Science.gov

Sample records for affect metabolic parameters

  1. Retrospective surveillance of metabolic parameters affecting reproductive performance of Japanese Black breeding cows

    PubMed Central

    Watanabe, Urara; Yamato, Osamu; Otoi, Takeshige; Okamoto, Koji

    2014-01-01

    This retrospective study was conducted to confirm the relationship between pre- and postpartum metabolic parameters and postpartum reproductive performance and to clarify seasonal characteristics of the metabolic parameters by using our metabolic profile test (MPT) database of Japanese Black breeding herds. In evaluation 1, MPT databases of blood samples from multiparous cows collected prepartum and postpartum were divided into two groups according to calving interval, and each MPT parameter was compared. In evaluation 2, the same MPT databases used in evaluation 1 were divided into two groups according to the sampling period. Significant differences were found in the prepartal total protein and postpartal γ-glutamyltransferase in evaluation 1. In evaluation 2, significant differences were found in the prepartal and postpartal total protein, albumin/globulin ratio, and glucose. Clear seasonal differences in MPT results emphasized the usefulness of the MPT in breeding cattle herds fed home-pasture roughage and suggest that unsatisfactory reproductive performance during hot periods reflects inadequate nutritional content of the diet and possible reduced feed intake due to heat stress. PMID:24675835

  2. Improvement of Oxidative and Metabolic Parameters by Cellfood Administration in Patients Affected by Neurodegenerative Diseases on Chelation Treatment

    PubMed Central

    Fulgenzi, Alessandro; Giuseppe, Rachele De; Bamonti, Fabrizia; Ferrero, Maria Elena

    2014-01-01

    Objective. This prospective pilot study aimed at evaluating the effects of therapy with antioxidant compounds (Cellfood, and other antioxidants) on patients affected by neurodegenerative diseases (ND), who displayed toxic metal burden and were subjected to chelation treatment with the chelating agent calcium disodium ethylenediaminetetraacetic acid (CaNa2EDTA or EDTA). Methods. Two groups of subjects were studied: (a) 39 patients affected by ND and (b) 11 subjects unaffected by ND (controls). The following blood parameters were analyzed before and after three months' treatment with chelation + Cellfood or chelation + other antioxidants: oxidative status (reactive oxygen species, ROS; total antioxidant capacity, TAC; oxidized LDL, oxLDL; glutathione), homocysteine, vitamin B12, and folate. Results. After 3-months' chelation + Cellfood administration oxLDL decreased, ROS levels were significantly lower, and TAC and glutathione levels were significantly higher than after chelation + other antioxidants treatment, both in ND patients and in controls. Moreover, homocysteine metabolism had also improved in both groups. Conclusions. Chelation + Cellfood treatment was more efficient than chelation + other antioxidants improving oxidative status and homocysteine metabolism significantly in ND patients and controls. Although limited to a small number of cases, this study showed how helpful antioxidant treatment with Cellfood was in improving the subjects' metabolic conditions. PMID:25114898

  3. Multiscale structures of lipids in foods as parameters affecting fatty acid bioavailability and lipid metabolism.

    PubMed

    Michalski, M C; Genot, C; Gayet, C; Lopez, C; Fine, F; Joffre, F; Vendeuvre, J L; Bouvier, J; Chardigny, J M; Raynal-Ljutovac, K

    2013-10-01

    On a nutritional standpoint, lipids are now being studied beyond their energy content and fatty acid (FA) profiles. Dietary FA are building blocks of a huge diversity of more complex molecules such as triacylglycerols (TAG) and phospholipids (PL), themselves organised in supramolecular structures presenting different thermal behaviours. They are generally embedded in complex food matrixes. Recent reports have revealed that molecular and supramolecular structures of lipids and their liquid or solid state at the body temperature influence both the digestibility and metabolism of dietary FA. The aim of the present review is to highlight recent knowledge on the impact on FA digestion, absorption and metabolism of: (i) the intramolecular structure of TAG; (ii) the nature of the lipid molecules carrying FA; (iii) the supramolecular organization and physical state of lipids in native and formulated food products and (iv) the food matrix. Further work should be accomplished now to obtain a more reliable body of evidence and integrate these data in future dietary recommendations. Additionally, innovative lipid formulations in which the health beneficial effects of either native or recomposed structures of lipids will be taken into account can be foreseen.

  4. Treatment with D-penicillamine or zinc sulphate affects copper metabolism and improves but not normalizes antioxidant capacity parameters in Wilson disease.

    PubMed

    Gromadzka, Grażyna; Grażyna, Gromadzka; Karpińska, Agata; Agata, Karpińska; Przybyłkowski, Adam; Adam, Przybyłkowski; Litwin, Tomasz; Tomasz, Litwin; Wierzchowska-Ciok, Agata; Agata, Wierzchowska-Ciok; Dzieżyc, Karolina; Karolina, Dzieżyc; Chabik, Grzegorz; Grzegorz, Chabik; Członkowska, Anna; Anna, Członkowska

    2014-02-01

    Copper accumulation in tissues due to a biallelic pathogenic mutation of the gene: ATP7B results in a clinical phenotype known as Wilson disease (WD). Aberrations in copper homeostasis can create favourable conditions for superoxide-yielding redox cycling and oxidative tissue damage. Drugs used in WD treatment aim to remove accumulated copper and normalise the free copper concentration in the blood. In the current study the effect of decoppering treatment on copper metabolism and systemic antioxidant capacity parameters was analyzed. Treatment naïve WD patients (TNWD) (n = 33), those treated with anti-copper drugs (TWD) (n = 99), and healthy controls (n = 99) were studied. Both TNWD and TWD patients characterised with decreased copper metabolism parameters, as well as decreased total antioxidant potential (AOP), glutathione (GSH) level, activity of catalase, glutathione peroxidase (GPx), and S-transferase glutathione, compared to controls. TWD patients had significantly lower copper metabolism parameters, higher total AOP and higher levels of GSH than TWD individuals; however, no difference was observed between these two patient groups with respect to the rest of the antioxidant capacity parameters. Patients who had undergone treatment with D-penicillamine or zinc sulphate did not differ with respect to copper metabolism or antioxidant capacity parameters, with the exception of GPx that was lower in D-penicillamine treated individuals. These data suggest that anti-copper treatment affects copper metabolism as well as improves, but does not normalize, natural antioxidant capacity in patients with WD. We propose to undertake studies aimed to evaluate the usefulness of antioxidants as well as selenium as a supplemental therapy in WD.

  5. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice.

    PubMed

    Hesselbarth, Nico; Pettinelli, Chiara; Gericke, Martin; Berger, Claudia; Kunath, Anne; Stumvoll, Michael; Blüher, Matthias; Klöting, Nora

    2015-08-28

    Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I) significantly increased HbA1c, triglyceride and free fatty acid serum concentrations (p < 0.01), II) browning of subcutaneous AT and increased UCP-1 expression, III) increased AT proliferation marker Ki67 mRNA expression, IV) changes in adipocyte size distribution, and V) transient body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects.

  6. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice

    SciTech Connect

    Hesselbarth, Nico; Pettinelli, Chiara; Gericke, Martin; Berger, Claudia; Kunath, Anne; Stumvoll, Michael; Blüher, Matthias; Klöting, Nora

    2015-08-28

    Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I) significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations (p < 0.01), II) browning of subcutaneous AT and increased UCP-1 expression, III) increased AT proliferation marker Ki67 mRNA expression, IV) changes in adipocyte size distribution, and V) transient body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects. - Highlights: • Tamoxifen treatment causes significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations. • Tamoxifen induces browning of subcutaneous AT and increased UCP-1 expression. • Tamoxifen changes adipocyte size distribution, and transient body composition.

  7. Physical parameters affecting living cells in space

    NASA Astrophysics Data System (ADS)

    Langbein, Dieter

    The question is posed: Why does a living cell react to the absence of gravity? What sensors may it have? Does it note pressure, sedimentation, convection, or other parameters? If somewhere in a liquid volume sodium ions are replaced by potassium ions, the density of the liquid changes locally: the heavier regions sink, the lighter regions rise. This may contribute to species transport, to the metabolism. Under microgravity this mechanism is strongly reduced. On the other hand, other reasons for convection like thermal and solutal interface convection are left. Do they affect species transport? Another important effect of gravity is the hydrostatic pressure. On the macroscopic side, the pressure between our head and feet changes by 0.35 atmospheres. On the microscopic level the hydrostatic pressure on the upper half of a cell membrane is lower than on the lower half. This, by affecting the ion transport through the membrane, may change the surrounding electric potential. It has been suggested to be one of the reasons for graviperception. Following the discussion of these and other effects possibly important in life sciences in space, an order of magnitude analysis of the residual accelerations tolerable during experiments in materials sciences is outlined. In the field of life sciences only rough estimates are available at present.

  8. [Affective disorders: endocrine and metabolic comorbidities].

    PubMed

    Cermolacce, M; Belzeaux, R; Adida, M; Azorin, J-M

    2014-12-01

    Links between affective and endocrine-metabolic disorders are numerous and complex. In this review, we explore most frequent endocrine-metabolic comorbidities. On the one hand, these comorbidities imply numerous iatrogenic effects from antipsychotics (metabolic side-effects) or from lithium (endocrine side-effects). On the other hand, these comorbidities are also associated with affective disorders independently from medication. We will successively examine metabolic syndrome, glycemic disturbances, obesity and thyroid disorders among patients with affective disorders. Endocrinemetabolic comorbidities can be individually encountered, but can also be associated. Therefore, they substantially impact morbidity and mortality by increasing cardiovascular risk factors. Two distinct approaches give an account of processes involved in these comorbidities: common environmental factors (iatrogenic effects, lifestyle), and/or shared physiological vulnerabilities. In conclusion, we provide a synthesis of important results and recommendations related to endocrine-metabolic comorbidities in affective disorders : heavy influence on morbidity and mortality, undertreatment of somatic diseases, importance of endocrine and metabolic side effects from main mood stabilizers, impact from sex and age on the prevalence of comorbidities, influence from previous depressive episodes in bipolar disorders, and relevance of systematic screening for subclinical (biological) disturbances. PMID:25550238

  9. Affective Disorders, Bone Metabolism, and Osteoporosis.

    PubMed

    Mezuk, Briana

    2008-12-01

    The nature of the relationship between affective disorders, bone mineral density (BMD), and bone metabolism is unresolved, although there is growing evidence that many medications used to treat affective disorders are associated with low BMD or alterations in neuroendocrine systems that influence bone turnover. The objective of this review is to describe the current evidence regarding the association of unipolar and bipolar depression with BMD and indicators of bone metabolism, and to explore potential mediating and confounding influences of those relationships. The majority of studies of unipolar depression and BMD indicate that depressive symptoms are associated with low BMD. In contrast, evidence regarding the relationship between bipolar depression and BMD is inconsistent. There is limited but suggestive evidence to support an association between affective disorders and some markers of bone turnover. Many medications used to treat affective disorders have effects on physiologic systems that influence bone metabolism, and these conditions are also associated with a range of health behaviors that can influence osteoporosis risk. Future research should focus on disentangling the pathways linking psychotropic medications and their clinical indications with BMD and fracture risk.

  10. Affective Disorders, Bone Metabolism, and Osteoporosis

    PubMed Central

    2013-01-01

    The nature of the relationship between affective disorders, bone mineral density (BMD), and bone metabolism is unresolved, although there is growing evidence that many medications used to treat affective disorders are associated with low BMD or alterations in neuroendocrine systems that influence bone turnover. The objective of this review is to describe the current evidence regarding the association of unipolar and bipolar depression with BMD and indicators of bone metabolism, and to explore potential mediating and confounding influences of those relationships. The majority of studies of unipolar depression and BMD indicate that depressive symptoms are associated with low BMD. In contrast, evidence regarding the relationship between bipolar depression and BMD is inconsistent. There is limited but suggestive evidence to support an association between affective disorders and some markers of bone turnover. Many medications used to treat affective disorders have effects on physiologic systems that influence bone metabolism, and these conditions are also associated with a range of health behaviors that can influence osteoporosis risk. Future research should focus on disentangling the pathways linking psychotropic medications and their clinical indications with BMD and fracture risk. PMID:23874147

  11. Modelling affect in terms of speech parameters.

    PubMed

    Stassen, H H

    1988-01-01

    It is well known that the human voice contains important information about the affective state of a speaker at a nonverbal level. Accordingly, we started an extensive investigation which aims at modelling intraindividual changes of the global affective state over time, as this state is reflected by the human voice, and can be inferred from measurable speech parameters. For the purpose of this investigation, a speech-recording procedure was designed which is especially suited to reveal intraindividual changes of voice patterns over time since each person serves as his or her own reference. On the other hand, the chosen experimental setup is less suited to classify patients in the sense of a traditional diagnostic scheme. In order to find an appropriate mathematical model on the basis of speech parameters, a calibration study with 190 healthy subjects was carried out which enabled us to investigate each parameter for its reproducibility, sensitivity and specificity. In particular, this calibration study yielded the information of how to draw the line between 'normal' fluctuations and 'significant' intraindividual changes over time. All speech parameters under discussion turned out to be sufficiently stable over time, whereas, in regard to their sensitivity to form and content of text, significant differences showed up. In a second step, a pilot study with 6 depressive patients was carried out in order to investigate the specificity of voice parameters with regard to psychopathology. It turned out that the registration procedure is realizable even if patients are considerably handicapped by their illness. However, no consistent correlations could be revealed between single speech parameters and psychopathological rating scales.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Trichoderma secondary metabolites that affect plant metabolism.

    PubMed

    Vinale, Francesco; Sivasithamparam, Krishnapillai; Ghisalberti, Emilio L; Ruocco, Michelina; Wood, Sheridan; Lorito, Matteo

    2012-11-01

    Recently, there have been many exciting new developments relating to the use of Trichoderma spp. as agents for biocontrol of pathogens and as plant growth promoters. Several mechanisms have been proposed to explain the positive effects of these microorganisms on the plant host. One factor that contributes to their beneficial biological activities is related to the wide variety of metabolites that they produce. These metabolites have been found not only to directly inhibit the growth and pathogenic activities of the parasites, but also to increase disease resistance by triggering the system of defence in the plant host. In addition, these metabolites are also capable of enhancing plant growth, which enables the plant to counteract the disease with compensatory vegetative growth by the augmented production of root and shoot systems. This review takes into account the Trichoderma secondary metabolites that affect plant metabolism and that may play an important role in the complex interactions of this biocontrol agent with the plant and pathogens.

  13. Parameter estimation in tree graph metabolic networks

    PubMed Central

    Stigter, Hans; Gomez Roldan, Maria Victoria; van Eeuwijk, Fred; Hall, Robert D.; Groenenboom, Marian; Molenaar, Jaap J.

    2016-01-01

    We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum) seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs) to model the enzyme kinetics. A popular choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis–Menten kinetics. In reality, the catalytic rates, which are affected among other factors by kinetic constants and enzyme concentrations, are changing in time and with the approaches just mentioned, this phenomenon cannot be described. Another problem is that, in general these kinetic coefficients are not always identifiable. A third problem is that, it is not precisely known which enzymes are catalyzing the observed glycosylation processes. With several hundred potential gene candidates, experimental validation using purified target proteins is expensive and time consuming. We aim at reducing this task via mathematical modeling to allow for the pre-selection of most potential gene candidates. In this article we discuss a fast and relatively simple approach to estimate time varying kinetic rates, with three favorable properties: firstly, it allows for identifiable estimation of time dependent parameters in networks with a tree-like structure. Secondly, it is relatively fast compared to usually applied methods that estimate the model derivatives together with the network parameters. Thirdly, by combining the metabolite concentration data with a corresponding microarray data, it can help in detecting the genes related to the enzymatic processes. By comparing the estimated time dynamics of the catalytic rates with time series gene expression data we may assess potential candidate genes behind enzymatic reactions. As an example, we show how to apply this method to select prominent glycosyltransferase genes in tomato seedlings.

  14. Parameter estimation in tree graph metabolic networks.

    PubMed

    Astola, Laura; Stigter, Hans; Gomez Roldan, Maria Victoria; van Eeuwijk, Fred; Hall, Robert D; Groenenboom, Marian; Molenaar, Jaap J

    2016-01-01

    We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum) seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs) to model the enzyme kinetics. A popular choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis-Menten kinetics. In reality, the catalytic rates, which are affected among other factors by kinetic constants and enzyme concentrations, are changing in time and with the approaches just mentioned, this phenomenon cannot be described. Another problem is that, in general these kinetic coefficients are not always identifiable. A third problem is that, it is not precisely known which enzymes are catalyzing the observed glycosylation processes. With several hundred potential gene candidates, experimental validation using purified target proteins is expensive and time consuming. We aim at reducing this task via mathematical modeling to allow for the pre-selection of most potential gene candidates. In this article we discuss a fast and relatively simple approach to estimate time varying kinetic rates, with three favorable properties: firstly, it allows for identifiable estimation of time dependent parameters in networks with a tree-like structure. Secondly, it is relatively fast compared to usually applied methods that estimate the model derivatives together with the network parameters. Thirdly, by combining the metabolite concentration data with a corresponding microarray data, it can help in detecting the genes related to the enzymatic processes. By comparing the estimated time dynamics of the catalytic rates with time series gene expression data we may assess potential candidate genes behind enzymatic reactions. As an example, we show how to apply this method to select prominent glycosyltransferase genes in tomato seedlings.

  15. Parameter estimation in tree graph metabolic networks.

    PubMed

    Astola, Laura; Stigter, Hans; Gomez Roldan, Maria Victoria; van Eeuwijk, Fred; Hall, Robert D; Groenenboom, Marian; Molenaar, Jaap J

    2016-01-01

    We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum) seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs) to model the enzyme kinetics. A popular choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis-Menten kinetics. In reality, the catalytic rates, which are affected among other factors by kinetic constants and enzyme concentrations, are changing in time and with the approaches just mentioned, this phenomenon cannot be described. Another problem is that, in general these kinetic coefficients are not always identifiable. A third problem is that, it is not precisely known which enzymes are catalyzing the observed glycosylation processes. With several hundred potential gene candidates, experimental validation using purified target proteins is expensive and time consuming. We aim at reducing this task via mathematical modeling to allow for the pre-selection of most potential gene candidates. In this article we discuss a fast and relatively simple approach to estimate time varying kinetic rates, with three favorable properties: firstly, it allows for identifiable estimation of time dependent parameters in networks with a tree-like structure. Secondly, it is relatively fast compared to usually applied methods that estimate the model derivatives together with the network parameters. Thirdly, by combining the metabolite concentration data with a corresponding microarray data, it can help in detecting the genes related to the enzymatic processes. By comparing the estimated time dynamics of the catalytic rates with time series gene expression data we may assess potential candidate genes behind enzymatic reactions. As an example, we show how to apply this method to select prominent glycosyltransferase genes in tomato seedlings. PMID:27688960

  16. Parameter estimation in tree graph metabolic networks

    PubMed Central

    Stigter, Hans; Gomez Roldan, Maria Victoria; van Eeuwijk, Fred; Hall, Robert D.; Groenenboom, Marian; Molenaar, Jaap J.

    2016-01-01

    We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum) seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs) to model the enzyme kinetics. A popular choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis–Menten kinetics. In reality, the catalytic rates, which are affected among other factors by kinetic constants and enzyme concentrations, are changing in time and with the approaches just mentioned, this phenomenon cannot be described. Another problem is that, in general these kinetic coefficients are not always identifiable. A third problem is that, it is not precisely known which enzymes are catalyzing the observed glycosylation processes. With several hundred potential gene candidates, experimental validation using purified target proteins is expensive and time consuming. We aim at reducing this task via mathematical modeling to allow for the pre-selection of most potential gene candidates. In this article we discuss a fast and relatively simple approach to estimate time varying kinetic rates, with three favorable properties: firstly, it allows for identifiable estimation of time dependent parameters in networks with a tree-like structure. Secondly, it is relatively fast compared to usually applied methods that estimate the model derivatives together with the network parameters. Thirdly, by combining the metabolite concentration data with a corresponding microarray data, it can help in detecting the genes related to the enzymatic processes. By comparing the estimated time dynamics of the catalytic rates with time series gene expression data we may assess potential candidate genes behind enzymatic reactions. As an example, we show how to apply this method to select prominent glycosyltransferase genes in tomato seedlings. PMID:27688960

  17. Complexity Analysis and Parameter Estimation of Dynamic Metabolic Systems

    PubMed Central

    Tian, Li-Ping; Shi, Zhong-Ke; Wu, Fang-Xiang

    2013-01-01

    A metabolic system consists of a number of reactions transforming molecules of one kind into another to provide the energy that living cells need. Based on the biochemical reaction principles, dynamic metabolic systems can be modeled by a group of coupled differential equations which consists of parameters, states (concentration of molecules involved), and reaction rates. Reaction rates are typically either polynomials or rational functions in states and constant parameters. As a result, dynamic metabolic systems are a group of differential equations nonlinear and coupled in both parameters and states. Therefore, it is challenging to estimate parameters in complex dynamic metabolic systems. In this paper, we propose a method to analyze the complexity of dynamic metabolic systems for parameter estimation. As a result, the estimation of parameters in dynamic metabolic systems is reduced to the estimation of parameters in a group of decoupled rational functions plus polynomials (which we call improper rational functions) or in polynomials. Furthermore, by taking its special structure of improper rational functions, we develop an efficient algorithm to estimate parameters in improper rational functions. The proposed method is applied to the estimation of parameters in a dynamic metabolic system. The simulation results show the superior performance of the proposed method. PMID:24233242

  18. Does posture affect cystometric parameters and diagnoses?

    PubMed

    Arunkalaivanan, A S; Mahomoud, S; Howell, M

    2004-01-01

    The objective of this study was to investigate the effect of lying and sitting positions on urodynamic parameters and diagnoses. This prospective study was carried out on 96 women with urinary incontinence who underwent urodynamic assessment. Cystometry was performed both in the lying and sitting positions. For filling cystometry, we infused normal saline at a rate of 50 ml/min. All the results were entered on the urodynamic database and were analysed using Minitab software release 13.30. Mean age was 49 (20-84) years. Sixty-four (67%) women complained of mixed incontinence, 16 (17%) of urgency alone, eight (8%) of stress incontinence and eight (8%) of urgency and urge incontinence. Two (2%) showed stress incontinence by lying cystometry, and 53 (55%) by sitting cystometry. During lying nine (9%) demonstrated detrusor overactivity, while 53 (55%) demonstrated detrusor overactivity in sitting position. No case of mixed incontinence was diagnosed by lying cystometry but 17 (18%) cases were detected by sitting cystometry. This study explains the higher detection rate of stress incontinence, detrusor overactivity and mixed incontinence by cystometry in sitting position. Therefore, we recommend that sitting posture is preferred over lying position for performing cystometry.

  19. [Pathogenetic correction of metabolic disturbances in chronic liver affections].

    PubMed

    Romantsov, M G; Petrov, A Iu; Aleksandrova, L N; Sukhanov, D S; Kovalenko, A L

    2012-01-01

    The available drugs for the treatment of chronic liver affections (the adequate model is chronic hepatitis C) include agents of metabolic therapy, whose efficacy is not always enough, that required the search for original mitochondrial substrates on the basis of succinate. Such agents were composed as a pharmaceutical group named "Substrates of Energetic Metabolism" or "Substrate Antihypoxants". The review presents the description of the pharmacological effects of remaxole and cytoflavin, evident from lower levels of active metabolites of oxygen that increases the clinical efficacy of the therapy. Their role in the metabolic reactions in chronic liver affections is exclusive and rather actual. PMID:23700935

  20. Inherited metabolic diseases affecting the carrier.

    PubMed

    Endres, W

    1997-03-01

    The objective of this review is to draw attention to those inherited metabolic traits which are potentially harmful also for the carrier, and to outline preventive measures, at least for obligate heterozygotes, i.e. parents of homozygous children. Concerning carriers of food-dependent abnormalities, early vascular disease in homocystinuria, hyperammonaemic episodes in ornithine transcarbamylase deficiency, presenile cataracts in galactosaemia as well as galactokinase deficiency, spastic paraparesis in X-linked adrenoleukodystrophy, and HELLP syndrome in mothers of babies with long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency have to be mentioned. In the group of food-independent disorders, clinical features in carriers may be paraesthesias and corneal dystrophy in Fabry disease, lens clouding in Lowe syndrome, lung and/or liver diseases in alpha 1-antitrypsin deficiency, and renal stones in cystinuria type II and III. Finally, two monogenic carrier states are known which in pregnant individuals could possibly afflict the developing fetus, i.e. heterozygosity for galactosaemia and for phenylketonuria. Elevated levels of galactose-1-phosphate have been found in red blood cells of infants heterozygous for galactosaemia born to heterozygous mothers. Aspartame in very high doses is reported to increase blood phenylalanine levels in heterozygotes for phenylketonuria, thus being a risk for the fetus of a heterozygous mother. For some of these carrier states preventive measures can be recommended, e.g. restriction of lactose in parents and heterozygous grandparents of children with galactosaemia and galactokinase deficiency as well as transiently in infants heterozygous for galactosaemia, dietary supplementation with monounsaturated fatty acids in symptomatic carriers for X-linked adrenoleukodystrophy, avoidance of smoking and alcohol in heterozygotes for alpha 1-antitrypsin deficiency, avoidance of episodes of dehydration in heterozygotes for cystinuria, and

  1. Effect of maternal anthropometry and metabolic parameters on fetal growth

    PubMed Central

    Mitra, Subarna; Misra, Sujata; Nayak, Prasanta K.; Sahoo, Jaya Prakash

    2012-01-01

    Objective: The aim of this study was to determine the effect of maternal anthropometry and metabolic parameters on neonatal anthropometry. Materials and Methods: This observational cross-sectional study was conducted from January 2008 to June 2009 at a single tertiary care center. Maternal anthropometry and metabolic parameters like fasting serum insulin, lipid profile, and random blood glucose were estimated in 50 pregnant women at term. Detailed anthropometry of the neonates was performed. Results: Large for gestational age (LGA) babies had higher maternal body mass index (BMI), fasting serum insulin, and cord blood insulin levels, and lower maternal high density lipoprotein (HDL) compared to appropriate for gestational age (AGA) group (P < 0.001). Among the maternal parameters, BMI, gestational age, fasting serum insulin, and random blood sugar (RBS) had significant positive correlation, while HDL had negative correlation with birth weight (P < 0.05). However, only maternal BMI was the significant predictor of neonatal birth weight on multiple regression analysis (ß = 0.340, P = 0.01). Conclusion: The BMI of glucose-tolerant mother is more important than metabolic parameters in determining the birth weight of term babies. PMID:23087859

  2. Environmental factors affecting pregnancy: endocrine disrupters, nutrients and metabolic pathways.

    PubMed

    Bazer, Fuller W; Wu, Guoyao; Johnson, Gregory A; Wang, Xiaoqiu

    2014-12-01

    Uterine adenogenesis, a unique post-natal event in mammals, is vulnerable to endocrine disruption by estrogens and progestins resulting in infertility or reduced prolificacy. The absence of uterine glands results in insufficient transport of nutrients into the uterine lumen to support conceptus development. Arginine, a component of histotroph, is substrate for production of nitric oxide, polyamines and agmatine and, with secreted phosphoprotein 1, it affects cytoskeletal organization of trophectoderm. Arginine is critical for development of the conceptus, pregnancy recognition signaling, implantation and placentation. Conceptuses of ungulates and cetaceans convert glucose to fructose which is metabolized via multiple pathways to support growth and development. However, high fructose corn syrup in soft drinks and foods may increase risks for metabolic disorders and increase insulin resistance in adults. Understanding endocrine disrupters and dietary substances, and novel pathways for nutrient metabolism during pregnancy can improve survival and growth, and prevent chronic metabolic diseases in offspring. PMID:25224489

  3. How does cancer cell metabolism affect tumor migration and invasion?

    PubMed

    Han, Tianyu; Kang, De; Ji, Daokun; Wang, Xiaoyu; Zhan, Weihua; Fu, Minggui; Xin, Hong-Bo; Wang, Jian-Bin

    2013-01-01

    Cancer metastasis is the major cause of cancer-associated death. Accordingly, identification of the regulatory mechanisms that control whether or not tumor cells become "directed walkers" is a crucial issue of cancer research. The deregulation of cell migration during cancer progression determines the capacity of tumor cells to escape from the primary tumors and invade adjacent tissues to finally form metastases. The ability to switch from a predominantly oxidative metabolism to glycolysis and the production of lactate even when oxygen is plentiful is a key characteristic of cancer cells. This metabolic switch, known as the Warburg effect, was first described in 1920s, and affected not only tumor cell growth but also tumor cell migration. In this review, we will focus on the recent studies on how cancer cell metabolism affects tumor cell migration and invasion. Understanding the new aspects on molecular mechanisms and signaling pathways controlling tumor cell migration is critical for development of therapeutic strategies for cancer patients.

  4. Abnormal folate metabolism in foetuses affected by neural tube defects.

    PubMed

    Dunlevy, Louisa P E; Chitty, Lyn S; Burren, Katie A; Doudney, Kit; Stojilkovic-Mikic, Taita; Stanier, Philip; Scott, Rosemary; Copp, Andrew J; Greene, Nicholas D E

    2007-04-01

    Folic acid supplementation can prevent many cases of neural tube defects (NTDs), whereas suboptimal maternal folate status is a risk factor, suggesting that folate metabolism is a key determinant of susceptibility to NTDs. Despite extensive genetic analysis of folate cycle enzymes, and quantification of metabolites in maternal blood, neither the protective mechanism nor the relationship between maternal folate status and susceptibility are understood in most cases. In order to investigate potential abnormalities in folate metabolism in the embryo itself, we derived primary fibroblastic cell lines from foetuses affected by NTDs and subjected them to the dU suppression test, a sensitive metabolic test of folate metabolism. Significantly, a subset of NTD cases exhibited low scores in this test, indicative of abnormalities in folate cycling that may be causally linked to the defect. Susceptibility to NTDs may be increased by suppression of the methylation cycle, which is interlinked with the folate cycle. However, reduced efficacy in the dU suppression test was not associated with altered abundance of the methylation cycle intermediates, s-adenosylmethionine and s-adenosylhomocysteine, suggesting that a methylation cycle defect is unlikely to be responsible for the observed abnormality of folate metabolism. Genotyping of samples for known polymorphisms in genes encoding folate-associated enzymes did not reveal any correlation between specific genotypes and the observed abnormalities in folate metabolism. These data suggest that as yet unrecognized genetic variants result in embryonic abnormalities of folate cycling that may be causally related to NTDs. PMID:17438019

  5. Cardiac rehabilitation programs improve metabolic parameters in patients with the metabolic syndrome and coronary heart disease.

    PubMed

    Pérez, Ignacio P; Zapata, Maria A; Cervantes, Carlos E; Jarabo, Rosario M; Grande, Cristina; Plaza, Rose; Garcia, Sara; Rodriguez, Miriam L; Crespo, Silvia; Perea, Jesús

    2010-05-01

    This study was performed to determine the effectiveness of a cardiac rehabilitation and exercise training program on metabolic parameters and coronary risk factors in patients with the metabolic syndrome and coronary heart disease. The study involved 642 patients with coronary heart disease. Of them, 171 (26.7%) fulfilled criteria for the metabolic syndrome. Clinical data, laboratory tests, and exercise testing were performed before and after the program, which lasted 2 to 3 months. Except for waist circumference, there were no significant differences between groups; blood pressure, high-density lipoprotein cholesterol, triglycerides, and fasting glucose improvements during the follow-up were higher in patients with the metabolic syndrome (all P<.001). At study end, in patients with the metabolic syndrome, functional capacity increased by 26.45% ( P<.001), as measured by metabolic equivalents, with a slight increase of 1.25% ( P=not significant) in the double product. Patients with the metabolic syndrome who took part in this secondary prevention program reported improvements in cardiovascular risk profile and functional capacity.

  6. A review of the meteorological parameters which affect aerial application

    NASA Technical Reports Server (NTRS)

    Christensen, L. S.; Frost, W.

    1979-01-01

    The ambient wind field and temperature gradient were found to be the most important parameters. Investigation results indicated that the majority of meteorological parameters affecting dispersion were interdependent and the exact mechanism by which these factors influence the particle dispersion was largely unknown. The types and approximately ranges of instrumented capabilities for a systematic study of the significant meteorological parameters influencing aerial applications were defined. Current mathematical dispersion models were also briefly reviewed. Unfortunately, a rigorous dispersion model which could be applied to aerial application was not available.

  7. Temperature-based bioclimatic parameters can predict nematode metabolic footprints.

    PubMed

    Bhusal, Daya Ram; Tsiafouli, Maria A; Sgardelis, Stefanos P

    2015-09-01

    Nematode metabolic footprints (MFs) refer to the lifetime amount of metabolized carbon per individual, indicating a connection to soil food web functions and eventually to processes supporting ecosystem services. Estimating and managing these at a convenient scale requires information upscaling from the soil sample to the landscape level. We explore the feasibility of predicting nematode MFs from temperature-based bioclimatic parameters across a landscape. We assume that temperature effects are reflected in MFs, since temperature variations determine life processes ranging from enzyme activities to community structure. We use microclimate data recorded for 1 year from sites differing by orientation, altitude and vegetation cover. At the same sites we estimate MFs for each nematode trophic group. Our models show that bioclimatic parameters, specifically those accounting for temporal variations in temperature and extremities, predict most of the variation in nematode MFs. Higher fungivorous and lower bacterivorous nematode MFs are predicted for sites with high seasonality and low isothermality (sites of low vegetation, mostly at low altitudes), indicating differences in the relative contribution of the corresponding food web channels to the metabolism of carbon across the landscape. Higher plant-parasitic MFs were predicted for sites with high seasonality. The fitted models provide realistic predictions of unknown cases within the range of the predictor's values, allowing for the interpolation of MFs within the sampled region. We conclude that upscaling of the bioindication potential of nematode communities is feasible and can provide new perspectives not only in the field of soil ecology but other research areas as well.

  8. [Chloroquine influence on lipid metabolism and selected laboratory parameters].

    PubMed

    Woźniacka, Anna; Lesiak, Aleksandra; Smigielski, Janusz; Sysa-Jedrzejowska, Anna

    2005-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune connective tissue disease with complex pathogenesis, various clinical presentation and chronic course with relapses. Mode of treatment depends on the disease activity and kind of internal organ involvement. In most cases clinical remission could be obtained after antimalarials, nonsteroidal anti-inflammatory drugs, corticosteroids, and photoprotection use. Despite the approved antimalarials therapeutic value, the mechanisms by which they provide benefit in lupus, patients are not fully understood. Literature data indicate that they can influence lipid metabolism. The aim of the performed study was the objective evaluation of the influence of 3-month chloroquine treatment (Arechin, 250 mg/day) on lipid metabolism and selected laboratory parameters. In 34 patients with SLE clinical and laboratory evaluation was performed twice, before and after 3-month treatment. After 3 months significantly lower total cholesterol level was observed (mean value 184.91 mg%, 165.26 mg%, p < 0.001). Also LDL level was evidently lowered (111.27 mg%, 99.25 mg%). Similar tendency was noticed in triglycerides, which level after 3 months decreased from the average 152.38 mg% to 104.97 mg%, p < 0.001. Moreover the lowering of sedimentation rate, increasing hemoglobin level and lengthening coagulation time was perceived. The results of the study indicate the influence of chloroquine on decreasing of the disease activity, its anti-inflammatory properties and mainly the drug impact on lipid metabolism. Not only does antimalarials treatment reduce the risk of atherosclerosis development but it also minimizes corticosteroids side effects, which are considered to be the basic medication in lupus patients. PMID:16541717

  9. Fermentation and Hydrogen Metabolism Affect Uranium Reduction by Clostridia

    DOE PAGES

    Gao, Weimin; Francis, Arokiasamy J.

    2013-01-01

    Previously, it has been shown that not only is uranium reduction under fermentation condition common among clostridia species, but also the strains differed in the extent of their capability and the pH of the culture significantly affected uranium(VI) reduction. In this study, using HPLC and GC techniques, metabolic properties of those clostridial strains active in uranium reduction under fermentation conditions have been characterized and their effects on capability variance of uranium reduction discussed. Then, the relationship between hydrogen metabolism and uranium reduction has been further explored and the important role played by hydrogenase in uranium(VI) and iron(III) reduction bymore » clostridia demonstrated. When hydrogen was provided as the headspace gas, uranium(VI) reduction occurred in the presence of whole cells of clostridia. This is in contrast to that of nitrogen as the headspace gas. Without clostridia cells, hydrogen alone could not result in uranium(VI) reduction. In alignment with this observation, it was also found that either copper(II) addition or iron depletion in the medium could compromise uranium reduction by clostridia. In the end, a comprehensive model was proposed to explain uranium reduction by clostridia and its relationship to the overall metabolism especially hydrogen (H 2 ) production.« less

  10. Fermentation and Hydrogen Metabolism Affect Uranium Reduction by Clostridia

    SciTech Connect

    Gao, Weimin; Francis, Arokiasamy J.

    2013-01-01

    Previously, it has been shown that not only is uranium reduction under fermentation condition common among clostridia species, but also the strains differed in the extent of their capability and the pH of the culture significantly affected uranium(VI) reduction. In this study, using HPLC and GC techniques, metabolic properties of those clostridial strains active in uranium reduction under fermentation conditions have been characterized and their effects on capability variance of uranium reduction discussed. Then, the relationship between hydrogen metabolism and uranium reduction has been further explored and the important role played by hydrogenase in uranium(VI) and iron(III) reduction by clostridia demonstrated. When hydrogen was provided as the headspace gas, uranium(VI) reduction occurred in the presence of whole cells of clostridia. This is in contrast to that of nitrogen as the headspace gas. Without clostridia cells, hydrogen alone could not result in uranium(VI) reduction. In alignment with this observation, it was also found that either copper(II) addition or iron depletion in the medium could compromise uranium reduction by clostridia. In the end, a comprehensive model was proposed to explain uranium reduction by clostridia and its relationship to the overall metabolism especially hydrogen (H2) production.

  11. Fusion and metabolism of plant cells as affected by microgravity.

    PubMed

    Hampp, R; Hoffmann, E; Schönherr, K; Johann, P; De Filippis, L

    1997-01-01

    Plant cell protoplasts derived from leaf tissue of two different tobacco species (Nicotiana tabacum., N. rustica L.) were exposed to short-term (sounding rocket experiments) and long-term (spacelab) microgravity environments in order to study both (electro) cell fusion and cell metabolism during early and later stages of tissue regeneration. The period of exposure to microgravity varied from 10 min (sounding rocket) to 10 d (space shuttle). The process of electro fusion of protoplasts was improved under conditions of microgravity: the time needed to establish close membrane contact between protoplasts (alignment time) was reduced (5 as compared to 15 s under 1 g) and numbers of fusion products between protoplasts of different specific density were increased by a factor of about 10. In addition, viability of fusion products, as shown by the ability to form callus, increased from about 60% to more than 90%. Regenerated fusion products obtained from both sounding-rocket and spacelab experiments showed a wide range of intermediate properties between the two parental plants. This was verified by isozyme analysis and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). In order to address potential metabolic responses, more general markers such as the overall energy state (ATP/ADP ratio), the redox charge of the diphosphopyridine nucleotide system (NADH/NAD ratio), and the pool size of fructose-2,6-bisphosphate (Fru 2,6 bisp), a regulator of the balance between glycolysis and gluconeogenesis, were determined. Responses of these parameters were different with regard to short-term and long-term exposure. Shortly after transition to reduced gravitation (sounding rocket) ratios of ATP/ADP exhibited strong fluctuation while the pool size of NAD decreased (indicating an increased NADH/NAD ratio) and that of Fru 2,6 bisp increased. As similar changes can be observed under stress conditions, this response is probably indicative of a metabolic stress

  12. Interactions between dietary boron and thiamine affect lipid metabolism

    SciTech Connect

    Herbel, J.L.; Hunt, C.D. )

    1991-03-15

    An experiment was designed to test the hypothesis that dietary boron impacts upon the function of various coenzymes involved in energy metabolism. In a 2 {times} 7 factorially-arranged experiment, weanling, vitamin D{sub 3}-deprived rats were fed a ground corn-casein-corn oil based diet supplemented with 0 or 2 mg boron/kg and 50% of the requirement for thiamine (TM), riboflavin (RF), pantothenic acid (PA) or pyridoxine (PX); 0% for folic acid (FA) or nicotinic acid (NA). All vitamins were supplemented in adequate amounts in the control diet. At 8 weeks of age, the TM dietary treatment was the one most affected by supplemental dietary boron (SDB). In rats that were fed 50% TM, SDB increased plasma concentrations of triglyceride (TG) and activity of alanine transaminase (ALT), and the liver to body weight (L/B) ratio. However, in the SDB animals, adequate amounts of TM decreased the means of those variables to near that observed in non-SDB rats fed 50% TM. The findings suggest that an interaction between dietary boron and TM affects lipid metabolism.

  13. Boron nutrition affects the carbon metabolism of silver birch seedlings.

    PubMed

    Ruuhola, Teija; Keinänen, Markku; Keski-Saari, Sarita; Lehto, Tarja

    2011-11-01

    Boron (B) is an essential micronutrient whose deficiency is common both in agriculture and in silviculture. Boron deficiency impairs the growth of plants and affects many metabolic processes like carbohydrate metabolism. Boron deficiency and also excess B may decrease the sink demand by decreasing the growth and sugar transport which may lead to the accumulation of carbohydrates and down-regulation of photosynthesis. In this study, we investigated the effects of B nutrition on the soluble and storage carbohydrate concentrations of summer leaves and autumn buds in a deciduous tree species, Betula pendula Roth. In addition, we investigated the changes in the pools of condensed tannins between summer and autumn harvests. One-year-old birch seedlings were fertilized with a complete nutrient solution containing three different levels of B: 0, 30 and 100% of the standard level for complete nutrient solution. Half of the seedlings were harvested after summer period and another half when leaves abscised. The highest B fertilization level (B100) caused an accumulation of starch and a decrease in the concentrations of hexoses (glucose and fructose) in summer leaves, whereas in the B0 seedlings, hexoses (mainly glucose) accumulated and starch decreased. These changes in carbohydrate concentrations might be related to the changes in the sink demand since the autumn growth was the smallest for the B100 seedlings and largest for the B30 seedlings that did not accumulate carbohydrates. The autumn buds of B30 seedlings contained the lowest levels of glucose, glycerol, raffinose and total polyols, which was probably due to the dilution effect of the deposition of other substances like phenols. Condensed tannins accumulated in high amounts in the birch stems during the hardening of seedlings and the largest accumulation was detected in the B30 treatment. Our results suggest that B nutrition of birch seedlings affects the carbohydrate and phenol metabolism and may play an important

  14. Black leaf streak disease affects starch metabolism in banana fruit.

    PubMed

    Saraiva, Lorenzo de Amorim; Castelan, Florence Polegato; Shitakubo, Renata; Hassimotto, Neuza Mariko Aymoto; Purgatto, Eduardo; Chillet, Marc; Cordenunsi, Beatriz Rosana

    2013-06-12

    Black leaf streak disease (BLSD), also known as black sigatoka, represents the main foliar disease in Brazilian banana plantations. In addition to photosynthetic leaf area losses and yield losses, this disease causes an alteration in the pre- and postharvest behavior of the fruit. The aim of this work was to investigate the starch metabolism of fruits during fruit ripening from plants infected with BLSD by evaluating carbohydrate content (i.e., starch, soluble sugars, oligosaccharides, amylose), phenolic compound content, phytohormones, enzymatic activities (i.e., starch phosphorylases, α- and β-amylase), and starch granules. The results indicated that the starch metabolism in banana fruit ripening is affected by BLSD infection. Fruit from infested plots contained unusual amounts of soluble sugars in the green stage and smaller starch granules and showed a different pattern of superficial degradation. Enzymatic activities linked to starch degradation were also altered by the disease. Moreover, the levels of indole-acetic acid and phenolic compounds indicated an advanced fruit physiological age for fruits from infested plots. PMID:23692371

  15. Laboratory measurements of parameters affecting wet deposition of methyl iodide

    SciTech Connect

    Maeck, W.J.; Honkus, R.J.; Keller, J.H.; Voilleque, P.G.

    1984-09-01

    The transfer of gaseous methyl iodide (CH/sub 3/I) to raindrops and the initial retention by vegetation of CH/sub 3/I in raindrops have been studied in a laboratory experimental program. The measured air-to-drop transfer parameters and initial retention factors both affect the wet deposition of methyl iodide onto vegetation. No large effects on the air-to-drop transfer due to methyl iodide concentration, temperature, acidity, or rain type were observed. Differences between laboratory measurements and theoretical values of the mass transfer coefficient were found. Pasture grass, lettuce, and alfalfa were used to study the initial retention of methyl iodide by vegetation. Only a small fraction of the incident CH/sub 3/I in raindrops was held by any of the three vegetation types.

  16. [The effect of nonnutritives weeteners on certain metabolic parameters].

    PubMed

    Hidvégi, Tibor

    2016-04-01

    Nonnutritive sweeteners can be found in many other foods apart from soft drinks. Producers of foodstuffs often use a combination of several sweeteners or sweetener and sugar mixes in a single product mainly to achieve a sweeter taste with a lower calorie count. According to the 2012 Scientific Statement of the American Heart and Diabetes Association, reduction of sugar intake plays an important role in establishing an optimal diet and the maintenance of an appropriate body weight. Controlled intervention studies show that during use of calorie-free sweeteners body weight did not change, moreover, in some cases weight even fell. This was also demonstrated in a recently published summary study of randomized controlled studies, according to which calorie-free sweeteners contributed to both loss and maintenance of body weight. According to the summary of the American Dietetic Association, the use of calorie-free sweeteners does not influence the glycemic response and does not increase postprandial blood glucose levels in diabetics. The results thus far, then, show that the use of nonnutritive sweeteners can reduce the consumption of carbohydrates, by which total calorie intake can also be lowered. Their use can promote weight loss and maintenance as well as can help to improve the values of other metabolic parameters (eg. blood sugar, triglycerides). In addition to this, it is important to note that these benefits will not fully materialize if consumption of nonnutritive sweeteners is accompanied by an increase in compensatory caloric intake. Orv. Hetil., 2016, 157(Suppl. 1), 8-13. PMID:27088714

  17. [How strongly does heavy work in the heat affect metabolism?].

    PubMed

    Zöller, H; May, B; Weiss, M; Gross, W

    1981-06-19

    The study covered 39 acclimatised workers of a ball-bearing forge, aged 39,03 +/- 9,95 years. Temperature of the air, relative humidity and air speed were measured immediately at work. Additionally electrocardiogram, heart rate and temperature of the skin were continuously transmitted by telemetry. Before and at the end of the shift analysis of blood pressure, heart rate, electrocardiogram, blood cells and coagulation, serum acidity and a great number of other metabolic parameters was performed. The netto calories were calculated as 3250 kcal/8 hours (= 13585 kJ/8 hours). Hematological analysis demonstrated a tendency to increase of leucocytes favouring neutrophil granulocytes. The main alterations comprised decrease of actual pH, base excess and standard bicarbonate. Furthermore serum lactate and triglycerides increased, creatinine attained the upper limit of the normal range, mineralogram remained unchanged by drinking ad libitum. The so called "liver enzymes" remained stable. As to circulatory parameters systolic blood pressure slightly declined whilst heart rate increased.

  18. Thorium-232 in human tissues: Metabolic parameters and radiation doses

    SciTech Connect

    Stehney, A.F.

    1994-09-01

    Higher than environmental levels of {sup 232}Th have been found in autopsy samples of lungs and other organs from four former employees of a Th refinery. Working periods of the subjects ranged from 3 to 24 years, and times from end of work to death ranged from 6 to 31 years. Concentrations of {sup 232}Th in these samples and in tissues from two cases of non-occupational exposure were examined for compatibility with dosimetric models in Publication 30 of the International Commission on Radiological Protection (ICPP 1979a). The concentrations of {sup 232}Th in the lungs of the Th workers relative to the concentrations in bone or liver were much higher than calculated from the model for class Y aerosols of Th and the exposure histories of the subjects, and concentrations in the pulmonary lymph nodes were much lower than calculated for three of the Th workers and both non-occupational cases. Least-squares fits to the measured concentrations showed that the biological half-times of Th in liver, spleen, and kidneys are similar to the half-time in bone instead of the factor of 10 less suggested in Publication 30, and the fractions translocated from body fluids were found to be about 0.03, 0.02, and 0.005, respectively, when the fraction to bone was held at the suggested value of 0.7. Fitted values of the respiratory parameters differed significantly between cases and the differences were ascribable to aerosol differences. Average inhalation rates calculated for individual Th workers ranged from 50 to 110 Bq {sup 232}Th y{sup {minus}1}, and dose equivalents as high as 9.3 Sv to the lungs, 2.0 Sv to bone surfaces, and 1.1 Sv effective dose equivalent were calculated from the inhalation rates and fitted values of the metabolic parameters. The radiation doses were about the same when calculated from parameter values fitted with an assumed translocation fraction of 0.2 from body fluids to bone instead of 0.7.

  19. Multiple dietary supplements do not affect metabolic and cardiovascular health.

    PubMed

    Soare, Andreea; Weiss, Edward P; Holloszy, John O; Fontana, Luigi

    2013-09-01

    Dietary supplements are widely used for health purposes. However, little is known about the metabolic and cardiovascular effects of combinations of popular over-the-counter supplements, each of which has been shown to have anti-oxidant, anti-inflammatory and pro-longevity properties in cell culture or animal studies. This study was a 6-month randomized, single-blind controlled trial, in which 56 non-obese (BMI 21.0-29.9 kg/m2) men and women, aged 38 to 55 yr, were assigned to a dietary supplement (SUP) group or control (CON) group, with a 6-month follow-up. The SUP group took 10 dietary supplements each day (100 mg of resveratrol, a complex of 800 mg each of green, black, and white tea extract, 250 mg of pomegranate extract, 650 mg of quercetin, 500 mg of acetyl-l-carnitine, 600 mg of lipoic acid, 900 mg of curcumin, 1 g of sesamin, 1.7 g of cinnamon bark extract, and 1.0 g fish oil). Both the SUP and CON groups took a daily multivitamin/mineral supplement. The main outcome measures were arterial stiffness, endothelial function, biomarkers of inflammation and oxidative stress, and cardiometabolic risk factors. Twenty-four weeks of daily supplementation with 10 dietary supplements did not affect arterial stiffness or endothelial function in nonobese individuals. These compounds also did not alter body fat measured by DEXA, blood pressure, plasma lipids, glucose, insulin, IGF-1, and markers of inflammation and oxidative stress. In summary, supplementation with a combination of popular dietary supplements has no cardiovascular or metabolic effects in non-obese relatively healthy individuals.

  20. Parameters Affecting Ethyl Ester Production by Saccharomyces cerevisiae during Fermentation▿

    PubMed Central

    Saerens, S. M. G.; Delvaux, F.; Verstrepen, K. J.; Van Dijck, P.; Thevelein, J. M.; Delvaux, F. R.

    2008-01-01

    Volatile esters are responsible for the fruity character of fermented beverages and thus constitute a vital group of aromatic compounds in beer and wine. Many fermentation parameters are known to affect volatile ester production. In order to obtain insight into the production of ethyl esters during fermentation, we investigated the influence of several fermentation variables. A higher level of unsaturated fatty acids in the fermentation medium resulted in a general decrease in ethyl ester production. On the other hand, a higher fermentation temperature resulted in greater ethyl octanoate and decanoate production, while a higher carbon or nitrogen content of the fermentation medium resulted in only moderate changes in ethyl ester production. Analysis of the expression of the ethyl ester biosynthesis genes EEB1 and EHT1 after addition of medium-chain fatty acid precursors suggested that the expression level is not the limiting factor for ethyl ester production, as opposed to acetate ester production. Together with the previous demonstration that provision of medium-chain fatty acids, which are the substrates for ethyl ester formation, to the fermentation medium causes a strong increase in the formation of the corresponding ethyl esters, this result further supports the hypothesis that precursor availability has an important role in ethyl ester production. We concluded that, at least in our fermentation conditions and with our yeast strain, the fatty acid precursor level rather than the activity of the biosynthetic enzymes is the major limiting factor for ethyl ester production. The expression level and activity of the fatty acid biosynthetic enzymes therefore appear to be prime targets for flavor modification by alteration of process parameters or through strain selection. PMID:17993562

  1. Parameters affecting greywater quality and its safety for reuse.

    PubMed

    Maimon, Adi; Friedler, Eran; Gross, Amit

    2014-07-15

    Reusing greywater (GW) for on-site irrigation is becoming a common practice worldwide. Alongside its benefits, GW reuse might pose health and environmental risks. The current study assesses the risks associated with on-site GW reuse and the main factors affecting them. GW from 34 households in Israel was analyzed for physicochemical parameters, Escherichia coli (as an indicator for rotavirus), Pseudomonas aeruginosa and Staphylococcus aureus. Each participating household filled out a questionnaire about their GW sources, treatment and usages. Quantitative microbial risk assessment (QMRA) was performed based on the measured microbial quality, and on exposure scenarios derived from the questionnaires and literature data. The type of treatment was found to have a significant effect on the quality of the treated GW. The average E. coli counts in GW (which exclude kitchen effluent) treated by professionally-designed system resulted in acceptable risk under all exposure scenarios while the risk from inadequately-treated GW was above the accepted level as set by the WHO. In conclusion, safe GW reuse requires a suitable and well-designed treatment system. A risk-assessment approach should be used to adjust the current regulations/guidelines and to assess the performance of GW treatment and reuse systems.

  2. Lifetime exposure to low doses of lead in rats: effect on selected parameters of carbohydrate metabolism.

    PubMed

    Nováková, Jaroslava; Lukačínová, Agnesa; Lovásová, Eva; Cimboláková, Iveta; Rácz, Oliver; Ništiar, František

    2015-05-01

    The aim of the study was to assess the effects of exposure to low doses of lead dissolved in drinking water (average daily dose of 2.2 mg kg(-1) day(-1)) on selected carbohydrate metabolism parameters in 20 wistar rats. Animals were divided into two groups - control (C) (group drinking clear water) and experimental group (Pb; group exposed to low doses of lead acetate in a concentration of 100 μmol l(-1) of drinking water). In this study, we studied the biochemical parameters (glucose, haemoglobin (Hb), glycated haemoglobin (HbA1c), lactate dehydrogenase (LDH) and amylase (AMS)) in rat blood. Glucose and Hb concentration and AMS activity decreased, LDH activity increased but HbA1c concentration levels did not change in rats exposed to lead. Our results well documented that lifetime exposure to lead affected carbohydrate metabolism of rats. Some parameters like concentration of Hb as well as activities of AMS and LDH are useful markers of intoxication of rats with lead. For the evaluation of results (e.g. AMS), not only the data at the end of the experiment should be taken into account but also the entire duration of trials (i.e. more time steps) that makes results more objective should be considered.

  3. Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in Drosophila melanogaster

    PubMed Central

    Wagner, Anika E.; Piegholdt, Stefanie; Rabe, Doerte; Baenas, Nieves; Schloesser, Anke; Eggersdorfer, Manfred; Stocker, Achim; Rimbach, Gerald

    2015-01-01

    In this study, we tested whether a standardized epigallocatechin-3-gallate (EGCG) rich green tea extract (comprising > 90% EGCG) affects fitness and lifespan as well as parameters of glucose metabolism and energy homeostasis in the fruit fly, Drosophila melanogaster. Following the application of the green tea extract a significant increase in the mean lifespan (+ 3.3 days) and the 50% survival (+ 4.3 days) as well as improved fitness was detected. These effects went along an increased expression of Spargel, the homolog of mammalian PGC1α, which has been reported to affect lifespan in flies. Intriguingly, in flies, treatment with the green tea extract decreased glucose concentrations, which were accompanied by an inhibition of α-amylase and α-glucosidase activity. Computational docking analysis proved the potential of EGCG to dock into the substrate binding pocket of α-amylase and to a greater extent into α-glucosidase. Furthermore, we demonstrate that EGCG downregulates insulin-like peptide 5 and phosphoenolpyruvate carboxykinase, major regulators of glucose metabolism, as well as the Drosophila homolog of leptin, unpaired 2. We propose that a decrease in glucose metabolism in connection with an upregulated expression of Spargel contribute to the better fitness and the extended lifespan in EGCG-treated flies. PMID:26375250

  4. Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in Drosophila melanogaster.

    PubMed

    Wagner, Anika E; Piegholdt, Stefanie; Rabe, Doerte; Baenas, Nieves; Schloesser, Anke; Eggersdorfer, Manfred; Stocker, Achim; Rimbach, Gerald

    2015-10-13

    In this study, we tested whether a standardized epigallocatechin-3-gallate (EGCG) rich green tea extract (comprising > 90% EGCG) affects fitness and lifespan as well as parameters of glucose metabolism and energy homeostasis in the fruit fly, Drosophila melanogaster. Following the application of the green tea extract a significant increase in the mean lifespan (+ 3.3 days) and the 50% survival (+ 4.3 days) as well as improved fitness was detected. These effects went along an increased expression of Spargel, the homolog of mammalian PGC1α, which has been reported to affect lifespan in flies. Intriguingly, in flies, treatment with the green tea extract decreased glucose concentrations, which were accompanied by an inhibition of α-amylase and α-glucosidase activity. Computational docking analysis proved the potential of EGCG to dock into the substrate binding pocket of α-amylase and to a greater extent into α-glucosidase. Furthermore, we demonstrate that EGCG downregulates insulin-like peptide 5 and phosphoenolpyruvate carboxykinase, major regulators of glucose metabolism, as well as the Drosophila homolog of leptin, unpaired 2. We propose that a decrease in glucose metabolism in connection with an upregulated expression of Spargel contribute to the better fitness and the extended lifespan in EGCG-treated flies.

  5. Leptin expression affects metabolic rate in zebrafish embryos (D. rerio).

    PubMed

    Dalman, Mark R; Liu, Qin; King, Mason D; Bagatto, Brian; Londraville, Richard L

    2013-01-01

    We used antisense morpholino oligonucleotide technology to knockdown leptin-(A) gene expression in developing zebrafish embryos and measured its effects on metabolic rate and cardiovascular function. Using two indicators of metabolic rate, oxygen consumption was significantly lower in leptin morphants early in development [<48 hours post-fertilization (hpf)], while acid production was significantly lower in morphants later in development (>48 hpf). Oxygen utilization rates in <48 hpf embryos and acid production in 72 hpf embryos could be rescued to that of wildtype embryos by recombinant leptin coinjected with antisense morpholino. Leptin is established to influence metabolic rate in mammals, and these data suggest leptin signaling also influences metabolic rate in fishes.

  6. Isotopic labeling affects 1,25-dihydroxyvitamin D metabolism

    SciTech Connect

    Halloran, B.P.; Bikle, D.D.; Castro, M.E.; Gee, E.

    1989-02-07

    Isotope substitution can change the biochemical properties of vitamin D. To determine the effect of substituting 3H for 1H on the metabolism of 1,25(OH)2D3, we measured the metabolic clearance rate and renal metabolism of unlabeled and 3H-labeled 1,25(OH)2D3. Substitution of 3H for 1H on carbons 26 and 27 (1,25(OH)2(26,27(n)-3H)D3) or on carbons 23 and 24 (1,25(OH)2(23,24(n)-3H)D3) reduced the in vivo metabolic clearance rate of 1,25(OH)2D3 by 36% and 37%, respectively, and reduced the in vitro renal catabolism of 1,25(OH)2D3 by 11% and 54%, respectively. Substitutions of 3H for 1H on carbons 23 and 24 as opposed to carbons 26 and 27 reduced conversion of (3H)1,25(OH)2D3 to (3H)1,24,25(OH)2D3 by 25% and to putative 24-oxo-1,23,25-dihydroxyvitamin D3 by 1600%. These results indicate that substitution of 3H for 1H on carbons 26 and 27 or on carbons 23 and 24 can reduce the metabolic clearance rate and in vitro metabolism of 1,25(OH)2D3 and quantitatively alter the pattern of metabolic products produced.

  7. Relationships between heat stress and metabolic and milk parameters in dairy cows in Southern Brazil.

    PubMed

    Garcia, Alejandra Barrera; Angeli, Natalia; Machado, Letícia; de Cardoso, Felipe Cardoso; Gonzalez, Félix

    2015-06-01

    This study approached the relationships between heat stress and metabolic and milk parameters in a commercial herd of Holstein cows located in southern Brazil. A total of 50 multiparous cows at different lactations and lactation stages were selected in order to obtain 450 samples during two consecutive years (2011 and 2012). The animals were fed a partial mixed ration along with ryegrass pasture in a semi-confinement system. Blood, milk, and urine samples were taken during the summer and winter for a total of eight samples. Three intervals of temperature-humidity index (THI) were established during the summer months (January and February) as follows: low group (LOW), THI between 75 and 81 (N = 100); moderate group (MOD), THI between 81 and 82 (N = 150); and severe group (SEV), THI between 83 and 90 (N = 150). The group of cows sampled during winter (July) constituted the control group (CON; THI = 59, N = 50). Increased total protein, albumin, glucose, and cholesterol occurred in heat-stressed cows. Increased AST activity was also observed in heat-stressed cows, but triglycerides and beta-OH-butyrate did not show any difference among groups. Lower lactate and higher pO2 were seen in cows with heat stress than CON. Cows in SEV had a 21 % milk yield decrease, while lactose and protein decreased with fat not being affected. Heat stress had strong effects on metabolic, clinical, and performance parameters in Holstein cows. PMID:25851928

  8. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish.

    PubMed

    Cedervall, Tommy; Hansson, Lars-Anders; Lard, Mercy; Frohm, Birgitta; Linse, Sara

    2012-01-01

    Nano-sized (10(-9)-10(-7) m) particles offer many technical and biomedical advances over the bulk material. The use of nanoparticles in cosmetics, detergents, food and other commercial products is rapidly increasing despite little knowledge of their effect on organism metabolism. We show here that commercially manufactured polystyrene nanoparticles, transported through an aquatic food chain from algae, through zooplankton to fish, affect lipid metabolism and behaviour of the top consumer. At least three independent metabolic parameters differed between control and test fish: the weight loss, the triglycerides∶cholesterol ratio in blood serum, and the distribution of cholesterol between muscle and liver. Moreover, we demonstrate that nanoparticles bind to apolipoprotein A-I in fish serum in-vitro, thereby restraining them from properly utilising their fat reserves if absorbed through ingestion. In addition to the metabolic effects, we show that consumption of nanoparticle-containing zooplankton affects the feeding behaviour of the fish. The time it took the fish to consume 95% of the food presented to them was more than doubled for nanoparticle-exposed compared to control fish. Since many nano-sized products will, through the sewage system, end up in freshwater and marine habitats, our study provides a potential bioassay for testing new nano-sized material before manufacturing. In conclusion, our study shows that from knowledge of the molecular composition of the protein corona around nanoparticles it is possible to make a testable molecular hypothesis and bioassay of the potential biological risks of a defined nanoparticle at the organism and ecosystem level.

  9. Prenatal hyperandrogenism induces alterations that affect liver lipid metabolism.

    PubMed

    Abruzzese, Giselle Adriana; Heber, Maria Florencia; Ferreira, Silvana Rocio; Velez, Leandro Martin; Reynoso, Roxana; Pignataro, Omar Pedro; Motta, Alicia Beatriz

    2016-07-01

    Prenatal hyperandrogenism is hypothesized as one of the main factors contributing to the development of polycystic ovary syndrome (PCOS). PCOS patients have high risk of developing fatty liver and steatosis. This study aimed to evaluate the role of prenatal hyperandrogenism in liver lipid metabolism and fatty liver development. Pregnant rats were hyperandrogenized with testosterone. At pubertal age, the prenatally hyperandrogenized (PH) female offspring displayed both ovulatory (PHov) and anovulatory (PHanov) phenotypes that mimic human PCOS features. We evaluated hepatic transferases, liver lipid content, the balance between lipogenesis and fatty acid oxidation pathway, oxidant/antioxidant balance and proinflammatory status. We also evaluated the general metabolic status through growth rate curve, basal glucose and insulin levels, glucose tolerance test, HOMA-IR index and serum lipid profile. Although neither PH group showed signs of liver lipid content, the lipogenesis and fatty oxidation pathways were altered. The PH groups also showed impaired oxidant/antioxidant balance, a decrease in the proinflammatory pathway (measured by prostaglandin E2 and cyclooxygenase-2 levels), decreased glucose tolerance, imbalance of circulating lipids and increased risk of metabolic syndrome. We conclude that prenatal hyperandrogenism generates both PHov and PHanov phenotypes with signs of liver alterations, imbalance in lipid metabolism and increased risk of developing metabolic syndrome. The anovulatory phenotype showed more alterations in liver lipogenesis and a more impaired balance of insulin and glucose metabolism, being more susceptible to the development of steatosis.

  10. How does metabolism affect cell death in cancer?

    PubMed

    Villa, Elodie; Ricci, Jean-Ehrland

    2016-07-01

    In cancer research, identifying a specificity of tumor cells compared with 'normal' proliferating cells for targeted therapy is often considered the Holy Grail for researchers and clinicians. Although diverse in origin, most cancer cells share characteristics including the ability to escape cell death mechanisms and the utilization of different methods of energy production. In the current paradigm, aerobic glycolysis is considered the central metabolic characteristic of cancer cells (Warburg effect). However, recent data indicate that cancer cells also show significant changes in other metabolic pathways. Indeed, it was recently suggested that Kreb's cycle, pentose phosphate pathway intermediates, and essential and nonessential amino acids have key roles. Renewed interest in the fact that cancer cells have to reprogram their metabolism in order to proliferate or resist treatment must take into consideration the ability of tumor cells to adapt their metabolism to the local microenvironment (low oxygen, low nutrients). This variety of metabolic sources might be either a strength, resulting in infinite possibilities for adaptation and increased ability to resist chemotherapy-induced death, or a weakness that could be targeted to kill cancer cells. Here, we discuss recent insights showing how energetic metabolism may regulate cell death and how this might be relevant for cancer treatment.

  11. Genetic Alterations Affecting Cholesterol Metabolism and Human Fertility1

    PubMed Central

    DeAngelis, Anthony M.; Roy-O'Reilly, Meaghan; Rodriguez, Annabelle

    2014-01-01

    ABSTRACT Single nucleotide polymorphisms (SNPs) represent genetic variations among individuals in a population. In medicine, these small variations in the DNA sequence may significantly impact an individual's response to certain drugs or influence the risk of developing certain diseases. In the field of reproductive medicine, a significant amount of research has been devoted to identifying polymorphisms which may impact steroidogenesis and fertility. This review discusses current understanding of the effects of genetic variations in cholesterol metabolic pathways on human fertility that bridge novel linkages between cholesterol metabolism and reproductive health. For example, the role of the low-density lipoprotein receptor (LDLR) in cellular metabolism and human reproduction has been well studied, whereas there is now an emerging body of research on the role of the high-density lipoprotein (HDL) receptor scavenger receptor class B type I (SR-BI) in human lipid metabolism and female reproduction. Identifying and understanding how polymorphisms in the SCARB1 gene or other genes related to lipid metabolism impact human physiology is essential and will play a major role in the development of personalized medicine for improved diagnosis and treatment of infertility. PMID:25122065

  12. Importance and sensitivity of parameters affecting the Zion Seismic Risk

    SciTech Connect

    George, L.L.; O'Connell, W.J.

    1985-06-01

    This report presents the results of a study on the importance and sensitivity of structures, systems, equipment, components and design parameters used in the Zion Seismic Risk Calculations. This study is part of the Seismic Safety Margins Research Program (SSMRP) supported by the NRC Office of Nuclear Regulatory Research. The objective of this study is to provide the NRC with results on the importance and sensitivity of parameters used to evaluate seismic risk. These results can assist the NRC in making decisions dealing with the allocation of research resources on seismic issues. This study uses marginal analysis in addition to importance and sensitivity analysis to identify subject areas (input parameter areas) for improvements that reduce risk, estimate how much the improvement dfforts reduce risk, and rank the subject areas for improvements. Importance analysis identifies the systems, components, and parameters that are important to risk. Sensitivity analysis estimates the change in risk per unit improvement. Marginal analysis indicates the reduction in risk or uncertainty for improvement effort made in each subject area. The results described in this study were generated using the SEISIM (Systematic Evaluation of Important Safety Improvement Measures) and CHAIN computer codes. Part 1 of the SEISIM computer code generated the failure probabilities and risk values. Part 2 of SEISIM, along with the CHAIN computer code, generated the importance and sensitivity measures.

  13. Can a Short Term of Repeated Ejaculations Affect Seminal Parameters?

    PubMed Central

    Mayorga-Torres, Jose Manuel; Agarwal, Ashok; Roychoudhury, Shubhadeep; Cadavid, Angela; Cardona-Maya, Walter Dario

    2016-01-01

    Background: The aim of the study was to assess the effect of four repeated ejaculations on the same day at two-hour intervals on conventional and functional semen parameters. Methods: Three healthy men (32±3.6 years) donated the first semen samples after 3–4 days of sexual abstinence followed by three subsequent samples on the same day at two-hour interval each. Semen samples were processed and analyzed according to the World Health Organization (WHO) 2010 guidelines. Furthermore, intracellular reactive oxygen (ROS) production, sperm DNA fragmentation and mitochondrial function were evaluated by flow cytometry. Results: An overall decreasing trend was noted in the conventional semen parameters at second, third and fourth evaluations after two hours of abstinence in comparison to first evaluation after 3–4 days of abstinence. The statistical comparison of the conventional semen parameters at fourth evaluation after 2 hr of abstinence revealed significant reduction (p<0.05) in the parameters of concentration, total sperm count and total motile sperm count at fourth evaluation. The functional parameter of intracellular ROS production showed a decreasing trend with each subsequent evaluation, the difference being significant (p<0.05) at fourth evaluation in comparison to first evaluation. An increasing trend was noted for DNA fragmentation index (DFI), although it remained within acceptable levels (<29%). The ΔΨm high permatozoa and the integrity of the plasma membrane remained stable throughout the evaluations. Conclusion: The findings of the present study indicate the potential use of additional semen samples with repeated ejaculations at short abstinence times in assisted reproduction procedures particularly from severe oligospermic men. PMID:27478772

  14. [Anthropometric parameters and metabolic syndrome in type 2 diabetes].

    PubMed

    de Castro, Simone Henriques; de Mato, Haroldo José; Gomes, Marilia de Brito

    2006-06-01

    To evaluate the value of body mass index (BMI) as predictor of waist circumference of cardiovascular risk (CRWC) and diagnostic of metabolic syndrome (MSWC) in patients with type 2 diabetes mellitus (DM 2), we assessed BMI and WC in 753 patients with DM 2 (472 women) with 23 +/- 8 years. The participants had been divided in groups in accordance with the presence or absence of ACCR or ACMS. The best BMI cut-off to predict such disturbances was evaluated in women and men. In females, BMI > or = 25.0 kg/m(2) was the best predictor of CRWC. Area under ROC curve and IC 95% were 0.7202 (0.6753 - 0.7652) for CRWC and of [0.8318 (0.7928 - 0.8708)] for MSWC. In males, IMC > or = 25.0 kg/m(2) was better predictor for CRWC presence [0.8527 (0.8098 - 0.8955)], while BMI > or = 30.0 kg/m(2) for MSWC [0.9071 (0.8708 - 0.9433)]. We conclude that BMI can be a simple way to evaluate metabolic syndrome and cardiovascular risk where there were not material and prepared professionals for the WC evaluation. We need prospective studies to evaluate if it is necessary to change the BMI cut-off adopted as indicative of these disturbances in the diabetic population. PMID:16936985

  15. How Does Calibration Timing and Seasonality Affect Item Parameter Estimates?

    ERIC Educational Resources Information Center

    Wyse, Adam E.; Babcock, Ben

    2016-01-01

    Continuously administered examination programs, particularly credentialing programs that require graduation from educational programs, often experience seasonality where distributions of examine ability may differ over time. Such seasonality may affect the quality of important statistical processes, such as item response theory (IRT) item…

  16. Natural toxins that affect plant amino acid metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A diverse range of natural compounds interfere with the synthesis and other aspects of amino acid metabolism. Some are amino acid analogues, but most are not. This review covers a number of specific natural phytotoxic compounds by molecular target site. Inhibition of glutamine synthetase is of part...

  17. Scoparone affects lipid metabolism in primary hepatocytes using lipidomics

    PubMed Central

    Zhang, Aihua; Qiu, Shi; Sun, Hui; Zhang, Tianlei; Guan, Yu; Han, Ying; Yan, Guangli; Wang, Xijun

    2016-01-01

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, could provide valuable insights about disease mechanisms. In this study, we present a nontargeted lipidomics strategy to determine cellular lipid alterations after scoparone exposure in primary hepatocytes. Lipid metabolic profiles were analyzed by high-performance liquid chromatography coupled with time-of-flight mass spectrometry, and a novel imaging TransOmics tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. Chemometric and statistical analyses of the obtained lipid fingerprints revealed the global lipidomic alterations and tested the therapeutic effects of scoparone. Identification of ten proposed lipids contributed to the better understanding of the effects of scoparone on lipid metabolism in hepatocytes. The most striking finding was that scoparone caused comprehensive lipid changes, as represented by significant changes of the identificated lipids. The levels of identified PG(19:1(9Z)/14:0), PE(17:1(9Z)/0:0), PE(19:1(9Z)/0:0) were found to be upregulated in ethanol-induced group, whereas the levels in scoparone group were downregulated. Lipid metabolism in primary hepatocytes was changed significantly by scoparone treatment. We believe that this novel approach could substantially broaden the applications of high mass resolution mass spectrometry for cellular lipidomics. PMID:27306123

  18. Post-uptake metabolism affects quantification of amino acid uptake.

    PubMed

    Warren, Charles R

    2012-01-01

    • The quantitative significance of amino acids to plant nutrition remains controversial. This experiment determined whether post-uptake metabolism and root to shoot export differ between glycine and glutamine, and examined implications for estimation of amino acid uptake. • Field soil containing a Eucalyptus pauciflora seedling was injected with uniformly (13)C- and (15)N-labelled glycine or glutamine. I quantified (15)N and (13)C excess in leaves and roots and intact labelled amino acids in leaves, roots and stem xylem sap. A tunable diode laser quantified fluxes of (12)CO(2) and (13)CO(2) from leaves and soil. • 60-360 min after addition of amino acid, intact molecules of U-(13)C,(15)N glutamine were < 5% of (15)N excess in roots, whereas U-(13)C,(15)N glycine was 30-100% of (15)N excess in roots. Intact molecules of glutamine, but not glycine, were exported from roots to shoots. • Post-uptake metabolism and transport complicate interpretation of isotope labelling such that root and shoot contents of intact amino acid, (13)C and (15)N may not reflect rates of uptake. Future experiments should focus on reconciling discrepancies between intact amino acid, (13)C and (15)N by determining the turnover of amino acids within roots. Alternatively, post-uptake metabolism and transport could be minimized by harvesting plants within minutes of isotope addition.

  19. Environmental factors affecting indole metabolism under anaerobic conditions.

    PubMed Central

    Madsen, E L; Francis, A J; Bollag, J M

    1988-01-01

    The influence of physiological and environmental factors on the accumulation of oxindole during anaerobic indole metabolism was investigated by high-performance liquid chromatography. Under methanogenic conditions, indole was temporarily converted to oxindole in stoichiometric amounts in media inoculated with three freshwater sediments and an organic soil. In media inoculated with methanogenic sewage sludge, the modest amounts of oxindole detected at 35 degrees C reached higher concentrations and persisted longer when the incubation temperature was decreased from 35 to 15 degrees C. Also, decreasing the concentration of sewage sludge used as an inoculum from 50 to 1% caused an increase in the accumulation of oxindole from 10 to 75% of the indole added. Under denitrifying conditions, regardless of the concentration or source of the inoculum, oxindole appeared in trace amounts but did not accumulate during indole metabolism. In addition, denitrifying consortia which previously metabolized indole degraded oxindole with no lag period. Our data suggest that oxindole accumulation under methanogenic, but not under denitrifying conditions is caused by differences between relative rates of oxindole production and destruction. PMID:3345080

  20. Does bleeding affect fetal Doppler parameters during genetic amniocentesis?

    PubMed Central

    İskender, Cantekin; Tarım, Ebru; Çok, Tayfun; Kalaycı, Hakan; Parlakgümüş, Ayşe; Yalçınkaya, Cem

    2014-01-01

    Objective The aim of this study was to investigate the relationship between fetal Doppler parameters and bleeding at insertion points during amniocentesis. Material and Methods This prospective study was conducted between July 2010 and February 2011. A total of 215 amniocentesis procedures were performed during this period. Five patients with Down syndrome were excluded from the study. The remaining 210 patients were divided into Group 1 (bleeding at insertion site) and Group 2 as a control group. One needle type was used for all patients. Umbilical artery resistance index (UARI), umbilical artery pulsatility index (UAPI), middle cerebral artery resistance index (MCARI), middle cerebral artery pulsatility index (MCA PI), and middle cerebral artery peak systolic velocity (MCAPSV) were measured immediately and before and after amniocentesis. Results Bleeding at the insertion point during amniocentesis did not significantly change the UARI (34% increase for Group 1 and 46.5% increase for Group 2, p=0.238), the MCARI (52% increase for Group 1 and 45% increase for Group 2, p=0.622), or the MCAPSV (37% increase for Group 1 and 49% increase for Group 2, p=0.199). UARI, MCARI, MCA PI, and MCAPSV were not significantly altered following amniocentesis in Groups 1 and 2. There was a significant increase in UAPI following amniocentesis only in Group 2. Conclusion Bleeding during genetic amniocentesis did not change umbilical artery and middle cerebral artery Doppler parameters. PMID:24976776

  1. Parameters affecting of Akkuyu's safety assessment for severe core damages

    NASA Astrophysics Data System (ADS)

    Kavun, Yusuf; Karasulu, Muzaffer

    2015-07-01

    We have looked at all past core meltdowns (Three Mile Island, Chernobyl and Fukushima incidents) and postulated the fourth one might be taking place in the future most probably in a newly built reactors anywhere of the earth in any type of NPP. The probability of this observation is high considering the nature of the machine and human interaction. Operation experience is a very significant parameter as well as the safety culture of the host nation. The concerns is not just a lack of experience with industry with the new comers, but also the infrastructure and established institutions who will be dealing with the Emergencies. Lack of trained and educated Emergency Response Organizations (ERO) is a major concern. The culture on simple fire drills even makes the difference when a severe condition occurs in the industry. The study assumes the fourth event will be taking place at the Akkuyu NGS and works backwards as required by the "what went wrong " scenarios and comes up with interesting results. The differences studied in depth to determine the impact to the severe accidents. The all four design have now core catchers. We have looked at the operator errors'like in TMI); Operator errors combined with design deficiencies(like in Chernobyl) and natural disasters( like in Fukushima) and found operator errors to be more probable event on the Akkuyu's postulated next incident. With respect to experiences of the operators we do not have any data except for long and successful operating history of the Soviet design reactors up until the Chernobyl incident. Since the Akkuyu will be built, own and operated by the Russians we have found no alarming concerns at the moment. At the moment, there is no body be able to operate those units in Turkey. Turkey is planning to build the required manpower during the transition period. The resolution of the observed parameters lies to work and educate, train of the host nation and exercise together.

  2. Does Methylphenidate Affect Cystometric Parameters in Spontaneously Hypertensive Rats?

    PubMed Central

    Kim, Khae Hawn; Jung, Ha Bum; Choi, Don Kyoung; Park, Geun Ho; Cho, Sung Tae

    2015-01-01

    Purpose: Methylphenidate (MPH) is one of the most commonly prescribed psychostimulants for attention deficit hyperactivity disorder (ADHD). However, there is limited research on its effects on lower urinary tract function. This study investigated changes in cystometric parameters after intragastric administration of MPH in conscious spontaneously hypertensive rats (SHRs), an animal model of ADHD. Methods: Fourteen- to 16-week-old male SHRs (n=10), weighing between 280 and 315 g, were used. Three micturition cycles were recorded before administering MPH. One hour after each intragastric MPH injection, three cycles of cystometrogram were obtained in the awake condition. Various cystometric parameters were evaluated, including basal pressure (BP), maximal pressure (MP), threshold pressure (TP), bladder capacity (BC), micturition volume (MV), micturition interval (MI), and residual volume (RV). The data were analyzed using paired Student t-tests. Results: Five SHRs were each administered a dose of 3-mg/kg MPH, and the other five received a dose of 6-mg/kg MPH. BP and MP increased significantly in the rats that received the 3-mg/kg MPH injection, but not in those that received the 6-mg/kg injection. BC, MV, and MI significantly increased in the rats that received the 6-mg/kg MPH injection, but not in those that received the 3-mg/kg injection. There were no significant changes in TP after either injection. Conclusions: Significant increases in BC, MV, and MI after the 6-mg/kg MPH injection suggest that the peripheral and the central nervous systems may play important roles in bladder function in those receiving MPH for ADHD. PMID:26126435

  3. Simultaneous Parameters Identifiability and Estimation of an E. coli Metabolic Network Model

    PubMed Central

    Alberton, André Luís; Di Maggio, Jimena Andrea; Estrada, Vanina Gisela; Díaz, María Soledad; Secchi, Argimiro Resende

    2015-01-01

    This work proposes a procedure for simultaneous parameters identifiability and estimation in metabolic networks in order to overcome difficulties associated with lack of experimental data and large number of parameters, a common scenario in the modeling of such systems. As case study, the complex real problem of parameters identifiability of the Escherichia coli K-12 W3110 dynamic model was investigated, composed by 18 differential ordinary equations and 35 kinetic rates, containing 125 parameters. With the procedure, model fit was improved for most of the measured metabolites, achieving 58 parameters estimated, including 5 unknown initial conditions. The results indicate that simultaneous parameters identifiability and estimation approach in metabolic networks is appealing, since model fit to the most of measured metabolites was possible even when important measures of intracellular metabolites and good initial estimates of parameters are not available. PMID:25654103

  4. Simultaneous parameters identifiability and estimation of an E. coli metabolic network model.

    PubMed

    Pontes Freitas Alberton, Kese; Alberton, André Luís; Di Maggio, Jimena Andrea; Estrada, Vanina Gisela; Díaz, María Soledad; Secchi, Argimiro Resende

    2015-01-01

    This work proposes a procedure for simultaneous parameters identifiability and estimation in metabolic networks in order to overcome difficulties associated with lack of experimental data and large number of parameters, a common scenario in the modeling of such systems. As case study, the complex real problem of parameters identifiability of the Escherichia coli K-12 W3110 dynamic model was investigated, composed by 18 differential ordinary equations and 35 kinetic rates, containing 125 parameters. With the procedure, model fit was improved for most of the measured metabolites, achieving 58 parameters estimated, including 5 unknown initial conditions. The results indicate that simultaneous parameters identifiability and estimation approach in metabolic networks is appealing, since model fit to the most of measured metabolites was possible even when important measures of intracellular metabolites and good initial estimates of parameters are not available. PMID:25654103

  5. Exposure to gemfibrozil and atorvastatin affects cholesterol metabolism and steroid production in zebrafish (Danio rerio).

    PubMed

    Al-Habsi, Aziz A; Massarsky, Andrey; Moon, Thomas W

    2016-09-01

    The commonly used lipid-lowering pharmaceuticals gemfibrozil (GEM) and atorvastatin (ATV) are detected in the aquatic environment; however, their potential effects on non-target fish species are yet to be fully understood. This study examined the effects of GEM and/or ATV on female and male adult zebrafish after a 30d dietary exposure. The exposure led to changes in several biochemical parameters, including reduction in cholesterol, triglycerides, cortisol, testosterone, and estradiol. Changes in cholesterol and triglycerides were also associated with changes in transcript levels of key genes involved with cholesterol and lipid regulation, including SREBP2, HMGCR1, PPARα, and SREBP1. We also noted higher CYP3A65 and atrogin1 mRNA levels in drug-treated male fish. Sex differences were apparent in some of the examined parameters at both biochemical and molecular levels. This study supports these drugs affecting cholesterol metabolism and steroid production in adult zebrafish. We conclude that the reduction in cortisol may impair the ability of these fish to mount a suitable stress response, whereas the reduction of sex steroids may negatively affect reproduction. PMID:26627126

  6. Exposure to gemfibrozil and atorvastatin affects cholesterol metabolism and steroid production in zebrafish (Danio rerio).

    PubMed

    Al-Habsi, Aziz A; Massarsky, Andrey; Moon, Thomas W

    2016-09-01

    The commonly used lipid-lowering pharmaceuticals gemfibrozil (GEM) and atorvastatin (ATV) are detected in the aquatic environment; however, their potential effects on non-target fish species are yet to be fully understood. This study examined the effects of GEM and/or ATV on female and male adult zebrafish after a 30d dietary exposure. The exposure led to changes in several biochemical parameters, including reduction in cholesterol, triglycerides, cortisol, testosterone, and estradiol. Changes in cholesterol and triglycerides were also associated with changes in transcript levels of key genes involved with cholesterol and lipid regulation, including SREBP2, HMGCR1, PPARα, and SREBP1. We also noted higher CYP3A65 and atrogin1 mRNA levels in drug-treated male fish. Sex differences were apparent in some of the examined parameters at both biochemical and molecular levels. This study supports these drugs affecting cholesterol metabolism and steroid production in adult zebrafish. We conclude that the reduction in cortisol may impair the ability of these fish to mount a suitable stress response, whereas the reduction of sex steroids may negatively affect reproduction.

  7. Environmentally Relevant Dose of Bisphenol A Does Not Affect Lipid Metabolism and Has No Synergetic or Antagonistic Effects on Genistein’s Beneficial Roles on Lipid Metabolism

    PubMed Central

    Fan, Ying; Li, Hongyu; Zhao, Nana; Yang, Huiqin; Ye, Xiaolei; He, Dongliang; Yang, Hui; Jin, Xin; Tian, Chong; Ying, Chenjiang

    2016-01-01

    Both bisphenol A (BPA, an endocrine disrupting chemicals) and genistein (a phytoestrogen mainly derived from leguminosae) are able to bind to estrogen receptors, but they are considered to have different effects on metabolic syndrome, surprisingly. We here investigate the effects of an environmentally relevant dose of BPA alone and the combined effects with genistein on lipid metabolism in rats. Eight groups of adult male Wistar rats, fed with either standard chow diet or high-fat diet, were treated with BPA (50μg/kg/day), genistein (10mg/kg/day), and BPA plus genistein for 35 weeks, respectively. Metabolic parameters in serum and liver were determined; the hematoxylin/eosin and oil Red O staining were used to observe liver histologically; gene expressions related to hepatic lipid metabolism were analyzed by Real-time PCR; protein expressions of PPARγ, PPARα and LC3 in liver were analyzed by western blotting. No difference of body weight gain, total energy intake, liver weight/body weight or body fat percentage in both STD- and HFD-fed sub-groups was observed after treatment with BPA, genistein, or BPA plus genistein (P>0.05). Genistein alleviated lipid metabolism disorder and decreased the mRNA and protein expression of PPARγ (P<0.05), and increased the protein expression of LC3II (P<0.05) in liver of HFD-fed rats. However, BPA treatment had no effect on lipid metabolism in rats alone (P>0.05) or combined with genistein. Our findings suggest that long-term environmentally relevant dose of BPA did not affect lipid metabolism, and had no synergetic or antagonistic roles on genistein’s beneficial function on hepatic lipid metabolism. PMID:27171397

  8. Environmentally Relevant Dose of Bisphenol A Does Not Affect Lipid Metabolism and Has No Synergetic or Antagonistic Effects on Genistein's Beneficial Roles on Lipid Metabolism.

    PubMed

    Ding, Shibin; Zuo, Xuezhi; Fan, Ying; Li, Hongyu; Zhao, Nana; Yang, Huiqin; Ye, Xiaolei; He, Dongliang; Yang, Hui; Jin, Xin; Tian, Chong; Ying, Chenjiang

    2016-01-01

    Both bisphenol A (BPA, an endocrine disrupting chemicals) and genistein (a phytoestrogen mainly derived from leguminosae) are able to bind to estrogen receptors, but they are considered to have different effects on metabolic syndrome, surprisingly. We here investigate the effects of an environmentally relevant dose of BPA alone and the combined effects with genistein on lipid metabolism in rats. Eight groups of adult male Wistar rats, fed with either standard chow diet or high-fat diet, were treated with BPA (50μg/kg/day), genistein (10mg/kg/day), and BPA plus genistein for 35 weeks, respectively. Metabolic parameters in serum and liver were determined; the hematoxylin/eosin and oil Red O staining were used to observe liver histologically; gene expressions related to hepatic lipid metabolism were analyzed by Real-time PCR; protein expressions of PPARγ, PPARα and LC3 in liver were analyzed by western blotting. No difference of body weight gain, total energy intake, liver weight/body weight or body fat percentage in both STD- and HFD-fed sub-groups was observed after treatment with BPA, genistein, or BPA plus genistein (P>0.05). Genistein alleviated lipid metabolism disorder and decreased the mRNA and protein expression of PPARγ (P<0.05), and increased the protein expression of LC3II (P<0.05) in liver of HFD-fed rats. However, BPA treatment had no effect on lipid metabolism in rats alone (P>0.05) or combined with genistein. Our findings suggest that long-term environmentally relevant dose of BPA did not affect lipid metabolism, and had no synergetic or antagonistic roles on genistein's beneficial function on hepatic lipid metabolism. PMID:27171397

  9. How aneuploidy affects metabolic control and causes cancer.

    PubMed Central

    Rasnick, D; Duesberg, P H

    1999-01-01

    The complexity and diversity of cancer-specific phenotypes, including de-differentiation, invasiveness, metastasis, abnormal morphology and metabolism, genetic instability and progression to malignancy, have so far eluded explanation by a simple, coherent hypothesis. However, an adaptation of Metabolic Control Analysis supports the 100-year-old hypothesis that aneuploidy, an abnormal number of chromosomes, is the cause of cancer. The results demonstrate the currently counter-intuitive principle that it is the fraction of the genome undergoing differential expression, not the magnitude of the differential expression, that controls phenotypic transformation. Transforming the robust normal phenotype into cancer requires a twofold increase in the expression of thousands of normal gene products. The massive change in gene dose produces highly non-linear (i.e. qualitative) changes in the physiology and metabolism of cells and tissues. Since aneuploidy disrupts the natural balance of mitosis proteins, it also explains the notorious genetic instability of cancer cells as a consequence of the perpetual regrouping of chromosomes. In view of this and the existence of non-cancerous aneuploidy, we propose that cancer is the phenotype of cells above a certain threshold of aneuploidy. This threshold is reached either by the gradual, stepwise increase in the level of aneuploidy as a consequence of the autocatalysed genetic instability of aneuploid cells or by tetraploidization followed by a gradual loss of chromosomes. Thus the initiation step of carcinogenesis produces aneuploidy below the threshold for cancer, and the promotion step increases the level of aneuploidy above this threshold. We conclude that aneuploidy offers a simple and coherent explanation for all the cancer-specific phenotypes. Accordingly, the gross biochemical abnormalities, abnormal cellular size and morphology, the appearance of tumour-associated antigens, the high levels of secreted proteins responsible for

  10. Determination of the key parameters affecting historic communications satellite trends

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1984-01-01

    Data representing 13 series of commercial communications satellites procured between 1968 and 1982 were analyzed to determine the factors that have contributed to the general reduction over time of the per circuit cost of communications satellites. The model by which the data were analyzed was derived from a general telecommunications application and modified to be more directly applicable for communications satellites. In this model satellite mass, bandwidth-years, and technological change were the variable parameters. A linear, least squares, multiple regression routine was used to obtain the measure of significance of the model. Correlation was measured by coefficient of determination (R super 2) and t-statistic. The results showed that no correlation could be established with satellite mass. Bandwidth-year however, did show a significant correlation. Technological change in the bandwidth-year case was a significant factor in the model. This analysis and the conclusions derived are based on mature technologies, i.e., satellite designs that are evolutions of earlier designs rather than the first of a new generation. The findings, therefore, are appropriate to future satellites only if they are a continuation of design evolution.

  11. Parameters affecting pharyngeal response to genioglossus stimulation in sleep apnoea.

    PubMed

    Dotan, Y; Golibroda, T; Oliven, R; Netzer, A; Gaitini, L; Toubi, A; Oliven, A

    2011-08-01

    Chronic stimulation of the hypoglossus nerve may provide a new treatment modality for obstructive sleep apnoea (OSA). In previous studies we observed large differences in response to stimulation of the genioglossus (GG). We hypothesised that both individual patient characteristics and the area of the GG stimulated are responsible for these differences. In the present study, we compared the response to GG electrical stimulation at the anterior area (GGa-ES), which activates the whole GG and the posterior area (GGp-ES), which activates preferentially the longitudinal fibres. Studies were performed in 14 propofol-sedated OSA patients. The parameters evaluated included cephalometry, pressure-flow relationship and pharyngeal shape and compliance assessed by pharyngoscopy. Compared with GGa-ES, GGp-ES resulted in significantly larger decreases in the critical value of end-expiratory pressure (P(crit)) (from 3.8 ± 2.2 to 2.9 ± 3.3 and -2.0 ± 3.9 cmH(2)O, respectively (p<0.001)). Both tongue size and velopharyngeal shape (anteroposterior to lateral ratio) correlated significantly with the decrease in P(crit) during GGp-ES (R = 0.53 and -0.66, respectively; p<0.05). In the patients with the larger tongue size (n = 7), the decrease in P(crit) reached 8.0 ± 2.2 cmH(2)O during GGp-ES. We conclude that directing stimulation to longitudinal fibres of the GG improves the flow-mechanical effect. In addition, patients with large tongues and narrow pharynx tend to respond better to GGp-ES.

  12. Factors affecting antipyrine metabolism in West African villagers.

    PubMed

    Fraser, H S; Bulpitt, C J; Kahn, C; Mould, G; Mucklow, J C; Dollery, C T

    1976-09-01

    Saliva half-life of antipyrine was studied in 49 healthy Gambians between 20 and 60 yr of age of whom 27 were male (mean age, 44.5) and 22 female (mean age, 39.1). Body wieght, height, ponderal index, albumin, and hemoglobin were moderately reduced compared to accepted normal values. Antipyrine half-life was 13.6 +/- 0.58 (SEM) hr. Multiple regression analysis showed that sex, cola nut consumption, hemoglobin in women, and height in men were statiscally significant independent predictors of antipyrine half-life. Half-life was shorter in women, decreased with an increase in height in men, and was prolonged by cola nut consumption. Half-life in women increased with hemoglobin. These factors explained 36% of the variation and suggest that geographic differences in the environment could be important in drug metabolism in man. PMID:954356

  13. Ghrelin: a metabolic signal affecting the reproductive system.

    PubMed

    Lorenzi, Teresa; Meli, Rosaria; Marzioni, Daniela; Morroni, Manrico; Baragli, Alessandra; Castellucci, Mario; Gualillo, Oreste; Muccioli, Giampiero

    2009-04-01

    Ghrelin, an acylated 28 amino acid gastric peptide, was isolated from the stomach as an endogenous ligand for growth hormone (GH) secretagogue receptor in 1999. Circulating ghrelin is mainly produced by specific cells in the stomach's oxyntic glands. Ghrelin potently stimulates GH release and food intake and exhibits diverse effects, including ones on glucose metabolism and on secretion and motility of the gastrointestinal tract. Besides these effects on food intake and energy homeostasis, ghrelin is also involved in controlling reproductive functions, and a role for it as a novel regulator of the hypothalamic-pituitary gonadal axis is clearly emerging. We review recent ghrelin research with emphasis on its roles in the reproductive axis.

  14. Metabolic differences in temperamental Brahman cattle can affect productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many factors may adversely affect the growth and productivity of livestock. These include stressors associated with management practices, such as weaning, handling relative to transportation, and vaccination, that can modulate growth through the production of stress-related hormones (i.e., cortisol,...

  15. Metabolic parameters for ramp versus step incremental cycle ergometer tests.

    PubMed

    Zuniga, Jorge M; Housh, Terry J; Camic, Clayton L; Bergstrom, Haley C; Traylor, Daniel A; Schmidt, Richard J; Johnson, Glen O

    2012-12-01

    The purpose of this study was to examine mean differences and the patterns of responses for oxygen uptake ([Formula: see text]O(2)), heart rate (HR), and rating of perceived exertion (RPE) for ramp (15 W·min(-1)) versus step (30 W increments every 2 min) incremental cycle ergometer tests. Fourteen subjects (age and body mass of 23.2 ± 3.1 (mean ± SD ) years and 71.1 ± 10.1 kg, respectively) visited the laboratory on separate occasions. Two-way repeated measures ANOVAs with appropriate follow-up procedures, as well as paired t tests, were used to analyze the data. In addition, polynomial regression analyses were used to determine the patterns of responses for each dependent variable for the ramp and step tests. The ramp protocol resulted in lower mean [Formula: see text]O(2) and HR values at the common power outputs than the step protocol with no differences in RPE. The increased amount of work performed during the step (total work = 75.83 kJ) versus ramp (total work = 65.60 kJ) tests at the common power outputs may have contributed to the greater [Formula: see text]O(2) and HR values. The polynomial regression analyses showed that most subjects had the same patterns of responses for the ramp and step incremental tests for HR (86%) and RPE (93%) but different patterns for [Formula: see text]O(2) (71%). The findings from the present study suggested that the protocol selection for an incremental cycle ergometer test can affect the mean values for [Formula: see text]O(2) and HR, as well as the [Formula: see text]O(2) - power output relationship.

  16. Ozone treatment affects pigment precursor metabolism in pine seedlings.

    PubMed

    Shamay, Y.; Raskin, V. I.; Brandis, A. S.; Steinberger, H. E.; Marder, J. B.; Schwartz, A.

    2001-06-01

    Five-week-old seedlings of Pinus halepensis Mill. and Pinus brutia Ten. were exposed to air polluted with ozone (O3) (250 nl l-1, 12 h day-1 for 4 days) or to ambient air containing ca 10-20 nl l-1 O3, in the light (180 &mgr;mol m-2 s-1 photosynthetic photon flux density [PPFD], 12 h day-1) and then fed for 24 h in the light (100 &mgr;mol m-2 s-1 PPFD) with various radioactive precursors of chlorophyll (Chl) and carotene biosynthesis: 5-[4-14C]-aminolevulinic acid (14C-ALA), L-[14C(U)]-glutamic acid (14C-Glu), or D,L-[2-14C]-mevalonic acid (14C-MVA). Pigments were then extracted from cotyledons and fully expanded needles. Chl a and carotene were separated by thin-layer chromatography and high-performance liquid chromatography and their specific activities were determined. 14C-ALA and 14C-Glu labels were incorporated into Chl a and carotene. Exposure to O3 did not inhibit incorporation of 14C-ALA into Chl a molecules, but hydrolysis of Chl a showed that O3 inhibited phytol labelling of Chl a. Labelling of carotene was also inhibited by O3, but not when 14C-MVA was used as the label. These data suggest that O3 treatment inhibits (directly or indirectly) the biosynthesis of isoprenoids from products of ALA and Glu metabolism in the plastid, but not from MVA in the cytosol. This inhibition was more prominent when 14C-ALA was used as the label than when 14C-Glu was the labelling precursor. A significant increase in pheophorbide a, a tetrapyrrole component of Chl a labelling, and a concomitant decrease in phytol labelling was observed following incubation of O3-treated pine seedlings with 14C-ALA and 14C-Glu. Stronger inhibition of carotene biosynthesis and activation of Chl a tetrapyrrole labelling by 14C-ALA (in comparison with 14C-Glu) indicated that exposure to O3 inhibits the conversion of ALA to Glu as the first step in ALA catabolism. These results also suggested a more intensive Glu metabolism (in comparison with ALA) for carotene biosynthesis in the cytosol, as

  17. Ozone treatment affects pigment precursor metabolism in pine seedlings.

    PubMed

    Shamay, Y.; Raskin, V. I.; Brandis, A. S.; Steinberger, H. E.; Marder, J. B.; Schwartz, A.

    2001-06-01

    Five-week-old seedlings of Pinus halepensis Mill. and Pinus brutia Ten. were exposed to air polluted with ozone (O3) (250 nl l-1, 12 h day-1 for 4 days) or to ambient air containing ca 10-20 nl l-1 O3, in the light (180 &mgr;mol m-2 s-1 photosynthetic photon flux density [PPFD], 12 h day-1) and then fed for 24 h in the light (100 &mgr;mol m-2 s-1 PPFD) with various radioactive precursors of chlorophyll (Chl) and carotene biosynthesis: 5-[4-14C]-aminolevulinic acid (14C-ALA), L-[14C(U)]-glutamic acid (14C-Glu), or D,L-[2-14C]-mevalonic acid (14C-MVA). Pigments were then extracted from cotyledons and fully expanded needles. Chl a and carotene were separated by thin-layer chromatography and high-performance liquid chromatography and their specific activities were determined. 14C-ALA and 14C-Glu labels were incorporated into Chl a and carotene. Exposure to O3 did not inhibit incorporation of 14C-ALA into Chl a molecules, but hydrolysis of Chl a showed that O3 inhibited phytol labelling of Chl a. Labelling of carotene was also inhibited by O3, but not when 14C-MVA was used as the label. These data suggest that O3 treatment inhibits (directly or indirectly) the biosynthesis of isoprenoids from products of ALA and Glu metabolism in the plastid, but not from MVA in the cytosol. This inhibition was more prominent when 14C-ALA was used as the label than when 14C-Glu was the labelling precursor. A significant increase in pheophorbide a, a tetrapyrrole component of Chl a labelling, and a concomitant decrease in phytol labelling was observed following incubation of O3-treated pine seedlings with 14C-ALA and 14C-Glu. Stronger inhibition of carotene biosynthesis and activation of Chl a tetrapyrrole labelling by 14C-ALA (in comparison with 14C-Glu) indicated that exposure to O3 inhibits the conversion of ALA to Glu as the first step in ALA catabolism. These results also suggested a more intensive Glu metabolism (in comparison with ALA) for carotene biosynthesis in the cytosol, as

  18. Affective state influences perception by affecting decision parameters underlying bias and sensitivity.

    PubMed

    Lynn, Spencer K; Zhang, Xuan; Barrett, Lisa Feldman

    2012-08-01

    Studies of the effect of affect on perception often show consistent directional effects of a person's affective state on perception. Unpleasant emotions have been associated with a "locally focused" style of stimulus evaluation, and positive emotions with a "globally focused" style. Typically, however, studies of affect and perception have not been conducted under the conditions of perceptual uncertainty and behavioral risk inherent to perceptual judgments outside the laboratory. We investigated the influence of perceivers' experienced affect (valence and arousal) on the utility of social threat perception by combining signal detection theory and behavioral economics. We compared 3 perceptual decision environments that systematically differed with respect to factors that underlie uncertainty and risk: the base rate of threat, the costs of incorrect identification threat, and the perceptual similarity of threats and nonthreats. We found that no single affective state yielded the best performance on the threat perception task across the 3 environments. Unpleasant valence promoted calibration of response bias to base rate and costs, high arousal promoted calibration of perceptual sensitivity to perceptual similarity, and low arousal was associated with an optimal adjustment of bias to sensitivity. However, the strength of these associations was conditional upon the difficulty of attaining optimal bias and high sensitivity, such that the effect of the perceiver's affective state on perception differed with the cause and/or level of uncertainty and risk.

  19. Maternal age affects brain metabolism in adult children of mothers affected by Alzheimer’s disease

    PubMed Central

    Mosconi, Lisa; Tsui, Wai; Murray, John; McHugh, Pauline; Li, Yi; Williams, Schantel; Pirraglia, Elizabeth; Glodzik, Lidia; De Santi, Susan; Vallabhajosula, Shankar; de Leon, Mony J.

    2011-01-01

    Cognitively normal (NL) individuals with a maternal history of late-onset Alzheimer’s disease (MH) show reduced brain glucose metabolism on FDG-PET as compared to those with a paternal history (PH) and those with negative family history (NH) of Alzheimer’s disease (AD). This FDG-PET study investigates whether metabolic deficits in NL MH are associated with advancing maternal age at birth. Ninety-six NL individuals with FDG-PET were examined, including 36 MH, 24 PH, and 36 NH. Regional-to-whole brain gray matter standardized FDG uptake value ratios were examined for associations with parental age across groups using automated regions-of-interest and statistical parametric mapping. Groups were comparable for clinical and neuropsychological measures. Brain metabolism in AD-vulnerable regions was lower in MH compared to NH and PH, and negatively correlated with maternal age at birth only in MH. There were no associations between paternal age and metabolism in any group. Evidence for a maternally inherited, maternal age-related mechanism provides further insight on risk factors and genetic transmission in late-onset AD. PMID:21514691

  20. Maternal age affects brain metabolism in adult children of mothers affected by Alzheimer's disease.

    PubMed

    Mosconi, Lisa; Tsui, Wai; Murray, John; McHugh, Pauline; Li, Yi; Williams, Schantel; Pirraglia, Elizabeth; Glodzik, Lidia; De Santi, Susan; Vallabhajosula, Shankar; de Leon, Mony J

    2012-03-01

    Cognitively normal (NL) individuals with a maternal history of late-onset Alzheimer's disease (MH) show reduced brain glucose metabolism on FDG-PET as compared to those with a paternal history (PH) and those with negative family history (NH) of Alzheimer's disease (AD). This FDG-PET study investigates whether metabolic deficits in NL MH are associated with advancing maternal age at birth. Ninety-six NL individuals with FDG-PET were examined, including 36 MH, 24 PH, and 36 NH. Regional-to-whole brain gray matter standardized FDG uptake value ratios were examined for associations with parental age across groups using automated regions-of-interest and statistical parametric mapping. Groups were comparable for clinical and neuropsychological measures. Brain metabolism in AD-vulnerable regions was lower in MH compared to NH and PH, and negatively correlated with maternal age at birth only in MH. There were no associations between paternal age and metabolism in any group. Evidence for a maternally inherited, maternal age-related mechanism provides further insight on risk factors and genetic transmission in late-onset AD.

  1. Childhood obesity affects adult metabolic syndrome and diabetes.

    PubMed

    Liang, Yajun; Hou, Dongqing; Zhao, Xiaoyuan; Wang, Liang; Hu, Yuehua; Liu, Junting; Cheng, Hong; Yang, Ping; Shan, Xinying; Yan, Yinkun; Cruickshank, J Kennedy; Mi, Jie

    2015-09-01

    We seek to observe the association between childhood obesity by different measures and adult obesity, metabolic syndrome (MetS), and diabetes. Thousand two hundred and nine subjects from "Beijing Blood Pressure Cohort Study" were followed 22.9 ± 0.5 years in average from childhood to adulthood. We defined childhood obesity using body mass index (BMI) or left subscapular skinfold (LSSF), and adult obesity as BMI ≥ 28 kg/m(2). MetS was defined according to the joint statement of International Diabetes Federation and American Heart Association with modified waist circumference (≥ 90/85 cm for men/women). Diabetes was defined as fasting plasma glucose ≥ 7.0 mmol/L or blood glucose 2 h after oral glucose tolerance test ≥ 11.1 mmol/L or currently using blood glucose-lowering agents. Multiple linear and logistic regression models were used to assess the association. The incidence of adult obesity was 13.4, 60.0, 48.3, and 65.1 % for children without obesity, having obesity by BMI only, by LSSF only, and by both, respectively. Compared to children without obesity, children obese by LSSF only or by both had higher risk of diabetes. After controlling for adult obesity, childhood obesity predicted independently long-term risks of diabetes (odds ratio 2.8, 95 % confidence interval 1.2-6.3) or abdominal obesity (2.7, 1.6-4.7) other than MetS as a whole (1.2, 0.6-2.4). Childhood obesity predicts long-term risk of adult diabetes, and the effect is independent of adult obesity. LSSF is better than BMI in predicting adult diabetes.

  2. Spastin binds to lipid droplets and affects lipid metabolism.

    PubMed

    Papadopoulos, Chrisovalantis; Orso, Genny; Mancuso, Giuseppe; Herholz, Marija; Gumeni, Sentiljana; Tadepalle, Nimesha; Jüngst, Christian; Tzschichholz, Anne; Schauss, Astrid; Höning, Stefan; Trifunovic, Aleksandra; Daga, Andrea; Rugarli, Elena I

    2015-04-01

    Mutations in SPAST, encoding spastin, are the most common cause of autosomal dominant hereditary spastic paraplegia (HSP). HSP is characterized by weakness and spasticity of the lower limbs, owing to progressive retrograde degeneration of the long corticospinal axons. Spastin is a conserved microtubule (MT)-severing protein, involved in processes requiring rearrangement of the cytoskeleton in concert to membrane remodeling, such as neurite branching, axonal growth, midbody abscission, and endosome tubulation. Two isoforms of spastin are synthesized from alternative initiation codons (M1 and M87). We now show that spastin-M1 can sort from the endoplasmic reticulum (ER) to pre- and mature lipid droplets (LDs). A hydrophobic motif comprised of amino acids 57 through 86 of spastin was sufficient to direct a reporter protein to LDs, while mutation of arginine 65 to glycine abolished LD targeting. Increased levels of spastin-M1 expression reduced the number but increased the size of LDs. Expression of a mutant unable to bind and sever MTs caused clustering of LDs. Consistent with these findings, ubiquitous overexpression of Dspastin in Drosophila led to bigger and less numerous LDs in the fat bodies and increased triacylglycerol levels. In contrast, Dspastin overexpression increased LD number when expressed specifically in skeletal muscles or nerves. Downregulation of Dspastin and expression of a dominant-negative variant decreased LD number in Drosophila nerves, skeletal muscle and fat bodies, and reduced triacylglycerol levels in the larvae. Moreover, we found reduced amount of fat stores in intestinal cells of worms in which the spas-1 homologue was either depleted by RNA interference or deleted. Taken together, our data uncovers an evolutionarily conserved role of spastin as a positive regulator of LD metabolism and open up the possibility that dysfunction of LDs in axons may contribute to the pathogenesis of HSP.

  3. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice

    PubMed Central

    Roager, Henrik M; Sulek, Karolina; Skov, Kasper; Frandsen, Henrik L; Smedsgaard, Jørn; Wilcks, Andrea; Skov, Thomas H; Villas-Boas, Silas G; Licht, Tine R

    2014-01-01

    Monocolonization of germ-free (GF) mice enables the study of specific bacterial species in vivo. Lactobacillus acidophilus NCFMTM (NCFM) is a probiotic strain; however, many of the mechanisms behind its health-promoting effect remain unknown. Here, we studied the effects of NCFM on the metabolome of jejunum, cecum, and colon of NCFM monocolonized (MC) and GF mice using liquid chromatography coupled to mass-spectrometry (LC-MS). The study adds to existing evidence that NCFM in vivo affects the bile acid signature of mice, in particular by deconjugation. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine as especially the digestion of oligosaccharides (penta- and tetrasaccharides) was increased in MC mice. Additionally, levels of α-tocopherol acetate (vitamin E acetate) were higher in the intestine of GF mice than in MC mice, suggesting that NCFM affects the vitamin E acetate metabolism. NCFM did not digest vitamin E acetate in vitro, suggesting that direct bacterial metabolism was not the cause of the altered metabolome in vivo. Taken together, our results suggest that NCFM affects intestinal carbohydrate metabolism, bile acid metabolism and vitamin E metabolism, although it remains to be investigated whether this effect is unique to NCFM. PMID:24717228

  4. Acute exposure to the biopesticide azadirachtin affects parameters in the gills of common carp (Cyprinus carpio).

    PubMed

    Murussi, Camila R; Costa, Maiara D; Leitemperger, Jossiele W; Flores-Lopes, Fábio; Menezes, Charlene C; Loebens, Luisa; de Avila, Luis Antonio; Rizzetti, Tiele M; Adaime, Martha B; Zanella, Renato; Loro, Vania L

    2016-02-01

    The biopesticide, azadirachtin (Aza) is less hazardous to the environment, but may cause several toxic effects in aquatic organisms. The Cyprinus carpio (n=12, for all concentrations) after 10days of acclimation under controlled conditions, were exposed at 20, 40, and 60μL/L of Aza during 96h. After this period, fish were anesthetized and euthanized then mucus layer and gills collected. In this study, the effects of exposure to different Aza concentrations were analysed through a set of biomarkers: Na(+)/K(+-)ATPase, lipid peroxidation (TBARS), protein carbonyl (PC), superoxide dismutase (SOD), glutathione-S-transferase (GST), catalase (CAT), glutathione peroxidase (GPx), non-protein thiols (NPSH), ascorbic acid (AsA) and histological parameters and, yet, protein and glucose concentration in the surface area of mucous layer. Na(+)K(+-)ATPase was inhibited at 40 and 60μL/L compared to control. TBARS decreased at 40μL/L compared to control. PC, SOD and GST increased at 60μL/L in comparison to control. CAT increased at 20 and 60μL/L, and GPx increased in all Aza concentrations compared to control. NPSH decreased and AsA increased in all concentrations in comparison to control. Histological analyses demonstrated an increase in the intensity of the damage with increasing Aza concentration. Alterations in histological examination were elevation and hypertrophy of the epithelial cells of the secondary filament, hypertrophy and hyperplasia of the mucous and chlorate cells and lamellar aneurism. Glucose and protein concentrations in mucus layer increased at 60μL/L compared to control. In general, we suggest that 60μL/L Aza concentration affected several parameters causing disruptions carp metabolism. PMID:26689640

  5. Dietary carbohydrate restriction induces a unique metabolic state positively affecting atherogenic dyslipidemia, fatty acid partitioning, and metabolic syndrome.

    PubMed

    Volek, Jeff S; Fernandez, Maria Luz; Feinman, Richard D; Phinney, Stephen D

    2008-09-01

    Abnormal fatty acid metabolism and dyslipidemia play an intimate role in the pathogenesis of metabolic syndrome and cardiovascular diseases. The availability of glucose and insulin predominate as upstream regulatory elements that operate through a collection of transcription factors to partition lipids toward anabolic pathways. The unraveling of the details of these cellular events has proceeded rapidly, but their physiologic relevance to lifestyle modification has been largely ignored. Here we highlight the role of dietary input, specifically carbohydrate intake, in the mechanism of metabolic regulation germane to metabolic syndrome. The key principle is that carbohydrate, directly or indirectly through the effect of insulin, controls the disposition of excess dietary nutrients. Dietary carbohydrate modulates lipolysis, lipoprotein assembly and processing and affects the relation between dietary intake of saturated fat intake and circulating levels. Several of these processes are the subject of intense investigation at the cellular level. We see the need to integrate these cellular mechanisms with results from low-carbohydrate diet trials that have shown reduced cardiovascular risk through improvement in hepatic, intravascular, and peripheral processing of lipoproteins, alterations in fatty acid composition, and reductions in other cardiovascular risk factors, notably inflammation. From the current state of the literature, however, low-carbohydrate diets are grounded in basic metabolic principles and the data suggest that some form of carbohydrate restriction is a candidate to be the preferred dietary strategy for cardiovascular health beyond weight regulation.

  6. Respiratory muscle strength and muscle endurance are not affected by acute metabolic acidemia.

    PubMed

    Nizet, Tessa A C; Heijdra, Yvonne F; van den Elshout, Frank J J; van de Ven, Marjo J T; Bosch, Frank H; Mulder, Paul H; Folgering, Hans Th M

    2009-11-01

    Respiratory muscle fatigue in asthma and chronic obstructive lung disease (COPD) contributes to respiratory failure with hypercapnia, and subsequent respiratory acidosis. Therapeutic induction of acute metabolic acidosis further increases the respiratory drive and, therefore, may diminish ventilatory failure and hypercapnia. On the other hand, it is known that acute metabolic acidosis can also negatively affect (respiratory) muscle function and, therefore, could lead to a deterioration of respiratory failure. Moreover, we reasoned that the impact of metabolic acidosis on respiratory muscle strength and respiratory muscle endurance could be more pronounced in COPD patients as compared to asthma patients and healthy subjects, due to already impaired respiratory muscle function. In this study, the effect of metabolic acidosis was studied on peripheral muscle strength, peripheral muscle endurance, airway resistance, and on arterial carbon dioxide tension (PaCO(2)). Acute metabolic acidosis was induced by administration of ammonium chloride (NH(4)Cl). The effect of metabolic acidosis was studied on inspiratory and expiratory muscle strength and on respiratory muscle endurance. Effects were studied in a randomized, placebo-controlled cross-over design in 15 healthy subjects (4 male; age 33.2 +/- 11.5 years; FEV(1) 108.3 +/- 16.2% predicted), 14 asthma patients (5 male; age 48.1 +/- 16.1 years; FEV(1) 101.6 +/- 15.3% predicted), and 15 moderate to severe COPD patients (9 male; age 62.8 +/- 6.8 years; FEV(1) 50.0 +/- 11.8% predicted). An acute metabolic acidemia of BE -3.1 mmol x L(-1) was induced. Acute metabolic acidemia did not significantly affect strength or endurance of respiratory and peripheral muscles, respectively. In all subjects airway resistance was significantly decreased after induction of metabolic acidemia (mean difference -0.1 kPa x sec x L(-1) [95%-CI: -0.1 - -0.02]. In COPD patients PaCO(2) was significantly lowered during metabolic acidemia (mean

  7. Efficacy comparison of Korean ginseng and American ginseng on body temperature and metabolic parameters.

    PubMed

    Park, Eun-Young; Kim, Mi-Hwi; Kim, Eung-Hwi; Lee, Eun-Kyu; Park, In-Sun; Yang, Duck-Choon; Jun, Hee-Sook

    2014-01-01

    Ginseng has beneficial effects in cancer, diabetes and aging. There are two main varieties of ginseng: Panax ginseng (Korean ginseng) and Panax quinquefolius (American ginseng). There are anecdotal reports that American ginseng helps reduce body temperature, whereas Korean ginseng improves blood circulation and increases body temperature; however, their respective effects on body temperature and metabolic parameters have not been studied. We investigated body temperature and metabolic parameters in mice using a metabolic cage. After administering ginseng extracts acutely (single dose of 1000 mg/kg) or chronically (200 mg/kg/day for four weeks), core body temperature, food intake, oxygen consumption and activity were measured, as well as serum levels of pyrogen-related factors and mRNA expression of metabolic genes. Acute treatment with American ginseng reduced body temperature compared with PBS-treated mice during the night; however, there was no significant effect of ginseng treatment on body temperature after four weeks of treatment. VO 2, VCO 2, food intake, activity and energy expenditure were unchanged after both acute and chronic ginseng treatment compared with PBS treatment. In acutely treated mice, serum thyroxin levels were reduced by red and American ginseng, and the serum prostaglandin E2 level was reduced by American ginseng. In chronically treated mice, red and white ginseng reduced thyroxin levels. We conclude that Korean ginseng does not stimulate metabolism in mice, whereas a high dose of American ginseng may reduce night-time body temperature and pyrogen-related factors.

  8. Effects of load carriage and footwear on spatiotemporal parameters, kinematics, and metabolic cost of walking.

    PubMed

    Dames, Kevin D; Smith, Jeremy D

    2015-07-01

    Gait patterns are commonly altered when walking or running barefoot compared to shod conditions. Although controversy exists as to whether barefoot conditions result in lower metabolic costs, it is clear that adding load to the body results in increased metabolic costs. The effects of footwear and backpack loading have been investigated separately, but it is unclear whether manipulating both simultaneously would cause similar outcomes. Twelve healthy individuals (7 female, 5 male) with no obvious gait abnormalities participated in this study (age=24±2 years, height=1.73±0.13 m, and mass=71.1±16.9 kg). Steady state metabolic data and 3D motion capture were collected during treadmill walking at 1.5 ms(-1) in four conditions: Barefoot Unloaded, Shod Unloaded, Barefoot Loaded, and Shod Loaded. Barefoot walking elicited shorter stride lengths, stance and double support times, as well as a slight (≈1%), but not significant, decrease in metabolic cost. Loading increased metabolic costs of walking but did not elicit spatiotemporal changes in either footwear condition. Lower limb kinematic differences were noted in response to both loading and footwear. Changes in spatiotemporal parameters observed when walking barefoot were not exacerbated by the addition of a backpack load. This suggests that the increased metabolic demand associated with the load is met with a similar spatiotemporal pattern whether a person wears a supportive shoe or not. Thus, the discomfort associated with foot strike while barefoot that promotes spatiotemporal changes seems to be independent of load. PMID:25985924

  9. Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion

    PubMed Central

    2013-01-01

    Background In solid-state anaerobic digestion (AD) bioprocesses, hydrolytic and acidogenic microbial metabolisms have not yet been clarified. Since these stages are particularly important for the establishment of the biological reaction, better knowledge could optimize the process performances by process parameters adjustment. Results This study demonstrated the effect of total solids (TS) content on microbial fermentation of wheat straw with six different TS contents ranging from wet to dry conditions (10 to 33% TS). Three groups of metabolic behaviors were distinguished based on wheat straw conversion rates with 2,200, 1,600, and 1,400 mmol.kgVS-1 of fermentative products under wet (10 and 14% TS), dry (19 to 28% TS), and highly dry (28 to 33% TS) conditions, respectively. Furthermore, both wet and dry fermentations showed acetic and butyric acid metabolisms, whereas a mainly butyric acid metabolism occurred in highly dry fermentation. Conclusion Substrate conversion was reduced with no changes of the metabolic pathways until a clear limit at 28% TS content, which corresponded to the threshold value of free water content of wheat straw. This study suggested that metabolic pathways present a limit of TS content for high-solid AD. PMID:24261971

  10. Influence of NO-containing gas flow on various parameters of energy metabolism in erythrocytes.

    PubMed

    Martusevich, A K; Solov'yova, A G; Peretyagin, S P; Karelin, V I; Selemir, V D

    2014-11-01

    We studied the influence of NO-containing gas phase on some parameters of energy metabolism in human erythrocytes. Whole blood samples were aerated with gas flows from the Plazon instrument (NO concentrations 800 and 80 ppm) and from the experimental generator (75 ppm). Activity of lactate dehydrogenase in direct and reverse reactions, lactate level, and a number of derived coefficients were estimated. Treatment of blood with 800 ppm NO inhibited erythrocyte energy metabolism, and its 10-fold dilution attenuated the effect. The use of ROS-free gas flow containing 75 ppm of NO promoted optimization of the process under investigation.

  11. Influence of NO-containing gas flow on various parameters of energy metabolism in erythrocytes.

    PubMed

    Martusevich, A K; Solov'yova, A G; Peretyagin, S P; Karelin, V I; Selemir, V D

    2014-11-01

    We studied the influence of NO-containing gas phase on some parameters of energy metabolism in human erythrocytes. Whole blood samples were aerated with gas flows from the Plazon instrument (NO concentrations 800 and 80 ppm) and from the experimental generator (75 ppm). Activity of lactate dehydrogenase in direct and reverse reactions, lactate level, and a number of derived coefficients were estimated. Treatment of blood with 800 ppm NO inhibited erythrocyte energy metabolism, and its 10-fold dilution attenuated the effect. The use of ROS-free gas flow containing 75 ppm of NO promoted optimization of the process under investigation. PMID:25403392

  12. ECHS1 mutations in Leigh disease: a new inborn error of metabolism affecting valine metabolism.

    PubMed

    Peters, Heidi; Buck, Nicole; Wanders, Ronald; Ruiter, Jos; Waterham, Hans; Koster, Janet; Yaplito-Lee, Joy; Ferdinandusse, Sacha; Pitt, James

    2014-11-01

    Two siblings with fatal Leigh disease had increased excretion of S-(2-carboxypropyl)cysteine and several other metabolites that are features of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) deficiency, a rare defect in the valine catabolic pathway associated with Leigh-like disease. However, this diagnosis was excluded by HIBCH sequencing and normal enzyme activity. In contrast to HIBCH deficiency, the excretion of 3-hydroxyisobutyryl-carnitine was normal in the children, suggesting deficiency of short-chain enoyl-CoA hydratase (ECHS1 gene). This mitochondrial enzyme is active in several metabolic pathways involving fatty acids and amino acids, including valine, and is immediately upstream of HIBCH in the valine pathway. Both children were compound heterozygous for a c.473C > A (p.A158D) missense mutation and a c.414+3G>C splicing mutation in ECHS1. ECHS1 activity was markedly decreased in cultured fibroblasts from both siblings, ECHS1 protein was undetectable by immunoblot analysis and transfection of patient cells with wild-type ECHS1 rescued ECHS1 activity. The highly reactive metabolites methacrylyl-CoA and acryloyl-CoA accumulate in deficiencies of both ECHS1 and HIBCH and are probably responsible for the brain pathology in both disorders. Deficiency of ECHS1 or HIBCH should be considered in children with Leigh disease. Urine metabolite testing can detect and distinguish between these two disorders.

  13. Artificial feeding synchronizes behavioral, hormonal, metabolic and neural parameters in mother-deprived neonatal rabbit pups

    PubMed Central

    Morgado, Elvira; Juárez, Claudia; Melo, Angel I.; Domínguez, Belisario; Lehman, Michael N.; Escobar, Carolina; Meza, Enrique; Caba, Mario

    2011-01-01

    Nursing in the rabbit is under circadian control, and pups have a daily anticipatory behavioral arousal synchronized to this unique event, but it is not known which signal is the main entraining cue. In the present study we hypothesized that food is the main entraining signal. Using mother-deprived pups we tested the effects of artificial feeding on the synchronization of locomotor behavior, plasma glucose, corticosterone, FOS and PER1 protein rhythms in suprachiasmatic, supraoptic, paraventricular and tuberomammillary nuclei. At postnatal day 1 an intragastric tube was placed by gastrostomy. The next day and for the rest of the experiment pups were fed with a milk formula through the cannula at either 02:00 or 10:00 h (feeding time = zeitgeber time (ZT) 0). At postnatal days 5–7 pups exhibited behavioral arousal with a significant increase in locomotor behavior 60 min before feeding. Glucose levels increased after feeding, peaking at ZT4–ZT12 and then declining. Corticosterone was highest around the time of feeding then decreased to trough concentrations at ZT12–ZT16, increasing again in anticipation of next feeding bout. In the brain, the suprachiasmatic nucleus had a rhythm of FOS and PER1 that was not significantly affected by the feeding schedule. Conversely, the supraoptic, paraventricular and tuberomammillary nuclei had rhythms of both FOS and PER1 induced by the time of scheduled feeding. We conclude that the nursing rabbit pup is a natural model of food entrainment, since food, in this case milk formula, is a strong synchronizing signal for behavioral, hormonal, metabolic and neural parameters. PMID:22098455

  14. Metabolic and endocrine profiles and reproductive parameters in dairy cows under grazing conditions: effect of polymorphisms in somatotropic axis genes

    PubMed Central

    2011-01-01

    Background The present study hypothesized that GH-AluI and IGF-I-SnabI polymorphisms do change the metabolic/endocrine profiles in Holstein cows during the transition period, which in turn are associated with productive and reproductive parameters. Methods Holstein cows (Farm 1, primiparous cows, n = 110, and Farm 2, multiparous cows, n = 76) under grazing conditions were selected and GH and IGF-I genotypes were determined. Blood samples for metabolic/endocrine determinations were taken during the transition period and early lactation in both farms. Data was analyzed by farm using a repeated measures analyses including GH and IGF-I genotypes, days and interactions as fixed effects, sire and cow as random effects and calving date as covariate. Results and Discussion Frequencies of GH and IGF-I alleles were L:0.84, V:0.16 and A:0.60, B:0.40, respectively. The GH genotype was not associated with productive or reproductive variables, but interaction with days affected FCM yield in multiparous (farm 2) cows (LL yielded more than LV cows) in early lactation. The GH genotype affected NEFA and IGF-I concentrations in farm 1 (LV had higher NEFA and lower IGF-I than LL cows) suggesting a better energy status of LL cows. There was no effect of IGF-I genotype on productive variables, but a trend was found for FCM in farm 2 (AB cows yielded more than AA cows). IGF-I genotype affected calving first service interval in farm 1, and the interaction with days tended to affect FCM yield (AB cows had a shorter interval and yielded more FCM than BB cows). IGF-I genotype affected BHB, NEFA, and insulin concentrations in farm 1: primiparous BB cows had lower NEFA and BHB and higher insulin concentrations. In farm 2, there was no effect of IGF-I genotype, but there was an interaction with days on IGF-I concentration, suggesting a greater uncoupling somatropic axis in AB and BB than AA cows, being in accordance with greater FCM yield in AB cows. Conclusion The GH and IGF-I genotypes had no

  15. Parameter estimation for metabolic networks with two stage Bregman regularization homotopy inversion algorithm.

    PubMed

    Wang, Hong; Wang, Xi-cheng

    2014-02-21

    Metabolism is a very important cellular process and its malfunction contributes to human disease. Therefore, building dynamic models for metabolic networks with experimental data in order to analyze biological process rationally has attracted a lot of attention. Owing to the technical limitations, some unknown parameters contained in models need to be estimated effectively by means of the computational method. Generally, problems of parameter estimation of nonlinear biological network are known to be ill condition and multimodal. In particular, with the increasing amount and enlarging the scope of parameters, many optimization algorithms often fail to find a global solution. In this paper, two-stage variable factor Bregman regularization homotopy method is proposed. Discrete homotopy is used to identify the possible extreme region and continuous homotopy is executed for the purpose of stability of path tracing in the special region. Meanwhile, Latin hypercube sampling is introduced to get the good initial guess value and a perturbation strategy is developed to jump out of the local optimum. Three metabolic network inverse problems are investigated to demonstrate the effectiveness of the proposed method. PMID:24060619

  16. Stretching Your Energetic Budget: How Tendon Compliance Affects the Metabolic Cost of Running

    PubMed Central

    Uchida, Thomas K.; Hicks, Jennifer L.; Dembia, Christopher L.; Delp, Scott L.

    2016-01-01

    Muscles attach to bones via tendons that stretch and recoil, affecting muscle force generation and metabolic energy consumption. In this study, we investigated the effect of tendon compliance on the metabolic cost of running using a full-body musculoskeletal model with a detailed model of muscle energetics. We performed muscle-driven simulations of running at 2–5 m/s with tendon force–strain curves that produced between 1 and 10% strain when the muscles were developing maximum isometric force. We computed the average metabolic power consumed by each muscle when running at each speed and with each tendon compliance. Average whole-body metabolic power consumption increased as running speed increased, regardless of tendon compliance, and was lowest at each speed when tendon strain reached 2–3% as muscles were developing maximum isometric force. When running at 2 m/s, the soleus muscle consumed less metabolic power at high tendon compliance because the strain of the tendon allowed the muscle fibers to operate nearly isometrically during stance. In contrast, the medial and lateral gastrocnemii consumed less metabolic power at low tendon compliance because less compliant tendons allowed the muscle fibers to operate closer to their optimal lengths during stance. The software and simulations used in this study are freely available at simtk.org and enable examination of muscle energetics with unprecedented detail. PMID:26930416

  17. Xylitol Affects the Intestinal Microbiota and Metabolism of Daidzein in Adult Male Mice

    PubMed Central

    Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko

    2013-01-01

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05). Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05). The fecal lipid contents (% dry weight) were significantly greater in the XD group than in the CD group (p < 0.01). The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05). This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health. PMID:24336061

  18. Xylitol affects the intestinal microbiota and metabolism of daidzein in adult male mice.

    PubMed

    Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko

    2013-12-10

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05). Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05). The fecal lipid contents (% dry weight) were significantly greater in the XD group than in the CD group (p < 0.01). The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05). This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health.

  19. Modifying metabolically sensitive histone marks by inhibiting glutamine metabolism affects gene expression and alters cancer cell phenotype.

    PubMed

    Simpson, Natalie E; Tryndyak, Volodymyr P; Pogribna, Marta; Beland, Frederick A; Pogribny, Igor P

    2012-12-01

    The interplay of metabolism and epigenetic regulatory mechanisms has become a focal point for a better understanding of cancer development and progression. In this study, we have acquired data supporting previous observations that demonstrate glutamine metabolism affects histone modifications in human breast cancer cell lines. Treatment of non-invasive epithelial (T-47D and MDA-MB-361) and invasive mesenchymal (MDA-MB-231 and Hs-578T) breast cancer cell lines with the glutaminase inhibitor, Compound 968, resulted in cytotoxicity in all cell lines, with the greatest effect being observed in MDA-MB-231 breast cancer cells. Compound 968-treatment induced significant downregulation of 20 critical cancer-related genes, the majority of which are anti-apoptotic and/or promote metastasis, including AKT, BCL2, BCL2L1, CCND1, CDKN3, ERBB2, ETS1, E2F1, JUN, KITLG, MYB, and MYC. Histone H3K4me3, a mark of transcriptional activation, was reduced at the promoters of all but one of these critical cancer genes. The decrease in histone H3K4me3 at global and gene-specific levels correlated with reduced expression of SETD1 and ASH2L, genes encoding the histone H3K4 methyltransferase complex. Further, the expression of other epigenetic regulatory genes, known to be downregulated during apoptosis (e.g., DNMT1, DNMT3B, SETD1 and SIRT1), was also downregulated by Compound 968. These changes in gene expression and histone modifications were accompanied by the activation of apoptosis, and decreased invasiveness and resistance of MDA-MB-231 cells to chemotherapeutic drug doxorubicin. The results of this study provide evidence to a link between cytotoxicity caused by inhibiting glutamine metabolism with alterations of the epigenome of breast cancer cells and suggest that modification of intracellular metabolism may enhance the efficiency of epigenetic therapy. PMID:23117580

  20. Relevance of Haematologic Parameters in Obese Women with or without Metabolic Syndrome

    PubMed Central

    Raghavan, Vijayashree; Gunasekar, Damini

    2016-01-01

    Introduction Obesity is rapidly growing problem worldwide. It predisposes to a variety of serious ailments including heart disease, diabetes mellitus, degenerative joint disease, atherosclerosis, etc. This is probably related to proinflammatory state associated with obesity due to release of several inflammatory mediators by the adipose tissue. The mediators are also probably responsible for metabolic syndrome associated with obesity. Besides, they may also induce significant changes in haematological parameters associated with inflammation. Aim Present study was undertaken to ascertain the relationship between obesity and leucocyte counts (particularly TLC and ANC) and find out if the changes induced in them are significant enough to be used as predictors of metabolic syndrome. Materials and Methods This case-control study was carried out on 243 female subjects allocated to four groups based on WHO and IDF criteria: Control, Overweight, Obese and Obese with Metabolic Syndrome. From all the subjects, data pertaining to obesity related anthropometric measurements, lipid profile, fasting plasma glucose levels and complete blood counts were collected. These were analysed statistically. Results There was a strong positive correlation between obesity related anthropometric measurements (BMI, BF, WC) and leucocyte counts – TLC and ANC – which were statistically highly significant; TNC and ANC also showed strong positive correlation with FPG. Mean values for TLC and ANC showed statistically significant difference between each and every group. The difference in the mean values of these parameters between obese and metabolic syndrome was highly significant. Both elevated FPG and BMI were independently associated with relative leucocytosis; when both of them were elevated simultaneously, the effect appeared to be potentiating. Conclusion Increase in obesity associated anthropometric measurements (BMI, WC, BF) is associated with relative leucocytosis within the

  1. Culture surfaces coated with various implant materials affect chondrocyte growth and metabolism.

    PubMed

    Hambleton, J; Schwartz, Z; Khare, A; Windeler, S W; Luna, M; Brooks, B P; Dean, D D; Boyan, B D

    1994-07-01

    The effect on chondrocyte metabolism of culture surfaces sputter-coated with various materials used for orthopaedic implants was studied and correlated with the stage of cartilage cell maturation. Confluent, fourth-passage chondrocytes from the costochondral resting zone and growth zone of rats were cultured for 6 or 9 days on 24-well plates sputter-coated with ultrathin films of titanium, titanium dioxide, aluminum oxide, zirconium oxide, and calcium phosphate (1.67:1). Corona-discharged tissue culture plastic served as the control. The effect of surface material was examined with regard to cell morphology; cell proliferation (cell number) and DNA synthesis ([3H]thymidine incorporation); RNA synthesis ([3H]uridine incorporation); collagenase-digestible protein, noncollagenase-digestible protein, and percentage of collagen production; and alkaline phosphatase-specific activity, both in the cell layer and in trypsinized chondrocytes. Cell morphology was dependent on surface material; only cells cultured on titanium had an appearance similar to that of cells cultured on plastic. While titanium or titanium dioxide surfaces had no effect on cell number or [3H]thymidine incorporation, aluminum oxide, calcium phosphate, and zirconium oxide surfaces inhibited both parameters. Cells cultured on aluminum oxide, calcium phosphate, zirconium oxide, and titanium dioxide exhibited decreased collagenase-digestible protein, noncollagenase-digestible protein, and percentage of collagen production, but [3H]uridine incorporation was decreased only in those chondrocytes cultured on aluminum oxide, calcium phosphate, or zirconium oxide. Chondrocytes cultured on titanium had greater alkaline phosphatase-specific activity than did cells cultured on plastic, but the incorporation of [3H]uridine and production of collagenase-digestible protein, noncollagenase-digestible protein, and percentage of collagen was comparable. The response of chondrocytes from the growth zone and resting zone

  2. Gold nanoparticles alter parameters of oxidative stress and energy metabolism in organs of adult rats.

    PubMed

    Ferreira, Gabriela Kozuchovski; Cardoso, Eria; Vuolo, Francieli Silva; Michels, Monique; Zanoni, Elton Torres; Carvalho-Silva, Milena; Gomes, Lara Mezari; Dal-Pizzol, Felipe; Rezin, Gislaine Tezza; Streck, Emilio L; Paula, Marcos Marques da Silva

    2015-12-01

    This study evaluated the parameters of oxidative stress and energy metabolism after the acute and long-term administration of gold nanoparticles (GNPs, 10 and 30 nm in diameter) in different organs of rats. Adult male Wistar rats received a single intraperitoneal injection or repeated injections (once daily for 28 days) of saline solution, GNPs-10 or GNPs-30. Twenty-four hours after the last administration, the animals were killed, and the liver, kidney, and heart were isolated for biochemical analysis. We demonstrated that acute administration of GNPs-30 increased the TBARS levels, and that GNPs-10 increased the carbonyl protein levels. The long-term administration of GNPs-10 increased the TBARS levels, and the carbonyl protein levels were increased by GNPs-30. Acute administration of GNPs-10 and GNPs-30 increased SOD activity. Long-term administration of GNPs-30 increased SOD activity. Acute administration of GNPs-10 decreased the activity of CAT, whereas long-term administration of GNP-10 and GNP-30 altered CAT activity randomly. Our results also demonstrated that acute GNPs-30 administration decreased energy metabolism, especially in the liver and heart. Long-term GNPs-10 administration increased energy metabolism in the liver and decreased energy metabolism in the kidney and heart, whereas long-term GNPs-30 administration increased energy metabolism in the heart. The results of our study are consistent with other studies conducted in our research group and reinforce the fact that GNPs can lead to oxidative damage, which is responsible for DNA damage and alterations in energy metabolism. PMID:26583437

  3. Gold nanoparticles alter parameters of oxidative stress and energy metabolism in organs of adult rats.

    PubMed

    Ferreira, Gabriela Kozuchovski; Cardoso, Eria; Vuolo, Francieli Silva; Michels, Monique; Zanoni, Elton Torres; Carvalho-Silva, Milena; Gomes, Lara Mezari; Dal-Pizzol, Felipe; Rezin, Gislaine Tezza; Streck, Emilio L; Paula, Marcos Marques da Silva

    2015-12-01

    This study evaluated the parameters of oxidative stress and energy metabolism after the acute and long-term administration of gold nanoparticles (GNPs, 10 and 30 nm in diameter) in different organs of rats. Adult male Wistar rats received a single intraperitoneal injection or repeated injections (once daily for 28 days) of saline solution, GNPs-10 or GNPs-30. Twenty-four hours after the last administration, the animals were killed, and the liver, kidney, and heart were isolated for biochemical analysis. We demonstrated that acute administration of GNPs-30 increased the TBARS levels, and that GNPs-10 increased the carbonyl protein levels. The long-term administration of GNPs-10 increased the TBARS levels, and the carbonyl protein levels were increased by GNPs-30. Acute administration of GNPs-10 and GNPs-30 increased SOD activity. Long-term administration of GNPs-30 increased SOD activity. Acute administration of GNPs-10 decreased the activity of CAT, whereas long-term administration of GNP-10 and GNP-30 altered CAT activity randomly. Our results also demonstrated that acute GNPs-30 administration decreased energy metabolism, especially in the liver and heart. Long-term GNPs-10 administration increased energy metabolism in the liver and decreased energy metabolism in the kidney and heart, whereas long-term GNPs-30 administration increased energy metabolism in the heart. The results of our study are consistent with other studies conducted in our research group and reinforce the fact that GNPs can lead to oxidative damage, which is responsible for DNA damage and alterations in energy metabolism.

  4. Effects of Five-Year Treatment with Testosterone Undecanoate on Metabolic and Hormonal Parameters in Ageing Men with Metabolic Syndrome

    PubMed Central

    Lenzi, Andrea

    2014-01-01

    Metabolic and hormonal modifications after long-term testosterone (T) treatment have never been investigated. 20 hypogonadal men (mean T = 241 ng/dL–8.3 nmol/L) with metabolic syndrome (MS, mean age 58) were treated with T-undecanoate injections every 12 weeks for 60 months. 20 matched subjects in whom T was unaccepted or contraindicated served as controls. Primary endpoints were variations from baseline of metabolic and hormonal parameters. In T-group, significant reductions in waist circumference (−9.6 ± 3.8 cm, P < 0.0001), body weight (−15 ± 2.8 Kg, P < 0.0001), and glycosylated hemoglobin (−1.6  ±  0.5%, P < 0.0001) occurred, along with improvements in insulin sensitivity (HOMA-I; −2.8  ±  0.6, P < 0.0001), lipid profile (total/HDL-cholesterol ratio −2.9 ± 1.5, P < 0.0001), systolic and diastolic blood pressure (−23 ± 10 and −16 ± 8 mm Hg, P < 0.0001, resp.), and neck and lumbar T-scores (+0.5 ± 0.15 gr/cm2, P < 0.0001; +0.7 ± 0.8, P < 0.0001, resp.). Also, serum vitamin D (+14.0 ± 1.3 ng/mL, P < 0.01), TSH (− 0.9 ± 0.3 mUI/mL, P < 0.01), GH (0.74 ± 0.2 ng/mL, P < 0.0001), and IGF1 (105 ± 11 ng/mL, P < 0.01) levels changed in T-group but not in controls. Normalization of T levels in men with MS improved obesity, glycemic control, blood pressure, lipid profile, and bone mineral density compared with controls. Amelioration in hormonal parameters, that is, vitamin D, growth hormone, and thyrotropin plasma levels, were reported. PMID:24688542

  5. Measures of GCM Performance as Functions of Model Parameters Affecting Clouds and Radiation

    NASA Astrophysics Data System (ADS)

    Jackson, C.; Mu, Q.; Sen, M.; Stoffa, P.

    2002-05-01

    This abstract is one of three related presentations at this meeting dealing with several issues surrounding optimal parameter and uncertainty estimation of model predictions of climate. Uncertainty in model predictions of climate depends in part on the uncertainty produced by model approximations or parameterizations of unresolved physics. Evaluating these uncertainties is computationally expensive because one needs to evaluate how arbitrary choices for any given combination of model parameters affects model performance. Because the computational effort grows exponentially with the number of parameters being investigated, it is important to choose parameters carefully. Evaluating whether a parameter is worth investigating depends on two considerations: 1) does reasonable choices of parameter values produce a large range in model response relative to observational uncertainty? and 2) does the model response depend non-linearly on various combinations of model parameters? We have decided to narrow our attention to selecting parameters that affect clouds and radiation, as it is likely that these parameters will dominate uncertainties in model predictions of future climate. We present preliminary results of ~20 to 30 AMIPII style climate model integrations using NCAR's CCM3.10 that show model performance as functions of individual parameters controlling 1) critical relative humidity for cloud formation (RHMIN), and 2) boundary layer critical Richardson number (RICR). We also explore various definitions of model performance that include some or all observational data sources (surface air temperature and pressure, meridional and zonal winds, clouds, long and short-wave cloud forcings, etc...) and evaluate in a few select cases whether the model's response depends non-linearly on the parameter values we have selected.

  6. Cardiac metabolic pathways affected in the mouse model of barth syndrome.

    PubMed

    Huang, Yan; Powers, Corey; Madala, Satish K; Greis, Kenneth D; Haffey, Wendy D; Towbin, Jeffrey A; Purevjav, Enkhsaikhan; Javadov, Sabzali; Strauss, Arnold W; Khuchua, Zaza

    2015-01-01

    Cardiolipin (CL) is a mitochondrial phospholipid essential for electron transport chain (ETC) integrity. CL-deficiency in humans is caused by mutations in the tafazzin (Taz) gene and results in a multisystem pediatric disorder, Barth syndrome (BTHS). It has been reported that tafazzin deficiency destabilizes mitochondrial respiratory chain complexes and affects supercomplex assembly. The aim of this study was to investigate the impact of Taz-knockdown on the mitochondrial proteomic landscape and metabolic processes, such as stability of respiratory chain supercomplexes and their interactions with fatty acid oxidation enzymes in cardiac muscle. Proteomic analysis demonstrated reduction of several polypeptides of the mitochondrial respiratory chain, including Rieske and cytochrome c1 subunits of complex III, NADH dehydrogenase alpha subunit 5 of complex I and the catalytic core-forming subunit of F0F1-ATP synthase. Taz gene knockdown resulted in upregulation of enzymes of folate and amino acid metabolic pathways in heart mitochondria, demonstrating that Taz-deficiency causes substantive metabolic remodeling in cardiac muscle. Mitochondrial respiratory chain supercomplexes are destabilized in CL-depleted mitochondria from Taz knockdown hearts resulting in disruption of the interactions between ETC and the fatty acid oxidation enzymes, very long-chain acyl-CoA dehydrogenase and long-chain 3-hydroxyacyl-CoA dehydrogenase, potentially affecting the metabolic channeling of reducing equivalents between these two metabolic pathways. Mitochondria-bound myoglobin was significantly reduced in Taz-knockdown hearts, potentially disrupting intracellular oxygen delivery to the oxidative phosphorylation system. Our results identify the critical pathways affected by the Taz-deficiency in mitochondria and establish a future framework for development of therapeutic options for BTHS.

  7. Cardiac Metabolic Pathways Affected in the Mouse Model of Barth Syndrome

    PubMed Central

    Huang, Yan; Powers, Corey; Madala, Satish K.; Greis, Kenneth D.; Haffey, Wendy D.; Towbin, Jeffrey A.; Purevjav, Enkhsaikhan; Javadov, Sabzali; Strauss, Arnold W.; Khuchua, Zaza

    2015-01-01

    Cardiolipin (CL) is a mitochondrial phospholipid essential for electron transport chain (ETC) integrity. CL-deficiency in humans is caused by mutations in the tafazzin (Taz) gene and results in a multisystem pediatric disorder, Barth syndrome (BTHS). It has been reported that tafazzin deficiency destabilizes mitochondrial respiratory chain complexes and affects supercomplex assembly. The aim of this study was to investigate the impact of Taz-knockdown on the mitochondrial proteomic landscape and metabolic processes, such as stability of respiratory chain supercomplexes and their interactions with fatty acid oxidation enzymes in cardiac muscle. Proteomic analysis demonstrated reduction of several polypeptides of the mitochondrial respiratory chain, including Rieske and cytochrome c1 subunits of complex III, NADH dehydrogenase alpha subunit 5 of complex I and the catalytic core-forming subunit of F0F1-ATP synthase. Taz gene knockdown resulted in upregulation of enzymes of folate and amino acid metabolic pathways in heart mitochondria, demonstrating that Taz-deficiency causes substantive metabolic remodeling in cardiac muscle. Mitochondrial respiratory chain supercomplexes are destabilized in CL-depleted mitochondria from Taz knockdown hearts resulting in disruption of the interactions between ETC and the fatty acid oxidation enzymes, very long-chain acyl-CoA dehydrogenase and long-chain 3-hydroxyacyl-CoA dehydrogenase, potentially affecting the metabolic channeling of reducing equivalents between these two metabolic pathways. Mitochondria-bound myoglobin was significantly reduced in Taz-knockdown hearts, potentially disrupting intracellular oxygen delivery to the oxidative phosphorylation system. Our results identify the critical pathways affected by the Taz-deficiency in mitochondria and establish a future framework for development of therapeutic options for BTHS. PMID:26030409

  8. Bromochloromethane, a Methane Analogue, Affects the Microbiota and Metabolic Profiles of the Rat Gastrointestinal Tract

    PubMed Central

    Yang, Yu-Xiang; Mu, Chun-Long; Luo, Zhen

    2015-01-01

    Bromochloromethane (BCM), an inhibitor of methanogenesis, has been used in animal production. However, little is known about its impact on the intestinal microbiota and metabolic patterns. The present study aimed to investigate the effect of BCM on the colonic bacterial community and metabolism by establishing a Wistar rat model. Twenty male Wistar rats were randomly divided into two groups (control and treated with BCM) and raised for 6 weeks. Bacterial fermentation products in the cecum were determined, and colonic methanogens and sulfate-reducing bacteria (SRB) were quantified. The colonic microbiota was analyzed by pyrosequencing of the 16S rRNA genes, and metabolites were profiled by gas chromatography and mass spectrometry. The results showed that BCM did not affect body weight and feed intake, but it did significantly change the intestinal metabolic profiles. Cecal protein fermentation was enhanced by BCM, as methylamine, putrescine, phenylethylamine, tyramine, and skatole were significantly increased. Colonic fatty acid and carbohydrate concentrations were significantly decreased, indicating the perturbation of lipid and carbohydrate metabolism by BCM. BCM treatment decreased the abundance of methanogen populations, while SRB were increased in the colon. BCM did not affect the total colonic bacterial counts but significantly altered the bacterial community composition by decreasing the abundance of actinobacteria, acidobacteria, and proteobacteria. The results demonstrated that BCM treatment significantly altered the microbiotic and metabolite profiles in the intestines, which may provide further information on the use of BCM in animal production. PMID:26567308

  9. Bromochloromethane, a Methane Analogue, Affects the Microbiota and Metabolic Profiles of the Rat Gastrointestinal Tract.

    PubMed

    Yang, Yu-Xiang; Mu, Chun-Long; Luo, Zhen; Zhu, Wei-Yun

    2016-02-01

    Bromochloromethane (BCM), an inhibitor of methanogenesis, has been used in animal production. However, little is known about its impact on the intestinal microbiota and metabolic patterns. The present study aimed to investigate the effect of BCM on the colonic bacterial community and metabolism by establishing a Wistar rat model. Twenty male Wistar rats were randomly divided into two groups (control and treated with BCM) and raised for 6 weeks. Bacterial fermentation products in the cecum were determined, and colonic methanogens and sulfate-reducing bacteria (SRB) were quantified. The colonic microbiota was analyzed by pyrosequencing of the 16S rRNA genes, and metabolites were profiled by gas chromatography and mass spectrometry. The results showed that BCM did not affect body weight and feed intake, but it did significantly change the intestinal metabolic profiles. Cecal protein fermentation was enhanced by BCM, as methylamine, putrescine, phenylethylamine, tyramine, and skatole were significantly increased. Colonic fatty acid and carbohydrate concentrations were significantly decreased, indicating the perturbation of lipid and carbohydrate metabolism by BCM. BCM treatment decreased the abundance of methanogen populations, while SRB were increased in the colon. BCM did not affect the total colonic bacterial counts but significantly altered the bacterial community composition by decreasing the abundance of actinobacteria, acidobacteria, and proteobacteria. The results demonstrated that BCM treatment significantly altered the microbiotic and metabolite profiles in the intestines, which may provide further information on the use of BCM in animal production. PMID:26567308

  10. Short-Chain Fructo-Oligosaccharides Modulate Intestinal Microbiota and Metabolic Parameters of Humanized Gnotobiotic Diet Induced Obesity Mice

    PubMed Central

    Respondek, Frederique; Gerard, Philippe; Bossis, Mathilde; Boschat, Laura; Bruneau, Aurélia; Rabot, Sylvie; Wagner, Anne; Martin, Jean-Charles

    2013-01-01

    Prebiotic fibres like short-chain fructo-oligosaccharides (scFOS) are known to selectively modulate the composition of the intestinal microbiota and especially to stimulate Bifidobacteria. In parallel, the involvement of intestinal microbiota in host metabolic regulation has been recently highlighted. The objective of the study was to evaluate the effect of scFOS on the composition of the faecal microbiota and on metabolic parameters in an animal model of diet-induced obesity harbouring a human-type microbiota. Forty eight axenic C57BL/6J mice were inoculated with a sample of faecal human microbiota and randomly assigned to one of 3 diets for 7 weeks: a control diet, a high fat diet (HF, 60% of energy derived from fat)) or an isocaloric HF diet containing 10% of scFOS (HF-scFOS). Mice fed with the two HF gained at least 21% more weight than mice from the control group. Addition of scFOS partially abolished the deposition of fat mass but significantly increased the weight of the caecum. The analysis of the taxonomic composition of the faecal microbiota by FISH technique revealed that the addition of scFOS induced a significant increase of faecal Bifidobacteria and the Clostridium coccoides group whereas it decreased the Clostridium leptum group. In addition to modifying the composition of the faecal microbiota, scFOS most prominently affected the faecal metabolome (e.g. bile acids derivatives, hydroxyl monoenoic fatty acids) as well as urine, plasma hydrophilic and plasma lipid metabolomes. The increase in C. coccoides and the decrease in C. leptum, were highly correlated to these metabolic changes, including insulinaemia, as well as to the weight of the caecum (empty and full) but not the increase in Bifidobacteria. In conclusion scFOS induce profound metabolic changes by modulating the composition and the activity of the intestinal microbiota, that may partly explain their effect on the reduction of insulinaemia. PMID:23951074

  11. [THE ANALYSIS OF INDICATORS OF MINERAL METABOLISM IN PATIENTS WITH DEGENERATIVE DYSTROPHIC AFFECTIONS OF JOINTS].

    PubMed

    Gasanova, A G; Matveeva, E L; Spirkina, E S

    2015-12-01

    The analysis of indicators of mineral metabolism in patients with degenerative dystrophic affections of joints demonstrated that under development of osteoarthrosis process the alteration of indicators of concentration of electrolytes in blood serum, urine and synovial fluid occurs. The stage II of process is characterized by maximal alterations of indicators. The indicator of relationship between concentration of phosphate-ion and index of phosphatases of blood serum turned out the significant coefficient of correlation. PMID:27032248

  12. [THE ANALYSIS OF INDICATORS OF MINERAL METABOLISM IN PATIENTS WITH DEGENERATIVE DYSTROPHIC AFFECTIONS OF JOINTS].

    PubMed

    Gasanova, A G; Matveeva, E L; Spirkina, E S

    2015-12-01

    The analysis of indicators of mineral metabolism in patients with degenerative dystrophic affections of joints demonstrated that under development of osteoarthrosis process the alteration of indicators of concentration of electrolytes in blood serum, urine and synovial fluid occurs. The stage II of process is characterized by maximal alterations of indicators. The indicator of relationship between concentration of phosphate-ion and index of phosphatases of blood serum turned out the significant coefficient of correlation.

  13. The stoichiometry of the chloroplast ATP synthase oligomer III in Chlamydomonas reinhardtii is not affected by the metabolic state.

    PubMed

    Meyer Zu Tittingdorf, Jürgen M W; Rexroth, Sascha; Schäfer, Eva; Schlichting, Ralf; Giersch, Christoph; Dencher, Norbert A; Seelert, Holger

    2004-11-01

    The chloroplast H(+)-ATP synthase is a key component for the energy supply of higher plants and green algae. An oligomer of identical protein subunits III is responsible for the conversion of an electrochemical proton gradient into rotational motion. It is highly controversial if the oligomer III stoichiometry is affected by the metabolic state of any organism. Here, the intact oligomer III of the ATP synthase from Chlamydomonas reinhardtii has been isolated for the first time. Due to the importance of the subunit III stoichiometry for energy conversion, a gradient gel system was established to distinguish oligomers with different stoichiometries. With this methodology, a possible alterability of the stoichiometry in respect to the metabolic state of the cells was examined. Several growth parameters, i.e., light intensity, pH value, carbon source, and CO(2) concentration, were varied to determine their effects on the stoichiometry. Contrary to previous suggestions for E. coli, the oligomer III of the chloroplast H(+)-ATP synthase always consists of a constant number of monomers over a wide range of metabolic states. Furthermore, mass spectrometry indicates that subunit III from C. reinhardtii is not modified posttranslationally. Data suggest a subunit III stoichiometry of the algae ATP synthase divergent from higher plants.

  14. Students' Perspective (Age Wise, Gender Wise and Year Wise) of Parameters Affecting the Undergraduate Engineering Education

    ERIC Educational Resources Information Center

    Kumari, Neeraj

    2014-01-01

    The objective of the study is to examine the students' perspective (age wise, gender wise and year wise) of parameters affecting the undergraduate engineering education system present in a private technical institution in NCR [National Capital Region], Haryana. It is a descriptive type of research in nature. The data has been collected with the…

  15. A Case Study Showing Parameters Affecting the Quality of Education: Faculty Perspective

    ERIC Educational Resources Information Center

    Kumari, Neeraj

    2014-01-01

    The study aims to examine the faculty members' perspective (age Wise, Gender Wise and Work Experience wise) of parameters affecting the quality of education in an affiliated Undergraduate Engineering Institution in Haryana. It is a descriptive type of research. The data has been collected with the help of 'Questionnaire Based Survey'. The sample…

  16. [Research on the performance comparing and building of affective computing database based on physiological parameters].

    PubMed

    Li, Xin; Du, Xiaojuan; Zhang, Yunpeng; Ying, Lijuan; Li, Changwuz

    2014-08-01

    The validity and reasonableness of emotional data are the key issues in the cognitive affective computing research. Effects of the emotion recognition are decided by the quality of selected data directly. Therefore, it is an important part of affective computing research to build affective computing database with good performance, so that it is the hot spot of research in this field. In this paper, the performance of two classical cognitive affective computing databases, the Massachusetts Institute of Technology (MIT) cognitive affective computing database and Germany Augsburg University emotion recognition database were compared, their data structure and data types were compared respectively, and emotional recognition effect based on the data were studied comparatively. The results indicated that the analysis based on the physical parameters could get the effective emotional recognition, and would be a feasible method of pressure emotional evaluation. Because of the lack of stress emotional evaluation data based on the physiological parameters domestically, there is not a public stress emotional database. We hereby built a dataset for the stress evaluation towards the high stress group in colleges, candidates of postgraduates of Ph. D and master as the subjects. We then acquired their physiological parameters, and performed the pressure analysis based on this database. The results indicated that this dataset had a certain reference value for the stress evaluation, and we hope this research can provide a reference and support for emotion evaluation and analysis.

  17. The Hsp72 response in peri-parturient dairy cows: relationships with metabolic and immunological parameters

    PubMed Central

    Catalani, Elisabetta; Amadori, Massimo; Vitali, Andrea; Bernabucci, Umberto; Nardone, Alessandro

    2010-01-01

    The study was aimed at assessing whether the peri-parturient period is associated with changes of intracellular and plasma inducible heat shock proteins (Hsp) 72 kDa molecular weight in dairy cows, and to establish possible relationships between Hsp72, metabolic, and immunological parameters subjected to changes around calving. The study was carried out on 35 healthy peri-parturient Holstein cows. Three, two, and one week before the expected calving, and 1, 2, 3, 4, and 5 weeks after calving, body conditions score (BCS) was measured and blood samples were collected to separate plasma and peripheral blood mononuclear cells (PBMC). Concentrations of Hsp72 in PBMC and plasma increased sharply after calving. In the post-calving period, BCS and plasma glucose declined, whereas plasma nonesterified fatty acids (NEFA) and tumor necrosis factor-alpha increased. The proliferative responses of PBMC to lipopolysaccharide (LPS) declined progressively after calving. The percentage of PBMC expressing CD14 receptors and Toll-like receptors (TLR)-4 increased and decreased in the early postpartum period, respectively. Correlation analysis revealed significant positive relationships between Hsp72 and NEFA, and between PBMC proliferation in response to LPS and the percentage of PBMC expressing TLR-4. Conversely, significant negative relationships were found between LPS-triggered proliferation of PBMC and both intracellular and plasma Hsp72. Literature data and changes of metabolic and immunological parameters reported herein authorize a few interpretative hypotheses and encourage further studies aimed at assessing possible cause and effect relationships between changes of PBMC and circulating Hsp72, metabolic, and immune parameters in dairy cows. PMID:20349286

  18. Absence of cumulus cells during in vitro maturation affects lipid metabolism in bovine oocytes.

    PubMed

    Auclair, Sylvain; Uzbekov, Rustem; Elis, Sébastien; Sanchez, Laura; Kireev, Igor; Lardic, Lionel; Dalbies-Tran, Rozenn; Uzbekova, Svetlana

    2013-03-15

    Cumulus cells (CC) surround the oocyte and are coupled metabolically through regulation of nutrient intake. CC removal before in vitro maturation (IVM) decreases bovine oocyte developmental competence without affecting nuclear meiotic maturation. The objective was to investigate the influence of CC on oocyte cytoplasmic maturation in relation to energy metabolism. IVM with either cumulus-enclosed (CEO) or -denuded (DO) oocytes was performed in serum-free metabolically optimized medium. Transmission electron microscopy revealed different distribution of membrane-bound vesicles and lipid droplets between metaphase II DO and CEO. By Nile Red staining, a significant reduction in total lipid level was evidenced in DO. Global transcriptomic analysis revealed differential expression of genes regulating energy metabolism, transcription, and translation between CEO and DO. By Western blot, fatty acid synthase (FAS) and hormone-sensitive phospholipase (HSL) proteins were detected in oocytes and in CC, indicating a local lipogenesis and lypolysis. FAS protein was significantly less abundant in DO that in CEO and more highly expressed in CC than in the oocytes. On the contrary, HSL protein was more abundant in oocytes than in CC. In addition, active Ser⁵⁶³-phosphorylated HSL was detected in the oocytes only after IVM, and its level was similar in CEO and DO. In conclusion, absence of CC during IVM affected lipid metabolism in the oocyte and led to suboptimal cytoplasmic maturation. Thus, CC may influence the oocyte by orienting the consumption of nutritive storage via regulation of local fatty acid synthesis and lipolysis to provide energy for maturation. PMID:23321473

  19. Oxidative stress parameters and their correlation with clinical, metabolic and polysomnographic parameters in severe obstructive sleep apnea syndrome

    PubMed Central

    Asker, Selvi; Asker, Muntecep; Sarikaya, Eren; Sunnetcioglu, Aysel; Aslan, Mehmet; Demir, Halit

    2015-01-01

    The aim of the present study was to assess the levels of oxidative stress markers, catalase (CAT), glutathione peroxidase (GPX) and malondialdehyde (MDA) in severe OSAS and to investigate any correlation between oxidative stress markers and clinical, metabolic and polysomnographic parameters. A total of 30 patients with severe OSAS and 30 healthy controls were included in this cross-sectional, clinical study. Demographic data, polysomnographic, biochemical and clinical indices as well as serum levels of CAT, MDA and GPX were measured and compared in OSAS and control groups. Furthermore, OSAS patients with and without pulmonary hypertension (PHT) were evaluated in terms of levels of CAT, MDA and GPX. Patients with severe OSAS exhibited significantly lower serum levels of CAT (P<0.001) and GPX (P<0.001). Serum MDA levels were remarkably higher in OSAS group (P<0.001). Correlation analysis revealed that levels of CAT and GPX were correlated with apnea-hypopnea index and there was a correlation between serum levels of MDA and CRP. Severe OSAS patients with and without PHT did not reveal any differences for CAT (P=0.789), MDA (P=0.805) and GPX levels (P=0.281). Our results have shown that oxidative stress markers significantly changed in patients with severe OSAS. This information is noteworthy because documentation of the role of oxidative stress in OSAS may have important implications regarding diagnosis, monitoring, treatment and prognosis. PMID:26379962

  20. C282Y-HFE Gene Variant Affects Cholesterol Metabolism in Human Neuroblastoma Cells

    PubMed Central

    Ali-Rahmani, Fatima; Huang, Michael A.; Schengrund, C.-L.; Connor, James R.; Lee, Sang Y.

    2014-01-01

    Although disruptions in the maintenance of iron and cholesterol metabolism have been implicated in several cancers, the association between variants in the HFE gene that is associated with cellular iron uptake and cholesterol metabolism has not been studied. The C282Y-HFE variant is a risk factor for different cancers, is known to affect sphingolipid metabolism, and to result in increased cellular iron uptake. The effect of this variant on cholesterol metabolism and its possible relevance to cancer phenotype was investigated using wild type (WT) and C282Y-HFE transfected human neuroblastoma SH-SY5Y cells. Expression of C282Y-HFE in SH-SY5Y cells resulted in a significant increase in total cholesterol as well as increased transcription of a number of genes involved in its metabolism compared to cells expressing WT-HFE. The marked increase in expression of NPC1L1 relative to that of most other genes, was accompanied by a significant increase in expression of NPC1, a protein that functions in cholesterol uptake by cells. Because inhibitors of cholesterol metabolism have been proposed to be beneficial for treating certain cancers, their effect on the viability of C282Y-HFE neuroblastoma cells was ascertained. C282Y-HFE cells were significantly more sensitive than WT-HFE cells to U18666A, an inhibitor of desmosterol Δ24-reductase the enzyme catalyzing the last step in cholesterol biosynthesis. This was not seen for simvastatin, ezetimibe, or a sphingosine kinase inhibitor. These studies indicate that cancers presenting in carriers of the C282Y-HFE allele might be responsive to treatment designed to selectively reduce cholesterol content in their tumor cells. PMID:24533143

  1. Circulating Fatty Acid Synthase in pregnant women: Relationship to blood pressure, maternal metabolism and newborn parameters

    PubMed Central

    Carreras-Badosa, Gemma; Prats-Puig, Anna; Puig, Teresa; Vázquez-Ruíz, Montserrat; Bruel, Monserrat; Mendoza, Ericka; de Zegher, Francis; Ibáñez, Lourdes; López-Bermejo, Abel; Bassols, Judit

    2016-01-01

    The enzyme FASN (fatty acid synthase) is potentially related with hypertension and metabolic dysfunction. FASN is highly expressed in the human placenta. We aimed to investigate the relationship circulating FASN has with blood pressure, maternal metabolism and newborn parameters in healthy pregnant women. Circulating FASN was assessed in 115 asymptomatic pregnant women in the second trimester of gestation along with C-peptide, fasting glucose and insulin, post-load glucose lipids, HMW-adiponectin and blood pressure (the latter was assessed in each trimester of gestation). At birth, newborns and placentas were weighed. FASN expression was also able to be assessed in 80 placentas. Higher circulating FASN was associated with lower systolic blood pressure (SBP), with a more favourable metabolic phenotype (lower fasting glucose and insulin, post load glucose, HbAc1, HOMA-IR and C-peptide), and with lower placental and birth weight (all p < 0.05 to p < 0.001). Placental FASN expression related positively to circulating FASN (p < 0.005) and negatively to placental weight (p < 0.05). Our observations suggest a physiological role of placental FASN in human pregnancy. Future studies will clarify whether circulating FASN of placental origin does actually regulate placental and fetal growth, and (thereby) has a favourable influence on the pregnant mother’s insulin sensitivity and blood pressure. PMID:27090298

  2. Metabolic parameters and blood leukocyte profiles in cows from herds with high or low mastitis incidence.

    PubMed

    Holtenius, K; Persson Waller, K; Essén-Gustavsson, B; Holtenius, P; Hallén Sandgren, C

    2004-07-01

    The objective of this study was to determine whether there were differences in metabolic parameters and blood leukocyte profiles between cows in herds with high or low yearly mastitis incidence. In this study, 271 cows from 20 high yielding dairy herds were examined. According to the selection criteria, all herds had low somatic cell counts. Ten of the selected herds represented low mastitis treatment incidence (LMI) and ten herds had high mastitis treatment incidence (HMI). The farms were visited once and blood samples were taken from each cow that was in the interval from three weeks before to 15 weeks after parturition. The eosinophil count was significantly lower among cows from the HMI herds in the period from four weeks to 15 weeks after parturition. The plasma concentrations of beta-hydroxybutyrate, glucose, insulin and urea did not differ between groups, but the concentration of nonesterified fatty acids was significantly higher among HMI cows during the period three weeks after parturition. The concentration of the amino acid tryptophan in plasma was significantly lower among the HMI cows prior to parturition. Glutamine was significantly lower in cows from HMI herds during the first three weeks after parturition. Arginine was consistently lower in HMI cows, although the decrease was only significant during the period from four to fifteen weeks after parturition. The results suggest that there were differences in the metabolism and immune status between herds with high or low yearly mastitis treatment incidence indicating an increased metabolic stress in HMI cows.

  3. A real-time measurement system for parameters of live biology metabolism process with fiber optics

    NASA Astrophysics Data System (ADS)

    Tao, Wei; Zhao, Hui; Liu, Zemin; Cheng, Jinke; Cai, Rong

    2010-08-01

    Energy metabolism is one of the basic life activities of cellular in which lactate, O2 and CO2 will be released into the extracellular environment. By monitoring the quantity of these parameters, the mitochondrial performance will be got. A continuous measurement system for the concentration of O2, CO2 and PH value is introduced in this paper. The system is made up of several small-sized fiber optics biosensors corresponding to the container. The setup of the system and the principle of measurement of several parameters are explained. The setup of the fiber PH sensor based on principle of light absorption is also introduced in detail and some experimental results are given. From the results we can see that the system can measure the PH value precisely suitable for cell cultivation. The linear and repeatable accuracies are 3.6% and 6.7% respectively, which can fulfill the measurement task.

  4. Cell differentiation within a yeast colony: metabolic and regulatory parallels with a tumor-affected organism.

    PubMed

    Cáp, Michal; Stěpánek, Luděk; Harant, Karel; Váchová, Libuše; Palková, Zdena

    2012-05-25

    Nutrient sensing and metabolic reprogramming are crucial for metazoan cell aging and tumor growth. Here, we identify metabolic and regulatory parallels between a layered, multicellular yeast colony and a tumor-affected organism. During development, a yeast colony stratifies into U and L cells occupying the upper and lower colony regions, respectively. U cells activate a unique metabolism controlled by the glutamine-induced TOR pathway, amino acid-sensing systems (SPS and Gcn4p) and signaling from mitochondria with lowered respiration. These systems jointly modulate U cell physiology, which adapts to nutrient limitations and utilize the nutrients released from L cells. Stress-resistant U cells share metabolic pathways and other similar characteristics with tumor cells, including the ability to proliferate. L cells behave similarly to stressed and starving cells, which activate degradative mechanisms to provide nutrients to U cells. Our data suggest a nutrient flow between both cell types, resembling the Cori cycle and glutamine-NH(4)(+) shuttle between tumor and healthy metazoan cells.

  5. Ceramide metabolism is affected by obesity and diabetes in human adipose tissue.

    PubMed

    Błachnio-Zabielska, A U; Pułka, M; Baranowski, M; Nikołajuk, A; Zabielski, P; Górska, M; Górski, J

    2012-02-01

    Ceramide is involved in development of insulin resistance. However, there are no data on ceramide metabolism in human adipose tissue. The aim of our study was to examine sphingolipid metabolism in fat tissue from obese nondiabetic (n = 11), obese diabetic (n = 11), and lean nondiabetic (n = 8) subjects. The content of ceramide (Cer), dihydroceramide (dhCer), sphingosine (SPH), sphinganine (SPA), sphingosine-1-phosphate (S1P; pmol/mg of protein), the expression (mRNA) and activity of key enzymes responsible for Cer metabolism: serine palmitoyltransferase (SPT), neutral and acidic sphingomyelinase (nSMase and aSMase, respectively), and neutral and acidic ceramidase (nCDase and aCDase, respectively) were examined in human adipose tissue. The contents of SPA and Cer were significantly lower whereas the content of dhCer was higher in both obese groups than the respective values in the lean subjects. The expression of examined enzymes was elevated in both obese groups. The SPT and CDases activity increased whereas aSMase activity deceased in both obese groups. We have found correlation between adipose tissue Cer content and plasma adiponectin concentration (r = 0.69, P < 0.001) and negative correlation between total Cer content and HOMA-IR index (homeostasis model of insulin resistance) (r = -0.67, P < 0.001). We have found that both obesity and diabetes affected pathways of sphingolipid metabolism in the adipose tissue.

  6. Indices of Central and Peripheral Obesity; Anthropometric Measurements and Laboratory Parameters of Metabolic Syndrome and Thyroid Function

    PubMed Central

    Aras, Şükrü; Üstünsoy, Seyfettin; Armutçu, Ferah

    2015-01-01

    Background: Metabolic syndrome (MetS) and obesity are serious health problems in the World, including Turkey. Contemporary studies have suggested a meaningful association between insulin resistance (IR), MetS parameters, and thyroid function tests. Aims: We aimed to elucidate the impact of fat distribution on the anthropometric and laboratory parameters, especially indices of MetS, IR and thyroid function, in obese women. Study Design: Cross-sectional study. Methods: Anthropometric measurements of all participants and biochemical tests in their serum samples were performed. Results: Weight, waist circumference (WC), body mass index (BMI), and other parameters of fat distribution were significantly increased in all obese compared to control subjects; but there was no significant difference between central and peripheral obese groups. The central obese group had significantly higher insulin levels, components of MetS, the ratio free triiodothyronine (fT3) to free thyroxin fT4, and fT4 than those of peripheral obese and control groups. Conclusion: Elevated triglyceride, glucose and insulin levels may be associated with increased IR, which in turn is related to MetS. Body fat composition may affect thyroid tests in the obese; the changes in fT3/fT4 could be the consequence of fat distribution. PMID:26740903

  7. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat.

    PubMed

    Palmnäs, Marie S A; Cowan, Theresa E; Bomhof, Marc R; Su, Juliet; Reimer, Raylene A; Vogel, Hans J; Hittel, Dustin S; Shearer, Jane

    2014-01-01

    Aspartame consumption is implicated in the development of obesity and metabolic disease despite the intention of limiting caloric intake. The mechanisms responsible for this association remain unclear, but may involve circulating metabolites and the gut microbiota. Aims were to examine the impact of chronic low-dose aspartame consumption on anthropometric, metabolic and microbial parameters in a diet-induced obese model. Male Sprague-Dawley rats were randomized into a standard chow diet (CH, 12% kcal fat) or high fat (HF, 60% kcal fat) and further into ad libitum water control (W) or low-dose aspartame (A, 5-7 mg/kg/d in drinking water) treatments for 8 week (n = 10-12 animals/treatment). Animals on aspartame consumed fewer calories, gained less weight and had a more favorable body composition when challenged with HF compared to animals consuming water. Despite this, aspartame elevated fasting glucose levels and an insulin tolerance test showed aspartame to impair insulin-stimulated glucose disposal in both CH and HF, independently of body composition. Fecal analysis of gut bacterial composition showed aspartame to increase total bacteria, the abundance of Enterobacteriaceae and Clostridium leptum. An interaction between HF and aspartame was also observed for Roseburia ssp wherein HF-A was higher than HF-W (P<0.05). Within HF, aspartame attenuated the typical HF-induced increase in the Firmicutes:Bacteroidetes ratio. Serum metabolomics analysis revealed aspartame to be rapidly metabolized and to be associated with elevations in the short chain fatty acid propionate, a bacterial end product and highly gluconeogenic substrate, potentially explaining its negative affects on insulin tolerance. How aspartame influences gut microbial composition and the implications of these changes on the development of metabolic disease require further investigation. PMID:25313461

  8. Low-Dose Aspartame Consumption Differentially Affects Gut Microbiota-Host Metabolic Interactions in the Diet-Induced Obese Rat

    PubMed Central

    Palmnäs, Marie S. A.; Cowan, Theresa E.; Bomhof, Marc R.; Su, Juliet; Reimer, Raylene A.; Vogel, Hans J.; Hittel, Dustin S.; Shearer, Jane

    2014-01-01

    Aspartame consumption is implicated in the development of obesity and metabolic disease despite the intention of limiting caloric intake. The mechanisms responsible for this association remain unclear, but may involve circulating metabolites and the gut microbiota. Aims were to examine the impact of chronic low-dose aspartame consumption on anthropometric, metabolic and microbial parameters in a diet-induced obese model. Male Sprague-Dawley rats were randomized into a standard chow diet (CH, 12% kcal fat) or high fat (HF, 60% kcal fat) and further into ad libitum water control (W) or low-dose aspartame (A, 5–7 mg/kg/d in drinking water) treatments for 8 week (n = 10–12 animals/treatment). Animals on aspartame consumed fewer calories, gained less weight and had a more favorable body composition when challenged with HF compared to animals consuming water. Despite this, aspartame elevated fasting glucose levels and an insulin tolerance test showed aspartame to impair insulin-stimulated glucose disposal in both CH and HF, independently of body composition. Fecal analysis of gut bacterial composition showed aspartame to increase total bacteria, the abundance of Enterobacteriaceae and Clostridium leptum. An interaction between HF and aspartame was also observed for Roseburia ssp wherein HF-A was higher than HF-W (P<0.05). Within HF, aspartame attenuated the typical HF-induced increase in the Firmicutes:Bacteroidetes ratio. Serum metabolomics analysis revealed aspartame to be rapidly metabolized and to be associated with elevations in the short chain fatty acid propionate, a bacterial end product and highly gluconeogenic substrate, potentially explaining its negative affects on insulin tolerance. How aspartame influences gut microbial composition and the implications of these changes on the development of metabolic disease require further investigation. PMID:25313461

  9. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat.

    PubMed

    Palmnäs, Marie S A; Cowan, Theresa E; Bomhof, Marc R; Su, Juliet; Reimer, Raylene A; Vogel, Hans J; Hittel, Dustin S; Shearer, Jane

    2014-01-01

    Aspartame consumption is implicated in the development of obesity and metabolic disease despite the intention of limiting caloric intake. The mechanisms responsible for this association remain unclear, but may involve circulating metabolites and the gut microbiota. Aims were to examine the impact of chronic low-dose aspartame consumption on anthropometric, metabolic and microbial parameters in a diet-induced obese model. Male Sprague-Dawley rats were randomized into a standard chow diet (CH, 12% kcal fat) or high fat (HF, 60% kcal fat) and further into ad libitum water control (W) or low-dose aspartame (A, 5-7 mg/kg/d in drinking water) treatments for 8 week (n = 10-12 animals/treatment). Animals on aspartame consumed fewer calories, gained less weight and had a more favorable body composition when challenged with HF compared to animals consuming water. Despite this, aspartame elevated fasting glucose levels and an insulin tolerance test showed aspartame to impair insulin-stimulated glucose disposal in both CH and HF, independently of body composition. Fecal analysis of gut bacterial composition showed aspartame to increase total bacteria, the abundance of Enterobacteriaceae and Clostridium leptum. An interaction between HF and aspartame was also observed for Roseburia ssp wherein HF-A was higher than HF-W (P<0.05). Within HF, aspartame attenuated the typical HF-induced increase in the Firmicutes:Bacteroidetes ratio. Serum metabolomics analysis revealed aspartame to be rapidly metabolized and to be associated with elevations in the short chain fatty acid propionate, a bacterial end product and highly gluconeogenic substrate, potentially explaining its negative affects on insulin tolerance. How aspartame influences gut microbial composition and the implications of these changes on the development of metabolic disease require further investigation.

  10. Evidence that high pCO2 affects protein metabolism in tropical reef corals.

    PubMed

    Edmunds, Peter J; Wall, Christopher B

    2014-08-01

    Early life stages of the coral Seriatopora caliendrum were used to test the hypothesis that the depression of dark respiration in coral recruits by high pCO2 is caused by perturbed protein metabolism. First, the contribution of protein anabolism to respiratory costs under high pCO2 was evaluated by measuring the aerobic respiration of S. caliendrum recruits with and without the protein synthesis inhibitor emetine following 1 to 4 days at 45 Pa versus 77 Pa pCO2. Second, protein catabolism under high pCO2 was evaluated by measuring the flux of ammonium (NH4 (+)) from juvenile colonies of S. caliendrum incubated in darkness at 47 Pa and 90 Pa pCO2. Two days after settlement, respiration of recruits was affected by an interaction between emetine and pCO2, with emetine reducing respiration 63% at 45 Pa pCO2 and 27% at 77 Pa pCO2. The interaction disappeared 5 days after settlement, when respiration was reduced 27% by emetine under both pCO2 conditions. These findings suggest that protein anabolism accounted for a large proportion of metabolic costs in coral recruits and was affected by high pCO2, with consequences detected in aerobic respiration. Juvenile S. caliendrum showed net uptake of NH4 (+) at 45 Pa pCO2 but net release of NH4 (+) at 90 Pa pCO2, indicating that protein catabolism, NH4 (+) recycling, or both were affected by high pCO2. Together, these results are consistent with the hypothesis that high pCO2 affects protein metabolism in corals.

  11. Herbicide clomazone effects on δ-aminolevulinic acid activity and metabolic parameters in Cyprinus carpio.

    PubMed

    Menezes, Charlene; Leitemperger, Jossiele; Murussi, Camila; Toni, Cândida; Araújo, Maria do Carmo Santos; Farias, Iria Luiza; Perazzo, Giselle Xavier; Barbosa, Nilda Vargas; Loro, Vania Lucia

    2014-04-01

    The objective of this study was to investigate δ-aminolevulinic acid (δ-ALA-D) activity and metabolic parameters of Cyprinus carpio exposed to clomazone herbicide. Fish were exposed 2.5, 5, 10 and 20 mg L(-1) of clomazone for 192 h. Results indicated that δ-ALA-D activity was decreased in the gills at concentrations of 5 and 10 mg L(-1). Liver glycogen increased, while muscle and gill glycogen levels decreased at 5, 10 and 20 mg L(-1). Glucose was increased in the gills and plasma. Lactate decreased in the gills and liver and increased in the muscle. Protein and amino acids levels increased in the liver and gills and decreased in the muscle. At a clomazone concentration of 20 mg L(-1), ammonia increased in the gills and muscle and decreased in the liver. The results indicated that the metabolic parameters of glycogen, lactate, protein and amino acids in liver, muscle and gills, blood glucose levels, and the enzyme δ-ALA-D in gills may be useful indicators of clomazone toxicity in carp.

  12. Effects of Forest Bathing on Cardiovascular and Metabolic Parameters in Middle-Aged Males.

    PubMed

    Li, Qing; Kobayashi, Maiko; Kumeda, Shigeyoshi; Ochiai, Toshiya; Miura, Takashi; Kagawa, Takahide; Imai, Michiko; Wang, Zhiyu; Otsuka, Toshiaki; Kawada, Tomoyuki

    2016-01-01

    In the present study, we investigated the effects of a forest bathing on cardiovascular and metabolic parameters. Nineteen middle-aged male subjects were selected after they provided informed consent. These subjects took day trips to a forest park in Agematsu, Nagano Prefecture, and to an urban area of Nagano Prefecture as control in August 2015. On both trips, they walked 2.6 km for 80 min each in the morning and afternoon on Saturdays. Blood and urine were sampled before and after each trip. Cardiovascular and metabolic parameters were measured. Blood pressure and pulse rate were measured during the trips. The Japanese version of the profile of mood states (POMS) test was conducted before, during, and after the trips. Ambient temperature and humidity were monitored during the trips. The forest bathing program significantly reduced pulse rate and significantly increased the score for vigor and decreased the scores for depression, fatigue, anxiety, and confusion. Urinary adrenaline after forest bathing showed a tendency toward decrease. Urinary dopamine after forest bathing was significantly lower than that after urban area walking, suggesting the relaxing effect of the forest bathing. Serum adiponectin after the forest bathing was significantly greater than that after urban area walking. PMID:27493670

  13. Effects of Forest Bathing on Cardiovascular and Metabolic Parameters in Middle-Aged Males

    PubMed Central

    Kobayashi, Maiko; Kumeda, Shigeyoshi; Ochiai, Toshiya; Miura, Takashi; Imai, Michiko; Wang, Zhiyu; Otsuka, Toshiaki; Kawada, Tomoyuki

    2016-01-01

    In the present study, we investigated the effects of a forest bathing on cardiovascular and metabolic parameters. Nineteen middle-aged male subjects were selected after they provided informed consent. These subjects took day trips to a forest park in Agematsu, Nagano Prefecture, and to an urban area of Nagano Prefecture as control in August 2015. On both trips, they walked 2.6 km for 80 min each in the morning and afternoon on Saturdays. Blood and urine were sampled before and after each trip. Cardiovascular and metabolic parameters were measured. Blood pressure and pulse rate were measured during the trips. The Japanese version of the profile of mood states (POMS) test was conducted before, during, and after the trips. Ambient temperature and humidity were monitored during the trips. The forest bathing program significantly reduced pulse rate and significantly increased the score for vigor and decreased the scores for depression, fatigue, anxiety, and confusion. Urinary adrenaline after forest bathing showed a tendency toward decrease. Urinary dopamine after forest bathing was significantly lower than that after urban area walking, suggesting the relaxing effect of the forest bathing. Serum adiponectin after the forest bathing was significantly greater than that after urban area walking. PMID:27493670

  14. Stickleback fights: why do winners win? Influence of metabolic and morphometric parameters.

    PubMed

    Guderley, Helga; Couture, Patrice

    2005-01-01

    Pairs of reproductively mature male three-spined stickleback (Gasterosteus aculeatus) were introduced into unfamiliar aquaria and observed until one male became dominant. Skin carotenoid content, morphometric indexes, and metabolic capacities of the axial and pectoral muscles were examined to establish whether morphological or physiological parameters differentiated winners and losers. Stickleback that initiated fights typically won. Quick initiation led to quick victory. Overall, winners and losers differed in few morphological or metabolic characteristics, but these properties and the differences between these attributes for losers and winners of specific fights were linked with initiation time and fight duration. Morphometric indexes of losers were the primary determinants of initiation time and fight duration, whereas for winners muscle metabolic capacities were linked to these fight characteristics. The greater the hepatosomatic index (HSI) of losers, the longer the fight initiation times. Similarly, losers with high HSI and carotenoid levels resisted defeat longer. In winners, initiation time decreased as axial muscle phosphofructokinase levels increased and citrate synthase levels decreased, whereas the metabolic capacities of the pectoral muscle were linked with time to achieve victory. When losers had greater HSI values than the winners of a specific fight, fight initiation was delayed and fights lasted longer. When losers had higher carotenoid levels than winners, fights also lasted longer. On the other hand, when losers had more visceral fat (fat body mass over somatic mass) than winners, both initiation time and combat duration were reduced. These results suggest that male stickleback assess their physiological status and that of their opponents, in particular the HSI, and adjust their combat strategies accordingly. PMID:15778937

  15. Gestational diabetes mellitus epigenetically affects genes predominantly involved in metabolic diseases

    PubMed Central

    Ruchat, Stephanie-May; Houde, Andrée-Anne; Voisin, Grégory; St-Pierre, Julie; Perron, Patrice; Baillargeon, Jean-Patrice; Gaudet, Daniel; Hivert, Marie-France; Brisson, Diane; Bouchard, Luigi

    2013-01-01

    Offspring exposed to gestational diabetes mellitus (GDM) have an increased risk for chronic diseases, and one promising mechanism for fetal metabolic programming is epigenetics. Therefore, we postulated that GDM exposure impacts the offspring’s methylome and used an epigenomic approach to explore this hypothesis. Placenta and cord blood samples were obtained from 44 newborns, including 30 exposed to GDM. Women were recruited at first trimester of pregnancy and followed until delivery. GDM was assessed after a 75-g oral glucose tolerance test at 24–28 weeks of pregnancy. DNA methylation was measured at > 485,000 CpG sites (Infinium HumanMethylation450 BeadChips). Ingenuity Pathway Analysis was conducted to identify metabolic pathways epigenetically affected by GDM. Our results showed that 3,271 and 3,758 genes in placenta and cord blood, respectively, were potentially differentially methylated between samples exposed or not to GDM (p-values down to 1 × 10−06; none reached the genome-wide significance levels), with more than 25% (n = 1,029) being common to both tissues. Mean DNA methylation differences between groups were 5.7 ± 3.2% and 3.4 ± 1.9% for placenta and cord blood, respectively. These genes were likely involved in the metabolic diseases pathway (up to 115 genes (11%), p-values for pathways = 1.9 × 10−13 < p < 4.0 × 10−03; including diabetes mellitus p = 4.3 × 10−11). Among the differentially methylated genes, 326 in placenta and 117 in cord blood were also associated with newborn weight. Our results therefore suggest that GDM has epigenetic effects on genes preferentially involved in the metabolic diseases pathway, with consequences on fetal growth and development, and provide supportive evidence that DNA methylation is involved in fetal metabolic programming. PMID:23975224

  16. Green Tea minimally affects Biomarkers of Inflammation in Obese Subjects with Metabolic Syndrome

    PubMed Central

    Basu, Arpita; Du, Mei; Sanchez, Karah; Leyva, Misti J.; Betts, Nancy M.; Blevins, Steve; Wu, Mingyuan; Aston, Christopher E.; Lyons, Timothy J.

    2010-01-01

    Objective Green tea (Camellia sinensis) has shown to exert cardio-protective benefits in observational studies. The objective of this clinical trial was to assess the effects of green tea on features of metabolic syndrome and inflammation in obese subjects. Methods We conducted a randomized controlled trial in obese subjects with metabolic syndrome. Thirty-five subjects [age (mean±SE) 42.5±1.7 years, BMI 36.1±1.3 kg/m2] completed the 8-week study and were randomly assigned to receive green tea (4 cups/day), green tea extract (2 capsules and 4 cups water/day), or no treatment (4 cups water/day). Both the beverage and extract groups had similar dosing of epigallocatechin-3-gallate (EGCG), the active green tea polyphenol. Fasting blood samples were collected at screening, four, and eight weeks of the study. Results Green tea beverage or extract supplementation did not significantly alter features of metabolic syndrome or biomarkers of inflammation including adiponectin, C-reactive protein (CRP), interleukin-6 (IL-6), interleukin-1β (IL-1β), soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble intercellular adhesion molecule-1 (sICAM-1), leptin, or leptin:adiponectin ratio. However, both green tea beverage and extracts significantly reduced plasma serum amyloid alpha (SAA) versus no treatment (p<0.005). Conclusion This study suggests that the daily consumption of green tea beverage or extracts for 8 weeks was well tolerated but did not affect the features of metabolic syndrome. However, green tea significantly reduced plasma SAA, an independent CVD risk factor, in obese subjects with metabolic syndrome. PMID:20605696

  17. Preliminary validation of assays to measure parameters of calcium metabolism in captive Asian and African elephants in western Europe.

    PubMed

    van Sonsbeek, Gerda R; van der Kolk, Johannes H; van Leeuwen, Johannes P T M; Schaftenaar, Willem

    2011-05-01

    Hypocalcemia is a well known cause of dystocia in animals, including elephants in captivity. In order to study calcium metabolism in elephants, it is of utmost importance to use properly validated assays, as these might be prone to specific matrix effects in elephant blood. The aim of the current study was to conduct preliminary work for validation of various parameters involved in calcium metabolism in both blood and urine of captive elephants. Basal values of these parameters were compared between Asian elephants (Elephas maximus) and African elephants (Loxodonta africana). Preliminary testing of total calcium, inorganic phosphorus, and creatinine appeared valid for use in plasma and creatinine in urine in both species. Furthermore, measurements of bone alkaline phosphatase and N-terminal telopeptide of type I collagen appeared valid for use in Asian elephants. Mean heparinized plasma ionized calcium concentration and pH were not significantly affected by 3 cycles of freezing and thawing. Storage at 4 °C, room temperature, and 37 °C for 6, 12, and 24 hr did not alter the heparinized plasma ionized calcium concentration in Asian elephants. The following linear regression equation using pH (range: 6.858-7.887) and ionized calcium concentration in heparinized plasma was utilized: iCa(7.4) (mmol/l) = -2.1075 + 0.3130·pH(actual) + 0.8296·iCa(actual) (mmol/l). Mean basal values for pH and plasma in Asian elephant whole blood were 7.40 ± 0.048 and 7.49 ± 0.077, respectively. The urinary specific gravity and creatinine concentrations in both Asian and African elephants were significantly correlated and both were significantly lower in Asian elephants.

  18. Maple Bark Biochar Affects Rhizoctonia solani Metabolism and Increases Damping-Off Severity.

    PubMed

    Copley, Tanya R; Aliferis, Konstantinos A; Jabaji, Suha

    2015-10-01

    Many studies have investigated the effect of biochar on plant yield, nutrient uptake, and soil microbial populations; however, little work has been done on its effect on soilborne plant diseases. To determine the effect of maple bark biochar on Rhizoctonia damping-off, 11 plant species were grown in a soilless potting substrate amended with different concentrations of biochar and inoculated or not with Rhizoctonia solani anastomosis group 4. Additionally, the effect of biochar amendment on R. solani growth and metabolism in vitro was evaluated. Increasing concentrations of maple bark biochar increased Rhizoctonia damping-off of all 11 plant species. Using multivariate analyses, we observed positive correlations between biochar amendments, disease severity and incidence, abundance of culturable bacterial communities, and physicochemical parameters. Additionally, biochar amendment significantly increased R. solani growth and hyphal extension in vitro, and altered its primary metabolism, notably the mannitol and tricarboxylic acid cycles and the glycolysis pathway. One or several organic compounds present in the biochar, as identified by gas chromatography-mass spectrometry analysis, may be metabolized by R. solani. Taken together, these results indicate that future studies on biochar should focus on the effect of its use as an amendment on soilborne plant pathogens before applying it to soils. PMID:25938176

  19. Maple Bark Biochar Affects Rhizoctonia solani Metabolism and Increases Damping-Off Severity.

    PubMed

    Copley, Tanya R; Aliferis, Konstantinos A; Jabaji, Suha

    2015-10-01

    Many studies have investigated the effect of biochar on plant yield, nutrient uptake, and soil microbial populations; however, little work has been done on its effect on soilborne plant diseases. To determine the effect of maple bark biochar on Rhizoctonia damping-off, 11 plant species were grown in a soilless potting substrate amended with different concentrations of biochar and inoculated or not with Rhizoctonia solani anastomosis group 4. Additionally, the effect of biochar amendment on R. solani growth and metabolism in vitro was evaluated. Increasing concentrations of maple bark biochar increased Rhizoctonia damping-off of all 11 plant species. Using multivariate analyses, we observed positive correlations between biochar amendments, disease severity and incidence, abundance of culturable bacterial communities, and physicochemical parameters. Additionally, biochar amendment significantly increased R. solani growth and hyphal extension in vitro, and altered its primary metabolism, notably the mannitol and tricarboxylic acid cycles and the glycolysis pathway. One or several organic compounds present in the biochar, as identified by gas chromatography-mass spectrometry analysis, may be metabolized by R. solani. Taken together, these results indicate that future studies on biochar should focus on the effect of its use as an amendment on soilborne plant pathogens before applying it to soils.

  20. L-Carnosine Affects the Growth of Saccharomyces cerevisiae in a Metabolism-Dependent Manner

    PubMed Central

    Cartwright, Stephanie P.; Bill, Roslyn M.; Hipkiss, Alan R.

    2012-01-01

    The dipeptide L-carnosine (β-alanyl-L-histidine) has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose), 10–30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol), L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types. PMID:22984600

  1. The fungicide triadimefon affects beer flavor and composition by influencing Saccharomyces cerevisiae metabolism.

    PubMed

    Kong, Zhiqiang; Li, Minmin; An, Jingjing; Chen, Jieying; Bao, Yuming; Francis, Frédéric; Dai, Xiaofeng

    2016-01-01

    Despite the fact that beer is produced on a large scale, the effects of pesticide residues on beer have been rarely investigated. In this study, we used micro-brewing settings to determine the effect of triadimefon on the growth of Saccharomyces cerevisiae and beer flavor. The yeast growth in medium was significantly inhibited (45%) at concentrations higher than 5 mg L(-1), reaching 80% and 100% inhibition at 10 mg L(-1) and 50 mg L(-1), respectively. There were significant differences in sensory quality between beer samples fermented with and without triadimefon based on data obtained with an electronic tongue and nose. Such an effect was most likely underlain by changes in yeast fermentation activity, including decreased utilization of maltotriose and most amino acids, reduced production of isobutyl and isoamyl alcohols, and increased ethyl acetate content in the fungicide treated samples. Furthermore, yeast metabolic profiling by phenotype microarray and UPLC/TOF-MS showed that triadimefon caused significant changes in the metabolism of glutathione, phenylalanine and sphingolipids, and in sterol biosynthesis. Thus, triadimefon negatively affects beer sensory qualities by influencing the metabolic activity of S. cerevisiae during fermentation, emphasizing the necessity of stricter control over fungicide residues in brewing by the food industry. PMID:27629523

  2. Cannibalism Affects Core Metabolic Processes in Helicoverpa armigera Larvae—A 2D NMR Metabolomics Study

    PubMed Central

    Vergara, Fredd; Shino, Amiu; Kikuchi, Jun

    2016-01-01

    Cannibalism is known in many insect species, yet its impact on insect metabolism has not been investigated in detail. This study assessed the effects of cannibalism on the metabolism of fourth-instar larvae of the non-predatory insect Helicoverpa armigera (Lepidotera: Noctuidea). Two groups of larvae were analyzed: one group fed with fourth-instar larvae of H. armigera (cannibal), the other group fed with an artificial plant diet. Water-soluble small organic compounds present in the larvae were analyzed using two-dimensional nuclear magnetic resonance (NMR) and principal component analysis (PCA). Cannibalism negatively affected larval growth. PCA of NMR spectra showed that the metabolic profiles of cannibal and herbivore larvae were statistically different with monomeric sugars, fatty acid- and amino acid-related metabolites as the most variable compounds. Quantitation of 1H-13C HSQC (Heteronuclear Single Quantum Coherence) signals revealed that the concentrations of glucose, glucono-1,5-lactone, glycerol phosphate, glutamine, glycine, leucine, isoleucine, lysine, ornithine, proline, threonine and valine were higher in the herbivore larvae. PMID:27598144

  3. L-carnosine affects the growth of Saccharomyces cerevisiae in a metabolism-dependent manner.

    PubMed

    Cartwright, Stephanie P; Bill, Roslyn M; Hipkiss, Alan R

    2012-01-01

    The dipeptide L-carnosine (β-alanyl-L-histidine) has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose), 10-30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol), L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types.

  4. DEPTOR in POMC neurons affects liver metabolism but is dispensable for the regulation of energy balance

    PubMed Central

    Caron, Alexandre; Labbé, Sébastien M.; Mouchiroud, Mathilde; Huard, Renaud; Richard, Denis

    2016-01-01

    We have recently demonstrated that specific overexpression of DEP-domain containing mTOR-interacting protein (DEPTOR) in the mediobasal hypothalamus (MBH) protects mice against high-fat diet-induced obesity, revealing DEPTOR as a significant contributor to energy balance regulation. On the basis of evidence that DEPTOR is expressed in the proopiomelanocortin (POMC) neurons of the MBH, the present study aimed to investigate whether these neurons mediate the metabolic effects of DEPTOR. Here, we report that specific DEPTOR overexpression in POMC neurons does not recapitulate any of the phenotypes observed when the protein was overexpressed in the MBH. Unlike the previous model, mice overexpressing DEPTOR only in POMC neurons 1) did not show differences in feeding behavior, 2) did not exhibit changes in locomotion activity and oxygen consumption, 3) did not show an improvement in systemic glucose metabolism, and 4) were not resistant to high-fat diet-induced obesity. These results support the idea that other neuronal populations are responsible for these phenotypes. Nonetheless, we observed a mild elevation in fasting blood glucose, insulin resistance, and alterations in liver glucose and lipid homeostasis in mice overexpressing DEPTOR in POMC neurons. Taken together, these results show that DEPTOR overexpression in POMC neurons does not affect energy balance regulation but could modulate metabolism through a brain-liver connection. PMID:27097662

  5. Cannibalism Affects Core Metabolic Processes in Helicoverpa armigera Larvae-A 2D NMR Metabolomics Study.

    PubMed

    Vergara, Fredd; Shino, Amiu; Kikuchi, Jun

    2016-01-01

    Cannibalism is known in many insect species, yet its impact on insect metabolism has not been investigated in detail. This study assessed the effects of cannibalism on the metabolism of fourth-instar larvae of the non-predatory insect Helicoverpa armigera (Lepidotera: Noctuidea). Two groups of larvae were analyzed: one group fed with fourth-instar larvae of H. armigera (cannibal), the other group fed with an artificial plant diet. Water-soluble small organic compounds present in the larvae were analyzed using two-dimensional nuclear magnetic resonance (NMR) and principal component analysis (PCA). Cannibalism negatively affected larval growth. PCA of NMR spectra showed that the metabolic profiles of cannibal and herbivore larvae were statistically different with monomeric sugars, fatty acid- and amino acid-related metabolites as the most variable compounds. Quantitation of ¹H-(13)C HSQC (Heteronuclear Single Quantum Coherence) signals revealed that the concentrations of glucose, glucono-1,5-lactone, glycerol phosphate, glutamine, glycine, leucine, isoleucine, lysine, ornithine, proline, threonine and valine were higher in the herbivore larvae. PMID:27598144

  6. The fungicide triadimefon affects beer flavor and composition by influencing Saccharomyces cerevisiae metabolism

    PubMed Central

    Kong, Zhiqiang; Li, Minmin; An, Jingjing; Chen, Jieying; Bao, Yuming; Francis, Frédéric; Dai, Xiaofeng

    2016-01-01

    Despite the fact that beer is produced on a large scale, the effects of pesticide residues on beer have been rarely investigated. In this study, we used micro-brewing settings to determine the effect of triadimefon on the growth of Saccharomyces cerevisiae and beer flavor. The yeast growth in medium was significantly inhibited (45%) at concentrations higher than 5 mg L−1, reaching 80% and 100% inhibition at 10 mg L−1 and 50 mg L−1, respectively. There were significant differences in sensory quality between beer samples fermented with and without triadimefon based on data obtained with an electronic tongue and nose. Such an effect was most likely underlain by changes in yeast fermentation activity, including decreased utilization of maltotriose and most amino acids, reduced production of isobutyl and isoamyl alcohols, and increased ethyl acetate content in the fungicide treated samples. Furthermore, yeast metabolic profiling by phenotype microarray and UPLC/TOF-MS showed that triadimefon caused significant changes in the metabolism of glutathione, phenylalanine and sphingolipids, and in sterol biosynthesis. Thus, triadimefon negatively affects beer sensory qualities by influencing the metabolic activity of S. cerevisiae during fermentation, emphasizing the necessity of stricter control over fungicide residues in brewing by the food industry. PMID:27629523

  7. The fungicide triadimefon affects beer flavor and composition by influencing Saccharomyces cerevisiae metabolism.

    PubMed

    Kong, Zhiqiang; Li, Minmin; An, Jingjing; Chen, Jieying; Bao, Yuming; Francis, Frédéric; Dai, Xiaofeng

    2016-09-15

    Despite the fact that beer is produced on a large scale, the effects of pesticide residues on beer have been rarely investigated. In this study, we used micro-brewing settings to determine the effect of triadimefon on the growth of Saccharomyces cerevisiae and beer flavor. The yeast growth in medium was significantly inhibited (45%) at concentrations higher than 5 mg L(-1), reaching 80% and 100% inhibition at 10 mg L(-1) and 50 mg L(-1), respectively. There were significant differences in sensory quality between beer samples fermented with and without triadimefon based on data obtained with an electronic tongue and nose. Such an effect was most likely underlain by changes in yeast fermentation activity, including decreased utilization of maltotriose and most amino acids, reduced production of isobutyl and isoamyl alcohols, and increased ethyl acetate content in the fungicide treated samples. Furthermore, yeast metabolic profiling by phenotype microarray and UPLC/TOF-MS showed that triadimefon caused significant changes in the metabolism of glutathione, phenylalanine and sphingolipids, and in sterol biosynthesis. Thus, triadimefon negatively affects beer sensory qualities by influencing the metabolic activity of S. cerevisiae during fermentation, emphasizing the necessity of stricter control over fungicide residues in brewing by the food industry.

  8. Nectar resource limitation affects butterfly flight performance and metabolism differently in intensive and extensive agricultural landscapes.

    PubMed

    Lebeau, Julie; Wesselingh, Renate A; Van Dyck, Hans

    2016-05-11

    Flight is an essential biological ability of many insects, but is energetically costly. Environments under rapid human-induced change are characterized by habitat fragmentation and may impose constraints on the energy income budget of organisms. This may, in turn, affect locomotor performance and willingness to fly. We tested flight performance and metabolic rates in meadow brown butterflies (Maniola jurtina) of two contrasted agricultural landscapes: intensively managed, nectar-poor (IL) versus extensively managed, nectar-rich landscapes (EL). Young female adults were submitted to four nectar treatments (i.e. nectar quality and quantity) in outdoor flight cages. IL individuals had better flight capacities in a flight mill and had lower resting metabolic rates (RMR) than EL individuals, except under the severest treatment. Under this treatment, RMR increased in IL individuals, but decreased in EL individuals; flight performance was maintained by IL individuals, but dropped by a factor 2.5 in EL individuals. IL individuals had more canalized (i.e. less plastic) responses relative to the nectar treatments than EL individuals. Our results show significant intraspecific variation in the locomotor and metabolic response of a butterfly to different energy income regimes relative to the landscape of origin. Ecophysiological studies help to improve our mechanistic understanding of the eco-evolutionary impact of anthropogenic environments on rare and widespread species. PMID:27147100

  9. Nectar resource limitation affects butterfly flight performance and metabolism differently in intensive and extensive agricultural landscapes.

    PubMed

    Lebeau, Julie; Wesselingh, Renate A; Van Dyck, Hans

    2016-05-11

    Flight is an essential biological ability of many insects, but is energetically costly. Environments under rapid human-induced change are characterized by habitat fragmentation and may impose constraints on the energy income budget of organisms. This may, in turn, affect locomotor performance and willingness to fly. We tested flight performance and metabolic rates in meadow brown butterflies (Maniola jurtina) of two contrasted agricultural landscapes: intensively managed, nectar-poor (IL) versus extensively managed, nectar-rich landscapes (EL). Young female adults were submitted to four nectar treatments (i.e. nectar quality and quantity) in outdoor flight cages. IL individuals had better flight capacities in a flight mill and had lower resting metabolic rates (RMR) than EL individuals, except under the severest treatment. Under this treatment, RMR increased in IL individuals, but decreased in EL individuals; flight performance was maintained by IL individuals, but dropped by a factor 2.5 in EL individuals. IL individuals had more canalized (i.e. less plastic) responses relative to the nectar treatments than EL individuals. Our results show significant intraspecific variation in the locomotor and metabolic response of a butterfly to different energy income regimes relative to the landscape of origin. Ecophysiological studies help to improve our mechanistic understanding of the eco-evolutionary impact of anthropogenic environments on rare and widespread species.

  10. [Impact of lipid metabolism parameters on the development and progression of coronary artery disease : An update].

    PubMed

    Sinning, D; Leistner, D M; Landmesser, U

    2016-06-01

    Disorders of lipid metabolism play a major role in the development and progression of coronary artery disease. Dyslipidemia therefore plays a central role in therapeutic approaches for prevention and treatment of cardiovascular events associated with coronary artery disease. Epidemiological studies have shown an association between various lipid metabolism parameters, the risk of developing coronary artery disease and progression of a pre-existing disease. In particular, increased levels of low-density lipoprotein cholesterol (LDL-C), reduced levels of HDL cholesterol (HDL-C), as well as high levels of triglycerides and increased lipoprotein(a) [Lp(a)] levels can be taken into account when assessing the risk stratification of patients for primary prevention of coronary artery disease. Lifestyle and dietary changes, intensified statin therapy and possibly the addition of ezetimibe remain the major interventions in both primary and secondary prevention of coronary artery disease, as they improve the prognosis particularly by lowering levels of LDL-C. Recently, genetic studies have contributed to extending our understanding of the relationship between lipid metabolism and coronary artery disease. A causal role for progression of coronary artery disease could be demonstrated for LDL-C, Lpa and triglyceride-rich lipoproteins (TRL), which could not be demonstrated for HDL-C in various studies. Furthermore, the effect of reduction of LDL-C by proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition and by the cholesteryl ester transfer protein (CETP) inhibitor anacetrapib on cardiovascular events is currently being investigated in large clinical outcome study programs.

  11. The Thyroid Hormone Analog DITPA Ameliorates Metabolic Parameters of Male Mice With Mct8 Deficiency.

    PubMed

    Ferrara, Alfonso Massimiliano; Liao, Xiao-Hui; Ye, Honggang; Weiss, Roy E; Dumitrescu, Alexandra M; Refetoff, Samuel

    2015-11-01

    Mutations in the gene encoding the thyroid hormone (TH) transporter, monocarboxylate transporter 8 (MCT8), cause mental retardation in humans associated with a specific thyroid hormone phenotype manifesting high serum T3 and low T4 and rT3 levels. Moreover, these patients have failure to thrive, and physiological changes compatible with thyrotoxicosis. Recent studies in Mct8-deficient (Mct8KO) mice revealed that the high serum T3 causes increased energy expenditure. The TH analog, diiodothyropropionic acid (DITPA), enters cells independently of Mct8 transport and shows thyromimetic action but with a lower metabolic activity than TH. In this study DITPA was given daily ip to adult Mct8KO mice to determine its effect on thyroid tests in serum and metabolism (total energy expenditure, respiratory exchange rate, and food and water intake). In addition, we measured the expression of TH-responsive genes in the brain, liver, and muscles to assess the thyromimetic effects of DITPA. Administration of 0.3 mg DITPA per 100 g body weight to Mct8KO mice brought serum T3 levels and the metabolic parameters studied to levels observed in untreated Wt animals. Analysis of TH target genes revealed amelioration of the thyrotoxic state in liver, somewhat in the soleus, but there was no amelioration of the brain hypothyroidism. In conclusion, at the dose used, DITPA mainly ameliorated the hypermetabolism of Mct8KO mice. This thyroid hormone analog is suitable for the treatment of the hypermetabolism in patients with MCT8 deficiency, as suggested in limited preliminary human trials. PMID:26322373

  12. Oxygen Affects Gut Bacterial Colonization and Metabolic Activities in a Gnotobiotic Cockroach Model

    PubMed Central

    Tegtmeier, Dorothee; Thompson, Claire L.; Schauer, Christine

    2015-01-01

    The gut microbiota of termites and cockroaches represents complex metabolic networks of many diverse microbial populations. The distinct microenvironmental conditions within the gut and possible interactions among the microorganisms make it essential to investigate how far the metabolic properties of pure cultures reflect their activities in their natural environment. We established the cockroach Shelfordella lateralis as a gnotobiotic model and inoculated germfree nymphs with two bacterial strains isolated from the guts of conventional cockroaches. Fluorescence microscopy revealed that both strains specifically colonized the germfree hindgut. In diassociated cockroaches, the facultatively anaerobic strain EbSL (a new species of Enterobacteriaceae) always outnumbered the obligately anaerobic strain FuSL (a close relative of Fusobacterium varium), irrespective of the sequence of inoculation, which showed that precolonization by facultatively anaerobic bacteria does not necessarily favor colonization by obligate anaerobes. Comparison of the fermentation products of the cultures formed in vitro with those accumulated in situ indicated that the gut environment strongly affected the metabolic activities of both strains. The pure cultures formed the typical products of mixed-acid or butyrate fermentation, whereas the guts of gnotobiotic cockroaches accumulated mostly lactate and acetate. Similar shifts toward more-oxidized products were observed when the pure cultures were exposed to oxygen, which corroborated the strong effects of oxygen on the metabolic fluxes previously observed in termite guts. Oxygen microsensor profiles of the guts of germfree, gnotobiotic, and conventional cockroaches indicated that both gut tissue and microbiota contribute to oxygen consumption and suggest that the oxygen status influences the colonization success. PMID:26637604

  13. Dietary carbohydrate and lipid source affect cholesterol metabolism of European sea bass (Dicentrarchus labrax) juveniles.

    PubMed

    Castro, Carolina; Corraze, Geneviève; Pérez-Jiménez, Amalia; Larroquet, Laurence; Cluzeaud, Marianne; Panserat, Stéphane; Oliva-Teles, Aires

    2015-10-28

    Plant feedstuffs (PF) are rich in carbohydrates, which may interact with lipid metabolism. Thus, when considering dietary replacement of fishery by-products with PF, knowledge is needed on how dietary lipid source (LS) and carbohydrates affect lipid metabolism and other metabolic pathways. For that purpose, a 73-d growth trial was performed with European sea bass juveniles (IBW 74 g) fed four diets differing in LS (fish oil (FO) or a blend of vegetable oils (VO)) and carbohydrate content (0 % (CH-) or 20 % (CH+) gelatinised starch). At the end of the trial no differences among diets were observed on growth and feed utilisation. Protein efficiency ratio was, however, higher in the CH+ groups. Muscle and liver fatty acid profiles reflected the dietary LS. Dietary carbohydrate promoted higher plasma cholesterol and phospholipids (PL), whole-body and hepatic (mainly 16 : 0) lipids and increased muscular and hepatic glycogen. Except for PL, which were higher in the FO groups, no major alterations between FO and VO groups were observed on plasma metabolites (glucose, TAG, cholesterol, PL), liver and muscle glycogen, and lipid and cholesterol contents. Activities of glucose-6-phosphate dehydrogenase and malic enzyme - lipogenesis-related enzymes - increased with carbohydrate intake. Hepatic expression of genes involved in cholesterol metabolism was up-regulated with carbohydrate (HMGCR and CYP3A27) and VO (HMGCR and CYP51A1) intake. No dietary regulation of long-chain PUFA biosynthesis at the transcriptional level was observed. Overall, very few interactions between dietary carbohydrates and LS were observed. However, important insights on the direct relation between dietary carbohydrate and the cholesterol biosynthetic pathway in European sea bass were demonstrated.

  14. Dietary carbohydrate and lipid source affect cholesterol metabolism of European sea bass (Dicentrarchus labrax) juveniles.

    PubMed

    Castro, Carolina; Corraze, Geneviève; Pérez-Jiménez, Amalia; Larroquet, Laurence; Cluzeaud, Marianne; Panserat, Stéphane; Oliva-Teles, Aires

    2015-10-28

    Plant feedstuffs (PF) are rich in carbohydrates, which may interact with lipid metabolism. Thus, when considering dietary replacement of fishery by-products with PF, knowledge is needed on how dietary lipid source (LS) and carbohydrates affect lipid metabolism and other metabolic pathways. For that purpose, a 73-d growth trial was performed with European sea bass juveniles (IBW 74 g) fed four diets differing in LS (fish oil (FO) or a blend of vegetable oils (VO)) and carbohydrate content (0 % (CH-) or 20 % (CH+) gelatinised starch). At the end of the trial no differences among diets were observed on growth and feed utilisation. Protein efficiency ratio was, however, higher in the CH+ groups. Muscle and liver fatty acid profiles reflected the dietary LS. Dietary carbohydrate promoted higher plasma cholesterol and phospholipids (PL), whole-body and hepatic (mainly 16 : 0) lipids and increased muscular and hepatic glycogen. Except for PL, which were higher in the FO groups, no major alterations between FO and VO groups were observed on plasma metabolites (glucose, TAG, cholesterol, PL), liver and muscle glycogen, and lipid and cholesterol contents. Activities of glucose-6-phosphate dehydrogenase and malic enzyme - lipogenesis-related enzymes - increased with carbohydrate intake. Hepatic expression of genes involved in cholesterol metabolism was up-regulated with carbohydrate (HMGCR and CYP3A27) and VO (HMGCR and CYP51A1) intake. No dietary regulation of long-chain PUFA biosynthesis at the transcriptional level was observed. Overall, very few interactions between dietary carbohydrates and LS were observed. However, important insights on the direct relation between dietary carbohydrate and the cholesterol biosynthetic pathway in European sea bass were demonstrated. PMID:26306559

  15. Oxygen Affects Gut Bacterial Colonization and Metabolic Activities in a Gnotobiotic Cockroach Model.

    PubMed

    Tegtmeier, Dorothee; Thompson, Claire L; Schauer, Christine; Brune, Andreas

    2016-02-01

    The gut microbiota of termites and cockroaches represents complex metabolic networks of many diverse microbial populations. The distinct microenvironmental conditions within the gut and possible interactions among the microorganisms make it essential to investigate how far the metabolic properties of pure cultures reflect their activities in their natural environment. We established the cockroach Shelfordella lateralis as a gnotobiotic model and inoculated germfree nymphs with two bacterial strains isolated from the guts of conventional cockroaches. Fluorescence microscopy revealed that both strains specifically colonized the germfree hindgut. In diassociated cockroaches, the facultatively anaerobic strain EbSL (a new species of Enterobacteriaceae) always outnumbered the obligately anaerobic strain FuSL (a close relative of Fusobacterium varium), irrespective of the sequence of inoculation, which showed that precolonization by facultatively anaerobic bacteria does not necessarily favor colonization by obligate anaerobes. Comparison of the fermentation products of the cultures formed in vitro with those accumulated in situ indicated that the gut environment strongly affected the metabolic activities of both strains. The pure cultures formed the typical products of mixed-acid or butyrate fermentation, whereas the guts of gnotobiotic cockroaches accumulated mostly lactate and acetate. Similar shifts toward more-oxidized products were observed when the pure cultures were exposed to oxygen, which corroborated the strong effects of oxygen on the metabolic fluxes previously observed in termite guts. Oxygen microsensor profiles of the guts of germfree, gnotobiotic, and conventional cockroaches indicated that both gut tissue and microbiota contribute to oxygen consumption and suggest that the oxygen status influences the colonization success. PMID:26637604

  16. Oxygen Affects Gut Bacterial Colonization and Metabolic Activities in a Gnotobiotic Cockroach Model.

    PubMed

    Tegtmeier, Dorothee; Thompson, Claire L; Schauer, Christine; Brune, Andreas

    2015-12-04

    The gut microbiota of termites and cockroaches represents complex metabolic networks of many diverse microbial populations. The distinct microenvironmental conditions within the gut and possible interactions among the microorganisms make it essential to investigate how far the metabolic properties of pure cultures reflect their activities in their natural environment. We established the cockroach Shelfordella lateralis as a gnotobiotic model and inoculated germfree nymphs with two bacterial strains isolated from the guts of conventional cockroaches. Fluorescence microscopy revealed that both strains specifically colonized the germfree hindgut. In diassociated cockroaches, the facultatively anaerobic strain EbSL (a new species of Enterobacteriaceae) always outnumbered the obligately anaerobic strain FuSL (a close relative of Fusobacterium varium), irrespective of the sequence of inoculation, which showed that precolonization by facultatively anaerobic bacteria does not necessarily favor colonization by obligate anaerobes. Comparison of the fermentation products of the cultures formed in vitro with those accumulated in situ indicated that the gut environment strongly affected the metabolic activities of both strains. The pure cultures formed the typical products of mixed-acid or butyrate fermentation, whereas the guts of gnotobiotic cockroaches accumulated mostly lactate and acetate. Similar shifts toward more-oxidized products were observed when the pure cultures were exposed to oxygen, which corroborated the strong effects of oxygen on the metabolic fluxes previously observed in termite guts. Oxygen microsensor profiles of the guts of germfree, gnotobiotic, and conventional cockroaches indicated that both gut tissue and microbiota contribute to oxygen consumption and suggest that the oxygen status influences the colonization success.

  17. Nonsense mutations in the human. beta. -globin gene affect mRNA metabolism

    SciTech Connect

    Baserga, S.J.; Benz, E.J. Jr. )

    1988-04-01

    A number of premature translation termination mutations (nonsense mutations) have been described in the human {alpha}- and {beta}-globin genes. Studies on mRNA isolated from patients with {beta}{sup 0}-thalassemia have shown that for both the {beta}-17 and the {beta}-39 mutations less than normal levels of {beta}-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human {beta}-globin mRNA). In vitro studies using the cloned {beta}-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human {beta}-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation.

  18. Litter Environment Affects Behavior and Brain Metabolic Activity of Adult Knockout Mice

    PubMed Central

    Crews, David; Rushworth, David; Gonzalez-Lima, Francisco; Ogawa, Sonoko

    2009-01-01

    In mammals, the formative environment for social and anxiety-related behaviors is the family unit; in the case of rodents, this is the litter and the mother-young bond. A deciding factor in this environment is the sex ratio of the litter and, in the case of mice lacking functional copies of gene(s), the ratio of the various genotypes in the litter. Both Sex and Genotype ratios of the litter affect the nature and quality of the individual's behavior later in adulthood, as well as metabolic activity in brain nuclei that underlie these behaviors. Mice were raised in litters reconstituted shortly after to birth to control for sex ratio and genotype ratio (wild type pups versus pups lacking a functional estrogen receptor α). In both males and females, the Sex and Genotype of siblings in the litter affected aggressive behaviors as well as patterns of metabolic activity in limbic nuclei in the social behavior network later in adulthood. Further, this pattern in males varied depending upon the Genotype of their brothers and sisters. Principal Components Analysis revealed two components comprised of several amygdalar and hypothalamic nuclei; the VMH showed strong correlations in both clusters, suggesting its pivotal nature in the organization of two neural networks. PMID:19707539

  19. Integrated Metabolomics, Transcriptomics and Proteomics Identifies Metabolic Pathways Affected by Anaplasma phagocytophilum Infection in Tick Cells.

    PubMed

    Villar, Margarita; Ayllón, Nieves; Alberdi, Pilar; Moreno, Andrés; Moreno, María; Tobes, Raquel; Mateos-Hernández, Lourdes; Weisheit, Sabine; Bell-Sakyi, Lesley; de la Fuente, José

    2015-12-01

    Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human granulocytic anaplasmosis. These intracellular bacteria establish infection by affecting cell function in both the vertebrate host and the tick vector, Ixodes scapularis. Previous studies have characterized the tick transcriptome and proteome in response to A. phagocytophilum infection. However, in the postgenomic era, the integration of omics datasets through a systems biology approach allows network-based analyses to describe the complexity and functionality of biological systems such as host-pathogen interactions and the discovery of new targets for prevention and control of infectious diseases. This study reports the first systems biology integration of metabolomics, transcriptomics, and proteomics data to characterize essential metabolic pathways involved in the tick response to A. phagocytophilum infection. The ISE6 tick cells used in this study constitute a model for hemocytes involved in pathogen infection and immune response. The results showed that infection affected protein processing in endoplasmic reticulum and glucose metabolic pathways in tick cells. These results supported tick-Anaplasma co-evolution by providing new evidence of how tick cells limit pathogen infection, while the pathogen benefits from the tick cell response to establish infection. Additionally, ticks benefit from A. phagocytophilum infection by increasing survival while pathogens guarantee transmission. The results suggested that A. phagocytophilum induces protein misfolding to limit the tick cell response and facilitate infection but requires protein degradation to prevent ER stress and cell apoptosis to survive in infected cells. Additionally, A. phagocytophilum may benefit from the tick cell's ability to limit bacterial infection through PEPCK inhibition leading to decreased glucose metabolism, which also results in the inhibition of cell apoptosis that increases infection of tick cells. These results

  20. Effect of fed- versus fasted state resistance training during Ramadan on body composition and selected metabolic parameters in bodybuilders

    PubMed Central

    2013-01-01

    Background Muslim bodybuilders often continue training during Ramadan. However, the effect of resistance training in a fasted versus a fed state during Ramadan on body composition and metabolic parameters in bodybuilders is not well known. The aim of this study was to evaluate the effects of resistance training in a fasted versus a fed state during Ramadan on body composition and metabolic parameters in bodybuilders. Methods Sixteen men were allocated to two groups: Eight practicing resistance training in the late afternoon in a fasted state (FAST), and eight training in the late evening in an acutely fed state (FED) during Ramadan. All visited the laboratory in the morning two days before the start of Ramadan (Bef-R) and on the 29th day of Ramadan (End-R) for anthropometric measurement, completion of a dietary questionnaire, and provision of fasting blood and urine samples. Results Body mass and body fat percentage remained unchanged in FAST and FED during the whole period of the investigation. Both FAST and FED experienced an increase in the following parameters from Bef-R to End-R: urine specific gravity (1%; p = 0.028, p = 0.004 respectively), serum concentrations of urea (4%, p = 0.006; 7%, p = 0.004 respectively), creatinine (5%, p = 0.015; 6%, p = 0.04 respectively), uric acid (17%; p < 0.001, p = 0.04 respectively), sodium (1%; p = 0.029, p = 0.019 respectively), chloride (2%; p = 0.039, p = 0.004 respectively), and high-density lipoprotein cholesterol (11%, p = 0.04; 10%, p = 0.04 respectively). Conclusion Hypertrophic training in a fasted or in a fed state during Ramadan does not affect body mass and body composition of bodybuilders. Additionally, Ramadan fasting induced changes in urinary and some biochemical parameters, but these changes were not different according to when the training occurred. PMID:23617897

  1. Effect of the telephone-delivered nutrition education on dietary intake and biochemical parameters in subjects with metabolic syndrome.

    PubMed

    Kim, Juyoung; Bea, Wookyung; Lee, Kiheon; Han, Jongsoo; Kim, Sohye; Kim, Misung; Na, Woori; Sohn, Cheongmin

    2013-07-01

    As prevalence of metabolic syndrome has rapidly increased over the past decade, lifestyle changes including dietary habits are considered as a therapeutic cornerstone for metabolic syndrome, cardiovascular complications and type 2 diabetes. We evaluated the effectiveness of a telephone-delivered nutrition education to improve metabolic parameters compared with a single-visit with a dietitian in subjects with metabolic syndrome. A total of seventy-one adults who met diagnostic criteria for the metabolic syndrome were randomly assigned to either the single-visit group or the in-depth nutrition education group during a 3-month intervention study period. The in-depth telephone-delivered nutrition education group had an initial visit with a dietitian and additional two telephone counseling during the first 4 weeks of the study periods. Sixty-six subjects completed a 3-month intervention study. The trial examined participant's anthropometric changes and dietary intakes as well as changes in the metabolic syndrome factors. At the end of the trial, the in-depth nutrition education group showed significantly higher reduction in weight, body fat and abdominal circumference compared with the other group (p < 0.05). In the in-depth nutrition groups, the prevalence of metabolic syndrome was decreased to 45.5%, while 69.7% of the subjects were metabolic syndrome patients in the single-visit group (p < 0.05). These results demonstrate that the telephone-intervention counseling is a feasible mean to deliver dietary intervention in patients with metabolic syndrome.

  2. Effects of Ramadan fasting on physical performance and metabolic, hormonal, and inflammatory parameters in middle-distance runners.

    PubMed

    Chennaoui, Mounir; Desgorces, François; Drogou, Catherine; Boudjemaa, Bechir; Tomaszewski, Armand; Depiesse, Frédéric; Burnat, Pascal; Chalabi, Hakim; Gomez-Merino, Danielle

    2009-08-01

    The Ramadan fasting (RF) period is associated with changes in sleep habits and increased sleepiness, which may affect physical performance in athletes, and may induce metabolic, hormonal, and inflammatory disturbances. In 8 middle-distance athletes (25.0 +/- 1.3 years), a maximal aerobic velocity (MAV) test was performed 5 days before RF (day -5), and on days 7 and 21 of RF. The same days, saliva samples were collected to determine cortisol and testosterone concentrations before and after the MAV test. Blood samples were collected before RF (P1), at the end of RF (P2), and 1 week post RF (P3). Plasma levels of interleukin (IL)-6, a mediator of sleepiness and energy availability, were determined. We also evaluated changes in metabolic and hormonal parameters, mood state, and nutritional and sleep profiles. During RF, mean body mass and body fat did not statistically change. Compared with day -5, MAV values decreased at days 7 and 21 (p < 0.05, respectively), while testosterone/cortisol ratio values did not change significantly. Nocturnal sleep time and energy intake were lower at day 21 than before RF (day 0/P1) (p < 0.05). At the end of RF (day 31), the fatigue score on the Profile of Mood States questionnaire was increased (p < 0.001). For P2 vs. P1, IL-6 was increased (1.19 +/- 0.25 vs. 0.51 +/- 0.13 pg.mL-1; p < 0.05), melatonin levels were decreased (p < 0.05), and adrenalin and noradrenalin were increased (p < 0.01 and p < 0.001, respectively). At 7 days post RF, all parameters recovered to pre-RF values. In conclusion, RF is accompanied by significant metabolic, hormonal, and inflammatory changes. Sleep disturbances, energy deficiency, and fatigue during RF may decrease physical performance in Muslim athletes who maintain training. Reduction of work load and (or) daytime napping may represent adequate strategies to counteract RF effects for Muslim athletes.

  3. An analysis of the meteorological parameters affecting ambient concentrations of acid aerosols in Uniontown, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Zelenka, Michael P.

    Ambient concentrations of aerosol strong acidity (H +) that were collected in Uniontown, Pennsylvania, during the summer of 1990 were evaluated to determine the relationships between meteorology and the magnitude of the H + concentrations. An extensive database containing 17 meteorological parameters was compiled for the Uniontown - Pittsburgh region. The database included both surface and upper air meteorological parameters. Concentrations of ambient acid sulfate aerosols collected in Uniontown, Pennsylvania, in the summer of 1990 were greatly affected by both local and regional meteorological conditions. Seven distinct meteorological synoptic types or regimes were identified for the summer months. A clear association was shown between episodic events of elevated ambient H + concentrations and one of the regimes, referred to here as synoptic type 5, which occurred when an anticyclone set up to the east of the mid-Atlantic states. Much of the variability (approximately 45%) in H + concentrations for the overall model was explained by the surface air temperature. Approximately 10% of the H' variability was explained by westerly winds as expressed by the U components of the morning 850 mb wind and the mean daily surface wind at Uniontown. Results showed that for days under the influence of synoptic type 5, which was associated with the highest levels of ambient H', the surface temperature explained approximately one-third of the variability in H' concentrations. The height of the mixing layer also affected the variability in H + concentrations, accounting for nearly a quarter of the variance. These results show that an analysis of the surface wind speed and direction alone will not adequately explain the variability in the concentrations of ambient acid aerosols. Analyses of the meteorological parameters affecting ambient concentrations of acid aerosols should include the mixing height, as well as the temperature, wind speed, and wind direction; both at the surface

  4. Identifying critical road geometry parameters affecting crash rate and crash type.

    PubMed

    Othman, Sarbaz; Thomson, Robert; Lannér, Gunnar

    2009-10-01

    The objective of this traffic safety investigation was to find critical road parameters affecting crash rate (CR). The study was based on crash and road maintenance data from Western Sweden. More than 3000 crashes, reported from 2000 to 2005 on median-separated roads, were collected and combined with road geometric and surface data. The statistical analysis showed variations in CR when road elements changed confirming that road characteristics affect CR. The findings indicated that large radii right-turn curves were more dangerous than left curves, in particular, during lane changing manoeuvres. However sharper curves are more dangerous in both left and right curves. Moreover, motorway carriageways with no or limited shoulders have the highest CR when compared to other carriageway widths, while one lane carriageway sections on 2+1 roads were the safest. Road surface results showed that both wheel rut depth and road roughness have negative impacts on traffic safety.

  5. Significant associations among hemostatic parameters, adipokines, and components of the metabolic syndrome in Japanese preschool children.

    PubMed

    Horigome, Hitoshi; Katayama, Yasutomi; Yoshinaga, Masao; Kato, Yoshiaki; Takahashi, Hideto; Sumazaki, Ryo

    2012-01-01

    Development of cardiovascular diseases could originate in early childhood. However, reference values of hemostatic parameters and adipokines in preschool children remain to be explored. We measured blood levels of adipokines and parameters of the hemostatic/fibrinolytic systems in 167 healthy children aged 4 to 6 years at 9:00 to 10:30 am after a strictly enforced overnight fast. Participants with body mass index (BMI) values ≥90th percentile had significantly higher values of systolic blood pressure and heart rate, as well as blood levels of insulin, coagulation factor (F) VII, FX, protein S, leptin, and homeostasis model assessment of insulin resistance (HOMA-IR), and lower values of desacyl-ghrelin than children with BMI < 90th percentile. Circulating levels of fibrinogen and leptin increased with increased number of cardiovascular risk factors. Stepwise regression analysis identified many hematological variables to be associated with features of the metabolic syndrome. The results implicated the hemostatic/fibrinolytic system or adipokines in the insidious progression of cardiovascular diseases from an early age. PMID:21949035

  6. Plant maturity and nitrogen fertilization affected fructan metabolism in harvestable tissues of timothy (Phleum pratense L.).

    PubMed

    Ould-Ahmed, Marouf; Decau, Marie-Laure; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; Lafrenière, Carole; Drouin, Pascal

    2014-10-15

    Timothy (Phleum pratense L.) is an important grass forage used for pasture, hay, and silage in regions with cool and humid growth seasons. One of the factors affecting the nutritive value of this grass is the concentration of non-structural carbohydrates (NSC), mainly represented by fructans. NSC concentration depends on multiple factors, making it hardly predictable. To provide a better understanding of NSC metabolism in timothy, the effects of maturity stage and nitrogen (N) fertilization level on biomass, NSC and N-compound concentrations were investigated in the tissues used for forage (leaf blades and stems surrounded by leaf sheaths) of hydroponically grown plants. Moreover, activities and relative expression level of enzymes involved in fructan metabolism were measured in the same tissues. Forage biomass was not altered by the fertilization level but was strongly modified by the stage of development. It increased from vegetative to heading stages while leaf-to-stem biomass ratio decreased. Total NSC concentration, which was not altered by N fertilization level, increased between heading and anthesis due to an accumulation of fructans in leaf blades. Fructan metabolizing enzyme activities (fructosyltransferase-FT and fructan exohydrolase-FEH) were not or only slightly altered by both maturity stage and N fertilization level. Conversely, the relative transcript levels of genes coding for enzymes involved in fructan metabolism were modified by N supply (PpFT1 and Pp6-FEH1) or maturity stage (PpFT2). The relative transcript level of PpFT1 was the highest in low N plants while that of Pp6-FEH1 was the highest in high N plants. Morevoer, transcript level of PpFT1 was negatively correlated with nitrate concentration while that of PpFT2 was positively correlated with sucrose concentration. This distinct regulation of the two genes coding for 6-sucrose:fructan fructosyltransferase (6-SFT) may allow a fine adequation of C allocation towards fructan synthesis in

  7. Insulin-Like Peptide 5 Interacts with Sex Hormones and Metabolic Parameters in a Gender and Adiposity Dependent Manner in Humans.

    PubMed

    Wagner, I V; Flehmig, G; Scheuermann, K; Löffler, D; Körner, A; Kiess, W; Stumvoll, M; Dietrich, A; Blüher, M; Klöting, N; Söder, O; Svechnikov, K

    2016-09-01

    Insulin-like peptide 5 (INSL5) is a gut hormone produced by L-cells in the colorectal epithelium and may play a role in the regulation of metabolic processes. The biological role of INSL5 is poorly investigated and nothing is known about the role of this hormone in obese and lean humans. Two cohorts were analyzed in the study. In the first cohort (n=76) the relationship between serum levels of INSL5 and different metabolic and hormonal parameters in obese and lean men and women were investigated. In the second cohort 14 male subjects underwent bariatric surgery. Circulating levels of INSL5 were then measured before and after interventions.We report for the first time that circulating INSL5 interacts with multiple metabolic and hormonal variables in lean and obese men and women and is affected by bariatric surgery. Serum levels of INSL5 negatively correlated with testosterone and blood lipids but positively with cortisol in obese men. In contrast to males, obese women had a strong negative correlation of plasma levels of INSL5 with C-reactive protein (CRP). We observed that adipose tissue loss after bariatric surgery significantly reduced serum levels of INSL5 in obese men with and without Type 2 Diabetes Mellitus (T2DM) that was associated with the restoration of circulating levels of testosterone. All together, our data demonstrated that INSL5 may interact with some metabolic parameters in obese humans and this process is dependent of gender and obesity state. PMID:27355242

  8. Perturbing the metabolic dynamics of myo-inositol in developing Brassica napus seeds through in vivo methylation impacts its utilization as phytate precursor and affects downstream metabolic pathways

    PubMed Central

    2013-01-01

    Background myo-Inositol (Ins) metabolism during early stages of seed development plays an important role in determining the distributional relationships of some seed storage components such as the antinutritional factors, sucrose galactosides (also known as raffinose oligosaccharides) and phytic acid (PhA) (myo-inositol 1,2,3,4,5,6-hexakisphosphate). The former is a group of oligosaccharides, which plays a role in desiccation at seed maturation. They are not easily digested by monogastric animals, hence their flatulence-causing properties. Phytic acid is highly negatively charged, which chelates positive ions of essential minerals and decreases their bioavailability. It is also a major cause of phosphate-related water pollution. Our aim was to investigate the influence of competitive diversion of Ins as common substrate on the biosynthesis of phytate and sucrose galactosides. Results We have studied the initial metabolic patterns of Ins in developing seeds of Brassica napus and determined that early stages of seed development are marked by rapid deployment of Ins into a variety of pathways, dominated by interconversion of polar (Ins phosphates) and non-polar (phospholipids) species. In a time course experiment at early stages of seed development, we show Ins to be a highly significant constituent of the endosperm and seed coat, but with no phytate biosynthesis occurring in either tissue. Phytate accumulation appears to be confined mainly within the embryo throughout seed development and maturation. In our approach, the gene for myo-inositol methyltransferase (IMT), isolated from Mesembryanthemum crystallinum (ice plant), was transferred to B. napus under the control of the seed-specific promoters, napin and phaseolin. Introduction of this new metabolic step during seed development prompted Ins conversion to the corresponding monomethyl ether, ononitol, and affected phytate accumulation. We were able to produce homozygous transgenic lines with 19% - 35% average

  9. Experimental analyses of the major parameters affecting the intensity of outbursts of coal and gas.

    PubMed

    Nie, W; Peng, S J; Xu, J; Liu, L R; Wang, G; Geng, J B

    2014-01-01

    With an increase in mining depth and production, the intensity and frequency of outburst of coal and gas have a tendency to increase. Estimating the intensity of outbursts of coal and gas plays an important role because of its relation with the risk value. In this paper, we described the semiquantitative relations between major parameters and intensity of outburst based on physical experiments. The results showed increment of geostress simulated by horizontal load (from 1.4, 2.4, 3.2, to 3.4 MPa) or vertical load (from 2, 3, 3.6, to 4 MPa) improved the relative intensity rate (3.763-7.403% and 1.273-7.99%); the increment of porosity (from 1.57, 2.51, 3, to 3.6%) improved the relative intensity rate from 3.8 to 13.8%; the increment of gas pressure (from 0, 0.5, 0.65, 0.72, 1, to 1.5 Mpa) induced the relative intensity rate to decrease from 38.22 to 0%; the increment of water content (from 0, 2, 4, to 8%) caused the relative intensity rate to drop from 5.425 to 0.5%. Furthermore, sensitivity and range analysis evaluates coupled factors affecting the relative intensity. In addition, the distinction with initiation of outburst of coal and gas affected by these parameters is discussed by the relative threshold of gas content rate.

  10. Experimental Analyses of the Major Parameters Affecting the Intensity of Outbursts of Coal and Gas

    PubMed Central

    Nie, W.; Peng, S. J.; Xu, J.; Liu, L. R.; Wang, G.; Geng, J. B.

    2014-01-01

    With an increase in mining depth and production, the intensity and frequency of outburst of coal and gas have a tendency to increase. Estimating the intensity of outbursts of coal and gas plays an important role because of its relation with the risk value. In this paper, we described the semiquantitative relations between major parameters and intensity of outburst based on physical experiments. The results showed increment of geostress simulated by horizontal load (from 1.4, 2.4, 3.2, to 3.4 MPa) or vertical load (from 2, 3, 3.6, to 4 MPa) improved the relative intensity rate (3.763–7.403% and 1.273–7.99%); the increment of porosity (from 1.57, 2.51, 3, to 3.6%) improved the relative intensity rate from 3.8 to 13.8%; the increment of gas pressure (from 0, 0.5, 0.65, 0.72, 1, to 1.5 Mpa) induced the relative intensity rate to decrease from 38.22 to 0%; the increment of water content (from 0, 2, 4, to 8%) caused the relative intensity rate to drop from 5.425 to 0.5%. Furthermore, sensitivity and range analysis evaluates coupled factors affecting the relative intensity. In addition, the distinction with initiation of outburst of coal and gas affected by these parameters is discussed by the relative threshold of gas content rate. PMID:25162042

  11. Effects of Body Weight Reduction on Serum Irisin and Metabolic Parameters in Obese Subjects

    PubMed Central

    Kurose, Satoshi; Shinno, Hiromi; Thi Thu, Ha Cao; Takao, Nana; Tsutsumi, Hiromi; Hasegawa, Takaaki; Nakajima, Toshiaki; Kimura, Yutaka

    2016-01-01

    Background Irisin is a myokine implicated in lipid and glucose metabolism. The objective of this study is to examine the effect of a body weight reduction on the serum irisin level and physical indicators in obese Japanese patients without diabetes. Methods The subjects were 22 patients (male/female, 5/17; age, 46.1±16.0 years; body mass index [BMI], 36.9±5.0 kg/m2) who completed a 6-month body weight reduction program at our clinic. The program included diet, exercise therapy and cognitive behavioral therapy. Blood parameters, body composition, exercise tolerance, homeostasis model assessment of insulin resistance (HOMA-IR), and serum irisin were determined before and after intervention, and relationships among changes in these data were examined. Results There were significant decreases in body weight and BMI after the intervention. Irisin before the intervention was significantly positively correlated with HOMA-IR (r=0.434, P<0.05). The mean irisin level showed no significant change after the intervention in all participants. However, improvements in % body fat, subcutaneous fat area, triglycerides, and fasting glucose were significantly greater in patients with an increase in irisin compared to those with a decrease in irisin after the intervention. Patients with an increase in irisin also had significantly lower fasting insulin (9.7±4.8 vs. 16.4±8.2, P<0.05) and HOMA-IR (2.2±1.1 vs. 3.7±1.6, P<0.05) after the intervention, compared to patients with a decrease in irisin. Conclusion Body weight reduction did not alter irisin levels. However, irisin may play important roles in fat and glucose metabolism and insulin resistance, and the effects of body weight reduction on irisin kinetics may be a key for obesity treatment. PMID:27766246

  12. Genetic parameters of product quality and hepatic metabolism in fattened mule ducks.

    PubMed

    Marie-Etancelin, C; Basso, B; Davail, S; Gontier, K; Fernandez, X; Vitezica, Z G; Bastianelli, D; Baéza, E; Bernadet, M-D; Guy, G; Brun, J-M; Legarra, A

    2011-03-01

    Genetic parameters of traits related to hepatic lipid metabolism, carcass composition, and product quality of overfed mule ducks were estimated on both parental lines of this hybrid: the common duck line for the maternal side and the Muscovy line for the paternal side. The originality of the statistical model was to include simultaneously the additive genetic effect of the common ducks and that of the Muscovy ducks, revealing a greater genetic determinism in common than in Muscovy. Plasma metabolic indicators (glucose, triglyceride, and cholesterol contents) were heritable, in particular at the end of the overfeeding period, and heritabilities increased with the overfeeding stage. Carcass composition traits were highly heritable in the common line, with values ranging from 0.15 for liver weight, 0.21 for carcass weight, and 0.25 for abdominal fat weight to 0.32 for breast muscle weight. Heritabilities of technological outputs were greater for the fatty liver (0.19 and 0.08, respectively, on common and Muscovy sides for liver melting rate) than for the pectoralis major muscle (between 0.02 and 0.05 on both parental sides for cooking losses). Fortunately, the processing industry is mainly facing problems in liver quality, such as too high of a melting rate, than in meat quality. The meat quality appraisal criteria (such as texture and cooking losses), usually dependent on pH and the rate of decline of pH, were also very lowly heritable. This study demonstrated that genetic determinism of meat quality and ability of overfeeding is not similar in the common population and in the Muscovy population; traits related to fattening, muscle development, and BW have heritability values from 2 to 4 times greater on the common line than on the Muscovy line, which is relevant for considering different selection strategies.

  13. Gestational heat stress alters postnatal offspring body composition indices and metabolic parameters in pigs.

    PubMed

    Boddicker, Rebecca L; Seibert, Jacob T; Johnson, Jay S; Pearce, Sarah C; Selsby, Joshua T; Gabler, Nicholas K; Lucy, Matthew C; Safranski, Timothy J; Rhoads, Robert P; Baumgard, Lance H; Ross, Jason W

    2014-01-01

    The study objectives were to test the hypothesis that heat stress (HS) during gestational development alters postnatal growth, body composition, and biological response to HS conditions in pigs. To investigate this, 14 first parity crossbred gilts were exposed to one of four environmental treatments (TNTN, TNHS, HSTN, or HSHS) during gestation. TNTN and HSHS dams were exposed to thermal neutral (TN, cyclical 18-22°C) or HS conditions (cyclical 28-34°C) during the entire gestation, respectively. Dams assigned to HSTN and TNHS treatments were heat-stressed for the first or second half of gestation, respectively. Postnatal offspring were exposed to one of two thermal environments for an acute (24 h) or chronic (five weeks) duration in either constant TN (21°C) or HS (35°C) environment. Exposure to chronic HS during their growth phase resulted in decreased longissimus dorsi cross-sectional area (LDA) in offspring from HSHS and HSTN treated dams whereas LDA was larger in offspring from dams in TNTN and TNHS conditions. Irrespective of HS during prepubertal postnatal growth, pigs from dams that experienced HS during the first half of gestation (HSHS and HSTN) had increased (13.9%) subcutaneous fat thickness compared to pigs from dams exposed to TN conditions during the first half of gestation. This metabolic repartitioning towards increased fat deposition in pigs from dams heat-stressed during the first half of gestation was accompanied by elevated blood insulin concentrations (33%; P = 0.01). Together, these results demonstrate HS during the first half of gestation altered metabolic and body composition parameters during future development and in biological responses to a subsequent HS challenge.

  14. Psychosocial factors and metabolic parameters: is there any association in elderly people? The Massa Lombarda Project

    PubMed Central

    Bove, Marilisa; Carnevali, Lucio; Cicero, Arrigo FG; Grandi, Elisa; Gaddoni, Morena; Noera, Giorgio; Gaddi, Antonio V

    2010-01-01

    Objective Several Studies claim that psychophysical stress and depression contribute significantly to cardiovascular disease (CVD) development. The aim of our research is to discover and analyse a possible relationship between two psychosocial disorders (Depression and Perceived Mental Stress) and traditional cardiovascular risk markers. Methods We selected 106 subjects (M:58, F:48), mean age 79,5 ± 3,8 years old, from The Massa Lombarda Project, an epidemiological study including 7000 north Italian adult subjects. We carried out anamnesis, clinical and blood tests. Then we administered the Perceived Stress Questionnaire (PSQ range-score 0-1) and the Self Rating Depression Scale (SRDS range score 50-70 Z), as validated instruments for depression and stress evaluation, which focus on the individual's subjective perception and emotional response. Statistical descriptive and inferential analysis of data collected were performed. Results The Multiple linear regression analysis showed a negative correlation between PSQ Index score and Uric Acid, LDL-C, BMI, Systolic and Diastolic Blood Pressure values, a positive and statistically significant correlation between PSQ Index score and Triglycerides(P<0.05). We found an inverse relationship between Zung SRDS score and LDL-C, Uric Acid, Glucose, Waist Circumference values, this correlation was significant only for Uric Acid (P<0.01); besides a positive and significant correlation between Zung SRDS and Triglycerides (P<0.05) was observed. Conclusion We suppose that psycho-emotional stress and depression disorder, often diagnosed in elderly people, may influence different metabolic parameters (triglycerides, Uric Acid, BMI) that are involved in the complex process of Metabolic Syndrome. PMID:20635238

  15. Plasma parameters related to energy and lipid metabolism in periparturient Modenese and Italian Friesian cows.

    PubMed

    Petrera, F; Napolitano, F; Dal Prà, A; Abeni, F

    2015-10-01

    The aim of this work was to compare energy and lipid metabolism during the peripartum period between Modenese (MO) and Italian Friesian (IF) cows. The study was carried out on 33 pluriparous pregnant cows, 19 IF and 14 MO, reared together in the same herd and kept under equal conditions of management and nutrition. Blood was sampled from jugular vein starting 4 week before expected calving date until 4 week post-calving, once weekly. Plasma was analysed for glucose, NEFA, BHBA, triglycerides and cholesterol concentrations. Body condition score (BCS) was assessed weekly after blood sampling. Data from antepartum (a.p.) and post-partum (p.p.) periods were separately analysed as repeated measures by a linear mixed models with the effect of breed, time and their interaction as main factors and random cow within breed. The energy status differed between the two breeds during the peripartum period. We observed higher BCS a.p. and p.p. and lower BCS variations p.p. in MO compared to IF group. Modenese cows showed lower glucose and cholesterol concentrations (p < 0.001), but higher NEFA values, NEFA to cholesterol and NEFA to albumin ratios (p < 0.001) during a.p.; on the contrary, IF cows had higher (p < 0.05) cholesterol, NEFA, BHBA levels and NEFA to albumin ratio than MO ones during p.p. The differences observed between the two breeds suggest how MO cows are subjected to lipid mobilization during late gestation; on the contrary, IF cows are predisposed to mobilize their lipid reserves at the beginning of lactation to support high production. The results indicate a diverse ability to cope with metabolic stress and suggest the hypothesis that the differences in concentrations of plasma parameters and their variation amplitude around the calving period might depend on the different genetic merit for milk production between the two breeds.

  16. Gestational Heat Stress Alters Postnatal Offspring Body Composition Indices and Metabolic Parameters in Pigs

    PubMed Central

    Boddicker, Rebecca L.; Seibert, Jacob T.; Johnson, Jay S.; Pearce, Sarah C.; Selsby, Joshua T.; Gabler, Nicholas K.; Lucy, Matthew C.; Safranski, Timothy J.; Rhoads, Robert P.; Baumgard, Lance H.; Ross, Jason W.

    2014-01-01

    The study objectives were to test the hypothesis that heat stress (HS) during gestational development alters postnatal growth, body composition, and biological response to HS conditions in pigs. To investigate this, 14 first parity crossbred gilts were exposed to one of four environmental treatments (TNTN, TNHS, HSTN, or HSHS) during gestation. TNTN and HSHS dams were exposed to thermal neutral (TN, cyclical 18–22°C) or HS conditions (cyclical 28–34°C) during the entire gestation, respectively. Dams assigned to HSTN and TNHS treatments were heat-stressed for the first or second half of gestation, respectively. Postnatal offspring were exposed to one of two thermal environments for an acute (24 h) or chronic (five weeks) duration in either constant TN (21°C) or HS (35°C) environment. Exposure to chronic HS during their growth phase resulted in decreased longissimus dorsi cross-sectional area (LDA) in offspring from HSHS and HSTN treated dams whereas LDA was larger in offspring from dams in TNTN and TNHS conditions. Irrespective of HS during prepubertal postnatal growth, pigs from dams that experienced HS during the first half of gestation (HSHS and HSTN) had increased (13.9%) subcutaneous fat thickness compared to pigs from dams exposed to TN conditions during the first half of gestation. This metabolic repartitioning towards increased fat deposition in pigs from dams heat-stressed during the first half of gestation was accompanied by elevated blood insulin concentrations (33%; P = 0.01). Together, these results demonstrate HS during the first half of gestation altered metabolic and body composition parameters during future development and in biological responses to a subsequent HS challenge. PMID:25383953

  17. Increasing Phosphatidylinositol (4,5)-Bisphosphate Biosynthesis Affects Basal Signaling and Chloroplast Metabolism in Arabidopsis thaliana

    PubMed Central

    Im, Yang Ju; Smith, Caroline M.; Phillippy, Brian Q.; Strand, Deserah; Kramer, David M.; Grunden, Amy M.; Boss, Wendy F.

    2014-01-01

    One challenge in studying the second messenger inositol(1,4,5)-trisphosphate (InsP3) is that it is present in very low amounts and increases only transiently in response to stimuli. To identify events downstream of InsP3, we generated transgenic plants constitutively expressing the high specific activity, human phosphatidylinositol 4-phosphate 5-kinase Iα (HsPIPKIα). PIP5K is the enzyme that synthesizes phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2); this reaction is flux limiting in InsP3 biosynthesis in plants. Plasma membranes from transgenic Arabidopsis expressing HsPIPKIα had 2–3 fold higher PIP5K specific activity, and basal InsP3 levels in seedlings and leaves were >2-fold higher than wild type. Although there was no significant difference in photosynthetic electron transport, HsPIPKIα plants had significantly higher starch (2–4 fold) and 20% higher anthocyanin compared to controls. Starch content was higher both during the day and at the end of dark period. In addition, transcripts of genes involved in starch metabolism such as SEX1 (glucan water dikinase) and SEX4 (phosphoglucan phosphatase), DBE (debranching enzyme), MEX1 (maltose transporter), APL3 (ADP-glucose pyrophosphorylase) and glucose-6-phosphate transporter (Glc6PT) were up-regulated in the HsPIPKIα plants. Our results reveal that increasing the phosphoinositide (PI) pathway affects chloroplast carbon metabolism and suggest that InsP3 is one component of an inter-organelle signaling network regulating chloroplast metabolism. PMID:27135490

  18. Maternal Obesity Affects Fetal Neurodevelopmental and Metabolic Gene Expression: A Pilot Study

    PubMed Central

    Edlow, Andrea G.; Vora, Neeta L.; Hui, Lisa; Wick, Heather C.; Cowan, Janet M.; Bianchi, Diana W.

    2014-01-01

    Objective One in three pregnant women in the United States is obese. Their offspring are at increased risk for neurodevelopmental and metabolic morbidity. Underlying molecular mechanisms are poorly understood. We performed a global gene expression analysis of mid-trimester amniotic fluid cell-free fetal RNA in obese versus lean pregnant women. Methods This prospective pilot study included eight obese (BMI≥30) and eight lean (BMI<25) women undergoing clinically indicated mid-trimester genetic amniocentesis. Subjects were matched for gestational age and fetal sex. Fetuses with abnormal karyotype or structural anomalies were excluded. Cell-free fetal RNA was extracted from amniotic fluid and hybridized to whole genome expression arrays. Genes significantly differentially regulated in 8/8 obese-lean pairs were identified using paired t-tests with the Benjamini-Hochberg correction (false discovery rate of <0.05). Biological interpretation was performed with Ingenuity Pathway Analysis and the BioGPS gene expression atlas. Results In fetuses of obese pregnant women, 205 genes were significantly differentially regulated. Apolipoprotein D, a gene highly expressed in the central nervous system and integral to lipid regulation, was the most up-regulated gene (9-fold). Apoptotic cell death was significantly down-regulated, particularly within nervous system pathways involving the cerebral cortex. Activation of the transcriptional regulators estrogen receptor, FOS, and STAT3 was predicted in fetuses of obese women, suggesting a pro-estrogenic, pro-inflammatory milieu. Conclusion Maternal obesity affects fetal neurodevelopmental and metabolic gene expression as early as the second trimester. These findings may have implications for postnatal neurodevelopmental and metabolic abnormalities described in the offspring of obese women. PMID:24558408

  19. Potato Snakin-1 Gene Silencing Affects Cell Division, Primary Metabolism, and Cell Wall Composition1[W

    PubMed Central

    Nahirñak, Vanesa; Almasia, Natalia Inés; Fernandez, Paula Virginia; Hopp, Horacio Esteban; Estevez, José Manuel; Carrari, Fernando; Vazquez-Rovere, Cecilia

    2012-01-01

    Snakin-1 (SN1) is an antimicrobial cysteine-rich peptide isolated from potato (Solanum tuberosum) that was classified as a member of the Snakin/Gibberellic Acid Stimulated in Arabidopsis protein family. In this work, a transgenic approach was used to study the role of SN1 in planta. Even when overexpressing SN1, potato lines did not show remarkable morphological differences from the wild type; SN1 silencing resulted in reduced height, which was accompanied by an overall reduction in leaf size and severe alterations of leaf shape. Analysis of the adaxial epidermis of mature leaves revealed that silenced lines had 70% to 90% increases in mean cell size with respect to wild-type leaves. Consequently, the number of epidermal cells was significantly reduced in these lines. Confocal microscopy analysis after agroinfiltration of Nicotiana benthamiana leaves showed that SN1-green fluorescent protein fusion protein was localized in plasma membrane, and bimolecular fluorescence complementation assays revealed that SN1 self-interacted in vivo. We further focused our study on leaf metabolism by applying a combination of gas chromatography coupled to mass spectrometry, Fourier transform infrared spectroscopy, and spectrophotometric techniques. These targeted analyses allowed a detailed examination of the changes occurring in 46 intermediate compounds from primary metabolic pathways and in seven cell wall constituents. We demonstrated that SN1 silencing affects cell division, leaf primary metabolism, and cell wall composition in potato plants, suggesting that SN1 has additional roles in growth and development beyond its previously assigned role in plant defense. PMID:22080603

  20. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature.

    PubMed

    Norambuena, Fernando; Morais, Sofia; Emery, James A; Turchini, Giovanni M

    2015-01-01

    Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad-time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature

  1. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature

    PubMed Central

    Norambuena, Fernando; Morais, Sofia; Emery, James A.; Turchini, Giovanni M.

    2015-01-01

    Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad–time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature

  2. Modeling of mouse eye and errors in ocular parameters affecting refractive state

    NASA Astrophysics Data System (ADS)

    Bawa, Gurinder

    Rodents eye are particularly used to study refractive error state of an eye and development of refractive eye. Genetic organization of rodents is similar to that of humans, which makes them interesting candidates to be researched upon. From rodents family mice models are encouraged over rats because of availability of genetically engineered models. Despite of extensive work that has been performed on mice and rat models, still no one is able to quantify an optical model, due to variability in the reported ocular parameters. In this Dissertation, we have extracted ocular parameters and generated schematics of eye from the raw data from School of Medicine, Detroit. In order to see how the rays would travel through an eye and the defects associated with an eye; ray tracing has been performed using ocular parameters. Finally we have systematically evaluated the contribution of various ocular parameters, such as radii of curvature of ocular surfaces, thicknesses of ocular components, and refractive indices of ocular refractive media, using variational analysis and a computational model of the rodent eye. Variational analysis revealed that variation in all the ocular parameters does affect the refractive status of the eye, but depending upon the magnitude of the impact those parameters are listed as critical or non critical. Variation in the depth of the vitreous chamber, thickness of the lens, radius of the anterior surface of the cornea, radius of the anterior surface of the lens, as well as refractive indices for the lens and vitreous, appears to have the largest impact on the refractive error and thus are categorized as critical ocular parameters. The radii of the posterior surfaces of the cornea and lens have much smaller contributions to the refractive state, while the radii of the anterior and posterior surfaces of the retina have no effect on the refractive error. These data provide the framework for further refinement of the optical models of the rat and mouse

  3. Morning cortisol levels and glucose metabolism parameters in moderate and severe obstructive sleep apnea patients.

    PubMed

    Bozic, Josko; Galic, Tea; Supe-Domic, Daniela; Ivkovic, Natalija; Ticinovic Kurir, Tina; Valic, Zoran; Lesko, Josip; Dogas, Zoran

    2016-09-01

    Obstructive sleep apnea (OSA) has been associated with dysregulation of the hypothalamic-pituitary-adrenal axis and alterations in glucose metabolism with increased risk for type 2 diabetes. The aim of the current study was to compare morning plasma cortisol levels and glucose metabolism parameters between moderate (apnea-hypopnea index (AHI): 15-30 events/h) and severe OSA patients (AHI >30 events/h), with respective controls. A total of 56 male OSA patients, 24 moderate (AHI = 21.1 ± 5.3) and 32 severe (AHI = 49.7 ± 18.1), underwent a full-night polysomnography, oral glucose tolerance test (OGTT), and measurement of morning plasma cortisol levels. These groups were compared to 20 matched subjects in a control group. Morning plasma cortisol levels were statistically lower in severe OSA group than in moderate OSA and control groups (303.7 ± 93.5 vs. 423.9 ± 145.1 vs. 417.5 ± 99.8 pmol/L, P < 0.001). Significant negative correlations were found between morning plasma cortisol levels and AHI (r = -0.444, P = 0.002), as well as oxygen desaturation index (r = -0.381, P = 0.011). Fasting plasma glucose (5.0 ± 0.5 vs. 5.4 ± 0.7 vs. 4.9 ± 0.6 mmol/L, P = 0.009) was higher in the severe OSA group compared to moderate OSA and controls. Homeostasis model assessment insulin resistance (HOMA-IR) was higher in the severe OSA group compared to moderate OSA and controls (4.6 ± 3.7 vs. 2.7 ± 2.0 and 2.2 ± 1.8, respectively, P = 0.006). In conclusion, our study showed that morning plasma cortisol levels measured at 8 a.m. were significantly lower in severe OSA patients than those in moderate OSA group and controls. Morning plasma cortisol levels showed a negative correlation with AHI and oxygen desaturation index. Additionally, this study confirmed the evidence of glucose metabolism impairment in moderate and severe OSA patients, with more pronounced effect in the severe OSA patients group. PMID:27000083

  4. Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance.

    PubMed

    Heeman, Bavo; Van den Haute, Chris; Aelvoet, Sarah-Ann; Valsecchi, Federica; Rodenburg, Richard J; Reumers, Veerle; Debyser, Zeger; Callewaert, Geert; Koopman, Werner J H; Willems, Peter H G M; Baekelandt, Veerle

    2011-04-01

    Loss-of-function mutations in the gene encoding the mitochondrial PTEN-induced putative kinase 1 (PINK1) are a major cause of early-onset familial Parkinson's disease (PD). Recent studies have highlighted an important function for PINK1 in clearing depolarized mitochondria by mitophagy. However, the role of PINK1 in mitochondrial and cellular functioning in physiological conditions is still incompletely understood. Here, we investigate mitochondrial and cellular calcium (Ca(2+)) homeostasis in PINK1-knockdown and PINK1-knockout mouse cells, both in basal metabolic conditions and after physiological stimulation, using unbiased automated live single-cell imaging in combination with organelle-specific fluorescent probes. Our data reveal that depletion of PINK1 induces moderate fragmentation of the mitochondrial network, mitochondrial membrane depolarization and increased production of reactive oxygen species. This results in reduced uptake of Ca(2+) by mitochondria after physiological stimulation. As a consequence, cells with knockdown or knockout of PINK1 display impaired mitochondrial ATP synthesis, which is exacerbated under conditions of increased ATP demand, thereby affecting cytosolic Ca(2+) extrusion. The impairment in energy maintenance was confirmed in the brain of PINK1-knockout mice by in vivo bioluminescence imaging. Our findings demonstrate a key role for PINK1 in the regulation of mitochondrial homeostasis and energy metabolism under physiological conditions. PMID:21385841

  5. Incubation temperature affects growth and energy metabolism in blue tit nestlings.

    PubMed

    Nord, Andreas; Nilsson, Jan-Åke

    2011-11-01

    Because the maintenance of proper developmental temperatures during avian incubation is costly to parents, embryos of many species experience pronounced variation in incubation temperature. However, the effects of such temperature variation on nestling development remain relatively unexplored. To investigate this, we artificially incubated wild blue tit (Cyanistes caeruleus L.) clutches at 35.0°, 36.5°, or 38.0°C for two-thirds of the incubation period. We returned clutches to their original nests before hatching and subsequently recorded nestling growth and resting metabolic rate. The length of the incubation period decreased with temperature, whereas hatching success increased. Nestlings from the lowest incubation temperature group had shorter tarsus lengths at 2 weeks of age, but body mass and wing length were not affected by temperature. In addition, nestlings from the lowest temperature group had a significantly higher resting metabolic rate compared with mid- and high-temperature nestlings, which may partly explain observed size differences between the groups. These findings suggest that nest microclimate can influence nestling phenotype, but whether observed differences carry over to later life-history stages remains unknown.

  6. Campomanesia adamantium extract induces DNA damage, apoptosis, and affects cyclophosphamide metabolism.

    PubMed

    Martello, M D; David, N; Matuo, R; Carvalho, P C; Navarro, S D; Monreal, A C D; Cunha-Laura, A L; Cardoso, C A L; Kassuya, C A L; Oliveira, R J

    2016-01-01

    Campomanesia adamantium (Cambess.) O. Berg. is originally from Brazil. Its leaves and fruits have medicinal properties such as anti-inflammatory, antidiarrheal and antiseptic properties. However, the mutagenic potential of this species has been reported in few studies. This study describes the mutagenic/antimutagenic, splenic phagocytic, and apoptotic activities of C. adamantium hydroethanolic extract with or without cyclophosphamide in Swiss mice. The animals orally received the hydroethanolic extract at doses of 30, 100, or 300 mg/kg with or without 100 mg/kg cyclophosphamide. Mutagenesis was evaluated by performing the micronucleus assay after treatment for 24, 48, and 72 h, while splenic phagocytic and apoptotic effects were investigated after 72 h. Short-term exposure of 30 and 100 mg/kg extract induced mild clastogenic/aneugenic effects and increased splenic phagocytosis and apoptosis in the liver, spleen, and kidneys. When the extract was administered in combination with cyclophosphamide, micronucleus frequency and apoptosis reduced. Extract components might affect cyclophosphamide metabolism, which possibly leads to increased clearance of this chemotherapeutic agent. C. adamantium showed mutagenic activity and it may decrease the effectiveness of drugs with metabolic pathways similar to those associated with cyclophosphamide. Thus, caution should be exercised while consuming these extracts, especially when received in combination with other drugs. PMID:27173259

  7. Failure of caffeine to affect metabolism during 60 min submaximal exercise.

    PubMed

    Titlow, L W; Ishee, J H; Riggs, C E

    1991-01-01

    Caffeine consumption prior to athletic performance has become commonplace. The usual dosage is approximately 200 mg, a level of caffeine ingestion equivalent to two cups of brewed coffee. This study was designed to examine the effects of a common level of caffeine ingestion, specifically 200 mg, on metabolism during submaximal exercise performance in five males. The subjects performed two 60-min monitored treadmill workouts at 60% maximal heart rate during a 2-week period. The subjects were randomly assigned, double-blind to receive a caffeine or placebo capsule 60 min prior to exercise. Testing was performed in the afternoon following a midnight fast. Venous blood was withdrawn pre-exercise, every 15 min during the workout, and 10 min after recovery. Blood was analysed for free fatty acid, triglycerides, glucose, lactic acid, haemoglobin and haematocrit. The respiratory exchange ratio (R), perceived exertion (RPE) and oxygen uptake were measured every 4 min during exercise. An examination of the data with repeated-measures ANOVA revealed no significant differences between the two groups. Within the limitations of the study, it was concluded that 200 mg caffeine failed to affect metabolism during 60 min submaximal exercise.

  8. Testosterone affects hormone-sensitive lipase (HSL) activity and lipid metabolism in the left ventricle.

    PubMed

    Langfort, Jozef; Jagsz, Slawomir; Dobrzyn, Pawel; Brzezinska, Zofia; Klapcinska, Barbara; Galbo, Henrik; Gorski, Jan

    2010-09-01

    Fatty acids, which are the major cardiac fuel, are derived from lipid droplets stored in cardiomyocytes, among other sources. The heart expresses hormone-sensitive lipase (HSL), which regulates triglycerides (TG) breakdown, and the enzyme is under hormonal control. Evidence obtained from adipose tissue suggests that testosterone regulates HSL activity. To test whether this is also true in the heart, we measured HSL activity in the left ventricle of sedentary male rats that had been treated with testosterone supplementation or orchidectomy with or without testosterone substitution. Left ventricle HSL activity against TG was significantly elevated in intact rats supplemented with testosterone. HSL activity against both TG and diacylglyceride was reduced by orchidectomy, whereas testosterone replacement fully reversed this effect. Moreover, testosterone increased left ventricle free fatty acid levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid and carbohydrate metabolism.

  9. Campomanesia adamantium extract induces DNA damage, apoptosis, and affects cyclophosphamide metabolism.

    PubMed

    Martello, M D; David, N; Matuo, R; Carvalho, P C; Navarro, S D; Monreal, A C D; Cunha-Laura, A L; Cardoso, C A L; Kassuya, C A L; Oliveira, R J

    2016-04-26

    Campomanesia adamantium (Cambess.) O. Berg. is originally from Brazil. Its leaves and fruits have medicinal properties such as anti-inflammatory, antidiarrheal and antiseptic properties. However, the mutagenic potential of this species has been reported in few studies. This study describes the mutagenic/antimutagenic, splenic phagocytic, and apoptotic activities of C. adamantium hydroethanolic extract with or without cyclophosphamide in Swiss mice. The animals orally received the hydroethanolic extract at doses of 30, 100, or 300 mg/kg with or without 100 mg/kg cyclophosphamide. Mutagenesis was evaluated by performing the micronucleus assay after treatment for 24, 48, and 72 h, while splenic phagocytic and apoptotic effects were investigated after 72 h. Short-term exposure of 30 and 100 mg/kg extract induced mild clastogenic/aneugenic effects and increased splenic phagocytosis and apoptosis in the liver, spleen, and kidneys. When the extract was administered in combination with cyclophosphamide, micronucleus frequency and apoptosis reduced. Extract components might affect cyclophosphamide metabolism, which possibly leads to increased clearance of this chemotherapeutic agent. C. adamantium showed mutagenic activity and it may decrease the effectiveness of drugs with metabolic pathways similar to those associated with cyclophosphamide. Thus, caution should be exercised while consuming these extracts, especially when received in combination with other drugs.

  10. Failure of caffeine to affect metabolism during 60 min submaximal exercise.

    PubMed

    Titlow, L W; Ishee, J H; Riggs, C E

    1991-01-01

    Caffeine consumption prior to athletic performance has become commonplace. The usual dosage is approximately 200 mg, a level of caffeine ingestion equivalent to two cups of brewed coffee. This study was designed to examine the effects of a common level of caffeine ingestion, specifically 200 mg, on metabolism during submaximal exercise performance in five males. The subjects performed two 60-min monitored treadmill workouts at 60% maximal heart rate during a 2-week period. The subjects were randomly assigned, double-blind to receive a caffeine or placebo capsule 60 min prior to exercise. Testing was performed in the afternoon following a midnight fast. Venous blood was withdrawn pre-exercise, every 15 min during the workout, and 10 min after recovery. Blood was analysed for free fatty acid, triglycerides, glucose, lactic acid, haemoglobin and haematocrit. The respiratory exchange ratio (R), perceived exertion (RPE) and oxygen uptake were measured every 4 min during exercise. An examination of the data with repeated-measures ANOVA revealed no significant differences between the two groups. Within the limitations of the study, it was concluded that 200 mg caffeine failed to affect metabolism during 60 min submaximal exercise. PMID:1856908

  11. Food odors trigger an endocrine response that affects food ingestion and metabolism.

    PubMed

    Lushchak, Oleh V; Carlsson, Mikael A; Nässel, Dick R

    2015-08-01

    Food odors stimulate appetite and innate food-seeking behavior in hungry animals. The smell of food also induces salivation and release of gastric acid and insulin. Conversely, sustained odor exposure may induce satiation. We demonstrate novel effects of food odors on food ingestion, metabolism and endocrine signaling in Drosophila melanogaster. Acute exposure to attractive vinegar odor triggers a rapid and transient increase in circulating glucose, and a rapid upregulation of genes encoding the glucagon-like hormone adipokinetic hormone (AKH), four insulin-like peptides (DILPs) and some target genes in peripheral tissues. Sustained exposure to food odors, however, decreases food intake. Hunger-induced strengthening of synaptic signaling from olfactory sensory neurons (OSNs) to brain neurons increases food-seeking behavior, and conversely fed flies display reduced food odor sensitivity and feeding. We show that increasing the strength of OSN signaling chronically by genetic manipulation of local peptide neuromodulation reduces feeding, elevates carbohydrates and diminishes lipids. Furthermore, constitutively strengthened odor sensitivity altered gene transcripts for AKH, DILPs and some of their targets. Thus, we show that food odor can induce a transient anticipatory endocrine response, and that boosted sensitivity to this odor affects food intake, as well as metabolism and hormonal signaling.

  12. Factors Affecting the Absorption, Metabolism, and Excretion of Cocoa Flavanols in Humans.

    PubMed

    Cifuentes-Gomez, Tania; Rodriguez-Mateos, Ana; Gonzalez-Salvador, Isidro; Alañon, María Elena; Spencer, Jeremy P E

    2015-09-01

    Cocoa is rich in a subclass of flavonoids known as flavanols, the cardiovascular health benefits of which have been extensively reported. The appearance of flavanol metabolites in the systemic circulation after flavanol-rich food consumption is likely to mediate the physiological effects on the vascular system, and these levels are influenced by numerous factors, including food matrix, processing, intake, age, gender, or genetic polymorphisms, among others. This review will focus on our current understanding of factors affecting the absorption, metabolism, and excretion of cocoa flavanols in humans. Second, it will identify gaps in these contributing factors that need to be addressed to conclusively translate our collective knowledge into the context of public health, dietary guidelines, and evidence-based dietary recommendations.

  13. Assessment, modeling and optimization of parameters affecting the formation of disinfection by-products in water.

    PubMed

    Gougoutsa, Chrysa; Christophoridis, Christophoros; Zacharis, Constantinos K; Fytianos, Konstantinos

    2016-08-01

    This study focused on (a) the development of a screening methodology, in order to determine the main experimental variables affecting chlorinated and brominated disinfection by-product (DBP) formation in water during chlorination experiments and (b) the application of a central composite design (CCD) using response surface methodology (RSM) for the mathematical description and optimization of DBP formation. Chlorine dose and total organic carbon (TOC) were proven to be the main factors affecting the formation of total chlorinated DBPs, while chlorine dose and bromide concentration were the main parameters affecting the total brominated THMs. Longer contact time promoted a rise in chlorinated DBPs' concentration even in the presence of a minimal amount of organic matter. A maximum production of chlorinated DBPs was observed under a medium TOC value and it reduced at high TOC concentrations, possibly due to the competitive production of brominated THMs. The highest concentrations of chlorinated THMs were observed at chlorine dose 10 mg L(-1) and TOC 5.5 mg L(-1). The formation of brominated DBPs is possible even with a minimum amount of NaOCl in the presence of high concentration of bromide ions. Brominated DBPs were observed in maximum concentrations using 8 mg L(-1) of chlorine in the presence of 300 μg L(-1) bromides. PMID:27178297

  14. A palatable hyperlipidic diet causes obesity and affects brain glucose metabolism in rats

    PubMed Central

    2011-01-01

    Background We have previously shown that either the continuous intake of a palatable hyperlipidic diet (H) or the alternation of chow (C) and an H diet (CH regimen) induced obesity in rats. Here, we investigated whether the time of the start and duration of these feeding regimens are relevant and whether they affect brain glucose metabolism. Methods Male Wistar rats received C, H, or CH diets during various periods of their life spans: days 30-60, days 30-90, or days 60-90. Experiments were performed the 60th or the 90th day of life. Rats were killed by decapitation. The glucose, insulin, leptin plasma concentration, and lipid content of the carcasses were determined. The brain was sliced and incubated with or without insulin for the analysis of glucose uptake, oxidation, and the conversion of [1-14C]-glucose to lipids. Results The relative carcass lipid content increased in all of the H and CH groups, and the H30-60 and H30-90 groups had the highest levels. Groups H30-60, H30-90, CH30-60, and CH30-90 exhibited a higher serum glucose level. Serum leptin increased in all H groups and in the CH60-90 and CH30-90 groups. Serum insulin was elevated in the H30-60, H60-90, CH60-90, CH30-90 groups. Basal brain glucose consumption and hypothalamic insulin receptor density were lower only in the CH30-60 group. The rate of brain lipogenesis was increased in the H30-90 and CH30-90 groups. Conclusion These findings indicate that both H and CH diet regimens increased body adiposity independent treatment and the age at which treatment was started, whereas these diets caused hyperglycemia and affected brain metabolism when started at an early age. PMID:21943199

  15. Fructose and glucose differentially affect aging and carbonyl/oxidative stress parameters in Saccharomyces cerevisiae cells.

    PubMed

    Semchyshyn, Halyna M; Lozinska, Liudmyla M; Miedzobrodzki, Jacek; Lushchak, Volodymyr I

    2011-05-15

    Fructose is commonly used as an industrial sweetener and has been excessively consumed in human diets in the last decades. High fructose intake is causative in the development of metabolic disorders, but the mechanisms underlying fructose-induced disturbances are under debate. Fructose compared to glucose has been found to be a more potent initiator of the glycation reaction. Therefore, we supposed that glucose and fructose might have different vital effects. Here we compare the effects of glucose and fructose on yeast cell viability and markers of carbonyl/oxidative stress. Analysis of the parameters in cells growing on glucose and fructose clearly reveals that yeast growing on fructose has higher levels of carbonyl groups in proteins, α-dicarbonyl compounds and reactive oxygen species. This may explain the observation that fructose-supplemented growth as compared with growth on glucose resulted in more pronounced age-related decline in yeast reproductive ability and higher cell mortality. The results are discussed from the point of view that fructose rather than glucose is more extensively involved in glycation and ROS generation in vivo, yeast aging and development of carbonyl/oxidative stress. It should be noted that carbohydrate restriction used in this study does not reveal a significant difference between markers of aging and carbonyl/oxidative stress in yeasts cultivated on glucose and fructose.

  16. Does aerobic exercise intensity affect health-related parameters in overweight women?

    PubMed

    Botero, João P; Prado, Wagner L; Guerra, Ricardo L F; Speretta, Guilherme F F; Leite, Richard D; Prestes, Jonato; Sanz, Adrián V; Lyons, Scott; de Azevedo, Paulo H S M; Baldissera, Vilmar; Perez, Sergio E A; Dâmaso, Ana; da Silva, Rozinaldo G

    2014-03-01

    The aim of this study was to compare the effect of a cycling training programme performed at intensity corresponding to the lowest value of the respiratory quotient (RQ) versus at intensity corresponding to the ventilatory threshold (VT), on body composition and health-related parameters in overweight women. Thirty-two sedentary obese women (27-42 years old) were studied in a randomized trial of either RQ (n = 17) or VT (n = 15). RQ and VT training sessions were equalized by time (60 min) and performed in a cycloergometer. Anthropometry, body composition, lipid profile, glucose, basal metabolic rate (BMR) and fitness (maximal oxygen uptake) were evaluated before and after 12 weeks of intervention. Body weight, body mass index, fatness and fitness were improved in both groups (P<0·001). Triglycerides (TG) levels decreased only in response to RQ (P<0·001) and fat-free mass (FFM) to VT (P = 0·002). No differences were observed between groups. Both exercise intensities seem to be effective for improving health in overweight women. However, low-intensity compared with the high-intensity exercise training appears to have additional benefits on TG levels and to maintenance of FFM.

  17. Selection of meteorological parameters affecting rainfall estimation using neuro-fuzzy computing methodology

    NASA Astrophysics Data System (ADS)

    Hashim, Roslan; Roy, Chandrabhushan; Motamedi, Shervin; Shamshirband, Shahaboddin; Petković, Dalibor; Gocic, Milan; Lee, Siew Cheng

    2016-05-01

    Rainfall is a complex atmospheric process that varies over time and space. Researchers have used various empirical and numerical methods to enhance estimation of rainfall intensity. We developed a novel prediction model in this study, with the emphasis on accuracy to identify the most significant meteorological parameters having effect on rainfall. For this, we used five input parameters: wet day frequency (dwet), vapor pressure (e̅a), and maximum and minimum air temperatures (Tmax and Tmin) as well as cloud cover (cc). The data were obtained from the Indian Meteorological Department for the Patna city, Bihar, India. Further, a type of soft-computing method, known as the adaptive-neuro-fuzzy inference system (ANFIS), was applied to the available data. In this respect, the observation data from 1901 to 2000 were employed for testing, validating, and estimating monthly rainfall via the simulated model. In addition, the ANFIS process for variable selection was implemented to detect the predominant variables affecting the rainfall prediction. Finally, the performance of the model was compared to other soft-computing approaches, including the artificial neural network (ANN), support vector machine (SVM), extreme learning machine (ELM), and genetic programming (GP). The results revealed that ANN, ELM, ANFIS, SVM, and GP had R2 of 0.9531, 0.9572, 0.9764, 0.9525, and 0.9526, respectively. Therefore, we conclude that the ANFIS is the best method among all to predict monthly rainfall. Moreover, dwet was found to be the most influential parameter for rainfall prediction, and the best predictor of accuracy. This study also identified sets of two and three meteorological parameters that show the best predictions.

  18. Glutamate availability is important in intramuscular amino acid metabolism and TCA cycle intermediates but does not affect peak oxidative metabolism.

    PubMed

    Mourtzakis, M; Graham, T E; González-Alonso, J; Saltin, B

    2008-08-01

    Muscle glutamate is central to reactions producing 2-oxoglutarate, a tricarboxylic acid (TCA) cycle intermediate that essentially expands the TCA cycle intermediate pool during exercise. Paradoxically, muscle glutamate drops approximately 40-80% with the onset of exercise and 2-oxoglutarate declines in early exercise. To investigate the physiological relationship between glutamate, oxidative metabolism, and TCA cycle intermediates (i.e., fumarate, malate, 2-oxoglutarate), healthy subjects trained (T) the quadriceps of one thigh on the single-legged knee extensor ergometer (1 h/day at 70% maximum workload for 5 days/wk), while their contralateral quadriceps remained untrained (UT). After 5 wk of training, peak oxygen consumption (VO2peak) in the T thigh was greater than that in the UT thigh (P<0.05); VO2peak was not different between the T and UT thighs with glutamate infusion. Peak exercise under control conditions revealed a greater glutamate uptake in the T thigh compared with rest (7.3+/-3.7 vs. 1.0+/-0.1 micromol.min(-1).kg wet wt(-1), P<0.05) without increase in TCA cycle intermediates. In the UT thigh, peak exercise (vs. rest) induced an increase in fumarate (0.33+/-0.07 vs. 0.02+/-0.01 mmol/kg dry wt (dw), P<0.05) and malate (2.2+/-0.4 vs. 0.5+/-0.03 mmol/kg dw, P<0.05) and a decrease in 2-oxoglutarate (12.2+/-1.6 vs. 32.4+/-6.8 micromol/kg dw, P<0.05). Overall, glutamate infusion increased arterial glutamate (P<0.05) and maintained this increase. Glutamate infusion coincided with elevated fumarate and malate (P<0.05) and decreased 2-oxoglutarate (P<0.05) at peak exercise relative to rest in the T thigh; there were no further changes in the UT thigh. Although glutamate may have a role in the expansion of the TCA cycle, glutamate and TCA cycle intermediates do not directly affect VO2peak in either trained or untrained muscle.

  19. Nitrogen metabolism, digestive parameters, and protein requirements for the maintenance of buffalo growth.

    PubMed

    Machado, Erica; Yoshimura, Emerson Henri; Santos, Nadine Woruby; Agustinho, Bruna Calvo; Pereira, Lucelia de Moura; Samensari, Rafael Barreiros; de Aguiar, Silvia Cristina; Zeoula, Lucia Maria

    2016-02-01

    The objectives of this study were to evaluate the effect of crude protein (CP) levels in the diet of growing female buffaloes on nitrogen metabolism and estimate protein requirements for maintenance. Four female buffaloes were used, cannulated in the rumen, with an average initial body weight (BW) of 355 ± 3.5 kg, in a Latin square (4 × 4) with four animals and four levels of CP in the diet (70, 90, 110, and 130 g/kg dry matter (DM)) composed of corn silage and concentrate. The increase in protein intake with increasing levels of dietary CP resulted in a higher concentration of ammonia in the rumen and higher ruminal disappearance of PB. However, omasal flow of protein increased linearly as did the efficiency of microbial protein synthesis. The CP levels affected DM intake and other nutrients positively, but there was no effect on nutrient total digestibility. Nitrogen (N) balance, when expressed relative to N intake, had an average value of 48.5 % observed across. The protein requirement for the maintenance of growing female buffaloes was 4.6 g CP/kg BW(0.75). PMID:26590610

  20. The effects of long-term captivity on the metabolic parameters of a small Afrotropical bird.

    PubMed

    Thompson, Lindy J; Brown, Mark; Downs, Colleen T

    2015-04-01

    The few within-species studies on the effects of long-term captivity on avian physiological variables have small samples sizes and contradictory results. Nevertheless, many physiological studies make use of long-term captive birds, assuming the results will be applicable to wild populations. Here we investigated the effects of long-term captivity on a variety of physiological measurements in a relatively small (~12 g) southern African endemic bird, the Cape white-eye (Zosterops virens). Whole animal basal metabolic rate (BMR) and body mass (Mb) were influenced more by long-term captivity than by season, while mass-specific BMR, standard and basal whole animal and mass-specific evaporative water loss (EWL), and respiratory quotient (RQ), were all affected primarily by season, with long-term captivity having less of an effect. We therefore caution that whole animal BMR and Mb of long-term captive birds should not be used as representative of wild populations, and that the origin of study birds should be considered when comparing EWL and RQ of wild and long-term captive birds.

  1. Diet affects resting, but not basal metabolic rate of normothermic Siberian hamsters acclimated to winter.

    PubMed

    Gutowski, Jakub P; Wojciechowski, Michał S; Jefimow, Małgorzata

    2011-12-01

    We examined the effect of different dietary supplements on seasonal changes in body mass (m(b)), metabolic rate (MR) and nonshivering thermogenesis (NST) capacity in normothermic Siberian hamsters housed under semi-natural conditions. Once a week standard hamster food was supplemented with either sunflower and flax seeds, rich in polyunsaturated fatty acids (FA), or mealworms, rich in saturated and monounsaturated FA. We found that neither of these dietary supplements affected the hamsters' normal winter decrease in m(b) and fat content nor their basal MR or NST capacity. NST capacity of summer-acclimated hamsters was lower than that of winter-acclimated ones. The composition of total body fat reflected the fat composition of the dietary supplements. Resting MR below the lower critical temperature of the hamsters, and their total serum cholesterol concentration were lower in hamsters fed a diet supplemented with mealworms than in hamsters fed a diet supplemented with seeds. These results indicate that in mealworm-fed hamsters energy expenditure in the cold is lower than in animals eating a seed-supplemented diet, and that the degree of FA unsaturation of diet affects energetics of heterotherms, not only during torpor, but also during normothermy.

  2. Effect of chronic stress on behavior and cerebral oxidative metabolism in rats with high or low positive affect.

    PubMed

    Mällo, T; Matrov, D; Kõiv, K; Harro, J

    2009-12-15

    The 50 kHz ultrasonic vocalizations (USVs) in rats have been associated with positive affect and rewarding experience. We have previously reported that stable inter-individual differences exist in the expression of these USVs (chirps). We have examined the effect of four weeks of chronic variable stress on cerebral oxidative metabolism, and depression and anxiety related behavior in male and female high (HC) and low (LC) chirping rats. Significant differences in regional oxidative metabolic activity as measured by cytochrome c oxidase (COX) histochemistry were found between male and female rats: Females had lower oxidative metabolism in several brainstem areas such as dorsal and median raphe and pontine nucleus, some cortical areas, and reward-related forebrain regions such as striatum and nucleus accumbens, but higher oxidative metabolism in amygdala and related limbic regions. Chronic stress increased oxidative metabolism in several depression-related brain regions in male but not female LC-rats such as amygdala, hippocampus and anterior thalamus. No systematic behavioral effect of stress was evident in females. In LC males, stress elicited increased levels of 22-kHz USVs, earlier and more stable reduction of weight gain, persistently lower sucrose intake and preference, and higher levels of immobility in the forced swimming test. These behavioral changes, accompanied by increased oxidative metabolism in limbic brain regions, indicate greater vulnerability to stress of male LC-rats, and suggest that in males low inherent positive affectivity predisposes to anxiety and affective disorders.

  3. Estimation of the growth kinetic parameters of Bacillus cereus spores as affected by pulsed light treatment.

    PubMed

    Aguirre, Juan S; de Fernando, Gonzalo García; Hierro, Eva; Hospital, Xavier F; Ordóñez, Juan A; Fernández, Manuela

    2015-06-01

    Quantitative microbial risk assessment requires the knowledge of the effect of food preservation technologies on the growth parameters of the survivors of the treatment. This is of special interest in the case of the new non-thermal technologies that are being investigated for minimal processing of foods. This is a study on the effect of pulsed light technology (PL) on the lag phase of Bacillus cereus spores surviving the treatment and the maximum growth rate (μmax) of the survivors after germination. The D value was estimated as 0.35 J/cm(2) and our findings showed that PL affected the kinetic parameters of the microorganism. A log linear relationship was observed between the lag phase and the intensity of the treatment. Increasing the lethality lengthened the mean lag phase and proportionally increased its variability. A polynomial regression was fitted between the μmax of the survivors and the inactivation achieved. The μmax decreased as intensity increased. From these data, and their comparison to published results on the effect of heat and e-beam irradiation on B. cereus spores, it was observed that the shelf-life of PL treated foods would be longer than those treated with heat and similar to irradiated ones. These findings offer information of interest for the implementation of PL for microbial decontamination in the food industry. PMID:25755081

  4. Estimation of the growth kinetic parameters of Bacillus cereus spores as affected by pulsed light treatment.

    PubMed

    Aguirre, Juan S; de Fernando, Gonzalo García; Hierro, Eva; Hospital, Xavier F; Ordóñez, Juan A; Fernández, Manuela

    2015-06-01

    Quantitative microbial risk assessment requires the knowledge of the effect of food preservation technologies on the growth parameters of the survivors of the treatment. This is of special interest in the case of the new non-thermal technologies that are being investigated for minimal processing of foods. This is a study on the effect of pulsed light technology (PL) on the lag phase of Bacillus cereus spores surviving the treatment and the maximum growth rate (μmax) of the survivors after germination. The D value was estimated as 0.35 J/cm(2) and our findings showed that PL affected the kinetic parameters of the microorganism. A log linear relationship was observed between the lag phase and the intensity of the treatment. Increasing the lethality lengthened the mean lag phase and proportionally increased its variability. A polynomial regression was fitted between the μmax of the survivors and the inactivation achieved. The μmax decreased as intensity increased. From these data, and their comparison to published results on the effect of heat and e-beam irradiation on B. cereus spores, it was observed that the shelf-life of PL treated foods would be longer than those treated with heat and similar to irradiated ones. These findings offer information of interest for the implementation of PL for microbial decontamination in the food industry.

  5. Effect of welding parameters on the heat-affected zone of AISI409 ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Ranjbarnodeh, Eslam; Hanke, Stefanie; Weiss, Sabine; Fischer, Alfons

    2012-10-01

    One of the main problems during the welding of ferritic stainless steels is severe grain growth within the heat-affected zone (HAZ). In the present study, the microstructural characteristics of tungsten inert gas (TIG) welded AISI409 ferritic stainless steel were investigated by electron backscattered diffraction (EBSD), and the effects of welding parameters on the grain size, local misorientation, and low-angle grain boundaries were studied. A 3-D finite element model (FEM) was developed to predict the effects of welding parameters on the holding time of the HAZ above the critical temperature of grain growth. It is found that the base metal is not fully recrystallized. During the welding, complete recrystallization is followed by severe grain growth. A decrease in the number of low-angle grain boundaries is observed within the HAZ. FEM results show that the final state of residual strains is caused by competition between welding plastic strains and their release by recrystallization. Still, the decisive factor for grain growth is heat input.

  6. Atmospheric parameters affecting sea ice losses in the context of gravity desalination

    NASA Astrophysics Data System (ADS)

    Li, Ying; Gu, Wei; Chao, Jinlong; Li, Lantao; Liu, Chengyu; Xu, Yinjun; Chang, Zhiyun; Wu, Linhong; Chen, Jie

    2015-08-01

    Gravity desalination is an important method for obtaining fresh water from sea ice; however, the large amount of ice that is exposed to air for long periods of time sublimates and evaporates, which results in a reduction of the freshwater resource. This paper describes a study of sea ice sublimation and evaporation performed during the winter of 2013 at the western shore of Bohai Bay, China, to determine the relationship between the amount of sublimation and evaporation and the atmospheric parameters. Substantial amounts of the Bohai sea ice sublimated and evaporated, ranging from 15 to 35 % of the total. The sublimation and evaporation amount was significantly different between the day and night and was greater in the daytime because of the relative humidity difference. Sublimation and evaporation is primarily affected by atmospheric parameters, and the amount of sublimation and evaporation exhibits a good linear relationship with the relative humidity and the wind speed; a comprehensive parameters formula was determined for the Bohai Rim in China. A 10 % increase of daily relative humidity will reduce approximately 1.5 kg/m2/day of the sublimation and evaporation, and the amount of sublimation and evaporation increases by 1.76 kg/m2/day when the daily wind speed increases by 1 m/s. To reduce the sublimation and evaporation and maximize the amount of this freshwater resource, gravity desalination sites should be selected where the wind speed is low and the relative humidity is high, i.e., the sea ice should be configured to reduce the adverse effects of sunlight, low humidity, and air turbulence.

  7. External Load Affects Ground Reaction Force Parameters Non-uniformly during Running in Weightlessness

    NASA Technical Reports Server (NTRS)

    DeWitt, John; Schaffner, Grant; Laughlin, Mitzi; Loehr, James; Hagan, R. Donald

    2004-01-01

    Long-term exposure to microgravity induces detrimefits to the musculcskdetal system (Schneider et al., 1995; LeBlanc et al., 2000). Treadmill exercise is used onboard the International Space Station as an exercise countermeasure to musculoskeletal deconditioning due to spaceflight. During locomotive exercise in weightlessness (0G), crewmembers wear a harness attached to an external loading mechanism (EL). The EL pulls the crewmember toward the treadmill, and provides resistive load during the impact and propulsive phases of gait. The resulting forces may be important in stimulating bone maintenance (Turner, 1998). The EL can be applied via a bungee and carabineer clip configuration attached to the harness and can be manipulated to create varying amounts of load levels during exercise. Ground-based research performed using a vertically mounted treadmill found that peak ground reaction forces (GRF) during running at an EL of less than one body weight (BW) are less than those that occur during running in normal gravity (1G) (Davis et al., 1996). However, it is not known how the GRF are affected by the EL in a true OG environment. Locomotion while suspended may result in biomechanics that differ from free running. The purpose of this investigation was to determine how EL affects peak impact force, peak propulsive force, loading rate, and impulse of the GRF during running in 0G. It was hypothesized that increasing EL would result in increases in each GRF parameter.

  8. The mvp2 mutation affects the generative transition through the modification of transcriptome pattern, salicylic acid and cytokinin metabolism in Triticum monococcum.

    PubMed

    Boldizsár, Ákos; Vanková, Radomíra; Novák, Aliz; Kalapos, Balázs; Gulyás, Zsolt; Pál, Magda; Floková, Kristyna; Janda, Tibor; Galiba, Gábor; Kocsy, Gábor

    2016-09-01

    Wild type and mvp2 (maintained vegetative phase) deletion mutant T. monococcum plants incapable of flowering were compared in order to determine the effect of the deleted region of chromosome 5A on transcript profile and hormone metabolism. This region contains the vernalization1 (VRN1) gene, a major regulator of the vegetative/generative transition. Transcript profiling in the crowns of T. monococcum during the transition and the subsequent formation of flower primordia showed that 306 genes were affected by the mutation, 198 by the developmental phase and 14 by the interaction of these parameters. In addition, 546 genes were affected by two or three factors. The genes controlled by the deleted region encode transcription factors, antioxidants and enzymes of hormone, carbohydrate and amino acid metabolism. The observed changes in the expression of the gene encoding phenylalanine ammonia lyase (PAL) might indicate the effect of mvp2 mutation on the metabolism of salicylic acid, which was corroborated by the differences in 2-hydroxycinnamic acid and cinnamic acid contents in both of the leaves and crowns, and in the concentrations of salicylic acid and benzoic acid in crowns during the vegetative/generative transition. The amount and ratio of active cytokinins and their derivatives (ribosides, glucosides and phosphates) were affected by developmental changes as well as by mvp2 mutation, too. PMID:27450491

  9. Multidirectional Time-Dependent Effect of Sinigrin and Allyl Isothiocyanate on Metabolic Parameters in Rats

    PubMed Central

    2010-01-01

    Sinigrin (SIN) and allyl isothiocyanate (AITC) are compounds found in high concentrations in Brassica family vegetables, especially in Brussels sprouts. Recently, they have been used as a nutrition supplement for their preventive and medicinal effect on some types of cancer and other diseases. In this research, nutritional significance of parent glucosinolate sinigrin 50 μmol/kg b. w./day and its degradation product allyl isothiocyanate 25 μmol/kg b. w./day and 50 μmol/kg b. w./day was studied by the evaluation of their influence on some parameters of carbohydrate and lipid metabolism in an animal rat model in vivo after their single (4 h) and 2 weeks oral administration. Additionally, the aim of this trial was to evaluate the direct action of AITC on basal and epinephrine-induced lipolysis in isolated rat adipocytes at concentration 1 μM, 10 μM and 100 μM in vitro. Sole AITC after 4 h of its ingestion caused liver triacylglycerols increment at both doses and glycaemia only at the higher dose. Multiple SIN treatment showed its putative bioconversion into AITC. It was found that SIN and AITC multiple administration in the same way strongly disturbed lipid and carbohydrate homeostasis, increasing esterified and total cholesterol, free fatty acids and lowering tracylglycerols in the blood serum. Additionally, AITC at both doses elevated insulinaemia and liver glycogen enhancement. The in vitro experiment revealed that AITC potentiated basal lipolysis process at 10 μM, and had stimulatory effect on epinephrine action at 1 μM and 10 μM. The results of this study demonstrated that the effect of SIN and AITC is multidirectional, indicating its impact on many organs like liver as well as pancreas, intestine in vivo action and rat adipocytes in vitro. Whilst consumption of cruciferous vegetables at levels currently considered “normal” seems to be beneficial to human health, this data suggest that any large increase in intake could conceivably lead

  10. CONTINUOSLY STIRRED TANK REACTOR PARAMETERS THAT AFFECT SLUDGE BATCH 6 SIMULANT PROPERTIES

    SciTech Connect

    Newell, J.; Lambert, D.; Stone, M.; Fernandez, A.

    2010-05-28

    ). Precipitated MnO{sub 2} is combined with metal nitrates and fed into the CSTR. The metals are precipitated by a caustic NaOH stream. The rates at which these streams are added allows for pH adjustment of the mixture. A graphical representation of this process is given in Figure 1. In using the CSTR method for developing simulant, there are various parameters that can be adjusted in order to effectuate a physical change in the resulting simulant: pH, temperature, mixing speed, and flow rate. How will changing these parameters affect the physical properties of the sludge simulant? The ability to determine which parameter affects a particular property could allow one to develop a simulant that would better match the physical characteristics of HLW sludge.

  11. Modulation of Glycosaminoglycans Affects PrPSc Metabolism but Does Not Block PrPSc Uptake

    PubMed Central

    Wolf, Hanna; Graßmann, Andrea; Bester, Romina; Hossinger, André; Möhl, Christoph; Paulsen, Lydia; Groschup, Martin H.; Schätzl, Hermann

    2015-01-01

    ABSTRACT Mammalian prions are unconventional infectious agents composed primarily of the misfolded aggregated host prion protein PrP, termed PrPSc. Prions propagate by the recruitment and conformational conversion of cellular prion protein into abnormal prion aggregates on the cell surface or along the endocytic pathway. Cellular glycosaminoglycans have been implicated as the first attachment sites for prions and cofactors for cellular prion replication. Glycosaminoglycan mimetics and obstruction of glycosaminoglycan sulfation affect prion replication, but the inhibitory effects on different strains and different stages of the cell infection have not been thoroughly addressed. We examined the effects of a glycosaminoglycan mimetic and undersulfation on cellular prion protein metabolism, prion uptake, and the establishment of productive infections in L929 cells by two mouse-adapted prion strains. Surprisingly, both treatments reduced endogenous sulfated glycosaminoglycans but had divergent effects on cellular PrP levels. Chemical or genetic manipulation of glycosaminoglycans did not prevent PrPSc uptake, arguing against their roles as essential prion attachment sites. However, both treatments effectively antagonized de novo prion infection independently of the prion strain and reduced PrPSc formation in chronically infected cells. Our results demonstrate that sulfated glycosaminoglycans are dispensable for prion internalization but play a pivotal role in persistently maintained PrPSc formation independent of the prion strain. IMPORTANCE Recently, glycosaminoglycans (GAGs) became the focus of neurodegenerative disease research as general attachment sites for cell invasion by pathogenic protein aggregates. GAGs influence amyloid formation in vitro. GAGs are also found in intra- and extracellular amyloid deposits. In light of the essential role GAGs play in proteinopathies, understanding the effects of GAGs on protein aggregation and aggregate dissemination is crucial

  12. Decreased Zinc Availability Affects Glutathione Metabolism in Neuronal Cells and in the Developing Brain

    PubMed Central

    Omata, Yo; Salvador, Gabriela A.; Oteiza, Patricia I.

    2013-01-01

    A deficit in zinc (Zn) availability can increase cell oxidant production, affect the antioxidant defense system, and trigger oxidant-sensitive signals in neuronal cells. This work tested the hypothesis that a decreased Zn availability can affect glutathione (GSH) metabolism in the developing rat brain and in neuronal cells in culture, as well as the capacity of human neuroblastoma IMR-32 cells to upregulate GSH when challenged with dopamine (DA). GSH levels were low in the brain of gestation day 19 (GD19) fetuses from dams fed marginal Zn diets throughout gestation and in Zn-deficient IMR-32 cells. γ-Glutamylcysteine synthetase (GCL), the first enzyme in the GSH synthetic pathway, was altered by Zn deficiency (ZD). The protein and mRNA levels of the GCL modifier (GCLM) and catalytic (GCLC) subunits were lower in the Zn-deficient GD19 fetal brain and in IMR-32 cells compared with controls. The nuclear translocation of transcription factor nuclear factor (erythroid-derived 2)-like 2, which controls GCL transcription, was impaired by ZD. Posttranslationally, the caspase-3-dependent GCLC cleavage was high in Zn-deficient IMR-32 cells. Cells challenged with DA showed an increase in GCLM and GCLC protein and mRNA levels and a consequent increase in GSH concentration. Although Zn-deficient cells partially upregulated GCL subunits after exposure to DA, GSH content remained low. In summary, results show that a low Zn availability affects the GSH synthetic pathway in neuronal cells and fetal brain both at transcriptional and posttranslational levels. This can in part underlie the GSH depletion associated with ZD and the high sensitivity of Zn-deficient neurons to pro-oxidative stressors. PMID:23377617

  13. Metabolic rate, latitude and thermal stability of roosts, but not phylogeny, affect rewarming rates of bats.

    PubMed

    Menzies, Allyson K; Webber, Quinn M R; Baloun, Dylan E; McGuire, Liam P; Muise, Kristina A; Coté, Damien; Tinkler, Samantha; Willis, Craig K R

    2016-10-01

    Torpor is an adaptation that allows many endotherms to save energy by abandoning the energetic cost of maintaining elevated body temperatures. Although torpor reduces energy consumption, the metabolic heat production required to arouse from torpor is energetically expensive and can impact the overall cost of torpor. The rate at which rewarming occurs can impact the cost of arousal, therefore, factors influencing rewarming rates of heterothermic endotherms could have influenced the evolution of rewarming rates and overall energetic costs of arousal from torpor. Bats are a useful taxon for studies of ecological and behavioral correlates of rewarming rate because of the widespread expression of heterothermy and ecological diversity across the >1200 known species. We used a comparative analysis of 45 bat species to test the hypothesis that ecological, behavioral, and physiological factors affect rewarming rates. We used basal metabolic rate (BMR) as an index of thermogenic capacity, and local climate (i.e., latitude of geographic range), roost stability and maximum colony size as ecological and behavioral predictors of rewarming rate. After controlling for phylogeny, high BMR was associated with rapid rewarming while species that live at higher absolute latitudes and in less thermally stable roosts also rewarmed most rapidly. These patterns suggests that some bat species rely on passive rewarming and social thermoregulation to reduce costs of rewarming, while others might rely on thermogenic capacity to maintain rapid rewarming rates in order to reduce energetic costs of arousal. Our results highlight species-specific traits associated with maintaining positive energy balance in a wide range of climates, while also providing insight into possible mechanisms underlying the evolution of heterothermy in endotherms.

  14. Metabolic rate, latitude and thermal stability of roosts, but not phylogeny, affect rewarming rates of bats.

    PubMed

    Menzies, Allyson K; Webber, Quinn M R; Baloun, Dylan E; McGuire, Liam P; Muise, Kristina A; Coté, Damien; Tinkler, Samantha; Willis, Craig K R

    2016-10-01

    Torpor is an adaptation that allows many endotherms to save energy by abandoning the energetic cost of maintaining elevated body temperatures. Although torpor reduces energy consumption, the metabolic heat production required to arouse from torpor is energetically expensive and can impact the overall cost of torpor. The rate at which rewarming occurs can impact the cost of arousal, therefore, factors influencing rewarming rates of heterothermic endotherms could have influenced the evolution of rewarming rates and overall energetic costs of arousal from torpor. Bats are a useful taxon for studies of ecological and behavioral correlates of rewarming rate because of the widespread expression of heterothermy and ecological diversity across the >1200 known species. We used a comparative analysis of 45 bat species to test the hypothesis that ecological, behavioral, and physiological factors affect rewarming rates. We used basal metabolic rate (BMR) as an index of thermogenic capacity, and local climate (i.e., latitude of geographic range), roost stability and maximum colony size as ecological and behavioral predictors of rewarming rate. After controlling for phylogeny, high BMR was associated with rapid rewarming while species that live at higher absolute latitudes and in less thermally stable roosts also rewarmed most rapidly. These patterns suggests that some bat species rely on passive rewarming and social thermoregulation to reduce costs of rewarming, while others might rely on thermogenic capacity to maintain rapid rewarming rates in order to reduce energetic costs of arousal. Our results highlight species-specific traits associated with maintaining positive energy balance in a wide range of climates, while also providing insight into possible mechanisms underlying the evolution of heterothermy in endotherms. PMID:27317837

  15. Altered cobalamin metabolism in Escherichia coli btuR mutants affects btuB gene regulation.

    PubMed Central

    Lundrigan, M D; Kadner, R J

    1989-01-01

    Synthesis of the Escherichia coli outer membrane protein BtuB, which mediates the binding and transport of vitamin B12, is repressed when cells are grown in the presence of vitamin B12. Expression of btuB-lacZ fusions was also found to be repressed, and selection for constitutive production of beta-galactosidase in the presence of vitamin B12 yielded mutations at btuR. The btuR locus, at 27.9 min on the chromosome map, was isolated on a 952-base-pair EcoRV fragment, and its nucleotide sequence was determined. The BtuR protein was identified in maxicells as a 22,000-dalton polypeptide, as predicted from the nucleotide sequence. Strains mutant at btuR had negligible pools of adenosylcobalamin but did convert vitamin B12 into other derivatives. Although btuB expression in a btuR strain could not be repressed by cyano- or methylcobalamin, it was repressed by adenosylcobalamin. Growth on ethanolamine as the sole nitrogen source requires adenosylcobalamin. btuR mutants grew on ethanolamine but were affected in the length of the lag period before initiation of growth, which suggested that an alternative route for adenosylcobalamin synthesis might exist. No mutations were found that conferred constitutive btuB expression in the presence of adenosylcobalamin. Other genes near btuR may also be involved in cobalamin metabolism, as suggested from the complementation behavior of strains generated by excision of the Tn10 element in btuR. These results indicated that the btuR product is involved in the metabolism of adenosylcobalamin and that this cofactor, or some derivative, controls btuB expression. Images PMID:2644187

  16. Multiple dietary supplements do not affect metabolic and cardio-vascular health.

    PubMed

    Soare, Andreea; Weiss, Edward P; Holloszy, John O; Fontana, Luigi

    2014-02-01

    Dietary supplements are widely used for health purposes. However, little is known about the metabolic and cardiovascular effects of combinations of popular over-the-counter supplements, each of which has been shown to have anti-oxidant, anti-inflammatory and pro-longevity properties in cell culture or animal studies. This study was a 6-month randomized, single-blind controlled trial, in which 56 non-obese (BMI 21.0-29.9 kg/m(2)) men and women, aged 38 to 55 yr, were assigned to a dietary supplement (SUP) group or control (CON) group, with a 6-month follow-up. The SUP group took 10 dietary supplements each day (100 mg of resveratrol, a complex of 800 mg each of green, black, and white tea extract, 250 mg of pomegranate extract, 650 mg of quercetin, 500 mg of acetyl-l-carnitine, 600 mg of lipoic acid, 900 mg of curcumin, 1 g of sesamin, 1.7 g of cinnamon bark extract, and 1.0 g fish oil). Both the SUP and CON groups took a daily multivitamin/mineral supplement. The main outcome measures were arterial stiffness, endothelial function, biomarkers of inflammation and oxidative stress, and cardiometabolic risk factors. Twenty-four weeks of daily supplementation with 10 dietary supplements did not affect arterial stiffness or endothelial function in nonobese individuals. These compounds also did not alter body fat measured by DEXA, blood pressure, plasma lipids, glucose, insulin, IGF-1, and markers of inflammation and oxidative stress. In summary, supplementation with a combination of popular dietary supplements has no cardiovascular or metabolic effects in non-obese relatively healthy individuals.

  17. Correlation between nitrate concentration in groundwater and parameters affecting aquifer intrinsic vulnerability

    NASA Astrophysics Data System (ADS)

    Debernardi, Laura; de Luca, Domenico Antonio; Lasagna, Manuela

    2008-08-01

    This paper is the result of a study which was carried out in order to verify if the traditional methods to evaluate the intrinsic vulnerability or vulnerability related parameters, are able to clarify the problem of nitrate pollution in groundwater. In particular, the aim was to evaluate limitations and problems connected to aquifer vulnerability methods applied to nitrate contamination prevision in groundwater. The investigation was carried out by comparing NO3 - concentrations, measured in March and November 2004 in the shallow aquifer, and the vulnerability classes, obtained by using GOD and TOT methods. Moreover, it deals with a comparison between NO3 - concentrations and single parameters (depth to water table, land use and nitrogen input). The study area is the plain sector of Piemonte (Northern Italy), where an unconfined aquifer nitrate contamination exists. In this area the anthropogenic presence is remarkable and the input of N-fertilizers and zootechnical effluents to the soil cause a growing amount of nitrates in groundwater. This approach, used in a large area (about 10,000 km2) and in several monitoring wells (about 500), allowed to compare the efficiency of different vulnerability methods and to verify the importance of every parameter on the nitrate concentrations in the aquifer. Furthermore it allowed to obtain interesting correlations in different hydrogeological situations. Correlations between depth to water table, land use and nitrogen input to the soil with nitrate concentrations in groundwater show unclear situations: in fact these comparisons describe the phenomenon trend and highlight the maximum nitrate concentrations for each circumstance but often show wide ranges of possible nitrate concentrations. The same situation could be observed by comparing vulnerability indexes and nitrate concentrations in groundwater. These results suggest that neither single parameters nor vulnerability methods (GOD and TOT) are able to describe individually

  18. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.

    PubMed

    Moisset, P; Vaisman, D; Cintolesi, A; Urrutia, J; Rapaport, I; Andrews, B A; Asenjo, J A

    2012-09-01

    A continuous model of a metabolic network including gene regulation to simulate metabolic fluxes during batch cultivation of yeast Saccharomyces cerevisiae was developed. The metabolic network includes reactions of glycolysis, gluconeogenesis, glycerol and ethanol synthesis and consumption, the tricarboxylic acid cycle, and protein synthesis. Carbon sources considered were glucose and then ethanol synthesized during growth on glucose. The metabolic network has 39 fluxes, which represent the action of 50 enzymes and 64 genes and it is coupled with a gene regulation network which defines enzyme synthesis (activities) and incorporates regulation by glucose (enzyme induction and repression), modeled using ordinary differential equations. The model includes enzyme kinetics, equations that follow both mass-action law and transport as well as inducible, repressible, and constitutive enzymes of metabolism. The model was able to simulate a fermentation of S. cerevisiae during the exponential growth phase on glucose and the exponential growth phase on ethanol using only one set of kinetic parameters. All fluxes in the continuous model followed the behavior shown by the metabolic flux analysis (MFA) obtained from experimental results. The differences obtained between the fluxes given by the model and the fluxes determined by the MFA do not exceed 25% in 75% of the cases during exponential growth on glucose, and 20% in 90% of the cases during exponential growth on ethanol. Furthermore, the adjustment of the fermentation profiles of biomass, glucose, and ethanol were 95%, 95%, and 79%, respectively. With these results the simulation was considered successful. A comparison between the simulation of the continuous model and the experimental data of the diauxic yeast fermentation for glucose, biomass, and ethanol, shows an extremely good match using the parameters found. The small discrepancies between the fluxes obtained through MFA and those predicted by the differential

  19. A perturbation-based estimate algorithm for parameters of coupled ordinary differential equations, applications from chemical reactions to metabolic dynamics.

    PubMed

    Shiang, Keh-Dong

    2009-05-01

    Conversion of complex phenomena in medicine, pharmaceutical and systems biology fields to a system of ordinary differential equations (ODEs) and identification of parameters from experimental data and theoretical model equations can be treated as a computational engine to arrive at the best solution for chemical reactions, biochemical metabolic and intracellular pathways. Particularly, to gain insight into the pathophysiology of diabetes's metabolism in our current clinical studies, glucose kinetics and insulin secretion can be assessed by the ODE model. Parameter estimation is usually performed by minimizing a cost function which quantifies the difference between theoretical model predictions and experimental measurements. This paper explores how the numerical method and iteration program are developed to search ODE's parameters using the perturbation method, instead of the Gauss-Newton or Levenberg-Marquardt method. Several interesting applications, including Lotka-Volterra chemical reaction system, Lorenz chaos, dynamics of tetracycline hydrochloride concentration, and Bergman's Minimal Model for glucose kinetics are illustrated.

  20. Relationship Between Body Composition Parameters and Metabolic Syndrome in Young Thai Adults

    PubMed Central

    Namwongprom, Sirianong; Rerkasem, Kittipan; Wongthanee, Antika; Pruenglampoo, Sakda; Mangklabruks, Ampica

    2014-01-01

    Objective: The aim of this study was to evaluate the relationship between body composition parameters, i.e. waist circumference, android fat mass (AFM), gynoid fat mass (GFM), android to gynoid fat mass ratio (AG ratio) and metabolic syndrome (MS) risk components in young Thai adults. Methods: This was a cross-sectional study conducted among 391 adolescents (174 male, 217 female). The body mass index (BMI), waist circumference, blood pressure, triglyceride, high-density lipoprotein (HDL) cholesterol and glucose levels were determined. AFM, GFM and AG ratio were assessed by dual-energy X-ray absorptiometry (DXA). Linear regression analysis was done to assess the relationship of waist circumference, AFM, GFM and AG ratio with MS risk components’ score, separately. Results: Among 391 young adults aged 18.5-21.8 years, MS was found in 5.9%. Participants with MS (n=23) had a significantly higher weight, height and BMI than those without MS. There was no statistically significant difference in bone mineral density between the two groups. At univariable linear regression analysis, waist circumferences, AFM, GFM and AG ratio showed significant relationship with MS risk components’ score. However, after adjusting for gender, birth weight and BMI, AG ratio demonstrated greater relationship with MS risk components’ score (β 1.89, 95%CI 1.096-2.978) than waist circumference (β 0.046, 95%CI 0.033-0.058) and AFM (β 0.979, 95%CI 0.667-1.290). No significant association was observed between GFM and MS risk components’ score (β 0.077, 95%CI -0.089-0.243). Conclusion: The results from this study indicated that AG ratio is a stronger predictor of MS than waist circumference and AFM in young Thai adults. The role of AG ratio for the diagnosis of MS needs to be further investigated. PMID:25541893

  1. Hyperhomocysteinemia as a metabolic disorder parameter is independently associated with the severity of coronary heart disease

    PubMed Central

    Liu, Chenggui; Yang, Yinzhong; Peng, Duanliang; Chen, Linong; Luo, Jun

    2015-01-01

    Objectives: To study the associations between hyperhomocysteinemia (HHcy) and the severity of coronary heart disease (CHD). Methods: We retrospectively analyzed metabolic parameters, anthropometric variables, and life style habits in 292 CHD patients of different categories, and 100 controlled non-CHD patients with chest pain symptoms who were hospitalized in the Department of Cardiovascular Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China between October 2013 and September 2014. Results: The prevalence of HHcy in CHD patients was 79.1%, while only 5% of non-CHD patients had elevated serum homocysteine (Hcy) concentrations. The prevalence of HHcy significantly increased from 5% in non-CHD controls to 66% in the stable angina pectoris (SAP) group, to 81.9% in the unstable angina pectoris group, and to 93.15% in the acute myocardial infarction (AMI) group (p<0.001). After adjusting for confounding factors, multivariate logistic regression analysis showed that HHcy was independently associated with CHD category (AMI versus SAP, odds ratio [6.38], 95% confidence interval; 1.18-34.46). The Hcy was negatively correlated with folic acid (r=-0.67, p<0.001) and vitamin B12 (r=-0.56, p<0.001). Of the CHD patients with HHcy, 51.1% had low folic acid and 42% had low vitamin B12, 7 or 5 times higher than that of CHD patients with normal-low Hcy concentrations (p<0.001). Conclusion: Hyperhomocysteinemia is independently associated with the severity of CHD, and significantly correlated with low status of folic acid and vitamin B12 in CHD patients. PMID:26108589

  2. Metabolic and reproductive parameters in prepubertal gilts after omega-3 supplementation in the diet.

    PubMed

    Moreira, F; Cheuiche, Z M G; Rizzoto, G; Santos, M Q; Schuch, M S; Flach, M J; Gasperin, B G; Bianchi, I; Lucia, T

    2016-07-01

    Polyunsaturated fatty acids may benefit reproductive performance of female swine. This study evaluated metabolic and reproductive parameters of prepubertal finishing gilts fed with fish oil as a natural source of omega-3 fatty acids (6.88g/d) (n=12) over a period of 45 d. Gilts in the control group were fed soybean oil (n=13). Body weight and backfat were determined at 15-d intervals. Serum levels of leptin, IGF-1, insulin, cholesterol and triglycerides were measured at the beginning (D0) and at the end of the period (D45). Immunolabeling intensity for leptin and its receptor (ObRb) was assessed in oocytes of preantral follicles. Gilts fed omega-3 presented slightly heavier uteri (P=0.09) than control gilts, but there was no effect on body weight and backfat (P>0.05). Cholesterol serum levels tended to be lower at D45 for omega-3 supplemented gilts than for controls (P=0.06). Triglycerides and IGF-1 serum levels were lower at D45 than at D0 for control gilts (P<0.05), but unaltered for supplemented gilts. Insulin levels were unaffected by supplementation (P>0.05), but were greater at D45 than at D0 in both treatments (P<0.05). Immunolabeling for leptin and ObRb in oocytes included in preantral follicles was more intense for supplemented gilts than for control gilts (P<0.05). Omega-3 supplementation was associated with reduced serum cholesterol level and more intense staining for leptin in oocytes of prepubertal gilts, which suggests some involvement on triggering puberty.

  3. [Peripheral blood parameters in lipid metabolic disturbances in Far North migrants].

    PubMed

    Buiak, M A; Salamatina, L V; Agbalian, E V; Samsonova, E G

    2009-03-01

    The authors present the results of a study of peripheral blood in Far North newcomers with lipid metabolic disturbances. All the dwellers having lipid metabolic disturbances are shown to have elevated counts of white blood cells, with the greatest changes occurring in the levels of blood corpuscles in subjects with hypertriglyceridemia.

  4. Effect of Zinc Source on Hematological, Metabolic Parameters and Mineral Balance in Lambs.

    PubMed

    Aliarabi, Hassan; Fadayifar, Amir; Tabatabaei, Mohammad Mehdi; Zamani, Pouya; Bahari, Aliasghar; Farahavar, Abbas; Dezfoulian, Amir Hossein

    2015-11-01

    This experiment was conducted to study the effects of different sources of zinc (Zn) on blood metabolites and balances of some minerals in lambs. In the first part, 20 6-7-month-old lambs were randomly allotted to four treatments including (1) basal diet containing 22.47 mg Zn/kg DM without supplementary Zn (control), (2) basal diet + 40 mg Zn/kg DM as ZnSO4 (ZnSO4 40), (3) basal diet + 20 mg Zn/kg DM as Zn-proteinate (Zn-Pro 20), and (4) basal diet + 40 mg Zn/kg DM as Zn-proteinate (Zn-Pro 40). Blood samples were taken on days 0, 28, and 65 before morning feeding. In the second part, four lambs from each treatment were randomly transferred to metabolic cages to evaluate the effects of different sources of Zn on N, Zn, Fe, and Cu retentions. This trial consisted of 18 days, with the first 12 days as the adaptation period followed by 6 days of sample collection. The results of this study showed that the source of Zinc had no significant effect on the analyzed parameters. Average daily gain and feed efficiency were improved by Zn supplementation (P < 0.05). Daily feed intake, plasma glucose, Fe and Cu concentrations, serum total antioxidant capacity, red blood cell count, packed cell volume, and hemoglobin concentration did not differ significantly between treatments (P > 0.05). Plasma Zn concentration, alkaline phosphatase (ALP) and bone-specific alkaline phosphatase (BALP) activity, and white blood cell and lymphocyte count differed significantly between control and Zn-supplemented groups (P < 0.05) as Zn supplementation improved these parameters. Nitrogen, Fe, and Cu retentions did not differ between treatments (P > 0.05). Zinc retention showed a significant difference between control and Zn-supplemented groups (P < 0.05), but there were no significant differences among the Zn-supplemented groups. The results of this study show that Zn supplementation improved performance and zinc retention in lambs. However, there were no significant

  5. Effect of Zinc Source on Hematological, Metabolic Parameters and Mineral Balance in Lambs.

    PubMed

    Aliarabi, Hassan; Fadayifar, Amir; Tabatabaei, Mohammad Mehdi; Zamani, Pouya; Bahari, Aliasghar; Farahavar, Abbas; Dezfoulian, Amir Hossein

    2015-11-01

    This experiment was conducted to study the effects of different sources of zinc (Zn) on blood metabolites and balances of some minerals in lambs. In the first part, 20 6-7-month-old lambs were randomly allotted to four treatments including (1) basal diet containing 22.47 mg Zn/kg DM without supplementary Zn (control), (2) basal diet + 40 mg Zn/kg DM as ZnSO4 (ZnSO4 40), (3) basal diet + 20 mg Zn/kg DM as Zn-proteinate (Zn-Pro 20), and (4) basal diet + 40 mg Zn/kg DM as Zn-proteinate (Zn-Pro 40). Blood samples were taken on days 0, 28, and 65 before morning feeding. In the second part, four lambs from each treatment were randomly transferred to metabolic cages to evaluate the effects of different sources of Zn on N, Zn, Fe, and Cu retentions. This trial consisted of 18 days, with the first 12 days as the adaptation period followed by 6 days of sample collection. The results of this study showed that the source of Zinc had no significant effect on the analyzed parameters. Average daily gain and feed efficiency were improved by Zn supplementation (P < 0.05). Daily feed intake, plasma glucose, Fe and Cu concentrations, serum total antioxidant capacity, red blood cell count, packed cell volume, and hemoglobin concentration did not differ significantly between treatments (P > 0.05). Plasma Zn concentration, alkaline phosphatase (ALP) and bone-specific alkaline phosphatase (BALP) activity, and white blood cell and lymphocyte count differed significantly between control and Zn-supplemented groups (P < 0.05) as Zn supplementation improved these parameters. Nitrogen, Fe, and Cu retentions did not differ between treatments (P > 0.05). Zinc retention showed a significant difference between control and Zn-supplemented groups (P < 0.05), but there were no significant differences among the Zn-supplemented groups. The results of this study show that Zn supplementation improved performance and zinc retention in lambs. However, there were no significant

  6. Diet-Induced Alterations of Host Cholesterol Metabolism Are Likely To Affect the Gut Microbiota Composition in Hamsters

    PubMed Central

    Martínez, Inés; Perdicaro, Diahann J.; Brown, Andrew W.; Hammons, Susan; Carden, Trevor J.; Carr, Timothy P.; Eskridge, Kent M.

    2013-01-01

    The gastrointestinal microbiota affects the metabolism of the mammalian host and has consequences for health. However, the complexity of gut microbial communities and host metabolic pathways make functional connections difficult to unravel, especially in terms of causation. In this study, we have characterized the fecal microbiota of hamsters whose cholesterol metabolism was extensively modulated by the dietary addition of plant sterol esters (PSE). PSE intake induced dramatic shifts in the fecal microbiota, reducing several bacterial taxa within the families Coriobacteriaceae and Erysipelotrichaceae. The abundance of these taxa displayed remarkably high correlations with host cholesterol metabolites. Most importantly, the associations between several bacterial taxa with fecal and biliary cholesterol excretion showed an almost perfect fit to a sigmoidal nonlinear model of bacterial inhibition, suggesting that host cholesterol excretion can shape microbiota structure through the antibacterial action of cholesterol. In vitro experiments suggested a modest antibacterial effect of cholesterol, and especially of cholesteryl-linoleate, but not plant sterols when included in model bile micelles. The findings obtained in this study are relevant to our understanding of gut microbiota-host lipid metabolism interactions, as they provide the first evidence for a role of cholesterol excreted with the bile as a relevant host factor that modulates the gut microbiota. The findings further suggest that the connections between Coriobacteriaceae and Erysipelotrichaceae and host lipid metabolism, which have been observed in several studies, could be caused by a metabolic phenotype of the host (cholesterol excretion) affecting the gut microbiota. PMID:23124234

  7. Parameters affecting in vitro oxidation/folding of maurotoxin, a four-disulphide-bridged scorpion toxin.

    PubMed Central

    di Luccio, E; Azulay, D O; Regaya, I; Fajloun, Z; Sandoz, G; Mansuelle, P; Kharrat, R; Fathallah, M; Carrega, L; Estève, E; Rochat, H; De Waard, M; Sabatier, J M

    2001-01-01

    Maurotoxin (MTX) is a 34-mer scorpion toxin cross-linked by four disulphide bridges that acts on various K(+) channel subtypes. MTX adopts a disulphide bridge organization of the type C1-C5, C2-C6, C3-C4 and C7-C8, and folds according to the common alpha/beta scaffold reported for other known scorpion toxins. Here we have investigated the process and kinetics of the in vitro oxidation/folding of reduced synthetic L-MTX (L-sMTX, where L-MTX contains only L-amino acid residues). During the oxidation/folding of reduced L-sMTX, the oxidation intermediates were blocked by iodoacetamide alkylation of free cysteine residues, and analysed by MS. The L-sMTX intermediates appeared sequentially over time from the least (intermediates with one disulphide bridge) to the most oxidized species (native-like, four-disulphide-bridged L-sMTX). The mathematical formulation of the diffusion-collision model being inadequate to accurately describe the kinetics of oxidation/folding of L-sMTX, we have formulated a derived mathematical description that better fits the experimental data. Using this mathematical description, we have compared for the first time the oxidation/folding of L-sMTX with that of D-sMTX, its stereoisomer that contains only D-amino acid residues. Several experimental parameters, likely to affect the oxidation/folding process, were studied further; these included temperature, pH, ionic strength, redox potential and concentration of reduced toxin. We also assessed the effects of some cellular enzymes, peptidylprolyl cis-trans isomerase (PPIase) and protein disulphide isomerase (PDI), on the folding pathways of reduced L-sMTX and D-sMTX. All the parameters tested affect the oxidative folding of sMTX, and the kinetics of this process were indistinguishable for L-sMTX and D-sMTX, except when stereospecific enzymes were used. The most efficient conditions were found to be: 50 mM Tris/HCl/1.4 mM EDTA, pH 7.5, supplemented by 0.5 mM PPIase and 50 units/ml PDI for 0.1 m

  8. Dietary Interventions and Changes in Cardio-Metabolic Parameters in Metabolically Healthy Obese Subjects: A Systematic Review with Meta-Analysis

    PubMed Central

    Stelmach-Mardas, Marta; Walkowiak, Jarosław

    2016-01-01

    The aim of this systematic review was to assess the effect of diet on changes in parameters describing the body size phenotype of metabolically healthy obese subjects. The databases Medline, Scopus, Web of Knowledge and Embase were searched for clinical studies carried out between 1958 and June 2016 that reported the effect of dietary intervention on BMI, blood pressure, concentration of fasting triglyceride (TG), high density lipoprotein cholesterol (HDL-C), fasting glucose level, the homoeostatic model assessment of insulin resistance (HOMA-IR) and high sensitivity C-Reactive Protein (hsCRP) in metabolically healthy, obese subjects. Twelve clinical studies met inclusion criteria. The combined analyzed population consists of 1827 subjects aged 34.4 to 61.1 with a BMI > 30 kg/m2. Time of intervention ranged from eight to 104 weeks. The baseline characteristics related to lipid profile were more favorable for metabolically healthy obese than for metabolically unhealthy obese. The meta-analyses revealed a significant associations between restricted energy diet and BMI (95% confidence interval (CI): −0.88, −0.19), blood pressure (systolic blood pressure (SBP): −4.73 mmHg; 95% CI: −7.12, −2.33; and diastolic blood pressure (DBP): −2.75 mmHg; 95% CI: −4.30, −1.21) and TG (−0.11 mmol/l; 95% CI: −0.16, −0.06). Changes in fasting glucose, HOMA-IR and hsCRP did not show significant changes. Sufficient evidence was not found to support the use of specific diets in metabolically healthy obese subjects. This analysis suggests that the effect of caloric restriction exerts its effects through a reduction in BMI, blood pressure and triglycerides in metabolically healthy obese (MHO) patients. PMID:27483307

  9. Dietary arginine affects energy metabolism through polyamine turnover in juvenile Atlantic salmon (Salmo salar).

    PubMed

    Andersen, Synne M; Holen, Elisabeth; Aksnes, Anders; Rønnestad, Ivar; Zerrahn, Jens-Erik; Espe, Marit

    2013-12-14

    In the present study, quadruplicate groups of juvenile Atlantic salmon (Salmo salar) were fed plant protein-based diets with increasing arginine inclusions (range 28·8-37·4 g/kg DM) to investigate whether arginine supplementation affects growth and lipid accumulation through an elevated polyamine turnover. Dietary lysine was held at a constant concentration, just below the requirement. All other amino acids were balanced and equal in the diets. Arginine supplementation increased protein and fat accretion, without affecting the hepatosomatic or visceralsomatic indices. Dietary arginine correlated with putrescine in the liver (R 0·78, P= 0·01) and with ornithine in the muscle, liver and plasma (P= 0·0002, 0·003 and 0·0002, respectively). The mRNA of ornithine decarboxylase, the enzyme producing putrescine, was up-regulated in the white adipose tissue of fish fed the high-arginine inclusion compared with those fed the low-arginine diet. Concomitantly, spermidine/spermine-(N1)-acetyltransferase, the rate-limiting enzyme for polyamine turnover that consumes acetyl-CoA, showed an increased activity in the liver of fish fed the arginine-supplemented diets. In addition, lower acetyl-CoA concentrations were observed in the liver of fish fed the high-arginine diet, while ATP, which is used in the process of synthesising spermidine and spermine, did not show a similar trend. Gene expression of the rate-limiting enzyme for β-oxidation of long-chain fatty acids, carnitine palmitoyl transferase-1, was up-regulated in the liver of fish fed the high-arginine diet. Taken together, the data support that increased dietary arginine activates polyamine turnover and β-oxidation in the liver of juvenile Atlantic salmon and may act to improve the metabolic status of the fish. PMID:23656796

  10. Dietary arginine affects energy metabolism through polyamine turnover in juvenile Atlantic salmon (Salmo salar).

    PubMed

    Andersen, Synne M; Holen, Elisabeth; Aksnes, Anders; Rønnestad, Ivar; Zerrahn, Jens-Erik; Espe, Marit

    2013-12-14

    In the present study, quadruplicate groups of juvenile Atlantic salmon (Salmo salar) were fed plant protein-based diets with increasing arginine inclusions (range 28·8-37·4 g/kg DM) to investigate whether arginine supplementation affects growth and lipid accumulation through an elevated polyamine turnover. Dietary lysine was held at a constant concentration, just below the requirement. All other amino acids were balanced and equal in the diets. Arginine supplementation increased protein and fat accretion, without affecting the hepatosomatic or visceralsomatic indices. Dietary arginine correlated with putrescine in the liver (R 0·78, P= 0·01) and with ornithine in the muscle, liver and plasma (P= 0·0002, 0·003 and 0·0002, respectively). The mRNA of ornithine decarboxylase, the enzyme producing putrescine, was up-regulated in the white adipose tissue of fish fed the high-arginine inclusion compared with those fed the low-arginine diet. Concomitantly, spermidine/spermine-(N1)-acetyltransferase, the rate-limiting enzyme for polyamine turnover that consumes acetyl-CoA, showed an increased activity in the liver of fish fed the arginine-supplemented diets. In addition, lower acetyl-CoA concentrations were observed in the liver of fish fed the high-arginine diet, while ATP, which is used in the process of synthesising spermidine and spermine, did not show a similar trend. Gene expression of the rate-limiting enzyme for β-oxidation of long-chain fatty acids, carnitine palmitoyl transferase-1, was up-regulated in the liver of fish fed the high-arginine diet. Taken together, the data support that increased dietary arginine activates polyamine turnover and β-oxidation in the liver of juvenile Atlantic salmon and may act to improve the metabolic status of the fish.

  11. Alkyl-methylimidazolium ionic liquids affect the growth and fermentative metabolism of Clostridium sp

    SciTech Connect

    Nancharaiah, Y.V.; Francis, A.

    2011-06-01

    In this study, the effect of ionic liquids, 1-ethyl-3-methylimidazolium acetate [EMIM][Ac], 1-ethyl-3-methylimidazolium diethylphosphate [EMIM][DEP], and 1-methyl-3-methylimidazolium dimethylphosphate [MMIM][DMP] on the growth and glucose fermentation of Clostridium sp. was investigated. Among the three ionic liquids tested, [MMIM][DMP] was found to be least toxic. Growth of Clostridium sp. was not inhibited up to 2.5, 4 and 4 g L{sup -1} of [EMIM][Ac], [EMIM][DEP] and [MMIM][DMP], respectively. [EMIM][Ac] at <2.5 g L{sup -1}, showed hormetic effect and stimulated the growth and fermentation by modulating medium pH. Total organic acid production increased in the presence of 2.5 and 2 g L{sup -1} of [EMIM][Ac] and [MMIM][DMP]. Ionic liquids had no significant influence on alcohol production at <2.5 g L{sup -1}. Total gas production was affected by ILs at {ge}2.5 g L{sup -1} and varied with type of methylimidazolium IL. Overall, the results show that the growth and fermentative metabolism of Clostridium sp. is not impacted by ILs at concentrations below 2.5 g L{sup -1}.

  12. Dietary fatty acids early in life affect lipid metabolism and adiposity in young rats.

    PubMed

    Silva, Ana Paula S; Guimarães, Daniella E D; Mizurini, Daniella M; Maia, Ingrid C; Ortiz-Costa, Susana; Sardinha, Fátima L; do Carmo, Maria G Tavares

    2006-06-01

    The purpose of this study was to evaluate the effects of four isoenergetic diets of differing fat composition on blood lipid profile and adiposity in young rats. Diets containing different lipid sources--partially hydrogenated vegetable oil (PHVO), palm oil (PO), canola oil (CO), and soy oil (SO)--were fed to lactating rats during the 21 days of lactation, and then fed to young males following weaning until the 45th day of life. In vivo lipogenesis rate (LR), lipid content (LC), relative level of FA, and the activity of lipoprotein lipase (LPL) enzyme were measured in epididymal adipose tissue (EPI). Fasting blood lipoproteins and LC in the carcass were also appraised. Body weight of PO and PHVO groups was significantly higher than CO and SO groups from day 14 of lactation to day 45, despite the lower food intake in the PHVO group. PO and PHVO groups presented higher LR and LC in EPI than SO and CO groups. Carcass fat content was significantly higher in PHVO and PO groups than in CO and SO groups. The LPL activity in EPI was unaffected by dietary lipids. PHVO group had increased total cholesterol and TAG concentrations in comparison with the PO group, and significantly lower HDL level compared with the other groups. These results show that the kind of FA in the dietary lipid offered early in life can affect lipid metabolism and adiposity.

  13. Zinc deficiency (ZD) without starvation affects thyroid hormone metabolism of rats

    SciTech Connect

    Lukaski, H.C.; Smith, S.M.; Hall, C.B.; Bucher, D.R. )

    1991-03-15

    Young rats fed diets severely deficient in Zn exhibit impaired growth and endocrine function. These hormone effects may be confounded by cyclical feeding and starvation. To examine the effects of zinc deficiency (ZD) with and without starvation, 40 male weanling Sprague-Dawley rats were fed a semipurified diet containing all essential nutrients and 30 ppm Zn until they weighed 150 g, then were matched by weight into four groups and were fed one of the following diets for 28d: ad lib control Zn diet, marginal ZD diet, severe ZD diet, and C diet pair-fed (PF) in amounts consumed by matched ZD1 rat. Food intake was depressed in ZD1; body weights were reduced in ZD1 and PF. There was no difference in either food intake or weight gain between C and ZD6. ZD reduced liver and femur Zn concentrations. Plasma thyroxine (T{sub 4}) concentration was greater in ZD6 then ZD1 or PF, but less than C; triodothyronine concentration was less in PF than C, but similar to ZD1 and ZD6. Hepatic T{sub 4}-5{prime}-deiodinase activity was greater in ZD6 than ZD1 or PF, but less than C. These findings indicate that altered thyroid hormone metabolism of severe ZD is related to Zn intake and starvation, whereas ZD uncomplicated by starvation affects peripheral deiodination of T{sub 4}, and suggests altered rates of thyroid hormone synthesis or degradation.

  14. Developmental changes in carbon and nitrogen metabolism affect tea quality in different leaf position.

    PubMed

    Li, Zhi-Xin; Yang, Wei-Jun; Ahammed, Golam Jalal; Shen, Chen; Yan, Peng; Li, Xin; Han, Wen-Yan

    2016-09-01

    Leaf position represents a specific developmental stage that influences both photosynthesis and respiration. However, the precise relationships between photosynthesis and respiration in different leaf position that affect tea quality are largely unknown. Here, we show that the effective quantum yield of photosystem II [ΦPSⅡ] as well as total chlorophyll concentration (TChl) of tea leaves increased gradually with leaf maturity. Moreover, respiration rate (RR) together with total nitrogen concentration (TN) decreased persistently, but total carbon remained unchanged during leaf maturation. Analyses of major N-based organic compounds revealed that decrease in TN was attributed to a significant decrease in the concentration of caffeine and amino acids (AA) in mature leaves. Furthermore, soluble sugar (SS) decreased, but starch concentration increased with leaf maturity, indicating that source-sink relationship was altered during tea leaf development. Detailed correlation analysis showed that ΦPSⅡ was negatively correlated with RR, SS, starch, tea polyphenol (TP), total catechins and TN, but positively correlated with TChl; while RR was positively correlated with TN, SS, TP and caffeine, but negatively correlated with TChl and starch concentrations. Our results suggest that biosynthesis of chlorophyll, catechins and polyphenols is closely associated with photosynthesis and respiration in different leaf position that greatly influences the relationship between primary and secondary metabolism in tea plants. PMID:27380366

  15. Inhibitors of plant invertases do not affect the structurally related enzymes of fructan metabolism.

    PubMed

    Kusch, Ute; Harms, Karsten; Rausch, Thomas; Greiner, Steffen

    2009-01-01

    Plant fructan active enzymes (FAZYs), including the enzymes involved in inulin metabolism, namely sucrose:sucrose 1-fructosyltransferase (1-SST; EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (1-FFT; EC 2.4.1.100) and fructan 1-exohydrolase (1-FEH; EC 3.2.1.153), are evolutionarily related to acid invertases (AIs), that is, plant cell wall invertase (CWI) and vacuolar invertase (VI). Acid invertases are post-translationally controlled by proteinaceous inhibitors. Whether FAZYs are subject to similar controls is not known. To probe their possible interactions with invertase inhibitors, we transiently expressed chicory (Cichorium intybus) FAZYs, as well as several previously characterized invertase inhibitors from nonfructan species, and the C. intybus cell wall/vacuolar inhibitor of fructosidase (CiC/VIF), a putative invertase inhibitor of a fructan-accumulating plant, in leaves of Nicotiana benthamiana. Leaf extracts containing recombinant, enzymatically active FAZYs were used to explore the interaction with invertase inhibitors. Neither heterologous inhibitors nor CiC/VIF affected FAZY activities. CiC/VIF was confirmed as an AI inhibitor with a stronger effect on CWI than on VI. Its expression in planta was developmentally regulated (high in taproots, and undetectable in leaves and flowers). In agreement with its target specificities, CiC/VIF was associated with the cell wall. It is concluded that subtle structural differences between AIs and FAZYs result in pronounced selectivity of inhibitor action.

  16. Dietary n-3 PUFA affect lipid metabolism and tissue function-related genes in bovine muscle.

    PubMed

    Hiller, Beate; Hocquette, Jean-Francois; Cassar-Malek, Isabelle; Nuernberg, Gerd; Nuernberg, Karin

    2012-09-01

    Gene expression profiles of bovine longissimus muscle as affected by dietary n-3 v. n-6 fatty acid (FA) intervention were analysed by microarray pre-screening of >3000 muscle biology/meat quality-related genes as well as subsequent quantitative RT-PCR gene expression validation of genes encoding lipogenesis-related transcription factors (CCAAT/enhancer-binding protein β, sterol regulatory element-binding transcription factor 1), key-lipogenic enzymes (acetyl-CoA carboxylase α (ACACA), fatty acid synthase (FASN), stearoyl-CoA desaturase (SCD)), lipid storage-associated proteins (adipose differentiation-related protein (ADFP)) and muscle biology-related proteins (cholinergic receptor, nicotinic, α1, farnesyl diphosphate farnesyl transferase 1, sema domain 3C (SEMA3C)). Down-regulation of ACACA (P = 0·00), FASN (P = 0·09) and SCD (P = 0·02) gene expression upon an n-3 FA intervention directly corresponded to reduced SFA, MUFA and total FA concentrations in longissimus muscle, whereas changes in ADFP (P = 0·00) and SEMA3C (P = 0·05) gene expression indicated improved muscle function via enhanced energy metabolism, vasculogenesis, innervation and mediator synthesis. The present study highlights the significance of dietary n-3 FA intervention on muscle development, maintenance and function, which are relevant for meat quality tailoring of bovine tissues and modulating animal production-relevant physiological processes.

  17. Hepatitis B virus (HBV) X protein-mediated regulation of hepatocyte metabolic pathways affects viral replication.

    PubMed

    Bagga, Sumedha; Rawat, Siddhartha; Ajenjo, Marcia; Bouchard, Michael J

    2016-11-01

    Chronic HBV infection is a risk factor for hepatocellular carcinoma (HCC). The HBV HBx protein stimulates HBV replication and likely influences the development of HBV-associated HCC. Whether HBx affects regulators of metabolism in normal hepatocytes has not been addressed. We used an ex vivo, cultured primary rat hepatocyte system to assess the interplay between HBV replication and mechanistic target of rapamycin complex 1 (mTORC1) signaling. HBx activated mTORC1 signaling; however, inhibition of mTORC1 enhanced HBV replication. HBx also decreased ATP levels and activated the energy-sensing factor AMP-activated protein kinase (AMPK). Inhibition of AMPK decreased HBV replication. Inhibition of AMPK activates mTORC1, and we showed that activated mTORC1 is one factor that reduces HBV replication when AMPK is inhibited. HBx activation of both AMPK and mTORC1 suggests that these activities could provide a balancing mechanism to facilitate persistent HBV replication. HBx activation of mTORC1 and AMPK could also influence HCC development.

  18. Developmental changes in carbon and nitrogen metabolism affect tea quality in different leaf position.

    PubMed

    Li, Zhi-Xin; Yang, Wei-Jun; Ahammed, Golam Jalal; Shen, Chen; Yan, Peng; Li, Xin; Han, Wen-Yan

    2016-09-01

    Leaf position represents a specific developmental stage that influences both photosynthesis and respiration. However, the precise relationships between photosynthesis and respiration in different leaf position that affect tea quality are largely unknown. Here, we show that the effective quantum yield of photosystem II [ΦPSⅡ] as well as total chlorophyll concentration (TChl) of tea leaves increased gradually with leaf maturity. Moreover, respiration rate (RR) together with total nitrogen concentration (TN) decreased persistently, but total carbon remained unchanged during leaf maturation. Analyses of major N-based organic compounds revealed that decrease in TN was attributed to a significant decrease in the concentration of caffeine and amino acids (AA) in mature leaves. Furthermore, soluble sugar (SS) decreased, but starch concentration increased with leaf maturity, indicating that source-sink relationship was altered during tea leaf development. Detailed correlation analysis showed that ΦPSⅡ was negatively correlated with RR, SS, starch, tea polyphenol (TP), total catechins and TN, but positively correlated with TChl; while RR was positively correlated with TN, SS, TP and caffeine, but negatively correlated with TChl and starch concentrations. Our results suggest that biosynthesis of chlorophyll, catechins and polyphenols is closely associated with photosynthesis and respiration in different leaf position that greatly influences the relationship between primary and secondary metabolism in tea plants.

  19. Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley.

    PubMed

    Ghaffari, Mohammad Reza; Ghabooli, Mehdi; Khatabi, Behnam; Hajirezaei, Mohammad Reza; Schweizer, Patrick; Salekdeh, Ghasem Hosseini

    2016-04-01

    The root endophytic fungus Piriformospora indica enhances plant adaptation to environmental stress based on general and non-specific plant species mechanisms. In the present study, we integrated the ionomics, metabolomics, and transcriptomics data to identify the genes and metabolic regulatory networks conferring salt tolerance in P. indica-colonized barley plants. To this end, leaf samples were harvested at control (0 mM NaCl) and severe salt stress (300 mM NaCl) in P. indica-colonized and non-inoculated barley plants 4 weeks after fungal inoculation. The metabolome analysis resulted in an identification of a signature containing 14 metabolites and ions conferring tolerance to salt stress. Gene expression analysis has led to the identification of 254 differentially expressed genes at 0 mM NaCl and 391 genes at 300 mM NaCl in P. indica-colonized compared to non-inoculated samples. The integration of metabolome and transcriptome analysis indicated that the major and minor carbohydrate metabolism, nitrogen metabolism, and ethylene biosynthesis pathway might play a role in systemic salt-tolerance in leaf tissue induced by the root-colonized fungus.

  20. Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley.

    PubMed

    Ghaffari, Mohammad Reza; Ghabooli, Mehdi; Khatabi, Behnam; Hajirezaei, Mohammad Reza; Schweizer, Patrick; Salekdeh, Ghasem Hosseini

    2016-04-01

    The root endophytic fungus Piriformospora indica enhances plant adaptation to environmental stress based on general and non-specific plant species mechanisms. In the present study, we integrated the ionomics, metabolomics, and transcriptomics data to identify the genes and metabolic regulatory networks conferring salt tolerance in P. indica-colonized barley plants. To this end, leaf samples were harvested at control (0 mM NaCl) and severe salt stress (300 mM NaCl) in P. indica-colonized and non-inoculated barley plants 4 weeks after fungal inoculation. The metabolome analysis resulted in an identification of a signature containing 14 metabolites and ions conferring tolerance to salt stress. Gene expression analysis has led to the identification of 254 differentially expressed genes at 0 mM NaCl and 391 genes at 300 mM NaCl in P. indica-colonized compared to non-inoculated samples. The integration of metabolome and transcriptome analysis indicated that the major and minor carbohydrate metabolism, nitrogen metabolism, and ethylene biosynthesis pathway might play a role in systemic salt-tolerance in leaf tissue induced by the root-colonized fungus. PMID:26951140

  1. Acute administration of 3,5-diiodo-L-thyronine to hypothyroid rats affects bioenergetic parameters in rat skeletal muscle mitochondria.

    PubMed

    Lombardi, Assunta; Lanni, Antonia; de Lange, Pieter; Silvestri, Elena; Grasso, Paola; Senese, Rosalba; Goglia, Fernando; Moreno, Maria

    2007-12-22

    We investigated the mechanism by which 3,5-diiodo-l-thyronine (T2) affects skeletal muscle mitochondrial bioenergetic parameters following its acute administration to hypothyroid rats. One hour after injection, T2 increased both coupled and uncoupled respiration rates by +27% and +42%, respectively. Top-down elasticity analysis revealed that these effects were the result of increases in the substrate oxidation and mitochondrial uncoupling. Discriminating between proton-leak and redox-slip processes, we identified an increased mitochondrial proton conductance as the "pathway" underlying the effect of T2 on mitochondrial uncoupling. As a whole, these results may provide a mechanism by which T2 rapidly affects energy metabolism in hypothyroid rats.

  2. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters.

    PubMed

    Adadi, Roi; Volkmer, Benjamin; Milo, Ron; Heinemann, Matthias; Shlomi, Tomer

    2012-01-01

    Identifying the factors that determine microbial growth rate under various environmental and genetic conditions is a major challenge of systems biology. While current genome-scale metabolic modeling approaches enable us to successfully predict a variety of metabolic phenotypes, including maximal biomass yield, the prediction of actual growth rate is a long standing goal. This gap stems from strictly relying on data regarding reaction stoichiometry and directionality, without accounting for enzyme kinetic considerations. Here we present a novel metabolic network-based approach, MetabOlic Modeling with ENzyme kineTics (MOMENT), which predicts metabolic flux rate and growth rate by utilizing prior data on enzyme turnover rates and enzyme molecular weights, without requiring measurements of nutrient uptake rates. The method is based on an identified design principle of metabolism in which enzymes catalyzing high flux reactions across different media tend to be more efficient in terms of having higher turnover numbers. Extending upon previous attempts to utilize kinetic data in genome-scale metabolic modeling, our approach takes into account the requirement for specific enzyme concentrations for catalyzing predicted metabolic flux rates, considering isozymes, protein complexes, and multi-functional enzymes. MOMENT is shown to significantly improve the prediction accuracy of various metabolic phenotypes in E. coli, including intracellular flux rates and changes in gene expression levels under different growth rates. Most importantly, MOMENT is shown to predict growth rates of E. coli under a diverse set of media that are correlated with experimental measurements, markedly improving upon existing state-of-the art stoichiometric modeling approaches. These results support the view that a physiological bound on cellular enzyme concentrations is a key factor that determines microbial growth rate. PMID:22792053

  3. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters.

    PubMed

    Adadi, Roi; Volkmer, Benjamin; Milo, Ron; Heinemann, Matthias; Shlomi, Tomer

    2012-01-01

    Identifying the factors that determine microbial growth rate under various environmental and genetic conditions is a major challenge of systems biology. While current genome-scale metabolic modeling approaches enable us to successfully predict a variety of metabolic phenotypes, including maximal biomass yield, the prediction of actual growth rate is a long standing goal. This gap stems from strictly relying on data regarding reaction stoichiometry and directionality, without accounting for enzyme kinetic considerations. Here we present a novel metabolic network-based approach, MetabOlic Modeling with ENzyme kineTics (MOMENT), which predicts metabolic flux rate and growth rate by utilizing prior data on enzyme turnover rates and enzyme molecular weights, without requiring measurements of nutrient uptake rates. The method is based on an identified design principle of metabolism in which enzymes catalyzing high flux reactions across different media tend to be more efficient in terms of having higher turnover numbers. Extending upon previous attempts to utilize kinetic data in genome-scale metabolic modeling, our approach takes into account the requirement for specific enzyme concentrations for catalyzing predicted metabolic flux rates, considering isozymes, protein complexes, and multi-functional enzymes. MOMENT is shown to significantly improve the prediction accuracy of various metabolic phenotypes in E. coli, including intracellular flux rates and changes in gene expression levels under different growth rates. Most importantly, MOMENT is shown to predict growth rates of E. coli under a diverse set of media that are correlated with experimental measurements, markedly improving upon existing state-of-the art stoichiometric modeling approaches. These results support the view that a physiological bound on cellular enzyme concentrations is a key factor that determines microbial growth rate.

  4. Immunoaffinity chromatography in antivenomics studies: Various parameters that can affect the results.

    PubMed

    Sintiprungrat, Kitisak; Chaisuriya, Papada; Watcharatanyatip, Kamolwan; Ratanabanangkoon, Kavi

    2016-09-01

    Antivenomics is a recently developed powerful method for the study of antivenom antibody profiles when bound to homologous and heterologous snake venoms. The information obtained is useful in gaining an understanding of venom protein immunogenicity, antivenom potency and also for the improvement of antivenom potency and paraspecificity. The preferred method used in this type of study is immunoaffinity chromatography of the venom proteins on an antivenom IgG (or F(ab')2) column where the bound and unbound proteins can be separated and identified. However, there are some parameters of the immunochromatography that can significantly affect the binding of the proteins to the immunoaffinity matrix and lead to imprecise results in antivenom immunoprofiling. The present study demonstrated that the ligand density (mg IgG/ml of the matrix), the buffers used for binding and washing the venom proteins, the amount of venom loaded, the abundance of some venom protein(s) and the eluting buffers can significantly alter the binding of the proteins to the matrix and consequently the conclusions drawn from antivenomics studies. Furthermore, the immunochromatographic procedure can be extended to include the estimation of the relative affinity of venom protein-antibody interactions that can provide additional information useful to antivenomics study. PMID:27256919

  5. Important parameters affecting the cell voltage of aqueous electrical double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Wu, Tzu-Ho; Hsu, Chun-Tsung; Hu, Chi-Chang; Hardwick, Laurence J.

    2013-11-01

    This study discusses and demonstrates how the open-circuit potential and charges stored in the working potential window on positive and negative electrodes affect the cell voltage of carbon-based electrical double-layer capacitors (EDLCs) in aqueous electrolytes. An EDLC consisting of two activated carbon electrodes is employed as the model system for identifying these key parameters although the potential window of water decomposition can be simply determined by voltammetric methods. First, the capacitive performances of an EDLC with the same charge on positive and negative electrodes are evaluated by cyclic voltammetric, charge-discharge, electrochemical impedance spectroscopic (EIS) analyses, and inductance-capacitance-resistance meter (LCR meter). The principles for obtaining the highest acceptable cell voltage of such symmetric ECs with excellent reversibility and capacitor-like behaviour are proposed. Aqueous charge-balanced EDLCs can be operated as high as 2.0 V with high energy efficiency (about 90%) and only 4% capacitance loss after the 600-cycle stability checking. The necessity of charge balance (but not capacitance balance) for positive and negative electrodes is substantiated from the lower acceptable cell voltage of charge-unbalanced EDLCs.

  6. Study of parameters affecting the correlation of engine and chassis dynamometers emission tests

    SciTech Connect

    Salem, M.I.; Bata, R.M.

    1996-12-31

    The inventory of exhaust gas emissions data of mobile sources is currently based on vehicle tailpipe testing techniques. However, heavy duty engines are used in numerous applications such as vehicles, boats, power generation units, ... etc. Consequently, engine emissions data based on vehicle tailpipe testing for a given engine is different for non-vehicle applications of that same engine. For this reason Environmental Protection Agency (EPA) engine certification standards are based on engine tests. Finding a correlation between the emissions of engine tests and the emissions of engine in vehicle chassis tests is the subject of this study. Efforts have been underway to study possible parameters affecting this cumbersome correlation of a particular power train configuration. Literature has been surveyed on related topics such as simulating road loads, power train components, and effects of engine accessories. This has been done as an initial step toward developing a correlation between the exhaust gas emission results of Chassis Dynamometer (CD) and Engine Dynamometer (ED) tests for a specific vehicle. This study could be conducted on a specific power train system, using specific testing cycles that will make this correlation possible.

  7. Parameters affecting the photocatalytic degradation of dyes using TiO2: a review

    NASA Astrophysics Data System (ADS)

    Reza, Khan Mamun; Kurny, ASW; Gulshan, Fahmida

    2015-12-01

    Traditional chemical, physical and biological processes for treating wastewater containing textile dye have such disadvantages as high cost, high energy requirement and generation of secondary pollution during treatment process. The advanced oxidation processes technology has been attracting growing attention for the decomposition of organic dyes. Such processes are based on the light-enhanced generation of highly reactive hydroxyl radicals, which oxidize the organic matter in solution and convert it completely into water, CO2 and inorganic compounds. In this presentation, the photocatalytic degradation of dyes in aqueous solution using TiO2 as photocatalyst under solar and UV irradiation has been reviewed. It is observed that the degradation of dyes depends on several parameters such as pH, catalyst concentration, substrate concentration and the presence of oxidants. Reaction temperature and the intensity of light also affect the degradation of dyes. Particle size, BET-surface area and different mineral forms of TiO2 also have influence on the degradation rate.

  8. Parameters affecting light-induced excess conductivity in amorphous silicon doping-modulated multilayers

    SciTech Connect

    Su, F.C.; Levine, S.; Vanier, P.E.

    1986-01-01

    The phenomenon of light-induced excess conductivity (LEC) which occurs in a-Si:H npnp doping-modulated multilayers is found experimentally to be dependent on several different factors. The concentrations of the dopants in n-type and p-type layers affect the Fermi level position, the height of the barriers, and also the density of defects. These parameters are altered by different choices of inert gas diluent (Ar or He) and substrate temperature T/sub s/. For a given set of deposition conditions, the LEC effect can be maximized by varying the layer thickness. With undiluted silane at T/sub s/ = 250/sup 0/C, the effect was relatively small, reaching a maximum in relatively thick layers (540 A). The largest effects were obtained for films deposited from silane diluted in helium, using thinner (330 A) layers. However, for films deposited from silane diluted in argon, the magnitude of the effect and optimum layer thickness was intermediate (440 A). When T/sub s/ was varied, a minimum in LEC was found near 200 to 250/sup 0/C. The influence of internal field was examined by using nini, pipi and npnp multilayers. The internal field is a necessary factor to observe a large LEC effect. A compensated film shows a small LEC effect.

  9. Biofilm Formation by the Fish Pathogen Flavobacterium columnare: Development and Parameters Affecting Surface Attachment

    PubMed Central

    Cai, Wenlong; De La Fuente, Leonardo

    2013-01-01

    Flavobacterium columnare is a bacterial fish pathogen that affects many freshwater species worldwide. The natural reservoir of this pathogen is unknown, but its resilience in closed aquaculture systems posits biofilm as the source of contagion for farmed fish. The objectives of this study were (i) to characterize the dynamics of biofilm formation and morphology under static and flow conditions and (ii) to evaluate the effects of temperature, pH, salinity, hardness, and carbohydrates on biofilm formation. Nineteen F. columnare strains, including representatives of all of the defined genetic groups (genomovars), were compared in this study. The structure of biofilm was characterized by light microscopy, confocal laser scanning microscopy, and scanning electron microscopy. F. columnare was able to attach to and colonize inert surfaces by producing biofilm. Surface colonization started within 6 h postinoculation, and microcolonies were observed within 24 h. Extracellular polysaccharide substances and water channels were observed in mature biofilms (24 to 48 h). A similar time course was observed when F. columnare formed biofilm in microfluidic chambers under flow conditions. The virulence potential of biofilm was confirmed by cutaneous inoculation of channel catfish fingerlings with mature biofilm. Several physicochemical parameters modulate attachment to surfaces, with the largest influence being exerted by hardness, salinity, and the presence of mannose. Maintenance of hardness and salinity values within certain ranges could prevent biofilm formation by F. columnare in aquaculture systems. PMID:23851087

  10. Rapid calculation of functional maps of glucose metabolic rate and individual model rate parameters from serial 2-FDG images

    SciTech Connect

    Koeppe, R.A.; Holden, J.E.; Hutchins, G.D.

    1985-05-01

    The authors have developed a method for the rapid pixel-by-pixel estimation of glucose metabolic rate from a dynamic sequence of PCT images acquired over 40 minutes following venous bolus injection of 2-deoxy-2-fluoro-D-glucose (2-FDG). The calculations are based on the conventional four parameter model. The dephosphorylation rate (k/sub 4/) cannot be reliably estimated from only 40 minutes of data; however, neglecting dephosphorylation can nonetheless introduce significant biases into the parameter estimation processes. In the authors' method, the rate is constrained to fall within a small range about a presumed value. Computer simulation studies show that this constraint greatly reduces the systematic biases in the other three fitted parameters and in the metabolic rate that arise from the assumption of no dephosphorylation. The parameter estimation scheme used is formally identical to one originally developed for dynamic methods of cerebral blood flow estimation. Estimation of metabolic rate and the individual model rate parameters k/sub 1/, k/sub 2/, and k/sub 3/, can be carried out for each pixel sequence of a 100 x 100 pixel image in less than two minutes on our PDP 11/60 minicomputer with floating point processor. While the maps of k/sub 2/ amd k/sub 3/ are quite noisy, accurate estimates of average values can be attained for regions of a few cm/sup 2/. The maps of metabolic rate offer many advantages in addition to that of direct visualization. These include improved statistical precision and the avoidance of averaging failure in the fitting of heterogeneous regions.

  11. Dietary folate and choline status differentially affect lipid metabolism and behavior-mediated neurotransmitters in young rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relationship between choline and folate metabolisms is an important issue due to the essential role of these nutrients in brain plasticity and cognitive functions. Present study was designed to investigate whether modification of the dietary folate-choline status in young rats would affect brain...

  12. Parameters of Calcium Metabolism Fluctuated during Initiation or Changing of Antipsychotic Drugs

    PubMed Central

    Stanojevic Pirkovic, Marijana; Zivancevic Simonovic, Snezana; Matovic, Milovan; Djukic Dejanovic, Slavica; Jankovic, Slobodan M.; Ravanic, Dragan; Petronijevic, Milan; Ignjatovic Ristic, Dragana; Mladenovic, Violeta; Jovanovic, Mirjana; Nikolic Labovic, Sandra; Pajovic, Marina; Djokovic, Danijela; Petrovic, Dusan; Janjic, Vladimir

    2016-01-01

    Objective Serum parameters of calcium homeostasis were measured based on previously published evidence linking osteoporotic fractures and/or bone/mineral loss with antipsychotics. Methods Prospective, four-week, time-series trial was conducted and study population consisted of patients of both genders, aged 35-85 years, admitted within the routine practice, with acute psychotic symptoms, to whom an antipsychotic drug was either introduced or substituted. Serial measurements of serum calcium, phosphorous, magnesium, 25(OH)D, parathyroid hormone, calcitonin, osteocalcin and C-telopeptide were made from patient venous blood samples. Results Calcium serum concentrations significantly decreased from baseline to the fourth week (2.42±0.12 vs. 2.33±0.16 mmol/L, p=0.022, n=25). The mean of all calcemia changes from the baseline was -2.6±5.7% (-24.1 to 7.7) with more decreases than increases (78 vs. 49, p=0.010) and more patents having negative sum of calcemia changes from baseline (n=28) than positive ones (n=10) (p=0.004). There were simultaneous falls of calcium and magnesium from baseline (63/15 vs. 23/26, p<0.001; OR=4.75, 95% CI 2.14-10.51), phosphorous (45/33 vs. 9/40, p<0.001; 6.06, 2.59-14.20) and 25(OH)D concentrations (57/21 vs. 13/35, p<0.001; 7.31, 3.25-16.42), respectively. Calcemia positively correlated with magnesemia, phosphatemia and 25(OH)D values. Parathyroid hormone and C-telopeptide showed only subtle oscillations of their absolute concentrations or changes from baseline; calcitonin and osteocalcin did not change. Adjustment of final calcemia trend (depletion/accumulation) for relevant risk factors, generally, did not change the results. Conclusion In patients with psychotic disorders and several risks for bone metabolism disturbances antipsychotic treatment was associated with the decrease of calcemia and changes in levels of the associated ions. PMID:26766951

  13. Bone mineral density, quantitative ultrasound parameters and bone metabolism in postmenopausal women with depression.

    PubMed

    Atteritano, Marco; Lasco, Antonino; Mazzaferro, Susanna; Macrì, Ida; Catalano, Antonino; Santangelo, Antonino; Bagnato, Gianluca; Bagnato, Gianfilippo; Frisina, Nicola

    2013-09-01

    Low bone mineral density, which increases the risk of stress fragility fractures, is a frequent, often persistent finding in patients with major depressive disorder (MDD). The clinical association between major depressive disorder and osteopenia is still unclear, although several factors are associated with a loss of bone mass. The aim of our study, therefore, was to evaluate bone mineral density and bone metabolism in patients with MDD. Bone mineral density was evaluated in fifty postmenopausal women with MDD, and in 50 matched postmenopausal control women by dual-energy X-ray absorptiometry of the lumbar spine and femur, and by ultrasonography of the calcaneus and phalanges. Serum levels of 25-hydroxivitamin D, parathyroid hormone, Osteoprotegerin/Receptor Activator for Nuclear Factor κB Ligand ratio, bone turnover markers, serum and urinary cortisol were examined. Bone mineral density of the lumbar spine (BMD: 0.72 ± 0.06 vs. 0.82 ± 0.09 g/cm(2), p < 0.001), femoral neck (BMD: 0.58 ± 0.04 vs. 0.71 ± 0.07 g/cm(2), p < 0.001) and total femur (BMD 0.66 ± 0.09 vs. 0.54 ± 0.06 g/cm(2), p < 0.001); and ultrasound parameters at calcaneus (SI: 81.30 ± 6.10 vs. 93.80 ± 7.10, p < 0.001) and phalanges (AD-SOS: 1915.00 ± 37.70 vs. 2020.88 ± 39.46, p < 0.001; BTT : 1.30 ± 0.8 vs. 1.45 ± 0.9, p < 0.001) are significantly lower in patients with MDD compared with controls. Moreover bone turnover markers, parathyroid hormone levels and Receptor Activator for Nuclear Factor κB Ligand are significantly higher in MDD patients compared with controls, while serum levels of 25-hydroxivitamin D and osteoprotegerin are significantly lower. There are no differences in urinary excretion and serum cortisol between groups. Postmenopausal women with depressive disorder have an elevated risk for osteoporosis. Our data suggest that a high level of parathyroid hormone may play a role in the pathogenetic process underlying osteopenia in these patients.

  14. The biological properties of aspartame. V. Effects on a variety of physiological parameters related to inflammation and metabolism.

    PubMed

    Aspinall, R L; Saunders, R N; Pautsch, W F; Nutting, E F

    1980-01-01

    Aspartame (APM), L-aspartyl-L-phenylalanine methyl ester, is a low calorie sweetening agent 180 times sweeter than sucrose. As part of a series of studies designed to determine the potential effects of ingestion of excesses of APM on a wide spectrum of physiological processes, experiments were conducted in which high multiples (mg/kg basis) of the projected maximum daily human intake (20 mg/kg) were administered intragastrically to laboratory rats. Doses up to 16 times the maximum intake had no effect on inflammation parameters including carrageenin-induced paw edema, connective tissue formation and adjuvant arthritis. APM, likewise, showed no antihistamine activity in vitro. Even higher multiples (up to 103 times) of the maximum intake had no effect on various parameters of carbohydrate and lipid metabolism. These results indicate that APM ingested in great excess would not be expected to significantly impair inflammatory processes nor influence carbohydrate and lipid metabolism.

  15. A study of the parameters affecting the effectiveness of Moringa oleifera in drinking water purification

    NASA Astrophysics Data System (ADS)

    Pritchard, M.; Craven, T.; Mkandawire, T.; Edmondson, A. S.; O'Neill, J. G.

    The powder obtained from the seeds of the Moringa oleifera tree has been shown to be an effective primary coagulant for water treatment. When the seeds are dried, dehusked, crushed and added to water, the powder acts as a coagulant binding colloidal particles and bacteria to form agglomerated particles (flocs), which settle allowing the clarified supernatant to be poured off. Very little research has been undertaken on the parameters affecting the effectiveness of M. oleifera, especially in Malawi, for purification of drinking water and there is a great need for further testing in this area. Conclusive data needs to be compiled to demonstrate the effects of various water parameters have on the efficiency of the seeds. A parametric study was undertaken at Leeds Metropolitan University, UK, with the aim to establish the most appropriate dosing method; the optimum dosage for removal of turbidity; the influence of pH and temperature; together with the shelf life of the M. oleifera seeds. The study revealed that the most suitable dosing method was to mix the powder into a concentrated paste, hence forming a stock suspension. The optimum M. oleifera dose, for turbidity values between 40 and 200 NTU, ranged between 30 and 55 mg/l. With turbidity set at 130 NTU and a M. oleifera dose within the optimum range at 50 mg/l, pH levels were varied between 4 and 9. It was discovered that the coagulant performance was not too sensitive to pH fluctuations when conditions were within the optimum range. The most efficient coagulation, determined by the greatest reduction in turbidity, occurred at pH 6.5. Alkaline conditions were overall more favourable than acidic conditions; pH 9 had an efficiency of 65% of optimum, whilst at pH 5 the efficiency dropped to around 55%. The efficiency further dropped at pH 4, where the powder only produced results of around 10% of optimum conditions. A temperature range of 4-60 °C was studied in this research. Colder waters (<15 °C) were found to

  16. Sperm treatment affects capacitation parameters and penetration ability of ejaculated and epididymal boar spermatozoa.

    PubMed

    Matás, C; Sansegundo, M; Ruiz, S; García-Vázquez, F A; Gadea, J; Romar, R; Coy, P

    2010-11-01

    This work was designed to study how this ability is affected by different sperm treatments routinely used for in vitro fertilization (IVF) assay. In this study, boar sperm samples from epididymal or ejaculated origin were processed by three different methods: left unwashed (NW group), washed in Dulbecco's phosphate-buffered saline supplemented with 0.1% BSA (BSA group), and washed on a Percoll(®) gradient (PERCOLL group). After preparation of semen samples, changes in motility patterns were studied by CASA, calcium uptake by spectrofluorimetry, and ROS generation, spontaneous acrosome reaction, and lipid disorder by means of flow cytometry. Finally IVF assays were also performed with the different semen samples and penetrability results evaluated at 2 and 4 h post insemination (hpi). Independently of the sperm treatment, epididymal spermatozoa showed higher values of progressive motility, percentage of live cells with low lipid disorder, and penetration ability at 4 hpi than the corresponding ejaculated spermatozoa. Ejaculated spermatozoa showed higher levels of calcium uptake, ROS generation and percentage of spontaneous acrosome reaction than epididymal sperm. Regarding sperm treatments, PERCOLL group showed the highest values for some motility parameters (linearity of the curvilinear trajectory, straightness, and average path velocity/curvilinear velocity), ROS generation and penetration ability at 2 and 4 hpi; however this same group showed the lowest values for sperm curvilinear velocity and lateral head displacement. From all experimental groups, ejaculated-PERCOLL-treated spermatozoa showed the highest fertilization ability after 2 hpi. Results suggest that capacitation pathways can be regulated by suitable treatments making the ejaculated sperm able to reach capacitation and fertilize oocytes in similar levels than epididymal spermatozoa, although most of the studied capacitation-associated changes do not correlate with this ability. PMID:20688369

  17. Sperm treatment affects capacitation parameters and penetration ability of ejaculated and epididymal boar spermatozoa.

    PubMed

    Matás, C; Sansegundo, M; Ruiz, S; García-Vázquez, F A; Gadea, J; Romar, R; Coy, P

    2010-11-01

    This work was designed to study how this ability is affected by different sperm treatments routinely used for in vitro fertilization (IVF) assay. In this study, boar sperm samples from epididymal or ejaculated origin were processed by three different methods: left unwashed (NW group), washed in Dulbecco's phosphate-buffered saline supplemented with 0.1% BSA (BSA group), and washed on a Percoll(®) gradient (PERCOLL group). After preparation of semen samples, changes in motility patterns were studied by CASA, calcium uptake by spectrofluorimetry, and ROS generation, spontaneous acrosome reaction, and lipid disorder by means of flow cytometry. Finally IVF assays were also performed with the different semen samples and penetrability results evaluated at 2 and 4 h post insemination (hpi). Independently of the sperm treatment, epididymal spermatozoa showed higher values of progressive motility, percentage of live cells with low lipid disorder, and penetration ability at 4 hpi than the corresponding ejaculated spermatozoa. Ejaculated spermatozoa showed higher levels of calcium uptake, ROS generation and percentage of spontaneous acrosome reaction than epididymal sperm. Regarding sperm treatments, PERCOLL group showed the highest values for some motility parameters (linearity of the curvilinear trajectory, straightness, and average path velocity/curvilinear velocity), ROS generation and penetration ability at 2 and 4 hpi; however this same group showed the lowest values for sperm curvilinear velocity and lateral head displacement. From all experimental groups, ejaculated-PERCOLL-treated spermatozoa showed the highest fertilization ability after 2 hpi. Results suggest that capacitation pathways can be regulated by suitable treatments making the ejaculated sperm able to reach capacitation and fertilize oocytes in similar levels than epididymal spermatozoa, although most of the studied capacitation-associated changes do not correlate with this ability.

  18. Emissions from Electronic Cigarettes: Key Parameters Affecting the Release of Harmful Chemicals.

    PubMed

    Sleiman, Mohamad; Logue, Jennifer M; Montesinos, V Nahuel; Russell, Marion L; Litter, Marta I; Gundel, Lara A; Destaillats, Hugo

    2016-09-01

    Use of electronic cigarettes has grown exponentially over the past few years, raising concerns about harmful emissions. This study quantified potentially toxic compounds in the vapor and identified key parameters affecting emissions. Six principal constituents in three different refill "e-liquids" were propylene glycol (PG), glycerin, nicotine, ethanol, acetol, and propylene oxide. The latter, with mass concentrations of 0.4-0.6%, is a possible carcinogen and respiratory irritant. Aerosols generated with vaporizers contained up to 31 compounds, including nicotine, nicotyrine, formaldehyde, acetaldehyde, glycidol, acrolein, acetol, and diacetyl. Glycidol is a probable carcinogen not previously identified in the vapor, and acrolein is a powerful irritant. Emission rates ranged from tens to thousands of nanograms of toxicants per milligram of e-liquid vaporized, and they were significantly higher for a single-coil vs a double-coil vaporizer (by up to an order of magnitude for aldehydes). By increasing the voltage applied to a single-coil device from 3.3 to 4.8 V, the mass of e-liquid consumed doubled from 3.7 to 7.5 mg puff(-1) and the total aldehyde emission rates tripled from 53 to 165 μg puff(-1), with acrolein rates growing by a factor of 10. Aldehyde emissions increased by more than 60% after the device was reused several times, likely due to the buildup of polymerization byproducts that degraded upon heating. These findings suggest that thermal degradation byproducts are formed during vapor generation. Glycidol and acrolein were primarily produced by glycerin degradation. Acetol and 2-propen-1-ol were produced mostly from PG, while other compounds (e.g., formaldehyde) originated from both. Because emissions originate from reaction of the most common e-liquid constituents (solvents), harmful emissions are expected to be ubiquitous when e-cigarette vapor is present. PMID:27461870

  19. Key parameters affecting the initial leaky effect of hemoglobin-loaded nanoparticles as blood substitutes.

    PubMed

    Zhang, Xiaolan; Liu, Changsheng; Yuan, Yuan; Zhang, Shiyu; Shan, Xiaoqian; Sheng, Yan; Xu, Feng

    2008-06-01

    In order to realize long-term carrying/delivering oxygen and minimize the adverse effects of free hemoglobin (Hb) in vivo, Hb is desired to be confined in Hb-loaded nanoparticles (HbP), a novel blood substitute with potential clinical applications, and thus functions as the native red blood cells (RBCs). However, the initial burst release of Hb ("leaky effect") greatly underscores the significance of this work. The study described here wants to disclose the key preparative parameters, including polymer, excipients in the inner aqueous phase and solvent profile, affecting the Hb release behavior (the initial 24 h) from HbP fabricated by commonly used solvent diffusion/evaporation double emulsion technique. The results demonstrate that PEGlytated polymers, regardless of two- or tri-block copolymers show slower release compared with the corresponding non-PEGlytated ones. The higher polymer concentration yields lower initial release. PEG200, added as excipient facilitates Hb burst effect to about 38.4%, almost 17% increase compared to the control ( approximately 21%), whereas, PVA and Poloxamer188, due to amphiphilic nature, can effectively attenuate this leakage to about 13.0 and 5.1%, respectively. The diffusion/extraction rate from oil phase and the subsequent evaporation rate from the aqueous continuous phase of solvents impose different influences on Hb release. To reduce the burst effect, the initial diffusion/extraction rate should be slow, whereas, the concomitant evaporation rate should be as fast as possible. The results obtained here will be guidance's for the future tailored design of more desirable polymersome nanoparticle blood substitutes.

  20. Emissions from Electronic Cigarettes: Key Parameters Affecting the Release of Harmful Chemicals.

    PubMed

    Sleiman, Mohamad; Logue, Jennifer M; Montesinos, V Nahuel; Russell, Marion L; Litter, Marta I; Gundel, Lara A; Destaillats, Hugo

    2016-09-01

    Use of electronic cigarettes has grown exponentially over the past few years, raising concerns about harmful emissions. This study quantified potentially toxic compounds in the vapor and identified key parameters affecting emissions. Six principal constituents in three different refill "e-liquids" were propylene glycol (PG), glycerin, nicotine, ethanol, acetol, and propylene oxide. The latter, with mass concentrations of 0.4-0.6%, is a possible carcinogen and respiratory irritant. Aerosols generated with vaporizers contained up to 31 compounds, including nicotine, nicotyrine, formaldehyde, acetaldehyde, glycidol, acrolein, acetol, and diacetyl. Glycidol is a probable carcinogen not previously identified in the vapor, and acrolein is a powerful irritant. Emission rates ranged from tens to thousands of nanograms of toxicants per milligram of e-liquid vaporized, and they were significantly higher for a single-coil vs a double-coil vaporizer (by up to an order of magnitude for aldehydes). By increasing the voltage applied to a single-coil device from 3.3 to 4.8 V, the mass of e-liquid consumed doubled from 3.7 to 7.5 mg puff(-1) and the total aldehyde emission rates tripled from 53 to 165 μg puff(-1), with acrolein rates growing by a factor of 10. Aldehyde emissions increased by more than 60% after the device was reused several times, likely due to the buildup of polymerization byproducts that degraded upon heating. These findings suggest that thermal degradation byproducts are formed during vapor generation. Glycidol and acrolein were primarily produced by glycerin degradation. Acetol and 2-propen-1-ol were produced mostly from PG, while other compounds (e.g., formaldehyde) originated from both. Because emissions originate from reaction of the most common e-liquid constituents (solvents), harmful emissions are expected to be ubiquitous when e-cigarette vapor is present.

  1. Parameters Affecting Spore Recovery from Wipes Used in Biological Surface Sampling ▿ †

    PubMed Central

    Da Silva, Sandra M.; Filliben, James J.; Morrow, Jayne B.

    2011-01-01

    The need for the precise and reliable collection of potential biothreat contaminants has motivated research in developing a better understanding of the variability in biological surface sampling methods. In this context, the objective of this work was to determine parameters affecting the efficiency of extracting Bacillus anthracis Sterne spores from commonly used wipe sampling materials and to describe performance using the interfacial energy concept. In addition, surface thermodynamics was applied to understand and predict surface sampling performance. Wipe materials were directly inoculated with known concentrations of B. anthracis spores and placed into extraction solutions, followed by sonication or vortexing. Experimental factors investigated included wipe material (polyester, cotton, and polyester-rayon), extraction solution (sterile deionized water [H2O], deionized water with 0.04% Tween 80 [H2O-T], phosphate-buffered saline [PBS], and PBS with 0.04% Tween 80 [PBST]), and physical dissociation method (vortexing or sonication). The most efficient extraction from wipes was observed for solutions containing the nonionic surfactant Tween 80. The increase in extraction efficiency due to surfactant addition was attributed to an attractive interfacial energy between Tween 80 and the centrifuge tube wall, which prevented spore adhesion. Extraction solution significantly impacted the extraction efficiency, as determined by statistical analysis (P < 0.05). Moreover, the extraction solution was the most important factor in extraction performance, followed by the wipe material. Polyester-rayon was the most efficient wipe material for releasing spores into solution by rank; however, no statistically significant difference between polyester-rayon and cotton was observed (P > 0.05). Vortexing provided higher spore recovery in H2O and H2O-T than sonication, when all three wipe materials and the reference control were considered (P < 0.05). PMID:21296945

  2. Metabolic responses to nocturnal eating in men are affected by sources of dietary energy.

    PubMed

    Holmbäck, Ulf; Forslund, Anders; Forslund, Jeanette; Hambraeus, Leif; Lennernäs, Maria; Lowden, Arne; Stridsberg, Mats; Akerstedt, Torbjörn

    2002-07-01

    Because night work is becoming more prevalent, we studied whether feeding at different times of a 24-h period would elicit different metabolic responses and whether dietary macronutrient composition would affect these responses. Seven men (26-43 y, 19.9-26.6 kg/m(2)) consumed two isocaloric diets, in a crossover design. The diets were a high carbohydrate (HC) diet [65 energy % (E%) carbohydrates, 20E% fat] and a high fat (HF) diet (40E% carbohydrates, 45E% fat). After a 6-d diet-adjustment period, the men were kept awake for 24 h and the food (continuation of respective diet) was provided as six isocaloric meals (i.e., every 4 h). Energy and substrate turnover, heart rate, mean arterial pressure (MAP), blood glucose, triacylglycerol (TAG), nonesterified fatty acid (NEFA) and glycerol were measured throughout the 24-h period. Significantly higher energy expenditure and NEFA concentration, and lower blood glucose and TAG concentrations were observed when the men consumed the HF diet than when they consumed the HC diet. Significant circadian patterns were seen in body and skin temperature (nadir, 0400-0500 h). When the men consumed the HF diet, significant circadian patterns were seen in fat oxidation (nadir, 0800-1200 h; plateau, 1200-0800 h), heat release (nadir, 0800-1200 h; plateau, 1600-0800 h), heart rate (nadir, 0000 h), blood glucose (nadir, 0800-1200 h; peak, 0000-0400 h), NEFA (nadir, 0800-1200 h; peak, 1200-2000 h) and TAG (nadir, 0800-1200 h; peak, 0400-0800 h) concentrations. Energy expenditure, carbohydrate oxidation, MAP and glycerol concentration did not display circadian patterns. Unequal variances eradicated most circadian effects in the HC-diet data. The increased TAG concentration in response to feeding at 0400 h might be involved in the higher TAG concentrations seen in shift workers. Distinct macronutrient/circadian-dependent postprandial responses were seen in most studied variables.

  3. Metabolic stressors and signals differentially affect energy allocation between reproduction and immune function.

    PubMed

    Carlton, Elizabeth D; Cooper, Candace L; Demas, Gregory E

    2014-11-01

    Most free-living animals have finite energy stores that they must allocate to different physiological and behavioral processes. In times of energetic stress, trade-offs in energy allocation among these processes may occur. The manifestation of trade-offs may depend on the source (e.g., glucose, lipids) and severity of energy limitation. In this study, we investigated energetic trade-offs between the reproductive and immune systems by experimentally limiting energy availability to female Siberian hamsters (Phodopus sungorus) with 2-deoxy-d-glucose, a compound that disrupts cellular utilization of glucose. We observed how glucoprivation at two levels of severity affected allocation to reproduction and immunity. Additionally, we treated a subset of these hamsters with leptin, an adipose hormone that provides a direct signal of available fat stores, in order to determine how increasing this signal of fat stores influences glucoprivation-induced trade-offs. We observed trade-offs between the reproductive and immune systems and that these trade-offs depended on the severity of energy limitation and exogenous leptin signaling. The majority of the animals experiencing mild glucoprivation entered anestrus, whereas leptin treatment restored estrous cycling in these animals. Surprisingly, virtually all animals experiencing more severe glucoprivation maintained normal estrous cycling throughout the experiment; however, exogenous leptin resulted in lower antibody production in this group. These data suggest that variation in these trade-offs may be mediated by shifts between glucose and fatty acid utilization. Collectively, the results of the present study highlight the context-dependent nature of these trade-offs, as trade-offs induced by the same metabolic stressor can manifest differently depending on its intensity.

  4. Wilson disease: changes in methionine metabolism and inflammation affect global DNA methylation in early liver disease

    PubMed Central

    Medici, Valentina; Shibata, Noreene M.; Kharbanda, Kusum K.; LaSalle, Janine M.; Woods, Rima; Liu, Sarah; Engelberg, Jesse A.; Devaraj, Sridevi; Török, Natalie J.; Jiang, Joy X.; Havel, Peter J.; Lönnerdal, Bo; Kim, Kyoungmi; Halsted, Charles H.

    2012-01-01

    Hepatic methionine metabolism may play an essential role in regulating methylation status and liver injury in Wilson disease (WD) through the inhibition of S-adenosylhomocysteine hydrolase (SAHH) by copper (Cu) and the consequent accumulation of S-adenosylhomocysteine (SAH). We studied the transcript levels of selected genes related to liver injury, levels of SAHH, SAH, DNA methyltransferases genes (Dnmt1, Dnmt3a, Dnmt3b) and global DNA methylation in the tx-j mouse (tx-j), an animal model of WD. Findings were compared to those in control C3H mice, and in response to Cu chelation by penicillamine (PCA) and dietary supplementation of the methyl donor betaine to modulate inflammatory and methylation status. Transcript levels of selected genes related to endoplasmic reticulum stress, lipid synthesis, and fatty acid oxidation were down-regulated at baseline in tx-j mice, further down-regulated in response to PCA, and showed little to no response to betaine. Hepatic Sahh transcript and protein levels were reduced in tx-j mice with consequent increase of SAH levels. Hepatic Cu accumulation was associated with inflammation, as indicated by histopathology and elevated serum ALT and liver tumor necrosis factor alpha (Tnf-α) levels. Dnmt3b was down-regulated in tx-j mice together with global DNA hypomethylation. PCA treatment of tx-j mice reduced Tnf-α and ALT levels, betaine treatment increased S-adenosylmethionine and up-regulated Dnmt3b levels, and both treatments restored global DNA methylation levels. Conclusion: reduced hepatic Sahh expression was associated with increased liver SAH levels in the tx-j model of WD, with consequent global DNA hypomethylation. Increased global DNA methylation was achieved by reducing inflammation by Cu chelation or by providing methyl groups. We propose that increased SAH levels and inflammation affect widespread epigenetic regulation of gene expression in WD. PMID:22945834

  5. Host-related metabolic cues affect colonization strategies of a root endophyte

    PubMed Central

    Lahrmann, Urs; Ding, Yi; Banhara, Aline; Rath, Magnus; Hajirezaei, Mohammad R.; Döhlemann, Stefanie; von Wirén, Nicolaus; Parniske, Martin; Zuccaro, Alga

    2013-01-01

    The mechanisms underpinning broad compatibility in root symbiosis are largely unexplored. The generalist root endophyte Piriformospora indica establishes long-lasting interactions with morphologically and biochemically different hosts, stimulating their growth, alleviating salt stress, and inducing local and systemic resistance to pathogens. Cytological studies and global investigations of fungal transcriptional responses to colonization of barley and Arabidopsis at different symbiotic stages identified host-dependent colonization strategies and host-specifically induced effector candidates. Here, we show that in Arabidopsis, P. indica establishes and maintains biotrophic nutrition within living epidermal cells, whereas in barley the symbiont undergoes a nutritional switch to saprotrophy that is associated with the production of secondary thinner hyphae in dead cortex cells. Consistent with a diversified trophic behavior and with the occurrence of nitrogen deficiency at the onset of saprotrophy in barley, fungal genes encoding hydrolytic enzymes and nutrient transporters were highly induced in this host but not in Arabidopsis. Silencing of the high-affinity ammonium transporter PiAMT1 gene, whose transcripts are accumulating during nitrogen starvation and in barley, resulted in enhanced colonization of this host, whereas it had no effect on the colonization of Arabidopsis. Increased levels of free amino acids and reduced enzymatic activity for the cell-death marker VPE (vacuolar-processing enzyme) in colonized barley roots coincided with an extended biotrophic lifestyle of P. indica upon silencing of PiAMT1. This suggests that PiAmt1 functions as a nitrogen sensor mediating the signal that triggers the in planta activation of the saprotrophic program. Thus, host-related metabolic cues affect the expression of P. indica’s alternative lifestyles. PMID:23918389

  6. Metabolic responses to nocturnal eating in men are affected by sources of dietary energy.

    PubMed

    Holmbäck, Ulf; Forslund, Anders; Forslund, Jeanette; Hambraeus, Leif; Lennernäs, Maria; Lowden, Arne; Stridsberg, Mats; Akerstedt, Torbjörn

    2002-07-01

    Because night work is becoming more prevalent, we studied whether feeding at different times of a 24-h period would elicit different metabolic responses and whether dietary macronutrient composition would affect these responses. Seven men (26-43 y, 19.9-26.6 kg/m(2)) consumed two isocaloric diets, in a crossover design. The diets were a high carbohydrate (HC) diet [65 energy % (E%) carbohydrates, 20E% fat] and a high fat (HF) diet (40E% carbohydrates, 45E% fat). After a 6-d diet-adjustment period, the men were kept awake for 24 h and the food (continuation of respective diet) was provided as six isocaloric meals (i.e., every 4 h). Energy and substrate turnover, heart rate, mean arterial pressure (MAP), blood glucose, triacylglycerol (TAG), nonesterified fatty acid (NEFA) and glycerol were measured throughout the 24-h period. Significantly higher energy expenditure and NEFA concentration, and lower blood glucose and TAG concentrations were observed when the men consumed the HF diet than when they consumed the HC diet. Significant circadian patterns were seen in body and skin temperature (nadir, 0400-0500 h). When the men consumed the HF diet, significant circadian patterns were seen in fat oxidation (nadir, 0800-1200 h; plateau, 1200-0800 h), heat release (nadir, 0800-1200 h; plateau, 1600-0800 h), heart rate (nadir, 0000 h), blood glucose (nadir, 0800-1200 h; peak, 0000-0400 h), NEFA (nadir, 0800-1200 h; peak, 1200-2000 h) and TAG (nadir, 0800-1200 h; peak, 0400-0800 h) concentrations. Energy expenditure, carbohydrate oxidation, MAP and glycerol concentration did not display circadian patterns. Unequal variances eradicated most circadian effects in the HC-diet data. The increased TAG concentration in response to feeding at 0400 h might be involved in the higher TAG concentrations seen in shift workers. Distinct macronutrient/circadian-dependent postprandial responses were seen in most studied variables. PMID:12097665

  7. Temperature-induced elevation of basal metabolic rate does not affect testis growth in great tits.

    PubMed

    Caro, Samuel P; Visser, Marcel E

    2009-07-01

    The timing of reproduction varies from year to year in many bird species. To adjust their timing to the prevailing conditions of that year, birds use cues from their environment. However, the relative importance of these cues, such as the initial predictive (e.g. photoperiod) and the supplemental factors (e.g. temperature), on the seasonal sexual development are difficult to distinguish. In particular, the fine-tuning effect of temperature on gonadal growth is not well known. One way temperature may affect timing is via its strong effect on energy expenditure as gonadal growth is an energy-demanding process. To study the interaction of photoperiod and temperature on gonadal development, we first exposed 35 individually housed male great tits (Parus major) to mid-long days (after 6 weeks of 8 h L:16 h D at 15 degrees C, photoperiod was set to 13 h L:11 h D at 15 degrees C). Two weeks later, for half of the males the temperature was set to 8 degrees C, and for the other half to 22 degrees C. Unilateral laparotomies were performed at weeks 5 (i.e one week before the birds were transferred to mid-long days), 8 and 11 to measure testis size. Two measures of basal metabolic rate (BMR) were performed at the end of the experiment (weeks 11 and 12). Testis size increased significantly during the course of the experiment, but independently of the temperature treatment. BMR was significantly higher in birds exposed to the cold treatment. These results show that temperature-related elevation of BMR did not impair the long-day-induced testis growth in great tits. As a consequence, temperature may not be a crucial cue and/or constraint factor in the fine-tuning of the gonadal recrudescence in male great tits, and testis growth is not a high energy-demanding seasonal process. PMID:19525424

  8. Effects of Exercise and/or Diet Programs on Kinanthropometric and Metabolic Parameters in Obese Children: a Pilot Study

    PubMed Central

    Saavedra, José M.; Garcia-Hermoso, Antonio; Escalante, Yolanda

    2011-01-01

    This study was aimed at determining the effects of implementing a medium-term (six-month) exercise and/or a diet program on the kinanthropometric and metabolic parameters of obese children. The participants were 42 subjects (27 boys, 15 girls), whose ages were between 8 and 11, divided into three groups according to the program they followed. The E group followed a physical exercise program (three 90-minute sessions per week), the D group a low calorie diet, and the E+D group both interventions. A repeated-measure ANOVA was used to compare measurements of the participants' kinanthropometric and metabolic parameters at different times of the program, with the means being compared using the Tukey post-hoc test. It was found that medium-term intervention based on the combination of exercise and low calorie diet improved the obese children's kinanthropometric and metabolic parameters, especially those related to the lipid profile. Also, this combined program was more effective in controlling weight than the exercise or low calorie diet interventions alone. PMID:23486642

  9. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay

    PubMed Central

    Deluc, Laurent G; Quilici, David R; Decendit, Alain; Grimplet, Jérôme; Wheatley, Matthew D; Schlauch, Karen A; Mérillon, Jean-Michel; Cushman, John C; Cramer, Grant R

    2009-01-01

    Background Water deficit has significant effects on grape berry composition resulting in improved wine quality by the enhancement of color, flavors, or aromas. While some pathways or enzymes affected by water deficit have been identified, little is known about the global effects of water deficit on grape berry metabolism. Results The effects of long-term, seasonal water deficit on berries of Cabernet Sauvignon, a red-wine grape, and Chardonnay, a white-wine grape were analyzed by integrated transcript and metabolite profiling. Over the course of berry development, the steady-state transcript abundance of approximately 6,000 Unigenes differed significantly between the cultivars and the irrigation treatments. Water deficit most affected the phenylpropanoid, ABA, isoprenoid, carotenoid, amino acid and fatty acid metabolic pathways. Targeted metabolites were profiled to confirm putative changes in specific metabolic pathways. Water deficit activated the expression of numerous transcripts associated with glutamate and proline biosynthesis and some committed steps of the phenylpropanoid pathway that increased anthocyanin concentrations in Cabernet Sauvignon. In Chardonnay, water deficit activated parts of the phenylpropanoid, energy, carotenoid and isoprenoid metabolic pathways that contribute to increased concentrations of antheraxanthin, flavonols and aroma volatiles. Water deficit affected the ABA metabolic pathway in both cultivars. Berry ABA concentrations were highly correlated with 9-cis-epoxycarotenoid dioxygenase (NCED1) transcript abundance, whereas the mRNA expression of other NCED genes and ABA catabolic and glycosylation processes were largely unaffected. Water deficit nearly doubled ABA concentrations within berries of Cabernet Sauvignon, whereas it decreased ABA in Chardonnay at véraison and shortly thereafter. Conclusion The metabolic responses of grapes to water deficit varied with the cultivar and fruit pigmentation. Chardonnay berries, which lack any

  10. Complete Proteomic-Based Enzyme Reaction and Inhibition Kinetics Reveal How Monolignol Biosynthetic Enzyme Families Affect Metabolic Flux and Lignin in Populus trichocarpa[W

    PubMed Central

    Wang, Jack P.; Naik, Punith P.; Chen, Hsi-Chuan; Shi, Rui; Lin, Chien-Yuan; Liu, Jie; Shuford, Christopher M.; Li, Quanzi; Sun, Ying-Hsuan; Tunlaya-Anukit, Sermsawat; Williams, Cranos M.; Muddiman, David C.; Ducoste, Joel J.; Sederoff, Ronald R.; Chiang, Vincent L.

    2014-01-01

    We established a predictive kinetic metabolic-flux model for the 21 enzymes and 24 metabolites of the monolignol biosynthetic pathway using Populus trichocarpa secondary differentiating xylem. To establish this model, a comprehensive study was performed to obtain the reaction and inhibition kinetic parameters of all 21 enzymes based on functional recombinant proteins. A total of 104 Michaelis-Menten kinetic parameters and 85 inhibition kinetic parameters were derived from these enzymes. Through mass spectrometry, we obtained the absolute quantities of all 21 pathway enzymes in the secondary differentiating xylem. This extensive experimental data set, generated from a single tissue specialized in wood formation, was used to construct the predictive kinetic metabolic-flux model to provide a comprehensive mathematical description of the monolignol biosynthetic pathway. The model was validated using experimental data from transgenic P. trichocarpa plants. The model predicts how pathway enzymes affect lignin content and composition, explains a long-standing paradox regarding the regulation of monolignol subunit ratios in lignin, and reveals novel mechanisms involved in the regulation of lignin biosynthesis. This model provides an explanation of the effects of genetic and transgenic perturbations of the monolignol biosynthetic pathway in flowering plants. PMID:24619611

  11. Metabolism

    MedlinePlus

    Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Tortora GJ, Derrickson BH. Metabolism. In: Tortora GJ, Derrickson BH. Principles of Anatomy and Physiology . 14th ed. Hoboken, NJ: John H Wiley and Sons; 2013: ...

  12. Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry

    PubMed Central

    Habran, Aude; Commisso, Mauro; Helwi, Pierre; Hilbert, Ghislaine; Negri, Stefano; Ollat, Nathalie; Gomès, Eric; van Leeuwen, Cornelis; Guzzo, Flavia; Delrot, Serge

    2016-01-01

    The present work investigates the interactions between soil content, rootstock, and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS) and Pinot Noir (PN) varieties were grafted either on Riparia Gloire de Montpellier (RGM) or 110 Richter (110R) rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake by the plants, and N content both in vegetative and reproductory organs. Rootstock, variety and year affected berry weight at harvest, while nitrogen did not affect significantly this parameter. Grafting on RGM consistently increased berry weight compared to 110R. PN consistently produced bigger berries than CS. CS berries were heavier in 2014 than in 2013, but the year effect was less marked for PN berries. The berries were collected between veraison and maturity, separated in skin and pulp, and their content was analyzed by conventional analytical procedures and untargeted metabolomics. For anthocyanins, the relative quantitation was fairly comparable with both LC-MS determination and HPLC-DAD, which is a fully quantitative technique. The data show complex responses of the metabolite content (sugars, organic acids, amino acids, anthocyanins, flavonols, flavan-3-ols/procyanidins, stilbenes, hydroxycinnamic, and hydroxybenzoic acids) that depend on the rootstock, the scion, the vintage, the nitrogen level, the berry compartment. This opens a wide range of possibilities to adjust the content of these compounds through the choice of the roostock, variety and nitrogen fertilization. PMID:27555847

  13. Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry.

    PubMed

    Habran, Aude; Commisso, Mauro; Helwi, Pierre; Hilbert, Ghislaine; Negri, Stefano; Ollat, Nathalie; Gomès, Eric; van Leeuwen, Cornelis; Guzzo, Flavia; Delrot, Serge

    2016-01-01

    The present work investigates the interactions between soil content, rootstock, and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS) and Pinot Noir (PN) varieties were grafted either on Riparia Gloire de Montpellier (RGM) or 110 Richter (110R) rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake by the plants, and N content both in vegetative and reproductory organs. Rootstock, variety and year affected berry weight at harvest, while nitrogen did not affect significantly this parameter. Grafting on RGM consistently increased berry weight compared to 110R. PN consistently produced bigger berries than CS. CS berries were heavier in 2014 than in 2013, but the year effect was less marked for PN berries. The berries were collected between veraison and maturity, separated in skin and pulp, and their content was analyzed by conventional analytical procedures and untargeted metabolomics. For anthocyanins, the relative quantitation was fairly comparable with both LC-MS determination and HPLC-DAD, which is a fully quantitative technique. The data show complex responses of the metabolite content (sugars, organic acids, amino acids, anthocyanins, flavonols, flavan-3-ols/procyanidins, stilbenes, hydroxycinnamic, and hydroxybenzoic acids) that depend on the rootstock, the scion, the vintage, the nitrogen level, the berry compartment. This opens a wide range of possibilities to adjust the content of these compounds through the choice of the roostock, variety and nitrogen fertilization. PMID:27555847

  14. ALTERATION OF OXIDATIVE METABOLISM AND IMMUNOLOGICAL PARAMETERS UNDER THE INFLUENCE OF UVA RADIATION IN WOMEN OF DIFFERENT AGES.

    PubMed

    Berianidze, K; Katsitadze, A; Sanikidze, T

    2016-01-01

    Purpose of study was to investigate the alteration of oxidative and immunological metabolism in blood of reproductive and menopausal age women after UVA irradiation. Women of two groups (1 - menopausal, 2 - reproductive age) were exposed to radiation with wave length 320-400 nm for 5-10 minutes per session in the solarium for the period of 3 months (6 days per month).. Parameters of oxidative metabolism - activity of red blood cells (RBC), antioxidant enzymes catalase (CAT) and superoxiddismutase (SOD) were studied by spectrophotometric method; reactive oxygen (O2-) and lipid (LOO/) free radicals content in whole blood were studied by Electron Paramagnetic Resonance (EPR) methods with use of specific spin-traps - 5,5-Dimethyl-1-Pyrroline-N-Oxide (DMPO) and α-phenyl-N-tert-butylnitrone (PBN) (SIGMA). Parameters of immunological metabolism - IFN-α, IL-2, IL-10 cytokines content in blood were studied by immunoenzymatic assay ELISA. The study protocol has been approved by the Ethical Committee of the Tbilisi State Medical University. After the course of UVA irradiation in menopausal women CAT activity increased by 20%, SOD - by 24%, and EPR signal of spin trapped lipoperoxide radicals was detected. No alterations in blood redox-balance were detected in women of reproductive age. Values of blood immunological parameters in menopausal women were not changed under the influence of UV radiation; in women of reproductive age IL-10 content increase by 93% (within a normal value range) was revealed. Research results have shown that UVA rays cause a particularly significant influence on the oxidative metabolism in the women of menopausal age. Increase of IL-10 blood levels in women of reproductive age (considering its imunosupressing activity) represents an additional risk of cancerogenesis. Based on the study results, we recommend avoiding UV (including UVA) radiation procedures to women of both reproductive and menopausal ages. PMID:26870984

  15. Unique effects on hepatic function, lipid metabolism, bone and growth endocrine parameters of estetrol in combined oral contraceptives

    PubMed Central

    Mawet, Marie; Maillard, Catherine; Klipping, Christine; Zimmerman, Yvette; Foidart, Jean-Michel; Coelingh Bennink, Herjan J.T.

    2015-01-01

    Abstract Objectives Estetrol (E4) is a natural estrogen produced by the human fetal liver. In combination with drospirenone (DRSP) or levonorgestrel (LNG), E4 blocks ovulation and has less effect on haemostatic biomarkers in comparison with ethinylestradiol (EE) combined with DRSP. This study evaluates the impact of several doses of E4/DRSP and E4/LNG on safety parameters such as liver function, lipid metabolism, bone markers and growth endocrine parameters. Methods This was a dose-finding, single-centre, controlled study performed in healthy women aged 18 to 35 years with a documented pretreatment ovulatory cycle. Participants received 5 mg or 10 mg E4/3 mg DRSP; 5 mg, 10 mg or 20 mg E4/150 μg LNG; or 20 μg EE/3 mg DRSP as a comparator for three consecutive cycles in a 24/4-day regimen. Changes from baseline to end of treatment in liver parameters, lipid metabolism, bone markers and growth endocrinology were evaluated. Results A total of 109 women were included in the study. Carrier proteins were minimally affected in the E4/DRSP and E4/LNG groups, in comparison with the EE/DRSP group, where a significant increase in sex hormone-binding globulin was observed. Similarly, minor effects on lipoproteins were observed in the E4 groups, and the effects on triglycerides elicited by the E4 groups were significantly lower than those in the EE/DRSP group. No imbalances in bone markers were observed in any groups. No alterations in insulin-like growth factor were observed in the E4 groups. Conclusions E4-containing combinations have a limited effect on liver function, lipid metabolism, and bone and growth endocrine parameters. Chinese Abstract 摘要 目的 雌四醇(E4)是来源于人胎儿肝脏的天然雌激素。雌四醇与屈螺酮(DRSP)或左炔诺孕酮(LNG)配伍的复方口服避孕药制剂,能够抑制排卵,同时相较于炔雌醇(EE)与屈螺酮配伍制剂,它对凝血功能的各项指标影响较小。本研究的目的是为了评估不同

  16. A Data Repository and Visualization Toolbox for Metabolic Pathways and PBPK parameter prediction

    EPA Science Inventory

    NHANES is an extensive, well-structured collection of data about hundreds chemicals products of human metabolism and their concentration in human biomarkers, which includes parent to product mapping where known. Together, these data can be used to test the efficacy of application...

  17. Comparison of Parameter Estimations Using Dual-Input and Arterial-Input in Liver Kinetic Studies of FDG Metabolism.

    PubMed

    Cui, Yunfeng; Bai, Jing

    2005-01-01

    Liver kinetic study of [18F]2-fluoro-2-deoxy-D-glucose (FDG) metabolism in human body is an important tool for functional modeling and glucose metabolic rate estimation. In general, the arterial blood time-activity curve (TAC) and the tissue TAC are required as the input and output functions for the kinetic model. For liver study, however, the arterial-input may be not consistent with the actual model input because the liver has a dual blood supply from the hepatic artery (HA) and the portal vein (PV) to the liver. In this study, the result of model parameter estimation using dual-input function is compared with that using arterial-input function. First, a dynamic positron emission tomography (PET) experiment is performed after injection of FDG into the human body. The TACs of aortic blood, PV blood, and five regions of interest (ROIs) in liver are obtained from the PET image. Then, the dual-input curve is generated by calculating weighted sum of both the arterial and PV input curves. Finally, the five liver ROIs' kinetic parameters are estimated with arterial-input and dual-input functions respectively. The results indicate that the two methods provide different parameter estimations and the dual-input function may lead to more accurate parameter estimation.

  18. Bone and Energy Metabolism Parameters in Professional Cyclists during the Giro d’Italia 3-Weeks Stage Race

    PubMed Central

    Lombardi, Giovanni; Lanteri, Patrizia; Graziani, Rosa; Colombini, Alessandra; Banfi, Giuseppe; Corsetti, Roberto

    2012-01-01

    Cycling is a not weight-bearing activity and is known to induce bone resorption. Stage races are really strenuous endurance performances affecting the energy homeostasis. The recently highlighted link, in the co-regulation of bone and energy metabolism, demonstrates a central role for the equilibrium between carboxylated and undercarboxylated forms of osteocalcin. Aim of this study was to understand the acute physiological responses to a cycling stage race in terms of bone turnover and energy metabolism and the possible co-regulative mechanisms underlying their relationship. We studied nine professional cyclists engaged in 2011 Giro d’Italia stage race. Pre-analytical and analytical phases tightly followed academic and anti-doping authority’s recommendations. Bone and energy metabolism markers (bone alkaline phosphatase, tartrate-resistant acid phosphatase 5b, total and undercarboxylated osteocalcin, leptin and adiponectin) and related hormones (cortisol and testosterone) were measured, by Sandwich Enzyme Immunoassays, at days -1 (pre-race), 12 and 22 during the race. The power output and the energy expenditure (mean and accumulated) were derived and correlated with the biochemical indexes. During the race, bone metabolism showed that an unbalance in behalf of resorption, which is enhanced, occurred along with a relative increase in the concentration of the undercarboxylated form of osteocalcin that was indirectly related to the enhanced energy expenditure, through adipokines modifications, with leptin decrease (high energy consumption) and adiponectin increase (optimization of energy expenditure). The exertion due to heavy effort induced a decrease of cortisol, while testosterone levels resulted unchanged. In conclusion, during a 3-weeks stage race, bone metabolism is pushed towards resorption. A possible relationship between the bone and the energy metabolisms is suggested by the relative correlations among absolute and relative concentrations trends of

  19. Metabolic dynamics analysis by massive data integration: application to tsunami-affected field soils in Japan.

    PubMed

    Ogura, Tatsuki; Date, Yasuhiro; Tsuboi, Yuuri; Kikuchi, Jun

    2015-08-21

    A new metabolic dynamics analysis approach has been developed in which massive data sets from time-series of (1)H and (13)C NMR spectra are integrated in combination with microbial variability to characterize the biomass degradation process using field soil microbial communities. On the basis of correlation analyses that revealed relationships between various metabolites and bacteria, we efficiently monitored the metabolic dynamics of saccharides, amino acids, and organic acids, by assessing time-course changes in the microbial and metabolic profiles during biomass degradation. Specific bacteria were found to support specific steps of metabolic pathways in the degradation process of biomass to short chain fatty acids. We evaluated samples from agricultural and abandoned fields contaminated by the tsunami that followed the Great East earthquake in Japan. Metabolic dynamics and activities in the biomass degradation process differed considerably between soil from agricultural and abandoned fields. In particular, production levels of short chain fatty acids, such as acetate and propionate, which were considered to be produced by soil bacteria such as Sedimentibacter sp. and Coprococcus sp., were higher in the soil from agricultural fields than from abandoned fields. Our approach could characterize soil activity based on the metabolic dynamics of microbial communities in the biomass degradation process and should therefore be useful in future investigations of the environmental effects of natural disasters on soils.

  20. Metabolic dynamics analysis by massive data integration: application to tsunami-affected field soils in Japan.

    PubMed

    Ogura, Tatsuki; Date, Yasuhiro; Tsuboi, Yuuri; Kikuchi, Jun

    2015-08-21

    A new metabolic dynamics analysis approach has been developed in which massive data sets from time-series of (1)H and (13)C NMR spectra are integrated in combination with microbial variability to characterize the biomass degradation process using field soil microbial communities. On the basis of correlation analyses that revealed relationships between various metabolites and bacteria, we efficiently monitored the metabolic dynamics of saccharides, amino acids, and organic acids, by assessing time-course changes in the microbial and metabolic profiles during biomass degradation. Specific bacteria were found to support specific steps of metabolic pathways in the degradation process of biomass to short chain fatty acids. We evaluated samples from agricultural and abandoned fields contaminated by the tsunami that followed the Great East earthquake in Japan. Metabolic dynamics and activities in the biomass degradation process differed considerably between soil from agricultural and abandoned fields. In particular, production levels of short chain fatty acids, such as acetate and propionate, which were considered to be produced by soil bacteria such as Sedimentibacter sp. and Coprococcus sp., were higher in the soil from agricultural fields than from abandoned fields. Our approach could characterize soil activity based on the metabolic dynamics of microbial communities in the biomass degradation process and should therefore be useful in future investigations of the environmental effects of natural disasters on soils. PMID:25997449

  1. Bisphenol A affects early bovine embryo development and metabolism that is negated by an oestrogen receptor inhibitor

    PubMed Central

    Choi, Bom-Ie; Harvey, Alexandra J.; Green, Mark P.

    2016-01-01

    Increasing evidence supports an association between exposure to endocrine disruptors, such as the xenoestrogen bisphenol A (BPA), a commonly used plasticiser, and the developmental programming of offspring health. To date however animal studies to investigate a direct causal have mainly focussed on supra-environmental BPA concentrations, without investigating the effect on the early embryo. In this study we investigated the effect of acute BPA exposure (days 3.5 to 7.5 post-fertilisation) at environmentally relevant concentrations (1 and 10 ng/mL) on in vitro bovine embryo development, quality and metabolism. We then examined whether culturing embryos in the presence of the oestrogen receptor inhibitor fulvestrant could negate effects of BPA and 17β-oestradiol (E2). Exposure to BPA or E2 (10 ng/mL) decreased blastocyst rate and the percentage of transferrable quality embryos, without affecting cell number, lineage allocation or metabolic gene expression compared to untreated embryos. Notably, blastocysts exposed to BPA and E2 (10 ng/mL) displayed an increase in glucose consumption. The presence of fulvestrant however negated the adverse developmental and metabolic effects, suggesting BPA elicits its effects via oestrogen-mediated pathways. This study demonstrates that even acute exposure to an environmentally relevant BPA concentration can affect early embryo development and metabolism. These may have long-term health consequences on an individual. PMID:27384909

  2. Bisphenol A affects early bovine embryo development and metabolism that is negated by an oestrogen receptor inhibitor.

    PubMed

    Choi, Bom-Ie; Harvey, Alexandra J; Green, Mark P

    2016-01-01

    Increasing evidence supports an association between exposure to endocrine disruptors, such as the xenoestrogen bisphenol A (BPA), a commonly used plasticiser, and the developmental programming of offspring health. To date however animal studies to investigate a direct causal have mainly focussed on supra-environmental BPA concentrations, without investigating the effect on the early embryo. In this study we investigated the effect of acute BPA exposure (days 3.5 to 7.5 post-fertilisation) at environmentally relevant concentrations (1 and 10 ng/mL) on in vitro bovine embryo development, quality and metabolism. We then examined whether culturing embryos in the presence of the oestrogen receptor inhibitor fulvestrant could negate effects of BPA and 17β-oestradiol (E2). Exposure to BPA or E2 (10 ng/mL) decreased blastocyst rate and the percentage of transferrable quality embryos, without affecting cell number, lineage allocation or metabolic gene expression compared to untreated embryos. Notably, blastocysts exposed to BPA and E2 (10 ng/mL) displayed an increase in glucose consumption. The presence of fulvestrant however negated the adverse developmental and metabolic effects, suggesting BPA elicits its effects via oestrogen-mediated pathways. This study demonstrates that even acute exposure to an environmentally relevant BPA concentration can affect early embryo development and metabolism. These may have long-term health consequences on an individual. PMID:27384909

  3. The impact of pre- and/or probiotics on human colonic metabolism: does it affect human health?

    PubMed

    De Preter, Vicky; Hamer, Henrike M; Windey, Karen; Verbeke, Kristin

    2011-01-01

    Since many years, the role of the colonic microbiota in maintaining the host's overall health and well-being has been recognized. Dietary modulation of the microbiota composition and activity has been achieved by the use of pre-, pro- and synbiotics. In this review, we will summarize the available evidence on the modification of bacterial metabolism by dietary intervention with pre-, pro- and synbiotics. Enhanced production of SCFA as a marker of increased saccharolytic fermentation is well documented in animal and in vitro studies. Decreased production of potentially toxic protein fermentation metabolites, such as sulfides, phenolic and indolic compounds, has been less frequently demonstrated. Besides, pre-, pro- and synbiotics also affect other metabolic pathways such as the deconjugation of secondary bile acids, bacterial enzyme activities and mineral absorption. Data from human studies are less conclusive. The emergence of new analytical techniques such as metabolite profiling has revealed new pathways affected by dietary intervention. However, an important challenge for current and future research is to relate changes in bacterial metabolism to concrete health benefits. Potential targets and expected benefits have been identified: reduced risk for the metabolic syndrome and prevention of colorectal cancer. PMID:21207512

  4. Severe dietary lysine restriction affects growth and body composition and hepatic gene expression for nitrogen metabolism in growing rats.

    PubMed

    Kim, J; Lee, K S; Kwon, D-H; Bong, J J; Jeong, J Y; Nam, Y S; Lee, M S; Liu, X; Baik, M

    2014-02-01

    Dietary lysine restriction may differentially affect body growth and lipid and nitrogen metabolism, depending on the degree of lysine restriction. This study was conducted to examine the effect of dietary lysine restriction on growth and lipid and nitrogen metabolism with two different degree of lysine restriction. Isocaloric amino acid-defined diets containing 1.4% lysine (adequate), 0.70% lysine (50% moderate lysine restriction) and 0.35% lysine (75% severe lysine restriction) were fed from the age of 52 to 77 days for 25 days in male Sprague-Dawley rats. The 75% severe lysine restriction increased (p < 0.05) food intake, but retarded (p < 0.05) growth, increased (p < 0.05) liver and muscle lipid contents and abdominal fat accumulation, increased (p < 0.05) blood urea nitrogen levels and mRNA levels of the serine-synthesizing 3-phosphoglycerate dehydrogenase gene, but decreased (p < 0.05) urea cycle arginase gene mRNA levels. In contrast, the 50% lysine restriction did not significantly (p > 0.05) affect body growth and lipid and nitrogen metabolism. Our results demonstrate that severe 75% lysine restriction has detrimental effects on body growth and deregulate lipid and nitrogen metabolism. PMID:23441935

  5. Hematologic parameters as the predictors for metabolic syndrome in perimenopausal and postmenopausal women living in urban area: a preliminary report

    PubMed Central

    Sirirat, Siriwan

    2016-01-01

    Introduction Prevalence of metabolic syndrome increases drastically during menopausal transition. Chronic inflammation is proposed as the basic pathophysiology of metabolic syndrome (MetS). Aim of the study To compare mean white blood cell count between perimenopausal and postmenopausal women with and without MetS and find the prevalence of MetS in this patient group. Material and methods A total of 140 healthy perimenopausal and postmenopausal women were interviewed and underwent anthropometric measurements, biochemical investigations for MetS and hematologic parameters. MetS was defined according to the Joint Interim Statement 2009 criteria. The outcome measures were the hematologic parameters between women with and without MetS, correlation of hematologic parameters with MetS components and optimum cutoff for MetS prediction. Results The mean age of participants was 50 years. 63.6% were perimenopausal and 36.4% were postmenopausal ones. The prevalence of MetS was 21.4% (95% CI: 15.0-27.9). The women with MetS had a significantly higher level of white blood cell (WBC) counts (7,466.7 and 6,514.6; p = 0.006) and total lymphocyte counts (2,572.0 and 2,207.7; p = 0.003). The optimum cutoff of WBC counts and total lymphocyte counts for prediction of metabolic syndrome was 6,750 cells/ml (sensitivity = 0.633; specificity = 0.591, p = 0.019) and 2,232 cells/ml (sensitivity = 0.667; specificity = 0.518, p = 0.016), respectively. Conclusion White blood cell and total lymphocyte counts were higher in perimenopausal and postmenopausal women with MetS. However, both hematologic parameters were poor predictors for MetS in peri- and postmenopausal women. PMID:27582683

  6. Soil moisture affects fatty acids and oil quality parameters in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought affects yield of peanut, but its effect on oleic and linoleic acids that influence its oil quality of peanut genotypes with different levels of drought resistance has not been clearly investigated. Therefore, the aims of this research were to determine whether soil water levels could affect...

  7. Acclimation temperature affects the metabolic response of amphibian skeletal muscle to insulin.

    PubMed

    Petersen, Ann M; Gleeson, Todd T

    2011-09-01

    Frog skeletal muscle mainly utilizes the substrates glucose and lactate for energy metabolism. The goal of this study was to determine the effect of insulin on the uptake and metabolic fate of lactate and glucose at rest in skeletal muscle of the American bullfrog, Lithobates catesbeiana, under varying temperature regimens. We hypothesize that lactate and glucose metabolic pathways will respond differently to the presence of insulin in cold versus warm acclimated frog tissues, suggesting an interaction between temperature and metabolism under varying environmental conditions. We employed radiolabeled tracer techniques to measure in vitro uptake, oxidation, and incorporation of glucose and lactate into glycogen by isolated muscles from bullfrogs acclimated to 5 °C (cold) or 25 °C (warm). Isolated bundles from Sartorius muscles were incubated at 5 °C, 15 °C, or 25 °C, and in the presence and absence of 0.05 IU/mL bovine insulin. Insulin treatment in the warm acclimated and incubated frogs resulted in an increase in glucose incorporation into glycogen, and an increase in intracellular [glucose] of 0.5 μmol/g (P<0.05). Under the same conditions lactate incorporation into glycogen was reduced (P<0.05) in insulin-treated muscle. When compared to the warm treatment group, cold acclimation and incubation resulted in increased rates of glucose oxidation and glycogen synthesis, and a reduction in free intracellular glucose levels (P<0.05). When muscles from either acclimation group were incubated at an intermediate temperature of 15 °C, insulin's effect on substrate metabolism was attenuated or even reversed. Therefore, a significant interaction between insulin and acclimation condition in controlling skeletal muscle metabolism appears to exist. Our findings further suggest that one of insulin's actions in frog muscle is to increase glucose incorporation into glycogen, and to reduce reliance on lactate as the primary metabolic fuel. PMID:21605693

  8. Stability of Intercellular Exchange of Biochemical Substances Affected by Variability of Environmental Parameters

    NASA Astrophysics Data System (ADS)

    Mihailović, Dragutin T.; Budinčević, Mirko; Balaž, Igor; Mihailović, Anja

    Communication between cells is realized by exchange of biochemical substances. Due to internal organization of living systems and variability of external parameters, the exchange is heavily influenced by perturbations of various parameters at almost all stages of the process. Since communication is one of essential processes for functioning of living systems it is of interest to investigate conditions for its stability. Using previously developed simplified model of bacterial communication in a form of coupled difference logistic equations we investigate stability of exchange of signaling molecules under variability of internal and external parameters.

  9. The new total Western diet for rodents does not induce an overweight phenotype or alter parameters of metabolic syndrome in mice.

    PubMed

    Monsanto, Stephany P; Hintze, Korry J; Ward, Robert E; Larson, Deanna P; Lefevre, Michael; Benninghoff, Abby D

    2016-09-01

    In this study, we determined the impact of the total Western diet (TWD) for rodents and its macro- and micronutrient components on weight gain and biomarkers of metabolic function in mice compared to a 45% fat diet-induced obesity (DIO) diet and the standard AIN93G diet. We hypothesized that mice fed the TWD would have increased body fat with indicators of metabolic syndrome similar to mice consuming the DIO diet. As expected, DIO-fed mice acquired a metabolic syndrome phenotype typified by increased energy intake, increased body weight gain, increased fat mass, higher fasting glucose, impaired glucose tolerance, and higher plasma leptin relative to the AIN93G diet. Mice fed a macronutrient-modified (MM) diet (with standard vitamin and mineral composition) had a similar response, albeit to a lesser degree than mice fed the DIO diet. Mice fed a vitamin- and mineral-modified diet (with standard macronutrient composition) were not different from mice fed the AIN93G diet. Surprisingly, the TWD (with modified macronutrients, vitamins and minerals) did not significantly affect any of these parameters, despite the fact that the TWD macronutrient profile was identical to the MM diet. These data suggest that, in the context of the TWD, vitamin and mineral intakes in mice that reflect a Western dietary pattern inhibit the hyperphagia and resulting increased weight gain associated with the higher fat content of the TWD. In conclusion, these observations underscore the need to consider the influence of micronutrient intakes in pre-clinical models of obesity and metabolic syndrome. PMID:27632924

  10. The new total Western diet for rodents does not induce an overweight phenotype or alter parameters of metabolic syndrome in mice.

    PubMed

    Monsanto, Stephany P; Hintze, Korry J; Ward, Robert E; Larson, Deanna P; Lefevre, Michael; Benninghoff, Abby D

    2016-09-01

    In this study, we determined the impact of the total Western diet (TWD) for rodents and its macro- and micronutrient components on weight gain and biomarkers of metabolic function in mice compared to a 45% fat diet-induced obesity (DIO) diet and the standard AIN93G diet. We hypothesized that mice fed the TWD would have increased body fat with indicators of metabolic syndrome similar to mice consuming the DIO diet. As expected, DIO-fed mice acquired a metabolic syndrome phenotype typified by increased energy intake, increased body weight gain, increased fat mass, higher fasting glucose, impaired glucose tolerance, and higher plasma leptin relative to the AIN93G diet. Mice fed a macronutrient-modified (MM) diet (with standard vitamin and mineral composition) had a similar response, albeit to a lesser degree than mice fed the DIO diet. Mice fed a vitamin- and mineral-modified diet (with standard macronutrient composition) were not different from mice fed the AIN93G diet. Surprisingly, the TWD (with modified macronutrients, vitamins and minerals) did not significantly affect any of these parameters, despite the fact that the TWD macronutrient profile was identical to the MM diet. These data suggest that, in the context of the TWD, vitamin and mineral intakes in mice that reflect a Western dietary pattern inhibit the hyperphagia and resulting increased weight gain associated with the higher fat content of the TWD. In conclusion, these observations underscore the need to consider the influence of micronutrient intakes in pre-clinical models of obesity and metabolic syndrome.

  11. In vitro studies into some parameters of protein and carbohydrate metabolism in lymphocytes infected with bovine leucosis virus.

    PubMed

    Madej, J A; Sobiech, K A; Klimentowski, S

    1989-11-01

    Several parameters of protein and carbohydrate metabolism were determined in normal and leukemic lymphocytes in vitro in cattle, including arylamidase activity toward beta-naphthylamides of L-amino acids. The homogenate of bovine leukemic lymphocytes, in comparison with the control revealed increase of gamma-glutamyltransferase, activity trypsin inhibitor and papain inhibitor concentration and aldolase activity. On the other hand, proteolytic activity toward casein and histomucoid content decreased. Out of the 7 substrates used in the study, only 2, alanyl-beta-naphthylamide and leucyl-beta-naphthylamide, demonstrated lower activity in the leukemic material. Disorders in carbohydrate and protein metabolism in the observed lymphocytes in vitro in cattle are presented in the paper. PMID:2559671

  12. Clinical and metabolic parameters in non-small cell lung carcinoma and colorectal cancer patients with and without KRAS mutations.

    PubMed

    Yilmaz, Ahmet; Mohamed, Nehad; Patterson, Kara A; Tang, Yan; Shilo, Konstantin; Villalona-Calero, Miguel A; Davis, Michael E; Zhou, Xiao-Ping; Frankel, Wendy; Otterson, Gregory A; Zhao, Weiqiang

    2014-09-01

    Lung cancer (LC) and colorectal cancer (CRC) are the first and second deadliest types of cancer worldwide. EGFR-based therapy has been used in the treatment of these cancers with variable success. Presence of mutations in the KRAS driver oncogene, possibly induced by environmental factors such as carcinogens in diet and cigarette smoke, may confer worse prognosis and resistance to treatment for reasons not fully understood. Data on possible associations between KRAS mutational status and clinical and metabolic parameters, which may help in clinical management, as well as in identifying risk factors for developing these cancers, are limited in the current literature. We sequenced the KRAS gene and investigated the associations of variations in 108 patients with non-small cell lung carcinoma (NSCLC), the most common form of LC, and in 116 patients with CRC. All of the mutations originated from the guanosine nucleotide and over half of all transversions in NSCLC and CRC were c.34 G>T and c.35 G>T, respectively. c.35 G>A was the most frequent type of transition in both cancers. Excluding smoking, the clinical and metabolic parameters in patients carrying mutant and wild type KRAS were similar except that the CRC patients with transversion mutations were 8.6 years younger than those carrying the transitions (P < 0.01). Dyslipidemia, hypertension, family cancer history, and age of diagnosis older than 60 years were more frequent in NSCLC than CRC (P ≤ 0.04). These results suggest that most of the clinical and metabolic parameters investigated in this study are probably not associated with the more aggressive phenotype and differences in response to EGFR-based treatment previously reported in patients with KRAS mutations. However, the increased rates of abnormal metabolic parameters in patients with NSCLC in comparison to CRC indicate that these parameters may be more important in the management of NSCLC. CRC patients carrying transition mutations are older than those

  13. Thermal conditions experienced during differentiation affect metabolic and contractile phenotypes of mouse myotubes.

    PubMed

    Little, Alex G; Seebacher, Frank

    2016-09-01

    Central pathways regulate metabolic responses to cold in endotherms to maintain relatively stable internal core body temperatures. However, peripheral muscles routinely experience temperatures lower than core body temperature, so that it would be advantageous for peripheral tissues to respond to temperature changes independently from core body temperature regulation. Early developmental conditions can influence offspring phenotypes, and here we tested whether developing muscle can compensate locally for the effects of cold exposure independently from central regulation. Muscle myotubes originate from undifferentiated myoblasts that are laid down during embryogenesis. We show that in a murine myoblast cell line (C2C12), cold exposure (32°C) increased myoblast metabolic flux compared with 37°C control conditions. Importantly, myotubes that differentiated at 32°C compensated for the thermodynamic effects of low temperature by increasing metabolic rates, ATP production, and glycolytic flux. Myotube responses were also modulated by the temperatures experienced by "parent" myoblasts. Myotubes that differentiated under cold exposure increased activity of the AMP-stimulated protein kinase (AMPK), which may mediate metabolic changes in response cold exposure. Moreover, cold exposure shifted myosin heavy chains from slow to fast, presumably to overcome slower contractile speeds resulting from low temperatures. Adjusting thermal sensitivities locally in peripheral tissues complements central thermoregulation and permits animals to maintain function in cold environments. Muscle also plays a major metabolic role in adults, so that developmental responses to cold are likely to influence energy expenditure later in life. PMID:27385733

  14. Sensitivity Analysis of Parameters Affecting Protection of Water Resources at Hanford WA

    SciTech Connect

    DAVIS, J.D.

    2002-02-08

    The scope of this analysis was to assess the sensitivity of contaminant fluxes from the vadose zone to the water table, to several parameters, some of which can be controlled by operational considerations.

  15. A Randomized Controlled Trial Comparing the Effects of Sitagliptin and Glimepiride on Endothelial Function and Metabolic Parameters: Sapporo Athero-Incretin Study 1 (SAIS1)

    PubMed Central

    Nomoto, Hiroshi; Miyoshi, Hideaki; Furumoto, Tomoo; Oba, Koji; Tsutsui, Hiroyuki; Inoue, Atsushi; Atsumi, Tatsuya; Manda, Naoki; Kurihara, Yoshio; Aoki, Shin

    2016-01-01

    Objectives The DPP-4 inhibitors are incretin-related drugs that improve hyperglycemia in a glucose-dependent manner and have been reported to exert favorable effects on atherosclerosis. However, it has not been fully elucidated whether DPP-4 inhibitors are able to improve endothelial function in patients with type 2 diabetes. Therefore, we investigated the efficacy of sitagliptin, a DPP-4 inhibitor, on endothelial function and glycemic metabolism compared with that of the sulfonylurea glimepiride. Materials and Methods In this multicenter, prospective, randomized parallel-group comparison study, 103 outpatients with type 2 diabetes (aged 59.9 ± 9.9 years with HbA1c levels of 7.5 ± 0.4%) with dietary cure only and/or current metformin treatment were enrolled and randomly assigned to receive sitagliptin or glimepiride therapy once daily for 26 weeks. Flow-mediated dilation (FMD), a comprehensive panel of hemodynamic parameters (Task Force® Monitor), and serum metabolic markers were assessed before and after the treatment. Results During the study period, no statistically significant change in %FMD was seen in both groups (sitagliptin, 5.6 to 5.6%; glimepiride, 5.6 to 6.0%). Secretory units of islets in transplantation, TNF-α, adiponectin and biological antioxidant potential significantly improved in the sitagliptin group, and superoxide dismutase also tended to improve in the sitagliptin group, while improvements in HbA1c levels were similar between groups. Cardiac index, blood pressure and most other metabolic parameters were not different. Conclusions Regardless of glycemic improvement, early sitagliptin therapy did not affect endothelial function but may provide favorable effects on beta-cell function and on inflammatory and oxidative stress in patients with type 2 diabetes without advanced atherosclerosis. Trial Registration UMIN Clinical Trials Registry System UMIN 000004955 PMID:27711199

  16. Associations between lower extremity muscle mass and metabolic parameters related to obesity in Japanese obese patients with type 2 diabetes.

    PubMed

    Hamasaki, Hidetaka; Kawashima, Yu; Adachi, Hiroki; Moriyama, Sumie; Katsuyama, Hisayuki; Sako, Akahito; Yanai, Hidekatsu

    2015-01-01

    Background. Age-related loss of muscle mass (sarcopenia) increases the incidence of obesity in the elderly by reducing physical activity. This sarcopenic obesity may become self-perpetuating, increasing the risks for metabolic syndrome, disability, and mortality. We investigated the associations of two sarcopenic indices, the ratio of lower extremity muscle mass to body weight (L/W ratio) and the ratio of lower extremity muscle mass to upper extremity muscle mass (L/U ratio), with metabolic parameters related to obesity in patients with type 2 diabetes and obesity. Methods. Of 148 inpatients with type 2 diabetes treated between October 2013 and April 2014, we recruited 26 with obesity but no physical disability. Daily physical activity was measured by a triaxial accelerometer during a period of hospitalization, and which was also evaluated by our previously reported non-exercise activity thermogenesis questionnaire. We measured body composition by bioelectrical impedance and investigated the correlations of L/W and L/U ratios with body weight, body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), visceral fat area, subcutaneous fat area, serum lipid profile, and daily physical activity. Results. The L/W ratio was significantly and negatively correlated with BMI, WC, WHR, body fat mass, body fat percentage, subcutaneous fat area, and serum free fatty acid concentration, was positively correlated with daily physical activity: the locomotive non-exercise activity thermogenesis score, but was not correlated with visceral fat area. The L/U ratio was significantly and positively correlated with serum high-density lipoprotein cholesterol. Conclusions. High L/W and L/U ratios, indicative of relatively preserved lower extremity muscle mass, were predictive of improved metabolic parameters related to obesity. Preserved muscle fitness in obesity, especially of the lower extremities, may prevent sarcopenic obesity and lower associated risks for metabolic

  17. Physical Parameters Affecting the Emanation of RADON-222 from Coal Ash.

    NASA Astrophysics Data System (ADS)

    Barton, Terence Patrick

    The Rn-222 emanation coefficients for coal ash and parameters which affected them were measured. Samples of ash from both stoker fired and pulverized coal fired boilers were obtained. The stoker ash samples were mechanically separated into size fractions. The pulverized samples were too fine for mechanical sizing and were categorized qualitatively according to origin. Bulk density of the stoker fractions was measured and ranged from .488 to .944 g-cm('-3), increasing as a function of decreasing particle size. Bulk density of the pulverized ash ranged from 1.254 to 1.520 g-cm('-3). Specific gravity of the stoker fractions ranged from 2.017 to 2.390 g-cm('-3), also increasing as a function of decreasing particle size. Specific gravity of the pulverized ash ranged from 2.357 to 2.588 g-cm(' -3). Ra-226 content of the samples was determined by gamma spectrometric analysis of the 352-KeV gamma of Pb -214 and the 609-KeV gamma of Bi-214 from sealed samples of ash. Ra-226 concentrations in the stoker fractions ranged from 11.82 to 16.77 dpm-g('-1), increasing as a function of decreasing particle size. Ra-226 concentrations in the pulverized ash ranged from 6.44 to 7.59 dpm-g(' -1). Scintillation cells were constructed out of commonly available materials and a commercial preparation of ZnS(Ag) scintillator. Emanation chambers which allowed for moderately large sample masses were constructed. The procedure used to measure emanation coefficients was shown to be insensitive to ingrowth time at greater than 3 days ingrowth and relatively insensitive to variations in sample porosity. Emanation coefficients of the stoker fractions were measured at moisture contents of 0, 1.0, 10, 20, and 40 percent by weight. Within each size fraction the emanation coefficient increased as a function of moisture content, ranging from 9.58 x 10('-4) to 4.13 x 10('-2) between 0 and 20 percent moisture, respectively. Emanation coefficients also increased as a function of decreasing particle size

  18. Changes in Bone Mineral Density and Metabolic Parameters after Pulsatile Gonadorelin Treatment in Young Men with Hypogonadotropic Hypogonadism

    PubMed Central

    Li, Chen-Xi; Tang, Song-Tao; Zhang, Qiu

    2015-01-01

    To assess the prevalence of osteoporosis in young men with hypogonadotropic hypogonadism (HH) and to investigate the changes of BMD and metabolic parameters, a total of 22 young male patients with HH and 20 healthy controls were enrolled in the study. BMD, biochemical, and hormonal parameters were measured in two groups. Osteoporosis was more prevalent in HH patients (45.45%) than the control subjects (10.00%) (P < 0.001). The patients with HH had lower BMD in lumbar spine 2–4, femoral neck, and total hip (P < 0.001, for all) and higher fasting insulin (P = 0.001), HOMA-IR (P = 0.002), and SHBG (P < 0.001) compared to the controls. After 6 months of pulsatile gonadorelin treatment, BMI (P = 0.021) and BMD in lumbar spine 2–4, femoral neck, and total hip (P = 0.002, P = 0.003, and P = 0.003, resp.) increased dramatically and total cholesterol (P = 0.034), fasting insulin (P = 0.025), HOMA-IR (P = 0.021), and SHBG (P = 0.001) decreased significantly in HH patients. The study shows a higher prevalence of osteoporosis in young men with HH. Long-term pulsatile gonadorelin treatment indicates a positive effect on BMD and metabolic parameters of HH patients. PMID:26417369

  19. Sex-dependent effects of developmental exposure to bisphenol A and ethinyl estradiol on metabolic parameters and voluntary physical activity

    PubMed Central

    Johnson, S. A.; Painter, M. S.; Javurek, A. B.; Ellersieck, M. R.; Wiedmeyer, C. E.; Thyfault, J. P.; Rosenfeld, C. S.

    2016-01-01

    Endocrine disrupting chemicals (EDC) have received considerable attention as potential obesogens. Past studies examining obesogenic potential of one widespread EDC, bisphenol A (BPA), have generally focused on metabolic and adipose tissue effects. However, physical inactivity has been proposed to be a leading cause of obesity. A paucity of studies has considered whether EDC, including BPA, affects this behavior. To test whether early exposure to BPA and ethinyl estradiol (EE, estrogen present in birth control pills) results in metabolic and such behavioral disruptions, California mice developmentally exposed to BPA and EE were tested as adults for energy expenditure (indirect calorimetry), body composition (echoMRI) and physical activity (measured by beam breaks and voluntary wheel running). Serum glucose and metabolic hormones were measured. No differences in body weight or food consumption were detected. BPA-exposed females exhibited greater variation in weight than females in control and EE groups. During the dark and light cycles, BPA females exhibited a higher average respiratory quotient than control females, indicative of metabolizing carbohydrates rather than fats. Various assessments of voluntary physical activity in the home cage confirmed that during the dark cycle, BPA and EE-exposed females were significantly less active in this setting than control females. Similar effects were not observed in BPA or EE-exposed males. No significant differences were detected in serum glucose, insulin, adiponectin and leptin concentrations. Results suggest that females developmentally exposed to BPA exhibit decreased motivation to engage in voluntary physical activity and altered metabolism of carbohydrates v. fats, which could have important health implications. PMID:26378919

  20. Changes in Gut Microbiota in Rats Fed a High Fat Diet Correlate with Obesity-Associated Metabolic Parameters

    PubMed Central

    Maloney, Christopher A.; Raipuria, Mukesh; Huinao, Karina D.; Mitchell, Hazel M.; Morris, Margaret J.

    2015-01-01

    The gut microbiota is emerging as a new factor in the development of obesity. Many studies have described changes in microbiota composition in response to obesity and high fat diet (HFD) at the phylum level. In this study we used 16s RNA high throughput sequencing on faecal samples from rats chronically fed HFD or control chow (n = 10 per group, 16 weeks) to investigate changes in gut microbiota composition at the species level. 53.17% dissimilarity between groups was observed at the species level. Lactobacillus intestinalis dominated the microbiota in rats under the chow diet. However this species was considerably less abundant in rats fed HFD (P<0.0001), this being compensated by an increase in abundance of propionate/acetate producing species. To further understand the influence of these species on the development of the obese phenotype, we correlated their abundance with metabolic parameters associated with obesity. Of the taxa contributing the most to dissimilarity between groups, 10 presented significant correlations with at least one of the tested parameters, three of them correlated positively with all metabolic parameters: Phascolarctobacterium, Proteus mirabilis and Veillonellaceae, all propionate/acetate producers. Lactobacillus intestinalis was the only species whose abundance was negatively correlated with change in body weight and fat mass. This species decreased drastically in response to HFD, favouring propionate/acetate producing bacterial species whose abundance was strongly correlated with adiposity and deterioration of metabolic factors. Our observations suggest that these species may play a key role in the development of obesity in response to a HFD. PMID:25992554

  1. Prognostic Value of Metabolic and Volumetric Parameters of Preoperative FDG-PET/CT in Patients With Resectable Pancreatic Cancer

    PubMed Central

    Im, Hyung-Jun; Oo, Suthet; Jung, Woohyun; Jang, Jin-Young; Kim, Sun-Whe; Cheon, Gi Jeong; Kang, Keon Wook; Chung, June-Key; Kim, E. Edmund; Lee, Dong Soo

    2016-01-01

    Abstract In this study, we aimed to evaluate prognostic value of metabolic and volumetric parameters measured from 18F fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) in patients with resectable pancreatic cancer. Fifty-one patients with resectable pancreatic cancer who underwent FDG-PET/CT and curative operation were retrospectively enrolled. The maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were measured from FDG-PET/CT. Association between FDG-PET/CT and clinicopathologic parameters was evaluated. The prognostic values of the FDG-PET/CT and clinicopathologic parameters for recurrence-free survival (RFS) and overall survival (OS) were assessed by univariate and multivariate analyses. The 51 enrolled patients were followed up for a median of 21 months (mean ± SD: 23 ± 16 months, range: 1–78 months) with 33 (65%) recurrences and 30 (59%) deaths during the period. SUVmax, MTV, and TLG were associated with Tumor node metastasis (TNM) stage and presence of lymph node metastasis. MTV and TLG were associated with presence of lymphovascular invasion, whereas SUVmax was not. On the univariate analysis, SUVmax, MTV, and TLG were associated with RFS and OS. Also, lymph node metastasis and TNM stage were associated with OS on the univariate analysis. On multivariate analysis, MTV and TLG were independent prognostic factors for RFS and OS. SUVmax was an independent prognostic factor for OS, but not for RFS. Metabolic tumor volume and TLG were independently predictive of RFS and OS in resectable pancreatic cancer. SUVmax was an independent factor for OS, but not for RFS. PMID:27175707

  2. The relationship between biventricular myocardial performance and metabolic parameters during incremental exercise and recovery in healthy adolescents.

    PubMed

    Pieles, Guido E; Gowing, Lucy; Forsey, Jonathan; Ramanujam, Paramanantham; Miller, Felicity; Stuart, A Graham; Williams, Craig A

    2015-12-15

    Background left ventricular (LV) and right ventricular (RV) myocardial reserve during exercise in adolescents has not been directly characterized. The aim of this study was to quantify myocardial performance response to exercise by using two-dimensional (2-D) speckle tracking echocardiography and describe the relationship between myocardial reserve, respiratory, and metabolic exercise parameters. A total of 23 healthy boys and girls (mean age 13.2 ± 2.7 yr; stature 159.1 ± 16.4 cm; body mass 49.5 ± 16.6 kg; BSA 1.47 ± 0.33 m(2)) completed an incremental cardiopulmonary exercise test (25 W · 3 min increments) with simultaneous acquisition of 2-D transthoracic echocardiography at rest, each exercise stage up to 100 W, and in recovery at 2 min and 10 min. Two-dimensional LV (LV Sl) and RV (RV Sl) longitudinal strain and LV circumferential strain (LV Sc) were analyzed to define the relationship between myocardial performance reserve and metabolic exercise parameters. Participants achieved a peak oxygen uptake (V̇o 2peak) of 40.6 ± 8.9 ml · kg(-1) · min(-1) and a work rate of 154 ± 42 W. LV Sl and LV Sc and RV Sl increased significantly across work rates (P < 0.05). LV Sl during exercise was significantly correlated to resting strain, V̇o 2peak, oxygen pulse, and work rate (0.530 ≤ r ≤ 0.784, P < 0.05). This study identifies a positive and moderate relationship between LV and RV myocardial performance and metabolic parameters during exercise by using a novel methodology. Relationships detected present novel data directly describing myocardial adaptation at different stages of exercise and recovery that in the future can help directly assess cardiac reserve in patients with cardiac pathology.

  3. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters.

    PubMed

    Lecomte, Virginie; Kaakoush, Nadeem O; Maloney, Christopher A; Raipuria, Mukesh; Huinao, Karina D; Mitchell, Hazel M; Morris, Margaret J

    2015-01-01

    The gut microbiota is emerging as a new factor in the development of obesity. Many studies have described changes in microbiota composition in response to obesity and high fat diet (HFD) at the phylum level. In this study we used 16s RNA high throughput sequencing on faecal samples from rats chronically fed HFD or control chow (n = 10 per group, 16 weeks) to investigate changes in gut microbiota composition at the species level. 53.17% dissimilarity between groups was observed at the species level. Lactobacillus intestinalis dominated the microbiota in rats under the chow diet. However this species was considerably less abundant in rats fed HFD (P<0.0001), this being compensated by an increase in abundance of propionate/acetate producing species. To further understand the influence of these species on the development of the obese phenotype, we correlated their abundance with metabolic parameters associated with obesity. Of the taxa contributing the most to dissimilarity between groups, 10 presented significant correlations with at least one of the tested parameters, three of them correlated positively with all metabolic parameters: Phascolarctobacterium, Proteus mirabilis and Veillonellaceae, all propionate/acetate producers. Lactobacillus intestinalis was the only species whose abundance was negatively correlated with change in body weight and fat mass. This species decreased drastically in response to HFD, favouring propionate/acetate producing bacterial species whose abundance was strongly correlated with adiposity and deterioration of metabolic factors. Our observations suggest that these species may play a key role in the development of obesity in response to a HFD.

  4. Relationship of pre-surgery metabolic and physiological MR imaging parameters to survival for patients with untreated GBM

    PubMed Central

    Crawford, Forrest W.; Khayal, Inas S.; McGue, Colleen; Saraswathy, Suja; Pirzkall, Andrea; Cha, Soonmee; Lamborn, Kathleen R.; Chang, Susan M.; Berger, Mitchel S.

    2010-01-01

    Glioblastoma Multiforme (GBM) are heterogeneous lesions, both in terms of their appearance on anatomic images and their response to therapy. The goal of this study was to evaluate the prognostic value of parameters derived from physiological and metabolic images of these lesions. Fifty-six patients with GBM were scanned immediately before surgical resection using conventional anatomical MR imaging and, where possible, perfusion-weighted imaging, diffusion-weighted imaging, and proton MR spectroscopic imaging. The median survival time was 517 days, with 15 patients censored. Absolute anatomic lesion volumes were not associated with survival but patients for whom the combined volume of contrast enhancement and necrosis was a large percentage of the T2 hyperintense lesion had relatively poor survival. Other volumetric parameters linked with less favorable survival were the volume of the region with elevated choline to N-acetylaspartate index (CNI) and the volume within the T2 lesion that had apparent diffusion coefficient (ADC) less than 1.5 times that in white matter. Intensity parameters associated with survival were the maximum and the sum of levels of lactate and of lipid within the CNI lesion, as well as the magnitude of the 10th percentile of the normalized ADC within the contrast-enhancing lesion. Patients whose imaging parameters indicating that lesions with a relatively large percentage with breakdown of the blood brain barrier or necrosis, large regions with abnormal metabolism or areas with restricted diffusion have relatively poor survival. These parameters may provide useful information for predicting outcome and for the stratification of patients into high or low risk groups for clinical trials. PMID:19009235

  5. MAPK14/p38α-dependent modulation of glucose metabolism affects ROS levels and autophagy during starvation

    PubMed Central

    Desideri, Enrico; Vegliante, Rolando; Cardaci, Simone; Nepravishta, Ridvan; Paci, Maurizio; Ciriolo, Maria Rosa

    2014-01-01

    Increased glycolytic flux is a common feature of many cancer cells, which have adapted their metabolism to maximize glucose incorporation and catabolism to generate ATP and substrates for biosynthetic reactions. Indeed, glycolysis allows a rapid production of ATP and provides metabolic intermediates required for cancer cells growth. Moreover, it makes cancer cells less sensitive to fluctuations of oxygen tension, a condition usually occurring in a newly established tumor environment. Here, we provide evidence for a dual role of MAPK14 in driving a rearrangement of glucose metabolism that contributes to limiting reactive oxygen species (ROS) production and autophagy activation in condition of nutrient deprivation. We demonstrate that MAPK14 is phosphoactivated during nutrient deprivation and affects glucose metabolism at 2 different levels: on the one hand, it increases SLC2A3 mRNA and protein levels, resulting in a higher incorporation of glucose within the cell. This event involves the MAPK14-mediated enhancement of HIF1A protein stability. On the other hand, MAPK14 mediates a metabolic shift from glycolysis to the pentose phosphate pathway (PPP) through the modulation of PFKFB3 (6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase 3) degradation by the proteasome. This event requires the presence of 2 distinct degradation sequences, KEN box and DSG motif Ser273, which are recognized by 2 different E3 ligase complexes. The mutation of either motif increases PFKFB3 resistance to starvation-induced degradation. The MAPK14-driven metabolic reprogramming sustains the production of NADPH, an important cofactor for many reduction reactions and for the maintenance of the proper intracellular redox environment, resulting in reduced levels of ROS. The final effect is a reduced activation of autophagy and an increased resistance to nutrient deprivation. PMID:25046111

  6. Deviations of Lambert-Beer's law affect corneal refractive parameters after refractive surgery.

    PubMed

    Jiménez, José R; Rodríguez-Marín, Francisco; Anera, Rosario G; Jiménez Del Barco, Luis

    2006-06-12

    We calculate whether deviations of Lambert-Beer's law, which regulates depth ablation during corneal ablation, significantly influence corneal refractive parameters after refractive surgery and whether they influence visual performance. For this, we compute a point-to-point correction on the cornea while assuming a non-linear (including a quadratic term) fit for depth ablation. Post-surgical equations for refractive parameters using a non-linear fit show significant differences with respect to parameters obtained from a linear fit (Lambert-Beer's law). Differences were also significant for corneal aberrations. These results show that corneal-ablation algorithms should include analytical information on deviations from Lambert-Beer's law for achieving an accurate eye correction.

  7. The Correlations Between MRI Perfusion, Diffusion Parameters, and 18F-FDG PET Metabolic Parameters in Primary Head-and-Neck Cancer

    PubMed Central

    Han, Miran; Kim, Sun Yong; Lee, Su Jin; Choi, Jin Wook

    2015-01-01

    Abstract This study aimed to investigate the relationships among parameters from dynamic contrast-enhanced (DCE) MRI, diffusion-weighted MRI (DWI), and 18F-fluorodeoxyglucose (18F-FDG) PET in patients with primary head-and-neck squamous cell carcinoma (HNSCC). A total of 34 patients with primary HNSCC underwent DCE-MRI, DWI, and 18F-FDG PET before treatment. The perfusion parameters (Ktrans, Ktransmax, Kep, Ve, Vp, and AUC60) from DCE-MRI and ADC (ADCmean, ADCmin) values from DWI were calculated within the manually placed ROI around the main tumor. Standardized uptake value (SUVmax, SUVmean), metabolic tumor volume (MTV), and total lesion glycolysis (TLG = SUVmean × MTV) were calculated with thresholds of 3.0 SUV. The associations between parameters were evaluated by Pearson correlation analysis. Significant correlations were identified between Ktrans and Kep (r = 0.631), Ktrans and Ve (r = 0.603), Ktrans and ADCmean (r = 0.438), Ktransmax and Kep (r = 0.667), Ktransmax and Vp (r = 0.351), Ve and AUC60 (r = 0.364), Ve and ADCmean (r = 0.590), and Ve and ADCmin (r = 0.361). ADCmin was reversely correlated with TLG (r = –0.347). Tumor volume was significantly associated with Ktransmax (r = 0.348). The demonstrated relationships among parameters from DCE, DWI, and 18F-FDG PET suggest complex interactions among tumor biologic characteristics. Each diagnostic technique may provide complementary information for HNSCC. PMID:26632740

  8. Why does offspring size affect performance? Integrating metabolic scaling with life-history theory.

    PubMed

    Pettersen, Amanda K; White, Craig R; Marshall, Dustin J

    2015-11-22

    Within species, larger offspring typically outperform smaller offspring. While the relationship between offspring size and performance is ubiquitous, the cause of this relationship remains elusive. By linking metabolic and life-history theory, we provide a general explanation for why larger offspring perform better than smaller offspring. Using high-throughput respirometry arrays, we link metabolic rate to offspring size in two species of marine bryozoan. We found that metabolism scales allometrically with offspring size in both species: while larger offspring use absolutely more energy than smaller offspring, larger offspring use proportionally less of their maternally derived energy throughout the dependent, non-feeding phase. The increased metabolic efficiency of larger offspring while dependent on maternal investment may explain offspring size effects-larger offspring reach nutritional independence (feed for themselves) with a higher proportion of energy relative to structure than smaller offspring. These findings offer a potentially universal explanation for why larger offspring tend to perform better than smaller offspring but studies on other taxa are needed.

  9. Why does offspring size affect performance? Integrating metabolic scaling with life-history theory.

    PubMed

    Pettersen, Amanda K; White, Craig R; Marshall, Dustin J

    2015-11-22

    Within species, larger offspring typically outperform smaller offspring. While the relationship between offspring size and performance is ubiquitous, the cause of this relationship remains elusive. By linking metabolic and life-history theory, we provide a general explanation for why larger offspring perform better than smaller offspring. Using high-throughput respirometry arrays, we link metabolic rate to offspring size in two species of marine bryozoan. We found that metabolism scales allometrically with offspring size in both species: while larger offspring use absolutely more energy than smaller offspring, larger offspring use proportionally less of their maternally derived energy throughout the dependent, non-feeding phase. The increased metabolic efficiency of larger offspring while dependent on maternal investment may explain offspring size effects-larger offspring reach nutritional independence (feed for themselves) with a higher proportion of energy relative to structure than smaller offspring. These findings offer a potentially universal explanation for why larger offspring tend to perform better than smaller offspring but studies on other taxa are needed. PMID:26559952

  10. Plunger Kinematic Parameters Affecting Quality of High-Pressure Die-Cast Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Fiorese, Elena; Bonollo, Franco

    2016-07-01

    The selection of the optimal process parameters in high-pressure die casting has been long recognized as a complex problem due to the involvement of a large number of interconnected variables. Among these variables, the effect of the plunger motion has been proved to play a prominent role, even if a thorough and exhaustive study is still missing in the literature. To overcome this gap, this work aims at identifying the most relevant plunger kinematic parameters and estimates their correlation with the casting quality, by means of a statistically significant sample manufactured with different plunger motion profiles. In particular, slow and fast shot velocities and switching position between two stages have been varied randomly in accordance with design of experiment methodology. The quality has been assessed through the static mechanical properties and porosity percentage. As a further proof, the percentage of oxides has been estimated on the fracture surfaces. These measurements have been correlated to novel parameters, representing the mechanical energy and the inertial force related to the plunger motion, that have been extracted from the time-history of the displacement curves. The application of statistical methods demonstrates that these novel parameters accurately explain and predict the overall quality of castings.

  11. Sensitivity studies on parameters affecting gas release from an underground rock cavern

    SciTech Connect

    Schlueter, E.; Pruess, K.

    1990-01-01

    A series of numerical simulation experiments is performed to quantify the effects of the release and migration of non-condensible gas in water-saturated fractured rock formations. The relative importance of multiphase parameters such as relative permeability, capillary pressure, intrinsic permeability, and porosity on system behavior is studied. 10 refs., 28 figs., 5 tabs.

  12. Leptin, GH, PRL, insulin and metabolic parameters throughout the dry period and lactation in dairy cows.

    PubMed

    Accorsi, P A; Govoni, N; Gaiani, R; Pezzi, C; Seren, E; Tamanini, C

    2005-06-01

    Leptin may play a role in the endocrine-metabolic processes that guarantee the physiological course of lactation in dairy cattle. This study was aimed at determining the changes in plasma concentrations of leptin and some of the main hormones and metabolites involved in the lactogenetic process in high-yielding dairy cows throughout lactation; we also wanted to assess whether leptin secretion is subjected to seasonal influences. Blood samples were collected from 23 Italian Friesian dairy cows from the end of a lactation to the ninth month of the subsequent one; in addition, blood was sampled from 47 dairy cows in different phases of lactation during February and July. Plasma concentrations of leptin, growth hormone (GH), insulin, prolactin (PRL), glucose, non-esterified fatty acids (NEFA) and urea were quantified by either validated radioimmunoassay (RIA) or enzymatic colorimetric methods. At the beginning of lactation, GH concentrations significantly increased, while a significant reduction occurred in leptin and insulin. This endocrine condition, such as the significant increase in NEFA plasma concentrations, is indicative of a marked lipid mobilization. In the more advanced stages of lactation, when both energy and protein balances become positive, leptin plasma concentrations increased, whereas GH and NEFA concentrations declined. During the summer months, a significant increase in leptin plasma concentrations, irrespective of the phase of lactation, was observed. Collectively, our findings suggest that, in dairy cows, leptin may represent a 'metabolic signal' of animal's status of fattening and nutritional level; in addition, leptin seems to be influenced by photoperiod and environmental temperature.

  13. Concentrating carbohydrates before sleep improves feeding regulation and metabolic and inflammatory parameters in mice.

    PubMed

    Sofer, Sigal; Eliraz, Abraham; Madar, Zecharia; Froy, Oren

    2015-10-15

    New evidance highlights the importance of food timing. Recently, we showed that a low-calorie diet with carbohydrates eaten mostly at dinner changed diurnal hormone secretion and led to greater weight loss and improved metabolic status in obese people. Herein, we set out to test whether concentrated-carbohydrates diet (CCD), in which carbohydrates are fed only before sleep, leads to an improved metabolic status in mouse hypothalamus and peripheral tissues. Diet-induced obese mice were given concentrated or distributed carbohydrate diet for 6 weeks. Obese mice fed CCD ate 8.3% less, were 9.3% leaner and had 39.7% less fat mass. Leptin, ghrelin and adiponectin displayed altered secretion. In addition, these mice exhibited an improved biochemical and inflammatory status. In the hypothalamus, anorexigenic signals were up-regulated and orexigenic signals were down-regulated. In peripheral tissues, CCD promoted adiponectin signaling, repressed gluconeogenesis, enhanced lipid oxidation and lowered inflammation, thus ameliorating the major risk factors of obesity.

  14. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring

    PubMed Central

    de Castro Barbosa, Thais; Ingerslev, Lars R.; Alm, Petter S.; Versteyhe, Soetkin; Massart, Julie; Rasmussen, Morten; Donkin, Ida; Sjögren, Rasmus; Mudry, Jonathan M.; Vetterli, Laurène; Gupta, Shashank; Krook, Anna; Zierath, Juleen R.; Barrès, Romain

    2015-01-01

    Objectives Chronic and high consumption of fat constitutes an environmental stress that leads to metabolic diseases. We hypothesized that high-fat diet (HFD) transgenerationally remodels the epigenome of spermatozoa and metabolism of the offspring. Methods F0-male rats fed either HFD or chow diet for 12 weeks were mated with chow-fed dams to generate F1 and F2 offspring. Motile spermatozoa were isolated from F0 and F1 breeders to determine DNA methylation and small non-coding RNA (sncRNA) expression pattern by deep sequencing. Results Newborn offspring of HFD-fed fathers had reduced body weight and pancreatic beta-cell mass. Adult female, but not male, offspring of HFD-fed fathers were glucose intolerant and resistant to HFD-induced weight gain. This phenotype was perpetuated in the F2 progeny, indicating transgenerational epigenetic inheritance. The epigenome of spermatozoa from HFD-fed F0 and their F1 male offspring showed common DNA methylation and small non-coding RNA expression signatures. Altered expression of sperm miRNA let-7c was passed down to metabolic tissues of the offspring, inducing a transcriptomic shift of the let-7c predicted targets. Conclusion Our results provide insight into mechanisms by which HFD transgenerationally reprograms the epigenome of sperm cells, thereby affecting metabolic tissues of offspring throughout two generations. PMID:26977389

  15. Metformin revisited: Does this regulator of AMP-activated protein kinase secondarily affect bone metabolism and prevent diabetic osteopathy.

    PubMed

    McCarthy, Antonio Desmond; Cortizo, Ana María; Sedlinsky, Claudia

    2016-03-25

    Patients with long-term type 1 and type 2 diabetes mellitus (DM) can develop skeletal complications or "diabetic osteopathy". These include osteopenia, osteoporosis and an increased incidence of low-stress fractures. In this context, it is important to evaluate whether current anti-diabetic treatments can secondarily affect bone metabolism. Adenosine monophosphate-activated protein kinase (AMPK) modulates multiple metabolic pathways and acts as a sensor of the cellular energy status; recent evidence suggests a critical role for AMPK in bone homeostasis. In addition, AMPK activation is believed to mediate most clinical effects of the insulin-sensitizer metformin. Over the past decade, several research groups have investigated the effects of metformin on bone, providing a considerable body of pre-clinical (in vitro, ex vivo and in vivo) as well as clinical evidence for an anabolic action of metformin on bone. However, two caveats should be kept in mind when considering metformin treatment for a patient with type 2 DM at risk for diabetic osteopathy. In the first place, metformin should probably not be considered an anti-osteoporotic drug; it is an insulin sensitizer with proven macrovascular benefits that can secondarily improve bone metabolism in the context of DM. Secondly, we are still awaiting the results of randomized placebo-controlled studies in humans that evaluate the effects of metformin on bone metabolism as a primary endpoint.

  16. Metformin revisited: Does this regulator of AMP-activated protein kinase secondarily affect bone metabolism and prevent diabetic osteopathy

    PubMed Central

    McCarthy, Antonio Desmond; Cortizo, Ana María; Sedlinsky, Claudia

    2016-01-01

    Patients with long-term type 1 and type 2 diabetes mellitus (DM) can develop skeletal complications or “diabetic osteopathy”. These include osteopenia, osteoporosis and an increased incidence of low-stress fractures. In this context, it is important to evaluate whether current anti-diabetic treatments can secondarily affect bone metabolism. Adenosine monophosphate-activated protein kinase (AMPK) modulates multiple metabolic pathways and acts as a sensor of the cellular energy status; recent evidence suggests a critical role for AMPK in bone homeostasis. In addition, AMPK activation is believed to mediate most clinical effects of the insulin-sensitizer metformin. Over the past decade, several research groups have investigated the effects of metformin on bone, providing a considerable body of pre-clinical (in vitro, ex vivo and in vivo) as well as clinical evidence for an anabolic action of metformin on bone. However, two caveats should be kept in mind when considering metformin treatment for a patient with type 2 DM at risk for diabetic osteopathy. In the first place, metformin should probably not be considered an anti-osteoporotic drug; it is an insulin sensitizer with proven macrovascular benefits that can secondarily improve bone metabolism in the context of DM. Secondly, we are still awaiting the results of randomized placebo-controlled studies in humans that evaluate the effects of metformin on bone metabolism as a primary endpoint. PMID:27022443

  17. Investigation of parameters affecting treatment time in MRI-guided transurethral ultrasound therapy

    NASA Astrophysics Data System (ADS)

    N'Djin, W. A.; Burtnyk, M.; Chopra, R.; Bronskill, M. J.

    2010-03-01

    MRI-guided transurethral ultrasound therapy shows promise for minimally invasive treatment of localized prostate cancer. Real-time MR temperature feedback enables the 3D control of thermal therapy to define an accurate region within the prostate. Previous in-vivo canine studies showed the feasibility of this method using transurethral planar transducers. The aim of this simulation study was to reduce the procedure time, while maintaining treatment accuracy by investigating new combinations of treatment parameters. A numerical model was used to simulate a multi-element heating applicator rotating inside the urethra in 10 human prostates. Acoustic power and rotation rate were varied based on the feedback of the temperature in the prostate. Several parameters were investigated for improving the treatment time. Maximum acoustic power and rotation rate were optimized interdependently as a function of prostate radius and transducer operating frequency, while avoiding temperatures >90° C in the prostate. Other trials were performed on each parameter separately, with the other parameter fixed. The concept of using dual-frequency transducers was studied, using the fundamental frequency or the 3rd harmonic component depending on the prostate radius. The maximum acoustic power which could be used decreased as a function of the prostate radius and the frequency. Decreasing the frequency (9.7-3.0 MHz) or increasing the power (10-20 W.cm-2) led to treatment times shorter by up to 50% under appropriate conditions. Dual-frequency configurations, while helpful, tended to have less impact on treatment times. Treatment accuracy was maintained and critical adjacent tissues like the rectal wall remained protected. The interdependence between power and frequency may require integrating multi-parametric functions inside the controller for future optimizations. As a first approach, however, even slight modifications of key parameters can be sufficient to reduce treatment time.

  18. Formation of corpora lutea and central luteal cavities and their relationship with plasma progesterone levels and other metabolic parameters in dairy cattle.

    PubMed

    Perez-Marin, C

    2009-06-01

    The corpus luteum (CL) may be looked upon as a compact or cavitary structure. A number of papers have addressed the relationship between CL type and parameters such as fertility or progesterone levels. The present study assessed the morphological and functional sequence observed in cows with different CL types, comparing pre-ovulatory follicle size, progesterone levels, luteal tissue formation and some blood biochemical parameters (calcium, albumin, inorganic phosphorus, glucose, magnesium, copper and zinc), oestrus cycle length and oestrus expression, as a function of CL type. Twenty-eight lactating dairy cows from two commercial dairy farms in southern Spain were studied. Oestrus detection was performed by monitoring daily oestrus behaviour, and artificial insemination (AI) was performed using the AM/PM rule. Ovaries and uterus were sonographically examined and blood samples were collected to measure progesterone and various biochemical parameters. There was a slight tendency towards the appearance of luteal cavities when pre-ovulatory follicles were larger (1.9 +/- 0.2 vs 1.7 +/- 03; p = 0.074). Fertility was not affected by cavity presence (cavity = 42.9% and compact = 57.1%; n.s.). Luteal tissue and function were not modified as a function of CL type. Cows with luteal cavities displayed significantly higher levels of albumin, suggesting a possible metabolic influence on the formation of these structures, although specific research is required to confirm this observation.

  19. Polysaccharide from seeds of Plantago asiatica L. affects lipid metabolism and colon microbiota of mouse.

    PubMed

    Hu, Jie-Lun; Nie, Shao-Ping; Wu, Qi-Meng; Li, Chang; Fu, Zhi-Hong; Gong, Joshua; Cui, Steve W; Xie, Ming-Yong

    2014-01-01

    Polysaccharide from the seeds of Plantago asiatica L. was given via oral administration to mice (0.4 g/kg body weight, 30 days) to observe its effects on mouse nutrient metabolism and colon microbiota. It was found the polysaccharide intake could lower the apparent absorption of lipid. Total triglyceride, cholesterol, and atherogenic index in blood serum with total lipid and cholesterol levels in liver of polysaccharide group mice were all significantly lower than those of the control group (p < 0.05). Furthermore, the effect of the polysaccharide intake on mouse colon bacterial communities was investigated. Mice from the polysaccharide group showed a higher colon bacterial diversity than the control group. Bacteroides sp., Eubacterium sp., butyrate-producing bacteria Butyrivibrio sp., and probiotics Bifidobacterium bifidum , Lactobacillus fermentum , and Lactobacillus reuteri in mouse colon were all increased after polysaccharide intake. These indicated that the intake of polysaccharide from P. asiatica L. could be beneficial for lipid metabolism and colon microbiota. PMID:24341731

  20. Viral affects on metabolism: changes in glucose and glutamine utilization during human cytomegalovirus infection

    PubMed Central

    Yu, Yongjun; Clippinger, Amy J.; Alwine, James C.

    2011-01-01

    Human cytomegalovirus (HCMV) infection causes dramatic alterations of intermediary metabolism, similar to those found in tumor cells. In infected cells, glucose carbon is not completely broken down by the tricarboxylic acid (TCA) cycle for energy; instead it is used biosynthetically. This process requires increased glucose uptake, increased glycolysis and the diversion of glucose carbon, in the form of citrate, from the TCA cycle for use in HCMV-induced fatty acid biosynthesis. The diversion of citrate from the TCA cycle (cataplerosis) requires induction of enzymes to promote glutaminolysis, the conversion of glutamine to -ketoglutarate in order to maintain the TCA cycle (anaplerosis) and ATP production. Such changes could result in heretofore uncharacterized pathogenesis, potentially implicating HCMV as a subtle co-factor in many maladies, including oncogenesis. Recognition of the effects of HCMV, and other viruses, on host cell metabolism will provide new understanding of viral pathogenesis and novel avenues for antiviral therapy. PMID:21570293

  1. Energy metabolism affects susceptibility of A. gambiae mosquitoes to Plasmodium infection

    PubMed Central

    Oliveira, Jose Henrique M.; Gonçalves, Renata L.S.; Oliveira, Giselle A.; Oliveira, Pedro L.; Oliveira, Marcus F.; Barillas-Mury, Carolina

    2011-01-01

    Previous studies showed that A. gambiae L35 females, which are refractory (R) to Plasmodium infection, express higher levels of genes involved in redox-metabolism and mitochondrial respiration than susceptible (S) G3 females. Our studies revealed that R females have reduced longevity, faster utilization of lipid reserves, impaired mitochondrial State-3 respiration, increased rate of mitochondrial electron leak and higher expression levels of several glycolytic enzyme genes. Furthermore, when State-3 respiration was reduced in S females by silencing expression of the adenine nucleotide translocator (ANT), hydrogen peroxide generation was higher and the mRNA levels of lactate dehydrogenase increased in the midgut, while the prevalence and intensity of P. berghei infection were significantly reduced. We conclude that there are broad metabolic differences between R and S An. gambiae mosquitoes that influence their susceptibility to Plasmodium infection. PMID:21320598

  2. Refining in silico simulation to study digestion parameters affecting the bioaccessibility of lipophilic nutrients and micronutrients.

    PubMed

    Marze, Sébastien

    2015-01-01

    Despite the considerable number of in vivo and in vitro studies on the digestive fate of lipophilic nutrients, micronutrients, and bioactives, the effects of the structure and composition of foods on the physicochemical mechanisms of luminal digestion are still poorly understood. Studying them is indeed complex because the number of parameters is high and many of them are interdependent. To solve this problem, an in silico simulation based on a multi-agent system was recently proposed to study the intestinal bioaccessibility of lipophilic nutrients and micronutrients from a single oil droplet. The roles of lipolysis and solubilization in bile salt were included. The effects of several food and digestion parameters were in line with those reported in the experimental literature. The goal of the research reported in this new article was to include more digestion parameters in the simulation in order to make it more realistic against complex cases. This was done in one specific digestion condition reflecting in vitro experiments, using droplets of tricaprylin or triolein containing vitamin A. The structure and principles of the original model were kept, with independent local modifications in order to study each factor separately. First, a gastric step was added where lipolysis took place, and only a marginal effect on the following intestinal step was found. Then, the chemical form of vitamin A, either non-hydrolyzed retinyl ester or retinyl ester instantly hydrolyzed into retinol, was investigated by considering different localizations in the droplet, resulting in a higher bioaccessibility for the retinol. The case of a mixture of tricaprylin and triolein indicated an influence of the oil phase viscosity. The consideration of mixed micelles compared to simple bile salt micelles was also investigated, and resulted in a higher vitamin A bioaccessibility, especially with triolein. Finally, a full model including the most influential parameters was tested to simulate

  3. Experimental Parameters Affecting Stripping of Rare Earth Elements from Loaded Sorptive Media in Simulated Geothermal Brines

    DOE Data Explorer

    Dean Stull

    2016-05-24

    Experimental results from several studies exploring the impact of pH and acid volume on the stripping of rare earth elements (REEs) loaded onto ligand-based media via an active column. The REEs in this experiment were loaded onto the media through exposure to a simulated geothermal brine with known mineral concentrations. The data include the experiment results, rare earth element concentrations, and the experimental parameters varied.

  4. Motion coordination affects movement parameters in a joint pick-and-place task.

    PubMed

    Vesper, Cordula; Soutschek, Alexander; Schubo, Anna

    2009-12-01

    This study examined influences of social context on movement parameters in a pick-and-place task. Participants' motion trajectories were recorded while they performed sequences of natural movements either working side-by-side with a partner or alone. It was expected that movement parameters would be specifically adapted to the joint condition to overcome the difficulties arising from the requirement to coordinate with another person. To disentangle effects based on participants' effort to coordinate their movements from effects merely due to the other's presence, a condition was included where only one person performed the task while being observed by the partner. Results indicate that participants adapted their movements temporally and spatially to the joint action situation: Overall movement duration was shorter, and mean and maximum velocity was higher when actually working together than when working alone. Pick-to-place trajectories were also shifted away from the partner in spatial coordinates. The partner's presence as such did not have an impact on movement parameters. These findings are interpreted as evidence for the use of implicit strategies to facilitate movement coordination in joint action tasks.

  5. Coated or doped carbon nanotube network sensors as affected by environmental parameters

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor)

    2011-01-01

    Methods for using modified single wall carbon nanotubes ("SWCNTs") to detect presence and/or concentration of a gas component, such as a halogen (e.g., Cl.sub.2), hydrogen halides (e.g., HCl), a hydrocarbon (e.g., C.sub.nH.sub.2n+2), an alcohol, an aldehyde or a ketone, to which an unmodified SWCNT is substantially non-reactive. In a first embodiment, a connected network of SWCNTs is coated with a selected polymer, such as chlorosulfonated polyethylene, hydroxypropyl cellulose, polystyrene and/or polyvinylalcohol, and change in an electrical parameter or response value (e.g., conductance, current, voltage difference or resistance) of the coated versus uncoated SWCNT networks is analyzed. In a second embodiment, the network is doped with a transition element, such as Pd, Pt, Rh, Ir, Ru, Os and/or Au, and change in an electrical parameter value is again analyzed. The parameter change value depends monotonically, not necessarily linearly, upon concentration of the gas component. Two general algorithms are presented for estimating concentration value(s), or upper or lower concentration bounds on such values, from measured differences of response values.

  6. Parameters Affecting Image-guided, Hydrodynamic Gene Delivery to Swine Liver

    PubMed Central

    Kamimura, Kenya; Suda, Takeshi; Zhang, Guisheng; Aoyagi, Yutaka; Liu, Dexi

    2013-01-01

    Development of a safe and effective method for gene delivery to hepatocytes is a critical step toward gene therapy for liver diseases. Here, we assessed the parameters for gene delivery to the livers of large animals (pigs, 40–65 kg) using an image-guided hydrodynamics-based procedure that involves image-guided catheter insertion into the lobular hepatic vein and hydrodynamic injection of reporter plasmids using a computer-controlled injector. We demonstrated that injection parameters (relative position of the catheter in the hepatic vasculature, intravascular pressure upon injection, and injection volume) are directly related to the safety and efficiency of the procedure. By optimizing these parameters, we explored for the first time, the advantage of the procedure for sequential injections to multiple lobes in human-sized pigs. The optimized procedure resulted in sustained expression of the human α-1 antitrypsin gene in livers for more than 2 months after gene delivery. In addition, repeated hydrodynamic gene delivery was safely conducted and no adverse events were seen in the entire period of the study. Our results support the clinical applicability of the image-guided hydrodynamic gene delivery method for the treatment of liver diseases. PMID:24129227

  7. Parameters affecting drug release from inert matrices. 1: Monte Carlo simulation.

    PubMed

    Villalobos, Rafael; Viquez, Hugo; Hernández, Beatriz; Ganem, Adriana; Melgoza, Luz María; Young, Paul M

    2012-01-01

    This study investigates the use of Monte Carlo simulation for the determination of release properties from cubic inert matrices. Specifically, the study has focused on factors including porosity, surface area and tortuosity. The release platform was formed by simulating matrices with different ratios of drug and excipient, which undergo drug release in a uni-directional (two-face) or omni-directional (six-face) process. Upon completion of each simulation the matrix 'carcass' was examined and porosity and tortuosity of the medium evaluated. The tortuosity of the medium was evaluated directly by a blind random walk algorithm. These parameters as well as the release profile were then studied with respect to common mathematical models describing drug diffusion (the square-root, power and Weibull models). It was found that, depending on their composition, the matrices systems were either homogeneous or heterogeneous in nature. Furthermore, it was found that the physical parameters could be successfully fitted to the a and b constants of the Weibull model. This approach allows the prediction of drug release from an inert matrix system with the knowledge of a few physical parameters.

  8. Vocal performance affects metabolic rate in dolphins: implications for animals communicating in noisy environments.

    PubMed

    Holt, Marla M; Noren, Dawn P; Dunkin, Robin C; Williams, Terrie M

    2015-06-01

    Many animals produce louder, longer or more repetitious vocalizations to compensate for increases in environmental noise. Biological costs of increased vocal effort in response to noise, including energetic costs, remain empirically undefined in many taxa, particularly in marine mammals that rely on sound for fundamental biological functions in increasingly noisy habitats. For this investigation, we tested the hypothesis that an increase in vocal effort would result in an energetic cost to the signaler by experimentally measuring oxygen consumption during rest and a 2 min vocal period in dolphins that were trained to vary vocal loudness across trials. Vocal effort was quantified as the total acoustic energy of sounds produced. Metabolic rates during the vocal period were, on average, 1.2 and 1.5 times resting metabolic rate (RMR) in dolphin A and B, respectively. As vocal effort increased, we found that there was a significant increase in metabolic rate over RMR during the 2 min following sound production in both dolphins, and in total oxygen consumption (metabolic cost of sound production plus recovery costs) in the dolphin that showed a wider range of vocal effort across trials. Increases in vocal effort, as a consequence of increases in vocal amplitude, repetition rate and/or duration, are consistent with behavioral responses to noise in free-ranging animals. Here, we empirically demonstrate for the first time in a marine mammal, that these vocal modifications can have an energetic impact at the individual level and, importantly, these data provide a mechanistic foundation for evaluating biological consequences of vocal modification in noise-polluted habitats.

  9. Spatial memory extinction differentially affects dorsal and ventral hippocampal metabolic activity and associated functional brain networks.

    PubMed

    Méndez-Couz, Marta; González-Pardo, Héctor; Vallejo, Guillermo; Arias, Jorge L; Conejo, Nélida M

    2016-10-01

    Previous studies showed the involvement of brain regions associated with both spatial learning and associative learning in spatial memory extinction, although the specific role of the dorsal and ventral hippocampus and the extended hippocampal system including the mammillary body in the process is still controversial. The present study aimed to identify the involvement of the dorsal and ventral hippocampus, together with cortical regions, the amygdaloid nuclei, and the mammillary bodies in the extinction of a spatial memory task. To address these issues, quantitative cytochrome c oxidase histochemistry was applied as a metabolic brain mapping method. Rats were trained in a reference memory task using the Morris water maze, followed by an extinction procedure of the previously acquired memory task. Results show that rats learned successfully the spatial memory task as shown by the progressive decrease in measured latencies to reach the escape platform and the results obtained in the probe test. Spatial memory was subsequently extinguished as shown by the descending preference for the previously reinforced location. A control naïve group was added to ensure that brain metabolic changes were specifically related with performance in the spatial memory extinction task. Extinction of the original spatial learning task significantly modified the metabolic activity in the dorsal and ventral hippocampus, the amygdala and the mammillary bodies. Moreover, the ventral hippocampus, the lateral mammillary body and the retrosplenial cortex were differentially recruited in the spatial memory extinction task, as shown by group differences in brain metabolic networks. These findings provide new insights on the brain regions and functional brain networks underlying spatial memory, and specifically spatial memory extinction. © 2016 Wiley Periodicals, Inc.

  10. Spatial memory extinction differentially affects dorsal and ventral hippocampal metabolic activity and associated functional brain networks.

    PubMed

    Méndez-Couz, Marta; González-Pardo, Héctor; Vallejo, Guillermo; Arias, Jorge L; Conejo, Nélida M

    2016-10-01

    Previous studies showed the involvement of brain regions associated with both spatial learning and associative learning in spatial memory extinction, although the specific role of the dorsal and ventral hippocampus and the extended hippocampal system including the mammillary body in the process is still controversial. The present study aimed to identify the involvement of the dorsal and ventral hippocampus, together with cortical regions, the amygdaloid nuclei, and the mammillary bodies in the extinction of a spatial memory task. To address these issues, quantitative cytochrome c oxidase histochemistry was applied as a metabolic brain mapping method. Rats were trained in a reference memory task using the Morris water maze, followed by an extinction procedure of the previously acquired memory task. Results show that rats learned successfully the spatial memory task as shown by the progressive decrease in measured latencies to reach the escape platform and the results obtained in the probe test. Spatial memory was subsequently extinguished as shown by the descending preference for the previously reinforced location. A control naïve group was added to ensure that brain metabolic changes were specifically related with performance in the spatial memory extinction task. Extinction of the original spatial learning task significantly modified the metabolic activity in the dorsal and ventral hippocampus, the amygdala and the mammillary bodies. Moreover, the ventral hippocampus, the lateral mammillary body and the retrosplenial cortex were differentially recruited in the spatial memory extinction task, as shown by group differences in brain metabolic networks. These findings provide new insights on the brain regions and functional brain networks underlying spatial memory, and specifically spatial memory extinction. © 2016 Wiley Periodicals, Inc. PMID:27102086

  11. Hyperleptinemia is associated with parameters of low-grade systemic inflammation and metabolic dysfunction in obese human beings

    PubMed Central

    Leon-Cabrera, Sonia; Solís-Lozano, Lourdes; Suárez-Álvarez, Karina; González-Chávez, Antonio; Béjar, Yadira L.; Robles-Díaz, Guillermo; Escobedo, Galileo

    2013-01-01

    Leptin is an adipose tissue-derived hormone that has been involved in hypothalamic and systemic inflammation, altered food-intake patterns, and metabolic dysfunction in obese mice. However, it remains unclear whether leptin has a relationship with parameters of systemic inflammation and metabolic dysfunction in humans. We thus evaluated in a cross-sectional study the circulating levels of leptin in 40 non-obese and 41 obese Mexican individuals, examining their relationship with tumor necrosis factor alpha (TNF-α), interleukin (IL) 12, IL-10, central obesity, serum glucose and insulin levels, and serum triglyceride and cholesterol concentrations. Circulating levels of leptin, TNF-α, IL-12, IL-10, and insulin were measured by ELISA, while concentrations of glucose, triglyceride, and cholesterol were determined by enzymatic assays. As expected, serum levels of leptin exhibited a significant elevation in obese individuals as compared to non-obese subjects, showing a clear association with increased body mass index (r = 0.4173), central obesity (r = 0.4678), and body fat percentage (r = 0.3583). Furthermore, leptin also showed a strong relationship with serum TNF-α (r = 0.6989), IL-12 (r = 0.3093), and IL-10 (r = −0.5691). Interestingly, leptin was also significantly related with high concentrations of fasting glucose (r = 0.5227) and insulin (r = 0.2229), as well as elevated levels of insulin resistance (r = 0.3611) and circulating triglyceride (r = 0.4135). These results suggest that hyperleptinemia is strongly associated with the occurrence of low-grade systemic inflammation and metabolic alteration in obese subjects. Further clinical research is still needed to determine whether hyperleptinemia may be a potential marker for recognizing the advent of obesity-related metabolic disorders in human beings. PMID:23986664

  12. Hyperleptinemia is associated with parameters of low-grade systemic inflammation and metabolic dysfunction in obese human beings.

    PubMed

    Leon-Cabrera, Sonia; Solís-Lozano, Lourdes; Suárez-Álvarez, Karina; González-Chávez, Antonio; Béjar, Yadira L; Robles-Díaz, Guillermo; Escobedo, Galileo

    2013-01-01

    Leptin is an adipose tissue-derived hormone that has been involved in hypothalamic and systemic inflammation, altered food-intake patterns, and metabolic dysfunction in obese mice. However, it remains unclear whether leptin has a relationship with parameters of systemic inflammation and metabolic dysfunction in humans. We thus evaluated in a cross-sectional study the circulating levels of leptin in 40 non-obese and 41 obese Mexican individuals, examining their relationship with tumor necrosis factor alpha (TNF-α), interleukin (IL) 12, IL-10, central obesity, serum glucose and insulin levels, and serum triglyceride and cholesterol concentrations. Circulating levels of leptin, TNF-α, IL-12, IL-10, and insulin were measured by ELISA, while concentrations of glucose, triglyceride, and cholesterol were determined by enzymatic assays. As expected, serum levels of leptin exhibited a significant elevation in obese individuals as compared to non-obese subjects, showing a clear association with increased body mass index (r = 0.4173), central obesity (r = 0.4678), and body fat percentage (r = 0.3583). Furthermore, leptin also showed a strong relationship with serum TNF-α (r = 0.6989), IL-12 (r = 0.3093), and IL-10 (r = -0.5691). Interestingly, leptin was also significantly related with high concentrations of fasting glucose (r = 0.5227) and insulin (r = 0.2229), as well as elevated levels of insulin resistance (r = 0.3611) and circulating triglyceride (r = 0.4135). These results suggest that hyperleptinemia is strongly associated with the occurrence of low-grade systemic inflammation and metabolic alteration in obese subjects. Further clinical research is still needed to determine whether hyperleptinemia may be a potential marker for recognizing the advent of obesity-related metabolic disorders in human beings.

  13. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.).

    PubMed

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-01-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m(-2) s(-1)) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower (15)N-nitrate in root but higher in shoot and the higher (15)N-glycine in root but lower in shoot suggested that most (15)N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution. PMID:26882864

  14. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)

    PubMed Central

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-01-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m−2 s−1) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower 15N-nitrate in root but higher in shoot and the higher 15N-glycine in root but lower in shoot suggested that most 15N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution. PMID:26882864

  15. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)

    NASA Astrophysics Data System (ADS)

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-02-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m‑2 s‑1) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower 15N-nitrate in root but higher in shoot and the higher 15N-glycine in root but lower in shoot suggested that most 15N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution.

  16. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)

    NASA Astrophysics Data System (ADS)

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-02-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m-2 s-1) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower 15N-nitrate in root but higher in shoot and the higher 15N-glycine in root but lower in shoot suggested that most 15N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution.

  17. Deletion of TRAAK Potassium Channel Affects Brain Metabolism and Protects against Ischemia

    PubMed Central

    Laigle, Christophe; Confort-Gouny, Sylviane; Le Fur, Yann; Cozzone, Patrick J.; Viola, Angèle

    2012-01-01

    Cerebral stroke is a worldwide leading cause of disability. The two-pore domain K+ channels identified as background channels are involved in many functions in brain under physiological and pathological conditions. We addressed the hypothesis that TRAAK, a mechano-gated and lipid-sensitive two-pore domain K+ channel, is involved in the pathophysiology of brain ischemia. We studied the effects of TRAAK deletion on brain morphology and metabolism under physiological conditions, and during temporary focal cerebral ischemia in Traak−/− mice using a combination of in vivo magnetic resonance imaging (MRI) techniques and multinuclear magnetic resonance spectroscopy (MRS) methods. We provide the first in vivo evidence establishing a link between TRAAK and neurometabolism. Under physiological conditions, Traak−/− mice showed a particular metabolic phenotype characterized by higher levels of taurine and myo-inositol than Traak+/+ mice. Upon ischemia, Traak−/− mice had a smaller infarcted volume, with lower contribution of cellular edema than Traak+/+ mice. Moreover, brain microcirculation was less damaged, and brain metabolism and pH were preserved. Our results show that expression of TRAAK strongly influences tissue levels of organic osmolytes. Traak−/− mice resilience to cellular edema under ischemia appears related to their physiologically high levels of myo-inositol and of taurine, an aminoacid involved in the modulation of mitochondrial activity and cell death. The beneficial effects of TRAAK deletion designate this channel as a promising pharmacological target for the treatment against stroke. PMID:23285272

  18. Nitrogen-Sparing Mechanisms in Chlamydomonas Affect the Transcriptome, the Proteome, and Photosynthetic Metabolism[W

    PubMed Central

    Schmollinger, Stefan; Mühlhaus, Timo; Boyle, Nanette R.; Blaby, Ian K.; Casero, David; Mettler, Tabea; Moseley, Jeffrey L.; Kropat, Janette; Sommer, Frederik; Strenkert, Daniela; Hemme, Dorothea; Pellegrini, Matteo; Grossman, Arthur R.; Stitt, Mark; Schroda, Michael; Merchant, Sabeeha S.

    2014-01-01

    Nitrogen (N) is a key nutrient that limits global primary productivity; hence, N-use efficiency is of compelling interest in agriculture and aquaculture. We used Chlamydomonas reinhardtii as a reference organism for a multicomponent analysis of the N starvation response. In the presence of acetate, respiratory metabolism is prioritized over photosynthesis; consequently, the N-sparing response targets proteins, pigments, and RNAs involved in photosynthesis and chloroplast function over those involved in respiration. Transcripts and proteins of the Calvin-Benson cycle are reduced in N-deficient cells, resulting in the accumulation of cycle metabolic intermediates. Both cytosolic and chloroplast ribosomes are reduced, but via different mechanisms, reflected by rapid changes in abundance of RNAs encoding chloroplast ribosomal proteins but not cytosolic ones. RNAs encoding transporters and enzymes for metabolizing alternative N sources increase in abundance, as is appropriate for the soil environmental niche of C. reinhardtii. Comparison of the N-replete versus N-deplete proteome indicated that abundant proteins with a high N content are reduced in N-starved cells, while the proteins that are increased have lower than average N contents. This sparing mechanism contributes to a lower cellular N/C ratio and suggests an approach for engineering increased N-use efficiency. PMID:24748044

  19. Effects of prolonged consumption of water with elevated nitrate levels on certain metabolic parameters of dairy cattle and use of clinoptilolite for their amelioration.

    PubMed

    Katsoulos, P D; Karatzia, M A; Polizopoulou, Z; Florou-Paneri, P; Karatzias, H

    2015-06-01

    Elevated levels of nitrates in feed and water can pose a significant risk for dairy cattle, due to their cumulative action. The effect of prolonged consumption of water naturally contaminated with nitrates on some metabolic parameters in dairy cows was investigated at the present study. Concurrently, whether in-feed inclusion of clinoptilolite, a natural zeolite with high selectivity for ammonia cations, could ameliorate nitrate consumption consequences was examined. Two experiments were run simultaneously in two farms each. In both, farms were assigned into two groups according to nitrate levels in borehole water (NG > 40 ppm; CG < 40 ppm). Furthermore, in experiment 2, the incorporation of clinoptilolite in the ration was taken into account (NC-clinoptilolite feeding; CNC-controls). In experiment 1, blood urea nitrogen (BUN) and beta-hydroxybutyrate (BHBA) concentrations appeared to be affected by nitrate consumption and were significantly higher in NG animals. In experiment 2, BUN concentration was significantly lower in the NC group. The prolonged consumption of water with increased nitrate levels seemed, to some degree, to impair protein metabolism and glucose utilization, while the dietary administration of clinoptilolite could alleviate the nitrates' effects. PMID:25874417

  20. Effects of prolonged consumption of water with elevated nitrate levels on certain metabolic parameters of dairy cattle and use of clinoptilolite for their amelioration.

    PubMed

    Katsoulos, P D; Karatzia, M A; Polizopoulou, Z; Florou-Paneri, P; Karatzias, H

    2015-06-01

    Elevated levels of nitrates in feed and water can pose a significant risk for dairy cattle, due to their cumulative action. The effect of prolonged consumption of water naturally contaminated with nitrates on some metabolic parameters in dairy cows was investigated at the present study. Concurrently, whether in-feed inclusion of clinoptilolite, a natural zeolite with high selectivity for ammonia cations, could ameliorate nitrate consumption consequences was examined. Two experiments were run simultaneously in two farms each. In both, farms were assigned into two groups according to nitrate levels in borehole water (NG > 40 ppm; CG < 40 ppm). Furthermore, in experiment 2, the incorporation of clinoptilolite in the ration was taken into account (NC-clinoptilolite feeding; CNC-controls). In experiment 1, blood urea nitrogen (BUN) and beta-hydroxybutyrate (BHBA) concentrations appeared to be affected by nitrate consumption and were significantly higher in NG animals. In experiment 2, BUN concentration was significantly lower in the NC group. The prolonged consumption of water with increased nitrate levels seemed, to some degree, to impair protein metabolism and glucose utilization, while the dietary administration of clinoptilolite could alleviate the nitrates' effects.

  1. In Ovo Injection of Betaine Affects Hepatic Cholesterol Metabolism through Epigenetic Gene Regulation in Newly Hatched Chicks

    PubMed Central

    Hu, Yun; Sun, Qinwei; Li, Xiaoliang; Wang, Min; Cai, Demin; Li, Xi; Zhao, Ruqian

    2015-01-01

    Betaine is reported to regulate hepatic cholesterol metabolism in mammals. Chicken eggs contain considerable amount of betaine, yet it remains unknown whether and how betaine in the egg affects hepatic cholesterol metabolism in chicks. In this study, eggs were injected with betaine at 2.5 mg/egg and the hepatic cholesterol metabolism was investigated in newly hatched chicks. Betaine did not affect body weight or liver weight, but significantly increased the serum concentration (P < 0.05) and the hepatic content (P < 0.01) of cholesterol. Accordingly, the cholesterol biosynthetic enzyme HMGCR was up-regulated (P < 0.05 for both mRNA and protein), while CYP7A1 which converts cholesterol to bile acids was down-regulated (P < 0.05 for mRNA and P = 0.07 for protein). Moreover, hepatic protein content of the sterol-regulatory element binding protein 1 which regulates cholesterol and lipid biosynthesis, and the mRNA abundance of ATP binding cassette sub-family A member 1 (ABCA1) which mediates cholesterol counter transport were significantly (P < 0.05) increased in betaine-treated chicks. Meanwhile, hepatic protein contents of DNA methyltransferases 1 and adenosylhomocysteinase-like 1 were increased (P < 0.05), which was associated with global genomic DNA hypermethylation (P < 0.05) and diminished gene repression mark histone H3 lysine 27 trimethylation (P < 0.05). Furthermore, CpG methylation level on gene promoters was found to be increased (P < 0.05) for CYP7A1 yet decreased (P < 0.05) for ABCA1. These results indicate that in ovo betaine injection regulates hepatic cholesterol metabolism in chicks through epigenetic mechanisms including DNA and histone methylations. PMID:25860502

  2. SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism.

    PubMed

    Christensen, Lise Lotte; True, Kirsten; Hamilton, Mark P; Nielsen, Morten M; Damas, Nkerorema D; Damgaard, Christian K; Ongen, Halit; Dermitzakis, Emmanouil; Bramsen, Jesper B; Pedersen, Jakob S; Lund, Anders H; Vang, Søren; Stribolt, Katrine; Madsen, Mogens R; Laurberg, Søren; McGuire, Sean E; Ørntoft, Torben F; Andersen, Claus L

    2016-10-01

    It is well established that lncRNAs are aberrantly expressed in cancer where they have been shown to act as oncogenes or tumor suppressors. RNA profiling of 314 colorectal adenomas/adenocarcinomas and 292 adjacent normal colon mucosa samples using RNA-sequencing demonstrated that the snoRNA host gene 16 (SNHG16) is significantly up-regulated in adenomas and all stages of CRC. SNHG16 expression was positively correlated to the expression of Wnt-regulated transcription factors, including ASCL2, ETS2, and c-Myc. In vitro abrogation of Wnt signaling in CRC cells reduced the expression of SNHG16 indicating that SNHG16 is regulated by the Wnt pathway. Silencing of SNHG16 resulted in reduced viability, increased apoptotic cell death and impaired cell migration. The SNHG16 silencing particularly affected expression of genes involved in lipid metabolism. A connection between SNHG16 and genes involved in lipid metabolism was also observed in clinical tumors. Argonaute CrossLinking and ImmunoPrecipitation (AGO-CLIP) demonstrated that SNHG16 heavily binds AGO and has 27 AGO/miRNA target sites along its length, indicating that SNHG16 may act as a competing endogenous RNA (ceRNA) "sponging" miRNAs off their cognate targets. Most interestingly, half of the miRNA families with high confidence targets on SNHG16 also target the 3'UTR of Stearoyl-CoA Desaturase (SCD). SCD is involved in lipid metabolism and is down-regulated upon SNHG16 silencing. In conclusion, up-regulation of SNHG16 is a frequent event in CRC, likely caused by deregulated Wnt signaling. In vitro analyses demonstrate that SNHG16 may play an oncogenic role in CRC and that it affects genes involved in lipid metabolism, possible through ceRNA related mechanisms.

  3. Increased phloem transport of S-methylmethionine positively affects sulfur and nitrogen metabolism and seed development in pea plants.

    PubMed

    Tan, Qiumin; Zhang, Lizhi; Grant, Jan; Cooper, Pauline; Tegeder, Mechthild

    2010-12-01

    Seeds of grain legumes are important energy and food sources for humans and animals. However, the yield and quality of legume seeds are limited by the amount of sulfur (S) partitioned to the seeds. The amino acid S-methylmethionine (SMM), a methionine derivative, has been proposed to be an important long-distance transport form of reduced S, and we analyzed whether SMM phloem loading and source-sink translocation are important for the metabolism and growth of pea (Pisum sativum) plants. Transgenic plants were produced in which the expression of a yeast SMM transporter, S-Methylmethionine Permease1 (MMP1, YLL061W), was targeted to the phloem and seeds. Phloem exudate analysis showed that concentrations of SMM are elevated in MMP1 plants, suggesting increased phloem loading. Furthermore, expression studies of genes involved in S transport and metabolism in source organs, as well as xylem sap analyses, support that S uptake and assimilation are positively affected in MMP1 roots. Concomitantly, nitrogen (N) assimilation in root and leaf and xylem amino acid profiles were changed, resulting in increased phloem loading of amino acids. When investigating the effects of increased S and N phloem transport on seed metabolism, we found that protein levels were improved in MMP1 seeds. In addition, changes in SMM phloem loading affected plant growth and seed number, leading to an overall increase in seed S, N, and protein content in MMP1 plants. Together, these results suggest that phloem loading and source-sink partitioning of SMM are important for plant S and N metabolism and transport as well as seed set.

  4. In Ovo injection of betaine affects hepatic cholesterol metabolism through epigenetic gene regulation in newly hatched chicks.

    PubMed

    Hu, Yun; Sun, Qinwei; Li, Xiaoliang; Wang, Min; Cai, Demin; Li, Xi; Zhao, Ruqian

    2015-01-01

    Betaine is reported to regulate hepatic cholesterol metabolism in mammals. Chicken eggs contain considerable amount of betaine, yet it remains unknown whether and how betaine in the egg affects hepatic cholesterol metabolism in chicks. In this study, eggs were injected with betaine at 2.5 mg/egg and the hepatic cholesterol metabolism was investigated in newly hatched chicks. Betaine did not affect body weight or liver weight, but significantly increased the serum concentration (P < 0.05) and the hepatic content (P < 0.01) of cholesterol. Accordingly, the cholesterol biosynthetic enzyme HMGCR was up-regulated (P < 0.05 for both mRNA and protein), while CYP7A1 which converts cholesterol to bile acids was down-regulated (P < 0.05 for mRNA and P = 0.07 for protein). Moreover, hepatic protein content of the sterol-regulatory element binding protein 1 which regulates cholesterol and lipid biosynthesis, and the mRNA abundance of ATP binding cassette sub-family A member 1 (ABCA1) which mediates cholesterol counter transport were significantly (P < 0.05) increased in betaine-treated chicks. Meanwhile, hepatic protein contents of DNA methyltransferases 1 and adenosylhomocysteinase-like 1 were increased (P < 0.05), which was associated with global genomic DNA hypermethylation (P < 0.05) and diminished gene repression mark histone H3 lysine 27 trimethylation (P < 0.05). Furthermore, CpG methylation level on gene promoters was found to be increased (P < 0.05) for CYP7A1 yet decreased (P < 0.05) for ABCA1. These results indicate that in ovo betaine injection regulates hepatic cholesterol metabolism in chicks through epigenetic mechanisms including DNA and histone methylations.

  5. Deiodinase knockdown during early zebrafish development affects growth, development, energy metabolism, motility and phototransduction.

    PubMed

    Bagci, Enise; Heijlen, Marjolein; Vergauwen, Lucia; Hagenaars, An; Houbrechts, Anne M; Esguerra, Camila V; Blust, Ronny; Darras, Veerle M; Knapen, Dries

    2015-01-01

    Thyroid hormone (TH) balance is essential for vertebrate development. Deiodinase type 1 (D1) and type 2 (D2) increase and deiodinase type 3 (D3) decreases local intracellular levels of T3, the most important active TH. The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early development of zebrafish until 96 hours post fertilization at the level of the transcriptome (microarray), biochemistry, morphology and physiology using morpholino (MO) knockdown. Knockdown of D1+D2 (D1D2MO) and knockdown of D3 (D3MO) both resulted in transcriptional regulation of energy metabolism and (muscle) development in abdomen and tail, together with reduced growth, impaired swim bladder inflation, reduced protein content and reduced motility. The reduced growth and impaired swim bladder inflation in D1D2MO could be due to lower levels of T3 which is known to drive growth and development. The pronounced upregulation of a large number of transcripts coding for key proteins in ATP-producing pathways in D1D2MO could reflect a compensatory response to a decreased metabolic rate, also typically linked to hypothyroidism. Compared to D1D2MO, the effects were more pronounced or more frequent in D3MO, in which hyperthyroidism is expected. More specifically, increased heart rate, delayed hatching and increased carbohydrate content were observed only in D3MO. An increase of the metabolic rate, a decrease of the metabolic efficiency and a stimulation of gluconeogenesis using amino acids as substrates may have been involved in the observed reduced protein content, growth and motility in D3MO larvae. Furthermore, expression of transcripts involved in purine metabolism coupled to vision was decreased in both knockdown conditions, suggesting that both may impair vision. This study provides new insights, not only into the role of deiodinases, but also into the importance of a correct TH balance

  6. Deiodinase Knockdown during Early Zebrafish Development Affects Growth, Development, Energy Metabolism, Motility and Phototransduction

    PubMed Central

    Bagci, Enise; Heijlen, Marjolein; Vergauwen, Lucia; Hagenaars, An; Houbrechts, Anne M.; Esguerra, Camila V.; Blust, Ronny; Darras, Veerle M.; Knapen, Dries

    2015-01-01

    Thyroid hormone (TH) balance is essential for vertebrate development. Deiodinase type 1 (D1) and type 2 (D2) increase and deiodinase type 3 (D3) decreases local intracellular levels of T3, the most important active TH. The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early development of zebrafish until 96 hours post fertilization at the level of the transcriptome (microarray), biochemistry, morphology and physiology using morpholino (MO) knockdown. Knockdown of D1+D2 (D1D2MO) and knockdown of D3 (D3MO) both resulted in transcriptional regulation of energy metabolism and (muscle) development in abdomen and tail, together with reduced growth, impaired swim bladder inflation, reduced protein content and reduced motility. The reduced growth and impaired swim bladder inflation in D1D2MO could be due to lower levels of T3 which is known to drive growth and development. The pronounced upregulation of a large number of transcripts coding for key proteins in ATP-producing pathways in D1D2MO could reflect a compensatory response to a decreased metabolic rate, also typically linked to hypothyroidism. Compared to D1D2MO, the effects were more pronounced or more frequent in D3MO, in which hyperthyroidism is expected. More specifically, increased heart rate, delayed hatching and increased carbohydrate content were observed only in D3MO. An increase of the metabolic rate, a decrease of the metabolic efficiency and a stimulation of gluconeogenesis using amino acids as substrates may have been involved in the observed reduced protein content, growth and motility in D3MO larvae. Furthermore, expression of transcripts involved in purine metabolism coupled to vision was decreased in both knockdown conditions, suggesting that both may impair vision. This study provides new insights, not only into the role of deiodinases, but also into the importance of a correct TH balance

  7. Fish oil and the pan-PPAR agonist tetradecylthioacetic acid affect the amino acid and carnitine metabolism in rats.

    PubMed

    Bjørndal, Bodil; Brattelid, Trond; Strand, Elin; Vigerust, Natalya Filipchuk; Svingen, Gard Frodahl Tveitevåg; Svardal, Asbjørn; Nygård, Ottar; Berge, Rolf Kristian

    2013-01-01

    Peroxisome proliferator-activated receptors (PPARs) are important in the regulation of lipid and glucose metabolism. Recent studies have shown that PPARα-activation by WY 14,643 regulates the metabolism of amino acids. We investigated the effect of PPAR activation on plasma amino acid levels using two PPARα activators with different ligand binding properties, tetradecylthioacetic acid (TTA) and fish oil, where the pan-PPAR agonist TTA is a more potent ligand than omega-3 polyunsaturated fatty acids. In addition, plasma L-carnitine esters were investigated to reflect cellular fatty acid catabolism. Male Wistar rats (Rattus norvegicus) were fed a high-fat (25% w/w) diet including TTA (0.375%, w/w), fish oil (10%, w/w) or a combination of both. The rats were fed for 50 weeks, and although TTA and fish oil had hypotriglyceridemic effects in these animals, only TTA lowered the body weight gain compared to high fat control animals. Distinct dietary effects of fish oil and TTA were observed on plasma amino acid composition. Administration of TTA led to increased plasma levels of the majority of amino acids, except arginine and lysine, which were reduced. Fish oil however, increased plasma levels of only a few amino acids, and the combination showed an intermediate or TTA-dominated effect. On the other hand, TTA and fish oil additively reduced plasma levels of the L-carnitine precursor γ-butyrobetaine, as well as the carnitine esters acetylcarnitine, propionylcarnitine, valeryl/isovalerylcarnitine, and octanoylcarnitine. These data suggest that while both fish oil and TTA affect lipid metabolism, strong PPARα activation is required to obtain effects on amino acid plasma levels. TTA and fish oil may influence amino acid metabolism through different metabolic mechanisms. PMID:23826175

  8. Treatment parameters affecting the response of normal brain to photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Chen, Qun; Chopp, Michael; Dereski, Mary O.; Wilson, Brian C.; Patterson, Michael S.; Kessel, David; Heads, Larry; Hetzel, Fred W.

    1993-06-01

    Different aspects of photodynamic therapy in normal rat brain tissue have been studied, in an effort to understand and improve the dosimetry of this new modality in treatment of brain tumors. dosimetry parameters, including light energy dose, fluence rate and beam size, and drug dosage were studied. PDT induced lesion depth in brain was measured as a biological endpoint. Effective attenuation depth and absolute light fluence rate distribution under superficial irradiation were measured using invasive optical probes. Photosensitizer uptake was quantified using HPLC analysis. The results indicate that normal brain have a high intrinsic sensitivity to PDT treatment, based on the estimated photodynamic threshold.

  9. Cadmium toxicity for terrestrial invertebrates: taking soil parameters affecting bioavailability into account.

    PubMed

    Lock, K; Janssen, C R

    2001-10-01

    Acute and chronic ecotoxicity tests with cadmium were conducted with the earthworm Eisenia fetida, the potworm Enchytraeus albidus and the springtail Folsomia candida. To assess the influence of the soil type on cadmium bioavailability, these tests were carried out in a standard artificial soil, in a sandy and a loamy field soil. It was not possible to evaluate the influence of soil parameters on the bioavailability on the basis of the experiments that were conducted in only three different soil types, therefore, literature data were also included. However, even in the same standard artificial soils, toxicity data in the literature for Eisenia fetida and Folsomia candida varied considerably. Consequently, no models could be developed that allow a normalization of the ecotoxicity of cadmium to parameters controlling bioavailability. In contrast to zinc, effect concentrations of cadmium for terrestrial invertebrates were always much higher than background concentrations. As the effect of aging on the bioavailability of cadmium was never taken into account, because toxicity experiments were always carried out in freshly spiked soilds, these effect concentrations may even be regarded as conservative. Furthermore, the zinc-cadmium ratio in soils is usually so high that the risk of zinc ecotoxicity for terrestrial invertebrates will usually be much greater in comparison to cadmium ecotoxicity. PMID:11556119

  10. Does Body Mass Index in Pregnant Women Affect Laboratory Parameters in the Newborn?

    PubMed Central

    Raguž, Marjana Jerković; Brzica, Jerko

    2016-01-01

    Objective The objective of this study was to determine the effect of body mass index (BMI) during pregnancy in laboratory parameters in the serum of the three groups of pregnant women and in their newborns. Methods This prospective study is comparison between the three groups of pregnant women and their newborns categorized according to their BMI. The study included 128 pregnant women and their newborns. In this study, the concentration of blood count, iron, ferritin, and bilirubin were analyzed in the subjects. Results The pregnant women in the three groups significantly differ in the values of blood count (p < 0.001). Statistically significant difference in iron and ferritin was not found between individual three studied groups of pregnant women (p = 0.947). The newborn of the first group of pregnant women had significantly lower values of ferritin (p < 0.001), leucocytes (p < 0.001), and bilirubin (p < 0.001). Significant positive correlation between BMI of pregnant women and leucocytes, ferritin, and bilirubin of the newborn was found (p < 0.001). Conclusion In this study, the tested pregnant women do not have biochemical signs of anemia, neither do their newborns. It was noted that there was no negative correlation between individual tested biochemical parameters for anemia in pregnant women and their newborns. PMID:27119047

  11. Cadmium toxicity for terrestrial invertebrates: taking soil parameters affecting bioavailability into account.

    PubMed

    Lock, K; Janssen, C R

    2001-10-01

    Acute and chronic ecotoxicity tests with cadmium were conducted with the earthworm Eisenia fetida, the potworm Enchytraeus albidus and the springtail Folsomia candida. To assess the influence of the soil type on cadmium bioavailability, these tests were carried out in a standard artificial soil, in a sandy and a loamy field soil. It was not possible to evaluate the influence of soil parameters on the bioavailability on the basis of the experiments that were conducted in only three different soil types, therefore, literature data were also included. However, even in the same standard artificial soils, toxicity data in the literature for Eisenia fetida and Folsomia candida varied considerably. Consequently, no models could be developed that allow a normalization of the ecotoxicity of cadmium to parameters controlling bioavailability. In contrast to zinc, effect concentrations of cadmium for terrestrial invertebrates were always much higher than background concentrations. As the effect of aging on the bioavailability of cadmium was never taken into account, because toxicity experiments were always carried out in freshly spiked soilds, these effect concentrations may even be regarded as conservative. Furthermore, the zinc-cadmium ratio in soils is usually so high that the risk of zinc ecotoxicity for terrestrial invertebrates will usually be much greater in comparison to cadmium ecotoxicity.

  12. Mercury exposure, nutritional deficiencies and metabolic disruptions may affect learning in children

    PubMed Central

    Dufault, Renee; Schnoll, Roseanne; Lukiw, Walter J; LeBlanc, Blaise; Cornett, Charles; Patrick, Lyn; Wallinga, David; Gilbert, Steven G; Crider, Raquel

    2009-01-01

    Among dietary factors, learning and behavior are influenced not only by nutrients, but also by exposure to toxic food contaminants such as mercury that can disrupt metabolic processes and alter neuronal plasticity. Neurons lacking in plasticity are a factor in neurodevelopmental disorders such as autism and mental retardation. Essential nutrients help maintain normal neuronal plasticity. Nutritional deficiencies, including deficiencies in the long chain polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, the amino acid methionine, and the trace minerals zinc and selenium, have been shown to influence neuronal function and produce defects in neuronal plasticity, as well as impact behavior in children with attention deficit hyperactivity disorder. Nutritional deficiencies and mercury exposure have been shown to alter neuronal function and increase oxidative stress among children with autism. These dietary factors may be directly related to the development of behavior disorders and learning disabilities. Mercury, either individually or in concert with other factors, may be harmful if ingested in above average amounts or by sensitive individuals. High fructose corn syrup has been shown to contain trace amounts of mercury as a result of some manufacturing processes, and its consumption can also lead to zinc loss. Consumption of certain artificial food color additives has also been shown to lead to zinc deficiency. Dietary zinc is essential for maintaining the metabolic processes required for mercury elimination. Since high fructose corn syrup and artificial food color additives are common ingredients in many foodstuffs, their consumption should be considered in those individuals with nutritional deficits such as zinc deficiency or who are allergic or sensitive to the effects of mercury or unable to effectively metabolize and eliminate it from the body. PMID:19860886

  13. Heat exposure of Cannabis sativa extracts affects the pharmacokinetic and metabolic profile in healthy male subjects.

    PubMed

    Eichler, Martin; Spinedi, Luca; Unfer-Grauwiler, Sandra; Bodmer, Michael; Surber, Christian; Luedi, Markus; Drewe, Juergen

    2012-05-01

    The most important psychoactive constituent of CANNABIS SATIVA L. is Δ (9)-tetrahydrocannabinol (THC). Cannabidiol (CBD), another important constituent, is able to modulate the distinct unwanted psychotropic effect of THC. In natural plant extracts of C. SATIVA, large amounts of THC and CBD appear in the form of THCA-A (THC-acid-A) and CBDA (cannabidiolic acid), which can be transformed to THC and CBD by heating. Previous reports of medicinal use of cannabis or cannabis preparations with higher CBD/THC ratios and use in its natural, unheated form have demonstrated that pharmacological effects were often accompanied with a lower rate of adverse effects. Therefore, in the present study, the pharmacokinetics and metabolic profiles of two different C. SATIVA extracts (heated and unheated) with a CBD/THC ratio > 1 were compared to synthetic THC (dronabinol) in a double-blind, randomized, single center, three-period cross-over study involving 9 healthy male volunteers. The pharmacokinetics of the cannabinoids was highly variable. The metabolic pattern was significantly different after administration of the different forms: the heated extract showed a lower median THC plasma AUC (24 h) than the unheated extract of 2.84 vs. 6.59 pmol h/mL, respectively. The later was slightly higher than that of dronabinol (4.58 pmol h/mL). On the other hand, the median sum of the metabolites (THC, 11-OH-THC, THC-COOH, CBN) plasma AUC (24 h) was higher for the heated than for the unheated extract. The median CBD plasma AUC (24 h) was almost 2-fold higher for the unheated than for the heated extract. These results indicate that use of unheated extracts may lead to a beneficial change in metabolic pattern and possibly better tolerability.

  14. Effect of feeding grape pomace on selected metabolic parameters associated with high fructose feeding in growing Sprague-Dawley rats.

    PubMed

    Khanal, Ramesh C; Howard, Luke R; Rogers, Theodore J; Wilkes, Samuel E; Dhakal, Ishwori B; Prior, Ronald L

    2011-12-01

    The effect of feeding grape pomace on certain metabolic parameters associated with high fructose (HF) feeding was studied. Forty male growing Sprague-Dawley rats were randomly assigned into groups: (1) control; (2) HF; (3) HF with low-level (1.5% of diet) grape pomace (HF+LP), and (4) HF with high-level (5.0% of diet) grape pomace (HF+HP). The HF+LP and HF+HP diets provided 115 and 218 mg of procyanidins/kg, respectively. Compared with the controls, HF-fed animals consumed less and were smaller, whereas animals in the HF+LP and HF+HP groups were in between. A similar trend was observed for abdominal fat and abdominal fat as a percentage of body weight. No change in heart or kidney weight occurred. Liver weight as a percentage of body weight was higher for animals when fructose was included in the diet compared with those on control diet, and inclusion of grape pomace had no effect. Fasting plasma glucose, insulin, and triglyceride levels tended to be higher in animals fed HF diet, and grape pomace reduced their levels to values similar to the control animals. Compared with control animals, HF-fed animals had higher weekly postprandial plasma triglycerides, which were reduced by feeding grape pomace, but no change in plasma cholesterol was observed. Glucose intolerance was observed in animals fed HF diet and was accompanied by a 25% increase in homeostatic model assessment (HOMA) of insulin resistance. Inclusion of grape pomace increased glucose tolerance and insulin sensitivity. No significant change (P>.1) in HOMA of β-cell function or Quantitative Insulin-Sensitivity Check Index was observed. Overall, HF diet did not produce as strong a response of metabolic syndrome as has been shown in the literature. The inclusion of grape pomace in the diet was effective in modulating some aspects of metabolic parameters associated with metabolic syndrome, and the higher level of grape pomace in the diet produced a slightly better response than the lower level.

  15. Administration of thyroxine affects the morphometric parameters and VEGF expression in the uterus and placenta and the uterine vascularization but does not affect reproductive parameters in gilts during early gestation.

    PubMed

    Souza, C A; Ocarino, N M; Silva, J F; Boeloni, J N; Nascimento, E F; Silva, I J; Castro, R D; Moreira, L P; Almeida, F R C L; Chiarini-Garcia, H; Serakides, R

    2011-02-01

    The aim of this study was to evaluate the effects of thyroxine administration on morphometric parameters, expression of vascular endothelial growth factor (VEGF) and vascularization in the uterus and placenta and reproductive parameters in gilts at 70 days of gestation. At 150 days of age, i.e., before first heat, 20 gilts were randomly divided into two experimental groups: treated (n=10) and control (n=10). The treated group received a daily dose of 400 μg of L-thyroxine (T(4)) in their diet until slaughter and the control group received only typical meals. Before artificial insemination, blood was collected to determine plasma total T(4). The gilts were inseminated in the second oestrus and slaughtered at 70 days of gestation. The foetal thyroid follicular epithelium height, number, size and weight of foetuses; foetal myogenesis, corpora lutea number, embryonic mortality rate, uterine weight, placental weight and placental fluid volume were measured. Histomorphometric and immunohistochemical analysis of uterus and placenta were determined. The averages of all variables were compared by the Student's t-test. The gilts treated with thyroxine showed significant increase of plasma total T(4). At 70 days of gestation, the heights of the trophoblastic epithelium, endometrial epithelium and endometrial gland epithelium were significantly higher in the group treated with T(4). The expression of cytoplasmatic and nuclear VEGF in trophoblastic cells and the number of blood vessels per field in endometrial stroma were significantly higher in the gilts treated with T(4). No other significant differences between groups were obtained with respect to other parameters (p>0.05). We conclude that oral administration of T(4) up to 70 days of pregnancy in gilts affects the morphometric parameters, the expression of placental VEGF and the uterine vascularization but does not affect reproductive parameters in gilts during early gestation.

  16. Use of Artificial Neural Networks to Examine Parameters Affecting the Immobilization of Streptokinase in Chitosan

    PubMed Central

    Modaresi, Seyed Mohamad Sadegh; Faramarzi, Mohammad Ali; Soltani, Arash; Baharifar, Hadi; Amani, Amir

    2014-01-01

    Streptokinase is a potent fibrinolytic agent which is widely used in treatment of deep vein thrombosis (DVT), pulmonary embolism (PE) and acute myocardial infarction (MI). Major limitation of this enzyme is its short biological half-life in the blood stream. Our previous report showed that complexing streptokinase with chitosan could be a solution to overcome this limitation. The aim of this research was to establish an artificial neural networks (ANNs) model for identifying main factors influencing the loading efficiency of streptokinase, as an essential parameter determining efficacy of the enzyme. Three variables, namely, chitosan concentration, buffer pH and enzyme concentration were considered as input values and the loading efficiency was used as output. Subsequently, the experimental data were modeled and the model was validated against a set of unseen data. The developed model indicated chitosan concentration as probably the most important factor, having reverse effect on the loading efficiency. PMID:25587327

  17. Analysis of Operational Parameters Affecting the Sulfur Content in Hot Metal of the COREX Process

    NASA Astrophysics Data System (ADS)

    Wu, Shengli; Wang, Laixin; Kou, Mingyin; Wang, Yujue; Zhang, Jiacong

    2016-10-01

    The COREX process, which has obvious advantages in environment protection, still has some disadvantages. It has a higher sulfur content in hot metal (HM) than the blast furnace has. In the present work, the distribution and transfer of sulfur in the COREX have been analyzed and several operational parameters related to the sulfur content in HM ([pct S]) have been obtained. Based on this, the effects of the coal rate, slag ratio, temperature of HM, melting rate, binary basicity (R 2), the ratio of MgO/Al2O3, utilization of reducing gas, top gas consumption per ton burden solid, metallization rate, oxidation degree of reducing gas, and coal and DRI distribution index on the sulfur content in HM are investigated. What's more, a linear model has been developed and subsequently used for predicting and controlling the S content in HM of the COREX process.

  18. A Monte Carlo study of parameters affecting computer simulations of crater saturation density

    NASA Astrophysics Data System (ADS)

    Woronow, A.

    1985-02-01

    Computer models of cratered surfaces often use inputs of uncertain nature and importance. This work evaluates the sensitivity of the resulting crater-saturation estimates to the input parameters, principally applicable to the study of craters upward from 8 km diameter. In order of decreasing importance, crater saturation simulations are found to be sensitive to: (1) the dynamic range of crater diameters used, (2) the effectiveness of ejecta-blanket obliteration assumed, and (3) the number of points taken to describe the crater rim. The size of the largest crater in proportion to the size of the simulated surface has no effect on the results when the edges of the simulated surface are correctly treated and craters are not counted simply by integers. Craters should be counted by their fractions lying within the simulated area. A similar procedure is recommended when gathering crater size-density data from images.

  19. A Monte Carlo study of parameters affecting computer simulations of crater saturation density

    NASA Technical Reports Server (NTRS)

    Woronow, A.

    1985-01-01

    Computer models of cratered surfaces often use inputs of uncertain nature and importance. This work evaluates the sensitivity of the resulting crater-saturation estimates to the input parameters, principally applicable to the study of craters upward from 8 km diameter. In order of decreasing importance, crater saturation simulations are found to be sensitive to: (1) the dynamic range of crater diameters used, (2) the effectiveness of ejecta-blanket obliteration assumed, and (3) the number of points taken to describe the crater rim. The size of the largest crater in proportion to the size of the simulated surface has no effect on the results when the edges of the simulated surface are correctly treated and craters are not counted simply by integers. Craters should be counted by their fractions lying within the simulated area. A similar procedure is recommended when gathering crater size-density data from images.

  20. Antimicrobial resistances do not affect colonization parameters of intestinal E. coli in a small piglet group

    PubMed Central

    Schierack, Peter; Kadlec, Kristina; Guenther, Sebastian; Filter, Matthias; Schwarz, Stefan; Ewers, Christa; Wieler, Lothar H

    2009-01-01

    Background Although antimicrobial resistance and persistence of resistant bacteria in humans and animals are major health concerns worldwide, the impact of antimicrobial resistance on bacterial intestinal colonization in healthy domestic animals has only been rarely studied. We carried out a retrospective analysis of the antimicrobial susceptibility status and the presence of resistance genes in intestinal commensal E. coli clones from clinically healthy pigs from one production unit with particular focus on effects of pheno- and/or genotypic resistance on different nominal and numerical intestinal colonization parameters. In addition, we compared the occurrence of antimicrobial resistance phenotypes and genotypes with the occurrence of virulence associated genes typical for extraintestinal pathogenic E. coli. Results In general, up to 72.1% of all E. coli clones were resistant to ampicillin, chloramphenicol, kanamycin, streptomycin, sulfamethoxazole or tetracycline with a variety of different resistance genes involved. There was no significant correlation between one of the nominal or numerical colonization parameters and the absence or presence of antimicrobial resistance properties or resistance genes. However, there were several statistically significant associations between the occurrence of single resistance genes and single virulence associated genes. Conclusion The demonstrated resistance to the tested antibiotics might not play a dominant role for an intestinal colonization success in pigs in the absence of antimicrobial drugs, or cross-selection of other colonization factors e.g. virulence associated genes might compensate "the cost of antibiotic resistance". Nevertheless, resistant strains are not outcompeted by susceptible bacteria in the porcine intestine. Trial Registration The study was approved by the local animal welfare committee of the "Landesamt für Arbeitsschutz, Gesundheitsschutz und technische Sicherheit" Berlin, Germany (No. G0037/02). PMID

  1. [How do transport and metabolism affect the biological effects of polycyclic aromatic hydrocarbons?].

    PubMed

    Bekki, Kanae; Toriba, Akira; Tang, Ning; Kameda, Takayuki; Takigami, Hidetaka; Suzuki, Go; Hayakawa, Kazuichi

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAHs), some of which are carcinogenic/mutagenic, are generated by combustion of fossil fuels and also released through tanker or oilfield accident to cause a large scale environmental pollution. PAHs concentration in China is especially high in East Asia because of many kinds of generation sources such as coal heating systems, vehicles and factories without exhaust gas/particulate treatment systems. So, the atmospheric pollution caused by PAHs in China has been seriously concerned from the view point of health effects. Like yellow sand and sulfur oxide, PAHs exhausted in China are also transported to Japan. Additionally, strongly mutagenic nitrated PAHs (NPAHs), estrogenic/antiestrogenic PAH hydroxides (PAHOHs) and reactive oxygen species-producing PAH quinones (PAHQs) are formed from PAHs by the chemical reaction during the transport. Furthermore these PAHOHs and PAHQs are produced by the metabolism in animal body. In the biological activities caused by the above PAH derivatives, the structure-activity relationship was observed. In this review, our recent results on the generation of PAH derivatives by atmospheric transport and metabolism are reported. Also, the existing condition of PAHs as atmospheric pollutants is considered.

  2. Natural allelic variations of xenobiotic-metabolizing enzymes affect sexual dimorphism in Oryzias latipes

    PubMed Central

    Katsumura, Takafumi; Oda, Shoji; Nakagome, Shigeki; Hanihara, Tsunehiko; Kataoka, Hiroshi; Mitani, Hiroshi; Kawamura, Shoji; Oota, Hiroki

    2014-01-01

    Sexual dimorphisms, which are phenotypic differences between males and females, are driven by sexual selection. Interestingly, sexually selected traits show geographical variations within species despite strong directional selective pressures. This paradox has eluded many evolutionary biologists for some time, and several models have been proposed (e.g. ‘indicator model’ and ‘trade-off model’). However, disentangling which of these theories explains empirical patterns remains difficult, because genetic polymorphisms that cause variation in sexual differences are still unknown. In this study, we show that polymorphisms in cytochrome P450 (CYP) 1B1, which encodes a xenobiotic-metabolizing enzyme, are associated with geographical differences in sexual dimorphism in the anal fin morphology of medaka fish (Oryzias latipes). Biochemical assays and genetic cross experiments show that high- and low-activity CYP1B1 alleles enhanced and declined sex differences in anal fin shapes, respectively. Behavioural and phylogenetic analyses suggest maintenance of the high-activity allele by sexual selection, whereas the low-activity allele possibly has experienced positive selection due to by-product effects of CYP1B1 in inferred ancestral populations. The present data can elucidate evolutionary mechanisms behind genetic variations in sexual dimorphism and indicate trade-off interactions between two distinct mechanisms acting on the two alleles with pleiotropic effects of xenobiotic-metabolizing enzymes. PMID:25377463

  3. Protein acetylation affects acetate metabolism, motility and acid stress response in Escherichia coli

    PubMed Central

    Castaño-Cerezo, Sara; Bernal, Vicente; Post, Harm; Fuhrer, Tobias; Cappadona, Salvatore; Sánchez-Díaz, Nerea C; Sauer, Uwe; Heck, Albert JR; Altelaar, AF Maarten; Cánovas, Manuel

    2014-01-01

    Although protein acetylation is widely observed, it has been associated with few specific regulatory functions making it poorly understood. To interrogate its functionality, we analyzed the acetylome in Escherichia coli knockout mutants of cobB, the only known sirtuin-like deacetylase, and patZ, the best-known protein acetyltransferase. For four growth conditions, more than 2,000 unique acetylated peptides, belonging to 809 proteins, were identified and differentially quantified. Nearly 65% of these proteins are related to metabolism. The global activity of CobB contributes to the deacetylation of a large number of substrates and has a major impact on physiology. Apart from the regulation of acetyl-CoA synthetase, we found that CobB-controlled acetylation of isocitrate lyase contributes to the fine-tuning of the glyoxylate shunt. Acetylation of the transcription factor RcsB prevents DNA binding, activating flagella biosynthesis and motility, and increases acid stress susceptibility. Surprisingly, deletion of patZ increased acetylation in acetate cultures, which suggests that it regulates the levels of acetylating agents. The results presented offer new insights into functional roles of protein acetylation in metabolic fitness and global cell regulation. PMID:25518064

  4. Global proteomic analysis of protein acetylation affecting metabolic regulation in Daphnia pulex.

    PubMed

    Kwon, Oh Kwang; Sim, Juhee; Kim, Sun Ju; Oh, Hye Ryeung; Nam, Doo Hyun; Lee, Sangkyu

    2016-02-01

    Daphnia (Daphnia pulex) is a small planktonic crustacean and a key constituent of aquatic ecosystems. It is generally used as a model organism to study environmental toxic problems. In the past decade, genomic and proteomic datasets of Daphnia have been developed. The proteomic dataset allows for the investigation of toxicological effects in the context of "Daphnia proteomics," resulting in greater insights for toxicological research. To exploit Daphnia for ecotoxicological research, information on the post-translational modification (PTM) of proteins is necessary, as this is a critical regulator of biological processes. Acetylation of lysine (Kac) is a reversible and highly regulated PTM that is associated with diverse biological functions. However, a comprehensive description of Kac in Daphnia is not yet available. To understand the cellular distribution of lysine acetylation in Daphnia, we identified 98 acetylation sites in 65 proteins by immunoprecipitation using an anti-acetyllysine antibody and a liquid chromatography system supported by mass spectroscopy. We identified 28 acetylated sites related to metabolic proteins and six acetylated enzymes associated with the TCA cycle in Daphnia. From GO and KEGG enrichment analyses, we showed that Kac in D. pulex is highly enriched in proteins associated with metabolic processes. Our data provide the first global analysis of Kac in D. pulex and is an important resource for the functional analysis of Kac in this organism. PMID:26700148

  5. Natural allelic variations of xenobiotic-metabolizing enzymes affect sexual dimorphism in Oryzias latipes.

    PubMed

    Katsumura, Takafumi; Oda, Shoji; Nakagome, Shigeki; Hanihara, Tsunehiko; Kataoka, Hiroshi; Mitani, Hiroshi; Kawamura, Shoji; Oota, Hiroki

    2014-12-22

    Sexual dimorphisms, which are phenotypic differences between males and females, are driven by sexual selection. Interestingly, sexually selected traits show geographical variations within species despite strong directional selective pressures. This paradox has eluded many evolutionary biologists for some time, and several models have been proposed (e.g. 'indicator model' and 'trade-off model'). However, disentangling which of these theories explains empirical patterns remains difficult, because genetic polymorphisms that cause variation in sexual differences are still unknown. In this study, we show that polymorphisms in cytochrome P450 (CYP) 1B1, which encodes a xenobiotic-metabolizing enzyme, are associated with geographical differences in sexual dimorphism in the anal fin morphology of medaka fish (Oryzias latipes). Biochemical assays and genetic cross experiments show that high- and low-activity CYP1B1 alleles enhanced and declined sex differences in anal fin shapes, respectively. Behavioural and phylogenetic analyses suggest maintenance of the high-activity allele by sexual selection, whereas the low-activity allele possibly has experienced positive selection due to by-product effects of CYP1B1 in inferred ancestral populations. The present data can elucidate evolutionary mechanisms behind genetic variations in sexual dimorphism and indicate trade-off interactions between two distinct mechanisms acting on the two alleles with pleiotropic effects of xenobiotic-metabolizing enzymes.

  6. A systematic experimental investigation of significant parameters affecting model tire hydroplaning

    NASA Technical Reports Server (NTRS)

    Wray, G. A.; Ehrlich, I. R.

    1973-01-01

    The results of a comprehensive parametric study of model and small pneumatic tires operating on a wet surface are presented. Hydroplaning inception (spin down) and rolling restoration (spin up) are discussed. Conclusions indicate that hydroplaning inception occurs at a speed significantly higher than the rolling restoration speed. Hydroplaning speed increases considerably with tread depth, surface roughness and tire inflation pressure of footprint pressure, and only moderately with increased load. Water film thickness affects spin down speed only slightly. Spin down speed varies inversely as approximately the one-sixth power of film thickness. Empirical equations relating tire inflation pressure, normal load, tire diameter and water film thickness have been generated for various tire tread and surface configurations.

  7. Early Change of Extracellular Matrix and Diastolic Parameters in Metabolic Syndrome

    PubMed Central

    Santos, Angela B. S.; Junges, Mauricio; Silvello, Daiane; Macari, Adriana; de Araújo, Bruno S.; Seligman, Beatriz G.; Duncan, Bruce B.; Rohde, Luis Eduardo P.; Clausell, Nadine; Foppa, Murilo

    2013-01-01

    Background Metabolic syndrome (MS) is associated with increased cardiovascular risk. It is not clear whether myocardial changes showed in this syndrome, such as diastolic dysfunction, are due to the systemic effects of the syndrome, or to specific myocardial effects. Objectives Compare diastolic function, biomarkers representing extracellular matrix activity (ECM), inflammation and cardiac hemodynamic stress in patients with the MS and healthy controls. Methods MS patients (n = 76) and healthy controls (n=30) were submitted to a clinical assessment, echocardiographic study, and measurement of plasma levels of metalloproteinase-9 (MMP9), tissue inhibitor of metalloproteinase-1 (TIMP1), ultrasensitive-reactive-C-Protein (us-CRP), insulin resistance (HOMA-IR) and natriuretic peptide (NT-proBNP). Results MS group showed lower E' wave (10.1 ± 3.0 cm/s vs 11.9 ± 2.6 cm/s, p = 0.005), increased A wave (63.4 ± 14.1 cm/s vs. 53.1 ± 8.9 cm/s; p < 0.001), E/E' ratio (8.0 ± 2.2 vs. 6.3 ± 1.2; p < 0.001), MMP9 (502.9 ± 237.1 ng / mL vs. 330.4±162.7 ng/mL; p < 0.001), us-CRP (p = 0.001) and HOMA-IR (p < 0.001), but no difference for TIMP1 or NT-proBNP levels. In a multivariable analysis, only MMP9 was independently associated with MS. Conclusion MS patients showed differences for echocardiographic measures of diastolic function, ECM activity, us-CRP and HOMA-IR when compared to controls. However, only MMP9 was independently associated with the MS. These findings suggest that there are early effects on ECM activity, which cannot be tracked by routine echocardiographic measures of diastolic function. PMID:24008653

  8. Genetic perturbation of key central metabolic genes extends lifespan in Drosophila and affects response to dietary restriction.

    PubMed

    Talbert, Matthew E; Barnett, Brittany; Hoff, Robert; Amella, Maria; Kuczynski, Kate; Lavington, Erik; Koury, Spencer; Brud, Evgeny; Eanes, Walter F

    2015-09-22

    There is a connection between nutrient inputs, energy-sensing pathways, lifespan variation and aging. Despite the role of metabolic enzymes in energy homeostasis and their metabolites as nutrient signals, little is known about how their gene expression impacts lifespan. In this report, we use P-element mutagenesis in Drosophila to study the effect on lifespan of reductions in expression of seven central metabolic enzymes, and contrast the effects on normal diet and dietary restriction. The major observation is that for five of seven genes, the reduction of gene expression extends lifespan on one or both diets. Two genes are involved in redox balance, and we observe that lower activity genotypes significantly extend lifespan. The hexokinases also show extension of lifespan with reduced gene activity. Since both affect the ATP/ADP ratio, this connects with the role of AMP-activated protein kinase as an energy sensor in regulating lifespan and mediating caloric restriction. These genes possess significant expression variation in natural populations, and our experimental genotypes span this level of natural activity variation. Our studies link the readout of energy state with the perturbation of the genes of central metabolism and demonstrate their effect on lifespan.

  9. Potato Production as Affected by Crop Parameters and Meteoro Logical Elements

    NASA Astrophysics Data System (ADS)

    Pereira, André B.; Villa Nova, Nilson A.; Pereira, Antonio R.

    Meteorological elements directly influence crop potential productivity, regulating its transpiration, photosynthesis, and respiration processes in such a way as to control the growth and development of the plants throughout their physiological mechanisms at a given site. The interaction of the meteorological factors with crop responses is complex and has been the target of attention of many researchers from all over the world. There is currently a great deal of interest in estimating crop productivity as a function of climate by means of different crop weather models in order to help growers choose planting locations and timing to produce high yields with good tuber quality under site-specific atmospheric conditions. In this manuscript an agrometeorological model based on maximum carbon dioxide assimilation rates for C3 plants, fraction of photosynthetically active radiation, air temperature, photoperiod duration, and crop parameters is assessed as to its performance under tropical conditions. Crop parameters include leaf areaand harvest indexes, dry matter content of potato tubers, and crop cycles to estimate potato potential yields. Productivity obtained with the cultivar Itararé, grown with adequate soil water supply conditions at four different sites in the State of São Paulo (Itararé, Piracicaba, TatuÍ, and São Manuel), Brazil, were used to test the model. The results showed thatthe agrometeorological model tested under the climatic conditions of the State of São Paulo in general underestimated irrigated potato yield by less than 10%.This justifies the recommendation to test the performance of the model in study in other climaticregions for different crops and genotypes under optimal irrigationconditions in further scientific investigations. We reached the conclusion that the agrometeorological model taking into account information on leaf area index, photoperiod duration, photosynthetically active radiation and air temperature is feasible to estimate

  10. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles.

    PubMed

    Zaya, Renee M; Amini, Zakariya; Whitaker, Ashley S; Ide, Charles F

    2011-08-01

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 μg/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 μg/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 μg/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 μg/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p=0.07) increases in peroxisome proliferator-activated receptor β (PPAR-β) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid β-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-β, an energy homeostasis regulatory molecule, also

  11. Xenobiotic-contaminated diets affect hepatic lipid metabolism: Implications for liver steatosis in Sparus aurata juveniles.

    PubMed

    Maradonna, F; Nozzi, V; Santangeli, S; Traversi, I; Gallo, P; Fattore, E; Mita, D G; Mandich, A; Carnevali, O

    2015-10-01

    The metabolic effects induced by feed contaminated with a lower or a higher concentration of -nonylpnenol (NP), 4-tert-octylphenol (t-OP) or bisphenol A (BPA), three environmental endocrine disruptors, were assessed in juvenile sea bream liver. Histological analysis demonstrated that all these three xenobiotics induced hepatic lipid accumulation and steatosis. These findings prompted analysis of the expression of the major molecules involved in lipid metabolism: peroxisome proliferator activated receptors (which is encoded by ppars), fatty acid synthase (encoded by fas), lipoprotein lipase (encoded by lpl) and hormone-sensitive lipase (encoded by hsl). The enzymes encoded by ppars and fas are in fact responsible for lipid accumulation, whereas lpl- and hsl- encoded proteins play a pivotal role in fat mobilization. The three xenobiotics modulated ppar mRNA expression: pparα mRNA expression was induced by the higher dose of each contaminant; pparβ mRNA expression was upregulated by the lower doses and in BPA2 fish ppary mRNA overexpression was induced by all pollutants. These data agreed with the lipid accumulation profiles documented by histology. Fas mRNA levels were modulated by the two NP doses and the higher BPA concentration. Lpl mRNA was significantly upregulated in all experimental groups except for BPA1 fish while hsl mRNA was significantly downregulated in all groups except for t-OP2 and BPA1 fish. The plasma concentrations of cortisol, the primary stress biomarker, were correlated with the levels of pepck mRNA level. This gene encodes phosphoenolpyruvate carboxykinase which is one of the key enzymes of gluconeogenesis. Pepck mRNA was significantly overexpressed in fish exposed to NP2 and both t-OP doses. Finally, the genes encoding cyclooxygenase 2 (cox2) and 5-lipoxygenase (5 lox), the products of which are involved in the inflammatory response, transcriptions were significantly upregulated in NP and BPA fish, whereas they were unchanged in t

  12. Xenobiotic-contaminated diets affect hepatic lipid metabolism: Implications for liver steatosis in Sparus aurata juveniles.

    PubMed

    Maradonna, F; Nozzi, V; Santangeli, S; Traversi, I; Gallo, P; Fattore, E; Mita, D G; Mandich, A; Carnevali, O

    2015-10-01

    The metabolic effects induced by feed contaminated with a lower or a higher concentration of -nonylpnenol (NP), 4-tert-octylphenol (t-OP) or bisphenol A (BPA), three environmental endocrine disruptors, were assessed in juvenile sea bream liver. Histological analysis demonstrated that all these three xenobiotics induced hepatic lipid accumulation and steatosis. These findings prompted analysis of the expression of the major molecules involved in lipid metabolism: peroxisome proliferator activated receptors (which is encoded by ppars), fatty acid synthase (encoded by fas), lipoprotein lipase (encoded by lpl) and hormone-sensitive lipase (encoded by hsl). The enzymes encoded by ppars and fas are in fact responsible for lipid accumulation, whereas lpl- and hsl- encoded proteins play a pivotal role in fat mobilization. The three xenobiotics modulated ppar mRNA expression: pparα mRNA expression was induced by the higher dose of each contaminant; pparβ mRNA expression was upregulated by the lower doses and in BPA2 fish ppary mRNA overexpression was induced by all pollutants. These data agreed with the lipid accumulation profiles documented by histology. Fas mRNA levels were modulated by the two NP doses and the higher BPA concentration. Lpl mRNA was significantly upregulated in all experimental groups except for BPA1 fish while hsl mRNA was significantly downregulated in all groups except for t-OP2 and BPA1 fish. The plasma concentrations of cortisol, the primary stress biomarker, were correlated with the levels of pepck mRNA level. This gene encodes phosphoenolpyruvate carboxykinase which is one of the key enzymes of gluconeogenesis. Pepck mRNA was significantly overexpressed in fish exposed to NP2 and both t-OP doses. Finally, the genes encoding cyclooxygenase 2 (cox2) and 5-lipoxygenase (5 lox), the products of which are involved in the inflammatory response, transcriptions were significantly upregulated in NP and BPA fish, whereas they were unchanged in t

  13. Parameters affecting enzyme-assisted aqueous extraction of extruded sunflower meal.

    PubMed

    Campbell, Kerry A; Vaca-Medina, Guadalupe; Glatz, Charles E; Pontalier, Pierre-Yves

    2016-10-01

    Microscopic observation of sunflower meal before and after extraction indicated that extensive cellular disruption was achieved by extrusion, but that unextracted oil remained sequestered as coalesced oil within the void spaces of disrupted cotyledon cells. A full factorial design experiment was defined to develop aqueous extraction processing (AEP) with and without enzymes to improve vegetable oil extraction yields of extruded sunflower meal. This experimental design studied the influence of four parameters, agitation, liquid/solid (L/S) ratio, and cellulase and protease addition, on extraction yield of lipid and protein. Agitation and addition of cellulases increased oil extraction yield, indicating that emulsification of oil and alteration of the geometry of the confining cellular matrix were important mechanisms for improving yields. Protease and liquid-solid ratio of the extraction mixture did not have significant effects, indicating key differences with previously established soy oil extraction mechanisms. Maximum yields attained for oil and protein extraction were 39% and 90%, respectively, with the aid of a surfactant.

  14. Predictive Blood Chemistry Parameters for Pansteatitis-Affected Mozambique Tilapia (Oreochromis mossambicus).

    PubMed

    Bowden, John A; Cantu, Theresa M; Chapman, Robert W; Somerville, Stephen E; Guillette, Matthew P; Botha, Hannes; Hoffman, Andre; Luus-Powell, Wilmien J; Smit, Willem J; Lebepe, Jeffrey; Myburgh, Jan; Govender, Danny; Tucker, Jonathan; Boggs, Ashley S P; Guillette, Louis J

    2016-01-01

    One of the largest river systems in South Africa, the Olifants River, has experienced significant changes in water quality due to anthropogenic activities. Since 2005, there have been various "outbreaks" of the inflammatory disease pansteatitis in several vertebrate species. Large-scale pansteatitis-related mortality events have decimated the crocodile population at Lake Loskop and decreased the population at Kruger National Park. Most pansteatitis-related diagnoses within the region are conducted post-mortem by either gross pathology or histology. The application of a non-lethal approach to assess the prevalence and pervasiveness of pansteatitis in the Olifants River region would be of great importance for the development of a management plan for this disease. In this study, several plasma-based biomarkers accurately classified pansteatitis in Mozambique tilapia (Oreochromis mossambicus) collected from Lake Loskop using a commercially available benchtop blood chemistry analyzer combined with data interpretation via artificial neural network analysis. According to the model, four blood chemistry parameters (calcium, sodium, total protein and albumin), in combination with total length, diagnose pansteatitis to a predictive accuracy of 92 percent. In addition, several morphometric traits (total length, age, weight) were also associated with pansteatitis. On-going research will focus on further evaluating the use of blood chemistry to classify pansteatitis across different species, trophic levels, and within different sites along the Olifants River. PMID:27115488

  15. Predictive Blood Chemistry Parameters for Pansteatitis-Affected Mozambique Tilapia (Oreochromis mossambicus)

    PubMed Central

    Chapman, Robert W.; Somerville, Stephen E.; Guillette, Matthew P.; Botha, Hannes; Hoffman, Andre; Luus-Powell, Wilmien J.; Smit, Willem J.; Lebepe, Jeffrey; Myburgh, Jan; Govender, Danny; Tucker, Jonathan; Boggs, Ashley S. P.

    2016-01-01

    One of the largest river systems in South Africa, the Olifants River, has experienced significant changes in water quality due to anthropogenic activities. Since 2005, there have been various “outbreaks” of the inflammatory disease pansteatitis in several vertebrate species. Large-scale pansteatitis-related mortality events have decimated the crocodile population at Lake Loskop and decreased the population at Kruger National Park. Most pansteatitis-related diagnoses within the region are conducted post-mortem by either gross pathology or histology. The application of a non-lethal approach to assess the prevalence and pervasiveness of pansteatitis in the Olifants River region would be of great importance for the development of a management plan for this disease. In this study, several plasma-based biomarkers accurately classified pansteatitis in Mozambique tilapia (Oreochromis mossambicus) collected from Lake Loskop using a commercially available benchtop blood chemistry analyzer combined with data interpretation via artificial neural network analysis. According to the model, four blood chemistry parameters (calcium, sodium, total protein and albumin), in combination with total length, diagnose pansteatitis to a predictive accuracy of 92 percent. In addition, several morphometric traits (total length, age, weight) were also associated with pansteatitis. On-going research will focus on further evaluating the use of blood chemistry to classify pansteatitis across different species, trophic levels, and within different sites along the Olifants River. PMID:27115488

  16. Predictive Blood Chemistry Parameters for Pansteatitis-Affected Mozambique Tilapia (Oreochromis mossambicus).

    PubMed

    Bowden, John A; Cantu, Theresa M; Chapman, Robert W; Somerville, Stephen E; Guillette, Matthew P; Botha, Hannes; Hoffman, Andre; Luus-Powell, Wilmien J; Smit, Willem J; Lebepe, Jeffrey; Myburgh, Jan; Govender, Danny; Tucker, Jonathan; Boggs, Ashley S P; Guillette, Louis J

    2016-01-01

    One of the largest river systems in South Africa, the Olifants River, has experienced significant changes in water quality due to anthropogenic activities. Since 2005, there have been various "outbreaks" of the inflammatory disease pansteatitis in several vertebrate species. Large-scale pansteatitis-related mortality events have decimated the crocodile population at Lake Loskop and decreased the population at Kruger National Park. Most pansteatitis-related diagnoses within the region are conducted post-mortem by either gross pathology or histology. The application of a non-lethal approach to assess the prevalence and pervasiveness of pansteatitis in the Olifants River region would be of great importance for the development of a management plan for this disease. In this study, several plasma-based biomarkers accurately classified pansteatitis in Mozambique tilapia (Oreochromis mossambicus) collected from Lake Loskop using a commercially available benchtop blood chemistry analyzer combined with data interpretation via artificial neural network analysis. According to the model, four blood chemistry parameters (calcium, sodium, total protein and albumin), in combination with total length, diagnose pansteatitis to a predictive accuracy of 92 percent. In addition, several morphometric traits (total length, age, weight) were also associated with pansteatitis. On-going research will focus on further evaluating the use of blood chemistry to classify pansteatitis across different species, trophic levels, and within different sites along the Olifants River.

  17. Kinetics of oxidative degradation of white wines and how they are affected by selected technological parameters.

    PubMed

    Ferreira, Antonio César Silva; de Pinho, Paula Guedes; Rodrigues, Paula; Hogg, Timothy

    2002-10-01

    The negative effects of oxygen on white wine quality and the various factors which influence it (including temperature, dissolved oxygen, pH, and free SO(2)) are well documented both at the sensory and compositional levels. What is less defined is the quantitative relationship between these parameters and the kinetics of the development of the negative effects of oxidation. The experiment presented here attempts to generate data which can be used to predictively model the oxidative degradation of white wines. Bottled wines were submitted to extreme conditions (45 degrees C temperature, O(2) saturation) during 3 months witth samples taken every 15 days for both sensorial and chemical analysis (GC-O/FPD/MS, 420 nm). The synergistic effects of increasing temperature and O(2) at lower pH are evident, both on the decrease in levels of terpene alcohols and norisoprenoids (which impart floral aromas), and on the development of off-flavors such as "honey-like", "boiled-potato", and "farm-feed" associated with the presence of phenylacetaldehyde, methional, and 1,1,6-trimethyl-1,2-dihydronaphthalene. PMID:12358460

  18. Dexamethasone acutely regulates endocrine parameters in stallions and subsequently affects gene expression in testicular germ cells.

    PubMed

    Ing, N H; Brinsko, S P; Curley, K O; Forrest, D W; Love, C C; Hinrichs, K; Vogelsang, M M; Varner, D D; Welsh, T H

    2015-01-01

    Testicular steroidogenesis and spermatogenesis are negatively impacted by stress-related hormones such as glucocorticoids. The effects of two injections of a therapeutic dose of dexamethasone (a synthetic glucocorticoid, 0.1mg/kg; i.v.) given 24h apart to each of three stallions were investigated and compared to three saline-injected control stallions. Dexamethasone decreased circulating concentrations of cortisol by 50% at 24h after the initial injection. Serum testosterone decreased by a maximum of 94% from 4 to 20h after the initial injection of dexamethasone. Semen parameters of the dexamethasone-treated stallions were unchanged in the subsequent two weeks. Two weeks after treatment, stallions were castrated. Functional genomic analyses of the testes revealed that, of eight gene products analyzed, dexamethasone depressed concentrations of heat shock protein DNAJC4 and sperm-specific calcium channel CATSPER1 mRNAs by more than 60%. Both genes are expressed in germ cells during spermiogenesis and have been related to male fertility in other species, including humans. This is the first report of decreased DNAJC4 and CATSPER1 mRNA concentrations in testes weeks after dexamethasone treatment. Concentrations of these mRNAs in sperm may be useful as novel markers of fertility in stallions. PMID:25487569

  19. Parameters affecting the accuracy of oxide thickness prediction in thin metal-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Mohaidat, J. M.; Ahmad-Bitar, Riyad N.

    2004-01-01

    On the basis of the solution of the time dependent Schrödinger equation within the framework of the effective mass theory, a complete quantum mechanical electron tunneling through a biased square potential model with abrupt interfaces was deduced. Barriers of 3 eV height and widths up to 140 Å were investigated. Current density-voltage ( J- V) curves were computed for Al/SiO 2/ n+Si structure. The computed J- V curves exhibited oscillations at applied voltages above (Fowler-Nordheim tunneling) and below (direct tunneling) 3 V. For oxide thickness estimation, the position of the oscillation extrema from this quantum mechanical model were fitted to a wave interference formula and showed excellent agreement for oxide layer widths less than 50 Å. However, a systematic deviation appeared for layers larger than 50 Å. We show that the electron energy distribution at the injection layer and the electron effective mass on layers other than the oxide layer are important parameters for accurate oxide thickness estimation.

  20. Effects of four rice herbicides on some metabolic and toxicology parameters of teleost fish (Leporinus obtusidens).

    PubMed

    Moraes, Bibiana Silveira; Loro, Vania Lúcia; Glusczak, Lissandra; Pretto, Alexandra; Menezes, Charlene; Marchezan, Enio; de Oliveira Machado, Sérgio

    2007-07-01

    Effects of different herbicides on acetylcholinesterase (AChE), catalase and TBARS formation in teleost fish (Leporinus obtusidens) were studied. Fish were exposed during 30 days at concentrations of herbicides used in rice field. AChE activity in the brain decreased significantly after exposure to the herbicides clomazone and quinclorac. However, AChE activity increased significantly in muscle tissue after exposure to clomazone, propanil and metsulfuron methyl. Fish exposed to quinclorac, propanil and metsulfuron methyl showed TBARS decreased levels in brain and muscle tissues. However, TBARS and catalase activity increased in liver tissue after clomazone and propanil exposure. This study pointed out long-term effects on AChE activity, oxidative stress and antioxidant enzyme catalase in tissues of L. obtusidens after exposure to environmentally relevant concentrations of rice field herbicides. These parameters have been used to monitor fish toxicity in rice field system.

  1. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism.

    PubMed

    Shaik, Shahnoor S; Obata, Toshihiro; Hebelstrup, Kim H; Schwahn, Kevin; Fernie, Alisdair R; Mateiu, Ramona V; Blennow, Andreas

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro-structure was achieved by decreasing starch branching and increasing starch-bound phosphate content in the barley caryopsis starch by RNAi suppression of all three Starch Branching Enzyme (SBE) isoforms or overexpression of potato Glucan Water Dikinase (GWD). The resulting lines displayed Amylose-Only (AO) and Hyper-Phosphorylated (HP) starch chemotypes, respectively. We studied the influence of these alterations on primary metabolism, grain composition, starch structural features and starch granule morphology over caryopsis development at 10, 20 and 30 days after pollination (DAP) and at grain maturity. While HP showed relatively little effect, AO showed significant reduction in starch accumulation with re-direction to protein and β-glucan (BG) accumulation. Metabolite profiling indicated significantly higher sugar accumulation in AO, with re-partitioning of carbon to accumulate amino acids, and interestingly it also had high levels of some important stress-related metabolites and potentially protective metabolites, possibly to elude deleterious effects. Investigations on starch molecular structure revealed significant increase in starch phosphate and amylose content in HP and AO respectively with obvious differences in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch-bound phosphate as a result of overexpressing GWD.

  2. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution

    PubMed Central

    Gasperini, Lisa; Meneghetti, Elisa; Legname, Giuseppe; Benetti, Federico

    2016-01-01

    Essential elements as copper and iron modulate a wide range of physiological functions. Their metabolism is strictly regulated by cellular pathways, since dysregulation of metal homeostasis is responsible for many detrimental effects. Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and prion diseases are characterized by alterations of metal ions. These neurodegenerative maladies involve proteins that bind metals and mediate their metabolism through not well-defined mechanisms. Prion protein, for instance, interacts with divalent cations via multiple metal-binding sites and it modulates several metal-dependent physiological functions, such as S-nitrosylation of NMDA receptors. In this work we focused on the effect of prion protein absence on copper and iron metabolism during development and adulthood. In particular, we investigated copper and iron functional values in serum and several organs such as liver, spleen, total brain and isolated hippocampus. Our results show that iron content is diminished in prion protein-null mouse serum, while it accumulates in liver and spleen. Our data suggest that these alterations can be due to impairments in copper-dependent cerulopalsmin activity which is known to affect iron mobilization. In prion protein-null mouse total brain and hippocampus, metal ion content shows a fluctuating trend, suggesting the presence of homeostatic compensatory mechanisms. However, copper and iron functional values are likely altered also in these two organs, as indicated by the modulation of metal-binding protein expression levels. Altogether, these results reveal that the absence of the cellular prion protein impairs copper metabolism and copper-dependent oxidase activity, with ensuing alteration of iron mobilization from cellular storage compartments. PMID:27729845

  3. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism.

    PubMed

    Shaik, Shahnoor S; Obata, Toshihiro; Hebelstrup, Kim H; Schwahn, Kevin; Fernie, Alisdair R; Mateiu, Ramona V; Blennow, Andreas

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro-structure was achieved by decreasing starch branching and increasing starch-bound phosphate content in the barley caryopsis starch by RNAi suppression of all three Starch Branching Enzyme (SBE) isoforms or overexpression of potato Glucan Water Dikinase (GWD). The resulting lines displayed Amylose-Only (AO) and Hyper-Phosphorylated (HP) starch chemotypes, respectively. We studied the influence of these alterations on primary metabolism, grain composition, starch structural features and starch granule morphology over caryopsis development at 10, 20 and 30 days after pollination (DAP) and at grain maturity. While HP showed relatively little effect, AO showed significant reduction in starch accumulation with re-direction to protein and β-glucan (BG) accumulation. Metabolite profiling indicated significantly higher sugar accumulation in AO, with re-partitioning of carbon to accumulate amino acids, and interestingly it also had high levels of some important stress-related metabolites and potentially protective metabolites, possibly to elude deleterious effects. Investigations on starch molecular structure revealed significant increase in starch phosphate and amylose content in HP and AO respectively with obvious differences in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch-bound phosphate as a result of overexpressing GWD. PMID:26891365

  4. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    PubMed Central

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H.; Schwahn, Kevin; Fernie, Alisdair R.; Mateiu, Ramona V.; Blennow, Andreas

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro-structure was achieved by decreasing starch branching and increasing starch-bound phosphate content in the barley caryopsis starch by RNAi suppression of all three Starch Branching Enzyme (SBE) isoforms or overexpression of potato Glucan Water Dikinase (GWD). The resulting lines displayed Amylose-Only (AO) and Hyper-Phosphorylated (HP) starch chemotypes, respectively. We studied the influence of these alterations on primary metabolism, grain composition, starch structural features and starch granule morphology over caryopsis development at 10, 20 and 30 days after pollination (DAP) and at grain maturity. While HP showed relatively little effect, AO showed significant reduction in starch accumulation with re-direction to protein and β-glucan (BG) accumulation. Metabolite profiling indicated significantly higher sugar accumulation in AO, with re-partitioning of carbon to accumulate amino acids, and interestingly it also had high levels of some important stress-related metabolites and potentially protective metabolites, possibly to elude deleterious effects. Investigations on starch molecular structure revealed significant increase in starch phosphate and amylose content in HP and AO respectively with obvious differences in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch-bound phosphate as a result of overexpressing GWD. PMID:26891365

  5. Transferrin Receptor 2 Dependent Alterations of Brain Iron Metabolism Affect Anxiety Circuits in the Mouse

    PubMed Central

    Pellegrino, Rosa Maria; Boda, Enrica; Montarolo, Francesca; Boero, Martina; Mezzanotte, Mariarosa; Saglio, Giuseppe; Buffo, Annalisa; Roetto, Antonella

    2016-01-01

    The Transferrin Receptor 2 (Tfr2) modulates systemic iron metabolism through the regulation of iron regulator Hepcidin (Hepc) and Tfr2 inactivation causes systemic iron overload. Based on data demonstrating Tfr2 expression in brain, we analysed Tfr2-KO mice in order to examine the molecular, histological and behavioural consequences of Tfr2 silencing in this tissue. Tfr2 abrogation caused an accumulation of iron in specific districts in the nervous tissue that was not accompanied by a brain Hepc response. Moreover, Tfr2-KO mice presented a selective overactivation of neurons in the limbic circuit and the emergence of an anxious-like behaviour. Furthermore, microglial cells showed a particular sensitivity to iron perturbation. We conclude that Tfr2 is a key regulator of brain iron homeostasis and propose a role for Tfr2 alpha in the regulation of anxiety circuits. PMID:27477597

  6. Transferrin Receptor 2 Dependent Alterations of Brain Iron Metabolism Affect Anxiety Circuits in the Mouse.

    PubMed

    Pellegrino, Rosa Maria; Boda, Enrica; Montarolo, Francesca; Boero, Martina; Mezzanotte, Mariarosa; Saglio, Giuseppe; Buffo, Annalisa; Roetto, Antonella

    2016-01-01

    The Transferrin Receptor 2 (Tfr2) modulates systemic iron metabolism through the regulation of iron regulator Hepcidin (Hepc) and Tfr2 inactivation causes systemic iron overload. Based on data demonstrating Tfr2 expression in brain, we analysed Tfr2-KO mice in order to examine the molecular, histological and behavioural consequences of Tfr2 silencing in this tissue. Tfr2 abrogation caused an accumulation of iron in specific districts in the nervous tissue that was not accompanied by a brain Hepc response. Moreover, Tfr2-KO mice presented a selective overactivation of neurons in the limbic circuit and the emergence of an anxious-like behaviour. Furthermore, microglial cells showed a particular sensitivity to iron perturbation. We conclude that Tfr2 is a key regulator of brain iron homeostasis and propose a role for Tfr2 alpha in the regulation of anxiety circuits. PMID:27477597

  7. Brain magnetic resonance imaging, aerobic power, and metabolic parameters among 30 asymptomatic scuba divers.

    PubMed

    Tripodi, D; Dupas, B; Potiron, M; Louvet, S; Geraut, C

    2004-11-01

    The aim of the study was to evaluate the presence of cerebral lesions in asymptomatic scuba divers and explain the causes of them: potential risk factors associating cardiovascular risk factors, low aerobic capacity, or characteristics of diving (maximum depth, ascent rate). Experienced scuba divers, over 40 years of age, without any decompression sickness (DCS) history were included. We studied 30 scuba divers (instructors) without any clinical symptoms. For all of them, we carried out a clinical examination with fatty body mass determination and we questioned them about their diving habits. A brain Magnetic Resonance imaging (MRI), an assessment of maximal oxygen uptake, glycemia, triglyceridemia, and cholesterolemia were systematically carried out. Cerebral spots of high intensity were found at 33 % in the scuba diving group and 30 % in the control group. In the diving group, abnormalities were related to unsafe scuba-diving or metabolic abnormalities. In our study, we did not find a significant relationship between the lesions of the central nervous system, and the age, depth of the dives, number of dives, and ergometric performances (maximal oxygen uptake, V.O (2max), serum level of blood lactate). Nevertheless, we found a significant relationship between the lesions of the central nervous system and ascent rate faster than 10 meters per minute (r = 0.57; p = 0.003) or presence of high level of cholesterolemia (r = 0.6; p = 0.001). We found concordant results using the Cochran's Test: meaningful link between the number of brain lesions and the speed of decompression (Uexp = 14 < Utable = 43; alpha = 0.05, p < 0.01). We concluded that hyperintensities can be explained by preformed nitrogen gas microbubbles and particularly in presence of cholesterol, when the ascent rate is up to 10 meters per minute. So, it was remarkable to note that asymptomatic patients practicing scuba diving either professionally or recreationally, presented lesions of the central nervous

  8. Can N-acetyl-L-cysteine affect zinc metabolism when used as a paracetamol antidote?

    PubMed

    Brumas, V; Hacht, B; Filella, M; Berthon, G

    1992-07-01

    N-Acetyl-L-cysteine (NAC) has long been used in the treatment of chronic lung diseases. Inhalation and oral administration of the drug are both effective in reducing mucus viscosity. In addition, NAC oral therapy allows to restore normal mucoprotein secretion in the long term. Although displaying heavy metal-complexing potential, NAC exerts no detectable influence on the metabolism of essential trace metals when used in the above context (i.e. at doses near 600 mg day-1). However, this may no longer be the case when NAC is used as an oxygen radical scavenger, like in the treatment of paracetamol poisoning. In the latter case, intravenous doses as high as 20 g day-1 are administered, which may induce excessive zinc urinary excretion. In order to allow a better appreciation of the risk of zinc depletion during NAC therapy, the present work addresses the role of this drug towards zinc metabolism at the molecular level. First, formation constants for zinc-NAC complexes have been determined under physiological conditions. Then, computer simulations for blood plasma and gastrointestinal fluid have been run to assess the influence of NAC and its metabolites (e.g. cysteine and glutathione) on zinc excretion and absorption. Blood plasma simulations reveal that NAC can effectively mobilise an important fraction of zinc into urinary excretable complexes as from concentrations of 10(-3) mol dm-3 (which corresponds to a dose of about 800 mg). This effect can still be enhanced by the action of NAC metabolites, among which cysteine is the most powerful zinc sequestering agent. In contrast, simulations relative to gastrointestinal conditions suggest that NAC should tend to increase zinc absorption, regardless of its dose. PMID:1529808

  9. Cocoa and Whey Protein Differentially Affect Markers of Lipid and Glucose Metabolism and Satiety.

    PubMed

    Campbell, Caroline L; Foegeding, E Allen; Harris, G Keith

    2016-03-01

    Food formulation with bioactive ingredients is a potential strategy to promote satiety and weight management. Whey proteins are high in leucine and are shown to decrease hunger ratings and increase satiety hormone levels; cocoa polyphenolics moderate glucose levels and slow digestion. This study examined the effects of cocoa and whey proteins on lipid and glucose metabolism and satiety in vitro and in a clinical trial. In vitro, 3T3-L1 preadipocytes were treated with 0.5-100 μg/mL cocoa polyphenolic extract (CPE) and/or 1-15 mM leucine (Leu) and assayed for lipid accumulation and leptin production. In vivo, a 6-week clinical trial consisted of nine panelists (age: 22.6 ± 1.7; BMI: 22.3 ± 2.1) consuming chocolate-protein beverages once per week, including placebo, whey protein isolate (WPI), low polyphenolic cocoa (LP), high polyphenolic cocoa (HP), LP-WPI, and HP-WPI. Measurements included blood glucose and adiponectin levels, and hunger ratings at baseline and 0.5-4.0 h following beverage consumption. At levels of 50 and 100 μg/mL, CPE significantly inhibited preadipocyte lipid accumulation by 35% and 50%, respectively, and by 22% and 36% when combined with 15 mM Leu. Leu treatment increased adipocyte leptin production by 26-37%. In the clinical trial, all beverages significantly moderated blood glucose levels 30 min postconsumption. WPI beverages elicited lowest peak glucose levels and HP levels were significantly lower than LP. The WPI and HP beverage treatments significantly increased adiponectin levels, but elicited no significant changes in hunger ratings. These trends suggest that combinations of WPI and cocoa polyphenols may improve markers of metabolic syndrome and satiety. PMID:26987021

  10. Can N-acetyl-L-cysteine affect zinc metabolism when used as a paracetamol antidote?

    PubMed

    Brumas, V; Hacht, B; Filella, M; Berthon, G

    1992-07-01

    N-Acetyl-L-cysteine (NAC) has long been used in the treatment of chronic lung diseases. Inhalation and oral administration of the drug are both effective in reducing mucus viscosity. In addition, NAC oral therapy allows to restore normal mucoprotein secretion in the long term. Although displaying heavy metal-complexing potential, NAC exerts no detectable influence on the metabolism of essential trace metals when used in the above context (i.e. at doses near 600 mg day-1). However, this may no longer be the case when NAC is used as an oxygen radical scavenger, like in the treatment of paracetamol poisoning. In the latter case, intravenous doses as high as 20 g day-1 are administered, which may induce excessive zinc urinary excretion. In order to allow a better appreciation of the risk of zinc depletion during NAC therapy, the present work addresses the role of this drug towards zinc metabolism at the molecular level. First, formation constants for zinc-NAC complexes have been determined under physiological conditions. Then, computer simulations for blood plasma and gastrointestinal fluid have been run to assess the influence of NAC and its metabolites (e.g. cysteine and glutathione) on zinc excretion and absorption. Blood plasma simulations reveal that NAC can effectively mobilise an important fraction of zinc into urinary excretable complexes as from concentrations of 10(-3) mol dm-3 (which corresponds to a dose of about 800 mg). This effect can still be enhanced by the action of NAC metabolites, among which cysteine is the most powerful zinc sequestering agent. In contrast, simulations relative to gastrointestinal conditions suggest that NAC should tend to increase zinc absorption, regardless of its dose.

  11. Do glucose and lipid metabolism affect cancer development in Nagasaki atomic bomb survivors?

    PubMed

    Hida, Ayumi; Akahoshi, Masazumi; Toyama, Kyoko; Imaizumi, Misa; Soda, Midori; Maeda, Renju; Ichimaru, Shinichiro; Nakashima, Eiji; Eguchi, Katsumi

    2005-01-01

    The relationship between lipid or glucose metabolism and cancer has not yet been elucidated. We conducted 75-g oral glucose tolerance tests (75-g OGTTs) and lipid measurements between 1983 and 1985 in 516 Nagasaki atomic bomb survivors. Excluding those who already had cancer at the baseline examinations and those who developed cancers or died of any cause within 5 yr after the baseline examinations, we determined incident cancer cases until 2000 in the remaining 451 subjects (214 males and 237 females) and evaluated, by means of the Cox proportional hazard model, whether glucose or lipid metabolism predicts cancer development. The age- and sex-adjusted relative risk (RR) for incident cancer was 0.903 (95% confidence interval, CI = 0.842-0.968), 1.740 (95% CI = 1.238-2.446), 1.653 (95% CI = 0.922-2.965), and 1.024 (95% CI = 0.996-1.053) for total cholesterol (10 mg/dl), radiation dose (1 Sv), smoking, and 1-h blood glucose (1-h BG; 10 mg/dl) in 75-g OGTTs, respectively. Multiple regression analysis of age, sex, smoking, body mass index, 1-h BG, triglycerides, total cholesterol, high-density lipoprotein cholesterol, and radiation dose also showed that total cholesterol was negatively (RR = 0.872; 95% CI = 0.793-0.958) and radiation dose positively (RR = 1.809; 95% CI = 1.252-2.613) related to incident cancer. Cholesterol could be negatively and radiation dose positively associated with cancer development independently.

  12. Prolonged hyperinsulinemia affects metabolic signal transduction markers in a tissue specific manner.

    PubMed

    Campolo, A; de Laat, M A; Keith, L; Gruntmeir, K J; Lacombe, V A

    2016-04-01

    Insulin dysregulation is common in horses although the mechanisms of metabolic dysfunction are poorly understood. We hypothesized that insulin signaling in striated (cardiac and skeletal) muscle and lamellae may be mediated through different receptors as a result of receptor content, and that transcriptional regulation of downstream signal transduction and glucose transport may also differ between tissues sites during hyperinsulinemia. Archived samples from horses treated with a prolonged insulin infusion or a balanced electrolyte solution were used. All treated horses developed marked hyperinsulinemia and clinical laminitis. Protein expression was compared across tissues for the insulin receptor and insulin-like growth factor 1 receptor (IGF-1R) by immunoblotting. Gene expression of metabolic insulin-signaling markers (insulin receptor substrate 1, Akt2, and glycogen synthase kinase 3 beta [GSK-3β]) and glucose transport (basal glucose transporter 1 and insulin-sensitive glucose transporter 4) was evaluated using real-time reverse transcription polymerase chain reaction. Lamellar tissue contained significantly more IGF-1R protein than skeletal muscle, indicating the potential significance of IGF-1R signaling for this tissue. Gene expression of the selected markers of insulin signaling and glucose transport in skeletal muscle and lamellar tissues was unaffected by prolonged hyperinsulinemia. In contrast, the significant upregulation of Akt2, GSK-3β, GLUT1, and GLUT4 gene expression in cardiac tissue suggested that the prolonged hyperinsulinemia induced an increase in insulin sensitivity and a transcriptional activation of glucose transport. Responses to insulin are tissue-specific, and extrapolation of data across tissue sites is inappropriate. PMID:26773366

  13. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis.

    PubMed

    Chun, Sunwoo; Bamba, Takeshi; Suyama, Tatsuya; Ishijima, Tomoko; Fukusaki, Eiichiro; Abe, Keiko; Nakai, Yuji

    2016-01-01

    A high phosphorus (HP) diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus) or a HP diet (containing 1.2% phosphorus). Gene Ontology analysis of differentially expressed genes (DEGs) revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054) in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty acids

  14. Overexpression of Arabidopsis Ceramide Synthases Differentially Affects Growth, Sphingolipid Metabolism, Programmed Cell Death, and Mycotoxin Resistance.

    PubMed

    Luttgeharm, Kyle D; Chen, Ming; Mehra, Amit; Cahoon, Rebecca E; Markham, Jonathan E; Cahoon, Edgar B

    2015-10-01

    Ceramide synthases catalyze an N-acyltransferase reaction using fatty acyl-coenzyme A (CoA) and long-chain base (LCB) substrates to form the sphingolipid ceramide backbone and are targets for inhibition by the mycotoxin fumonisin B1 (FB1). Arabidopsis (Arabidopsis thaliana) contains three genes encoding ceramide synthases with distinct substrate specificities: LONGEVITY ASSURANCE GENE ONE HOMOLOG1 (LOH1; At3g25540)- and LOH3 (At1g19260)-encoded ceramide synthases use very-long-chain fatty acyl-CoA and trihydroxy LCB substrates, and LOH2 (At3g19260)-encoded ceramide synthase uses palmitoyl-CoA and dihydroxy LCB substrates. In this study, complementary DNAs for each gene were overexpressed to determine the role of individual isoforms in physiology and sphingolipid metabolism. Differences were observed in growth resulting from LOH1 and LOH3 overexpression compared with LOH2 overexpression. LOH1- and LOH3-overexpressing plants had enhanced biomass relative to wild-type plants, due in part to increased cell division, suggesting that enhanced synthesis of very-long-chain fatty acid/trihydroxy LCB ceramides promotes cell division and growth. Conversely, LOH2 overexpression resulted in dwarfing. LOH2 overexpression also resulted in the accumulation of sphingolipids with C16 fatty acid/dihydroxy LCB ceramides, constitutive induction of programmed cell death, and accumulation of salicylic acid, closely mimicking phenotypes observed previously in LCB C-4 hydroxylase mutants defective in trihydroxy LCB synthesis. In addition, LOH2- and LOH3-overexpressing plants acquired increased resistance to FB1, whereas LOH1-overexpressing plants showed no increase in FB1 resistance, compared with wild-type plants, indicating that LOH1 ceramide synthase is most strongly inhibited by FB1. Overall, the findings described here demonstrate that overexpression of Arabidopsis ceramide synthases results in strongly divergent physiological and metabolic phenotypes, some of which have significance

  15. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis

    PubMed Central

    Chun, Sunwoo; Bamba, Takeshi; Suyama, Tatsuya; Ishijima, Tomoko; Fukusaki, Eiichiro; Abe, Keiko; Nakai, Yuji

    2016-01-01

    A high phosphorus (HP) diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus) or a HP diet (containing 1.2% phosphorus). Gene Ontology analysis of differentially expressed genes (DEGs) revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054) in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty acids

  16. Do diethyl phthalate (DEP) and di-2-ethylhexyl phthalate (DEHP) influence the metabolic syndrome parameters? Pilot study.

    PubMed

    Medic Stojanoska, Milica; Milankov, Andrijana; Vukovic, Bojan; Vukcevic, Dejan; Sudji, Jan; Bajkin, Ivana; Curic, Nikola; Icin, Tijana; Kovacev Zavisic, Branka; Milic, Natasa

    2015-08-01

    The study objective was to determine if the healthy participants were exposed to diethyl phthalate (DEP) and di (2-ethylhexyl) phthalate (DEHP) and if this exposure could be linked to the development of metabolic syndrome. The study included 103 healthy volunteers of similar age with normal BMI values, waist circumference, total cholesterol, HDL, LDL, and triglycerides. DEP and DEHP were measured in the morning urine samples to detect monoethyl phthalate (MEP) and mono-2-ethylhexyl phthalate (MEHP). Two phthalate groups and a control group were formed. Both MEP group and control group had similar results. The correlations between MEP and the measured parameters were insignificant. The correlation between the MEHP group and the age was significantly negative, but between the MHEP group and the waist circumference the correlation was significantly positive. Lipids and lipoproteins were within the reference values and equal in both groups. The significant negative correlation was observed only between MEHP and HDL. Our population is exposed to DEP and DEHP. There was only a significant correlation between DEHP and the observed metabolic syndrome components. Its negative impact was higher as the participants were younger.

  17. The Effect of Vegan Protein-Based Diets on Metabolic Parameters, Expressions of Adiponectin and Its Receptors in Wistar Rats

    PubMed Central

    Chen, Jie-Hua; Song, Jia; Chen, Yan; Ding, Qiang; Peng, Anfang; Mao, Limei

    2016-01-01

    Vegan protein-based diet has attracted increasing interest in the prevention of metabolic syndrome (MetS). Meanwhile, adiponectin has become a highly potential molecular target in the prevention of MetS. Our study will identify a potential vegan protein diet for the prevention of MetS using rat models. Thirty-six Wistar rats were randomly assigned into three groups and given diets containing one of the following proteins for 12 weeks: casein (CAS, control diet), soy protein (SOY), and gluten-soy mixed protein (GSM). Changes in metabolic parameters as well as the expressions of adiponectin and its receptors were identified. Compared to CAS diet, both SOY and GSM diets led to decreases in blood total cholesterol and triglycerides, but only GSM diet led to an increase in HDL-cholesterol; no marked difference was observed in blood glucose in all three groups; HOMA-IR was found lower only in SOY group. Among groups, the order of serum adiponectin level was found as GSM > SOY > CAS. Similar order pattern was also observed in expression of adiponectin in adipose tissue and AdipoR1 mRNA in skeletal muscle. Our results suggested for the first time that, besides SOY diet, GSM diet could also be a possible substitute of animal protein to prevent MetS. PMID:27763537

  18. Effects of Levothyroxine Replacement Therapy on Parameters of Metabolic Syndrome and Atherosclerosis in Hypothyroid Patients: A Prospective Pilot Study

    PubMed Central

    Gluvic, Zoran; Sudar, Emina; Tica, Jelena; Jovanovic, Aleksandra; Zafirovic, Sonja; Tomasevic, Ratko; Isenovic, Esma R.

    2015-01-01

    The aim of this study was to investigate the effect of levothyroxine (LT4) replacement therapy during three months on some parameters of metabolic syndrome and atherosclerosis in patients with increased thyroid-stimulating hormone (TSH) level. This study included a group of 30 female patients with TSH level >4 mIU/L and 15 matched healthy controls. Intima media complex thickness (IMCT) and peak systolic flow velocity (PSFV) of superficial femoral artery were determined by Color Doppler scan. In hypothyroid subjects, BMI, SBP, DBP, and TSH were significantly increased versus controls and decreased after LT4 administration. FT4 was significantly lower in hypothyroid subjects compared with controls and significantly higher by treatment. TC, Tg, HDL-C, and LDL-C were similar to controls at baseline but TC and LDL-C were significantly decreased by LH4 treatment. IMCT was significantly increased versus controls at baseline and significantly reduced by treatment. PSFV was similar to controls at baseline and significantly decreased on treatment. In this study, we have demonstrated the effects of LT4 replacement therapy during three months of treatment on correction of risk factors of metabolic syndrome and atherosclerosis. PMID:25821465

  19. Effects of levothyroxine replacement therapy on parameters of metabolic syndrome and atherosclerosis in hypothyroid patients: a prospective pilot study.

    PubMed

    Gluvic, Zoran; Sudar, Emina; Tica, Jelena; Jovanovic, Aleksandra; Zafirovic, Sonja; Tomasevic, Ratko; Isenovic, Esma R

    2015-01-01

    The aim of this study was to investigate the effect of levothyroxine (LT4) replacement therapy during three months on some parameters of metabolic syndrome and atherosclerosis in patients with increased thyroid-stimulating hormone (TSH) level. This study included a group of 30 female patients with TSH level >4 mIU/L and 15 matched healthy controls. Intima media complex thickness (IMCT) and peak systolic flow velocity (PSFV) of superficial femoral artery were determined by Color Doppler scan. In hypothyroid subjects, BMI, SBP, DBP, and TSH were significantly increased versus controls and decreased after LT4 administration. FT4 was significantly lower in hypothyroid subjects compared with controls and significantly higher by treatment. TC, Tg, HDL-C, and LDL-C were similar to controls at baseline but TC and LDL-C were significantly decreased by LH4 treatment. IMCT was significantly increased versus controls at baseline and significantly reduced by treatment. PSFV was similar to controls at baseline and significantly decreased on treatment. In this study, we have demonstrated the effects of LT4 replacement therapy during three months of treatment on correction of risk factors of metabolic syndrome and atherosclerosis.

  20. Do fattening process and biological parameters affect the accumulation of metals in Atlantic bluefin tuna?

    PubMed

    Milatou, Niki; Dassenakis, Manos; Megalofonou, Persefoni

    2015-01-01

    The objective of this study was to determine the current levels of heavy metals and trace elements in Atlantic bluefin tuna muscle tissues and how they are influenced by the fattening process and various life history parameters to ascertain whether the concentrations in muscle tissue exceed the maximum levels defined by the European Commission Decision and to evaluate the health risk posed by fish consumption. A total of 20 bluefin tuna reared in sea cages, ranging from 160 to 295 cm in length and from 80 to 540 kg in weight, were sampled from a bluefin tuna farm in the Ionian Sea. The condition factor K of each specimen was calculated and their age was estimated. Heavy metal and trace element (Hg, Zn, Fe and Cu) contents were determined in muscle tissue using cold vapour atomic absorption spectrometry and flame and graphite furnace atomic absorption spectrometry. The total Hg concentrations ranged from 0.28 to 1.28 mg kg(-1) w/w, Zn from 5.81 to 76.37 mg kg(-1) w/w, Fe from 12.14 to 39.58 mg kg(-1) w/w, and Cu from 0.36 to 0.94 mg kg(-1) w/w. Only 5% of the muscle samples of tuna contained Hg above the maximum level laid down by the European Commission Decision. Moreover, 15% of the muscle samples contained Zn above the maximum level, while Fe and Cu concentrations were within the acceptable tolerable guideline values. The reared bluefin tuna had lower concentrations of Hg than the wild ones from the Mediterranean Sea. Hg and Fe concentrations showed a positive relationship with size and age of bluefin tuna, whereas negative relationships were found for the concentrations of Zn and Cu. The estimated dietary intake values of the analysed metals were mostly below the derived guidelines.

  1. Developmental methoxychlor exposure affects multiple reproductive parameters and ovarian folliculogenesis and gene expression in adult rats.

    PubMed

    Armenti, AnnMarie E; Zama, Aparna Mahakali; Passantino, Lisa; Uzumcu, Mehmet

    2008-12-01

    Methoxychlor (MXC) is an organochlorine pesticide with estrogenic, anti-estrogenic, and anti-androgenic properties. To investigate whether transient developmental exposure to MXC could cause adult ovarian dysfunction, we exposed Fischer rats to 20 microg/kg/day (low dose; environmentally relevant dose) or 100 mg/kg/day (high dose) MXC between 19 days post coitum and postnatal day 7. Multiple reproductive parameters, serum hormone levels, and ovarian morphology and molecular markers were examined from prepubertal through adult stages. High dose MXC accelerated pubertal onset and first estrus, reduced litter size, and increased irregular cyclicity (P<0.05). MXC reduced superovulatory response to exogenous gonadotropins in prepubertal females (P<0.05). Rats exposed to high dose MXC had increasing irregular estrous cyclicity beginning at 4 months of age, with all animals showing abnormal cycles by 6 months. High dose MXC reduced serum progesterone, but increased luteinizing hormone (LH). Follicular composition analysis revealed an increase in the percentage of preantral and early antral follicles and a reduction in the percentage of corpora lutea in high dose MXC-treated ovaries (P<0.05). Immunohistochemical staining and quantification of the staining intensity showed that estrogen receptor beta was reduced by high dose MXC while anti-Mullerian hormone was upregulated by both low- and high dose MXC in preantral and early antral follicles (P<0.05). High dose MXC significantly reduced LH receptor expression in large antral follicles (P<0.01), and down-regulated cytochrome P450 side-chain cleavage. These results demonstrated that developmental MXC exposure results in reduced ovulation and fertility and premature aging, possibly by altering ovarian gene expression and folliculogenesis.

  2. Developmental methoxychlor exposure affects multiple reproductive parameters and ovarian folliculogenesis and gene expression in adult rats

    SciTech Connect

    Armenti, AnnMarie E.; Zama, Aparna Mahakali; Passantino, Lisa; Uzumcu, Mehmet

    2008-12-01

    Methoxychlor (MXC) is an organochlorine pesticide with estrogenic, anti-estrogenic, and anti-androgenic properties. To investigate whether transient developmental exposure to MXC could cause adult ovarian dysfunction, we exposed Fischer rats to 20 {mu}g/kg/day (low dose; environmentally relevant dose) or 100 mg/kg/day (high dose) MXC between 19 days post coitum and postnatal day 7. Multiple reproductive parameters, serum hormone levels, and ovarian morphology and molecular markers were examined from prepubertal through adult stages. High dose MXC accelerated pubertal onset and first estrus, reduced litter size, and increased irregular cyclicity (P < 0.05). MXC reduced superovulatory response to exogenous gonadotropins in prepubertal females (P < 0.05). Rats exposed to high dose MXC had increasing irregular estrous cyclicity beginning at 4 months of age, with all animals showing abnormal cycles by 6 months. High dose MXC reduced serum progesterone, but increased luteinizing hormone (LH). Follicular composition analysis revealed an increase in the percentage of preantral and early antral follicles and a reduction in the percentage of corpora lutea in high dose MXC-treated ovaries (P < 0.05). Immunohistochemical staining and quantification of the staining intensity showed that estrogen receptor {beta} was reduced by high dose MXC while anti-Mullerian hormone was upregulated by both low- and high dose MXC in preantral and early antral follicles (P < 0.05). High dose MXC significantly reduced LH receptor expression in large antral follicles (P < 0.01), and down-regulated cytochrome P450 side-chain cleavage. These results demonstrated that developmental MXC exposure results in reduced ovulation and fertility and premature aging, possibly by altering ovarian gene expression and folliculogenesis.

  3. How Different Genetically Manipulated Brassica Genotypes Affect Life Table Parameters of Plutella xylostella (Lepidoptera: Plutellidae).

    PubMed

    Nikooei, Mehrnoosh; Fathipour, Yaghoub; Jalali Javaran, Mokhtar; Soufbaf, Mahmoud

    2015-04-01

    The fitness of Plutella xylostella L. on different genetically manipulated Brassica plants, including canola's progenitor (Brassica rapa L.), two cultivated canola cultivars (Opera and RGS003), one hybrid (Hyula401), one gamma-ray mutant-RGS003, and one transgenic (PF) genotype was compared using two-sex and female-based life table parameters. All experiments were conducted in a growth chamber at 25±1°C, 65±5% relative humidity, and a photoperiod of 16:8 (L:D) h. There were significant differences in duration of different life stages of P. xylostella on different plant genotypes. The shortest (13.92 d) and longest (24.61 d) total developmental time were on Opera and PF, respectively. The intrinsic rate of increase of P. xylostella ranged between 0.236 (Opera) and 0.071 day(-1) (PF). The highest (60.79 offspring) and lowest (7.88 offspring) net reproductive rates were observed on Opera and PF, respectively. Comparison of intrinsic rate of increase, net reproductive rates, finite rate of increase, mean generation time, fecundity, and survivorship of P. xylostella on the plant genotypes suggested that this pest performed well on cultivars (RGS003 and Opera) and performed poorly on the other manipulated genotypes especially on mutant-RGS003 and PF. Glucosinolate levels were significantly higher in damaged plants than undamaged ones and the lowest and highest concentrations of glucosinolates were found in transgenic genotype and canola's progenitor, respectively. Interestingly, our results showed that performance and fitness of this pest was better on canola's progenitor and cultivated plants, which had high levels of glucosinolate.

  4. How Different Genetically Manipulated Brassica Genotypes Affect Life Table Parameters of Plutella xylostella (Lepidoptera: Plutellidae).

    PubMed

    Nikooei, Mehrnoosh; Fathipour, Yaghoub; Jalali Javaran, Mokhtar; Soufbaf, Mahmoud

    2015-04-01

    The fitness of Plutella xylostella L. on different genetically manipulated Brassica plants, including canola's progenitor (Brassica rapa L.), two cultivated canola cultivars (Opera and RGS003), one hybrid (Hyula401), one gamma-ray mutant-RGS003, and one transgenic (PF) genotype was compared using two-sex and female-based life table parameters. All experiments were conducted in a growth chamber at 25±1°C, 65±5% relative humidity, and a photoperiod of 16:8 (L:D) h. There were significant differences in duration of different life stages of P. xylostella on different plant genotypes. The shortest (13.92 d) and longest (24.61 d) total developmental time were on Opera and PF, respectively. The intrinsic rate of increase of P. xylostella ranged between 0.236 (Opera) and 0.071 day(-1) (PF). The highest (60.79 offspring) and lowest (7.88 offspring) net reproductive rates were observed on Opera and PF, respectively. Comparison of intrinsic rate of increase, net reproductive rates, finite rate of increase, mean generation time, fecundity, and survivorship of P. xylostella on the plant genotypes suggested that this pest performed well on cultivars (RGS003 and Opera) and performed poorly on the other manipulated genotypes especially on mutant-RGS003 and PF. Glucosinolate levels were significantly higher in damaged plants than undamaged ones and the lowest and highest concentrations of glucosinolates were found in transgenic genotype and canola's progenitor, respectively. Interestingly, our results showed that performance and fitness of this pest was better on canola's progenitor and cultivated plants, which had high levels of glucosinolate. PMID:26470162

  5. [Carbon source metabolic diversity of soil microbial community under different climate types in the area affected by Wenchuan earthquake].

    PubMed

    Zhang, Guang-Shuai; Lin, Yong-Ming; Ma, Rui-Feng; Deng, Hao-Jun; Du, Kun; Wu, Cheng-Zhen; Hong, Wei

    2015-02-01

    The MS8.0 Wenchuan earthquake in 2008 led to huge damage to land covers in northwest Sichuan, one of the critical fragile eco-regions in China which can be divided into Semi-arid dry hot climate zone (SDHC) and Subtropical humid monsoon climate zone (SHMC). Using the method of Bilog-ECO-microplate technique, this paper aimed to determine the functional diversity of soil microbial community in the earthquake-affected areas which can be divided into undamaged area (U), recover area (R) and damaged area without recovery (D) under different climate types, in order to provide scientific basis for ecological recovery. The results indicated that the average-well-color-development (AWCD) in undamaged area and recovery area showed SDHC > SHMC, which was contrary to the AWCD in the damaged area without recovery. The AWCD of damaged area without recovery was the lowest in both climate zones. The number of carbon source utilization types of soil microbial in SHMC zone was significantly higher than that in SDHC zone. The carbon source utilization types in both climate zones presented a trend of recover area > undamaged area > damaged area without recovery. The carbon source metabolic diversity characteristic of soil microbial community was significantly different in different climate zones. The diversity index and evenness index both showed a ranking of undamaged area > recover area > damaged area without recovery. In addition, the recovery area had the highest richness index. The soil microbial carbon sources metabolism characteristic was affected by soil nutrient, aboveground vegetation biomass and vegetation coverage to some extent. In conclusion, earthquake and its secondary disasters influenced the carbon source metabolic diversity characteristic of soil microbial community mainly through the change of aboveground vegetation and soil environmental factors.

  6. Atmospheric oxygen level affects growth trajectory, cardiopulmonary allometry and metabolic rate in the American alligator (Alligator mississippiensis)

    PubMed Central

    Owerkowicz, Tomasz; Elsey, Ruth M.; Hicks, James W.

    2009-01-01

    Summary Recent palaeoatmospheric models suggest large-scale fluctuations in ambient oxygen level over the past 550 million years. To better understand how global hypoxia and hyperoxia might have affected the growth and physiology of contemporary vertebrates, we incubated eggs and raised hatchlings of the American alligator. Crocodilians are one of few vertebrate taxa that survived these global changes with distinctly conservative morphology. We maintained animals at 30°C under chronic hypoxia (12% O2), normoxia (21% O2) or hyperoxia (30% O2). At hatching, hypoxic animals were significantly smaller than their normoxic and hyperoxic siblings. Over the course of 3 months, post-hatching growth was fastest under hyperoxia and slowest under hypoxia. Hypoxia, but not hyperoxia, caused distinct scaling of major visceral organs–reduction of liver mass, enlargement of the heart and accelerated growth of lungs. When absorptive and post-absorptive metabolic rates were measured in juvenile alligators, the increase in oxygen consumption rate due to digestion/absorption of food was greatest in hyperoxic alligators and smallest in hypoxic ones. Hyperoxic alligators exhibited the lowest breathing rate and highest oxygen consumption per breath. We suggest that, despite compensatory cardiopulmonary remodelling, growth of hypoxic alligators is constrained by low atmospheric oxygen supply, which may limit their food utilisation capacity. Conversely, the combination of elevated metabolism and low cost of breathing in hyperoxic alligators allows for a greater proportion of metabolised energy to be available for growth. This suggests that growth and metabolic patterns of extinct vertebrates would have been significantly affected by changes in the atmospheric oxygen level. PMID:19376944

  7. Long-term feeding a plant-based diet devoid of marine ingredients strongly affects certain key metabolic enzymes in the rainbow trout liver.

    PubMed

    Véron, Vincent; Panserat, Stéphane; Le Boucher, Richard; Labbé, Laurent; Quillet, Edwige; Dupont-Nivet, Mathilde; Médale, Françoise

    2016-04-01

    Incorporation of a plant blend in the diet can affect growth parameters and metabolism in carnivorous fish. We studied for the first time the long-term (1 year) metabolic response of rainbow trout fed from first feeding with a plant-based diet totally devoid of marine ingredients. Hepatic enzymes were analyzed at enzymatic and molecular levels, at 3, 8 and 24 h after the last meal to study both the short-term effects of the last meal and long-term effects of the diet. The results were compared with those of fish fed a control diet of fish meal and fish oil. Growth, feed intake, feed efficiency and protein retention were lower in the group fed the plant-based diet. Glucokinase and pyruvate kinase activity were lower in the livers of trout fed the plant-based diet which the proportion of starch was lower than in the control diet. Glutamate dehydrogenase was induced by the plant-based diet, suggesting an imbalance of amino acids and a possible link with the lower protein retention observed. Gene expression of delta 6 desaturase was higher in fish fed the plant-based diet, probably linked to a high dietary level of linolenic acid and the absence of long-chain polyunsaturated fatty acids in vegetable oils. Hydroxymethylglutaryl-CoA synthase expression was also induced by plant-based diet because of the low rate of cholesterol in the diet. Changes in regulation mechanisms already identified through short-term nutritional experiments (<12 weeks) suggest that metabolic responses are implemented at short term and remain in the long term. PMID:26746847

  8. Effects of clomazone herbicide on hematological and some parameters of protein and carbohydrate metabolism of silver catfish Rhamdia quelen.

    PubMed

    Crestani, Márcia; Menezes, Charlene; Glusczak, Lissandra; Dos Santos Miron, Denise; Lazzari, Rafael; Duarte, Marta F; Morsch, Vera Maria; Pippi, Amy Lee; Vieira, Vânia Pimentel

    2006-09-01

    The effects of clomazone (0.5 and 1.0 mg/L) according to nominal concentrations used in paddy rice fields (0.4-0.7 mg/L) on protein and carbohydrate metabolism and haematological parameters were evaluated in silver catfish (Rhamdia quelen) after 12, 24, 48, 96 and 192 h of exposure with a recovery period of 96 and 192 h. Liver glycogen increased significantly (P<0.05) in all periods and concentrations tested. The maximum glycogen increase reaches 250% after 12h of exposure. Muscle glycogen reduced significantly after 24, 48, 96 and 192 h for both clomazone concentrations (P<0.05). Significantly elevated plasma glucose values (P<0.05) and variation in glucose in the liver and muscle of exposed fish were observed. Muscle lactate levels increased after 12, 24 and 48 h of clomazone exposure (22-67%), but reduced in the liver (P<0.05). Protein levels were enhanced in the liver and white muscle, except at 96 and 192 h of exposure, whereas it increased in the plasma in the period from 48 to 96 h (P<0.05). Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were significantly elevated in the plasma (P<0.05). In the liver, ALT increased after 24 h, while AST activity was enhanced only after 12 h of exposure. Hematocrit contents were reduced after 96 and 192 h of exposure. Most of the metabolic disorders observed did not persist after the recovery period, except for the liver AST and ALT activity. Clomazone concentrations used in this study appear safe to fish, Rhamdia quelen, because overall parameters can be recovered after 96 and 192 h in clean water. ALT and AST activity may be an early biomarker of clomazone toxicity.

  9. Value of volume-based metabolic parameters for predicting survival in breast cancer patients treated with neoadjuvant chemotherapy

    PubMed Central

    Kim, Tae Hee; Yoon, Joon-Kee; Kang, Doo Kyoung; Kang, Seok Yun; Jung, Yong Sik; Han, Sehwan; Kim, Ji Young; Yim, Hyunee; An, Young-Sil

    2016-01-01

    Abstract We evaluated the role of metabolic parameters in the prediction of disease recurrence in operable invasive ductal breast cancer patients treated with neoadjuvant chemotherapy (NAC). We retrospectively evaluated 139 female patients (mean age, 46.5 years; range: 27–72 years) with invasive ductal breast cancer, treated with NAC followed by surgery. All patients underwent 18F-fluorodeoxyglucose positron emission tomography/computed tomography and magnetic resonance imaging at baseline and after completion of NAC before surgery. The prognostic significance of clinicopathological and imaging parameters for disease-free survival (DFS) was evaluated. Recurrence of cancer was detected in 31 of 139 patients (22.3%; follow-up period: 6–82 months). Baseline maximum standardized uptake value, metabolic tumor volume (MTV), and reduction rate (RR) of MTV after NAC were significant independent prognostic factors for DFS in a multivariate analysis (all P < 0.05). The survival functions differed significantly between low and high histological grades (P < 0.001). DFS of the patients with high baseline MTV (≥5.23 cm3) was significantly poorer than that of low MTV patients (P = 0.019). The survival function of the group with low RR of MTV after NAC (≤90.72%) was poorer than the higher RR of the MTV group (P = 0.008). Our findings suggest that breast cancer patients who have a high histological grade, large baseline MTV, or a small RR of MTV after NAC should receive great attention to check for possible recurrence. PMID:27741099

  10. Prepartal dietary energy level affects peripartal bovine blood neutrophil metabolic, antioxidant, and inflammatory gene expression.

    PubMed

    Zhou, Z; Bu, D P; Vailati Riboni, M; Khan, M J; Graugnard, D E; Luo, J; Cardoso, F C; Loor, J J

    2015-08-01

    During the dry period, cows can easily overconsume higher-grain diets, a scenario that could impair immune function during the peripartal period. Objectives were to investigate the effects of energy overfeeding on expression profile of genes associated with inflammation, lipid metabolism, and neutrophil function, in 12 multiparous Holstein cows (n=6/dietary group) fed control [CON, 1.34 Mcal/kg of dry matter (DM)] or higher-energy (HE, 1.62 Mcal/kg of DM) diets during the last 45 d of pregnancy. Blood was collected to evaluate 43 genes in polymorphonuclear neutrophil leukocytes (PMNL) isolated at -14, 7, and 14 d relative to parturition. We detected greater expression of inflammatory-related cytokines (IL1B, STAT3, NFKB1) and eicosanoid synthesis (ALOX5AP and PLA2G4A) in HE cows than in CON cows. Around parturition, all cows had a close balance in mRNA expression of the pro-inflammatory IL1B and the anti-inflammatory IL10, with greater expression of both in cows fed HE than CON. The expression of CCL2, LEPR, TLR4, IL6, and LTC4S was undetectable. Cows in the HE group had greater expression of genes involved in PMNL adhesion, motility, migration, and phagocytosis, which was similar to expression of genes related to the pro-inflammatory cytokine. This response suggests that HE cows experienced a chronic state of inflammation. The greater expression of G6PD in HE cows could have been associated with the greater plasma insulin, which would have diverted glucose to other tissues. Cows fed the HE diet also had greater expression of transcription factors involved in metabolism of long-chain fatty acids (PPARD, RXRA), suggesting that immune cells might be predisposed to use endogenous ligands such as nonesterified fatty acids available in the circulation when glucose is in high demand for milk synthesis. The lower overall expression of SLC2A1 postpartum than prepartum supports this suggestion. Targeting interleukin-1β signaling might be of value in terms of controlling

  11. Short term low-calorie diet improves insulin sensitivity and metabolic parameters in obese women.

    PubMed

    Bôas Huguenin, Grazielle Vilas; Kimi Uehara, Sofia; Nogueira Netto, José Firmino; Gaspar de Moura, Egberto; Rosa, Glorimar; da Fonseca Passos, Magna Cottini

    2014-07-01

    Obesity and insulin resistance are associated with an increase of cardiovascular risk factors, including adipocytokines. The aim of this study was to investigate the effect of low-calorie diet on serum lipids, adipokines, insulin resistance and body composition in obese women. It was a clinical trial with class I obese women aged 30-45 years submitted to hypocaloric diet for 90 days. Dietary intake, anthropometric parameters, body composition, serum lipids, glucose, insulin, leptin, adiponectin, HOMA-IR and QUICKI indexes were evaluated at the baseline, 30, 60 and 90 days. There was 30% significant decrease in energy intake, and also decrease in body weight, body mass index and waist circumference (p < 0.01) throughout the treatment period. Despite the amount of lean body mass (kg) reduced in average, it was observed that lean body mass (%) had increased (p < 0.01) and that the amount of fat body mass (kg) had decreased significantly in the third month (p < 0.05). Systolic blood pressure reduced up to -5mmHg (p < 0.05) after 90 days. Was observed a decrease (p < 0.05) on serum insulin and HOMA-IR until the 60th day, while the serum adiponectin increased (p < 0.01) during treatment. Corroborating with the reduction of fat body mass and weight, serum leptin also reduced (p < 0.01). These results suggest that the short-term low-calorie diet reduces total body fat, mainly found in the abdominal region, and efficiently improve insulin sensitivity decreasing cardiovascular risk in obese women.

  12. [Metabolic Syndrome and Bipolar Affective Disorder: A Review of the Literature].

    PubMed

    Jaramillo, Carlos López; Mejía, Adelaida Castaño; Velásquez, Alicia Henao; Restrepo Palacio, Tomás Felipe; Zuluaga, Julieta Osorio

    2013-09-01

    Bipolar disorder (BD) is a chronic psychiatric disorder that is found within the first ten causes of disability and premature mortality. The metabolic syndrome (MS) is a group of risk factors (RF) that predispose to cardiovascular disease (CV), diabetes and early mortality. Both diseases generate high costs to the health system. Major studies have shown that MS has a higher prevalence in patients with mental disorders compared to the general population. The incidence of MS in BD is multifactorial, and due to iatrogenic, genetic, economic, psychological, and behavioral causes related to the health system. The most common RF found is these patients was an increased abdominal circumference, and it was found that the risk of suffering this disease was greater in women and Hispanic patients. As regards the increase in RF to develop a CV in patients with BD, there have been several explanations based on the risky behavior of patients with mental illness, included tobacco abuse, physical inactivity and high calorie diets. An additional explanation described in literature is the view of BD as a multisystemic inflammatory illness, supported by the explanation that inflammation is a crucial element in atherosclerosis, endothelial dysfunction, platelet rupture, and thrombosis. The pathophysiology of MS and BD include factors such as adrenal, thyroid and sympathetic nervous system dysfunction, as well as poor lifestyle and medication common in these patients. This article attempts to give the reader an overall view of the information published in literature to date, as regards the association between BD and MS. PMID:26572949

  13. Developmental accumulation of inorganic polyphosphate affects germination and energetic metabolism in Dictyostelium discoideum

    PubMed Central

    Livermore, Thomas Miles; Chubb, Jonathan Robert; Saiardi, Adolfo

    2016-01-01

    Inorganic polyphosphate (polyP) is composed of linear chains of phosphate groups linked by high-energy phosphoanhydride bonds. However, this simple, ubiquitous molecule remains poorly understood. The use of nonstandardized analytical methods has contributed to this lack of clarity. By using improved polyacrylamide gel electrophoresis we were able to visualize polyP extracted from Dictyostelium discoideum. We established that polyP is undetectable in cells lacking the polyphosphate kinase (DdPpk1). Generation of this ppk1 null strain revealed that polyP is important for the general fitness of the amoebae with the mutant strain displaying a substantial growth defect. We discovered an unprecedented accumulation of polyP during the developmental program, with polyP increasing more than 100-fold. The failure of ppk1 spores to accumulate polyP results in a germination defect. These phenotypes are underpinned by the ability of polyP to regulate basic energetic metabolism, demonstrated by a 2.5-fold decrease in the level of ATP in vegetative ppk1. Finally, the lack of polyP during the development of ppk1 mutant cells is partially offset by an increase of both ATP and inositol pyrophosphates, evidence for a model in which there is a functional interplay between inositol pyrophosphates, ATP, and polyP. PMID:26755590

  14. Evaluation of energy metabolism and calcium homeostasis in cells affected by Shwachman-Diamond syndrome.

    PubMed

    Ravera, Silvia; Dufour, Carlo; Cesaro, Simone; Bottega, Roberta; Faleschini, Michela; Cuccarolo, Paola; Corsolini, Fabio; Usai, Cesare; Columbaro, Marta; Cipolli, Marco; Savoia, Anna; Degan, Paolo; Cappelli, Enrico

    2016-01-01

    Isomorphic mutation of the SBDS gene causes Shwachman-Diamond syndrome (SDS). SDS is a rare genetic bone marrow failure and cancer predisposition syndrome. SDS cells have ribosome biogenesis and their protein synthesis altered, which are two high-energy consuming cellular processes. The reported changes in reactive oxygen species production, endoplasmic reticulum stress response and reduced mitochondrial functionality suggest an energy production defect in SDS cells. In our work, we have demonstrated that SDS cells display a Complex IV activity impairment, which causes an oxidative phosphorylation metabolism defect, with a consequent decrease in ATP production. These data were confirmed by an increased glycolytic rate, which compensated for the energetic stress. Moreover, the signalling pathways involved in glycolysis activation also appeared more activated; i.e. we reported AMP-activated protein kinase hyper-phosphorylation. Notably, we also observed an increase in a mammalian target of rapamycin phosphorylation and high intracellular calcium concentration levels ([Ca(2+)]i), which probably represent new biochemical equilibrium modulation in SDS cells. Finally, the SDS cell response to leucine (Leu) was investigated, suggesting its possible use as a therapeutic adjuvant to be tested in clinical trials. PMID:27146429

  15. Evaluation of energy metabolism and calcium homeostasis in cells affected by Shwachman-Diamond syndrome

    PubMed Central

    Ravera, Silvia; Dufour, Carlo; Cesaro, Simone; Bottega, Roberta; Faleschini, Michela; Cuccarolo, Paola; Corsolini, Fabio; Usai, Cesare; Columbaro, Marta; Cipolli, Marco; Savoia, Anna; Degan, Paolo; Cappelli, Enrico

    2016-01-01

    Isomorphic mutation of the SBDS gene causes Shwachman-Diamond syndrome (SDS). SDS is a rare genetic bone marrow failure and cancer predisposition syndrome. SDS cells have ribosome biogenesis and their protein synthesis altered, which are two high-energy consuming cellular processes. The reported changes in reactive oxygen species production, endoplasmic reticulum stress response and reduced mitochondrial functionality suggest an energy production defect in SDS cells. In our work, we have demonstrated that SDS cells display a Complex IV activity impairment, which causes an oxidative phosphorylation metabolism defect, with a consequent decrease in ATP production. These data were confirmed by an increased glycolytic rate, which compensated for the energetic stress. Moreover, the signalling pathways involved in glycolysis activation also appeared more activated; i.e. we reported AMP-activated protein kinase hyper-phosphorylation. Notably, we also observed an increase in a mammalian target of rapamycin phosphorylation and high intracellular calcium concentration levels ([Ca2+]i), which probably represent new biochemical equilibrium modulation in SDS cells. Finally, the SDS cell response to leucine (Leu) was investigated, suggesting its possible use as a therapeutic adjuvant to be tested in clinical trials. PMID:27146429

  16. Early life stress affects cerebral glucose metabolism in adult rhesus monkeys (Macaca mulatta).

    PubMed

    Parr, Lisa A; Boudreau, Matthew; Hecht, Erin; Winslow, James T; Nemeroff, Charles B; Sánchez, Mar M

    2012-01-01

    Early life stress (ELS) is a risk factor for anxiety, mood disorders and alterations in stress responses. Less is known about the long-term neurobiological impact of ELS. We used [(18)F]-fluorodeoxyglucose Positron Emission Tomography (FDG-PET) to assess neural responses to a moderate stress test in adult monkeys that experienced ELS as infants. Both groups of monkeys showed hypothalamic-pituitary-adrenal (HPA) axis stress-induced activations and cardiac arousal in response to the stressor. A whole brain analysis detected significantly greater regional cerebral glucose metabolism (rCGM) in superior temporal sulcus, putamen, thalamus, and inferotemporal cortex of ELS animals compared to controls. Region of interest (ROI) analyses performed in areas identified as vulnerable to ELS showed greater activity in the orbitofrontal cortex of ELS compared to control monkeys, but greater hippocampal activity in the control compared to ELS monkeys. Together, these results suggest hyperactivity in emotional and sensory processing regions of adult monkeys with ELS, and greater activity in stress-regulatory areas in the controls. Despite these neural responses, no group differences were detected in neuroendocrine, autonomic or behavioral responses, except for a trend towards increased stillness in the ELS monkeys. Together, these data suggest hypervigilance in the ELS monkeys in the absence of immediate danger. PMID:22682736

  17. Methyl jasmonate affects phenolic metabolism and gene expression in blueberry (Vaccinium corymbosum).

    PubMed

    Cocetta, Giacomo; Rossoni, Mara; Gardana, Claudio; Mignani, Ilaria; Ferrante, Antonio; Spinardi, Anna

    2015-02-01

    Blueberry (Vaccinium corymbosum) is a fruit very much appreciated by consumers for its antioxidant potential and health-promoting traits. Its beneficial potential properties are mainly due to a high content of anthocyanins and their amount can change after elicitation with methyl jasmonate. The aim of this work is to evaluate the changes in expression of several genes, accumulation of phenolic compounds and alterations in antioxidant potential in two different blueberry cultivars ('Duke' and 'Blueray') in response to methyl jasmonate (0.1 mM). Results showed that 9 h after treatment, the expression of phenylalanine ammonium lyase, chalcone synthase and anthocyanidin synthase genes was stimulated more in the 'Blueray' variety. Among the phenols measured an increase was recorded also for epicatechin and anthocyanin concentrations. 'Duke' is a richer sourche of anthocyanins compared to 'Blueray', treatment with methyl jasmonate promoted in 'Blueray' an increase in pigments as well as in the antioxidant potential, especially in fully ripe berries, but treated 'Duke' berries had greater levels, which were not induced by methyl jasmonate treatment. In conclusion, methyl jasmonate was, in some cases, an effective elicitor of phenolic metabolism and gene expression in blueberry, though with different intensity between cultivars.

  18. Theoretical, numerical and experimental study of geometrical parameters that affect anisotropy measurements in polarization-resolved SHG microscopy.

    PubMed

    Teulon, Claire; Gusachenko, Ivan; Latour, Gaël; Schanne-Klein, Marie-Claire

    2015-04-01

    Polarization-resolved second harmonic generation (P-SHG) microscopy is an efficient imaging modality for in situ observation of biopolymers structure in tissues, providing information about their mean in-plane orientation and their molecular structure and 3D distribution. Nevertheless, P-SHG signal build-up in a strongly focused regime is not throroughly understood yet, preventing reliable and reproducible measurements. In this study, theoretical analysis, vectorial numerical simulations and experiments are performed to understand how geometrical parameters, such as excitation and collection numerical apertures and detection direction, affect P-SHG imaging in homogeneous collagen tissues. A good agreement is obtained in tendon and cornea, showing that detection geometry significantly affects the SHG anisotropy measurements, but not the measurements of collagen in-plane orientation. PMID:25968762

  19. Isolation of a Genomic Region Affecting Most Components of Metabolic Syndrome in a Chromosome-16 Congenic Rat Model

    PubMed Central

    Šedová, Lucie; Pravenec, Michal; Křenová, Drahomíra; Kazdová, Ludmila; Zídek, Václav; Krupková, Michaela; Liška, František; Křen, Vladimír; Šeda, Ondřej

    2016-01-01

    Metabolic syndrome is a highly prevalent human disease with substantial genomic and environmental components. Previous studies indicate the presence of significant genetic determinants of several features of metabolic syndrome on rat chromosome 16 (RNO16) and the syntenic regions of human genome. We derived the SHR.BN16 congenic strain by introgression of a limited RNO16 region from the Brown Norway congenic strain (BN-Lx) into the genomic background of the spontaneously hypertensive rat (SHR) strain. We compared the morphometric, metabolic, and hemodynamic profiles of adult male SHR and SHR.BN16 rats. We also compared in silico the DNA sequences for the differential segment in the BN-Lx and SHR parental strains. SHR.BN16 congenic rats had significantly lower weight, decreased concentrations of total triglycerides and cholesterol, and improved glucose tolerance compared with SHR rats. The concentrations of insulin, free fatty acids, and adiponectin were comparable between the two strains. SHR.BN16 rats had significantly lower systolic (18–28 mmHg difference) and diastolic (10–15 mmHg difference) blood pressure throughout the experiment (repeated-measures ANOVA, P < 0.001). The differential segment spans approximately 22 Mb of the telomeric part of the short arm of RNO16. The in silico analyses revealed over 1200 DNA variants between the BN-Lx and SHR genomes in the SHR.BN16 differential segment, 44 of which lead to missense mutations, and only eight of which (in Asb14, Il17rd, Itih1, Syt15, Ercc6, RGD1564958, Tmem161a, and Gatad2a genes) are predicted to be damaging to the protein product. Furthermore, a number of genes within the RNO16 differential segment associated with metabolic syndrome components in human studies showed polymorphisms between SHR and BN-Lx (including Lpl, Nrg3, Pbx4, Cilp2, and Stab1). Our novel congenic rat model demonstrates that a limited genomic region on RNO16 in the SHR significantly affects many of the features of metabolic syndrome

  20. Isolation of a Genomic Region Affecting Most Components of Metabolic Syndrome in a Chromosome-16 Congenic Rat Model.

    PubMed

    Šedová, Lucie; Pravenec, Michal; Křenová, Drahomíra; Kazdová, Ludmila; Zídek, Václav; Krupková, Michaela; Liška, František; Křen, Vladimír; Šeda, Ondřej

    2016-01-01

    Metabolic syndrome is a highly prevalent human disease with substantial genomic and environmental components. Previous studies indicate the presence of significant genetic determinants of several features of metabolic syndrome on rat chromosome 16 (RNO16) and the syntenic regions of human genome. We derived the SHR.BN16 congenic strain by introgression of a limited RNO16 region from the Brown Norway congenic strain (BN-Lx) into the genomic background of the spontaneously hypertensive rat (SHR) strain. We compared the morphometric, metabolic, and hemodynamic profiles of adult male SHR and SHR.BN16 rats. We also compared in silico the DNA sequences for the differential segment in the BN-Lx and SHR parental strains. SHR.BN16 congenic rats had significantly lower weight, decreased concentrations of total triglycerides and cholesterol, and improved glucose tolerance compared with SHR rats. The concentrations of insulin, free fatty acids, and adiponectin were comparable between the two strains. SHR.BN16 rats had significantly lower systolic (18-28 mmHg difference) and diastolic (10-15 mmHg difference) blood pressure throughout the experiment (repeated-measures ANOVA, P < 0.001). The differential segment spans approximately 22 Mb of the telomeric part of the short arm of RNO16. The in silico analyses revealed over 1200 DNA variants between the BN-Lx and SHR genomes in the SHR.BN16 differential segment, 44 of which lead to missense mutations, and only eight of which (in Asb14, Il17rd, Itih1, Syt15, Ercc6, RGD1564958, Tmem161a, and Gatad2a genes) are predicted to be damaging to the protein product. Furthermore, a number of genes within the RNO16 differential segment associated with metabolic syndrome components in human studies showed polymorphisms between SHR and BN-Lx (including Lpl, Nrg3, Pbx4, Cilp2, and Stab1). Our novel congenic rat model demonstrates that a limited genomic region on RNO16 in the SHR significantly affects many of the features of metabolic syndrome.

  1. Apple Peel Supplemented Diet Reduces Parameters of Metabolic Syndrome and Atherogenic Progression in ApoE-/- Mice.

    PubMed

    Gonzalez, Jaime; Donoso, Wendy; Sandoval, Nathalie; Reyes, María; Gonzalez, Priscila; Gajardo, Monica; Morales, Erik; Neira, Amalia; Razmilic, Iván; Yuri, José A; Moore-Carrasco, Rodrigo

    2015-01-01

    Cardiovascular Diseases (CVD) represent about 30% of all causes of death worldwide. The development of CVD is related in many cases with the previous existence of metabolic syndrome (MS). It is known that apple consumption has a cardiovascular protecting effect, containing phenolic compounds with antioxidant effect, which are concentrated in the fruit peel. The objective of this study was to test the effect of apple peel consumption in a murine model of MS and apoE-/- mice. Apple supplemented diets reduced the biochemical parameters (glycaemia, total cholesterol, HDL-cholesterol, LDL-cholesterol, ureic nitrogen, triglycerides, insulin, and asymmetric dimethylarginine (ADMA)) of MS model in CF1 mice significantly. The model apoE-/- mouse was used to evaluate the capacity of the apple peel to revert the progression of the atherogenesis. FD with HAP reverts cholesterol significantly and slows down the progression of the plate diminishing the cholesterol accumulation area. With these results, it can be concluded that the consumption of apple peel reduces several MS parameters and the atherogenic progression in mice. PMID:26075004

  2. Apple Peel Supplemented Diet Reduces Parameters of Metabolic Syndrome and Atherogenic Progression in ApoE−/− Mice

    PubMed Central

    Gonzalez, Jaime; Donoso, Wendy; Sandoval, Nathalie; Reyes, María; Gonzalez, Priscila; Gajardo, Monica; Morales, Erik; Neira, Amalia; Razmilic, Iván; Yuri, José A.

    2015-01-01

    Cardiovascular Diseases (CVD) represent about 30% of all causes of death worldwide. The development of CVD is related in many cases with the previous existence of metabolic syndrome (MS). It is known that apple consumption has a cardiovascular protecting effect, containing phenolic compounds with antioxidant effect, which are concentrated in the fruit peel. The objective of this study was to test the effect of apple peel consumption in a murine model of MS and apoE−/− mice. Apple supplemented diets reduced the biochemical parameters (glycaemia, total cholesterol, HDL-cholesterol, LDL-cholesterol, ureic nitrogen, triglycerides, insulin, and asymmetric dimethylarginine (ADMA)) of MS model in CF1 mice significantly. The model apoE−/− mouse was used to evaluate the capacity of the apple peel to revert the progression of the atherogenesis. FD with HAP reverts cholesterol significantly and slows down the progression of the plate diminishing the cholesterol accumulation area. With these results, it can be concluded that the consumption of apple peel reduces several MS parameters and the atherogenic progression in mice. PMID:26075004

  3. Experimental study on effect of hydroalcoholic extract of Emblica officinalis fruits on glucose homeostasis and metabolic parameters.

    PubMed

    Patel, Snehal S; Goyal, Ramesh K; Shah, Rajendra S; Tirgar, Pravin R; Jadav, Pinakin D

    2013-10-01

    Polyphenols from natural source are potential therapeutics that act alone or supplement anti-diabetic drugs in the prevention and treatment of diabetes. The present investigation was undertaken to study the effect of hydroalcoholic extract (HE) of fruits of Emblica officinalis on type 1 diabetic rats. Diabetes was induced by streptozotocin (STZ) (45 mg/kg i.v.). HE (100 mg/kg, p.o.) was administered for 4 weeks and at the end of treatment, blood samples were collected and analyzed for various biochemical parameters. STZ produced a diabetic state exhibiting all the cardinal symptoms such as loss of body weight, polydipsia, polyuria, glucosuria, polyphagia, hypoinsulinemia, and hyperglycemia associated with hypercholesterolemia and hypertriglyceridemia. Treatment with HE prevented cardinal symptoms and caused significant decrease in fasting serum glucose, AUCglucose, cholesterol, triglyceride, low-density lipoprotein (LDL) and very LDL in diabetic rats. However, insulin, AUCinsulin, and serum high-density lipoprotein level were not significantly altered by treatment. Treatment also reduced lipid peroxidation and increased anti-oxidant parameters in the liver homogenates of diabetic rats. Polyphenol enriched fraction of HE significantly improved disarranged carbohydrate and lipid metabolism of chemically induced diabetes in rats. The mechanism of its anti-diabetic activity appears to be either improvement in peripheral glucose utilization, increased insulin sensitivity, or anti-oxidant property. PMID:24696584

  4. A Small Protein Associated with Fungal Energy Metabolism Affects the Virulence of Cryptococcus neoformans in Mammals.

    PubMed

    McClelland, Erin E; Ramagopal, Udupi A; Rivera, Johanna; Cox, James; Nakouzi, Antonio; Prabu, Moses M; Almo, Steven C; Casadevall, Arturo

    2016-09-01

    The pathogenic yeast Cryptococcus neoformans causes cryptococcosis, a life-threatening fungal disease. C. neoformans has multiple virulence mechanisms that are non-host specific, induce damage and interfere with immune clearance. Microarray analysis of C. neoformans strains serially passaged in mice associated a small gene (CNAG_02591) with virulence. This gene, hereafter identified as HVA1 (hypervirulence-associated protein 1), encodes a protein that has homologs of unknown function in plant and animal fungi, consistent with a conserved mechanism. Expression of HVA1 was negatively correlated with virulence and was reduced in vitro and in vivo in both mouse- and Galleria-passaged strains of C. neoformans. Phenotypic analysis in hva1Δ and hva1Δ+HVA1 strains revealed no significant differences in established virulence factors. Mice infected intravenously with the hva1Δ strain had higher fungal burden in the spleen and brain, but lower fungal burden in the lungs, and died faster than mice infected with H99W or the hva1Δ+HVA1 strain. Metabolomics analysis demonstrated a general increase in all amino acids measured in the disrupted strain and a block in the TCA cycle at isocitrate dehydrogenase, possibly due to alterations in the nicotinamide cofactor pool. Macrophage fungal burden experiments recapitulated the mouse hypervirulent phenotype of the hva1Δ strain only in the presence of exogenous NADPH. The crystal structure of the Hva1 protein was solved, and a comparison of structurally similar proteins correlated with the metabolomics data and potential interactions with NADPH. We report a new gene that modulates virulence through a mechanism associated with changes in fungal metabolism. PMID:27583447

  5. A Small Protein Associated with Fungal Energy Metabolism Affects the Virulence of Cryptococcus neoformans in Mammals

    PubMed Central

    Cox, James; Nakouzi, Antonio; Prabu, Moses M.; Almo, Steven C.

    2016-01-01

    The pathogenic yeast Cryptococcus neoformans causes cryptococcosis, a life-threatening fungal disease. C. neoformans has multiple virulence mechanisms that are non-host specific, induce damage and interfere with immune clearance. Microarray analysis of C. neoformans strains serially passaged in mice associated a small gene (CNAG_02591) with virulence. This gene, hereafter identified as HVA1 (hypervirulence-associated protein 1), encodes a protein that has homologs of unknown function in plant and animal fungi, consistent with a conserved mechanism. Expression of HVA1 was negatively correlated with virulence and was reduced in vitro and in vivo in both mouse- and Galleria-passaged strains of C. neoformans. Phenotypic analysis in hva1Δ and hva1Δ+HVA1 strains revealed no significant differences in established virulence factors. Mice infected intravenously with the hva1Δ strain had higher fungal burden in the spleen and brain, but lower fungal burden in the lungs, and died faster than mice infected with H99W or the hva1Δ+HVA1 strain. Metabolomics analysis demonstrated a general increase in all amino acids measured in the disrupted strain and a block in the TCA cycle at isocitrate dehydrogenase, possibly due to alterations in the nicotinamide cofactor pool. Macrophage fungal burden experiments recapitulated the mouse hypervirulent phenotype of the hva1Δ strain only in the presence of exogenous NADPH. The crystal structure of the Hva1 protein was solved, and a comparison of structurally similar proteins correlated with the metabolomics data and potential interactions with NADPH. We report a new gene that modulates virulence through a mechanism associated with changes in fungal metabolism. PMID:27583447

  6. Ecdysteroids affect in vivo protein metabolism of the flight muscle of the tobacco hornworm (Manduca sexta)

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Wu, M.; Cook, P.; Hodsden, S.

    1990-01-01

    Ecdysteroid growth promotion of the dorsolongitudinal flight muscle of Manduca sexta was studied by measuring in vivo protein metabolism using both "flooding-dose" and "non-carrier" techniques. These procedures differ in that the former method includes injection of non-labelled phenylalanine (30 micromoles/insect) together with the [3H]amino acid. Injected radioactivity plateaued in the haemolymph within 7 min. With the flooding-dose method, haemolymph and intramuscular specific radioactivities were similar between 15 min and 2 h. Incorporation of [3H]phenylalanine into muscle protein was linear with either method between 30 and 120 min. Fractional rates (%/12 h) of synthesis with the flooding-dose technique were best measured after 1 h because of the initial delay in radioactivity equilibration. Estimation of body phenylalanine turnover with the non-carrier method showed 24-53%/h which was negligible with the flooding-dose method. Since the two methods yielded similar rates of protein synthesis, the large injection of non-labelled amino acid did not alter the rate of synthesis. Because the flooding-dose technique requires only a single time point measurement, it is the preferred method. The decline and eventual cessation of flight-muscle growth was mostly a consequence of declining protein synthesis though degradation increased between 76-86 h before eclosion and was relatively rapid. This decline in muscle growth could be prevented by treating pupae with 20-hydroxyecdysone (10 micrograms/insect). Protein accretion was promoted by a decline of up to 80% in protein breakdown, which was offset in part by a concurrent though much smaller decrease in protein synthesis. Therefore, ecdysteroids may increase flight-muscle growth by inhibiting proteolysis.

  7. Corticosterone metabolism by chicken follicle cells does not affect ovarian reproductive hormone synthesis in vitro

    PubMed Central

    Rettenbacher, Sophie; Henriksen, Rie; Groothuids, Ton G.; Lepschy, Michael

    2013-01-01

    Glucocorticoids affect reproductive hormone production in many species. In chickens, elevated plasma corticosterone down-regulates testosterone and progesterone concentrations in plasma, but also in egg yolk. This suppression could be mediated via the hypothalamic-pituitary system but also via local inhibition of gonadal activity by glucocorticoids. As the latter has not been tested in birds yet, we tested if corticosterone directly inhibits ovarian steroid synthesis under in vitro conditions. We hypothesized that degradation of corticosterone by follicular cells impairs their ability to synthesize reproductive hormones due to either inhibition of enzymes or competition for common co-factors. Therefore, we first established whether follicles degrade corticosterone. Follicular tissue was harvested from freshly euthanized laying hens and incubated with radiolabelled corticosterone. Radioactive metabolites were visualized and quantified by autoradiography. Follicles converted corticosterone in a time-dependent manner into metabolites with a higher polarity than corticosterone. The predominant metabolite co-eluted with 20β-dihydrocorticosterone. Other chicken tissues mostly formed the same metabolite when incubated with corticosterone. In a second experiment, follicles were incubated with either progesterone or dehydroepiandrosterone. Corticosterone was added in increasing dosages up to 1000 ng per ml medium. Corticosterone did not inhibit the conversion of progesterone and dehydroepiandrosterone into a number of different metabolites, including 17α-hydroxyprogesterone, androstenedione and testosterone. In conclusion, avian tissues degrade corticosterone mostly to 20β-dihydrocorticosterone and even high corticosterone dosages do not affect follicular hormone production under in vitro conditions. PMID:23333751

  8. Milk protein yield and mammary metabolism are affected by phenylalanine deficiency but not by threonine or tryptophan deficiency.

    PubMed

    Doepel, L; Hewage, I I; Lapierre, H

    2016-04-01

    Efficient milk protein synthesis requires that the essential AA be presented to the mammary gland in the right amount and proportion to maximize protein synthesis and minimize losses. This study investigated the effects of individual AA deficiencies on cow productivity, mammary metabolism, and glucose whole-body rate of appearance. Five Holstein cows were used in a 5 × 5 Latin square design trial with 10-d periods. Treatments were abomasal infusions of (1) water (CTL); (2) complete AA mixture (TAA); (3) TAA without Phe (No-Phe); (4) TAA without Thr (No-Thr); and (5) TAA without Trp (No-Trp). Each treatment was compared with TAA. Treatment did not affect milk, fat, or lactose yields. Arterial concentrations of Phe, Thr, and Trp decreased with their respective deletions by 60, 76, and 69%. In response to the decreased arterial supply of the deleted AA, mammary plasma flow significantly increased by 55% with No-Thr but did not increase with No-Phe or No-Trp. Mammary uptake of Phe was reduced by No-Phe, accompanied by a reduced milk protein yield; uptakes of Thr and Trp were not affected by their respective deletions, and milk protein yield did not decrease with these treatments. Deletion of Phe tended to reduce its mammary uptake relative to milk output (U:O), accompanied by an increased U:O of Tyr, but deletion of Thr and Trp did not affect the U:O of the corresponding AA. Plasma urea-N concentration was lower with CTL and tended to be higher with No-Phe. Arterial concentrations and mammary uptake of acetate, β-hydroxybutyrate, glucose, and lactate were unaffected by treatment. Treatment had no effect on glucose rate of appearance at the whole-body level. Lactose output as a percentage of glucose whole-body rate of appearance was not affected by treatment. Overall, the study indicated that a deficiency of Phe negatively affected productivity and mammary metabolism but that a deficiency of Thr or Trp did not.

  9. Acrylamide increases dopamine levels by affecting dopamine transport and metabolism related genes in the striatal dopaminergic system.

    PubMed

    Pan, Xiaoqi; Guo, Xiongxiong; Xiong, Fei; Cheng, Guihong; Lu, Qing; Yan, Hong

    2015-07-01

    Dopaminergic system dysfunction is proved to be a possible mechanism in acrylamide (ACR) -induced neurotoxicity. The neurotransmitter dopamine (DA) has an increasingly important role in the dopaminergic system. Thus, the goal of this study is to evaluate effects of ACR on dopamine and its metabolite levels, dopamine transport and metabolic gene expression in dopaminergic neurons. Male Sprague-Dawley (SD) rats were dosed orally with ACR at 0 (saline), 20, 30, and 40 mg/kg/day for 20 days. Splayed hind limbs, reduced tail flick time and abnormal gait which preceded other neurologic parameters were observed in the above rats. ACR significantly increased dopamine levels, decreased 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) contents in an area dependent manner in rat striatum. Immunohistochemical staining of the striatum revealed that the number of tyrosine hydroxylase (TH) positive cells significantly increased, while monoamine oxidase (MAO) positive cells were drastically reduced, which was consistent with changes in their mRNA and protein expressions. In addition, dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) expression levels were both down-regulated in the striatum. These results suggest that dopamine levels increase significantly in response to ACR, presumably due to changes in the dopamine transport and metabolism related genes expression in the striatal dopaminergic neurons.

  10. Markers of Bone Metabolism Are Affected by Renal Function and Growth Hormone Therapy in Children with Chronic Kidney Disease

    PubMed Central

    Doyon, Anke; Fischer, Dagmar-Christiane; Bayazit, Aysun Karabay; Canpolat, Nur; Duzova, Ali; Sözeri, Betül; Bacchetta, Justine; Balat, Ayse; Büscher, Anja; Candan, Cengiz; Cakar, Nilgun; Donmez, Osman; Dusek, Jiri; Heckel, Martina; Klaus, Günter; Mir, Sevgi; Özcelik, Gül; Sever, Lale; Shroff, Rukshana; Vidal, Enrico; Wühl, Elke; Gondan, Matthias; Melk, Anette; Querfeld, Uwe; Haffner, Dieter; Schaefer, Franz

    2015-01-01

    Objectives The extent and relevance of altered bone metabolism for statural growth in children with chronic kidney disease is controversial. We analyzed the impact of renal dysfunction and recombinant growth hormone therapy on a panel of serum markers of bone metabolism in a large pediatric chronic kidney disease cohort. Methods Bone alkaline phosphatase (BAP), tartrate-resistant acid phosphatase 5b (TRAP5b), sclerostin and C-terminal FGF-23 (cFGF23) normalized for age and sex were analyzed in 556 children aged 6–18 years with an estimated glomerular filtration rate (eGFR) of 10–60 ml/min/1.73m2. 41 children receiving recombinant growth hormone therapy were compared to an untreated matched control group. Results Standardized levels of BAP, TRAP5b and cFGF-23 were increased whereas sclerostin was reduced. BAP was correlated positively and cFGF-23 inversely with eGFR. Intact serum parathormone was an independent positive predictor of BAP and TRAP5b and negatively associated with sclerostin. BAP and TRAP5B were negatively affected by increased C-reactive protein levels. In children receiving recombinant growth hormone, BAP was higher and TRAP5b lower than in untreated controls. Sclerostin levels were in the normal range and higher than in untreated controls. Serum sclerostin and cFGF-23 independently predicted height standard deviation score, and BAP and TRAP5b the prospective change in height standard deviation score. Conclusion Markers of bone metabolism indicate a high-bone turnover state in children with chronic kidney disease. Growth hormone induces an osteoanabolic pattern and normalizes osteocyte activity. The osteocyte markers cFGF23 and sclerostin are associated with standardized height, and the markers of bone turnover predict height velocity. PMID:25659076

  11. The GEF1 proton-chloride exchanger affects tombusvirus replication via regulation of copper metabolism in yeast.

    PubMed

    Sasvari, Zsuzsanna; Kovalev, Nikolay; Nagy, Peter D

    2013-02-01

    Replication of plus-strand RNA viruses [(+)RNA viruses] is performed by viral replicases, whose function is affected by many cellular factors in infected cells. In this paper, we demonstrate a surprising role for Gef1p proton-chloride exchanger in replication of Tomato bushy stunt virus (TBSV) model (+)RNA virus. A genetic approach revealed that Gef1p, which is the only proton-chloride exchanger in Saccharomyces cerevisiae, is required for TBSV replication in the yeast model host. We also show that the in vitro activity of the purified tombusvirus replicase from gef1Δ yeast was low and that the in vitro assembly of the viral replicase in a cell extract was inhibited by the cytosolic fraction obtained from gef1Δ yeast. Altogether, our data reveal that Gef1p modulates TBSV replication via regulating Cu(2+) metabolism in the cell. This conclusion is supported by several lines of evidence, including the direct inhibitory effect of Cu(2+) ions on the in vitro assembly of the viral replicase, on the activity of the viral RNA-dependent RNA polymerase, and an inhibitory effect of deletion of CCC2 copper pump on TBSV replication in yeast, while altered iron metabolism did not reduce TBSV replication. In addition, applying a chloride channel blocker impeded TBSV replication in Nicotiana benthamiana protoplasts or in whole plants. Overall, blocking Gef1p function seems to inhibit TBSV replication through altering Cu(2+) ion metabolism in the cytosol, which then inhibits the normal functions of the viral replicase.

  12. Continual feeding of two types of microalgal biomass affected protein digestion and metabolism in laying hens.

    PubMed

    Ekmay, R D; Chou, K; Magnuson, A; Lei, X G

    2015-01-01

    A 14-wk study was conducted to determine the nutritional efficacy and ssmetabolic impact of 2 types of microalgal biomass as alternative protein sources in laying hen diets. Shaver hens (total = 150 and 26 wk old) were fed 1 of 5 diets: a control or a defatted green microalgal biomass (DG; Desmodesmus spp.) at 25% and a full-fatted diatom biomass (FD; Staurosira spp.) at 11.7% inclusion with or without protease. This experiment consisted of 5 replicates per treatment and each replicate contained 6 hens individually reared in cages (1 hen for biochemical data/replicate). Despite decreased ADFI (P = 0.03), hens fed DG or FD had final BW, overall hen-day egg production, and egg quality similar to the controls. Feeding DG or FD did not alter plasma concentrations of insulin, glutamine, and uric acid or alkaline phosphatase activity at wk 8 or 14 but decreased plasma 3-methyhistine concentrations (P = 0.03) and tartrate-resistant acid phosphatase (TRAP) activities (P < 0.001) at wk 14 and improved (P = 0.002) ileal total AA digestibility. Although DG or FD exhibited moderate effects on intestinal brush border protease activities and mRNA levels of duodenal transporters Pept1, Lat1, and Cat1, both substantially enhanced (P < 0.05) phosphorylation of hepatic protein synthesis key regulator S6 ribosomal protein (S6) and the ratio of phospho-S6 to S6 in the liver of hens. However, DG and FD manifested with different impacts on weights of egg and egg albumen, proteolytic activity of jejunal digesta, plasma TRAP activity, ileal total AA digestibility, and several intestinal genes and hepatic proteins. Supplemental protease in the DG and FD diets produced mixed effects on a number of measures. In conclusion, our findings revealed the feasibility of including greater levels of microalgal biomass as a source of feed protein for laying hens and a novel potential of the biomass in improving dietary protein digestion and body protein metabolism than previously perceived. PMID

  13. Continual feeding of two types of microalgal biomass affected protein digestion and metabolism in laying hens.

    PubMed

    Ekmay, R D; Chou, K; Magnuson, A; Lei, X G

    2015-01-01

    A 14-wk study was conducted to determine the nutritional efficacy and ssmetabolic impact of 2 types of microalgal biomass as alternative protein sources in laying hen diets. Shaver hens (total = 150 and 26 wk old) were fed 1 of 5 diets: a control or a defatted green microalgal biomass (DG; Desmodesmus spp.) at 25% and a full-fatted diatom biomass (FD; Staurosira spp.) at 11.7% inclusion with or without protease. This experiment consisted of 5 replicates per treatment and each replicate contained 6 hens individually reared in cages (1 hen for biochemical data/replicate). Despite decreased ADFI (P = 0.03), hens fed DG or FD had final BW, overall hen-day egg production, and egg quality similar to the controls. Feeding DG or FD did not alter plasma concentrations of insulin, glutamine, and uric acid or alkaline phosphatase activity at wk 8 or 14 but decreased plasma 3-methyhistine concentrations (P = 0.03) and tartrate-resistant acid phosphatase (TRAP) activities (P < 0.001) at wk 14 and improved (P = 0.002) ileal total AA digestibility. Although DG or FD exhibited moderate effects on intestinal brush border protease activities and mRNA levels of duodenal transporters Pept1, Lat1, and Cat1, both substantially enhanced (P < 0.05) phosphorylation of hepatic protein synthesis key regulator S6 ribosomal protein (S6) and the ratio of phospho-S6 to S6 in the liver of hens. However, DG and FD manifested with different impacts on weights of egg and egg albumen, proteolytic activity of jejunal digesta, plasma TRAP activity, ileal total AA digestibility, and several intestinal genes and hepatic proteins. Supplemental protease in the DG and FD diets produced mixed effects on a number of measures. In conclusion, our findings revealed the feasibility of including greater levels of microalgal biomass as a source of feed protein for laying hens and a novel potential of the biomass in improving dietary protein digestion and body protein metabolism than previously perceived.

  14. Exogenous administration of chronic corticosterone affects hepatic cholesterol metabolism in broiler chickens showing long or short tonic immobility.

    PubMed

    Liu, Jie; Duan, Yujing; Hu, Yun; Sun, Lili; Wang, Song; Fu, Wenyan; Ni, Yingdong; Zhao, Ruqian

    2016-01-01

    Tonic immobility (TI) is an innate characteristic of animals related to fear or stress response. Animals can be classified into long TI (LTI) and short TI (STI) phenotypes based on TI test duration. In this study, effect of TI phenotype, chronic corticosterone administration (CORT), and their interaction on cholesterol metabolism in liver was evaluated in broilers. LTI broilers showed higher level of cholesterol in liver compared to STI chickens (p<0.05), and CORT significantly increased hepatic cholesterol content (p<0.01). Real-time PCR results showed that both TI and CORT potentially altered ABCA1 and CYP7A1 gene expressions (0.05affected hepatic HMGCR protein expression, and LTI broilers showed higher level of HMGCR protein expression in liver than STI (p<0.05). These results indicate that chronic CORT administration causes hepatic cholesterol accumulation in broiler chickens mainly by enhancing cholesterol synthesis and uptake into liver. LTI chickens had higher amount of total cholesterol in liver, which might be associated with an increase of hepatic HMGCR protein expression. However, there is no interaction between TI and CORT on cholesterol metabolism in liver of broilers.

  15. Potato tuber expression of Arabidopsis WRINKLED1 increase triacylglycerol and membrane lipids while affecting central carbohydrate metabolism.

    PubMed

    Hofvander, Per; Ischebeck, Till; Turesson, Helle; Kushwaha, Sandeep K; Feussner, Ivo; Carlsson, Anders S; Andersson, Mariette

    2016-09-01

    Tuber and root crops virtually exclusively accumulate storage products in the form of carbohydrates. An exception is yellow nutsedge (Cyperus esculentus) in which tubers have the capacity to store starch and triacylglycerols (TAG) in roughly equal amounts. This suggests that a tuber crop can efficiently handle accumulation of energy dense oil. From a nutritional as well as economic aspect, it would be of interest to utilize the high yield capacity of tuber or root crops for oil accumulation similar to yellow nutsedge. The transcription factor WRINKLED1 from Arabidopsis thaliana, which in seed embryos induce fatty acid synthesis, has been shown to be a major factor for oil accumulation. WRINKLED1 was expressed in potato (Solanum tuberosum) tubers to explore whether this factor could impact tuber metabolism. This study shows that a WRINKLED1 transcription factor could induce triacylglycerol accumulation in tubers of transformed potato plants grown in field (up to 12 nmol TAG/mg dry weight, 1% of dry weight) together with a large increase in polar membrane lipids. The changes in metabolism further affected starch accumulation and composition concomitant with massive increases in sugar content.

  16. Potato tuber expression of Arabidopsis WRINKLED1 increase triacylglycerol and membrane lipids while affecting central carbohydrate metabolism.

    PubMed

    Hofvander, Per; Ischebeck, Till; Turesson, Helle; Kushwaha, Sandeep K; Feussner, Ivo; Carlsson, Anders S; Andersson, Mariette

    2016-09-01

    Tuber and root crops virtually exclusively accumulate storage products in the form of carbohydrates. An exception is yellow nutsedge (Cyperus esculentus) in which tubers have the capacity to store starch and triacylglycerols (TAG) in roughly equal amounts. This suggests that a tuber crop can efficiently handle accumulation of energy dense oil. From a nutritional as well as economic aspect, it would be of interest to utilize the high yield capacity of tuber or root crops for oil accumulation similar to yellow nutsedge. The transcription factor WRINKLED1 from Arabidopsis thaliana, which in seed embryos induce fatty acid synthesis, has been shown to be a major factor for oil accumulation. WRINKLED1 was expressed in potato (Solanum tuberosum) tubers to explore whether this factor could impact tuber metabolism. This study shows that a WRINKLED1 transcription factor could induce triacylglycerol accumulation in tubers of transformed potato plants grown in field (up to 12 nmol TAG/mg dry weight, 1% of dry weight) together with a large increase in polar membrane lipids. The changes in metabolism further affected starch accumulation and composition concomitant with massive increases in sugar content. PMID:26914183

  17. Altered membrane lipid composition and functional parameters of circulating cells in cockles (Cerastoderma edule) affected by disseminated neoplasia.

    PubMed

    Le Grand, Fabienne; Soudant, Philippe; Marty, Yanic; Le Goïc, Nelly; Kraffe, Edouard

    2013-01-01

    Membrane lipid composition and morpho-functional parameters were investigated in circulating cells of the edible cockle (Cerastoderma edule) affected by disseminated neoplasia (neoplastic cells) and compared to those from healthy cockles (hemocytes). Membrane sterol levels, phospholipid (PL) class and subclass proportions and their respective fatty acid (FA) compositions were determined. Morpho-functional parameters were evaluated through total hemocyte count (THC), mortality rate, phagocytosis ability and reactive oxygen species (ROS) production. Both morpho-functional parameters and lipid composition were profoundly affected in neoplastic cells. These dedifferentiated cells displayed higher THC (5×), mortality rate (3×) and ROS production with addition of carbonyl cyanide m-chloro phenylhydrazone (1.7×) but lower phagocytosis ability (½×), than unaffected hemocytes. Total PL amounts were higher in neoplastic cells than in hemocytes (12.3 and 5.1 nmol×10(-6) cells, respectively). However, sterols and a particular subclass of PL (plasmalogens; 1-alkenyl-2-acyl PL) were present in similar amounts in both cell type membranes. This led to a two times lower proportion of these membrane lipid constituents in neoplastic cells when compared to hemocytes (20.5% vs. 42.1% of sterols in total membrane lipids and 21.7% vs. 44.2% of plasmalogens among total PL, respectively). Proportions of non-methylene interrupted FA- and 20:1n-11-plasmalogen molecular species were the most impacted in neoplastic cells when compared to hemocytes (⅓× and ¼×, respectively). These changes in response to this leukemia-like disease in bivalves highlight the specific imbalance of plasmalogens and sterols in neoplastic cells, in comparison to the greater stability of other membrane lipid components.

  18. Altered membrane lipid composition and functional parameters of circulating cells in cockles (Cerastoderma edule) affected by disseminated neoplasia.

    PubMed

    Le Grand, Fabienne; Soudant, Philippe; Marty, Yanic; Le Goïc, Nelly; Kraffe, Edouard

    2013-01-01

    Membrane lipid composition and morpho-functional parameters were investigated in circulating cells of the edible cockle (Cerastoderma edule) affected by disseminated neoplasia (neoplastic cells) and compared to those from healthy cockles (hemocytes). Membrane sterol levels, phospholipid (PL) class and subclass proportions and their respective fatty acid (FA) compositions were determined. Morpho-functional parameters were evaluated through total hemocyte count (THC), mortality rate, phagocytosis ability and reactive oxygen species (ROS) production. Both morpho-functional parameters and lipid composition were profoundly affected in neoplastic cells. These dedifferentiated cells displayed higher THC (5×), mortality rate (3×) and ROS production with addition of carbonyl cyanide m-chloro phenylhydrazone (1.7×) but lower phagocytosis ability (½×), than unaffected hemocytes. Total PL amounts were higher in neoplastic cells than in hemocytes (12.3 and 5.1 nmol×10(-6) cells, respectively). However, sterols and a particular subclass of PL (plasmalogens; 1-alkenyl-2-acyl PL) were present in similar amounts in both cell type membranes. This led to a two times lower proportion of these membrane lipid constituents in neoplastic cells when compared to hemocytes (20.5% vs. 42.1% of sterols in total membrane lipids and 21.7% vs. 44.2% of plasmalogens among total PL, respectively). Proportions of non-methylene interrupted FA- and 20:1n-11-plasmalogen molecular species were the most impacted in neoplastic cells when compared to hemocytes (⅓× and ¼×, respectively). These changes in response to this leukemia-like disease in bivalves highlight the specific imbalance of plasmalogens and sterols in neoplastic cells, in comparison to the greater stability of other membrane lipid components. PMID:23333874

  19. Optimization of parameters affecting signal intensity in an LTQ-orbitrap in negative ion mode: A design of experiments approach.

    PubMed

    Lemonakis, Nikolaos; Skaltsounis, Alexios-Leandros; Tsarbopoulos, Anthony; Gikas, Evagelos

    2016-01-15

    A multistage optimization of all the parameters affecting detection/response in an LTQ-orbitrap analyzer was performed, using a design of experiments methodology. The signal intensity, a critical issue for mass analysis, was investigated and the optimization process was completed in three successive steps, taking into account the three main regions of an orbitrap, the ion generation, the ion transmission and the ion detection regions. Oleuropein and hydroxytyrosol were selected as the model compounds. Overall, applying this methodology the sensitivity was increased more than 24%, the resolution more than 6.5%, whereas the elapsed scan time was reduced nearly to its half. A high-resolution LTQ Orbitrap Discovery mass spectrometer was used for the determination of the analytes of interest. Thus, oleuropein and hydroxytyrosol were infused via the instruments syringe pump and they were analyzed employing electrospray ionization (ESI) in the negative high-resolution full-scan ion mode. The parameters of the three main regions of the LTQ-orbitrap were independently optimized in terms of maximum sensitivity. In this context, factorial design, response surface model and Plackett-Burman experiments were performed and analysis of variance was carried out to evaluate the validity of the statistical model and to determine the most significant parameters for signal intensity. The optimum MS conditions for each analyte were summarized and the method optimum condition was achieved by maximizing the desirability function. Our observation showed good agreement between the predicted optimum response and the responses collected at the predicted optimum conditions.

  20. Development of an auditory emotion recognition function using psychoacoustic parameters based on the International Affective Digitized Sounds.

    PubMed

    Choi, Youngimm; Lee, Sungjun; Jung, SungSoo; Choi, In-Mook; Park, Yon-Kyu; Kim, Chobok

    2015-12-01

    The purpose of this study was to develop an auditory emotion recognition function that could determine the emotion caused by sounds coming from the environment in our daily life. For this purpose, sound stimuli from the International Affective Digitized Sounds (IADS-2), a standardized database of sounds intended to evoke emotion, were selected, and four psychoacoustic parameters (i.e., loudness, sharpness, roughness, and fluctuation strength) were extracted from the sounds. Also, by using an emotion adjective scale, 140 college students were tes