normalizing procedure based on common properties of cellular solids and related properties of dense solids. Seven different honeycombs and closed-foam cells are discussed; of these, three are commercial Al alloy honeycombs, one is an Al-alloy foam, and two are polymeric foams. It is concluded that ideal, closed-cell foams may furnish compressive strengths which while isotropic can be fully comparable to the compressive strengths of honeycombs in the thickness direction. The shear strength of ideal closed-cell foams may be superior to the shear strength of honeycombs.

  19. Conductive magnetorheological elastomer: fatigue dependent impedance-mechanic coupling properties

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Xuan, Shouhu; Ge, Lin; Wen, Qianqian; Gong, Xinglong

    2017-01-01

    This work investigated the relationship between the impedance properties and dynamic mechanical properties of magnetorheological elastomers (MREs) under fatigue loading. The storage modulus and the impedance properties of MREs were highly influenced by the pressure and magnetic field. Under the same experimental condition, the two characteristics exhibited similar fatigue dependent change trends. When pressure was smaller than 10 N, the capacitance of MRE could be divided into four sections with the increase of the cyclic numbers. The relative equivalent circuit model was established to fit the experimental results of the impedance spectra. Each parameter of circuit element reflected the change of fatigue loading, relative microstructure of MRE, MRE-electrode interface layer, respectively. Based on the above analysis, the real-time and nondestructive impedance method was demonstrated to be high potential on detecting the fatigue of the MRE device.

  20. Rubber-toughened cyanate composites - Properties and toughening mechanism

    NASA Technical Reports Server (NTRS)

    Yang, P. C.; Woo, E. P.; Laman, S. A.; Jakubowski, J. J.; Pickelman, D. M.; Sue, H. J.

    1991-01-01

    Earlier work by Young et al. (1990) has shown that Dow experimental cyanate ester resin XU71787.02 is readily toughenable by rubber. A particularly effective rubber for this purpose is an experimental core-shell rubber which toughens the polymer by inducing shear yielding. This paper describes an investigation into the toughening mechanism in the corresponding carbon-fiber composite systems and the effect of fibers on composite properties. Resin-fiber interfacial shear strengths have been successfully correlated to the compressive strengths after impact and other key properties of composites based on rubber-toughened cyanate and several carbon fibers. The differences in the properties are explained by the difference in the functioning of the rubber particles during the fracture process.

  1. High-Mn steel weldment mechanical properties at 4 K

    SciTech Connect

    Chan, J.W.; Sunwoo, A.J.; Morris, J.W. Jr.

    1988-06-01

    Advanced high-field superconducting magnets of the next generation of magnetic confinement fusion devices will require structural alloys with high yield strength and high toughness at cryogenic temperatures. Commercially available alloys used in the current generation of magnets, such as 300 series stainless steels, do not have the required properties. N-strengthened, high-Mn alloys meet base plate requirements in the as-rolled condition. However, the property changes associated with weld microstructural and chemical changes in these alloys have not been well characterized. In this work welding induced cryogenic mechanical property changes of an 18Mn-16Cr-5Ni-0.2N alloy are correlated with as-solidified weld microstructures and chemistries. 30 refs., 12 figs., 3 tabs.

  2. Protocol dependence of mechanical properties in granular systems.

    PubMed

    Inagaki, S; Otsuki, M; Sasa, S

    2011-11-01

    We study the protocol dependence of the mechanical properties of granular media by means of computer simulations. We control a protocol of realizing disk packings in a systematic manner. In 2D, by keeping material properties of the constituents identical, we carry out compaction with various strain rates. The disk packings exhibit the strain rate dependence of the critical packing fraction above which the pressure becomes non-zero. The observed behavior contrasts with the well-studied jamming transitions for frictionless disk packings. We also observe that the elastic moduli of the disk packings depend on the strain rate logarithmically. Our results suggest that there exists a time-dependent state variable to describe macroscopic material properties of disk packings, which depend on its protocol.

  3. Structure and mechanical properties of Octopus vulgaris suckers

    PubMed Central

    Tramacere, Francesca; Kovalev, Alexander; Kleinteich, Thomas; Gorb, Stanislav N.; Mazzolai, Barbara

    2014-01-01

    In this study, we investigate the morphology and mechanical features of Octopus vulgaris suckers, which may serve as a model for the creation of a new generation of attachment devices. Octopus suckers attach to a wide range of substrates in wet conditions, including rough surfaces. This amazing feature is made possible by the sucker's tissues, which are pliable to the substrate profile. Previous studies have described a peculiar internal structure that plays a fundamental role in the attachment and detachment processes of the sucker. In this work, we present a mechanical characterization of the tissues involved in the attachment process, which was performed using microindentation tests. We evaluated the elasticity modulus and viscoelastic parameters of the natural tissues (E ∼ 10 kPa) and measured the mechanical properties of some artificial materials that have previously been used in soft robotics. Such a comparison of biological prototypes and artificial material that mimics octopus-sucker tissue is crucial for the design of innovative artificial suction cups for use in wet environments. We conclude that the properties of the common elastomers that are generally used in soft robotics are quite dissimilar to the properties of biological suckers. PMID:24284894

  4. [Mechanical properties of wiredrawn Ag-Pd-Cu alloys].

    PubMed

    Hasegawa, T; Miyagawa, Y; Nakamura, K

    1989-01-01

    Nine experimental Ag-Pd-Cu ternary alloys, containing 20-30 wt% Pd and 10-20 wt% Cu, were cast into rods 4.5 mm in diameter using an original vacuum/argon-pressure oxide-free casting technique. Test samples 2.0 mm in diameter were made from the rods by wire-drawing. After softening and hardening heat treatments, mechanical properties (modulus of elasticity, elastic limit, proof stress, tensile strength, elongation, and Vickers hardness) of the samples were measured to analyze the effects of composition and fifteen sets of correlations between the mechanical properties on the condition that few internal casting defects existed. After softening heat treatment, values of hardness and strength increased with increasing Cu and Pd contents, while they increased approximately with increasing Pd content after hardening heat treatment. After softening and hardening heat treatments, tensile strength ranged from 44.4 to 60.7 and from 68.1 to 89.1 kgf/mm2, respectively. Values of elongation were more than 10% even after hardening heat treatment. Fourteen out of fifteen correlation coefficients (r) were statistically significant (p less than 0.01). One of the regression lines derived was as follows. Tensile strength (kgf/mm2) = 9.1 +/- 0.305 Hv (r = 0.990) Moreover, the mechanical properties observed in this investigation were compared with those of ordinarily cast samples with the same compositions.

  5. Multi-axial mechanical properties of human trabecular bone.

    PubMed

    Rincón-Kohli, Liliana; Zysset, Philippe K

    2009-06-01

    In the context of osteoporosis, evaluation of bone fracture risk and improved design of epiphyseal bone implants rely on accurate knowledge of the mechanical properties of trabecular bone. A multi-axial loading chamber was designed, built and applied to explore the compressive multi-axial yield and strength properties of human trabecular bone from different anatomical locations. A thorough experimental protocol was elaborated for extraction of cylindrical bone samples, assessment of their morphology by micro-computed tomography and application of different mechanical tests: torsion, uni-axial traction, uni-axial compression and multi-axial compression. A total of 128 bone samples were processed through the protocol and subjected to one of the mechanical tests up to yield and failure. The elastic data were analyzed using a tensorial fabric-elasticity relationship, while the yield and strength data were analyzed with fabric-based, conewise generalized Hill criteria. For each loading mode and more importantly for the combined results, strong relationships were demonstrated between volume fraction, fabric and the elastic, yield and strength properties of human trabecular bone. Despite the reviewed limitations, the obtained results will help improve the simulation of the damage behavior of human bones and bone-implant systems using the finite element method.

  6. Bulk Mechanical Properties of Single Walled Carbon Nanotube Electrodes

    NASA Astrophysics Data System (ADS)

    Giarra, Matthew; Landi, Brian; Cress, Cory; Raffaelle, Ryne

    2007-03-01

    The unique properties of single walled carbon nanotubes (SWNTs) make them especially well suited for use as electrodes in power devices such as lithium ion batteries, hydrogen fuel cells, solar cells, and supercapacitors. The performances of such devices are expected to be influenced, at least in part, by the mechanical properties of the SWNTs used in composites or in stand alone ``papers.'' Therefore, the elastic moduli and ultimate tensile strengths of SWNT papers were measured as functions of temperature, SWNT purity, SWNT length, and SWNT bundling. The SWNTs used to produce the papers were synthesized in an alexandrite laser vaporization reactor at 1100^oC and purified using conventional acid-reflux conditions. Characterization of the SWNTs was performed using SEM, BET, TGA, and optical and Raman spectroscopy. The purified material was filtered and dried to yield papers of bundled SWNTs which were analyzed using dynamic mechanical analysis (DMA). It was observed that the mechanical properties of acid-refluxed SWNT papers were significantly improved by controlled thermal oxidation and strain-hardening. Elastic moduli of SWNT papers were measured between 3 and 6 GPa. Ultimate (breaking) tensile stresses were measured between 45 and 90 MPa at 1-3% strain. These results and their implications in regard to potential applications in power devices will be discussed.

  7. Reconstruction of Sedimentary Rock Based on MechanicalProperties

    SciTech Connect

    Jin, Guodong; Patzek, Tad W.; Silin, Dmitry B.

    2004-05-04

    We describe a general, physics-based approach to numericalreconstruction of the geometrical structure and mechanical properties ofnatural sedimentary rock in 3D. Our procedure consists of three mainsteps: sedimentation, compaction, and diagenesis, followed by theverification of rock mechanical properties. The dynamic geologicprocesses of grain sedimentation and compaction are simulated by solvinga dimensionless form of Newton's equations of motion for an ensemble ofgrains. The diagenetic rock transformation is modeled using a cementationalgorithm, which accounts for the effect of rock grain size on therelative rate of cement overgrowth. Our emphasis is on unconsolidatedsand and sandstone. The main input parameters are the grain sizedistribution, the final rock porosity, the type and amount of cement andclay minerals, and grain mechanical properties: the inter-grain frictioncoefficient, the cement strength, and the grain stiffness moduli. We usea simulated 2D Fontainebleau sandstone to obtain the grain mechanicalproperties. This Fontainebleau sandstone is also used to study theinitiation, growth, and coalescence of micro-cracks under increasingvertical stress. The box fractal dimension of the micro-crackdistribution, and its variation with the applied stress areestimated.

  8. Mechanical Properties of a Primary Cilium Measured by Resonant Oscillation

    NASA Astrophysics Data System (ADS)

    Resnick, Andrew

    Primary cilia are ubiquitous mammalian cellular substructures implicated in an ever-increasing number of regulatory pathways. The well-established `ciliary hypothesis' states that physical bending of the cilium (for example, due to fluid flow) initiates signaling cascades, yet the mechanical properties of the cilium remain incompletely measured, resulting in confusion regarding the biological significance of flow-induced ciliary mechanotransduction. In this work we measure the mechanical properties of a primary cilium by using an optical trap to induce resonant oscillation of the structure. Our data indicate 1), the primary cilium is not a simple cantilevered beam, 2), the base of the cilium may be modeled as a nonlinear rotatory spring, the linear spring constant `k' of the cilium base calculated to be (4.6 +/- 0.62)*10-12 N/rad and nonlinear spring constant ` α' to be (-1 +/- 0.34) *10-10 N/rad2 , and 3) the ciliary base may be an essential regulator of mechanotransduction signalling. Our method is also particularly suited to measure mechanical properties of nodal cilia, stereocilia, and motile cilia, anatomically similar structures with very different physiological functions.

  9. Structure and mechanical properties of Octopus vulgaris suckers.

    PubMed

    Tramacere, Francesca; Kovalev, Alexander; Kleinteich, Thomas; Gorb, Stanislav N; Mazzolai, Barbara

    2014-02-06

    In this study, we investigate the morphology and mechanical features of Octopus vulgaris suckers, which may serve as a model for the creation of a new generation of attachment devices. Octopus suckers attach to a wide range of substrates in wet conditions, including rough surfaces. This amazing feature is made possible by the sucker's tissues, which are pliable to the substrate profile. Previous studies have described a peculiar internal structure that plays a fundamental role in the attachment and detachment processes of the sucker. In this work, we present a mechanical characterization of the tissues involved in the attachment process, which was performed using microindentation tests. We evaluated the elasticity modulus and viscoelastic parameters of the natural tissues (E ∼ 10 kPa) and measured the mechanical properties of some artificial materials that have previously been used in soft robotics. Such a comparison of biological prototypes and artificial material that mimics octopus-sucker tissue is crucial for the design of innovative artificial suction cups for use in wet environments. We conclude that the properties of the common elastomers that are generally used in soft robotics are quite dissimilar to the properties of biological suckers.

  10. Novel F-releasing Composite with Improved Mechanical Properties

    PubMed Central

    Ling, L.; Xu, X.; Choi, G.-Y.; Billodeaux, D.; Guo, G.; Diwan, R.M.

    2009-01-01

    In recent years, the authors have been developing novel fluoride-releasing dental composites containing ternary zirconium fluoride chelates. The aim of this study was to improve the physical and mechanical properties of these composites by improving the formulation of the monomers and photoinitiators. The hypothesis was that reduction of hydrophilic monomers and improvement of the photoinitiators could reduce water sorption and significantly increase the mechanical properties of the composite. The degree of conversion of the composites containing different compositions of photoinitiators was studied by Fourier transform near-infrared spectroscopy (FT-NIR). Ten experimental composites containing different compositions of ethoxylated bisphenol-A dimethacrylate (EBPADMA), 1,6-hexanediol dimethacrylate (HDDMA), triethylene glycol dimethacrylate (TEGDMA), and 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)phenyl]-propane (BisGMA) were tested for flexural strength, viscosity, and water sorption. The experimental composite containing 20% synthesized fluoride-releasing monomer, 30% BisGMA, 30% EBPADMA, and 20% HDDMA showed significantly higher fluoride release and recharge, but physical and mechanical properties similar to those of the control composite containing 40% BisGMA, 40% EBPADMA, and 20% HDDMA. PMID:19131323

  11. Enhanced mechanical properties of nanocomposites at low graphene content.

    PubMed

    Rafiee, Mohammad A; Rafiee, Javad; Wang, Zhou; Song, Huaihe; Yu, Zhong-Zhen; Koratkar, Nikhil

    2009-12-22

    In this study, the mechanical properties of epoxy nanocomposites with graphene platelets, single-walled carbon nanotubes, and multi-walled carbon nanotube additives were compared at a nanofiller weight fraction of 0.1 +/- 0.002%. The mechanical properties measured were the Young's modulus, ultimate tensile strength, fracture toughness, fracture energy, and the material's resistance to fatigue crack propagation. The results indicate that graphene platelets significantly out-perform carbon nanotube additives. The Young's modulus of the graphene nanocomposite was approximately 31% greater than the pristine epoxy as compared to approximately 3% increase for single-walled carbon nanotubes. The tensile strength of the baseline epoxy was enhanced by approximately 40% with graphene platelets compared to approximately 14% improvement for multi-walled carbon nanotubes. The mode I fracture toughness of the nanocomposite with graphene platelets showed approximately 53% increase over the epoxy compared to approximately 20% improvement for multi-walled carbon nanotubes. The fatigue resistance results also showed significantly different trends. While the fatigue suppression response of nanotube/epoxy composites degrades dramatically as the stress intensity factor amplitude is increased, the reverse effect is seen for graphene-based nanocomposites. The superiority of graphene platelets over carbon nanotubes in terms of mechanical properties enhancement may be related to their high specific surface area, enhanced nanofiller-matrix adhesion/interlocking arising from their wrinkled (rough) surface, as well as the two-dimensional (planar) geometry of graphene platelets.

  12. Mechanical Properties of Calcium Fluoride-Based Composite Materials

    PubMed Central

    Kleczewska, Joanna; Pryliński, Mariusz; Podlewska, Magdalena; Sokołowski, Jerzy; Łapińska, Barbara

    2016-01-01

    Aim of the study was to evaluate mechanical properties of light-curing composite materials modified with the addition of calcium fluoride. The study used one experimental light-curing composite material (ECM) and one commercially available flowable light-curing composite material (FA) that were modified with 0.5–5.0 wt% anhydrous calcium fluoride. Morphology of the samples and uniformity of CaF2 distribution were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). Mechanical properties were tested after 24-hour storage of specimens in dry or wet conditions. Stored dry ECM enriched with 0.5–1.0 wt% CaF2 showed higher tensile strength values, while water storage of all modified ECM specimens decreased their tensile strength. The highest Vickers hardness tested after dry storage was observed for 2.5 wt% CaF2 content in ECM. The addition of 2.0–5.0 wt% CaF2 to FA caused significant decrease in tensile strength after dry storage and overall tensile strength decrease of modified FA specimens after water storage. The content of 2.0 wt% CaF2 in FA resulted in the highest Vickers hardness tested after wet storage. Commercially available composite material (FA), unmodified with fluoride addition, demonstrated overall significantly higher mechanical properties. PMID:28004001

  13. Mechanical properties of several magnesium and aluminum composites. Final report

    SciTech Connect

    Tsangarakis, N.; Taleghani, B.

    1992-12-01

    Several composites of magnesium and aluminum alloys were tested in order to assess and evaluate their mechanical properties. The magnesium alloys were AZ91 C, ZE41 A, and commercially pure magnesium, reinforced with 40% by volume continuous graphite fiber. The tensile properties of these composites were not superior to those of unreinforced magnesium and estimates of their fracture toughness were low. The matrices of the aluminum composites were 2124-T6, 6061-T4, 2124-T4, and 2219-T4. The reinforcements were either particulate or whiskers of silicon carbide or boron carbide and their volume content was 15% to 30%. The aluminum composites which were reinforced with silicon carbide particulate exhibited improved yield and ultimate tensile stresses, as well as tensile elastic modulus over the unreinforced aluminum alloys. The 2124-T4/B4C/25p composite exhibited the highest ultimate tensile strength which was 511 MPa. The composite which was reinforced with whiskers of silicon carbide exhibited an endurance limit which was 20% higher than that of the matrix alloy. The compressive properties and fracture toughness of some of these aluminum composites were not improved over those of the unreinforced matrix alloy.... Composites, Mechanical properties.

  14. Measurement of the Mechanical Properties of Intact Collagen Fibrils

    NASA Astrophysics Data System (ADS)

    Mercedes, H.; Heim, A.; Matthews, W. G.; Koob, T.

    2006-03-01

    Motivated by the genetic disorder Ehlers-Danlos syndrome (EDS), in which proper collagen synthesis is interrupted, we are investigating the structural and mechanical properties of collagen fibrils. The fibrous glycoprotein collagen is the most abundant protein found in the human body and plays a key role in the extracellular matrix of the connective tissue, the properties of which are altered in EDS. We have selected as our model system the collagen fibrils of the sea cucumber dermis, a naturally mutable tissue. This system allows us to work with native fibrils which have their proteoglycan complement intact, something that is not possible with reconstituted mammalian collagen fibrils. Using atomic force microscopy, we measure, as a function of the concentration of divalent cations, the fibril diameter, its response to force loading, and the changes in its rigidity. Through these experiments, we will shed light on the mechanisms which control the properties of the sea cucumber dermis and hope to help explain the altered connective tissue extracellular matrix properties associated with EDS.

  15. Hierarchical graphene nanoribbon assemblies feature unique electronic and mechanical properties

    NASA Astrophysics Data System (ADS)

    Xu, Zhiping; Buehler, Markus J.

    2009-09-01

    Graphene nanoribbons present intriguing electronic properties due to their characteristic size and edge shape, and have been suggested for a wide range of applications from electronics to electromechanical systems. To bridge the scales from their nanostructural geometry—the key for their unique properties—to the requirements critical for large-scale electronics and device applications, here we propose a de novo hierarchical material assembled from functionalized graphene nanoribbons stabilized through hydrogen bonds, mimicking the structure of beta-sheet proteins. By investigating their mechanical and electronic properties through first principles calculations, we demonstrate that hierarchical graphene nanoribbons not only preserve the unique electronic properties of individual graphene nanoribbons in the bulk, but are also energetically and mechanically stable. Specifically, we find that the energy gap of the bulk material shrinks as the width of the constituting graphene nanoribbons increases. The tuning of bulk material properties through controlling the nanostructure enables the synthesis of a broader class of biomimetic multifunctional mechanomutable and electromutable nanomaterials for electromechanical applications.

  16. The frame retardant, mechanical properties, thermal properties and permeability of biodegradable polymers

    NASA Astrophysics Data System (ADS)

    Zuo, Xianghao

    polyethylene (LDPE), polypropylene (PP) and poly (lactic acid) (PLA). And the nanoparticles we used are, closite clays, graphene (GNPs), melamine polyphosphate (MPP), and molybdenum disulfide (MoS2). We successfully obtained some materials which have excellent frame retardancy properties. We also get some materials that reduce the gas permeation with the help of these nano-particles. In this paper, we studied and demonstrated the MPP is a great agent when mixed with PLA and become an excellent self-extinguish material, which can achieve the request of V0 of UL-94 test. We demonstrated that, when PP is mixed with MoS2, MoS 2 has a good dispersion in PP, so it is helpful to reduce the gas diffusion in PP, this will be proved by the scanning electron microscope (SEM) test. As it is known, crystallinity plays an important role to affect the gas permeation, we did differential scanning calorimetry (DSC) to calculate the crystallinity and study the migration of the melting temperature of PP/MoS2 system. Furthermore, we also test the mechanical properties of these materials such as Izod test which can provide the impact strength of the materials and tensile test which can help us with the modulus of the materials. We found that the modulus of PP/MoS2 system is enhanced and the impact strength is maintained.

  17. How does γ-irradiation affect the properties of a microfiltration membrane constituted of two polymers with different radiolytic behavior?

    NASA Astrophysics Data System (ADS)

    Fortin, Nicolas; Albela, Belén; Bonneviot, Laurent; Rouif, Sophie; Sanchez, Jean-Yves; Portinha, Daniel; Fleury, Etienne

    2012-03-01

    The objective of this work is to present the behavior of a fluorinated microporous membrane composed of poly(vinylidene fluoride) (PVDF) mechanically reinforced by a polyamide-66 (PA-66) fabric under γ-irradiation with dose ranging between 0 and 100 kGy, in inert atmosphere and at room temperature. Particular attention was paid to the evolution of mechanical properties, the surface morphology and pores size distribution of this membrane, in order to study the filtration capacity and selectivity with increasing radiation dose. Moreover, the repartition of the generated radicals onto the two components of the membrane was achieved by electron spin resonance (ESR) spectroscopy. Two different regimes are observed depending on the dose range, and a correlation between the mechanical behavior of the membrane and the evolution of the concentration of the radicals in the PA fabric is observed. Globally, the porosity of the surface membrane does not vary whatever the dose may be, but the mechanical properties of the membrane as well as the permeability are strongly affected, even for low radiation dose such as 10 kGy. These results are related to chain scissions on the PA fabric, which occurred preferentially, compared to cross-linking, in the investigated dose range.

  18. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces.

    PubMed

    Rigoulet, M; Leverve, X; Fontaine, E; Ouhabi, R; Guérin, B

    1998-07-01

    The purpose of this work was to show how the quantitative definition of the different parameters involved in mitochondrial oxidative phosphorylation makes it possible to characterize the mechanisms by which the yield of ATP synthesis is affected. Three different factors have to be considered: (i) the size of the different forces involved (free energy of redox reactions and ATP synthesis, proton electrochemical difference); (ii) the physical properties of the inner mitochondrial membrane in terms of leaks (H+ and cations); and finally (iii) the properties of the different proton pumps involved in this system (kinetic properties, regulation, modification of intrinsic stoichiometry). The data presented different situations where one or more of these parameters are affected, leading to a different yield of oxidative phosphorylation. (1) By manipulating the actual flux through each of the respiratory chain units at constant protonmotive force in yeast mitochondria, we show that the ATP/O ratio decreases when the flux increases. Moreover, the highest efficiency was obtained when the respiratory rate was low and almost entirely controlled by the electron supply. (2) By using almitrine in different kinds of mitochondria, we show that this drug leads to a decrease in ATP synthesis efficiency by increasing the H+/ATP stoichiometry ofATP synthase (Rigoulet M et al. Biochim Biophys Acta 1018: 91-97, 1990). Since this enzyme is reversible, it was possible to test the effect of this drug on the reverse reaction of the enzyme i.e. extrusion of protons catalyzed by ATP hydrolysis. Hence, we are able to prove that, in this case, the decrease in efficiency of oxidative phosphorylation is due to a change in the mechanistic stoichiometry of this proton pump. To our knowledge, this is the first example of a modification in oxidative phosphorylation yield by a change in mechanistic stoichiometry of one of the proton pumps involved. (3) In a model of polyunsaturated fatty acid deficiency

  19. Mechanical properties and failure behavior of phosphorene with grain boundaries

    NASA Astrophysics Data System (ADS)

    Sorkin, V.; Zhang, Y. W.

    2017-02-01

    Using the density-functional tight-binding method, we studied the effect of grain boundaries on the mechanical properties and failure behavior of phosphorene. We found that the high-angle tilt boundaries with a higher density of (5∣7) defect pairs (oriented along the armchair direction) are stronger than the low-angle tilt boundaries with a lower defect density, and similarly the high-angle boundaries with a higher density of (4∣8) defect pairs (oriented along the zigzag direction) are stronger than the low-angle boundaries with a lower defect density. The failure is due to the rupture of the most pre-strained bonds in the heptagons of the (5∣7) defect pair or octagons of the (4∣8) pairs. The high-angle grain boundaries are better at accommodating the pre-strained bonds in heptagon and octagon defects, leading to a higher failure stress and strain. The results cannot be described by a Griffith-type fracture mechanics criterion, since this does not take into account the bond pre-stretching. Interestingly, these anomalous mechanical and failure characteristics of tilt grain boundaries in phosphorene are also shared by graphene and hexagonal boron nitride, signifying that they may be universal for 2D materials. The findings revealed here may be useful in tuning the mechanical properties of phosphorene via defect engineering for specific applications.

  20. Anomalous magnetic properties of mechanically milled cobalt oxide nanoparticles.

    PubMed

    Mishra, S R; Dubenko, I; Losby, J; Ghosh, l K; Khan, M; Ali, N

    2005-12-01

    Defect induced magnetic properties of CoO nanoparticles produced via mechanical ball milling have been assessed by detailed magnetic measurements. A progressive decrease in the particle size and a concomitant increase in the induced strain have been observed with the milling times. The mechanically milled nanoparticles of CoO exhibit anomalous magnetic properties such as FM hysteresis when compared with the unmilled CoO sample. The presence of weak ferromagnetism, with a highest value of magnetization of 0.532 emu/g at 10 K in the 100 h milled sample, is attributed to the uncompensated surface spins resulting from induced surface defects via mechanical milling. The ZFC coercive force, measured at 10 K, increases with milling time reaching a maximum value of 1066 Oe for the 100 h milled sample. The temperature dependent field-cooled (FC) and zero-field-cooled (ZFC) magnetic measurements indicate a presence of an exchange bias field arising from uncompensated moments generated by mechanical strain and the antiferromagnetic (AFM) core. The exchange bias field measured at 10 K reaches a value 210 Oe for the 50 h milled sample and decreases upon prolonged milling. The exchange bias field vanishes at a temperature approximately 200 K, a temperature much lower than the Neel temperature of CoO (TN approximately 291 K). The observed anomalous magnetic behavior of CoO could be interpreted in terms of the exchanged bias FM-AFM model.

  1. Mechanical properties of tricalcium phosphate-fluorapatite-alumina composites

    NASA Astrophysics Data System (ADS)

    Bouslama, N.; Ben Ayed, F.; Bouaziz, J.

    2009-11-01

    This study deals to produce tricalcium phosphate - fluorapatite composites sintering at various temperatures (1300∘ C, 1350∘ C and 1400∘ C) and with different alumina additives amounts (2.5 wt%, 5 wt%, 7.5 wt%, 10 wt% and 20 wt%). The characterization of samples before and after sintering was investigated, using X-ray diffraction, infrared spectroscopy, scanning electronic microscopy and by analysis using 31P and 27Al nuclear magnetic resonance. Mechanical properties have been measured by Brazilian test. The evolution of composite rupture strength was studied as a function of sintering temperature. The effect of sintering on the mechanical properties was measured with the change in composition and microstructure of the composite. The mechanical resistances of composites were increased with the temperatures and with concentrations of alumina. At 1350∘ C, the mechanical resistance reaches its maximum value with 5 wt% Al2O3 (13.6 MPa) whereas the optimum density is about 90% with 2.5 wt% Al2O3.

  2. Length-dependent mechanical properties of gold nanowires

    PubMed Central

    Han, Jing; Fang, Liang; Sun, Jiapeng; Han, Ying; Sun, Kun

    2012-01-01

    The well-known “size effect” is not only related to the diameter but also to the length of the small volume materials. It is unfortunate that the length effect on the mechanical behavior of nanowires is rarely explored in contrast to the intensive studies of the diameter effect. The present paper pays attention to the length-dependent mechanical properties of 〈111〉-oriented single crystal gold nanowires employing the large-scale molecular dynamics simulation. It is discovered that the ultrashort Au nanowires exhibit a new deformation and failure regime-high elongation and high strength. The constrained dislocation nucleation and transient dislocation slipping are observed as the dominant mechanism for such unique combination of high strength and high elongation. A mechanical model based on image force theory is developed to provide an insight to dislocation nucleation and capture the yield strength and nucleation site of first partial dislocation indicated by simulation results. Increasing the length of the nanowires, the ductile-to-brittle transition is confirmed. And the new explanation is suggested in the predict model of this transition. Inspired by the superior properties, a new approach to strengthen and toughen nanowires-hard/soft/hard sandwich structured nanowires is suggested. A preliminary evidence from the molecular dynamics simulation corroborates the present opinion. PMID:23284186

  3. Mechanical Properties of Mineralized Collagen Fibrils As Influenced By Demineralization

    SciTech Connect

    Balooch, M.; Habelitz, S.; Kinney, J.H.; Marshall, S.J.; Marshall, G.W.

    2009-05-11

    Dentin and bone derive their mechanical properties from a complex arrangement of collagen type-I fibrils reinforced with nanocrystalline apatite mineral in extra- and intrafibrillar compartments. While mechanical properties have been determined for the bulk of the mineralized tissue, information on the mechanics of the individual fibril is limited. Here, atomic force microscopy was used on individual collagen fibrils to study structural and mechanical changes during acid etching. The characteristic 67 nm periodicity of gap zones was not observed on the mineralized fibril, but became apparent and increasingly pronounced with continuous demineralization. AFM-nanoindentation showed a decrease in modulus from 1.5 GPa to 50 MPa during acid etching of individual collagen fibrils and revealed that the modulus profile followed the axial periodicity. The nanomechanical data, Raman spectroscopy and SAXS support the hypothesis that intrafibrillar mineral etches at a substantially slower rate than the extrafibrillar mineral. These findings are relevant for understanding the biomechanics and design principles of calcified tissues derived from collagen matrices.

  4. Equivalent mechanical properties of textile monolayers from discrete asymptotic homogenization

    NASA Astrophysics Data System (ADS)

    Goda, Ibrahim; Assidi, Mohamed; Ganghoffer, Jean-François

    2013-12-01

    The determination of the effective mechanical moduli of textiles from mechanical measurements is usually difficult due to their discrete architecture, which makes micromechanical analyses a relevant alternative to access those properties. Micropolar continuum models describing the effective mechanical behavior of woven fabric monolayers are constructed from the homogenization of an identified repetitive pattern of the textile within a representative unit cell. The interwoven yarns within the textile are represented as a network of trusses connected by nodes at their crossover points. These trusses have extensional and bending rigidities to allow for yarn stretching and flexion, and a transverse shear deformation is additionally considered. Interactions between yarns at the crossover points are captured by beam segments connecting the nodes. The woven fabric is modeled after homogenization as an anisotropic planar continuum with two preferred material directions in the mean plane of the textile. Based on the developed methodology, the effective mechanical properties of plain weave and twill are evaluated, including their bending moduli and characteristic flexural lengths. A satisfactory agreement is obtained between the effective moduli obtained by homogenization and numerical values obtained by finite element simulations performed over periodic unit cells.

  5. Mechanical Properties of Type IV Pili in P. Aeruginosa

    NASA Astrophysics Data System (ADS)

    Lu, Shun; Touhami, Ahmed; Scheurwater, Edie; Harvey, Hanjeong; Burrows, Lori; Dutcher, John

    2009-03-01

    Type IV pili (Tfp) are thin flexible protein filaments that extend from the cell membrane of bacteria such as Pseudomonas aeruginosa and Neisseria gonorrhoeae. The mechanical properties of Tfp are of great importance since they allow bacteria to interact with and colonize various surfaces. In the present study, we have used atomic force microscopy (AFM) for both imaging and pulling on Tfp from P. aeruginosa (PAO1) and from its PilA, PilT, and FliC mutants. A single pilus filament was mechanically stretched and the resulting force-extension profiles were fitted using the worm-like-chain (WLC) model. The statistical distributions obtained for contour length, persistence length, and number of pili per bacteria pole, were used to evaluate the mechanical properties of a single pilus and the biogenesis functions of different proteins (PilA, PilT) involved in its assembly and disassembly. Importantly, the persistence length value of ˜ 1 μm measured in the present study, which is consistent with the curvature of the pili observed in our AFM images, is significantly lower than the value of 5 μm reported earlier by Skerker et al. (1). Our results shed new light on the role of mechanical forces that mediate bacteria-surface interactions and biofilm formation. 1- J.M. Skerker and H.C. Berg, Proc. Natl. Acad. Sci. USA, 98, 6901-6904 (2001).

  6. Mechanical and thermal properties of nanoparticle filled epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhao, Su

    2007-12-01

    One of the potential advantages of nanoparticle filled thermosets is the unique combination of mechanical properties that can be obtained. There have been several reports of improved ductility and toughness in brittle thermoset polymers due to the addition of equiaxed nanoparticles. The mechanisms leading to these improvements, however, are poorly understood. In the present study, a model system of nanoscale alumina filled bisphenol A based epoxy with two interface conditions was used to highlight the mechanisms leading to significant improvements in ductility, toughness, modulus and fatigue crack propagation resistance. It was found that the interfacial condition is critical to controlling the mechanical properties of the nanocomposites. Well-bonded APTES-Al 2O3 (3-aminopropyltriethoxysilane treated alumina) nanoparticle filled epoxy nanocomposites showed significant improvements in tensile ductility (max 39%), fracture toughness (max 26%) and fatigue crack propagation resistance, while exhibiting an increase in modulus and maintained strength. Poorly-bonded NT-Al2O3 (non-treated) nanoparticle filled epoxy nanocomposites only showed improvements in fatigue crack propagation resistance and modulus. Fracture morphology and theoretical predictions were used to study the mechanisms. The key mechanism, that significantly improved the ductility or tensile toughness of the treated nanocomposites and distinguished the treated nanocomposites from the untreated nanocomposites, is crack deflection. Crack deflection occurred much more for the well-bonded nanocomposites due to the stronger particle/matrix adhesion. Furthermore, it was found that crack deflection, interfacial debonding and particle pull-out were critical for composites with a weak interface, but that a stronger interface lead to additional mechanisms of further crack deflection, plastic deformation, microcracking and as a result a further improvement in mechanical properties. In addition, higher thermal

  7. Mechanical properties testing and results for thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Cruse, Thomas A.; Johnsen, B. P.; Nagy, Andrew

    1995-01-01

    The paper reports on several years of mechanical testing of thermal barrier coatings. The test results were generated to support the development of durability models for the coatings in heat engine applications. The test data that are reviewed include modulus, static strength, and fatigue strength data. The test methods and results are discussed, along with the significant difficulties inherent in mechanical testing of thermal barrier coating materials. The materials include 7 percent wt. and 8 percent wt. yttria, partially stabilized zirconia as well as a cermet material. Both low pressure plasma spray and electron-beam physical vapor deposited coatings were tested. The data indicate the basic trends in the mechanical properties of the coatings over a wide range of isothermal conditions. Some of the trends are correlated with material density.

  8. Size Dependent Mechanical Properties of Monolayer Densely Arranged Polystyrene Nanospheres.

    PubMed

    Huang, Peng; Zhang, Lijing; Yan, Qingfeng; Guo, Dan; Xie, Guoxin

    2016-12-13

    In contrast to macroscopic materials, the mechanical properties of polymer nanospheres show fascinating scientific and application values. However, the experimental measurements of individual nanospheres and quantitative analysis of theoretical mechanisms remain less well performed and understood. We provide a highly efficient and accurate method with monolayer densely arranged honeycomb polystyrene (PS) nanospheres for the quantitatively mechanical characterization of individual nanospheres on the basis of atomic force microscopy (AFM) nanoindentation. The efficiency is improved by 1-2 orders, and the accuracy is also enhanced almost by half-order. The elastic modulus measured in the experiments increases with decreasing radius to the smallest nanospheres (25-35 nm in radius). A core-shell model is introduced to predict the size dependent elasticity of PS nanospheres, and the theoretical prediction agrees reasonably well with the experimental results and also shows a peak modulus value.

  9. Manipulation of individual viruses: friction and mechanical properties.

    PubMed Central

    Falvo, M R; Washburn, S; Superfine, R; Finch, M; Brooks, F P; Chi, V; Taylor, R M

    1997-01-01

    We present our results on the manipulation of individual viruses using an advanced interface for atomic force microscopes (AFMs). We show that the viruses can be dissected, rotated, and translated with great facility. We interpret the behavior of tobacco mosaic virus with a mechanical model that makes explicit the competition between sample-substrate lateral friction and the flexural rigidity of the manipulated object. The manipulation behavior of tobacco mosaic virus on graphite is shown to be consistent with values of lateral friction observed on similar interfaces and the flexural rigidity expected for macromolecular assemblies. The ability to manipulate individual samples broadens the scope of possible studies by providing a means for positioning samples at specific binding sites or predefined measuring devices. The mechanical model provides a framework for interpreting quantitative measurements of virus binding and mechanical properties and for understanding the constraints on the successful, nondestructive AFM manipulation of delicate samples. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 5 PMID:9138585

  10. Concurrent Quantitative Conductivity and Mechanical Properties Measurements of Organic Photovoltaic Materials using AFM

    PubMed Central

    Nikiforov, Maxim P.; Darling, Seth B.

    2013-01-01

    Organic photovoltaic (OPV) materials are inherently inhomogeneous at the nanometer scale. Nanoscale inhomogeneity of OPV materials affects performance of photovoltaic devices. Thus, understanding of spatial variations in composition as well as electrical properties of OPV materials is of paramount importance for moving PV technology forward.1,2 In this paper, we describe a protocol for quantitative measurements of electrical and mechanical properties of OPV materials with sub-100 nm resolution. Currently, materials properties measurements performed using commercially available AFM-based techniques (PeakForce, conductive AFM) generally provide only qualitative information. The values for resistance as well as Young's modulus measured using our method on the prototypical ITO/PEDOT:PSS/P3HT:PC61BM system correspond well with literature data. The P3HT:PC61BM blend separates onto PC61BM-rich and P3HT-rich domains. Mechanical properties of PC61BM-rich and P3HT-rich domains are different, which allows for domain attribution on the surface of the film. Importantly, combining mechanical and electrical data allows for correlation of the domain structure on the surface of the film with electrical properties variation measured through the thickness of the film. PMID:23380988

  11. Reactor Materials Program: Mechanical properties of irradiated Types 304 and 304L stainless steel weldment components

    SciTech Connect

    Sindelar, R.L.; Caskey, G.R. Jr.

    1991-12-01

    The vessels (reactor tanks) of the Savannah River Site nuclear production reactors constructed in the 1950`s are comprised of Type 304 stainless steel with Type 308 stainless steel weld filler. Irradiation exposure to the reactor tank sidewalls through reactor operation has caused a change in the mechanical properties of these materials. A database of as-irradiated mechanical properties for site-specific materials and irradiation conditions has been produced for reactor tank structural analyses and to quantify the effects of radiation-induced materials degradation for evaluating reactor service life. The data has been collected from the SRL Reactor Materials Program (RMP) irradiations and testing of archival stainless steel weldment components and from previous SRL programs to measure properties of irradiated reactor Thermal Shield weldments and reactor tank (R-tank) sidewall material. Irradiation programs of the RMP are designed to quantify mechanical properties at tank operating temperatures following irradiation to present and future tank wall maximum exposure conditions. The exposure conditions are characterized in terms of fast neutron fluence (E{sub n} > 0.1 MeV) and displacements per atom (dpa){sup 3}. Tensile properties, Charpy-V notch toughness, and elastic-plastic fracture toughness were measured for base, weld, and weld heat-affected zone (HAZ) weldment components from archival piping specimens following a Screening Irradiation in the University of Buffalo Reactor (UBR) and following a Full-Term Irradiation in the High Flux Isotope Reactor (HFIR).

  12. Reactor Materials Program: Mechanical properties of irradiated Types 304 and 304L stainless steel weldment components

    SciTech Connect

    Sindelar, R.L.; Caskey, G.R. Jr.

    1991-12-01

    The vessels (reactor tanks) of the Savannah River Site nuclear production reactors constructed in the 1950's are comprised of Type 304 stainless steel with Type 308 stainless steel weld filler. Irradiation exposure to the reactor tank sidewalls through reactor operation has caused a change in the mechanical properties of these materials. A database of as-irradiated mechanical properties for site-specific materials and irradiation conditions has been produced for reactor tank structural analyses and to quantify the effects of radiation-induced materials degradation for evaluating reactor service life. The data has been collected from the SRL Reactor Materials Program (RMP) irradiations and testing of archival stainless steel weldment components and from previous SRL programs to measure properties of irradiated reactor Thermal Shield weldments and reactor tank (R-tank) sidewall material. Irradiation programs of the RMP are designed to quantify mechanical properties at tank operating temperatures following irradiation to present and future tank wall maximum exposure conditions. The exposure conditions are characterized in terms of fast neutron fluence (E{sub n} > 0.1 MeV) and displacements per atom (dpa){sup 3}. Tensile properties, Charpy-V notch toughness, and elastic-plastic fracture toughness were measured for base, weld, and weld heat-affected zone (HAZ) weldment components from archival piping specimens following a Screening Irradiation in the University of Buffalo Reactor (UBR) and following a Full-Term Irradiation in the High Flux Isotope Reactor (HFIR).

  13. Investigation of mechanical properties of twin gold crystal nanowires under uniaxial load by molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Wei; Yang, Zai-Lin; Luo, Gang

    2016-08-01

    Twin gold crystal nanowires, whose loading direction is parallel to the twin boundary orientation, are simulated. We calculate the nanowires under tensile or compressive loads, different length nanowires, and different twin boundary nanowires respectively. The Young modulus of nanowires under compressive load is about twice that under tensile load. The compressive properties of twin gold nanowires are superior to their tensile properties. For different length nanowires, there is a critical value of length with respect to the mechanical properties. When the length of nanowire is greater than the critical value, its mechanical properties are sensitive to length. The twin boundary spacing hardly affects the mechanical properties. Project supported by the National Science and Technology Pillar Program, China (Grant No. 2015BAK17B06), the Earthquake Industry Special Science Research Foundation Project, China (Grant No. 201508026-02), the Natural Science Foundation of Heilongjiang Province, China (Grant No. A201310), and the Scientific Research Starting Foundation for Post Doctorate of Heilongjiang Province, China (Grant No. LBHQ13040).

  14. Influence of different processing techniques on the mechanical properties of used tires in embankment construction.

    PubMed

    Edinçliler, Ayşe; Baykal, Gökhan; Saygili, Altug

    2010-06-01

    Use of the processed used tires in embankment construction is becoming an accepted way of beneficially recycling scrap tires due to shortages of natural mineral resources and increasing waste disposal costs. Using these used tires in construction requires an awareness of the properties and the limitations associated with their use. The main objective of this paper is to assess the different processing techniques on the mechanical properties of used tires-sand mixtures to improve the engineering properties of the available soil. In the first part, a literature study on the mechanical properties of the processed used tires such as tire shreds, tire chips, tire buffings and their mixtures with sand are summarized. In the second part, large-scale direct shear tests are performed to evaluate shear strength of tire crumb-sand mixtures where information is not readily available in the literature. The test results with tire crumb were compared with the other processed used tire-sand mixtures. Sand-used tire mixtures have higher shear strength than that of the sand alone and the shear strength parameters depend on the processing conditions of used tires. Three factors are found to significantly affect the mechanical properties: normal stress, processing techniques, and the used tire content.

  15. Correlating P-wave Velocity with the Physico-Mechanical Properties of Different Rocks

    NASA Astrophysics Data System (ADS)

    Khandelwal, Manoj

    2013-04-01

    In mining and civil engineering projects, physico-mechanical properties of the rock affect both the project design and the construction operation. Determination of various physico-mechanical properties of rocks is expensive and time consuming, and sometimes it is very difficult to get cores to perform direct tests to evaluate the rock mass. The purpose of this work is to investigate the relationships between the different physico-mechanical properties of the various rock types with the P-wave velocity. Measurement of P-wave velocity is relatively cheap, non-destructive and easy to carry out. In this study, representative rock mass samples of igneous, sedimentary, and metamorphic rocks were collected from the different locations of India to obtain an empirical relation between P-wave velocity and uniaxial compressive strength, tensile strength, punch shear, density, slake durability index, Young's modulus, Poisson's ratio, impact strength index and Schmidt hammer rebound number. A very strong correlation was found between the P-wave velocity and different physico-mechanical properties of various rock types with very high coefficients of determination. To check the sensitivity of the empirical equations, Students t test was also performed, which confirmed the validity of the proposed correlations.

  16. Mechanical and failure properties of extracellular matrix sheets as a function of structural protein composition.

    PubMed

    Black, Lauren D; Allen, Philip G; Morris, Shirley M; Stone, Phillip J; Suki, Béla

    2008-03-01

    The goal of this study was to determine how alterations in protein composition of the extracellular matrix (ECM) affect its functional properties. To achieve this, we investigated the changes in the mechanical and failure properties of ECM sheets generated by neonatal rat aortic smooth muscle cells engineered to contain varying amounts of collagen and elastin. Samples underwent static and dynamic mechanical measurements before, during, and after 30 min of elastase digestion followed by a failure test. Microscopic imaging was used to measure thickness at two strain levels to estimate the true stress and moduli in the ECM sheets. We found that adding collagen to the ECM increased the stiffness. However, further increasing collagen content altered matrix organization with a subsequent decrease in the failure strain. We also introduced collagen-related percolation in a nonlinear elastic network model to interpret these results. Additionally, linear elastic moduli correlated with failure stress which may allow the in vivo estimation of the stress tolerance of ECM. We conclude that, in engineered replacement tissues, there is a tradeoff between improved mechanical properties and decreased extensibility, which can impact their effectiveness and how well they match the mechanical properties of native tissue.

  17. Lithium chloride prevents interleukin-1β induced cartilage degradation and loss of mechanical properties.

    PubMed

    Thompson, Clare L; Yasmin, Habiba; Varone, Anna; Wiles, Anna; Poole, C Antony; Knight, Martin M

    2015-10-01

    Osteoarthritis is a chronic degenerative disease that affects the articular cartilage. Recent studies have demonstrated that lithium chloride exhibits significant efficacy as a chondroprotective agent, blocking cartilage degradation in response to inflammatory cytokines. However, conflicting literature suggests lithium may affect the physicochemical properties of articular cartilage and thus long-term exposure may negatively affect the mechanical functionality of this tissue. This study aims to investigate the effect of lithium chloride on the biomechanical properties of healthy and interleukin-1β treated cartilage in vitro and examines the consequences of long-term exposure to lithium on cartilage health in vivo. Bovine cartilage explants were treated with lithium chloride for 12 days. Chondrocyte viability, matrix catabolism and the biomechanical properties of bovine cartilage explants were not significantly altered following treatment. Consistent with these findings, long term-exposure (9 months) to dietary lithium did not induce osteoarthritis in rats, as determined by histological staining. Moreover, lithium chloride did not induce the expression of catabolic enzymes in human articular chondrocytes. In an inflammatory model of cartilage destruction, lithium chloride blocked interleukin-1β signaling in the form of nitric oxide and prostaglandin E2 release and prevented matrix catabolism such that the loss of mechanical integrity observed with interleukin-1β alone was inhibited. This study provides further support for lithium chloride as a novel compound for the treatment of osteoarthritis.

  18. Distinct structural and mechanical properties of the nuclear lamina in Hutchinson-Gilford progeria syndrome.

    PubMed

    Dahl, Kris Noel; Scaffidi, Paola; Islam, Mohammad F; Yodh, Arjun G; Wilson, Katherine L; Misteli, Tom

    2006-07-05

    The nuclear lamina is a network of structural filaments, the A and B type lamins, located at the nuclear envelope and throughout the nucleus. Lamin filaments provide the nucleus with mechanical stability and support many basic activities, including gene regulation. Mutations in LMNA, the gene encoding A type lamins, cause numerous human diseases, including the segmental premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). Here we show that structural and mechanical properties of the lamina are altered in HGPS cells. We demonstrate by live-cell imaging and biochemical analysis that lamins A and C become trapped at the nuclear periphery in HGPS patient cells. Using micropipette aspiration, we show that the lamina in HGPS cells has a significantly reduced ability to rearrange under mechanical stress. Based on polarization microscopy results, we suggest that the lamins are disordered in the healthy nuclei, whereas the lamins in HGPS nuclei form orientationally ordered microdomains. The reduced deformability of the HGPS nuclear lamina possibly could be due to the inability of these orientationally ordered microdomains to dissipate mechanical stress. Surprisingly, intact HGPS cells exhibited a degree of resistance to acute mechanical stress similar to that of cells from healthy individuals. Thus, in contrast to the nuclear fragility seen in lmna null cells, the lamina network in HGPS cells has unique mechanical properties that might contribute to disease phenotypes by affecting responses to mechanical force and misregulation of mechanosensitive gene expression.

  19. Spherical agglomerates of lactose with enhanced mechanical properties.

    PubMed

    Lamešić, Dejan; Planinšek, Odon; Lavrič, Zoran; Ilić, Ilija

    2017-01-10

    The aim of this study was to prepare spherical agglomerates of lactose and to evaluate their physicochemical properties, flow properties, particle friability and compaction properties, and to compare them to commercially available types of lactose for direct compression (spray-dried, granulated and anhydrous β-lactose). Porous spherical agglomerates of α-lactose monohydrate with radially arranged prism-like primary particles were prepared exhibiting a high specific surface area. All types of lactose analysed had passable or better flow properties, except for anhydrous β-lactose, which had poor flowability. Particle friability was more pronounced in larger granulated lactose particles; however, particle structure was retained in all samples analysed. The mechanical properties of spherical agglomerates of lactose, in terms of compressibility, established with Walker analysis, and compactibility, established with a compactibility profile, were found to be superior to any commercially available types of lactose. Higher compactibility of spherical agglomerates of lactose is ascribed to significantly higher particle surface area due to a unique internal structure with higher susceptibility to fragmentation.

  20. Mechanical and hydraulic properties of rocks related to induced seismicity

    USGS Publications Warehouse

    Witherspoon, P.A.; Gale, J.E.

    1977-01-01

    Witherspoon, P.A. and Gale, J.E., 1977. Mechanical and hydraulic properties of rocks related to induced seismicity. Eng. Geol., 11(1): 23-55. The mechanical and hydraulic properties of fractured rocks are considered with regard to the role they play in induced seismicity. In many cases, the mechanical properties of fractures determine the stability of a rock mass. The problems of sampling and testing these rock discontinuities and interpreting their non-linear behavior are reviewed. Stick slip has been proposed as the failure mechanism in earthquake events. Because of the complex interactions that are inherent in the mechanical behavior of fractured rocks, there seems to be no simple way to combine the deformation characteristics of several sets of fractures when there are significant perturbations of existing conditions. Thus, the more important fractures must be treated as individual components in the rock mass. In considering the hydraulic properties, it has been customary to treat a fracture as a parallel-plate conduit and a number of mathematical models of fracture systems have adopted this approach. Non-steady flow in fractured systems has usually been based on a two-porosity model, which assumes the primary (intergranular) porosity contributes only to storage and the secondary (fracture) porosity contributes only to the overall conductivity. Using such a model, it has been found that the time required to achieve quasi-steady state flow in a fractured reservoir is one or two orders of magnitude greater than it is in a homogeneous system. In essentially all of this work, the assumption has generally been made that the fractures are rigid. However, it is clear from a review of the mechanical and hydraulic properties that not only are fractures easily deformed but they constitute the main flow paths in many rock masses. This means that one must consider the interaction of mechanical and hydraulic effects. A considerable amount of laboratory and field data is now

  1. Affective Properties of Mothers' Speech to Infants With Hearing Impairment and Cochlear Implants

    PubMed Central

    Bergeson, Tonya R.; Xu, Huiping; Kitamura, Christine

    2015-01-01

    Purpose The affective properties of infant-directed speech influence the attention of infants with normal hearing to speech sounds. This study explored the affective quality of maternal speech to infants with hearing impairment (HI) during the 1st year after cochlear implantation as compared to speech to infants with normal hearing. Method Mothers of infants with HI and mothers of infants with normal hearing matched by age (NH-AM) or hearing experience (NH-EM) were recorded playing with their infants during 3 sessions over a 12-month period. Speech samples of 25 s were low-pass filtered, leaving intonation but not speech information intact. Sixty adults rated the stimuli along 5 scales: positive/negative affect and intention to express affection, to encourage attention, to comfort/soothe, and to direct behavior. Results Low-pass filtered speech to HI and NH-EM groups was rated as more positive, affective, and comforting compared with the such speech to the NH-AM group. Speech to infants with HI and with NH-AM was rated as more directive than speech to the NH-EM group. Mothers decreased affective qualities in speech to all infants but increased directive qualities in speech to infants with NH-EM over time. Conclusions Mothers fine-tune communicative intent in speech to their infant's developmental stage. They adjust affective qualities to infants' hearing experience rather than to chronological age but adjust directive qualities of speech to the chronological age of their infants. PMID:25679195

  2. An Experimental Investigation of Shale Mechanical Properties Through Drained and Undrained Test Mechanisms

    NASA Astrophysics Data System (ADS)

    Islam, Md. Aminul; Skalle, Paal

    2013-11-01

    Shale mechanical properties are evaluated from laboratory tests after a complex workflow that covers tasks from sampling to testing. Due to the heterogeneous nature of shale, it is common to obtain inconsistent test results when evaluating the mechanical properties. In practice, this variation creates errors in numerical modeling when test results differ significantly, even when samples are from a similar core specimen. This is because the fundamental models are based on the supplied test data and a gap is, therefore, always observed during calibration. Thus, the overall goal of this study was to provide additional insight regarding the organization of the non-linear model input parameters in borehole simulations and to assist other researchers involved in the rock physics-related research fields. To achieve this goal, the following parallel activities were carried out: (1) perform triaxial testing with different sample orientations, i.e., 0°, 45°, 60°, and 90°, including the Brazilian test and CT scans, to obtain a reasonably accurate description of the anisotropic properties of shale; (2) apply an accurate interpretative method to evaluate the elastic moduli of shale; (3) evaluate and quantify the mechanical properties of shale by accounting for the beddings plane, variable confinement pressures, drained and undrained test mechanisms, and cyclic versus monotonic test effects. The experimental results indicate that shale has a significant level of heterogeneity. Postfailure analysis confirmed that the failure plane coincides nicely with the weak bedding plane. The drained Poisson’s ratios were, on average, 40 % or lower than the undrained rates. The drained Young’s modulus was approximately 48 % that of the undrained value. These mechanical properties were significantly impacted by the bedding plane orientation. Based on the Brazilian test, the predicted tensile strength perpendicular to the bedding plane was 12 % lower than the value obtained using the

  3. Effect of multiple repairs in girth welds of pipelines on the mechanical properties

    SciTech Connect

    Vega, O.E.; Hallen, J.M.; Villagomez, A.

    2008-10-15

    This work presents the results of multiple weld repairs in the same area in seamless API X-52 microalloyed steel pipe. Four conditions of shielded metal arc welding repairs and one as-welded specimen of the girth weld were characterized to determine changes in the microstructure, grain size in the heat affected zone, and to evaluate their effect on the mechanical properties of the weld joints. The mechanical properties by means of tension tests, Charpy-V impact resistance and Vickers hardness of the welds were analyzed. The results indicate that significant changes are not generated in the microstructural constituents of the heat affected zone. Grain growth in the heat affected zone at the specimen mid-thickness with the number of repairs was observed. Tensile strength of the weld joints meets the requirement of the API 1104 standard even after the fourth weld repair. Significant reduction in Charpy-V impact resistance with the number of weld repairs was found when the notch location was in the intersection of the fusion line with the specimen mid-thickness. A significant increase in the Vickers hardness of the heat affected zone occurred after the first repair and a gradual decrease in the Vickers hardness occurred as the number of repairs increases.

  4. Size effects on mechanical and thermal properties of thin films

    NASA Astrophysics Data System (ADS)

    Alam, Md Tarekul

    Materials, from electronic to structural, exhibit properties that are sensitive to their composition and internal microstructures such as grain and precipitate sizes, crystalline phases, defects and dopants. Therefore, the research trend has been to obtain fundamental understanding in processing-structure-properties to develop new materials or new functionalities for engineering applications. The advent of nanotechnology has opened a new dimension to this research area because when material size is reduced to nanoscale, properties change significantly from the bulk values. This phenomenon expands the problem to 'size-processing-structure-propertiesfunctionalities'. The reinvigorated research for the last few decades has established size dependency of the material properties such as thermal conductivity, Young's modulus and yield strength, electrical resistivity, photo-conductance etc. It is generally accepted that classical physical laws can be used to scale down the properties up to 25-50 nm length-scale, below which their significant deviation or even breakdown occur. This dissertation probes the size effect from a different perspective by asking the question, if nanoscale size influences one physical domain, why it would not influence the coupling between two or more domains? Or in other words, if both mechanical and thermal properties are different at the nanoscale, can mechanical strain influence thermal conductivity? The hypothesis of size induced multi-domain coupling is therefore the foundation of this dissertation. It is catalyzed by the only few computational studies available in the literature while experimental validations have been non-existent owing to experimental challenges. The objective of this research is to validate this hypothesis, which will open a novel avenue to tune properties and functionalities of materials with the size induced multi-domain coupling. Single domain characterization itself is difficult at the nanoscale due to specimen

  5. Morphology, orientation, and mechanical properties of gelatin films

    SciTech Connect

    Blanton, T.N.; Tsou, A.H.

    1996-12-31

    Gelatin is a polypeptide derived from degradation and disorganization of collagen fibers and is the primary binder in photographic emulsions. Gelatin provides the mechanical integrity and strength to the photographic emulsion allowing for packaging, handling, and photofinishing operations. Gelatin films generated from aqueous-solution casting can exist in a semicrystalline or an amorphous state. When a gelatin solution is cooled below its helix-coil transition temperature, partial renaturation of gelatin to form triple helices can occur. The degree of renaturation in a coated film is dependent upon the drying temperature and the drying rate. During the drying process, gelatin crystals can be formed by lateral association of the triple helices through a mechanism of nucleation and growth of a fringed micelle structure. X-ray scattering techniques have been utilized to examine the morphology and orientation of gelatin films. Based on X-ray diffraction data, it is observed that aggregates of triple-helix rods lie parallel to the film plane but are symmetrically distributed within the film plane. Since a material`s physical and mechanical properties are related to its structure, it is necessary to understand and to characterize the morphological development in gelatin film formation. In this study, an X-ray diffractometer and pole figure goniometer were utilized to examine the structural development and orientation anisotropy in solid-state gelatin films. Also, in this study, the in-plane mechanical properties of a gelatin film were determined from a uniaxial tensile test, and the gelatin film properties in the thickness direction were extracted from an indentation test based on the finite element analysis of the indentation results using a viscoelastic material model.

  6. Effects of different friction stir welding conditions on the microstructure and mechanical properties of copper plates

    NASA Astrophysics Data System (ADS)

    Nia, Ali Alavi; Shirazi, Ali

    2016-07-01

    Friction stir welding is a new and innovative welding method used to fuse materials. In this welding method, the heat generated by friction and plastic flow causes significant changes in the microstructure of the material, which leads to local changes in the mechanical properties of the weld. In this study, the effects of various welding parameters such as the rotational and traverse speeds of the tool on the microstructural and mechanical properties of copper plates were investigated; additionally, Charpy tests were performed on copper plates for the first time. Also, the effect of the number of welding passes on the aforementioned properties has not been investigated in previous studies. The results indicated that better welds with superior properties are produced when less heat is transferred to the workpiece during the welding process. It was also found that although the properties of the stir zone improved with an increasing number of weld passes, the properties of its weakest zone, the heat-affected zone, deteriorated.

  7. The effect of a thermal renal denervation cycle on the mechanical properties of the arterial wall.

    PubMed

    Hopkins, Alan A; Sheridan, William S; Sharif, Faisal; Murphy, Bruce P

    2014-11-28

    The aim of this study was to determine the effect that a thermal renal denervation cycle has on the mechanical properties of the arterial wall. Porcine arterial tissue specimens were tested in three groups: native tissue, decellularized tissue, decellularized with collagen digestion (e.g. elastin only). One arterial specimen was used as an unheated control specimen while another paired specimen was subjected to a thermal cycle of 70°C for 120s (n=10). The specimens were subjected to tensile loading and a shrinkage analysis. We observed two key results: The mechanical properties associated with the elastin extracellular matrix (ECM) were not affected by the thermal cycle. The effect of the thermal cycle on the collagen (ECM) was significant, in both the native and decellularized groups the thermal cycle caused a statistically significant decrease in stiffness, and failure strength, moreover the native tissue demonstrated a 27% reduction in lumen area post exposure to the thermal cycle. We have demonstrated that a renal denervation thermal cycle can significantly affect the mechanical properties of an arterial wall, and these changes in stiffness and failure strength were associated with alterations to the collagen rather than the elastin extracellular matrix component.

  8. Sintering behavior and mechanical properties of zirconia compacts fabricated by uniaxial press forming

    PubMed Central

    Oh, Gye-Jeong; Yun, Kwi-Dug; Lee, Kwang-Min; Lim, Hyun-Pil

    2010-01-01

    PURPOSE The purpose of this study was to compare the linear sintering behavior of presintered zirconia blocks of various densities. The mechanical properties of the resulting sintered zirconia blocks were then analyzed. MATERIALS AND METHODS Three experimental groups of dental zirconia blocks, with a different presintering density each, were designed in the present study. Kavo Everest® ZS blanks (Kavo, Biberach, Germany) were used as a control group. The experimental group blocks were fabricated from commercial yttria-stabilized tetragonal zirconia powder (KZ-3YF (SD) Type A, KCM. Corporation, Nagoya, Japan). The biaxial flexural strengths, microhardnesses, and microstructures of the sintered blocks were then investigated. The linear sintering shrinkages of blocks were calculated and compared. RESULTS Despite their different presintered densities, the sintered blocks of the control and experimental groups showed similar mechanical properties. However, the sintered block had different linear sintering shrinkage rate depending on the density of the presintered block. As the density of the presintered block increased, the linear sintering shrinkage decreased. In the experimental blocks, the three sectioned pieces of each block showed the different linear shrinkage depending on the area. The tops of the experimental blocks showed the lowest linear sintering shrinkage, whereas the bottoms of the experimental blocks showed the highest linear sintering shrinkage. CONCLUSION Within the limitations of this study, the density difference of the presintered zirconia block did not affect the mechanical properties of the sintered zirconia block, but affected the linear sintering shrinkage of the zirconia block. PMID:21165274

  9. Mechanical properties of lunar regolith and lunar soil simulant

    NASA Technical Reports Server (NTRS)

    Perkins, Steven W.

    1989-01-01

    Through the Surveyor 3 and 7, and Apollo 11-17 missions a knowledge of the mechanical properties of Lunar regolith were gained. These properties, including material cohesion, friction, in-situ density, grain-size distribution and shape, and porosity, were determined by indirect means of trenching, penetration, and vane shear testing. Several of these properties were shown to be significantly different from those of terrestrial soils, such as an interlocking cohesion and tensile strength formed in the absence of moisture and particle cementation. To characterize the strength and deformation properties of Lunar regolith experiments have been conducted on a lunar soil simulant at various initial densities, fabric arrangements, and composition. These experiments included conventional triaxial compression and extension, direct tension, and combined tension-shear. Experiments have been conducted at low levels of effective confining stress. External conditions such as membrane induced confining stresses, end platten friction and material self weight have been shown to have a dramatic effect on the strength properties at low levels of confining stress. The solution has been to treat these external conditions and the specimen as a full-fledged boundary value problem rather than the idealized elemental cube of mechanics. Centrifuge modeling allows for the study of Lunar soil-structure interaction problems. In recent years centrifuge modeling has become an important tool for modeling processes that are dominated by gravity and for verifying analysis procedures and studying deformation and failure modes. Centrifuge modeling is well established for terrestrial enginering and applies equally as well to Lunar engineering. A brief review of the experiments is presented in graphic and outline form.

  10. Distracted and down: neural mechanisms of affective interference in subclinical depression

    PubMed Central

    Andrews-Hanna, Jessica R.; Spielberg, Jeffrey M.; Warren, Stacie L.; Sutton, Bradley P.; Miller, Gregory A.; Heller, Wendy; Banich, Marie T.

    2015-01-01

    Previous studies have shown that depressed individuals have difficulty directing attention away from negative distractors, a phenomenon known as affective interference. However, findings are mixed regarding the neural mechanisms and network dynamics of affective interference. The present study addressed these issues by comparing neural activation during emotion-word and color-word Stroop tasks in participants with varying levels of (primarily subclinical) depression. Depressive symptoms predicted increased activation to negative distractors in areas of dorsal anterior cingulate cortex (dACC) and posterior cingulate cortex (PCC), regions implicated in cognitive control and internally directed attention, respectively. Increased dACC activity was also observed in the group-average response to incongruent distractors, suggesting that dACC activity during affective interference is related to overtaxed cognitive control. In contrast, regions of PCC were deactivated across the group in response to incongruent distractors, suggesting that PCC activity during affective interference represents task-independent processing. A psychophysiological interaction emerged in which higher depression predicted more positively correlated activity between dACC and PCC during affective interference, i.e. greater connectivity between cognitive control and internal-attention systems. These findings suggest that, when individuals high in depression are confronted by negative material, increased attention to internal thoughts and difficulty shifting resources to the external world interfere with goal-directed behavior. PMID:25062838

  11. The effect of motivation and positive affect on ego depletion: Replenishment versus release mechanism.

    PubMed

    Zhu, Ze; Li, Jian; Zhang, Bo; Li, Ye; Zhang, Houcan

    2015-11-12

    In this study, 2 experiments were conducted to investigate whether motivation and positive affect can alleviate ego depletion and to elucidate their possible mechanisms. In Experiment 1, a crossing-out-letter task was adapted to reach an ego depletion state for Chinese participants. Participants were then randomly assigned to the extrinsic motivation group, the positive affect group or the depletion control group. After the experimental treatment, a dumbbell task was used to measure participants' remaining self-regulatory resources. The results showed that participants in the motivation and positive affect groups performed better on the dumbbell task than participants in the depletion control group. Experiment 2 was similar to Experiment 1 except that participants were asked to perform an additional unexpected dumbbell task after a neutral video following the above procedure. The results of Experiment 1 were replicated; however, participants' performance on the additional dumbbell task differed. The positive affect group performed better than the depletion control group, indicating an increase in self-regulatory resources and thus supporting the replenishment effect of positive affect. No significant difference was found between the motivation group and the depletion control group.

  12. Changes in physicochemical properties of waxy corn starches after harvest, and in mechanical properties of fresh cooked kernels during storage.

    PubMed

    Ketthaisong, Danupol; Suriharn, Bhalang; Tangwongchai, Ratchada; Lertrat, Kamol

    2014-05-15

    Changes in the physicochemical properties of waxy corn starches after harvest and in the mechanical properties of cooked fresh kernels during storage were investigated. Immature waxy corn ears from four genotypes were stored at ambient temperature, and starches were isolated from kernels removed at 0, 2, 4 and 6 days after harvest. Starch content in the kernels generally increased with storage time, and also significantly differed depending on the genotype. For all the days after harvest, medium granules had the highest contribution to the total starch volume, followed by small and large granules. The average chain length distribution of amylopectin increased in relation to storage time. Starches at harvesting state exhibited the lowest peak viscosity in all four genotypes, which increased relative to postharvest periods. Moreover, the average force behaviours of cooked kernels were greatly affected by storage times after cooking.

  13. Nutritive value of corn silage as affected by maturity and mechanical processing: a contemporary review.

    PubMed

    Johnson, L; Harrison, J H; Hunt, C; Shinners, K; Doggett, C G; Sapienza, D

    1999-12-01

    Stage of maturity at harvest and mechanical processing affect the nutritive value of corn silage. The change in nutritive value of corn silage as maturity advances can be measured by animal digestion and macro in situ degradation studies among other methods. Predictive equations using climatic data, vitreousness of corn grain in corn silage, starch reactivity, gelatinization enthalpy, dry matter (DM) of corn grain in corn silage, and DM of corn silage can be used to estimate starch digestibility of corn silage. Whole plant corn silage can be mechanically processed either pre- or postensiling with a kernel processor mounted on a forage harvester, a recutter screen on a forage harvester, or a stationary roller mill. Mechanical processing of corn silage can improve ensiling characteristics, reduce DM losses during ensiling, and improve starch and fiber digestion as a result of fracturing the corn kernels and crushing and shearing the stover and cobs. Improvements in milk production have ranged from 0.2 to 2.0 kg/d when cows were fed mechanically processed corn silage. A consistent improvement in milk protein yield has also been observed when mechanically processed corn silage has been fed. With the advent of mechanical processors, alternative strategies are evident for corn silage management, such as a longer harvest window.

  14. Physical and Antimicrobial Properties of Starch-PVA Blend Films as Affected by the Incorporation of Natural Antimicrobial Agents

    PubMed Central

    Cano, Amalia; Cháfer, Maite; Chiralt, Amparo; González-Martínez, Chelo

    2015-01-01

    In this work, active films based on starch and PVA (S:PVA ratio of 2:1) were developed by incorporating neem (NO) and oregano essential oils (OEO). First, a screening of the antifungal effectiveness of different natural extracts (echinacea, horsetail extract, liquid smoke and neem seed oil) against two fungus (P. expansum and A. niger) was carried out. The effect of NO and OEO incorporation on the films’ physical and antimicrobial properties was analyzed. Only composite films containing OEO exhibited antibacterial and antifungal activity. Antibacterial activity occurred at low OEO concentration (6.7%), while antifungal effect required higher doses of OEO in the films. Incorporation of oils did not notably affect the water sorption capacity and water vapor barrier properties of S-PVA films, but reduced their transparency and gloss, especially at the highest concentrations. The mechanical response of the S-PVA films was also negatively affected by oil incorporation but this was only relevant at the highest oil ratio (22%). S-PVA films with 6.7% of OEO exhibited the best physical properties, without significant differences with respect to the S-PVA matrix, while exhibiting antibacterial activity. Thus, the use of OEO as a natural antimicrobial incorporated into starch-PVA films represents a good and novel alternative in food packaging applications. PMID:28231098

  15. Affects of Microgravity on the Polymerization and Material Properties of Biomedical Grade Polymers

    NASA Astrophysics Data System (ADS)

    Crane, Deborah J.

    2002-01-01

    extended to include other polymers. Polymerization as well as polymer processing in a microgravity environment may affect the length and orientation of the molecular chains, the degree of crosslinking, and distribution of amorphous to crystalline portions of the material, thus changing the ultimate properties of the polymer. Small polymer samples would be produced from the resin for testing and analysis. This research would include the effect of micro-g processing by compression molded vs. ram extruded samples for