Science.gov

Sample records for affect metal bioavailability

  1. Have the bioavailabilities of trace metals to a suite of biomonitors changed over three decades in SW England estuaries historically affected by mining?

    PubMed

    Rainbow, P S; Kriefman, S; Smith, B D; Luoma, S N

    2011-03-15

    Many estuaries of southwest England were heavily contaminated with toxic metals associated with the mining of copper and other metals, particularly between 1850 and 1900. The question remains whether the passage of time has brought remediation to these estuaries. In 2003 and 2006 we revisited sites in 5 metal-contaminated estuaries sampled in the 1970s and 1980s - Restronguet Creek, Gannel, West Looe, East Looe and Tavy. We evaluate changes in metal contamination in sediments and in metal bioavailabilities in sediments and water to local organisms employed as biomonitors. We find that the decline in contamination in these estuaries is complex. Differences in bioavailable contamination in the water column were detectable, as were significant detectable changes in at least some estuaries in bioavailable metal contamination originating from sediments. However, in the 100 years since mining activities declined, bioavailable contamination has not declined to the regional baseline in any estuary affected by the mine wastes. The greatest decline in contamination occurred in the one instance (East Looe) where a previous industrial source of (Ag) contamination was considered. We used the macroalgae Fucus vesiculosus and Ascophyllum nodosum as biomonitors of dissolved metal bioavailabilities and the deposit feeders Nereis diversicolor and Scrobicularia plana as biomonitors of bioavailable metal in sediments. We found no systematic decrease in the atypically high Ag, Cu, Pb and Zn concentrations in the estuarine sediments over a 26 year period. Accumulated metal (Ag, As, Cu, Pb, and Zn) concentrations in the deposit feeders are similarly still atypically high in at least one estuary for each metal, and there is no consistent evidence for general decreases in sediment metal bioavailabilities over time. We conclude that the legacy of mining in sheltered estuaries of southwest England is the ongoing presence of sediments rich in metals bioavailable to deposit feeders, while

  2. Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine spillage at Aznalcóllar (Spain).

    PubMed

    Clemente, Rafael; Walker, David J; Roig, Asunción; Bernal, M Pilar

    2003-06-01

    A field experiment, lasting 14 months, was carried out in order to assess the effect of organic amendment and lime addition on the bioavailability of heavy metals in contaminated soils. The experiment took place in a soil affected by acid, highly toxic pyritic waste from the Aznalcóllar mine (Seville, Spain) in April 1998. The following treatments were applied (3 plots per treatment): cow manure, a mature compost, lime (to plots having pH < 4), and control without amendment. During the study two crops of Brassica juncea were grown, with two additions of each organic amendment. Throughout the study, the evolution of soil pH, total and available (DTPA-extractable) heavy metals content (Zn, Cu, Mn, Fe, Pb and Cd), electrical conductivity (EC), soluble sulphates and plant growth and heavy metal uptake were followed. The study indicates that: (1) soil acidification, due to the oxidation of metallic sulphides in the soil, increased heavy metal bioavailability; (2) liming succeeded in controlling the soil acidification; and (3) the organic materials generally promoted fixation of heavy metals in non-available soil fractions, with Cu bioavailability being particularly affected by the organic treatments. PMID:12889610

  3. Polymorphisms affecting trace element bioavailability.

    PubMed

    Mathers, John C; Méplan, Catherine; Hesketh, John E

    2010-10-01

    This review outlines the nature of inter-individual variation in trace element bioavailability, focusing on genetic and epigenetic determinants. We note that pathogenic mutations responsible for dangerously high (or low) status for the micronutrient are unlikely to make large contributions to variability in bioavailability among the general population. Prospective genotyping (for variants in genes encoding selenoproteins) of participants in human studies illustrate one approach to understanding the complex interactions between genotype and trace element supply, which determine the functional bioavailability of selenium. Rapid advances in technological and bioinformatics tools; e. g., as used in Genome-Wide Association Studies, are opening new avenues for research on the genetic determinants of inter-individual variation in trace element bioavailability. This may include copy number variants in addition to the more widely studied polymorphisms. Future research on trace element bioavailability should encompass studies of epigenetic variants, including the role of non-coding (micro) RNA.

  4. Assessing bioavailability levels of metals in effluent-affected rivers: effect of Fe(III) and chelating agents on the distribution of metal speciation.

    PubMed

    Han, Shuping; Naito, Wataru; Masunaga, Shigeki

    2016-01-01

    To assess the effects of Fe(III) and anthropogenic ligands on the bioavailability of Ni, Cu, Zn, and Pb, concentrations of bioavailable metals were measured by the DGT (diffusive gradients in thin films) method in some urban rivers, and were compared with concentrations calculated by a chemical equilibrium model (WHAM 7.0). Assuming that dissolved Fe(III) (<0.45 μm membrane filtered) was in equilibrium with colloidal iron oxide, the WHAM 7.0 model estimated that bioavailable concentrations of Ni, Cu, and Zn were slightly higher than the corresponding values estimated assuming that dissolved Fe(III) was absent. In contrast, lower levels of free Pb were predicted by the WHAM 7.0 model when dissolved Fe(III) was included. Estimates showed that most of the dissolved Pb was present as colloidal iron-Pb complex. Ethylene-diamine-tetra-acetic acid (EDTA) concentrations at sampling sites were predicted from the relationship between EDTA and the calculated bioavailable concentration of Zn. When both colloidal iron and predicted EDTA concentrations were included in the WHAM 7.0 calculations, dissolved metals showed a strong tendency to form EDTA complexes, in the order Ni > Cu > Zn > Pb. With the inclusion of EDTA, bioavailable concentrations of Ni, Cu, and Zn predicted by WHAM 7.0 were different from those predicted considering only humic substances and colloidal iron. PMID:27533864

  5. Bioavailability of Metal Ions and Evolutionary Adaptation

    PubMed Central

    Hong Enriquez, Rolando P.; Do, Trang N.

    2012-01-01

    The evolution of life on earth has been a long process that began nearly 3.5 × 109 years ago. In their initial moments, evolution was mainly influenced by anaerobic environments; with the rise of O2 and the corresponding change in bioavailability of metal ions, new mechanisms of survival were created. Here we review the relationships between ancient atmospheric conditions, metal ion bioavailability and adaptation of metals homeostasis during early evolution. A general picture linking geochemistry, biochemistry and homeostasis is supported by the reviewed literature and is further illustrated in this report using simple database searches. PMID:25371266

  6. Heavy Metal Bioavailability and Bioaccessibility in Soil

    NASA Astrophysics Data System (ADS)

    Dean, John Richard

    This chapter considers the use of a variety of approaches to assess either the bioavailability or the bioaccessibility of metals in soil. The bioavailability of metals from soils is considered with respect to a series of single-extraction methods, including the use of ethylenediaminetetraacetic acid (EDTA), acetic acid, diethylenetriaminepentaacetic acid (DTPA), ammonium nitrate, calcium chloride and sodium nitrate. Then, a procedure for the recovery of metals using a three-stage sequential extraction protocol is described. Two alternate approaches for assessing the environmental health risk to humans by undertaking in vitro gastrointestinal extraction (also known as the physiologically based extraction test, PBET) are considered. Finally, two acid digestion protocols that allow the pseudo-total metal content of samples to be assessed are provided.

  7. Bioavailability of purified subcellular metals to a marine fish.

    PubMed

    Guo, Feng; Yao, Jie; Wang, Wen-Xiong

    2013-09-01

    In the present study, the authors used a supply of naturally contaminated oysters to investigate how the subcellular metal distribution and the metal burden in prey affected the transfer of metals to a marine fish, the grunt Terapon jarbua. The oysters, Crassostrea hongkongensis, each with different contamination histories, were collected and separated into 3 subcellular fractions: 1) metal-rich granules, 2) cellular debris, and 3) a combined fraction of organelles, heat-denatured proteins, and metallothionein-like proteins, defined as the trophically available metal (TAM). These purified fractions showed a wide range of metal concentrations and were fed to the fish for a period of 7 d at a daily comparable feeding rate of 3% of fish body weight. After 7 d exposure, the newly absorbed metals were mainly distributed in the intestine and liver, indicating a significant tissue-specific trophic transfer, especially for Cd and Cu. The trophic transfer factors (TTFs) showed a sequence of cellular debris >TAM > metal-rich granules, suggesting the impact of subcellular distribution in prey on metal bioavailability. However, significant inverse relationships between the TTFs and the metal concentrations in diets were also found in the present study, especially for Cd and Zn. The subcellular metal compartmentalization might be less important than the metal concentration in prey influencing the trophic transfer. The authors' results have important implications for bioavailability and environmental assessment of dietary metals.

  8. Bioavailability of metals in soils and sedimentes affected by old mining actitvities. The study case of the Portman bay (SE, Spain)

    NASA Astrophysics Data System (ADS)

    Martinez-Sanchez, Maria Jose; Agudo, Ines; Banegas, Ascension; Garcia-Lorenzo, Maria Luz; Gonzalez-Ciudad, Eva; Perez-Espinosa, Victor; Martinez-Lopez, Salvadora; Martinez, Lucia; Perz-Sirvent, Carmen

    2010-05-01

    A study on metal (Zn, Pb, Cd, Cu and As) mobilization and analysis of the health risk represented by ingestion from contaminated sediments in Portman Bay (SE Spain) was carried out. This zone has suffered a great impact from mining activity, since million tons of mine tailings were dumped into the bay for a long period, giving as a result the filling of the bay with them. The long-term deposition of metals in soils and sediments can lead to their accumulation and transport, while their toxicity depends on the mobility and bioavailability of a significant fraction of the metals. The ingestion of contaminated soil particles by grazing animals or young children may well represent a special exposure pathway for Pb, Cd and other hazardous metals. The aim of this study was to determine the bioaccessibility of Zn, Pb, Cd, Cu and As ,and the extent to which bioaccessibility is influenced by mineralogy in materials from this mining site as an indicator of the potential risk that metals pose to both environmental and human health. General analytical determinations (pH, particle size, organic matter, equivalent calcium carbonate content and mineralogical composition) were carried out to characterize the samples. The mineralogical composition was studied by X-ray diffraction (XRD), using a Philips PW3040 diffractometer with Cu-Kα. To determine the total metal content, the samples were digested in a Milestone ETHOS PLUS microwave, Zn, Pb, Cu and Cd contents were determined by electrothermal atomization atomic absorption spectrometry, while As was analysed by HG- AFS using an automated continuous flow hydride generation spectrometer. To assess bioaccessibility, the gastric solution was prepared according to the Standard Operating Procedure (SOP) developed by the Solubility/Bioavailability Research Consortium (SBRC). The mineralogical composition, corresponds to materials which have suffered a supergenic oxidation process which has been influenced by the presence of sea water

  9. Toxicity, bioavailability and metal speciation.

    PubMed

    Jonnalagadda, S B; Rao, P V

    1993-11-01

    methylmercury, although most of the environmental Hg to which they are exposed is inorganic. The methylmercury in fish arises from the bacterial methylation of inorganic Hg. Methylmercury in the human diet is almost completely absorbed into the bloodstream. The nervous system is the principal target tissue affected by methylmercury in adult human beings, while kidney is the critical organ following the ingestion of Hg(II) salts.

  10. Toxicity, bioavailability and metal speciation.

    PubMed

    Jonnalagadda, S B; Rao, P V

    1993-11-01

    methylmercury, although most of the environmental Hg to which they are exposed is inorganic. The methylmercury in fish arises from the bacterial methylation of inorganic Hg. Methylmercury in the human diet is almost completely absorbed into the bloodstream. The nervous system is the principal target tissue affected by methylmercury in adult human beings, while kidney is the critical organ following the ingestion of Hg(II) salts. PMID:7905798

  11. EFFECTS OF HUMIC SUBSTANCES ON ATTENUATION OF METALS: BIOAVAILABILITY AND MOBILITY IN SOIL

    EPA Science Inventory

    Humic substances play vastly important roles in metal behavior in a wide variety of environments. They can affect the mobility and bioavailability of metals by binding and sequestration thereby decreasing the mobility of a metal. They can also transport metals into solution or ...

  12. Bioavailability of heavy metals, germanium and rare earth elements at Davidschacht dump-field in mine affected area of Freiberg (Saxony)

    NASA Astrophysics Data System (ADS)

    Midula, Pavol; Wiche, Oliver

    2016-04-01

    Bioavailability research presents an essential tool, in modern phytoremediation and phytomining technologies, allowing the estimation of plant available fractions of elements in soils. However, up to date, sufficient interdisciplinary knowledge on the biogeochemically impacted behavior of specific target elements, in particular Ge and REEs in mining affected soils and their uptake into strategically used plants is lacking. This presented work is focused on a correlation study between the concentrations of selected heavy metals, Ge and REEs in soils formed on the top of the dump-field of Davidschacht and the corresponding their concentrations in 12 vascular plant species. The mine-dump of Davidschacht, situated in the Freiberg (Saxony, Germany) municipality area was chosen as the study area, which has been considered to be a high contaminated enclave, due to the mining history of the region. In total 12 sampling sites with differing composition of plant species were selected. At each sampling site soil samples from a soil depth of 0 - 10 cm and samples of plant material (shoots) were taken. The soil samples were analysed for total concentration of elements, pH (H2O) and consequently analysed by 4-step sequential extraction (SE) to determine fractions of elements that are mobile (fraction 1), acid soluble (pH 5) (fraction 2), bound to organic and oxidizable matter (fraction 3) and bound to amorphic oxides (fraction 4). The plant material was decomposed by hydrofluoric acid in order to extract the elements. Concentrations of elements in soil extracts and digestion solutions were analysed by ICP-MS. For all species bioconcentration factor (BCF) was calculated of the total concentration of elements in order to investigate the bioaccumulation potential. Arsenic (As), cadmium (Cd) and lead (Pb) were chosen as the representative heavy metals. Within the REEs neodymium (Nd) and cerium (Ce) were selected as representatives for all REEs, since Nd and Ce correlated significant

  13. Bioavailability of heavy metals, germanium and rare earth elements at Davidschacht dump-field in mine affected area of Freiberg (Saxony)

    NASA Astrophysics Data System (ADS)

    Midula, Pavol; Wiche, Oliver

    2016-04-01

    Bioavailability research presents an essential tool, in modern phytoremediation and phytomining technologies, allowing the estimation of plant available fractions of elements in soils. However, up to date, sufficient interdisciplinary knowledge on the biogeochemically impacted behavior of specific target elements, in particular Ge and REEs in mining affected soils and their uptake into strategically used plants is lacking. This presented work is focused on a correlation study between the concentrations of selected heavy metals, Ge and REEs in soils formed on the top of the dump-field of Davidschacht and the corresponding their concentrations in 12 vascular plant species. The mine-dump of Davidschacht, situated in the Freiberg (Saxony, Germany) municipality area was chosen as the study area, which has been considered to be a high contaminated enclave, due to the mining history of the region. In total 12 sampling sites with differing composition of plant species were selected. At each sampling site soil samples from a soil depth of 0 - 10 cm and samples of plant material (shoots) were taken. The soil samples were analysed for total concentration of elements, pH (H2O) and consequently analysed by 4-step sequential extraction (SE) to determine fractions of elements that are mobile (fraction 1), acid soluble (pH 5) (fraction 2), bound to organic and oxidizable matter (fraction 3) and bound to amorphic oxides (fraction 4). The plant material was decomposed by hydrofluoric acid in order to extract the elements. Concentrations of elements in soil extracts and digestion solutions were analysed by ICP-MS. For all species bioconcentration factor (BCF) was calculated of the total concentration of elements in order to investigate the bioaccumulation potential. Arsenic (As), cadmium (Cd) and lead (Pb) were chosen as the representative heavy metals. Within the REEs neodymium (Nd) and cerium (Ce) were selected as representatives for all REEs, since Nd and Ce correlated significant

  14. Environmental risk assessment of metals: tools for incorporating bioavailability.

    PubMed

    Janssen, C R; Heijerick, D G; De Schamphelaere, K A C; Allen, H E

    2003-03-01

    In this paper, some of the main processes and parameters which affect metal bioavailability and toxicity in the aquatic environment and its implications for metal risk assessment procedures will be discussed. It has become clear that, besides chemical processes (speciation, complexation), attention should also be given to physiological aspects for predicting metal toxicity. The development of biotic ligand models (BLMs), which combine speciation models with more biologically oriented models (e.g. GSIM), has offered an answer to this need. The various BLMs which have been developed and/or refined for a number of metals (e.g. Cu, Ag, Zn) and species (algae, crustaceans, fish) are discussed here. Finally, the potential of the BLM approach is illustrated through a theoretical exercise in which chronic zinc toxicity to Daphnia magna is predicted in three regions, taking the physico-chemical characteristics of these areas into account.

  15. Trace metal speciation and bioavailability in anaerobic digestion: A review.

    PubMed

    Thanh, Pham Minh; Ketheesan, Balachandran; Yan, Zhou; Stuckey, David

    2016-01-01

    Trace metals are essential for the growth of anaerobic microorganisms, however, in practice they are often added to anaerobic digesters in excessive amounts, which can lead to inhibition. The concept of bioavailability of metals in anaerobic digestion has been poorly understood in the past, and a lack of deep understanding of the relationship between trace metal speciation and bioavailability can result in ineffective metal dosing strategies for anaerobic digesters. Sequential extraction schemes are useful for fractionating trace metals into their different forms, and metal sulfides can serve as a store and source for trace metals during anaerobic digestion, while natural/synthetic chelating agents (soluble microbial products-SMPs, extracellular polysaccharides-EPS, and EDTA/NTA) are capable of controlling trace metal bioavailability. Nevertheless, more work is needed to: investigate the speciation and bioavailability of Ca, Mg, Mn, W, and Se; compare the bioavailability of different forms of trace metals e.g. carbonates, sulfides, phosphates to different anaerobic trophic groups; determine what factors influence metal sulfide dissolution; investigate whether chelating agents can increase trace metal bioavailability; develop and adapt specialized analytical techniques, and; determine how trace metal dynamics change in an anaerobic membrane bioreactor (AnMBR).

  16. Influence of biochar amendments on marine sediment trace metal bioavailability

    NASA Astrophysics Data System (ADS)

    Gehrke, G. E.; Hsu-Kim, H.

    2014-12-01

    Biochar has become a desirable material for use in agricultural application to enhance soil quality and in-situ soil and sediment remediation to immobilize organic contaminants. We investigated the effects of biochar sediment amendments on the bioavailability of a suite of inorganic trace metals (Cr, Co, Ni, Cu, Zn, Pb) in contaminated sediments from multiple sites in Elizabeth River, VA. We incubated sediments in microcosms with a variety of water column redox and salinity conditions and compared sediments amended with two types of woody biochar to sediments amended with charcoal activated carbon and unamended sediments. We leached sediments in artificial gut fluid mimic of the benthic invertebrate Arenicola marina as a measure of bioavailability of the trace metals analyzed. In unamended anaerobic sediments, the gut fluid mimic leachable fraction of each trace metal is 1-4% of the total sediment concentration for each metal. Initial results indicate that in anaerobic microcosms, woody biochar sediment amendments (added to 5% dry wt) decrease the gut fluid mimic leachable fraction by 30-90% for all trace metals analyzed, and have comparable performance to charcoal activated carbon amendments. However, in microcosms without controlled redox conditions, woody biochar amendments increase the bioavailable fraction of Ni and Cu by up to 80%, while decreasing the bioavailable fraction of Co, Zn, and Pb by approximately 50%; charcoal activated carbon amendments decreased the bioavailability of all trace metals analyzed by approximately 20%. In microcosms without an overlying water column, biochar and activated carbon amendments had no significant effects on trace metal bioavailability. This research demonstrates that biochar can effectively decrease the bioavailability of trace metals in marine sediments, but its efficiency is metal-specific, and environmental conditions impact biochar performance.

  17. TOTAL AND BIOAVAILABLE METALS AT MARINA SEDIMENTS IN LAKE TEXOMA

    EPA Science Inventory

    Total and bioavailable metals in sediments were measured at marina areas in Lake Texoma during the fall of 2001. The metals most often found in the highest concentrations in sediments were Ca (56811 mg/kg) and Al (31095 mg/kg), followed by Fe (19393 mg/kg), K (6089 mg/kg), and Mg...

  18. From conceptual model to remediation: bioavailability, a key to clean up heavy metal contaminated soils.

    NASA Astrophysics Data System (ADS)

    Petruzzelli, Gianniantonio; Pedron, Francesca; Pezzarossa, Beatrice

    2013-04-01

    Processes of metal bioavailability in the soil To know the bioavailability processes at site specific levels is essential to understand in detail the risks associated with pollution, and to support the decision-making process, i.e. description of the conceptual model and choice of clean up technologies. It is particularly important to assess how chemical, physical and biological processes in the soil affect the reactions leading to adsorption, precipitation or release of contaminants. The measurement of bioavailability One of the main difficulties in the practical application of the bioavailability concept in soil remediation is the lack of consensus on the method to be used to measure bioavailability. The best strategy is to apply a series of tests to assess bioavailability, since no applicable method is universally valid under all conditions. As an example, bioavailability tests for phytotechnology application should consider two distinct aspects: a physico-chemical driven solubilization process and a physiologically driven uptake process. Soil and plant characteristics strongly influence bioavailability. Bioavailability as a tool in remediation strategies Bioavailability can be used at all stages in remediation strategies: development of the conceptual model, evaluation of risk assessment, and selection of the best technology, considering different scenarios and including different environmental objectives. Two different strategies can be followed: the reduction and the increase of bioavailability. Procedures that reduce bioavailability aim to prevent the movement of pollutants from the soil to the living organisms, essentially by: i) removal of the labile phase of the contaminant, i.e. the fraction which is intrinsic to the processes of bioavailability (phytostabilization); ii) conversion of the labile fraction into a stable fraction (precipitation or adsorption); iii) increase of the resistance to mass transfer of the contaminants (inertization). Procedures

  19. Heavy metals in soils from Baia Mare mining impacted area (Romania) and their bioavailability

    NASA Astrophysics Data System (ADS)

    Roba, Carmen; Baciu, Calin; Rosu, Cristina; Pistea, Ioana; Ozunu, Alexandru

    2015-04-01

    Keywords: heavy metals, soil contamination, bioavailability, Romania The fate of various metals, including chromium, nickel, copper, manganese, mercury, cadmium, and lead, and metalloids, like arsenic, antimony, and selenium, in the natural environment is of great concern, particularly in the vicinity of former mining sites, dumps, tailings piles, and impoundments, but also in urban areas and industrial centres. Most of the studies focused on the heavy metal pollution in mining areas present only the total amounts of metals in soils. The bioavailable concentration of metals in soil may be a better predictor for environmental impact of historical and current dispersion of metals. Assessment of the metal bioavailability and bioaccessibility is critical in understanding the possible effects on soil biota. The bioavailability of metals in soil and their retention in the solid phase of soil is affected by different parameters like pH, metal amount, cation-exchange capacity, content of organic matter, or soil mineralogy. The main objectives of the present study were to determine the total fraction and the bioavailable fraction of Cu, Cd, Pb and Zn from soil in a well-known mining region in Romania, and to evaluate the influence of soil pH on the metal bioavailability in soil. The heavy metal contents and their bioavailability were monitored in a total of 50 soil samples, collected during June and July 2014 from private gardens of the inhabitants from Baia-Mare area. The main mining activities developed in the area consisted of non-ferrous sulphidic ores extraction and processing, aiming to obtain concentrates of lead, copper, zinc and precious metals. After 2006, the metallurgical industry has considerably reduced its activity by closing or diminishing its production capacity. The analysed soil samples proved to have high levels of Pb (50 - 830 mg/kg), Cu (40 - 600 mg/kg), Zn (100 - 700 mg/kg) and Cd (up to 10 mg/kg). The metal abundance in the total fraction is

  20. Effects of sediment geochemical properties on heavy metal bioavailability.

    PubMed

    Zhang, Chang; Yu, Zhi-gang; Zeng, Guang-ming; Jiang, Min; Yang, Zhong-zhu; Cui, Fang; Zhu, Meng-ying; Shen, Liu-qing; Hu, Liang

    2014-12-01

    As the largest container and resource of metals, sediment has a special role in the fate of metals. Factors influencing bioavailability of heavy metals in sediment have never been comprehensively considered and the sediment properties still fail to understand and even controversial. In this review, the mechanisms of sediment properties such as acid-volatile sulfides (AVS), organic matter, texture (clay, silt or sand) and geology, organism behaviors as well as those influencing the bioavailability of metals were analyzed. Under anoxic condition, AVS mainly reduce the solubility and toxicity of metals, while organic matters, Fe-Mn oxides, clay or silt can stabilize heavy metals in elevated oxidative-reductive potential (ORP). Other factors including the variation of pH, redox potential, aging as well as nutrition and the behavior of benthic organism in sediment also largely alter metals mobility and distribution. These factors are often inter-related, and various toxicity assessment methods used to evaluate the bioavailability of trace metals have been also discussed. Additionally, we expect that some novel synthetic materials like polysulfides, nano-materials, provide the substantial amendments for metals pollution in sediment.

  1. Estimation of bioavailability of metals from drilling mud barite.

    PubMed

    Neff, Jerry M

    2008-04-01

    Drilling mud and associated drill cuttings are the largest volume wastes associated with drilling of oil and gas wells and often are discharged to the ocean from offshore drilling platforms. Barite (BaSO4) often is added as a weighting agent to drilling muds to counteract pressure in the geologic formations being drilled, preventing a blowout. Some commercial drilling mud barites contain elevated (compared to marine sediments) concentrations of several metals. The metals, if bioavailable, may harm the local marine ecosystem. The bioavailable fraction of metals is the fraction that dissolves from the nearly insoluble, solid barite into seawater or sediment porewater. Barite-seawater and barite-porewater distribution coefficients (Kd) were calculated for determining the predicted environmental concentration (PEC; the bioavailable fraction) of metals from drilling mud barite in the water column and sediments, respectively. Values for Kdbarite-seawater and Kdbarite-porewater were calculated for barium, cadmium, chromium, copper, mercury, lead, and zinc in different grades of barite. Log Kdbarite-seawater values were higher (solubility was lower) for metals in the produced water plume than log Kdbarite-porewater values for metals in sediments. The most soluble metals were cadmium and zinc and the least soluble were mercury and copper. Log Kd values can be used with data on concentrations of metals in barite and of barite in the drilling mud-cuttings plume and in bottom sediments to calculate PECseawater and PECsediment.

  2. Estimation of bioavailability of metals from drilling mud barite.

    PubMed

    Neff, Jerry M

    2008-04-01

    Drilling mud and associated drill cuttings are the largest volume wastes associated with drilling of oil and gas wells and often are discharged to the ocean from offshore drilling platforms. Barite (BaSO4) often is added as a weighting agent to drilling muds to counteract pressure in the geologic formations being drilled, preventing a blowout. Some commercial drilling mud barites contain elevated (compared to marine sediments) concentrations of several metals. The metals, if bioavailable, may harm the local marine ecosystem. The bioavailable fraction of metals is the fraction that dissolves from the nearly insoluble, solid barite into seawater or sediment porewater. Barite-seawater and barite-porewater distribution coefficients (Kd) were calculated for determining the predicted environmental concentration (PEC; the bioavailable fraction) of metals from drilling mud barite in the water column and sediments, respectively. Values for Kdbarite-seawater and Kdbarite-porewater were calculated for barium, cadmium, chromium, copper, mercury, lead, and zinc in different grades of barite. Log Kdbarite-seawater values were higher (solubility was lower) for metals in the produced water plume than log Kdbarite-porewater values for metals in sediments. The most soluble metals were cadmium and zinc and the least soluble were mercury and copper. Log Kd values can be used with data on concentrations of metals in barite and of barite in the drilling mud-cuttings plume and in bottom sediments to calculate PECseawater and PECsediment. PMID:17994916

  3. Biomonitoring of trace metal bioavailabilities to the barnacle Amphibalanus amphitrite along the Iranian coast of the Persian Gulf.

    PubMed

    Nasrolahi, A; Smith, B D; Ehsanpour, M; Afkhami, M; Rainbow, P S

    2014-10-01

    The fouling barnacle Amphibalanus amphitrite is a cosmopolitan biomonitor of trace metal bioavailabilities, with an international comparative data set of body metal concentrations. Bioavailabilities of As, Cd, Cr, Cu, Fe, Mn, Pb, V and Zn to A. amphitrite were investigated at 19 sites along the Iranian coast of the understudied Persian Gulf. Commercial and fishing ports showed extremely high Cu bioavailabilities, associated with high Zn bioavailabilities, possibly from antifouling paints and procedures. V availability was raised at one port, perhaps associated with fuel leakage. Cd bioavailabilities were raised at sites near the Strait of Hormuz, perhaps affected by adjacent upwelling off Oman. The As data allow a reinterpretation of the typical range of accumulated As concentrations in A. amphitrite. The Persian Gulf data add a new region to the A. amphitrite database, confirming its importance in assessing the ecotoxicologically significant trace metal contamination of coastal waters across the world.

  4. Mobility and bioavailability of trace metals in sulfidic coastal sediments.

    PubMed

    Sundelin, B; Eriksson, A K

    2001-04-01

    High concentrations of Hg, Cd, Pb, Cu, and Zn were found in the euxinic sediment of the inner archipelago of Stockholm. In the sulfide-rich sediment, they are precipitated as metal sulfides with low dissolving capacity and bioavailability. In two experiments, the significance of acid-volatile sulfide (AVS) and dissolved sulfides for mobility, bioavailability, and toxicity of metals were studied by oxygenation of intact sediment cores. Influence of bioturbating deposit-feeding amphipods, that is, Monoporeia affinis, was examined on studied sediment processes. Results showed a low mobility of most metals except Cd and Zn. Bioturbation did not enhance mobility. Cd and Zn, released from the sediment, were not bioaccumulated in amphipods. In contrast, the less mobile metals Hg and Pb were bioaccumulated. A low toxicity of contaminated sediments, in terms of mortality and embryonic malformations of amphipods, was recorded. Results indicate that Cd, Zn, and Cu are comparatively unavailable after oxygenation of the metal sulfides. Similar results were recorded in contaminated sediments differing in redox potential, AVS, dissolved sulfides, and organic contents, suggesting that other metal ligands, in addition to AVS, are important for metal bioavailability and toxicity in anoxic and suboxic environments. PMID:11345449

  5. Pharmacological activity of metal binding agents that alter copper bioavailability

    PubMed Central

    Helsel, Marian E.

    2015-01-01

    Iron, copper and zinc are required nutrients for many organisms but also potent toxins if misappropriated. An overload of any of these metals can be cytotoxic and ultimately lead to organ failure, whereas deficiencies can result in anemia, weakened immune system function, and other medical conditions. Cellular metal imbalances have been implicated in neurodegenerative diseases, cancer and infection. It is therefore critical for living organisms to maintain careful control of both the total levels and subcellular distributions of these metals to maintain healthy function. This perspective explores several strategies envisioned to alter the bioavailability of metal ions by using synthetic metal-binding agents targeted for diseases where misappropriated metal ions are suspected of exacerbating cellular damage. Specifically, we discuss chemical properties that influence the pharmacological outcome of a subset of metal-binding agents known as ionophores, and review several examples that have shown multiple pharmacological activities in metal-related diseases, with a specific focus on copper. PMID:25797044

  6. Bioavailability of Sodium and Trace Metals under Direct and Indirect Effects of Compost in Urban Soils.

    PubMed

    Kargar, Maryam; Clark, O Grant; Hendershot, William H; Jutras, Pierre; Prasher, Shiv O

    2016-05-01

    The contamination of urban soil with sodium (Na) and trace metals can be one of the major concerns for groundwater contamination and street tree health. The bioavailability of Na, copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) in urban soil amended with 0, 5, and 10% w/w compost was evaluated at none, medium, and high contamination levels of soil mixtures. The relationship between soil properties, compost addition, contamination level and metal uptake by barley ( L.) was determined using multivariate linear regression and path analysis. The results indicated the direct negative effect of compost on metal absorption possibly through specific complexation for Cu, Zn, Cd, and Pb. Compost can also affect the absorption of Na and Cd indirectly by means of cation exchange capacity (CEC) and pH. The degree of soil contamination with metals can affect the competition of cations for the complexing sites of the soil mixtures and, therefore, can induce changes in metal availability for plants. Compost addition to the soil also increased nutrient availability, except for ammonium (NH) and nitrate (NO). We concluded that in the short term, the addition of compost significantly reduced metal bioavailability and improved nutrient availability. However, more studies are required to monitor the long-term ability of the compost to reduce Na and trace metal bioavailability in urban soil. PMID:27136168

  7. Bioavailability of Sodium and Trace Metals under Direct and Indirect Effects of Compost in Urban Soils.

    PubMed

    Kargar, Maryam; Clark, O Grant; Hendershot, William H; Jutras, Pierre; Prasher, Shiv O

    2016-05-01

    The contamination of urban soil with sodium (Na) and trace metals can be one of the major concerns for groundwater contamination and street tree health. The bioavailability of Na, copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) in urban soil amended with 0, 5, and 10% w/w compost was evaluated at none, medium, and high contamination levels of soil mixtures. The relationship between soil properties, compost addition, contamination level and metal uptake by barley ( L.) was determined using multivariate linear regression and path analysis. The results indicated the direct negative effect of compost on metal absorption possibly through specific complexation for Cu, Zn, Cd, and Pb. Compost can also affect the absorption of Na and Cd indirectly by means of cation exchange capacity (CEC) and pH. The degree of soil contamination with metals can affect the competition of cations for the complexing sites of the soil mixtures and, therefore, can induce changes in metal availability for plants. Compost addition to the soil also increased nutrient availability, except for ammonium (NH) and nitrate (NO). We concluded that in the short term, the addition of compost significantly reduced metal bioavailability and improved nutrient availability. However, more studies are required to monitor the long-term ability of the compost to reduce Na and trace metal bioavailability in urban soil.

  8. Dynamic speciation analysis and bioavailability of metals in aquatic systems.

    PubMed

    van Leeuwen, Herman P; Town, Raewyn M; Buffle, Jacques; Cleven, Rob F M J; Davison, William; Puy, Jaume; van Riemsdijk, Willem H; Sigg, Laura

    2005-11-15

    Dynamic metal speciation analysis in aquatic ecosystems is emerging as a powerful basis for development of predictions of bioavailability and reliable risk assessment strategies. A given speciation sensor is characterized by an effective time scale or kinetic window that defines the measurable metal species via their labilities. Here we review the current state of the art for the theory and application of dynamic speciation sensors. We show that a common dynamic interpretation framework, based on rigorous flux expressions incorporating the relevant diffusion and reaction steps, is applicable for a suite of sensors that span a range of time scales. Interpolation from a kinetic spectrum of speciation data is proposed as a practical strategy for addressing questions of bioavailability. Case studies illustrate the practical significance of knowledge on the dynamic features of metal complex species in relation to biouptake, and highlight the limitations of equilibrium-based models. PMID:16323747

  9. Factors affecting sequestration and bioavailability of phenanthrene in soils

    SciTech Connect

    White, J.C.; Kelsey, J.W.; Hatzinger, P.B.; Alexander, M.

    1997-10-01

    A study was conducted to determine factors affecting the sequestration and changes in bioavailability as phenanthrene persists in soils. Phenanthrene became sequestered in seven soils differing appreciably in organic matter and clay content as measured by earthworm uptake, bacterial mineralization, or extractability. Phenanthrene also became sequestered as it aged in soil aggregates of various sizes as measured by decline in availability to a bacterium, a mild extractant, or both. Wetting and drying a soil during aging reduced the amount of phenanthrene recovered by a mild extractant and the rate and extent of bacterial mineralization of the hydrocarbon. After biodegradation of phenanthrene added to the soil, more of the compound remained if it had been aged than if it had not been aged. Wetting and drying the soil during aging further increased the amount of phenanthrene remaining after biodegradation. The rate and extent of bacterial mineralization of phenanthrene were less in leached than in unleached soil. Aging/sequestration is thus markedly affected by soil properties and environmental factors.

  10. Mineralogy affects geoavailability, bioaccessibility and bioavailability of zinc

    PubMed Central

    Molina, Ramon M.; Schaider, Laurel A.; Donaghey, Thomas C.; Shine, James P.; Brain, Joseph D.

    2013-01-01

    We correlated mineralogical and particle characteristics of Zn-containing particles with Zn geoavailability, bioaccessibility, and bioavailability following gavage and intranasal (IN) administration in rats. We compared samples of Zn/Pb mine waste and five pulverized pure-phase Zn minerals (<38 μm). Particles were neutron-activated to produce radioactive 65Zn. We assessed geoavailability using sequential extractions and bioaccessibility using in vitro extraction tests simulating various pH and biological conditions. Zn in vivo bioavailability and in vitro bioaccessibility decreased as follows: mine waste > hydrozincite > hemimorphite > zincite ≈ smithsonite ≫ sphalerite. We found significant correlations among geoavailability, bioaccessibility and bioavailability. In particular, Zn bioavailability post-gavage and post-IN was significantly correlated with bioaccessibility in simulated phagolysosomal fluid and gastric fluid. These data indicate that solid phase speciation influences biological uptake of Zn and that in vitro tests can be used to predict Zn bioavailability in exposure assessment and effective remediation design. PMID:23933126

  11. Immobilization of Shewanella oneidensis MR-1 in diffusive gradients in thin films for determining metal bioavailability.

    PubMed

    Baker, Paul W; Högstrand, Christer; Lead, Jamie; Pickup, Roger W; Zhang, Hao

    2015-11-01

    Assessing metal bioavailability in soil is important in modeling the effects of metal toxicity on the surrounding ecosystem. Current methods based on diffusive gradient thin films (DGTs) and Gel-Integrated Microelectrode are limited in their availability and sensitivity. To address this, Shewanella oneidensis, an anaerobic iron reducing bacterium, was incorporated into a thin layer of agarose to replace the polyacrylamide gel that is normally present in DGT to form biologically mobilizing DGT (BMDGT). Viability analysis revealed that 16-35% of the cells remained viable within the BMDGTs depending on the culturing conditions over a 20 h period with/without metals. Deployment of BMDGTs in standardized metal solutions showed significant differences to cell-free BMDGTs when cells grown in Luria Broth (LB) were incorporated into BMDGTs and deployed under anaerobic conditions. Deployment of these BMDGTs in hematite revealed no significant differences between BMDGTs and BMDGTs containing heat killed cells. Whether heat killed cells retain the ability to affect bioavailability is uncertain. This is the first study to investigate how a microorganism that was incorporated into a DGT device such as the metal reducing bacteria, S. oneidensis, may affect the mobility of metals.

  12. Bioavailability and bioaccumulation of metal-based engineered nanomaterials in aquatic environments: concepts and processes: chapter 5

    USGS Publications Warehouse

    Luoma, Samuel N.; Khan, Farhan R.; Croteau, Marie-Noële

    2014-01-01

    Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me-ENMs via water, ingestion, and incidental surface exposure. Both metal released from the Me-ENM and uptake of the nanoparticle itself contribute to bioaccumulation. Some mechanisms of toxicity and some of the metrics describing exposure may differ from metals alone. Bioavailability is driven by complex interaction of particle attributes, environmental transformations, and biological traits. Characterization of Me-ENMs is an essential part of understanding bioavailability and requires novel methodologies. The relative importance of the array of processes that could affect Me-ENM bioavailability remains poorly known, but new approaches and models are developing rapidly. Enough is known, however, to conclude that traditional approaches to exposure assessment for metals would not be adequate to assess risks from Me-ENMs.

  13. Bioavailability assessment of essential and toxic metals in edible nuts and seeds.

    PubMed

    Moreda-Piñeiro, Jorge; Herbello-Hermelo, Paloma; Domínguez-González, Raquel; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2016-08-15

    Bioavailability of essential and toxic metals in edible nuts and seeds has been assessed by using an in vitro dialyzability approach. The samples studied included walnuts, Brazil nuts, Macadamia nuts, pecans, hazelnuts, chestnuts, cashews, peanuts, pistachios and seeds (almond, pine, pumpkin and sunflower). Metals were measured by inductively coupled plasma-mass spectrometry in dialyzates and also in samples after a microwave assisted acid digestion pre-treatment. Low dialyzability percentages were found for Al, Fe and Hg; moderate percentages were found for Ba, Ca, Cd, Co, Cu, K, Li, Mg, Mn, Mo, P, Pb, Se, Sr, Tl and Zn; and high dialyzability ratios were found for As, Cr and Ni. The highest dialyzability percentages were found in raw chestnuts and raw hazelnuts. Metal dialyzability was found to be negatively affected by fat content. Positive correlation was found between carbohydrate content and metal dialyzability ratios. Protein and dietary fibre content did not influence metal bioavailability. Predicted dialyzability for some metals based on fat and protein content could also be established.

  14. Bioavailability assessment of essential and toxic metals in edible nuts and seeds.

    PubMed

    Moreda-Piñeiro, Jorge; Herbello-Hermelo, Paloma; Domínguez-González, Raquel; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2016-08-15

    Bioavailability of essential and toxic metals in edible nuts and seeds has been assessed by using an in vitro dialyzability approach. The samples studied included walnuts, Brazil nuts, Macadamia nuts, pecans, hazelnuts, chestnuts, cashews, peanuts, pistachios and seeds (almond, pine, pumpkin and sunflower). Metals were measured by inductively coupled plasma-mass spectrometry in dialyzates and also in samples after a microwave assisted acid digestion pre-treatment. Low dialyzability percentages were found for Al, Fe and Hg; moderate percentages were found for Ba, Ca, Cd, Co, Cu, K, Li, Mg, Mn, Mo, P, Pb, Se, Sr, Tl and Zn; and high dialyzability ratios were found for As, Cr and Ni. The highest dialyzability percentages were found in raw chestnuts and raw hazelnuts. Metal dialyzability was found to be negatively affected by fat content. Positive correlation was found between carbohydrate content and metal dialyzability ratios. Protein and dietary fibre content did not influence metal bioavailability. Predicted dialyzability for some metals based on fat and protein content could also be established. PMID:27006225

  15. Proceedings: ISEA Bioavailability Symposium, Durham, North Carolina Use of InVitro Bioaccessibility/Relative Bioavailability Estimates for Metals in Regulatory Settings: What is Needed?

    EPA Science Inventory

    Oral ingestion of soil and dust is a key pathway for human exposures to metal and metalloid contaminants. It is widely recognized that the site-specific bioavailability of metals in soil and dust may be reduced relative to the metal bioavailability in media such as water and food...

  16. Bioavailability of cyanide and metal-cyanide mixtures to aquatic life.

    PubMed

    Redman, Aaron; Santore, Robert

    2012-08-01

    Cyanide can be toxic to aquatic organisms, and the U.S. Environmental Protection Agency has developed ambient water-quality criteria to protect aquatic life. Recent work suggests that considering free, rather than total, cyanide provides a more accurate measure of the biological effects of cyanides and provides a basis for water-quality criteria. Aquatic organisms are sensitive to free cyanide, although certain metals can form stable complexes and reduce the amount of free cyanide. As a result, total cyanide is less toxic when complexing metals are present. Cyanide is often present in complex effluents, which requires understanding how other components within these complex effluents can affect cyanide speciation and bioavailability. The authors have developed a model to predict the aqueous speciation of cyanide and have shown that this model can predict the toxicity of metal-cyanide complexes in terms of free cyanide in solutions with varying water chemistry. Toxicity endpoints based on total cyanide ranged over several orders of magnitude for various metal-cyanide mixtures. However, predicted free cyanide concentrations among these same tests described the observed toxicity data to within a factor of 2. Aquatic toxicity can be well-described using free cyanide, and under certain conditions the toxicity was jointly described by free cyanide and elevated levels of bioavailable metals.

  17. Mineral surfaces and bioavailability of heavy metals: A molecular-scale perspective

    PubMed Central

    Brown, Gordon E.; Foster, Andrea L.; Ostergren, John D.

    1999-01-01

    There is a continual influx of heavy metal contaminants and pollutants into the biosphere from both natural and anthropogenic sources. A complex variety of abiotic and biotic processes affects their speciation and distribution, including adsorption onto and desorption from mineral surfaces, incorporation in precipitates or coprecipitates, release through the dissolution of minerals, and interactions with plants and microbes. Some of these processes can effectively isolate heavy metals from the biosphere, whereas others cause their release or transformation to different species that may be more (or less) bioavailable and/or toxic to organisms. Here we focus on abiotic adsorption and precipitation or coprecipitation processes involving the common heavy metal contaminant lead and the metalloids arsenic and selenium in mine tailings and contaminated soils. We have used extremely intense x-rays from synchrotron sources and a structure-sensitive method known as x-ray absorption fine structure (XAFS) spectroscopy to determine the molecular-level speciation of these elements at concentrations of 50 to several thousand ppm in the contaminated environmental samples as well as in synthetic sorption samples. Our XAFS studies of As and Pb in the mine tailings show that up to 50% of these contaminants in the samples studied may be present as adsorbed species on mineral surfaces, which makes them potentially more bioavailable than when present in sparingly soluble solid phases. Our XAFS studies of Se(VI) sorption on Fe2+-containing sulfates show that this element undergoes redox reactions that transform it into less bioavailable and less toxic species. This type of information on molecular-level speciation of heavy metal and metalloid contaminants in various environmental settings is needed to prioritize remediation efforts and to assess their potential hazard to humans and other organisms. PMID:10097048

  18. Assessment of metal enrichment and their bioavailability in sediment and bioaccumulation by mangrove plant pneumatophores in a tropical (Zuari) estuary, west coast of India.

    PubMed

    Noronha-D'Mello, Cheryl A; Nayak, G N

    2016-09-15

    Sediment collected from the estuarine mangroves of the Zuari estuary and Cumbharjua canal were analyzed to assess the concentration, contamination and bioavailability of metals. Mangrove pneumatophores were also analyzed to understand the metal bioaccumulation in mangrove plants. The results indicated the variation of metal concentrations in sediment along the estuary was attributed to changing hydrodynamic conditions, type of sediment and metal sources. Further, speciation studies revealed that Fe, Cr, Co, Ni, Cu and Zn were mainly of lithogenic origin and less bioavailable while high Mn content in the sediment raised concerns over its potential mobility, bioavailability and subsequent toxicity. The mangrove plants exhibited difference in metal accumulation due to variations in sediment parameters and metal availability, in addition to difference in plant species and tissue physiology that affect metal uptake. Moreover, the mangrove plants reflected the quality of the underlying sediment and can be used as a potential bio-indicator tool. PMID:27325605

  19. Assessment of metal enrichment and their bioavailability in sediment and bioaccumulation by mangrove plant pneumatophores in a tropical (Zuari) estuary, west coast of India.

    PubMed

    Noronha-D'Mello, Cheryl A; Nayak, G N

    2016-09-15

    Sediment collected from the estuarine mangroves of the Zuari estuary and Cumbharjua canal were analyzed to assess the concentration, contamination and bioavailability of metals. Mangrove pneumatophores were also analyzed to understand the metal bioaccumulation in mangrove plants. The results indicated the variation of metal concentrations in sediment along the estuary was attributed to changing hydrodynamic conditions, type of sediment and metal sources. Further, speciation studies revealed that Fe, Cr, Co, Ni, Cu and Zn were mainly of lithogenic origin and less bioavailable while high Mn content in the sediment raised concerns over its potential mobility, bioavailability and subsequent toxicity. The mangrove plants exhibited difference in metal accumulation due to variations in sediment parameters and metal availability, in addition to difference in plant species and tissue physiology that affect metal uptake. Moreover, the mangrove plants reflected the quality of the underlying sediment and can be used as a potential bio-indicator tool.

  20. Assessing the oral bioavailability of metals in soil in terrestrial animals

    SciTech Connect

    Tier, A.J. La; Schoof, R.A.; Pastorok, R.A.

    1995-12-31

    The oral bioavailability of metals in soil is controlled by the mineral form of the metals, and by the physical and chemical characteristics of the soil matrix that limit metal dissolution in the gastrointestinal tract. Although soil metal bioavailability may be generally reduced compared to the bioavailability of metals in water or diet, anatomic and physiological characteristics of individual receptor species are expected to cause substantial variations in bioavailability among species. For example, the short gastrointestinal transit times in carnivores may minimize metal dissolution, while the longer transit times in ruminants may allow more time for metals to dissolve in the gastrointestinal tract. The actual extent of metal dissolution in these species will also be very dependent on the stomach pH, so that a higher pH in a species with a longer transit time might result in similar absorption rates as those observed in a species with a lower stomach pH and shorter transit times. Pertinent anatomical and physiological features of typical terrestrial receptor species will be summarized and evaluated. Recently published (and unpublished) data on the bioavailability of arsenic, cadmium and lead in soil in various animal species will be used to illustrate the differences among species. Important design factors to consider in evaluating bioavailability studies, such as age of the animals and method of administration of soil will be addressed.

  1. DISTRIBUTION OF PARAMETERS DETERMINING BIOAVAILABILITY OF METALS IN EUROPEAN SOILS

    EPA Science Inventory

    As part of a program to develop a predictive model of bioavailability and toxicity of copper in soils to terrestrial organisms, 19 soils from 9 countries of the EU were collected and analyzed for use in bioavailability tests. However, it is desired that the model be of use on a ...

  2. Assessment of heavy metals bioavailability and toxicity toward Vibrio fischeri in sediment of the Huelva estuary.

    PubMed

    Rosado, Daniel; Usero, José; Morillo, José

    2016-06-01

    Relationship between toxicity and bioavailable metals in sediments from the Huelva estuary and its littoral of influence was analyzed. Toxicity was assessed with Microtox® bioassay using a marine luminescent bacterium: Vibrio fischeri. Bioavailable metals were considered as both, acid extractable fraction of BCR procedure and the sum of exchangeable and bound to carbonates fractions of Tessier sequential extraction. A bioavailable metals index was calculated to integrate results in a single figure. Toxicity and bioavailable metals showed a similar pattern. Higher levels were found in the estuary than in the littoral (140 TU/g). In Huelva estuary, highest levels were found in the Tinto estuary (5725 TU/g), followed by the Odiel estuary (5100 TU/g) and the Padre Santo Canal (2500 TU/g). Results in this area were well over than those in nearby estuaries. Furthermore, they are similar to or even higher than those in other polluted sediments around the world. Bioavailable metal index showed a stronger correlation with acid extractable fraction of BCR (R(2) = 0.704) than that for the sum of exchangeable and bound to carbonates fractions of Tessier (R(2) = 0.661). These results suggest that bioavailable metals are an important source of sediment toxicity in the Huelva estuary and its littoral of influence, an area with one of the highest mortality risks of Spain. PMID:27002282

  3. Accounting for metal bioavailability in assessing water quality: A step change?

    PubMed

    Merrington, Graham; Peters, Adam; Schlekat, Christian E

    2016-02-01

    Bioavailability of metals to aquatic organisms can be considered to be a combination of the physicochemical factors governing metal behavior and the specific pathophysiological characteristics of the organism's biological receptor. Effectively this means that a measure of bioavailability will reflect the exposures that organisms in the water column actually "experience". This is important because it has long been established that measures of total metal in waters have limited relevance to potential environmental risk. The concept of accounting for bioavailability in regard to deriving and implementing environmental water quality standards is not new, but the regulatory reality has lagged behind the development of scientific evidence supporting the concept. Practical and technical reasons help to explain this situation. For example, concerns remain from regulators and the regulated that the efforts required to change existing systems of metal environmental protection that have been in place for over 35 yr are so great as not to be commensurate with likely benefits. However, more regulatory jurisdictions are now considering accounting for metal bioavailability in assessments of water quality as a means to support evidence-based decision-making. In the past decade, both the US Environmental Protection Agency and the European Commission have established bioavailability-based standards for metals, including Cu and Ni. These actions have shifted the debate toward identifying harmonized approaches for determining when knowledge is adequate to establish bioavailability-based approaches and how to implement them.

  4. Relationship between plant biodiversity and heavy metal bioavailability in grasslands overlying an abandoned mine.

    PubMed

    Hernández, A J; Pastor, J

    2008-04-01

    Abandoned metal mines in the Sierra de Guadarrama, Madrid, Spain, are often located in areas of high ecological value. This is true of an abandoned barium mine situated in the heart of a bird sanctuary. Today the area sustains grasslands, interspersed with oakwood formations of Quercus ilex and heywood scrub (Retama sphaerocarpa L.), used by cattle, sheep and wild animals. Our study was designed to establish a relationship between the plant biodiversity of these grasslands and the bioavailability of heavy metals in the topsoil layer of this abandoned mine. We conducted soil chemical analyses and performed a greenhouse evaluation of the effects of different soil heavy metal concentrations on biodiversity. The greenhouse bioassays were run for 6 months using soil samples obtained from the mine polluted with heavy metals (Cu, Zn, Pb and Cd) and from a control pasture. Soil heavy metal and Na concentrations, along with the pH, had intense negative effects on plant biodiversity, as determined through changes in the Shannon index and species richness. Numbers of grasses, legumes, and composites were reduced, whilst other species (including ruderals) were affected to a lesser extent. Zinc had the greatest effect on biodiversity, followed by Cd and Cu. When we compared the sensitivity of the biodiversity indicators to the different metal content variables, pseudototal metal concentrations determined by X-ray fluorescence (XRF) were the most sensitive, followed by available and soluble metal contents. Worse correlations between biodiversity variables and metal variables were shown by pseudototal contents obtained by plasma emission spectroscopy (ICP-OES). Our results highlight the importance of using as many different indicators as possible to reliably assess the response shown by plants to heavy metal soil pollution.

  5. Effect of plants on the bioavailability of metals and other chemical properties of biosolids in a column study.

    PubMed

    Huynh, Trang T; Laidlaw, W Scott; Singh, Balwant; Zhang, Hao; Baker, Alan J M

    2012-10-01

    The effects of metal-accumulating plants (Salix x reichardtii and Populus balsamifera) on the chemical properties and dynamics of metals in biosolids were investigated using different techniques including diffusive gradients in thin films (DGT), sequential extraction procedures and partitioning coefficient (K(d)). Plants could effectively extract Cd, Ni, and Zn and decreased dissolved organic carbon (DOC). The presence of plants increased the potential bioavailability of these metals, as assessed by an increase in the ratio of metal measured by DGT and metals in the solution. The plants affected the Cd, Ni, and Zn pools (soluble/exchangeable; Fe/Mn oxide and organic matter bound) characterised by sequential extraction and K(d) but did not reduce the total metals in either substrate. However, plants had no effect on Cu, presumably because of the effective buffering of available Cu by organic matter in both solution and solid phases. A high density of plant roots was associated with increased leaching of metals.

  6. Climate change effects on enchytraeid performance in metal-polluted soils explained from changes in metal bioavailability and bioaccumulation.

    PubMed

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2015-10-01

    Climate change may alter physical, chemical and biological properties of ecosystems, affecting organisms but also the fate of chemical pollutants. This study aimed to find out how changes in climate conditions (air temperature, soil moisture content) affect the toxicity of metal-polluted soils to the soft-bodied soil organism Enchytraeus crypticus, linking enchytraeid performance with changes in soil available and body metal concentrations. Bioassays with E. crypticus were performed under different combinations of air temperature (20 and 25 °C) and soil moisture content (50% and 30% of the soil water holding capacity, WHC) in dilution series of three metal-polluted soils (mine tailing, forest and watercourse). After 21 d exposure, enchytraeid reproduction was determined, and soil available (extracted with 0.01 M CaCl2) and body Cd, Cu, Pb and Zn concentrations in surviving adults were determined. In general, Cd, Pb and Zn availability decreased upon incubation under the different climate scenarios. In the watercourse soil, with initially higher available metal concentrations (678 µg Cd kg(-1), 807 µg Pb kg(-1) and 31,020 µg Zn kg(-1)), decreases were greatest at 50% WHC probably due to metal immobilization as carbonates. Enchytraeid reproduction was negatively affected by higher available metal concentrations, with reductions up to 98% in the watercourse soil compared to the control soil at 30% WHC. Bioaccumulation of Cd, Pb and Zn was higher when drier conditions were combined with the higher temperature of 25 °C. Changes in metal bioavailability and bioaccumulation explained the toxicity of soil polluted by metal mine wastes to enchytraeids under changing environmental conditions. PMID:26162961

  7. Climate change effects on enchytraeid performance in metal-polluted soils explained from changes in metal bioavailability and bioaccumulation.

    PubMed

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2015-10-01

    Climate change may alter physical, chemical and biological properties of ecosystems, affecting organisms but also the fate of chemical pollutants. This study aimed to find out how changes in climate conditions (air temperature, soil moisture content) affect the toxicity of metal-polluted soils to the soft-bodied soil organism Enchytraeus crypticus, linking enchytraeid performance with changes in soil available and body metal concentrations. Bioassays with E. crypticus were performed under different combinations of air temperature (20 and 25 °C) and soil moisture content (50% and 30% of the soil water holding capacity, WHC) in dilution series of three metal-polluted soils (mine tailing, forest and watercourse). After 21 d exposure, enchytraeid reproduction was determined, and soil available (extracted with 0.01 M CaCl2) and body Cd, Cu, Pb and Zn concentrations in surviving adults were determined. In general, Cd, Pb and Zn availability decreased upon incubation under the different climate scenarios. In the watercourse soil, with initially higher available metal concentrations (678 µg Cd kg(-1), 807 µg Pb kg(-1) and 31,020 µg Zn kg(-1)), decreases were greatest at 50% WHC probably due to metal immobilization as carbonates. Enchytraeid reproduction was negatively affected by higher available metal concentrations, with reductions up to 98% in the watercourse soil compared to the control soil at 30% WHC. Bioaccumulation of Cd, Pb and Zn was higher when drier conditions were combined with the higher temperature of 25 °C. Changes in metal bioavailability and bioaccumulation explained the toxicity of soil polluted by metal mine wastes to enchytraeids under changing environmental conditions.

  8. Assessment of bioavailability of heavy metal pollutants using soil isolates of Chlorella sp.

    PubMed

    Krishnamurti, Gummuluru S R; Subashchandrabose, Suresh R; Megharaj, Mallavarapu; Naidu, Ravi

    2015-06-01

    Biotests conducted with plants are presently used to estimate metal bioavailability in contaminated soils. But when plants are grown in soils, especially the plants with fine roots, root collection is easily biased and tedious. Indeed, at harvest, small amounts of soil can adhere to roots, resulting in overestimation of root metal content, and the finest roots are often discarded from the analysis because of their difficult and almost impossible recovery. This report presents a novel method for assessing the bioavailability of heavy metals in soils using microalgae. Two species of green unicellular microalgae were isolated from two highly contaminated soils and identified by phylogenetic and molecular evolutionary analyses as Chlorella sp. RBM and Chlorella sp. RHM. These two cultures were used to determine the metal uptake from metal-contaminated soils of South Australia as a novel, cost-effective, simple and rapid method for assessing the bioavailability of heavy metals in soils. The suggested method is an attempt to achieve a realistic estimate of bioavailability which overcomes the inherent drawback of root metal contamination in the bioavailability indices so far reported.

  9. Induced metal redistribution and bioavailability enhancement in contaminated river sediment during in situ biogeochemical remediation.

    PubMed

    Liu, Tongzhou; Zhang, Zhen; Mao, Yanqing; Yan, Dickson Y S

    2016-04-01

    In situ sediment remediation using Ca(NO3)2 or CaO2 for odor mitigation and acid volatile sulfide (AVS) and organic pollutant (such as TPH and PAHs) removal was reported in many studies and fieldwork. Yet, the associated effects on metal mobilization and potential distortion in bioavailability were not well documented. In this study, contaminated river sediment was treated by Ca(NO3)2 and CaO2 in bench studies. Through the investigation of AVS removal, organic matter removal, the changes in sediment oxidation-reduction potential (ORP), microbial activity, and other indigenous parameters, the effects on metal bioavailability, bioaccessibility, and fraction redistribution in sediment were evaluated. The major mechanisms for sediment treated by Ca(NO3)2 and CaO2 are biostimulation with indigenous denitrifying bacteria and chemical oxidation, respectively. After applying Ca(NO3)2 and CaO2, the decreases of metal concentrations in the treated sediment were insignificant within a 35-day incubation period. However, the [SEMtot-AVS]/f OC increased near to the effective boundary of toxicity (100 μmol g(-1) organic carbon (OC)), indicating that both bioavailability and bioaccessibility of metals (Cu, Zn, and Ni) to benthic organisms are enhanced after remediation. Metals were found redistributed from relatively stable fractions (oxidizable and residual fractions) to weakly bound fractions (exchangeable and reducible fractions), and the results are in line with the enhanced metal bioavailability. Compared with Ca(NO3)2, CaO2 led to higher enhancement in metal bioavailability and bioaccessibility, and more significant metal redistribution, probably due to its stronger chemical reactive capacity to AVS and sediment organic matter. The reactions in CaO2-treated sediment would probably shift from physicochemical to biochemical heterotrophic oxidation for sediment organic matter degradation. Therefore, further investigation on the long-term metal redistribution and associated

  10. Induced metal redistribution and bioavailability enhancement in contaminated river sediment during in situ biogeochemical remediation.

    PubMed

    Liu, Tongzhou; Zhang, Zhen; Mao, Yanqing; Yan, Dickson Y S

    2016-04-01

    In situ sediment remediation using Ca(NO3)2 or CaO2 for odor mitigation and acid volatile sulfide (AVS) and organic pollutant (such as TPH and PAHs) removal was reported in many studies and fieldwork. Yet, the associated effects on metal mobilization and potential distortion in bioavailability were not well documented. In this study, contaminated river sediment was treated by Ca(NO3)2 and CaO2 in bench studies. Through the investigation of AVS removal, organic matter removal, the changes in sediment oxidation-reduction potential (ORP), microbial activity, and other indigenous parameters, the effects on metal bioavailability, bioaccessibility, and fraction redistribution in sediment were evaluated. The major mechanisms for sediment treated by Ca(NO3)2 and CaO2 are biostimulation with indigenous denitrifying bacteria and chemical oxidation, respectively. After applying Ca(NO3)2 and CaO2, the decreases of metal concentrations in the treated sediment were insignificant within a 35-day incubation period. However, the [SEMtot-AVS]/f OC increased near to the effective boundary of toxicity (100 μmol g(-1) organic carbon (OC)), indicating that both bioavailability and bioaccessibility of metals (Cu, Zn, and Ni) to benthic organisms are enhanced after remediation. Metals were found redistributed from relatively stable fractions (oxidizable and residual fractions) to weakly bound fractions (exchangeable and reducible fractions), and the results are in line with the enhanced metal bioavailability. Compared with Ca(NO3)2, CaO2 led to higher enhancement in metal bioavailability and bioaccessibility, and more significant metal redistribution, probably due to its stronger chemical reactive capacity to AVS and sediment organic matter. The reactions in CaO2-treated sediment would probably shift from physicochemical to biochemical heterotrophic oxidation for sediment organic matter degradation. Therefore, further investigation on the long-term metal redistribution and associated

  11. Bioavailability of heavy metals in soils: definitions and practical implementation--a critical review.

    PubMed

    Kim, Rog-Young; Yoon, Jeong-Ki; Kim, Tae-Seung; Yang, Jae E; Owens, Gary; Kim, Kwon-Rae

    2015-12-01

    Worldwide regulatory frameworks for the assessment and remediation of contaminated soils have moved towards a risk-based approach, taking contaminant bioavailability into consideration. However, there is much debate on the precise definition of bioavailability and on the standardization of methods for the measurement of bioavailability so that it can be reliably applied as a tool for risk assessment. Therefore, in this paper, we reviewed the existing definitions of heavy metal bioavailability in relation to plant uptake (phytoavailability), in order to better understand both the conceptual and operational aspects of bioavailability. The related concepts of specific and non-specific adsorption, as well as complex formation and organic ligand affinity were also intensively discussed to explain the variations of heavy metal solubility and mobility in soils. Further, the most frequently used methods to measure bioavailable metal soil fractions based on both chemical extractions and mechanistic geochemical models were reviewed. For relatively highly mobile metals (Cd, Ni, and Zn), a neutral salt solution such as 0.01 M CaCl2 or 1 M NH4NO3 was recommended, whereas a strong acid or chelating solution such as 0.43 M HNO3 or 0.05 M DTPA was recommended for strongly soil-adsorbed and less mobile metals (Cu, Cr, and Pb). While methods which assessed the free metal ion activity in the pore water such as DGT and DMT or WHAM/Model VI, NICA-Donnan model, and TBLM are advantageous for providing a more direct measure of bioavailability, few of these models have to date been properly validated.

  12. Metal-solid interactions controlling the bioavailability of mercury from sediments to clams and sipunculans.

    PubMed

    Zhong, Huan; Wang, Wen-Xiong

    2006-06-15

    The bioavailability of sedimentary Hg(II) and methylmercury (MeHg) was quantified by measuring the assimilation efficiency (AE) in the clam Ruditapes philippinarum and the extraction of the gut juices from the sipunculan Sipunculus nudus. Three factors (Hg concentration in sediment, Hg sediment contact time, and organic content of sediments) were modified to examine metal-solid interactions in controlling Hg bioavailability. The Hg AEs in the clams were strongly correlated with the extraction from the sipunculan gut juices for both Hg species. The bioavailability of both Hg(II) and MeHg generally increased with increased sediment Hg concentration but decreased with sedimentmetal contact time and increasing organic content (except that MeHg was not influenced by organic content). Hg(II) speciation in sediments, quantified by sequential chemical extraction (SCE), was dependent on geochemical conditions and greatly controlled the mobility and bioavailability of Hg(II) in sediments. Most bioavailable Hg(II) originated from the strongly complexed phase (e.g., Hg bound up in Fe/Mn oxide, amorphous organosulfur, or mineral lattice), whereas Hg bound with the organocomplexed phase (Hg humic and Hg2Cl2) was not bioavailable. Hg bound with the other geochemical phases (water soluble, HgO, HgSO4, and HgS) contributed very little to the bioavailable Hg due to their low partitionings. Further, the amount of bioavailable Hg was inversely related to the particle reactivity of Hg with the sediments. Detailed analyses of metal-solid interactions provide a better understanding of how Hg in sediments can predict Hg concentration and therefore bioavailability in benthic invertebrates.

  13. Spatial and temporal variability in metal bioavailability and toxicity of sediment from Hamilton Harbour, Lake Ontario

    SciTech Connect

    Krantzberg, G. )

    1994-10-01

    Trace metals in sediment from nearshore urban and industrialized centers of the Great Lakes are frequently at concentrations well above geological background values. Total metal content in sediment, however, is a weak predictor of sediment toxicity. This study examined the bioavailability of metals from Hamilton Harbor in Lake Ontario and considered variability in metal forms on a temporal basis. Sediment from regions within Hamilton Harbor is highly contaminated with metals; nevertheless, not all metal-contaminated sites were toxic to test organisms. Most sediment did elicit sublethal and/or lethal responses in bioassay organisms. Metal bioavailability, as measured by weak acid extractions, metal bioaccumulation by fathead minnows, and sediment toxicity, was greater in sediment collected in the fall as compared to sediment collected in the spring. Results of analyses of tissue residues in test organisms and the reduced toxicity observed in sediment collected from some stations in the spring as compared to the fall implicate trace metals and sediment oxygen demand as contributing to sediment toxicity. The suitability for colonization by benthic invertebrates of sediment in some areas of Hamilton Harbor appears to be limited by both contaminants and high sediment oxygen demand. Improving the oxygen regime of the harbor should result in improvements in the benthic invertebrate community directly, by providing a suitable oxygen regime for organisms less tolerant of temporal anoxia, and indirectly by decreasing metal bioavailability, possibly through the co-precipitation of trace metals with iron and manganese hydroxides.

  14. BIOAVAILABILITY OF METALS IN CONTAMINATED SOIL AND DUST

    EPA Science Inventory

    Due to widespread metal contamination, it is necessary to characterize soils suspected of metal contamination and determine if the metal levels in these soils pose a hazard. Metal toxicity is often not directly related to the total concentration of metals present due to a numb...

  15. Bioavailability of Cd, Zn and Hg in Soil to Nine Recombinant Luminescent Metal Sensor Bacteria

    PubMed Central

    Bondarenko, Olesja; Rõlova, Taisia; Kahru, Anne; Ivask, Angela

    2008-01-01

    A set of nine recombinant heavy metal-specific luminescent bacterial sensors belonging to Gram-negative (Escherichia and Pseudomonas) and Gram-positive (Staphylococcus and Bacillus) genera and containing various types of recombinant metal-response genetic elements was characterized for heavy metal bioavailability studies. All nine strains were induced by Hg and Cd and five strains also by Zn. As a lowest limit, the sensors were detecting 0.03 μg·L-1 of Hg, 2 μg·L-1 of Cd and 400 μg·L-1 of Zn. Limit of determination of the sensors depended mostly on metal-response element, whereas the toxicity of those metals towards the sensor bacteria was mostly dependent on the type of the host bacterium, with Gram-positive strains being more sensitive than Gram-negative ones. The set of sensors was used to evaluate bioavailability of Hg, Cd and Zn in spiked soils. The bioavailable fraction of Cd and Zn in soil suspension assay (2.6 – 5.1% and 0.32 – 0.61%, of the total Cd and Zn, respectively) was almost comparable for all the sensors, whereas the bioavailability of Hg was about 10-fold higher for Gram-negative sensor cells (30.5% of total Hg), compared to Gram-positive ones (3.2% of the total Hg). For Zn, the bioavailable fraction in soil-water suspensions and respective extracts was comparable (0.37 versus 0.33% of the total Zn). However, in the case of Cd, for all the sensors used and for Hg concerning only Gram-negative sensor strains, the bioavailable fraction in soil-water suspensions exceeded the water-extracted fraction about 14-fold, indicating that upon direct contact, an additional fraction of Cd and Hg was mobilized by those sensor bacteria. Thus, for robust bioavailability studies of heavy metals in soils any type of genetic metal-response elements could be used for the construction of the sensor strains. However, Gram-positive and Gram-negative senor strains should be used in parallel as the bioavailability of heavy metals to those bacterial groups may be

  16. Effect of coastal eutrophication on heavy metal bioaccumulation and oral bioavailability in the razor clam, Sinonovacula constricta.

    PubMed

    Tu, Tengxiu; Li, Shunxing; Chen, Lihui; Zheng, Fengying; Huang, Xu-Guang

    2014-10-01

    As traditional seafoods, the razor clams are widely distributed from tropical to temperate areas. Coastal razor clams are often exposed to eutrophication. Heavy metal contamination is critical for seafood safety. However, how eutrophication affects bioaccumulation and oral bioavailability of heavy metals in the razor clams is unknown. After a four-month field experimental cultivation, heavy metals (Fe, Cu, Ni, V, As, and Pb) could be bioaccumulated by the razor clams (Sinonovacula constricta) through exposure to metals present in water and sediments or in the food chain, and then transferred to human via consumption of razor clams. Bionic gastrointestinal digestion and monolayer liposome extraction are used for metal oral bioavailability (OBA) assessment. The influence of eutrophication on OBA is decreased for Fe and Pb and increased for V. A significant positive linear correlation was observed between the bioaccumulation factors of Fe, Ni, V, and As in razor clams and the coastal eutrophication. These results may be due to the effect of eutrophication on metal species transformation in coastal seawater and subcellular distribution in razor clams. The maximum allowable daily intakes of razor clams are controlled by eutrophication status and the concentration of affinity-liposome As in razor clams.

  17. TOTAL DISSOLVED AND BIOAVAILABLE METALS AT LAKE TEXOMA MARINAS

    EPA Science Inventory

    Dissolved metals in water and total metals in sediments have been measured at marina areas in Lake Texoma during June 1999 to October 2001, and October 2001, respectively. The metals most often found in the highest concentrations in marina water were Na and Ca, followed by Mg an...

  18. Evaluation of trace metals bioavailability in Japanese river waters using DGT and a chemical equilibrium model.

    PubMed

    Han, Shuping; Naito, Wataru; Hanai, Yoshimichi; Masunaga, Shigeki

    2013-09-15

    To develop efficient and effective methods of assessing and managing the risk posed by metals to aquatic life, it is important to determine the effects of water chemistry on the bioavailability of metals in surface water. In this study, we employed the diffusive gradients in thin-films (DGT) to determine the bioavailability of metals (Ni, Cu, Zn, and Pb) in Japanese water systems. The DGT results were compared with a chemical equilibrium model (WHAM 7.0) calculation to examine its robustness and utility to predict dynamic metal speciation. The DGT measurements showed that biologically available fractions of metals in the rivers impacted by mine drainage and metal industries were relatively high compared with those in urban rivers. Comparison between the DGT results and the model calculation indicated good agreement for Zn. The model calculation concentrations for Ni and Cu were higher than the DGT concentrations at most sites. As for Pb, the model calculation depended on whether the precipitated iron(III) hydroxide or precipitated aluminum(III) hydroxide was assumed to have an active surface. Our results suggest that the use of WHAM 7.0 combined with the DGT method can predict bioavailable concentrations of most metals (except for Pb) with reasonable accuracy.

  19. Fate, behavior, and bioavailability of metal and metal oxide nanomaterials in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Bertsch, P. M.; Unrine, J. M.; Judy, J.; Tsyusko, O.

    2012-12-01

    Despite the benefits that are currently being manifested and those transformative breakthroughs that will undoubtedly result from advances in nanotechnology, concerns surrounding the potential negative impacts to the environment and human health and welfare continue to emerge. Information on the transport and fate of manufactured nanomaterials (MNMs) in the environment and on their potential effects to human and ecological receptors is emerging at an increasing rate. Notwithstanding these developments, the research enterprise focused on the environmental implications of nanotechnology is in its infancy and few unifying principles have yet to emerge. This lack of unanimity is related to many factors including, the vast diversity in chemical composition, size, shape, and surface chemical properties of MNMs, as well as the range of receptor species and cell lines investigated. Additionally, the large variation in exposure methodologies employed by various investigators as well as the discrepancies in the amount and quality of characterization data collected to support specific conclusions, provide major challenges for developing unifying concepts and principles. As the utilization of MNMs for a large variety of applications is currently in an exponential growth phase, there is great urgency to develop information that can be used to identify priority areas for assessing risks to humans and the environment, as well as in developing potential mitigation strategies. We have been investigating the fate, behavior, and potential impacts of MNMs released into terrestrial ecosystems by examining the bioavailability and toxicity as well as the trophic transfer of a range of metal and metal oxide nanoparticles (Ag, Au, Cu, TiO2, ZnO, CeO2) to microorganisms, detritivores, and plants. Interdisciplinary studies include the characterization of the nanoparticles and aged nanoparticles in complex media, the distribution of nanoparticles in biological tissues, nanoparticle toxicity

  20. Influence of eutrophication on metal bioaccumulation and oral bioavailability in oysters, Crassostrea angulata.

    PubMed

    Li, Shun-Xing; Chen, Li-Hui; Zheng, Feng-Ying; Huang, Xu-Guang

    2014-07-23

    Oysters (Crassostrea angulata) are often exposed to eutrophication. However, how these exposures influence metal bioaccumulation and oral bioavailability (OBA) in oysters is unknown. After a four month field experimental cultivation, bioaccumulation factors (BAF) of metals (Fe, Cu, As, Cd, and Pb) from seawater to oysters and metal oral bioavailability in oysters by bionic gastrointestinal tract were determined. A positive effect of macronutrient (nitrate N and total P) concentration in seawater on BAF of Cd in oysters was observed, but such an effect was not significant for Fe, Cu, Pb, and As. Only OBA of As was significantly positively correlated to N and P contents. For Fe, OBA was negatively correlated with N. The regular variation of the OBA of Fe and As may be due to the effect of eutrophication on the synthesis of metal granules and heat-stable protein in oysters, respectively.

  1. Bioavailability and Natural Pollution of Heavy Metals in Bahia de Magdalena, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Lee, W.; O'Shea, B.

    2012-12-01

    In the pristine environment of Bahia de Magdalena, Baja California, elevated concentrations of heavy metals have been reported in the biota within the bay, such as sea grasses, blue crabs, and marine turtles. While the hypothesized source of these metals has emphasized anthropogenic inputs from a local fish cannery, geologic enrichment of metals from natural ophiolite formations in the Puerto Magdalena region may be an increasingly feasible source. Total (XRF) chromium and nickel concentrations (max 4,450 ppm and 2,396 ppm, respectively) in rock and soil are orders of magnitude higher than average concentrations in the crust and the beach sands directly impacted by waste discharge from the cannery (mean Cr, 55ppm and mean Ni 17ppm at cannery). Bioavailable (HNO3 acid extracted) metals differ between rock and soil versus cannery-impacted sites. Most notably, Ni is very bioavailable (mean 70% total Ni extracted) in pristine ophiolite areas, but almost completely unavailable at cannery-impacted sites. In contrast, Zn is slightly more bioavailable at the impacted cannery site (mean 55% Zn extracted) than the ophiolite rocks (mean 45% Zn extracted). In addition, these results suggest that while metals, such as Cu, Fe, and Mn, have been previously studied in the biota of the bay, other heavy metals such as Ni and Cr should be included in future biological studies within Bahia de Magdalena.

  2. Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models.

    PubMed Central

    Costa, D L; Dreher, K L

    1997-01-01

    Many epidemiologic reports associate ambient levels of particulate matter (PM) with human mortality and morbidity, particularly in people with preexisting cardiopulmonary disease (e.g., chronic obstructive pulmonary disease, infection, asthma). Because much ambient PM is derived from combustion sources, we tested the hypothesis that the health effects of PM arise from anthropogenic PM that contains bioavailable transition metals. The PM samples studied derived from three emission sources (two oil and one coal fly ash) and four ambient airsheds (St. Louis, MO; Washington; Dusseldorf, Germany; and Ottawa, Canada). PM was administered to rats by intratracheal instillation in equimass or equimetal doses to address directly the influence of PM mass versus metal content on acute lung injury and inflammation. Our results indicated that the lung dose of bioavailable transition metal, not instilled PM mass, was the primary determinant of the acute inflammatory response for both the combustion source and ambient PM samples. Residual oil fly ash, a combustion PM rich in bioavailable metal, was evaluated in a rat model of cardiopulmonary disease (pulmonary vasculitis/hypertension) to ascertain whether the disease state augmented sensitivity to that PM. Significant mortality and enhanced airway responsiveness were observed. Analysis of the lavaged lung fluids suggested that the milieu of the inflamed lung amplified metal-mediated oxidant chemistry to jeopardize the compromised cardiopulmonary system. We propose that soluble metals from PM mediate the array of PM-associated injuries to the cardiopulmonary system of the healthy and at-risk compromised host. PMID:9400700

  3. Whole-Cell Bioreporters for the Detection of Bioavailable Metals

    NASA Astrophysics Data System (ADS)

    Hynninen, Anu; Virta, Marko

    Whole-cell bioreporters are living microorganisms that produce a specific, quantifiable output in response to target chemicals. Typically, whole-cell bioreporters combine a sensor element for the substance of interest and a reporter element coding for an easily detectable protein. The sensor element is responsible for recognizing the presence of an analyte. In the case of metal bioreporters, the sensor element consists of a DNA promoter region for a metal-binding transcription factor fused to a promoterless reporter gene that encodes a signal-producing protein. In this review, we provide an overview of specific whole-cell bioreporters for heavy metals. Because the sensing of metals by bioreporter microorganisms is usually based on heavy metal resistance/homeostasis mechanisms, the basis of these mechanisms will also be discussed. The goal here is not to present a comprehensive summary of individual metal-specific bioreporters that have been constructed, but rather to express views on the theory and applications of metal-specific bioreporters and identify some directions for future research and development.

  4. Assessment of metal bioavailability in the vineyard soil-grapevine system using different extraction methods.

    PubMed

    Vázquez Vázquez, Francisco A; Pérez Cid, Benita; Río Segade, Susana

    2016-10-01

    This study was focused on the assessment of single and sequential extraction methods to predict the bioavailability of metals in the vineyard soil-grapevine system. The modified BCR sequential extraction method and two single-step extraction methods based on the use of EDTA and acetic acid were applied to differently amended vineyard soils. The variety effect was studied on the uptake of metals by leaves and grapes. Most of the elements studied (Ca, Mg, Cu, Fe, Mn, Zn and Pb) were weakly mobilized from vineyard soils, with the exception of Cu and Mn. The determination of total metal content in leaves and grapes showed a different accumulation pattern in the two parts of the vine. A significant relationship was observed, for all the elements studied except for Fe, between the content bioavailable in the soil and the accumulated in both leaves and grapes (R=0.602-0.775, p<0.01).

  5. Predicting bioavailability of metals from sludge-amended soils.

    PubMed

    Golui, Debasis; Datta, S P; Rattan, R K; Dwivedi, B S; Meena, M C

    2014-12-01

    We attempted to develop a protocol for fixing the maximum permissible limit of sludge in agricultural lands based on transfer of metals from sludge-amended soils to human food chain. For this purpose, spinach was grown as a test crop on acid and alkaline soils with graded doses of sludge (0, 1.12, 2.24, 4.48, 8.96, 17.9, 35.8, 71.6, 142 and 285 g kg(-1) of soil) in a pot experiment. Biomass yield of spinach was increased due to sludge application in both acid and alkaline soils. Among the chemical extractants, EDTA extracted the highest amount of metals from sludge-amended soil followed by diethylenetriaminepentaacetic acid (DTPA) and CaCl2. Elevated levels of Zn, Cu, Fe, Mn, Ni, Cd and Pb in spinach were observed due to sludge application over control. Application of sludge was more effective in increasing metal content in spinach grown on acid soil than alkaline soil. Solubility-free ion activity model as a function of pH, organic carbon and extractable metal was far more effective in predicting metal uptake by spinach grown on sludge-amended soils as compared to that of chemical extractants. Risk in terms of hazard quotient (HQ) for intake of metals through consumption of spinach by humans grown on sludge-treated soils was computed for different metals separately. In a 90-day pot experiment, safe rates of sludge application were worked out as 4.48 and 71.6 g kg(-1) for acid and alkaline soils, respectively.

  6. Effects of acid-volatile sulfide on metal bioavailability and toxicity to midge (Chironomus tentans) larvae in black shale sediments.

    PubMed

    Ogendi, George M; Brumbaugh, William G; Hannigan, Robyn E; Farris, Jerry L

    2007-02-01

    Metal bioavailability and toxicity to aquatic organisms are greatly affected by variables such as pH, hardness, organic matter, and sediment acid-volatile sulfide (AVS). Sediment AVS, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides, has been studied intensely in recent years. Few studies, however, have determined the spatial variability of AVS and its interaction with simultaneously extracted metals (SEM) in sediments containing elevated concentrations of metals resulting from natural geochemical processes, such as weathering of black shales. We collected four sediment samples from each of four headwater bedrock streams in northcentral Arkansa (USA; three black shale-draining streams and one limestone-draining stream). We conducted 10-d acute whole-sediment toxicity tests using the midge Chironomus tentans and performed analyses for AVS, total metals, SEMs, and organic carbon. Most of the sediments from shale-draining streams had similar total metal and SEM concentrations but considerable differences in organic carbon and AVS. Zinc was the leading contributor to the SEM molar sum, averaging between 68 and 74%, whereas lead and cadmium contributed less than 3%. The AVS concentration was very low in all but two samples from one of the shale streams, and the sum of the SEM concentrations was in molar excess of AVS for all shale stream sediments. No significant differences in mean AVS concentrations between sediments collected from shale-draining or limestone-draining sites were noted (p > 0.05). Midge survival and growth in black shale-derived sediments were significantly less (p < 0.001) than that of limestone-derived sediments. On the whole, either SEM alone or SEM-AVS explained the total variation in midge survival and growth about equally well. However, survival and growth were significantly greater (p < 0.05) in the two sediment samples that contained measurable AVS compared with the two sediments from the

  7. Effects of acid-volatile sulfide on metal bioavailability and toxicity to midge (Chironomus tentans) larvae in black shale sediments

    USGS Publications Warehouse

    Ogendi, G.M.; Brumbaugh, W.G.; Hannigan, R.E.; Farris, J.L.

    2007-01-01

    Metal bioavailability and toxicity to aquatic organisms are greatly affected by variables such as pH, hardness, organic matter, and sediment acid-volatile sulfide (AVS). Sediment AVS, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides, has been studied intensely in recent years. Few studies, however, have determined the spatial variability of AVS and its interaction with simultaneously extracted metals (SEM) in sediments containing elevated concentrations of metals resulting from natural geochemical processes, such as weathering of black shales. We collected four sediment samples from each of four headwater bedrock streams in northcentral Arkansa (USA; three black shale-draining streams and one limestone-draining stream). We conducted 10-d acute whole-sediment toxicity tests using the midge Chironomus tentans and performed analyses for AVS, total metals, SEMs, and organic carbon. Most of the sediments from shale-draining streams had similar total metal and SEM concentrations but considerable differences in organic carbon and AVS. Zinc was the leading contributor to the SEM molar sum, averaging between 68 and 74%, whereas lead and cadmium contributed less than 3%. The AVS concentration was very low in all but two samples from one of the shale streams, and the sum of the SEM concentrations was in molar excess of AVS for all shale stream sediments. No significant differences in mean AVS concentrations between sediments collected from shale-draining or limestone-draining sites were noted (p > 0.05). Midge survival and growth in black shale-derived sediments were significantly less (p < 0.001) than that of limestone-derived sediments. On the whole, either SEM alone or SEM-AVS explained the total variation in midge survival and growth about equally well. However, survival and growth were significantly greater (p < 0.05) in the two sediment samples that contained measurable AVS compared with the two sediments from the

  8. Metal Immobilization Influence On Bioavailability And Remediation For Urban Environments

    EPA Science Inventory

    Immobilization of soil contaminants, such as lead, via phosphate amendments to alter the chemical environment of metals into highly insoluble forms is a well established process. The literature has documented numerous examples of highly contaminated Pb sites at shooting ranges, b...

  9. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA.

    PubMed

    Besser, John M; Brumbaugh, William G; Ivey, Chris D; Ingersoll, Christopher G; Moran, Patrick W

    2008-05-01

    We studied the bioavailability and toxicity of copper, zinc, arsenic, cadmium, and lead in sediments from Lake Roosevelt (LR), a reservoir on the Columbia River in Washington, USA that receives inputs of metals from an upstream smelter facility. We characterized chronic sediment toxicity, metal bioaccumulation, and metal concentrations in sediment and pore water from eight study sites: one site upstream in the Columbia River, six sites in the reservoir, and a reference site in an uncontaminated tributary. Total recoverable metal concentrations in LR sediments generally decreased from upstream to downstream in the study area, but sediments from two sites in the reservoir had metal concentrations much lower than adjacent reservoir sites and similar to the reference site, apparently due to erosion of uncontaminated bank soils. Concentrations of acid-volatile sulfide in LR sediments were too low to provide strong controls on metal bioavailability, and selective sediment extractions indicated that metals in most LR sediments were primarily associated with iron and manganese oxides. Oligochaetes (Lumbriculus variegatus) accumulated greatest concentrations of copper from the river sediment, and greatest concentrations of arsenic, cadmium, and lead from reservoir sediments. Chronic toxic effects on amphipods (Hyalella azteca; reduced survival) and midge larvae (Chironomus dilutus; reduced growth) in whole-sediment exposures were generally consistent with predictions of metal toxicity based on empirical and equilibrium partitioning-based sediment quality guidelines. Elevated metal concentrations in pore waters of some LR sediments suggested that metals released from iron and manganese oxides under anoxic conditions contributed to metal bioaccumulation and toxicity. Results of both chemical and biological assays indicate that metals in sediments from both riverine and reservoir habitats of Lake Roosevelt are available to benthic invertebrates. These findings will be used as

  10. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; Ivey, C.D.; Ingersoll, C.G.; Moran, P.W.

    2008-01-01

    We studied the bioavailability and toxicity of copper, zinc, arsenic, cadmium, and lead in sediments from Lake Roosevelt (LR), a reservoir on the Columbia River in Washington, USA that receives inputs of metals from an upstream smelter facility. We characterized chronic sediment toxicity, metal bioaccumulation, and metal concentrations in sediment and pore water from eight study sites: one site upstream in the Columbia River, six sites in the reservoir, and a reference site in an uncontaminated tributary. Total recoverable metal concentrations in LR sediments generally decreased from upstream to downstream in the study area, but sediments from two sites in the reservoir had metal concentrations much lower than adjacent reservoir sites and similar to the reference site, apparently due to erosion of uncontaminated bank soils. Concentrations of acid-volatile sulfide in LR sediments were too low to provide strong controls on metal bioavailability, and selective sediment extractions indicated that metals in most LR sediments were primarily associated with iron and manganese oxides. Oligochaetes (Lumbriculus variegatus) accumulated greatest concentrations of copper from the river sediment, and greatest concentrations of arsenic, cadmium, and lead from reservoir sediments. Chronic toxic effects on amphipods (Hyalella azteca; reduced survival) and midge larvae (Chironomus dilutus; reduced growth) in whole-sediment exposures were generally consistent with predictions of metal toxicity based on empirical and equilibrium partitioning-based sediment quality guidelines. Elevated metal concentrations in pore waters of some LR sediments suggested that metals released from iron and manganese oxides under anoxic conditions contributed to metal bioaccumulation and toxicity. Results of both chemical and biological assays indicate that metals in sediments from both riverine and reservoir habitats of Lake Roosevelt are available to benthic invertebrates. These findings will be used as

  11. Novel and nontraditional use of stable isotope tracers to study metal bioavailability from natural particles.

    PubMed

    Croteau, Marie-Noële; Cain, Daniel J; Fuller, Christopher C

    2013-04-01

    We devised a novel tracing approach that involves enriching test organisms with a stable metal isotope of low natural abundance prior to characterizing metal bioavailability from natural inorganic particles. In addition to circumventing uncertainties associated with labeling natural particles and distinguishing background metals, the proposed "reverse labeling" technique overcomes many drawbacks inherent to using radioisotope tracers. Specifically, we chronically exposed freshwater snails ( Lymnaea stagnalis ) to synthetic water spiked with Cu that was 99.4% (65)Cu to increase the relative abundance of (65)Cu in the snail's tissues from ~32% to >80%. The isotopically enriched snails were then exposed to benthic algae mixed with Cu-bearing Fe-Al particles collected from the Animas River (Colorado), an acid mine drainage impacted river. We used (63)Cu to trace Cu uptake from the natural particles and inferred their bioavailability from calculation of Cu assimilation into tissues. Cu assimilation from these particles was 44%, indicating that 44% of the particulate Cu was absorbed by the invertebrate. This demonstrates that inorganic particulate Cu can be bioavailable. The reverse labeling approach shows great potential in various scientific areas such as environmental contamination and nutrition for addressing questions involving uptake of an element that naturally has multiple isotopes.

  12. [Influence of Dissimilatory Iron Reduction on the Speciation and Bioavailability of Heavy Metals in Soil].

    PubMed

    Si, You-bin; Wang, Juan

    2015-09-01

    Fe(III) dissimilatory reduction by microbes is an important process of producing energy in the oxidation of organic compounds under anaerobic condition with Fe(III) as the terminal electron acceptor and Fe(II) as the reduction product. This process is of great significance in element biogeochemical cycle. Iron respiration has been described as one of the most ancient forms of microbial metabolism on the earth, which is bound up with material cycle in water, soil and sediments. Dissimilatory iron reduction plays important roles in heavy metal form transformation and the remediation of heavy metal and radionuclide contaminated soils. In this paper, we summarized the research progress of iron reduction in the natural environment, and discussed the influence and the mechanism of dissimilatory iron reduction on the speciation and bioavailability of heavy metals in soil. The effects of dissimilatory iron reduction on the speciation of heavy metals may be attributed to oxidation and reduction, methytation and immobilization of heavy metals in relation to their bioavailability in soils. The mechanisms of Fe(III) dissimilatory reduction on heavy metal form transformation contain biological and chemical interactions, but the mode of interaction remains to be further investigated. PMID:26717720

  13. [Influence of Dissimilatory Iron Reduction on the Speciation and Bioavailability of Heavy Metals in Soil].

    PubMed

    Si, You-bin; Wang, Juan

    2015-09-01

    Fe(III) dissimilatory reduction by microbes is an important process of producing energy in the oxidation of organic compounds under anaerobic condition with Fe(III) as the terminal electron acceptor and Fe(II) as the reduction product. This process is of great significance in element biogeochemical cycle. Iron respiration has been described as one of the most ancient forms of microbial metabolism on the earth, which is bound up with material cycle in water, soil and sediments. Dissimilatory iron reduction plays important roles in heavy metal form transformation and the remediation of heavy metal and radionuclide contaminated soils. In this paper, we summarized the research progress of iron reduction in the natural environment, and discussed the influence and the mechanism of dissimilatory iron reduction on the speciation and bioavailability of heavy metals in soil. The effects of dissimilatory iron reduction on the speciation of heavy metals may be attributed to oxidation and reduction, methytation and immobilization of heavy metals in relation to their bioavailability in soils. The mechanisms of Fe(III) dissimilatory reduction on heavy metal form transformation contain biological and chemical interactions, but the mode of interaction remains to be further investigated.

  14. Metals in sediments: bioavailability and toxicity in a tropical reservoir used for public water supply.

    PubMed

    Cardoso-Silva, Sheila; Da Silva, Daniel Clemente Vieira Rego; Lage, Fernanda; de Paiva, Teresa Cristina Brazil; Moschini-Carlos, Viviane; Rosa, André Henrique; Pompêo, Marcelo

    2016-05-01

    Sediments may be a repository of contaminants in freshwater ecosystems. One way to assess the quality of this compartment, in terms of potentially bioavailable metals, is by the analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM). In order to investigate the bioavailability, toxicity, and compartmentalization of different metals (Cd, Cr, Cu, Ni, Pb, Zn), sampling of surface sediments was performed at nine stations along the Paiva Castro reservoir (São Paulo, Brazil). The metals were analyzed using atomic absorption spectroscopy. Sediment organic matter (OM), organic carbon (OC), and grain size were also measured. The parameters pH, EH, temperature, and dissolved oxygen were determined at the sediment-water interface. Chronic and acute toxicological tests were performed with sediments from the area where water was extracted for the public water supply. Low levels of OM, associated with loss of stratification in the water column, explained the relatively low AVS values. The molar ratio ∑[SEM]-[AVS]/fOC was less than 130 mmol/kg(-1) for all the sampling stations, indicating that the metals were not bioavailable. With the exception of Cd, metal levels were in accordance with background concentrations and the threshold effect level (TEL) established by the Canadian Council of Ministers of the Environment. The ecotoxicological tests confirmed the absence of toxic effects to biota. Application of principal component analysis indicated the presence of four compartments along the reservoir: (1) a riverine zone, potentially threatened by contamination with Cd; (2) an intermediate zone; (3) a limnic area; and (4) the area where water was taken for the public water supply. PMID:27117444

  15. Metals in sediments: bioavailability and toxicity in a tropical reservoir used for public water supply.

    PubMed

    Cardoso-Silva, Sheila; Da Silva, Daniel Clemente Vieira Rego; Lage, Fernanda; de Paiva, Teresa Cristina Brazil; Moschini-Carlos, Viviane; Rosa, André Henrique; Pompêo, Marcelo

    2016-05-01

    Sediments may be a repository of contaminants in freshwater ecosystems. One way to assess the quality of this compartment, in terms of potentially bioavailable metals, is by the analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM). In order to investigate the bioavailability, toxicity, and compartmentalization of different metals (Cd, Cr, Cu, Ni, Pb, Zn), sampling of surface sediments was performed at nine stations along the Paiva Castro reservoir (São Paulo, Brazil). The metals were analyzed using atomic absorption spectroscopy. Sediment organic matter (OM), organic carbon (OC), and grain size were also measured. The parameters pH, EH, temperature, and dissolved oxygen were determined at the sediment-water interface. Chronic and acute toxicological tests were performed with sediments from the area where water was extracted for the public water supply. Low levels of OM, associated with loss of stratification in the water column, explained the relatively low AVS values. The molar ratio ∑[SEM]-[AVS]/fOC was less than 130 mmol/kg(-1) for all the sampling stations, indicating that the metals were not bioavailable. With the exception of Cd, metal levels were in accordance with background concentrations and the threshold effect level (TEL) established by the Canadian Council of Ministers of the Environment. The ecotoxicological tests confirmed the absence of toxic effects to biota. Application of principal component analysis indicated the presence of four compartments along the reservoir: (1) a riverine zone, potentially threatened by contamination with Cd; (2) an intermediate zone; (3) a limnic area; and (4) the area where water was taken for the public water supply.

  16. Bioavailability of heavy metals in strongly acidic soils treated with exceptional quality biosolids

    SciTech Connect

    Basta, N.T.; Sloan, J.J.

    1999-03-01

    New federal regulations may increase application of exceptional quality (EQ) biosolids to acidic soils, and information on the effect of this practice on bioavailability of heavy metal is limited. The objective of this study was to compare bioavailability of heavy metal in soil treated with nonalkaline or alkaline EQ biosolids with limestone-treated soils. Three acidic soils (pH 3.7--4.3) were treated with three amounts of lime-stabilized biosolids (LS), anaerobic-digested biosolids (AN), or agricultural limestone (L), and incubated at 25 C. Soil solution Cd, Zn, and other chemical constituents were measured at 1, 30, 90, and 180 d incubation. Soil solution Cd and Zn were AN > LS {ge} L, C. Soil solution Cd and Zn increased with AN applied but decreased wit h LS applied. The high application of LS had soil solution Zn dramatically decreased at soil pH > 5.5 and >5.1, respectively. Soil solution Cd and Zn increases were AN > LS with incubation time. Biosolids treatments increased heavy metal in Ca(NO{sub 3}){sub 2} and NaOAc fractions. Except for Cd, most metal from biosolids were in EDTA and HNO{sub 3} fractions. Heavy metal bioavailability, measured using lettuce (Latuca sativa L.), was AN > LS {ge} L, C. Although state regulations prohibiting application of nonalkaline EQ biosolids to acidic soil is a prudent practice, application of EQ alkaline biosolids that achieves soil pH > 5 minimizes risk from soil solution Cd and Zn and plant uptake of heavy metal.

  17. Linking dissolved organic matter composition to metal bioavailability in agricultural soils: effect of anionic surfactants

    NASA Astrophysics Data System (ADS)

    Hernandez-Soriano, M. C.; Jimenez-Lopez, J. C.

    2015-04-01

    The bioavailability of metals in soil is only partially explained by their partition among the solid and aqueous phase and is more related to the characterization of their speciation in the soil solution. The organic ligands in solution that largely determine metal speciation involve complex mixtures and the characterization of fluorescence components of dissolved organic matter (DOM) can identify pools of molecules that participate in metal speciation, this being essential for risk assessment. The bioavailability of Cd, Cu, Pb and Zn in three agricultural soils was examined in the laboratory to recreate irrigation with greywater enriched in anionic surfactants (Aerosol 22 and Biopower). Field capacity and saturation regimes were considered for this study. Irrigation with aqueous solutions of the anionic surfactants increased total DOM concentrations and metals in the soil solution (Pb > Cu > Zn > Cd). Significant correlation (p < 0.05) between the readily available pool of metals with the concentration of DOM was determined for Cu (r = 0.67), Pb (r = 0.82) and Zn (r = 0.68). However, speciation analysis performed with the software WHAM indicated that mobilisation of DOM and metals into the soluble phase resulted in a low concentration of free ion activities and promoted the formation of metal-organo complexes. The characterization of fluorescence components revealed that DOM in soil solution from soils irrigated with Aerosol 22 was enriched in a reduced quinone-like and a humic-like component. Besides, fluorescence quenching provided further evidence of metal complexation with organic ligands in solution. Hence, metal mobilization in soil irrigated with surfactant enriched greywater occurs with solubilisation of high affinity organic ligands, which substantially decreases the potential risk of metal toxicity.

  18. Bioavailability of Metals in Sediments of the Dogger Bank (Central North Sea): A Mesocosm Study

    NASA Astrophysics Data System (ADS)

    Langston, W. J.; Burt, G. R.; Pope, N. D.

    1999-05-01

    There are conflicting arguments surrounding the nature and origins of metal enrichment in sediments from the Dogger Bank (central North Sea) and much speculation as to its biological significance. To help resolve this controversy, a mesocosm approach was evaluated to test whether metal loadings in sediments from the Dogger Bank region display enhanced bioavailability, relative to reference sites off south-west England. This involved the combination of physicochemical characterization of sediments (including porewaters) with bioaccumulation studies, using sediment cores seeded with benthic organisms (bivalves Spisula solida and Venus striatula, the gastropod Turritella communis and the polychaete Melinna palmata). There was little evidence of As, Cu, Hg or Pb bioaccumulation from Dogger cores. In contrast, all species accumulated Cd; Ag concentrations rose by up to fourfold in most bioindicators; and Ni, Cr and Mn burdens also increased, occasionally by as much as 10-fold. Variable, but generally smaller increases in Fe and Zn were observed. Physiological variations in metal bioaccumulation processes, including the ability to regulate essential elements, were responsible for species differences in response—a feature which may contribute to uncertainty in the interpretation and comparison of biomonitoring data. Mesocosm results nevertheless complement earlier field reports of unexpectedly enriched levels of certain metals (notably Cd) in biota from this part of the central North Sea. Characterization of sediments provided some physicochemical explanations for enhanced metal uptake in biota and helped, partly, to define bioavailable and anthropogenic fractions. Thus, whilst total sediment-metal concentrations were not exceptional in Dogger samples, for some metals there was a significant proportion in non-refractory (readily extractable) form, together with relatively high concentrations in interstitial waters—both presumably available for assimilation

  19. Assessment of metal contamination, bioavailability, toxicity and bioaccumulation in extreme metallic environments (Iberian Pyrite Belt) using Corbicula fluminea.

    PubMed

    Bonnail, E; Sarmiento, A M; DelValls, T A; Nieto, J M; Riba, I

    2016-02-15

    The Iberian Pyrite Belt (SW Iberian Peninsula) has intense mining activity. Currently, its fluvial networks receive extremely acid lixiviate residue discharges that are rich in sulphates and metals in solution (acid mine drainage, AMD) from abandoned mines. In the current study, the sediment and water quality were analysed in three different areas of the Odiel River to assess the risk associated with the metal content and its speciation and bioavailability. Furthermore, sediment contact bioassays were performed using the freshwater clam Corbicula fluminea to determine its adequacy as a biomonitoring tool in relation to theoretical risk indexes and regulatory thresholds. Reburial activity and mortality were used as the toxic responses of clams when exposed to contaminated sediment. The results showed coherence between the water and sediment chemical contamination for most of the metals. The reburial activity was correlated with the metal toxicity, but no clam mortality was registered. The bioaccumulation of the studied metals in the clam did not have a significant correlation with the bioavailable fraction of the metal content in the environment, which could be related to a potential different speciation in this singular environment. The bioaccumulation responses were negative for As, Cd and Zn in highly contaminated environments and were characterized as severe, considerable and low potential environmental risks, respectively. The results show that C. fluminea is a good biomonitor of Cu and Pb. PMID:26774961

  20. [Advance in the bioavailability monitoring of heavy metal based on microbial whole-cell sensor].

    PubMed

    Hou, Qi-Hui; Ma, An-Shou; Zhuang, Xiu-Liang; Zhuang, Guo-Qiang

    2013-01-01

    Microbial whole-cell biosensor is an excellent tool to assess the bioavailability of heavy metal in soil and water. However, the traditional physicochemical instruments are applied to detect the total metal. Furthermore, microbial whole-cell biosensor is simple, rapid and economical in manipulating, and is thus a highly qualified candidate for emergency detection of pollution incidents. The biological component of microbial whole-cell biosensor mostly consists of metalloregulatory proteins and reporter genes. In detail, metalloregulatory proteins mainly include the MerR family, ArsR family and RS family, and reporter genes mainly include gfp, lux and luc. Metalloregulatory protein and reporter gene are related to the sensitivity, specificity and properties in monitoring. The bioavailability of heavy metals is alterable under different conditions, influenced by pH, chelate and detection methods and so on. Increasing the accumulation of intracellular heavy metal, modifying the metalloregulatory proteins and optimizing the detecting conditions are important for improving the sensitivity, specificity and accuracy of the microbial whole-cell biosensor. The future direction of microbial whole-cell biosensor is to realize the monitoring of pollutions in situ and on line.

  1. [Advance in the bioavailability monitoring of heavy metal based on microbial whole-cell sensor].

    PubMed

    Hou, Qi-Hui; Ma, An-Shou; Zhuang, Xiu-Liang; Zhuang, Guo-Qiang

    2013-01-01

    Microbial whole-cell biosensor is an excellent tool to assess the bioavailability of heavy metal in soil and water. However, the traditional physicochemical instruments are applied to detect the total metal. Furthermore, microbial whole-cell biosensor is simple, rapid and economical in manipulating, and is thus a highly qualified candidate for emergency detection of pollution incidents. The biological component of microbial whole-cell biosensor mostly consists of metalloregulatory proteins and reporter genes. In detail, metalloregulatory proteins mainly include the MerR family, ArsR family and RS family, and reporter genes mainly include gfp, lux and luc. Metalloregulatory protein and reporter gene are related to the sensitivity, specificity and properties in monitoring. The bioavailability of heavy metals is alterable under different conditions, influenced by pH, chelate and detection methods and so on. Increasing the accumulation of intracellular heavy metal, modifying the metalloregulatory proteins and optimizing the detecting conditions are important for improving the sensitivity, specificity and accuracy of the microbial whole-cell biosensor. The future direction of microbial whole-cell biosensor is to realize the monitoring of pollutions in situ and on line. PMID:23487961

  2. Enhanced anaerobic digestion of food waste by trace metal elements supplementation and reduced metals dosage by green chelating agent [S, S]-EDDS via improving metals bioavailability.

    PubMed

    Zhang, Wanli; Zhang, Lei; Li, Aimin

    2015-11-01

    This study aimed at investigating the effects of trace metals on methane production from food waste and examining the feasibility of reducing metals dosage by ethylenediamine-N,N'-disuccinic acid (EDDS) via improving metals bioavailability. The results indicated that the effects of metal elements highly depended on the supplemental concentrations. Trace metals supplemented under moderate concentrations greatly enhanced the methane yield. However, the excessive supplementation of Fe (1000 mg/L) and Ni (50 mg/L) exhibited the obvious toxicity to methanogens. The combinations of trace metals exhibited remarkable synergistic effects. The supplementation of Fe (100 mg/L) + Co (1 mg/L) + Mo (5 mg/L) + Ni (5 mg/L) obtained the greatest methane yield of 504 mL/g VSadded and the highest increment of 35.5% compared to the reactor without metals supplementation (372 mL/g VSadded). The changes of metals speciation showed the reduction of metals bioavailability during anaerobic digestion, which might weaken the stimulative effects of trace metals. However, the addition of EDDS improved metals bioavailability for microbial uptake and stimulated the activity of methanogens, and therefore, strengthened the stimulative effects of metals on anaerobic digestion of food waste. The batch and semi-continuous experiments confirmed that the addition of EDDS (20 mg/L) bonded to trace metals prior to their supplementation could obtain a 50% reduction of optimal metals dosage. This study provided a feasible method to reduce trace metals dosage without the degeneration of process performance of anaerobic digestion.

  3. Bioavailability of biologically sequestered cadmium and the implications of metal detoxification

    USGS Publications Warehouse

    Wallace, W.G.; Lopez, G.R.

    1997-01-01

    The deposit-feeding oligochaete Limnodrilus hoffmeisteri possesses metallothionein-like proteins and metal-rich granules for storing and detoxifying cadmium (Cd). In this study we investigated the bioavailability of Cd sequestered within this oligochaete by conducting feeding experiments with 109Cd-labeled oligochaetes and the omnivorous grass shrimp Palaemonetes pugio. We also make predictions on Cd trophic transfer based on oligochaete subcellular Cd distributions and absorption efficiencies of Cd by shrimp Cytosol [including metallothionein-like proteins and other proteins) and a debris fraction (including metal-rich granules and tissue fragments) isolated from homogenized 109Cd-labeled oligochaetes were embedded in gelatin and fed to shrimp. The 109Cd absorption efficiencies of shrimp fed these subcellular fractions were 84.8 and 48.6%, respectively, and were significantly different (p < 0.001), indicating that 109Cd bound in these fractions was not equally available to a predator. Mass balance equations demonstrate that shrimp fed whole worms absorb 61.5% of the ingested 109Cd, an absorption efficiency similar to that obtained experimentally (57.1%). Furthermore, the majority of the absorbed 109Cd comes from the fraction containing metallothionein-like proteins (i.e. cytosol). 109Cd absorbed from the debris fraction probably comes from the digestion of tissue fragments, rather than metal-rich granules. The ecological significance of these findings is that prey detoxification mechanisms may mediate the bioreduction or bioaccumulation of toxic metals along fond chains by altering metal bioavailability. Another important finding is that trophic transfer of metal can be predicted based on the subcellular metal distribution of prey.

  4. Anatomical, physiological and experimental factors affecting the bioavailability of sc administered large biotherapeutics

    PubMed Central

    Fathallah, Anas M.; Balu-Iyer, Sathy V.

    2014-01-01

    Subcutaneous route of administration is highly desirable for protein therapeutics. It improves patient compliance and quality of life1,2, while reducing healthcare cost2. Recent evidence also suggests that sc administration of protein therapeutics can increase tolerability to some treatments such as intravenous immunoglobulin therapy (IVIG) by administering it subcutaneously (subcutaneous immunoglobulin therapy SCIG), which will reduce fluctuation in plasma drug concentration3. Furthermore, sc administration may reduce the risk of systemic infections associated with iv infusion1,2. This route, however, has its challenges especially for large multi-domain proteins. Poor bioavailability and poor scalability from preclinical models are often cited. This commentary will discuss barriers to sc absorption as well as physiological and experimental factors that could affect pharmacokinetics of subcutaneously administered large protein therapeutics in preclinical models. A mechanistic pharmacokinetic model is proposed as a potential tool to address the issue of scalability of sc pharmacokinetic from preclinical models to humans PMID:25411114

  5. Bioavailability of heavy metals in terrestrial and aquatic systems: A quantitative approach

    SciTech Connect

    Plette, A.C.C.; Nederlof, M.M.; Temminmghoff, E.J.M.; Riemsduk, W.H. van

    1999-09-01

    Speciation and bioavailability are the keywords in the relation between the total metal content of the system and the resulting effects for biota. The metal ion binding to the biotic surface is pH dependent, as is metal ion binding to soils. The binding of metal ion to the biotic surface of an organism when present in soil can decrease with increasing pH, whereas the binding behavior of the biotic surface as such will always increase with increasing pH. The metal toxicity for plants often increases with increasing pH for water culture experiments, in which the opposite effect is observed for plants growing in soils. These seemingly contradictive observations can be explained by considering the interaction between an organism and metal ions present in soil to be the result of competition for that metal ion by all components (including the organism) present in the system. This concept is illustrated on the basis of model calculations concerning cadmium binding to a bacterium present in a clay and a sandy soil as influenced by pH and calcium concentration. In addition, the concept is applied for calculating the impact of algal bloom on the copper speciation in an aquatic system. The concept might be a valuable tool in predicting quantitatively the metal ion sorption to biota present in a complex system and to predict the relative change in availability due to environmental changes.

  6. Temporal trends and bioavailability assessment of heavy metals in the sediments of Deception Bay, Queensland, Australia.

    PubMed

    Brady, James P; Ayoko, Godwin A; Martens, Wayde N; Goonetilleke, Ashantha

    2014-12-15

    Thirteen sites in Deception Bay, Queensland, Australia were sampled three times over a period of 7 months and assessed for contamination by a range of heavy metals, primarily As, Cd, Cr, Cu, Pb and Hg. Fraction analysis, enrichment factors and Principal Components Analysis-Absolute Principal Component Scores (PCA-APCS) analysis were conducted in order to identify the potential bioavailability of these elements of concern and their sources. Hg and Te were identified as the elements of highest enrichment in Deception Bay while marine sediments, shipping and antifouling agents were identified as the sources of the Weak Acid Extractable Metals (WE-M), with antifouling agents showing long residence time for mercury contamination. This has significant implications for the future of monitoring and regulation of heavy metal contamination within Deception Bay. PMID:25440195

  7. Orally Bioavailable Metal Chelators and Radical Scavengers: Multifunctional Antioxidants for the Coadjutant Treatment of Neurodegenerative Diseases.

    PubMed

    Kawada, Hiroyoshi; Kador, Peter F

    2015-11-25

    Neurodegenerative diseases are associated with oxidative stress that is induced by the presence of reactive oxygen species and the abnormal cellular accumulation of transition metals. Here, a new series of orally bioavailable multifunctional antioxidants (MFAO-2s) possessing a 2-diacetylamino-5-hydroxypyrimidine moiety is described. These MFAO-2s demonstrate both free radical and metal attenuating properties that are similar to the original published MFAO-1s that are based on 1-N,N'-dimethylsulfamoyl-1-4-(2-pyrimidyl)piperazine. Oral bioavailability studies in C57BL/6 mice demonstrate that the MFAO-2s accumulate in the brain at significantly higher levels than the MFAO-1s while achieving similar neural retina levels. The MFAO-2s protect human neuroblastoma and retinal pigmented epithelial cells against hydroxyl radicals in a dose-dependent manner by maintaining cell viability and intracellular glutathione levels. The MFAO-2s outperform clioquinol, a metal attenuator that has been investigated for the treatment of Alzheimer's disease.

  8. Increased bioavailability of metals in two contrasting agricultural soils treated with waste wood-derived biochar and ash.

    PubMed

    Lucchini, P; Quilliam, R S; Deluca, T H; Vamerali, T; Jones, D L

    2014-03-01

    Recycled waste wood is being increasingly used for energy production; however, organic and metal contaminants in by-products produced from the combustion/pyrolysis residue may pose a significant environmental risk if they are disposed of to land. Here we conducted a study to evaluate if highly polluted biochar (from pyrolysis) and ash (from incineration) derived from Cu-based preservative-treated wood led to different metal (e.g., Cu, As, Ni, Cd, Pb, and Zn) bioavailability and accumulation in sunflower (Helianthus annuus L.). In a pot experiment, biochar at a common rate of 2 % w/w, corresponding to ∼50 t ha(-1), and an equivalent pre-combustion dose of wood ash (0.2 % w/w) were added to a Eutric Cambisol (pH 6.02) and a Haplic Podzol (pH 4.95), respectively. Both amendments initially raised soil pH, although this effect was relatively short-term, with pH returning close to the unamended control within about 7 weeks. The addition of both amendments resulted in an exceedance of soil Cu statutory limit, together with a significant increase of Cu and plant nutrient (e.g., K) bioavailability. The metal-sorbing capacity of the biochar, and the temporary increase in soil pH caused by adding the ash and biochar were insufficient to offset the amount of free metal released into solution. Sunflower plants were negatively affected by the addition of metal-treated wood-derived biochar and led to elevated concentration of metals in plant tissue, and reduced above- and below-ground biomass, while sunflower did not grow at all in the Haplic Podzol. Biochar and ash derived from wood treated with Cu-based preservatives can lead to extremely high Cu concentrations in soil and negatively affect plant growth. Identifying sources of contaminated wood in waste stream feedstocks is crucial before large-scale application of biochar or wood ash to soil is considered.

  9. Increased bioavailability of metals in two contrasting agricultural soils treated with waste wood-derived biochar and ash.

    PubMed

    Lucchini, P; Quilliam, R S; Deluca, T H; Vamerali, T; Jones, D L

    2014-03-01

    Recycled waste wood is being increasingly used for energy production; however, organic and metal contaminants in by-products produced from the combustion/pyrolysis residue may pose a significant environmental risk if they are disposed of to land. Here we conducted a study to evaluate if highly polluted biochar (from pyrolysis) and ash (from incineration) derived from Cu-based preservative-treated wood led to different metal (e.g., Cu, As, Ni, Cd, Pb, and Zn) bioavailability and accumulation in sunflower (Helianthus annuus L.). In a pot experiment, biochar at a common rate of 2 % w/w, corresponding to ∼50 t ha(-1), and an equivalent pre-combustion dose of wood ash (0.2 % w/w) were added to a Eutric Cambisol (pH 6.02) and a Haplic Podzol (pH 4.95), respectively. Both amendments initially raised soil pH, although this effect was relatively short-term, with pH returning close to the unamended control within about 7 weeks. The addition of both amendments resulted in an exceedance of soil Cu statutory limit, together with a significant increase of Cu and plant nutrient (e.g., K) bioavailability. The metal-sorbing capacity of the biochar, and the temporary increase in soil pH caused by adding the ash and biochar were insufficient to offset the amount of free metal released into solution. Sunflower plants were negatively affected by the addition of metal-treated wood-derived biochar and led to elevated concentration of metals in plant tissue, and reduced above- and below-ground biomass, while sunflower did not grow at all in the Haplic Podzol. Biochar and ash derived from wood treated with Cu-based preservatives can lead to extremely high Cu concentrations in soil and negatively affect plant growth. Identifying sources of contaminated wood in waste stream feedstocks is crucial before large-scale application of biochar or wood ash to soil is considered. PMID:24217969

  10. Influence of acid volatile sulfide and metal concentrations on metal bioavailability to marine invertebrates in contaminated sediments

    USGS Publications Warehouse

    Lee, B.-G.; Lee, J.-S.; Luoma, S.N.; Choi, H.J.; Koh, C.-H.

    2000-01-01

    allowed use of metal concentrations typical of nature and evaluation of processes important to chronic metal exposure. A vertical sediment column similar to that often found in nature was used to facilitate realistic biological behavior. Results showed that AVS or porewater (PW) metals controlled bioaccumulation in only 2 of 15 metal-animal combinations. Bioaccumulation of all three metals by the bivalves was related significantly to metal concentrations extracted from sediments (SEM) but not to [SEM - AVS] or PW metals. SEM predominantly influenced bioaccumulation of Ni and Zn in N. arenaceodentata, but Cd bioaccumulation followed PW Cd concentrations. SEM controlled tissue concentrations of all three metals in H. filiformis and S. missionensis, with minor influences from metal-sulfide chemistry. Significant bioaccumulation occurred when SEM was only a small fraction of AVS in several treatments. Three factors appeared to contribute to the differences between these bioaccumulation results and the results from toxicity tests reported previously: differences in experimental design, dietary uptake, and biological attributes of the species, including mode and depth of feeding.Microcosms were used to simulate environmentally realistic metal, acid volatile sulfide (AVS), and geochemical gradients in sediments to evaluate effects of metal bioavailability. The 18-d study involved five test species: two bivalves and three polychaetes. Two series of experiments were designed to evaluate the effects of metal concentration and AVS on bioaccumulation, respectively. The metals of interest were cadmium, nickel, and zinc. Results showed that the concentrations of pore-water Cd, Ni, and Zn were controlled by the concentration of AVS. Organisms bioaccumulated significant amounts of metals from the sediments when the simultaneously extracted metal was only a small fraction of the AVS. Bioavailability increased linearly with the sediment metal concentration irrespective of AVS or pore-w

  11. Improving the relationship between soil characteristics and metal bioavailability by using reactive fractions of soil parameters in calcareous soils.

    PubMed

    de Santiago-Martín, Ana; van Oort, Folkert; González, Concepción; Quintana, José R; Lafuente, Antonio L; Lamy, Isabelle

    2015-01-01

    The contribution of the nature instead of the total content of soil parameters relevant to metal bioavailability in lettuce was tested using a series of low-polluted Mediterranean agricultural calcareous soils offering natural gradients in the content and composition of carbonate, organic, and oxide fractions. Two datasets were compared by canonical ordination based on redundancy analysis: total concentrations (TC dataset) of main soil parameters (constituents, phases, or elements) involved in metal retention and bioavailability; and chemically defined reactive fractions of these parameters (RF dataset). The metal bioavailability patterns were satisfactorily explained only when the RF dataset was used, and the results showed that the proportion of crystalline Fe oxides, dissolved organic C, diethylene-triamine-pentaacetic acid (DTPA)-extractable Cu and Zn, and a labile organic pool accounted for 76% of the variance. In addition, 2 multipollution scenarios by metal spiking were tested that showed better relationships with the RF dataset than with the TC dataset (up to 17% more) and new reactive fractions involved. For Mediterranean calcareous soils, the use of reactive pools of soil parameters rather than their total contents improved the relationships between soil constituents and metal bioavailability. Such pool determinations should be systematically included in studies dealing with bioavailability or risk assessment.

  12. [Bioavailability of heavy metals in urban surface dust and rainfall-runoff system].

    PubMed

    Chang, Jing; Liu, Min; Li, Xian-hua; Lin, Xiao; Wang, Li-li; Gao, Lei

    2009-08-15

    A sequential digest was used to examine the speciation of particulate-associated heavy metals in multi-media environment of surface dust and rainfall-runoff system. Within the Shanghai central district, different environment medium in four sites were sampled including street dust, runoff suspended particles, gully pot sediment and river sediment during April 2006. The result shows that in the study area, heavy metal concentrations of surface dusts are significantly higher than the Shanghai soil background values and the nonpoint runoff pollution of Pb, Cr and Ni are serious while Cd, Cu and Zn pollution degree relatively light. In the multi-media transport process, the order of heavy metal bioavailability is Zn > Ni > Cd> Cu > Pb > Cr. For Cr, Zn and Cu, the dominated chemical forms of the four different environmental media remain the same phase of residual, carbonates and organic fractions respectively. For Ni, the main fraction of surface dust is associated with residual form, while the other three media become associated with carbonate fractions. For Cd, the surface dust is mainly associated with carbonates, while runoff particles mainly with labile fractions. The dominated chemical form of Pb also changes from Fe/Mn oxides phase to organic phase. The runoff particles contain the highest percentage of the labile fraction (F1 + F2), and the mean value of transporting ratio of the runoff suspended particles equals to 1.74, indicating that in urban runoff water, the high bioavailability of the heavy metals and the potential toxicity effect deserves our attention greatly. In gutter inlet and rivers deposit components, the low percentages of the labile fraction and the higher content of residual fraction reduce the environmental risk of the heavy metals and act as the sink of these elements.

  13. Metal partitioning between colloidal and dissolved phases and its relation with bioavailability to American oysters.

    PubMed

    Guo, Laodong; Santschi, Peter H; Ray, Sammy M

    2002-01-01

    Kinetics and the extent of metal partitioning between colloidal and dissolved phases and coagulation of metals associated with colloids were examined to determine their effects on the bioavailability of selected metals (Cd, Co, Hg, Ag, Fe, and Zn) to American oysters (Crassostrea virginica) using radiotracer and short term exposure experiments. After dispersion of radiolabeled colloids into low molecular weight (LMW, < 1 kDa) seawater, metal partitioning between dissolved (<1 kDa) and colloidal (1 kDa-0.2 microm) phases resulted in a consistent pattern, with a relatively constant percentage in the colloidal phase for each metal. On average, about 90% of Hg and Fe, approximately 60% of Ag and approximately 40% of Zn, Co, and Cd were measured in the colloidal fraction during a short term exposure experiment, consistent with their partitioning in natural waters. Controlled laboratory experiments carried out in parallel using radioactively tagged colloids showed that coagulation of colloidal species, quantified as the fraction retained by a 0.2 microm filter, was insignificant for most metals under the conditions and time periods of the uptake experiments. The bioavailability of colloidally complexed metals, measured in terms of dry weight concentration factor (DCF, ml g(-1)) and uptake rate constant (ml g(-1) h(-1)), was somewhat depressed compared with their counterpart in the LMW treatment, but could be well predicted from the results of the LMW treatment and metal partitioning. Both DCF values and uptake rate constants were higher in the LMW treatment than in the colloidal treatment. In addition, B-type metals, such as Ag, Hg, and Zn, all had higher values of DCF and uptake rate constants, regardless of treatments, except for Cd which had a lower DCF and uptake rate constant. In contrast, Co and Fe had significantly lower DCF values and uptake rate constants. Most of Hg and Ag (60-80%) were measured in the soft tissue of oysters in both LMW and colloidal treatments

  14. Challenges with tracing the fate and speciation of mine-derived metals in turbid river systems: implications for bioavailability.

    PubMed

    Cresswell, Tom; Smith, Ross E W; Nugegoda, Dayanthi; Simpson, Stuart L

    2013-11-01

    The fast-flowing and highly turbid Lagaip River (0.5-10 g/L suspended solids) in the central highlands of Papua New Guinea receives mine-derived metal inputs in both dissolved and particulate forms. Nearest the mine, metal concentrations in suspended solids were 360, 9, 90, 740 and 1,300 mg/kg for As, Cd, Cu, Pb and Zn, while dissolved concentrations were 2.7, 0.6, 3.1, 0.1 and 25 μg/L, respectively. This creates a significant metal exposure source for organisms nearer the mine. However, because the Lagaip River is diluted by a large number of tributaries, the extent to which mine-derived metals may affect biota in the lower catchments is uncertain. To improve our understanding of the forms of potentially bioavailable metals entering the lower river system, we studied the partitioning and speciation of metals within the Lagaip River system. Dissolved and particulate metal concentrations decreased rapidly downstream of the mine due to dilution from tributaries. As a portion of the particulate metal concentrations, the more labile dilute acid-extractable forms typically comprised 10-30% for As and Pb, 50-75% for Cu and Zn, and 50-100% for Cd. Only dissolved Cd, Cu and Zn remained elevated relative to the non-mine-impacted tributaries (<0.03, 0.5 and 0.3 μg/L), but the concentrations did not appreciably change with increasing dilution downriver. This indicated that release of Cd, Cu and Zn was likely occurring from the more labile metal phases of the mine-derived particulates. Chelex-labile metal analyses and speciation modelling indicated that dissolved copper and lead were largely non-labile and likely complexed by naturally occurring organic ligands, while dissolved cadmium and zinc were predominantly present in labile forms. The study confirmed that mine-derived particulates may represent a significant source of dissolved metals in the lower river system; however, comparison with water quality guidelines indicates the low concentrations would not adversely

  15. Health Risk Assessment using in vitro digestion model in assessing bioavailability of heavy metal in rice: A preliminary study.

    PubMed

    Omar, N A; Praveena, S M; Aris, A Z; Hashim, Z

    2015-12-01

    Little is known about the bioavailability of heavy metal contamination and its health risks after rice ingestion. This study aimed to determine bioavailability of heavy metal (As, Cd, Cu, Cr, Co, Al, Fe, Zn and Pb) concentrations in cooked rice and human Health Risk Assessment (HRA). The results found Zn was the highest (4.3±0.1 mg/kg), whereas As showed the lowest (0.015±0.001 mg/kg) bioavailability of heavy metal concentration in 22 varieties of cooked rice. For single heavy metal exposure, no potential of non carcinogenic health risks was found, while carcinogenic health risks were found only for As. Combined heavy metal exposures found that total Hazard Quotient (HQtotal) values for adult were higher than the acceptable range (HQTotal<1), whereas total Lifetime Cancer Risk (LCRTotal) values were higher than the acceptable range (LCRTotal values >1×10(-4)) for both adult and children. This study is done to understand that the inclusion of bioavailability heavy metal into HRA produces a more realistic estimation of human heavy metal exposure.

  16. Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: a review.

    PubMed

    Bayen, Stéphane

    2012-11-01

    Although their ecological and socioeconomic importance has received recent attention, mangrove ecosystems are one of the most threatened tropical environments. Besides direct clearance, hydrological alterations, climatic changes or insect infestations, chemical pollution could be a significant contributor of mangrove degradation. The present paper reviews the current knowledge on the occurrence, bioavailability and toxic effects of trace contaminants in mangrove ecosystems. The literature confirmed that trace metals, Polycyclic Aromatic Hydrocarbons (PAHs), Persistent Organic Pollutants (POPs), Pharmaceuticals and Personal Care Products (PPCPs) and Endocrine Disrupters Compounds (EDCs) have been detected in various mangrove compartments (water, sediments and biota). In some cases, these chemicals have associated toxic effects on mangrove ecosystem species, with potential impact on populations and biodiversity in the field. However, nearly all studies about the bioavailability and toxic effects of contaminants in mangrove ecosystems focus on selected trace metals, PAHs or some "conventional" POPs, and virtually no data exist for other contaminant groups. The specificities of mangrove ecosystems (e.g. biology, physico-chemistry and hydrology) support the need for specific ecotoxicological tools. This review highlights the major data and methodological gaps which should be addressed to refine the risk assessment of trace pollutants in mangrove ecosystems. PMID:22885665

  17. Changes in metal bioavailability in soil and their accumulation in plants during a two years' aided phytostabilization experiment

    NASA Astrophysics Data System (ADS)

    Krzyżak, Jacek; Płaza, Grażyna; Pogrzeba, Marta

    2013-04-01

    Aided phytostabilization is quite a promising method to solve the main problems of metal polluted soils. This method is based on the use of soil additives, which limit metal bioavailability and help in creation of a dense plant cover on the soil surface. The aim of the study was to evaluate the effect of aided phytostabilization on lead, cadmium, zinc and arsenic bioavailability and their accumulation in plant tissues during a two years' pilot-scale (plot) experiment. For the study two plots were established: (i) a control plot with heavy metal contaminated soil and (ii) an experimental one, where contaminated soil was amended with lignite and lime to reduce metal bioavailability. Both plots were vegetated with grass Festuca arundinacea. Application of lignite and lime increased pH and organic matter content in soil. After amendment application the bioavailable metal concentration significantly decreased, maintaining at the same level during the whole experiment. Cadmium and arsenic bioavailable forms were reduced by about 70 %, whereas in the case of zinc a 60 % decrease in bioavailable forms was observed. Diminishing of heavy metal accumulation in tall fescue, grown on amended soil, was also observed. It was was three-fold lower for lead, zinc and arsenic and two-fold lower for cadmium, in comparison to the control plot. Moreover, on the surface of the stabilized soil a dense plant cover was created, with total biomass production over four-fold higher than on the control plot. The in situ aided phytostabilization approach to contaminated soil, proposed in this study, showed that it could be a sustainable option for degraded soil management.

  18. Metal speciation and potential bioavailability changes during discharge and neutralisation of acidic drainage water.

    PubMed

    Simpson, Stuart L; Vardanega, Christopher R; Jarolimek, Chad; Jolley, Dianne F; Angel, Brad M; Mosley, Luke M

    2014-05-01

    The discharge of acid drainage from the farm irrigation areas to the Murray River in South Australia represents a potential risk to water quality. The drainage waters have low pH (2.9-5.7), high acidity (up to 1190 mg L(-1) CaCO3), high dissolved organic carbon (10-40 mg L(-1)), and high dissolved Al, Co, Ni and Zn (up to 55, 1.25, 1.30 and 1.10 mg L(-1), respectively) that represent the greatest concern relative to water quality guidelines (WQGs). To provide information on bioavailability, changes in metal speciation were assessed during mixing experiments using filtration (colloidal metals) and Chelex-lability (free metal ions and weak inorganic metal complexes) methods. Following mixing of drainage and river water, much of the dissolved aluminium and iron precipitated. The concentrations of other metals generally decreased conservatively in proportion to the dilution initially, but longer mixing periods caused increased precipitation or adsorption to particulate phases. Dissolved Co, Mn and Zn were typically 95-100% present in Chelex-labile forms, whereas 40-70% of the dissolved nickel was Chelex-labile and the remaining non-labile fraction of dissolved nickel was associated with fine colloids or complexed by organic ligands that increased with time. Despite the different kinetics of precipitation, adsorption and complexation reactions, the dissolved metal concentrations were generally highly correlated for the pooled data sets, indicating that the major factors controlling the concentrations were similar for each metal (pH, dilution, and time following mixing). For dilutions of the drainage waters of less than 1% with Murray River water, none of the metals should exceed the WQGs. However, the high concentrations of metals associated with fine precipitates within the receiving waters may represent a risk to some aquatic organisms. PMID:24359925

  19. Toxicity and bioavailability of heavy metal mixtures in natural and synthetic sediments

    SciTech Connect

    Frugis, M.; Clements, W.H.

    1994-12-31

    Toxicity tests were conducted to compare differences in bioavailability of a metal mixture (zinc, copper, cadmium and lead) in natural and synthetic sediments to Chironomus tentans and Ceriodaphnia dubia. Preliminary tests were conducted with sediment collected at five stations from the Arkansas River (Leadville, CO) and one from the La Cache Poudre River (Fort Collins, CO). After seven days of exposure, mortality on C. tentans in sediment from the most contaminated station (AR3) was significantly different from the reference station (PDR). Bioaccumulation in these insects showed significant correlation with abiotic factors: particle size, organic matter, total carbon and cation exchange capacity. During a second experiment, particle size and carbon contents of synthetic sediment were modified to reflect composition of natural sediment. Two types of artificial sediments were spiked with 0X, 0.085X, 0.175X and 0.35X of metal mixture measured in AR3. After ten days, mortality of C. tentans in the 0.35X and AR3 treatments were similar. In a final experiment, synthetic and natural sediments were spiked at 0X, 0.175X, 0.35X, and 0.70X. Again, mortality of contents in 0.35X and AR3 were not significantly different. A 48hrs-acute test conducted with C. dubia showed that interstitial water from AR3 and AR5 stations had higher toxicity than other stations. In addition, toxicity of interstitial water from synthetic sediment was greater than from spiked natural sediment or sediments collected from the Arkansas River. These results indicate that heavy metals are more bioavailable in synthetic sediments than in natural substrates.

  20. Bioavailability assessment of toxic metals using the technique "acid-volatile sulfide (AVS)-simultaneously extracted metals (SEM)" in marine sediments collected in Todos os Santos Bay, Brazil.

    PubMed

    Silva, Jucelino B; Nascimento, Rodrigo A; de Oliva, Sergio T; de Oliveira, Olívia M C; Ferreira, Sergio L C

    2015-10-01

    This paper reports the bioavailability of the metals (cadmium, copper, zinc, lead, and nickel) in sediment samples collected in seven stations from the São Paulo Estuary, Todos os Santos Bay, Brazil. The bioavailability was determined by employing the technique "acid-volatile sulfide (AVS) and simultaneously extracted metal (SEM)". The elements cadmium, copper, lead, and zinc were determined using differential pulse anodic stripping voltammetry (DPASV), while nickel was quantified utilizing electrothermal atomic absorption spectrometry (ET AAS). The accuracy of these methods was confirmed using a certified reference material of estuarine sediment (NIST 1646). The sulfide was quantified using potentiometry with selective electrode and the organic matter determination employing an indirect volumetric method using potassium dichromate and iron(II) sulfate solutions. The bioavailability of the metals was estimated by relationship between the concentration of AVS and the sum of the concentrations of the simultaneously extracted metals (ΣSEM), considering a significant toxicity when (ΣSEM)/(AVS) is higher than 1. The bioavailability values in the seven stations studied varied from 0.93 to 1.31 (June, 2014) and from 0.34 to 0.58 (September, 2014). These results demonstrated a critical condition of toxicity (bioavailability >1) in six of the seven sediment samples collected during the rainy season (June, 2014). In the other period (September, 2014), the bioavailability was always lower than 1 for all sediment samples collected in the seven stations. The individual values of the concentrations of the five metals were compared with the parameters PEL (probable effects level) and TEL (threshold effects level), which are commonly employed for characterization of ecological risk in environmental systems. This comparison revealed that all metals have concentrations lower than the PEL and only zinc and lead in some stations have contents higher than the TEL. The

  1. Bioavailability assessment of toxic metals using the technique "acid-volatile sulfide (AVS)-simultaneously extracted metals (SEM)" in marine sediments collected in Todos os Santos Bay, Brazil.

    PubMed

    Silva, Jucelino B; Nascimento, Rodrigo A; de Oliva, Sergio T; de Oliveira, Olívia M C; Ferreira, Sergio L C

    2015-10-01

    This paper reports the bioavailability of the metals (cadmium, copper, zinc, lead, and nickel) in sediment samples collected in seven stations from the São Paulo Estuary, Todos os Santos Bay, Brazil. The bioavailability was determined by employing the technique "acid-volatile sulfide (AVS) and simultaneously extracted metal (SEM)". The elements cadmium, copper, lead, and zinc were determined using differential pulse anodic stripping voltammetry (DPASV), while nickel was quantified utilizing electrothermal atomic absorption spectrometry (ET AAS). The accuracy of these methods was confirmed using a certified reference material of estuarine sediment (NIST 1646). The sulfide was quantified using potentiometry with selective electrode and the organic matter determination employing an indirect volumetric method using potassium dichromate and iron(II) sulfate solutions. The bioavailability of the metals was estimated by relationship between the concentration of AVS and the sum of the concentrations of the simultaneously extracted metals (ΣSEM), considering a significant toxicity when (ΣSEM)/(AVS) is higher than 1. The bioavailability values in the seven stations studied varied from 0.93 to 1.31 (June, 2014) and from 0.34 to 0.58 (September, 2014). These results demonstrated a critical condition of toxicity (bioavailability >1) in six of the seven sediment samples collected during the rainy season (June, 2014). In the other period (September, 2014), the bioavailability was always lower than 1 for all sediment samples collected in the seven stations. The individual values of the concentrations of the five metals were compared with the parameters PEL (probable effects level) and TEL (threshold effects level), which are commonly employed for characterization of ecological risk in environmental systems. This comparison revealed that all metals have concentrations lower than the PEL and only zinc and lead in some stations have contents higher than the TEL. The

  2. Bioavailability of particulate metal to zebra mussels: biodynamic modelling shows that assimilation efficiencies are site-specific.

    PubMed

    Bourgeault, Adeline; Gourlay-Francé, Catherine; Priadi, Cindy; Ayrault, Sophie; Tusseau-Vuillemin, Marie-Hélène

    2011-12-01

    This study investigates the ability of the biodynamic model to predict the trophic bioaccumulation of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn) in a freshwater bivalve. Zebra mussels were transplanted to three sites along the Seine River (France) and collected monthly for 11 months. Measurements of the metal body burdens in mussels were compared with the predictions from the biodynamic model. The exchangeable fraction of metal particles did not account for the bioavailability of particulate metals, since it did not capture the differences between sites. The assimilation efficiency (AE) parameter is necessary to take into account biotic factors influencing particulate metal bioavailability. The biodynamic model, applied with AEs from the literature, overestimated the measured concentrations in zebra mussels, the extent of overestimation being site-specific. Therefore, an original methodology was proposed for in situ AE measurements for each site and metal.

  3. Graphical determination of metal bioavailability to soil invertebrates utilizing the Langmuir sorption model

    SciTech Connect

    Donkin, S.G.

    1997-09-01

    A new method of performing soil toxicity tests with free-living nematodes exposed to several metals and soil types has been adapted to the Langmuir sorption model in an attempt at bridging the gap between physico-chemical and biological data gathered in the complex soil matrix. Pseudo-Langmuir sorption isotherms have been developed using nematode toxic responses (lethality, in this case) in place of measured solvated metal, in order to more accurately model bioavailability. This method allows the graphical determination of Langmuir coefficients describing maximum sorption capacities and sorption affinities of various metal-soil combinations in the context of real biological responses of indigenous organisms. Results from nematode mortality tests with zinc, cadmium, copper, and lead in four soil types and water were used for isotherm construction. The level of agreement between these results and available literature data on metal sorption behavior in soils suggests that biologically relevant data may be successfully fitted to sorption models such as the Langmuir. This would allow for accurate prediction of soil contaminant concentrations which have minimal effect on indigenous invertebrates.

  4. Heavy metal pollution in Tianjin, China—its bioavailability prediction and mitigation practice

    NASA Astrophysics Data System (ADS)

    Sun, Hongwen; Wang, Ting; Zhang, Yanfeng; Jiang, Chunxiao; Wang, Jing

    2010-05-01

    Irrigation of sewage water has been applied for agriculture production in Tianjin for over 50 years, for Tianjin is a city lacking water resource. Based on the result of an extensive investigation on heavy metals in the farmland of Tianjin in 2005, 21 samples (including soil and lettuce) were collected from most the polluted areas along the three sewage rivers. Nine of the 21 soil samples exceeded the National Soil Quality Standard for cadmium (0.6 mg/kg) and 7 exceeded the standard for mercury (1.0 mg/kg). However, the heavy metal contents in lettuce did not correlate the heavy metal concentrations in soil. The bioavailability changed with soil properties. The part extracted by diethylene-triaminepentaacetic acid (DTPA) and another mixed extraction solvent, M3, were used to predict the bioavailability of heavy metals. The solvent extraction gave good prediction on Cd absorbance in lettuce, with correlative coefficient larger than 0.9. However, it failed for Hg. This may be because Hg is relatively volatile, and the absorption patterns are complex for Hg. To set up a mitigation method for heavy metal pollution in farm land, friendly to agricultural production, in-situ fixing strategy was adopted. Bacillus subtilis and Candida tropicalis were induced by ultraviolet (UV) radiation and HNO2 treatment to get mutated strains that can tolerate and accumulate higher level of cadmium. A strain of B38 from B. subtilis showed the highest Cd tolerance, and was used for further experiment. Though B38 could accumulate Cd from water solution, but it did not fix Cd in soil. This is due to that the amended microorganisms could not propagate well in the polluted soil. Novogro, which is produced from the waste of an enzyme factory, was selected out from several materials to amend together with B38. After the co-amendment of Novogro and B38, the DTPA extractable Cd decreased by 72%, and B38 could propagate efficiently as indicated by DGGE test. Applying conditions, such as amendment

  5. Metals other than uranium affected microbial community composition in a historical uranium-mining site.

    PubMed

    Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten

    2015-12-01

    To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.

  6. An evaluation of the bioavailability and bioaccumulation of selected metals occurring in a wetland area on the volcanic island of Guam, Western Pacific Ocean.

    PubMed

    Wilson, Bob; Pyatt, Brian; Denton, Gary

    2009-01-01

    This initial research examined the presence, distribution and bioavailability of Cu, Cr, Ni, Mn and Fe in a wetland area of southern Guam. The research sites are within an area covered with saporite, a soil type derived from volcanic deposits on the island. Leaf tissue of Pandanus tectorius was extracted and analysed to determine the bioaccumulation of the target metals. Metal accumulation at sites considered aerobic and anaerobic was investigated together with an attempt to correlate actual accumulation of the target metals in the plant tissue with a recognised bioavailability indicator, in this case, three step sequential extraction scheme. Manganese was found to be accumulated in relatively high concentrations and to a lesser extent Cu was also accumulated. Chromium, Ni and Fe however exhibited very low accumulation factors. Accumulation of Mn in particular was significantly affected by aerobic conditions whereas the converse effect was experienced by Cu. Significant correlation between various steps of a Sequential Extraction Scheme and actual accumulation was not achieved although the degree of aerobic conditions at each site and soil pH did affect concentrations of metals extracted by differing steps of SES. Results obtained suggest that further research in the area should be undertaken using different plant species and tissues.

  7. Fungal inoculation and elevated CO2 mediate growth of Lolium mutiforum and Phytolacca americana, metal uptake, and metal bioavailability in metal-contaminated soil: evidence from DGT measurement.

    PubMed

    Song, Ningning; Wang, Fangli; Zhang, Changbo; Tang, Shirong; Guo, Junkang; Ju, Xuehai; Smith, Donald L

    2013-01-01

    Fungal inoculation and elevated CO2 may mediate plant growth and uptake of heavy metals, but little evidence from Diffusive Gradients in Thin-films (DGT) measurement has been obtained to characterize the process. Lolium mutiforum and Phytolacca americana were grown at ambient and elevated CO2 on naturally Cd and Pb contaminated soils inoculated with and without Trichoderma asperellum strain C3 or Penicillium chrysogenum strain D4, to investigate plant growth, metal uptake, and metal bioavailability responses. Fungal inoculation increased plant biomass and shoot/root Cd and Pb concentrations. Elevated CO2 significantly increased plants biomass, but decreased Cd and Pb concentrations in shoot/root to various extents, leading to a metal dilution phenomenon. Total Cd and Pb uptake by plants, and DGT-measured Cd and Pb concentrations in rhizosphere soils, were higher in all fungal inoculation and elevated CO2 treatments than control treatments, with the combined treatments having more influence than either treatment alone. Metal dilution phenomenon occurred because the increase in DGT-measured bioavailable metal pools in plant rhizosphere due to elevated CO2 was unable to match the increase in requirement for plant uptake of metals due to plant biomass increase.

  8. Freshwater molluscs as indicators of bioavailability and toxicity of metals in surface-water systems

    SciTech Connect

    Elder, J.F.; Collins, J.J. )

    1991-01-01

    Freshwater molluscs--snails and bivalves--have been used frequently as bioindicator organisms. With increasing needs for research on contaminant effects in freshwater ecosystems, this kind of biomonitoring is likely to develop further in the future. Molluscs can be used effectively for studies of both organic and inorganic contaminants; this review focuses on studies involving bioaccumulation and toxicity of metals. Two important advantages of snails and bivalves over most other freshwater organisms for biomonitoring research are their large size and limited mobility. In addition, they are abundant in many types of freshwater environments and are relatively easy to collect and identify. At metal concentrations that are within ranges common to natural waters, they are generally effective bioaccumulators of metals. Biomonitoring studies with freshwater molluscs have covered a wide diversity of species, metals, and environments. The principal generalization that can be drawn from this research is that bioaccumulation and toxicity are extremely situation dependent; hence, it is difficult to extrapolate results from any particular study to other situations where the biological species or environmental conditions are different. Even within one species, individual characteristics such as size, life stage, sex, and genotype can have significant effects on responses to contaminants. The bioavailability of the metal is highly variable and depends on pH, presence of organic ligands, water hardness, and numerous other controlling factors. Despite this variability, past studies provide some general principles that can facilitate planning of research with freshwater snails and bivalves as metal bioindicators. These principles may also be useful in understanding and managing freshwater ecosystems.

  9. Investigation of Metal Bioavailability and Microbial Metal Utilization in Methane Seep Ecosystems through Integration of Geochemical and Biological Datasets

    NASA Astrophysics Data System (ADS)

    Glass, J. B.; Gadh, V.; Steele, J. A.; Adkins, J. F.; Orphan, V. J.

    2012-12-01

    Methane hydrate seeps are important sources of greenhouse gases and host unique microbial communities that couple anaerobic oxidation of methane and sulfate reduction. Microbial enzymes that catalyze the reactions driving these anaerobic metabolisms require transition metals such as Fe, Ni, Co, Zn, and Mo as essential cofactors. These metals are expected to be drawn down to low concentrations by precipitation as sulfide phases in the highly sulfidic porewaters at methane seep ecosystems. However, in situ concentrations of biologically-important metals in sulfidic methane seep pore fluids and the relative importance of different metals for anaerobic methanotrophic archaea (ANME) vs. sulfate reducing bacteria (SRB) are unknown. We are integrating geochemical and metagenomic datasets with nano-scale maps of cellular metal distributions to gain insights into metal bioavailability and utilization in methane seep ecosystems. We have measured porewater profiles of dissolved metals (V, Ni, Cu, Co, Fe, Mn, Zn, Mo and W) from three habitat types at Hydrate Ridge, offshore Oregon: Calyptogena clam beds, microbial mats and sites with low methane flux. Highly sulfidic sediment porewaters beneath microbial mats contained the lowest metal concentrations, suggesting that microbes inhabiting these environments may be limited by metal scarcity. Cobalt occurred at particularly low abundances (≤5 nM in all cores and frequently at sub-nanomolar levels). We also analyzed the taxonomic distribution of ABC (ATP-binding cassette) metal transporters in metagenomes from environmentally-enriched consortia of ANME-2 and SRB from Eel River Basin methane seeps. Our findings suggest that both ANME and SRB possess genes encoding ABC transporters with high affinity for Fe, Ni, Co, Zn and Mo. Combined with our geochemical data, these results imply that ANME-SRB consortia in highly sulfidic environments have specialized mechanisms that allow them to acquire metal micronutrients

  10. Bioavailable trace metals in micro-tidal Thambraparani estuary, Gulf of Mannar, SE coast of India

    NASA Astrophysics Data System (ADS)

    Jayaprakash, M.; Viswam, Arya; Gopal, V.; Muthuswamy, S.; Kalaivanan, P.; Giridharan, L.; Jonathan, M. P.

    2014-06-01

    Thirty surface sediment samples from two different seasons pre-monsoon (PRM), post-monsoon (POM) were analyzed for texture, carbonates, organic matter (OM) and leachable trace metals (LTMs) (Fe, Mn, Cr, Cu, Ni, Pb, Zn, Cd) from the micro-tidal estuary of Thambraparani river located in Gulf of Mannar, SE coast of India. Finer fractions (mud: 3-87%) and OM (2.6-8.0%) dominate the region and the concentration pattern of LTMs indicate that mostly all the metals are concentrated in the POM season than PRM. Correlation analysis indicates that LTMs are also bound with the OM, mud and are bound with Fe-Mn oxides. Pb concentration (14-103 μg g-1) exceeds the sediment quality guideline value indicating its anthropogenic origin. Low flow condition exists in the estuarine region due to the control over fresh water inflow in the upstream side and the higher concentration of metals [avg. (μg g-1) Cr 10; Cu 11; Zn 28] is due to the precipitation from estuarine water to the sediments and is also bioavailable to the marine biota in the region.

  11. Assessment of metal toxicity and bioavailability in metallophyte leaf litters and metalliferous soils using Eisenia fetida in a microcosm study.

    PubMed

    Nirola, Ramkrishna; Megharaj, Mallavarapu; Venkateswarlu, Kadiyala; Aryal, Rupak; Correll, Ray; Naidu, Ravi

    2016-07-01

    The leaf litters of tree species, Acacia pycnantha (Ap) and Eucalyptus camaldulensis (Ec), predominantly growing at an abandoned copper (Cu) mine and mine soils including controls, were assessed for determining the metal toxicity and bioavailability using earthworm species Eisenia fetida, in a microcosm. Significant reduction in body weight as well as mortality were observed when the worms were introduced into mine soil or its combination with mine Ap litter. Virtually, there were no juveniles when the worms were fed on substratum that contained mine soil or mine leaf litter. The extent of bioaccumulation was dependent on water-soluble fraction of a metal in soil. The accumulation of cadmium, lead and copper in worm tissue was significantly more in treatments that received mine soil with or without mine leaf litter. However, the tissue concentration of zinc did not differ much in earthworms irrespective of its exposure to control or contaminated samples. Mine leaf litter from Ec, a known Cu hyperaccumulator, was more hospitable to earthworm survival and juvenile than that of Ap litter. Validation of the data on bioaccumulation of metals indicated that the mine leaf litter significantly contributed to metal bioavailability. However, it was primarily the metal concentration in mine soil that was responsible for earthworm toxicity and bioavailability. Our data also indicate that detrivores like earthworm is greatly responsible for heavy metal transfer from mines into the ecosystem. PMID:27057994

  12. Plant uptake/bioavailability of heavy metals from the contaminated soil after treatment with humus soil and hydroxyapatite.

    PubMed

    Misra, Virendra; Chaturvedi, Pranav Kumar

    2007-10-01

    Uptake /bioavailability study using the Indian mustard plant (Brassica juncea) was undertaken at the interval of 7, 14 and 21 days to test the immobilization of heavy metals from contaminated soil that were amended with humus soil and/or hydroxyapatite. For this, four sets consisting of non-humus soil + metals (Cd, Cr, Ni and Pb), humus soil + metals, non-humus and humus soil in the ratio of 1:3 + metals and non-humus soil: humus soil in the ratio of 1:3 + metals + 1% hydroxyapatite were prepared. The bioavailability of Pb, Cd, Cr and Ni in non-humus soil system was 58%, 67%, 65% and 63%, respectively in 7 days, more than 80% in 14 days and more than 90% in 21 days. Use of non-humus, humus soil in the ratio of 1:3 and addition of 1% hydroxyapatite decreased the bioavailability of lead around 21 to 22.5%, Cd 35 to 36%, Cr 25.5 to 26.9%, Ni 34 to 39% in 7, 14 and 21 days. Apart from this increase in the fresh weight of the plant was also noticed during the experiment. The data showed that addition of 1% hydroxyapatite in the non-humus-humus soil system caused the increase in the fresh weight around 90% in 7, 14 and 21 days as compared to plant grown in non-humus and metal soil system.

  13. Biofortification and Bioavailability of Rice Grain Zinc as Affected by Different Forms of Foliar Zinc Fertilization

    PubMed Central

    Yang, Xiaoe

    2012-01-01

    Background Zinc (Zn) biofortification through foliar Zn application is an attractive strategy to reduce human Zn deficiency. However, little is known about the biofortification efficiency and bioavailability of rice grain from different forms of foliar Zn fertilizers. Methodology/Principal Findings Four different Zn forms were applied as a foliar treatment among three rice cultivars under field trial. Zinc bioavailability was assessed by in vitro digestion/Caco-2 cell model. Foliar Zn fertilization was an effective agronomic practice to promote grain Zn concentration and Zn bioavailability among three rice cultivars, especially, in case of Zn-amino acid and ZnSO4. On average, Zn-amino acid and ZnSO4 increased Zn concentration in polished rice up to 24.04% and 22.47%, respectively. On average, Zn-amino acid and ZnSO4 increased Zn bioavailability in polished rice up to 68.37% and 64.43%, respectively. The effectiveness of foliar applied Zn-amino acid and ZnSO4 were higher than Zn-EDTA and Zn-Citrate on improvement of Zn concentration, and reduction of phytic acid, as a results higher accumulation of bioavailable Zn in polished rice. Moreover, foliar Zn application could maintain grain yield, the protein and minerals (Fe and Ca) quality of the polished rice. Conclusions Foliar application of Zn in rice offers a practical and useful approach to improve bioavailable Zn in polished rice. According to current study, Zn-amino acid and ZnSO4 are recommended as excellent foliar Zn forms to ongoing agronomic biofortification. PMID:23029003

  14. Trace metal bioavailability: Modeling chemical and biological interactions of sediment-bound zinc

    USGS Publications Warehouse

    Luoma, S. N.; Bryan, G.W.; Jenne, Everett A.

    1979-01-01

    Extractable concentrations of sediment-bound Zn, as modified by the physicochemical form of the metal in the sediments, controlled Zn concentrations in the deposit-feeding bivalvesScrobicularia plana (collected from 40 stations in 17 estuaries in southwest England) andMacoma balthica (from 28 stations in San Francisco Bay). Over a wide range of concentrations, a significant correlation was found between ammonium acetate-soluble concentrations of Zn in sediments and Zn concentrations in Scrobicularia. This correlation was insufficiently precise to be of predictive value for Scrobicularia, and did not hold for Macoma over the narrower range of Zn concentrations observed in San Francisco Bay. Strong correlation of Zn concentrations inScrobicularia and the bioavailability of sediment-bound Zn to Macoma with ratios of sorption substrate (oxides of iron and manganese, organic carbon, carbonates, humic materials) concentrations in sediments were found in both the English and San Francisco Bay study areas. These correlations were attributed to substrate competition for sorption of Zn within sediments, assuming: 1) competition for sorption of Zn was largely controlled by the relative concentrations of substrates present in the sediments and 2) the bioavailability of Zn to the deposit feeders was determined by the partitioning of Zn among the substrates. The correlations indicated that the availability of Zn to the bivalves increased when concentrations of either amorphous inorganic oxides or humic substances increased in sediments. Availability was reduced at increased concentrations of organic carbon and, in San Francisco Bay, ammonium acetate-soluble Mn. Concentrations of biologically available Zn in solution and low salinities may also have enhanced Zn uptake, although the roles of these variables were less obvious from the statistical analysis.

  15. Effects of freshwater leaching on potential bioavailability of heavy metals in tidal flat soils.

    PubMed

    Li, Hui; Lu, Jun; Li, Qu-Sheng; He, Bao-Yan; Mei, Xiu-Qin; Yu, Dan-Ping; Xu, Zhi-Min; Guo, Shi-Hong; Chen, Hui-Jun

    2016-02-01

    Leaching experiments were conducted to investigate the effects of desalination levels and sediment depths on potential bioavailability of heavy metal (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in tidal flat soils. The data showed that both the desalination levels (p < 0.001) and soil depths (p < 0.001) had significant effects on the concentrations of acid-volatile sulfide (AVS). AVS concentrations generally exhibited increasing trends with an increase in depth and decreasing trends with enhanced desalination levels. The desalination levels had significant (p < 0.05) effects on the concentrations of simultaneously extracted metal (SEM; Cd, Cr, Cu, Fe, Mn, Pb, and Zn). Moreover, the concentrations of SEM (Cd, Cr, Cu, Fe, Mn, Pb, and Zn) generally tended to decrease with an increase in the desalination level. The desalination treatment significantly reduced the ratios of SEM/AVS compared with control. However, the ratios of SEM/AVS increased with enhanced desalination levels in treatments. Results reveal that low desalination treatment is better for reducing toxicity to benthic organisms than high desalination treatment. Since these reclaimed tidal flats with low desalinisation are suitable for saline water aquaculture, transforming the present land use of reclaimed tidal flats from fresh water aquaculture into saline water aquaculture may reduce health risk of heavy metals remained in sediments. These results will also contribute to our understanding of the dynamic behavior of heavy metals in the reclamation of tidal flats during leaching and the role of the ratio of SEM/AVS predictions on assessing the ecological risks of reclaimed tidal flats.

  16. Metal ions affecting the neurological system.

    PubMed

    Pohl, Hana R; Roney, Nickolette; Abadin, Henry G

    2011-01-01

    Several individual metals including aluminum, arsenic, cadmium, lead, manganese, and mercury were demonstrated to affect the neurological system. Metals are ubiquitous in the environment. Environmental and occupational exposure to one metal is likely to be accompanied by exposure to other metals, as well. It is, therefore, expected that interactions or "joint toxic actions" may occur in populations exposed to mixtures of metals or to mixtures of metals with other chemicals. Some metals seem to have a protective role against neurotoxicity of other metals, yet other interactions may result in increased neurotoxicity. For example, zinc and copper provided a protective role in cases of lead-induced neurotoxicity. In contrast, arsenic and lead co-exposure resulted in synergistic effects. Similarly, information is available in the current literature on interactions of metals with some organic chemicals such as ethanol, polychlorinated biphenyls, and pesticides. In depth understanding of the toxicity and the mechanism of action (including toxicokinetics and toxicodynamics) of individual chemicals is important for predicting the outcomes of interactions in mixtures. Therefore, plausible mechanisms of action are also described.

  17. Speciation and bioavailability of some heavy metals in agricultural soils used for cultivating various vegetables in Bedugul, Bali

    NASA Astrophysics Data System (ADS)

    Siaka, I. Made; Utama, I. Made Supartha; Manuaba, I. B. Putra; Adnyana, I. Made; Sahara, Emmy

    2016-03-01

    This paper discusses the speciation and bioavailability of some heavy metals in agricultural soils used to cultivate various vegetables in Bedugul, Bali. Vegetables grown on contaminated soils where agrochemicals were applied uncontrolled could contain a number of heavy metals. This could occur in the vegetables produced from agricultural soils of Bedugul as the farmers applied agrochemicals excessively. In considering the metals transport to the vegetables, a speciation and bioavailability methods were necessary to be studied. Wet digestion and sequential extraction techniques were employed to the sample prior to the metals measurement by AAS. The results showed that the average concentrations of Pb, Cu, Cd, Cr, and Zn in the soils were 38.531, 132.126, 7.689, 15.952, and 147.275 mg/kg, respectively. The highest concentrations of Pb and Zn were found in the soil for cultivating lettuce, Cd and Cr in the soil for tomato, and Cu in the soil for potatoes. It was found that the speciation of Pb, Cu, Cd, and Cr were predominantly bound to Fe-Mn oxides fraction, while Zn was mostly associated with the EFLE (easily, freely, leachable, and exchangeable) fractions. The highest bioavailability among the metals in the studied soils was Cr, while the lowest was Cu.

  18. Bioavailability of trace metals in brownfield soils in an urban area in the UK.

    PubMed

    Thums, Catherine R; Farago, Margaret E; Thornton, Iain

    2008-12-01

    Thirty-two brownfield sites from the city of Wolverhampton were selected from those with a former industrial use, wasteland or areas adjacent to industrial processes. Samples (<2 mm powdered soil fraction) were analysed, using inductively coupled plasma-atomic emission spectrometry (ICP-AES) for 20 elements. Loss on ignition and pH were also determined. A five-step chemical sequential extraction technique was carried out. Single leach extraction with 0.12 M hydrochloric acid of Pb, Cu and Zn in soil was determined as a first approximation of the bioavailability in the human stomach. Some of the sites were found to have high concentrations of the potentially toxic elements Pb, Zn, Cu and Ni. The partitioning of metals showed a high variability, however a number of trends were determined. The majority of Zn was partitioned into the least chemically stable phases (steps 1, 2 and 3). The majority of Cu was associated with the organic phase (step 4) and the majority of Ni was fractionated into the residue phase (step 5). The majority of Pb was associated with the residue fraction (step 5) followed by Fe-Mn oxide fraction (step 3). The variability reflects the heterogeneous and complex nature of metal speciation in urban soils with varied historic histories. There was a strong inverse linear relationship between the metals Ni, Zn and Pb in the readily exchangeable phase (step 1) and soil pH, significant at P < 0.01 level. There was a significant increase (P < 0.05) in the partitioning of Cu, Ni and Zn into step 4 (the organic phase) in soils with a higher organic carbon content (estimated by loss on ignition). Copper was highly partitioned into step 4 as it has a strong association with organics in soil but this phase was not important for the partitioning of Ni or Zn. The fractionation of Ni, Cu and Zn increased significantly in step 3 when the total metal concentration increases (P < 0.01). The Fe-Mn oxide fraction becomes more important in soils elevated in these

  19. Cadmium toxicity for terrestrial invertebrates: taking soil parameters affecting bioavailability into account.

    PubMed

    Lock, K; Janssen, C R

    2001-10-01

    Acute and chronic ecotoxicity tests with cadmium were conducted with the earthworm Eisenia fetida, the potworm Enchytraeus albidus and the springtail Folsomia candida. To assess the influence of the soil type on cadmium bioavailability, these tests were carried out in a standard artificial soil, in a sandy and a loamy field soil. It was not possible to evaluate the influence of soil parameters on the bioavailability on the basis of the experiments that were conducted in only three different soil types, therefore, literature data were also included. However, even in the same standard artificial soils, toxicity data in the literature for Eisenia fetida and Folsomia candida varied considerably. Consequently, no models could be developed that allow a normalization of the ecotoxicity of cadmium to parameters controlling bioavailability. In contrast to zinc, effect concentrations of cadmium for terrestrial invertebrates were always much higher than background concentrations. As the effect of aging on the bioavailability of cadmium was never taken into account, because toxicity experiments were always carried out in freshly spiked soilds, these effect concentrations may even be regarded as conservative. Furthermore, the zinc-cadmium ratio in soils is usually so high that the risk of zinc ecotoxicity for terrestrial invertebrates will usually be much greater in comparison to cadmium ecotoxicity. PMID:11556119

  20. Cadmium toxicity for terrestrial invertebrates: taking soil parameters affecting bioavailability into account.

    PubMed

    Lock, K; Janssen, C R

    2001-10-01

    Acute and chronic ecotoxicity tests with cadmium were conducted with the earthworm Eisenia fetida, the potworm Enchytraeus albidus and the springtail Folsomia candida. To assess the influence of the soil type on cadmium bioavailability, these tests were carried out in a standard artificial soil, in a sandy and a loamy field soil. It was not possible to evaluate the influence of soil parameters on the bioavailability on the basis of the experiments that were conducted in only three different soil types, therefore, literature data were also included. However, even in the same standard artificial soils, toxicity data in the literature for Eisenia fetida and Folsomia candida varied considerably. Consequently, no models could be developed that allow a normalization of the ecotoxicity of cadmium to parameters controlling bioavailability. In contrast to zinc, effect concentrations of cadmium for terrestrial invertebrates were always much higher than background concentrations. As the effect of aging on the bioavailability of cadmium was never taken into account, because toxicity experiments were always carried out in freshly spiked soilds, these effect concentrations may even be regarded as conservative. Furthermore, the zinc-cadmium ratio in soils is usually so high that the risk of zinc ecotoxicity for terrestrial invertebrates will usually be much greater in comparison to cadmium ecotoxicity.

  1. Soy protein isolate does not affect ellagitannin bioavailability and urolithin formation when mixed with pomegranate juice in humans.

    PubMed

    Yang, Jieping; Lee, Rupo; Henning, Susanne M; Thames, Gail; Hsu, Mark; ManLam, Hei; Heber, David; Li, Zhaoping

    2016-03-01

    We investigated the effect of mixing soy protein isolate and pomegranate juice (PJ) on the bioavailability and metabolism of ellagitannins (ETs) in healthy volunteers. Eighteen healthy volunteers consumed PJ alone or PJ premixed with soy protein isolate (PJSP). The concentration of plasma ellagic acid (EA) and urine urolithins was measured. There was no significant difference in plasma EA over a 6-h period between the two interventions. While the maximum concentration of plasma EA after PJSP consumption was slightly but significantly lower than after PJ consumption, EA remained in the plasma longer with an elimination half-life t1/2E at 1.36±0.59 versus 1.06±0.47h for PJSP and PJ consumption, respectively. Urinary urolithin A, B and C was not significantly different between the two interventions. In conclusion, premixing soy protein isolate and PJ did not affect the bioavailability or the metabolism of pomegranate ETs in healthy volunteers.

  2. A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing

    PubMed Central

    2009-01-01

    Background Recombinant whole-cell sensors have already proven useful in the assessment of the bioavailability of environmental pollutants like heavy metals and organic compounds. In this work 19 recombinant bacterial strains representing various Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli, Pseudomonas fluorescens) bacteria were constructed to express the luminescence encoding genes luxCDABE (from Photorhabdus luminescens) as a response to bioavailable heavy metals ("lights-on" metal sensors containing metal-response elements, 13 strains) or in a constitutive manner ("lights-off" constructs, 6 strains). Results The bioluminescence of all 13 "lights-on" metal sensor strains was expressed as a function of the sub-toxic metal concentrations enabling the quantitative determination of metals bioavailable for these strains. Five sensor strains, constructed for detecting copper and mercury, proved to be target metal specific, whereas eight other sensor strains were simultaneously induced by Cd2+, Hg2+, Zn2+and Pb2+. The lowest limits of determination of the "lights-on" sensor strains for the metals tested in this study were (μg l-1): 0.002 of CH3HgCl, 0.03 of HgCl2, 1.8 of CdCl2, 33 of Pb(NO3)2, 1626 of ZnSO4, 24 of CuSO4 and 340 of AgNO3. In general, the sensitivity of the "lights-on" sensor strains was mostly dependent on the metal-response element used while the selection of host bacterium played a relatively minor role. In contrast, toxicity of metals to the "lights-off" strains was only dependent on the bacterial host so that Gram-positive strains were remarkably more sensitive than Gram-negative ones. Conclusion The constructed battery of 19 recombinant luminescent bacterial strains exhibits several novel aspects as it contains i) metal sensor strains with similar metal-response elements in different host bacteria; ii) metal sensor strains with metal-response elements in different copies and iii) a "lights

  3. Advances In Assessing Bioavailability Of Metal(Loid)s In Contaminated Soils

    EPA Science Inventory

    The term bioavailability has many different meanings across various disciplines of toxicology and pharmacology. Often bioavailability is concerned with human health aspects such as in the case of lead (Pb) ingestion by children. However, some of the most contaminated sites are ...

  4. Advances in Assessing Bioavailability of Metal(loid)s in Contaminated Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The term bioavailability has many different meanings across various disciplines of toxicology and pharmacology. Often bioavailability is concerned with human health aspects such in the case of lead (Pb) ingestion by children. However, some of the most contaminated sites are found in non-public acc...

  5. Soil sterilization affects aging-related sequestration and bioavailability of p,p'-DDE and anthracene to earthworms.

    PubMed

    Slizovskiy, Ilya B; Kelsey, Jason W

    2010-10-01

    Laboratory experiments investigated the effects of soil sterilization and compound aging on the bioaccumulation of spiked p,p'-DDE and anthracene by Eisenia fetida and Lumbricus terrestris. Declines in bioavailability occurred as pollutant residence time in both sterile and non-sterile soils increased from 3 to 203 d. Accumulation was generally higher in sterile soils during initial periods of aging (from 3-103 d). By 203 d, however, bioavailability of the compounds was unaffected by sterilization. Gamma irradiation and autoclaving may have altered bioavailability by inducing changes in the chemistry of soil organic matter (SOM). The results support a dual-mode partitioning sorption model in which the SOM components associated with short-term sorption (the 'soft' or 'rubbery' phases) are more affected than are the components associated with long-term sorption (the 'glassy' or microcrystalline phases). Risk assessments based on data from experiments in which sterile soil was used could overestimate exposure and bioaccumulation of pollutants. PMID:20708831

  6. Influence of glyphosate and its formulation (Roundup) on the toxicity and bioavailability of metals to Ceriodaphnia dubia.

    PubMed

    Tsui, Martin T K; Wang, Wen-Xiong; Chu, L M

    2005-11-01

    This study examined the toxicological interaction between glyphosate (or its formulation, Roundup) and several heavy metals to a freshwater cladoceran, Ceriodaphnia dubia. We demonstrated that all binary combinations of Roundup and metals (Cd, Cu, Cr, Ni, Pb, Se and Zn) exhibited "less than additive" mixture toxicity, with 48-h LC50 toxic unit > 1. Addition of glyphosate alone could significantly reduce the acute toxicity of Ag, Cd, Cr, Cu, Ni, Pb and Zn (but not Hg and Se). The ratio between glyphosate and metal ions was important in determining the mitigation of metal toxicity by glyphosate. A bioaccumulation study showed that in the presence of glyphosate the uptake of some metals (e.g. Ag) was halted but that of others (e.g. Hg) was increased significantly. Therefore, our study strongly suggests that glyphosate and its commercial formulations can control the toxicity as well as the bioavailability of heavy metals in aquatic ecosystems where both groups of chemicals can co-occur.

  7. Role of phosphorus in (Im)mobilization and bioavailability of heavy metals in the soil-plant system.

    PubMed

    Bolan, Nanthi S; Adriano, Domy C; Naidu, Ravi

    2003-01-01

    A large number of studies have provided conclusive evidence for the potential value of both water-soluble (e.g.. DAP) and water-insoluble (e.g., apatite, also known as PRs) P compounds to immobilize metals in soils, thereby reducing their bioavailability for plant uptake. It is, however, important to recognize that, depending on the nature of P compounds and the heavy metal species, application of these materials can cause either mobilization or immobilization of the metals. Furthermore, some of these materials contain high levels of metals and can act as an agent of metal introduction to soils. Accordingly. these materials should be scrutinized before their large-scale use as immobilizing agent in contaminated sites. Although mobilization by certain P compounds enhances the bioavailability of metals, immobilization inhibits their plant uptake and reduces their transport in soils and subsequent groundwater contamination. Whenever phytoremediation of contaminated sites is practicable, appropriate P compounds can be used to enhance the bioavailability of metals for plant uptake. Removal of metals through phytoremediation techniques and the subsequent recovery of the metals or their safe disposal are attracting research and commercial interests. Phosphate compounds can be used to enhance the solubilization of metals, leading to their increased uptake by plants. However, when it is not possible to remove the metals from the contaminated sites by phytoremediation, other viable options such as in situ immobilization should be considered as an integral part of risk management. One way to facilitate such immobilization is by altering the physicochemical properties of the metal-soil complex by introducing a multipurpose anion, such as phosphate, that enhances metal adsorption via anion-induced negative charge (i.e., CEC) and metal precipitation. It is important to recognize that large-scale use of P compounds can lead to surface and groundwater contamination of this element

  8. Science, policy, and trends of metals risk assessment at EPA: how understanding metals bioavailability has changed metals risk assessment at US EPA.

    PubMed

    Reiley, Mary C

    2007-08-30

    The US Environmental Protection Agency (EPA) and the Office of Water have made significant changes in the approaches taken to assessing metals in the aquatic environment. Over the last 20 years, the Office of Water has progressed through a variety of metals assessment tools from total recoverable metal to the biotic ligand model. These changes were initially driven by the recognition that the total metals criteria were out of date and that emerging science would make it possible to address bioavailability more thoroughly. More recent drivers are expectations that the agency ensure the criteria are protective of endangered species and that the agency can bring the best available science to conducting total maximum daily loads (TMDLs) for waters not meeting uses because of metal contamination. Changes have included: moving from total recoverable metals concentration to dissolved metals and the development of dissolved metal to total metal translator guidance, the development of water effect ratios (WERs) guidance, and most recently incorporation of the biotic ligand model (BLM) into criteria derivation for aquatic life protection (USEPA, 2007a. Aquatic Life Ambient Freshwater Quality Criteria-Copper 2007 Revision. EPA-822-R-07-001. http://www.epa.gov/waterscience/criteria/copper/index.htm.). On March 8, 2007, the agency published its Framework for Metals Risk Assessment (USEPA, 2007b. Framework for Metals Risk Assessment. EPA 120/R-07/001. http://www.epa.gov/osa/metalsframework.) discussing the state of the science for the persistent bioaccumulative, and toxic nature of metals and the considerations of this science that will impact many programs. This paper provides a brief insight to these agency activities.

  9. Caddisflies Hydropsyche spp. as biomonitors of trace metal bioavailability thresholds causing disturbance in freshwater stream benthic communities.

    PubMed

    Awrahman, Zmnako A; Rainbow, Philip S; Smith, Brian D; Khan, Farhan R; Fialkowski, Wojciech

    2016-09-01

    Demonstration of an ecotoxicological effect of raised toxic metal bioavailabilities on benthic macroinvertebrate communities in contaminated freshwater streams typically requires the labour-intensive identification and quantification of such communities before the application of multivariate statistical analysis. A simpler approach is the use of accumulated trace metal concentrations in a metal-resistant biomonitor to define thresholds that indicate the presence of raised trace metal bioavailabilities causing ecotoxicological responses in populations of more metal-sensitive members of the community. We explore further the hypothesis that concentrations of toxic metals in larvae of species of the caddisfly genus Hydropsyche can be used to predict metal-driven ecotoxicological responses in more metal-sensitive mayflies, especially ephemerellid and heptageniid mayflies, in metal-contaminated rivers. Comparative investigation of two caddisflies, Hydropsyche siltalai and Hydropsyche angustipennis, from metal-contaminated rivers in Cornwall and Upper Silesia, Poland respectively, has provided preliminary evidence that this hypothesis is applicable across caddisfly species and contaminated river systems. Use of a combined toxic unit approach, relying on independent data sets, suggested that copper and probably also arsenic are the drivers of mayfly ecotoxicity in the River Hayle and the Red River in Cornwall, while cadmium, lead and zinc are the toxic agents in the Biala Przemsza River in Poland. This approach has great potential as a simple tool to detect the more subtle effects of mixed trace metal contamination in freshwater systems. An informed choice of suitable biomonitor extends the principle to different freshwater habitats over different ranges of severity of trace metal contamination. PMID:27357485

  10. Caddisflies Hydropsyche spp. as biomonitors of trace metal bioavailability thresholds causing disturbance in freshwater stream benthic communities.

    PubMed

    Awrahman, Zmnako A; Rainbow, Philip S; Smith, Brian D; Khan, Farhan R; Fialkowski, Wojciech

    2016-09-01

    Demonstration of an ecotoxicological effect of raised toxic metal bioavailabilities on benthic macroinvertebrate communities in contaminated freshwater streams typically requires the labour-intensive identification and quantification of such communities before the application of multivariate statistical analysis. A simpler approach is the use of accumulated trace metal concentrations in a metal-resistant biomonitor to define thresholds that indicate the presence of raised trace metal bioavailabilities causing ecotoxicological responses in populations of more metal-sensitive members of the community. We explore further the hypothesis that concentrations of toxic metals in larvae of species of the caddisfly genus Hydropsyche can be used to predict metal-driven ecotoxicological responses in more metal-sensitive mayflies, especially ephemerellid and heptageniid mayflies, in metal-contaminated rivers. Comparative investigation of two caddisflies, Hydropsyche siltalai and Hydropsyche angustipennis, from metal-contaminated rivers in Cornwall and Upper Silesia, Poland respectively, has provided preliminary evidence that this hypothesis is applicable across caddisfly species and contaminated river systems. Use of a combined toxic unit approach, relying on independent data sets, suggested that copper and probably also arsenic are the drivers of mayfly ecotoxicity in the River Hayle and the Red River in Cornwall, while cadmium, lead and zinc are the toxic agents in the Biala Przemsza River in Poland. This approach has great potential as a simple tool to detect the more subtle effects of mixed trace metal contamination in freshwater systems. An informed choice of suitable biomonitor extends the principle to different freshwater habitats over different ranges of severity of trace metal contamination.

  11. Novel and non-traditional use of stable isotope tracers to study metal bioavailability from natural particles

    USGS Publications Warehouse

    Croteau, Marie-Noële; Cain, Daniel J.; Fuller, Christopher C.

    2013-01-01

    We devised a novel tracing approach that involves enriching test organisms with a stable metal isotope of low natural abundance prior to characterizing metal bioavailability from natural inorganic particles. In addition to circumventing uncertainties associated with labeling natural particles and distinguishing background metals, the proposed "reverse labeling" technique overcomes many drawbacks inherent to using radioisotope tracers. Specifically, we chronically exposed freshwater snails (Lymnaea stagnalis) to synthetic water spiked with Cu that was 99.4% 65Cu to increase the relative abundance of 65Cu in the snail’s tissues from 32% to >80%. The isotopically enriched snails were then exposed to benthic algae mixed with Cu-bearing Fe–Al particles collected from the Animas River (Colorado), an acid mine drainage impacted river. We used 63Cu to trace Cu uptake from the natural particles and inferred their bioavailability from calculation of Cu assimilation into tissues. Cu assimilation from these particles was 44%, indicating that 44% of the particulate Cu was absorbed by the invertebrate. This demonstrates that inorganic particulate Cu can be bioavailable. The reverse labeling approach shows great potential in various scientific areas such as environmental contamination and nutrition for addressing questions involving uptake of an element that naturally has multiple isotopes.

  12. Assessing the bioavailability and risk from metal-contaminated soils and dusts

    EPA Science Inventory

    Exposure to contaminated soil and dust is an important pathway in human health risk assessment. Physical and chemical characteristics, as well as biological factors, determine the bioaccessibility/bioavailability of soil and dust contaminants. Within a single sample, contaminat...

  13. Chemical versus Enzymatic Digestion of Contaminated Estuarine Sediment: Relative Importance of Iron and Manganese Oxides in Controlling Trace Metal Bioavailability

    NASA Astrophysics Data System (ADS)

    Turner, A.; Olsen, Y. S.

    2000-12-01

    Chemical and enzymatic reagents have been employed to determine available concentrations of Fe, Mn, Cu and Zn in contaminated estuarine sediment. Gastric and intestinal enzymes (pepsin, pH 2, and trypsin, pH 7·6, respectively) removed significantly more metal than was water-soluble or exchangeable (by seawater or ammonium acetate), while gastro-intestinal fluid of the demersal teleost, Pleuronectes platessa L. (plaice), employed to operationally define a bioavailable fraction of contaminants, generally solubilized more metal than the model enzymes. Manganese was considerably more available than Fe under these conditions and it is suggested that the principal mechanism of contaminant release is via surface complexation and reductive solubilization of Mn oxides, a process which is enhanced under conditions of low pH. Of the chemical reagents tested, acetic acid best represents the fraction of Mn (as well as Cu and Zn) which is available under gastro-intestinal conditions, suggesting that the reducing tendency of acetate is similar to that of the ligands encountered in the natural digestive environment. Although the precise enzymatic and non-enzymatic composition of plaice gastro-intestinal fluid may be different to that encountered in more representative, filter-feeding or burrowing organisms, a general implication of this study is that contaminants associated with Mn oxides are significantly more bioavailable than those associated with Fe oxides, and that contaminant bioavailability may be largely dictated by the oxidic composition of contaminated sediment.

  14. Effects of soil water content and organic matter addition on the speciation and bioavailability of heavy metals.

    PubMed

    Hernandez-Soriano, Maria C; Jimenez-Lopez, Jose C

    2012-04-15

    The mobility and bioavailability of cadmium, copper, lead and zinc were evaluated in three soils amended with different organic materials for two moisture regimes. Agricultural and reclamation activities impose fresh inputs of organic matter on soil while intensive irrigation and rainstorm increase soil waterlogging incidence. Moreover, scarcity of irrigation water has prompted the use of greywater, which contain variable concentrations of organic compounds such as anionic surfactants. Soils added with hay, maize straw or peat at 1% w/w were irrigated, at field capacity (FC) or saturated (S), with an aqueous solution of the anionic surfactant Aerosol 22 (A22), corresponding to an addition of 200 mgC/kgsoil/day. Soil solution was extracted after one month and analysed for total soluble metals, dissolved soil organic matter and UV absorbance at 254 nm. Speciation analyses were performed with WHAM VI for Cd, Cu, Pb, and Zn. For selected scenarios, metal uptake by barley was determined. Metal mobility increased for all treatments and soils (Pb>Cu>Cd≥Zn) compared to control assays. The increase was significantly correlated (p<0.05) with soil organic matter solubilisation for Cd (R=0.68), Cu (R=0.73) and Zn (R=0.86). Otherwise, Pb release was related to aluminium solubilisation (R=0.75), which suggests that Pb was originally co-precipitated with Al-DOC complexes in the solid phase. The effect of A22 in metal bioavailability, determined as free ion activities (FIA), was mainly controlled by soil moisture regime. For soil 3, metal bioavailability was up to 20 times lower for soil amended with hay, peat or maize compared to soil treated only with A22. When soil was treated with A22 at FC barley yield significantly decreased (p<0.05) for the increase of Pb (R=0.71) and Zn (R=0.79) concentrations in shoot, while for saturated conditions such uptake was up to 3 times lower. Overall, metal bioavailability was controlled by solubilisation of soil organic matter and formation

  15. Integrating bioavailability approaches into waste rock evaluations

    USGS Publications Warehouse

    Ranville, James F.; Blumenstein, E. P.; Adams, Michael J.; Choate, LaDonna M.; Smith, Kathleen S.; Wildeman, Thomas R.

    2006-01-01

    The presence of toxic metals in soils affected by mining, industry, agriculture and urbanization, presents problems to human health, the establishment and maintenance of plant and animal habitats, and the rehabilitation of affected areas. A key to managing these problems is predicting the fraction of metal in a given soil that will be biologically labile, and potentially harmful ('bioavailable'). The molecular form of metals and metalloids, particularly the uncomplexed (free) form, controls their bioavailability and toxicity in solution. One computational approach for determining bioavailability, the biotic ligand model (BLM), takes into account not only metal complexation by ligands in solution, but also competitive binding of hardness cations (Ca 2+,Mg 2+,) and metal ions to biological receptor sites. The more direct approach to assess bioavailability is to explicitly measure the response of an organism to a contaminant. A number of microbial enzyme tests have been developed to assess the impact of pollution in a rapid and procedurally simple way. These different approaches in making bioavailability predictions may have value in setting landuse priorities, remediation goals, and habitat reclamation strategies.

  16. Green manure plants for remediation of soils polluted by metals and metalloids: ecotoxicity and human bioavailability assessment.

    PubMed

    Foucault, Y; Lévêque, T; Xiong, T; Schreck, E; Austruy, A; Shahid, M; Dumat, C

    2013-10-01

    Borage, white mustard and phacelia, green manure plants currently used in agriculture to improve soil properties were cultivated for 10 wk on various polluted soils with metal(loid) concentrations representative of urban brownfields or polluted kitchen gardens. Metal(loid) bioavailability and ecotoxicity were measured in relation to soil characteristics before and after treatment. All the plants efficiently grow on the various polluted soils. But borage and mustard only are able to modify the soil characteristics and metal(loid) impact: soil respiration increased while ecotoxicity, bioaccessible lead and total metal(loid) quantities in soils can be decreased respectively by phytostabilization and phytoextraction mechanisms. These two plants could therefore be used for urban polluted soil refunctionalization. However, plant efficiency to improve soil quality strongly depends on soil characteristics. PMID:23968553

  17. Green manure plants for remediation of soils polluted by metals and metalloids: ecotoxicity and human bioavailability assessment.

    PubMed

    Foucault, Y; Lévêque, T; Xiong, T; Schreck, E; Austruy, A; Shahid, M; Dumat, C

    2013-10-01

    Borage, white mustard and phacelia, green manure plants currently used in agriculture to improve soil properties were cultivated for 10 wk on various polluted soils with metal(loid) concentrations representative of urban brownfields or polluted kitchen gardens. Metal(loid) bioavailability and ecotoxicity were measured in relation to soil characteristics before and after treatment. All the plants efficiently grow on the various polluted soils. But borage and mustard only are able to modify the soil characteristics and metal(loid) impact: soil respiration increased while ecotoxicity, bioaccessible lead and total metal(loid) quantities in soils can be decreased respectively by phytostabilization and phytoextraction mechanisms. These two plants could therefore be used for urban polluted soil refunctionalization. However, plant efficiency to improve soil quality strongly depends on soil characteristics.

  18. Analysis of bioavailable Ge in agricultural and mining-affected-soils in Freiberg area (Saxony, Germany)

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Székely, Balázs; Kummer, Nicolai-Alexeji; Heinemann, Ute; Heilmeier, Hermann

    2014-05-01

    Germanium (Ge) concentrations in different soil fraction were investigated using a sequential selective dissolution analysis and a rhizosphere-based single-step extraction method for the identification of Ge-bearing soil fractions and prediction of bioavailability of Ge in soil to plants. About 50 soil samples were collected from various soil depths (horizons A and B) and study sites with different types of land use (dry and moist grassland, arable land, mine dumps) in Freiberg area (Saxony, Germany). Ge has been extracted in six soil fractions: mobile fraction, organic matter and sulfides, Mn- and Fe-oxides (amorphous and crystalline), and kaolinite and phytoliths, and residual fraction. The rhizosphere-based method included a 7-day-long extraction sequence with various organic acids like citric acid, malic acid and acetic acid. For the residue the aforementioned sequential extraction has been applied. The Ge-content of the samples have been measured with ICP-MS using rhodium internal standard and two different soil standards. Total Ge concentrations were found to be in the range of 1.6 to 5.5 ppm with highest concentrations on the tailing site in the mining area of Altenberg. The mean Ge concentration in agriculturally used soils was 2.6 ± 0.67 ppm, whereas the maximum values reach 2.9 ± 0.64 ppm and 3.2 ± 0.67 ppm in Himmelsfürst and in a grassland by the Mulde river, respectively. With respect to the fractions, the vast majority of Ge is contained in the last three fractions, indicating that the bioavailable Ge is typically low in the samples. On the other hand at the soil horizons A at the aforementioned two sites characterised by high total Ge, together with that of Reiche Zeche mine dump have also the highest concentrations of Ge in the first three fractions, reaching levels of 1.74 and 0.98 ppm which account for approximately 40% of the total Ge content. Ge concentrations of soil samples extracted with 0.01 or 0.1 M citric acid and malic acid were

  19. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies

    PubMed Central

    Olaniran, Ademola O.; Balgobind, Adhika; Pillay, Balakrishna

    2013-01-01

    Co-contamination of the environment with toxic chlorinated organic and heavy metal pollutants is one of the major problems facing industrialized nations today. Heavy metals may inhibit biodegradation of chlorinated organics by interacting with enzymes directly involved in biodegradation or those involved in general metabolism. Predictions of metal toxicity effects on organic pollutant biodegradation in co-contaminated soil and water environments is difficult since heavy metals may be present in a variety of chemical and physical forms. Recent advances in bioremediation of co-contaminated environments have focussed on the use of metal-resistant bacteria (cell and gene bioaugmentation), treatment amendments, clay minerals and chelating agents to reduce bioavailable heavy metal concentrations. Phytoremediation has also shown promise as an emerging alternative clean-up technology for co-contaminated environments. However, despite various investigations, in both aerobic and anaerobic systems, demonstrating that metal toxicity hampers the biodegradation of the organic component, a paucity of information exists in this area of research. Therefore, in this review, we discuss the problems associated with the degradation of chlorinated organics in co-contaminated environments, owing to metal toxicity and shed light on possible improvement strategies for effective bioremediation of sites co-contaminated with chlorinated organic compounds and heavy metals. PMID:23676353

  20. Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies.

    PubMed

    Olaniran, Ademola O; Balgobind, Adhika; Pillay, Balakrishna

    2013-05-15

    Co-contamination of the environment with toxic chlorinated organic and heavy metal pollutants is one of the major problems facing industrialized nations today. Heavy metals may inhibit biodegradation of chlorinated organics by interacting with enzymes directly involved in biodegradation or those involved in general metabolism. Predictions of metal toxicity effects on organic pollutant biodegradation in co-contaminated soil and water environments is difficult since heavy metals may be present in a variety of chemical and physical forms. Recent advances in bioremediation of co-contaminated environments have focussed on the use of metal-resistant bacteria (cell and gene bioaugmentation), treatment amendments, clay minerals and chelating agents to reduce bioavailable heavy metal concentrations. Phytoremediation has also shown promise as an emerging alternative clean-up technology for co-contaminated environments. However, despite various investigations, in both aerobic and anaerobic systems, demonstrating that metal toxicity hampers the biodegradation of the organic component, a paucity of information exists in this area of research. Therefore, in this review, we discuss the problems associated with the degradation of chlorinated organics in co-contaminated environments, owing to metal toxicity and shed light on possible improvement strategies for effective bioremediation of sites co-contaminated with chlorinated organic compounds and heavy metals.

  1. An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability.

    PubMed

    Wang, Cheng; Li, Wei; Yang, Zhongfang; Chen, Yang; Shao, Wenjing; Ji, Junfeng

    2015-01-01

    It is well known that carbonates inhibit heavy metals transferring from soil to plants, yet the mechanism is poorly understood. Based on the Yangtze River delta area, we investigated bioaccumulation of Ni and Cd in winter wheat as affected by the presence of carbonates in soil. This study aimed to determine the mechanism through which soil carbonates restrict transport and plant uptake of heavy metals in the wheat cropping system. The results indicate that soil carbonates critically influenced heavy metal transfer from soil to plants and presented a tipping point. Wheat grains harvested from carbonates-depleted (due to severe leaching) soils showed Ni and Cd concentrations 2-3 times higher than those of the wheat grains from carbonates-containing soils. Correspondingly, the incidence of Ni or Cd contamination in the wheat grain samples increased by about three times. With the carbonate concentration >1% in soil, uptake and bioaccumulation of Ni and Cd by winter wheat was independent with the soil pH and carbonate content. The findings suggest that soil carbonates play a critical role in heavy metal transfer from soil to plants, implying that monitoring soil carbonate may be necessary in addition to soil pH for the evaluating soil quality and food safety. PMID:26227091

  2. An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Li, Wei; Yang, Zhongfang; Chen, Yang; Shao, Wenjing; Ji, Junfeng

    2015-07-01

    It is well known that carbonates inhibit heavy metals transferring from soil to plants, yet the mechanism is poorly understood. Based on the Yangtze River delta area, we investigated bioaccumulation of Ni and Cd in winter wheat as affected by the presence of carbonates in soil. This study aimed to determine the mechanism through which soil carbonates restrict transport and plant uptake of heavy metals in the wheat cropping system. The results indicate that soil carbonates critically influenced heavy metal transfer from soil to plants and presented a tipping point. Wheat grains harvested from carbonates-depleted (due to severe leaching) soils showed Ni and Cd concentrations 2-3 times higher than those of the wheat grains from carbonates-containing soils. Correspondingly, the incidence of Ni or Cd contamination in the wheat grain samples increased by about three times. With the carbonate concentration >1% in soil, uptake and bioaccumulation of Ni and Cd by winter wheat was independent with the soil pH and carbonate content. The findings suggest that soil carbonates play a critical role in heavy metal transfer from soil to plants, implying that monitoring soil carbonate may be necessary in addition to soil pH for the evaluating soil quality and food safety.

  3. A structural equation model of soil metal bioavailability to earthworms: confronting causal theory and observations using a laboratory exposure to field-contaminated soils.

    PubMed

    Beaumelle, Léa; Vile, Denis; Lamy, Isabelle; Vandenbulcke, Franck; Gimbert, Frédéric; Hedde, Mickaël

    2016-11-01

    Structural equation models (SEM) are increasingly used in ecology as multivariate analysis that can represent theoretical variables and address complex sets of hypotheses. Here we demonstrate the interest of SEM in ecotoxicology, more precisely to test the three-step concept of metal bioavailability to earthworms. The SEM modeled the three-step causal chain between environmental availability, environmental bioavailability and toxicological bioavailability. In the model, each step is an unmeasured (latent) variable reflected by several observed variables. In an exposure experiment designed specifically to test this SEM for Cd, Pb and Zn, Aporrectodea caliginosa was exposed to 31 agricultural field-contaminated soils. Chemical and biological measurements used included CaC12-extractable metal concentrations in soils, free ion concentration in soil solution as predicted by a geochemical model, dissolved metal concentration as predicted by a semi-mechanistic model, internal metal concentrations in total earthworms and in subcellular fractions, and several biomarkers. The observations verified the causal definition of Cd and Pb bioavailability in the SEM, but not for Zn. Several indicators consistently reflected the hypothetical causal definition and could thus be pertinent measurements of Cd and Pb bioavailability to earthworm in field-contaminated soils. SEM highlights that the metals present in the soil solution and easily extractable are not the main source of available metals for earthworms. This study further highlights SEM as a powerful tool that can handle natural ecosystem complexity, thus participating to the paradigm change in ecotoxicology from a bottom-up to a top-down approach.

  4. [Bioavailability of As, Cu and Zn in two soils as affected by application of chicken manure and pig manure].

    PubMed

    Yao, Li-xian; Li, Guo-liang; Dang, Zhi; He, Zhao-huan; Zhou, Chang-min; Yang, Bao-mei

    2008-09-01

    Animal manures contain higher As, Cu and Zn since organoarsenicals, copper and zinc additives are widely used in modern intensive animal production. A pot experiment in water spinach was conducted to investigate As, Cu and Zn bioavailability in a paddy soil (PS) and a lateritic red soil (LRS) applied with 2% and 4% (mass fraction) chicken manure (CM) and pig manure (PM), respectively. Soils without any fertilizer were included as the checks (CK). The results show that nearly all treatments with manures significantly increase the biomass of the above-ground part of water spinach compared to the CK. The biomass in PS is significantly greater than that in LRS. The As concentrations and uptake rates of water spinach are significantly enhanced by manure application, showing the rule of higher rates > lower rates, PM > CM and in PS> in LRS. Except for the Cu concentrations in PS, manure application significantly increases the Cu, Zn concentrations and uptake rates as well. Soil total As in all treatments slightly reduce, available As and percents of available As over total As (PAs) considerably decrease after the harvest of water spinach, but total Cu, Zn and available Cu, Zn and percents of available Cu and Zn over total Cu and Zn (PCu and PZn) nearly in all manure-amended treatments increase. Soil total As increases by 0.3-3.0 mg x kg(-1), available As by 0.011-0.034 mg x kg(-1), the PAs by 0.033-0.178 percentage points in all treatments with manures, as compared to the CK. Soil total Cu, available Cu and the PCu increases by 3.1-30.4 mg x kg(-1), 5.2-19.4 mg x kg(-1) and 1.2-34.1 percentage points, respectively. Those of Zn increase by--10.6-79.6 mg x kg(-1), 4.0-65.9 mg x kg(-1) and 1.0-64.2 percentage points. We assume that the bioavailability of soil heavy metals be evaluated by the increment of available concentration and percent available concentration over total concentration, higher rate manure application improves the bioavailability of soil As, Cu and Zn than

  5. Using estimates of metal bioavailability in the soil and genetic variation of allozymes to investigate heavy metal tolerance in the earthworm Eisenia fetida (Oligochaeta).

    PubMed

    Voua Otomo, P; Owojori, O J; Reinecke, S A; Daniels, S; Reinecke, A J

    2011-10-01

    In a recent study, we showed that the earthworm species Eisenia fetida, inhabiting an extremely high metal polluted compost heap on a wine farm, did not have elevated body loads of the metals but exhibited genotoxic tolerance when exposed to Cd in the laboratory (Voua Otomo and Reinecke, 2010). To unravel the mechanism behind the surprisingly low metal body burdens on one hand and genotoxic tolerance on the other hand, we investigated the estimated bioavailability of these metals (Cu, Zn, Pb and Cd) using sequential extraction methods with CaCl(2) and di-ethylene-triamine-pentaacetic acid (DTPA) and allozyme polymorphism in this field population, a laboratory control as well as a long-term Cd exposed population. The amounts of mobile (extracted with CaCl(2)) and mobilizable (extracted with DTPA) metals in relation to the total (extracted with nitric acid) metals were all below 0.05% for all four metals, suggesting low availability for uptake. The low availability of these metals could not be explained by physico-chemical properties of soil but by the phenomenon of aging of the metals. There was no difference in allozyme frequency between metal tolerant and non-metal tolerant populations of E. fetida. This suggested that the tolerance found in earlier studies could be a mere physiological adaptation.

  6. Pollution control and metal resource recovery for low grade automobile shredder residue: a mechanism, bioavailability and risk assessment.

    PubMed

    Singh, Jiwan; Lee, Byeong-Kyu

    2015-04-01

    Automobile shredder residue (ASR) is considered as hazardous waste in Japan and European countries due to presence of heavy metals. This study was carried on the extraction characteristics of heavy metals (Mn, Fe, Ni, and Cr) from automobile shredder residue (ASR). The effects of pH, temperature, particle size, and liquid/solid ratio (L/S) on the extraction of heavy metals were investigated. The recovery rate of Mn, Fe, Ni, and Cr increased with increasing extraction temperature and L/S ratio. The lowest pH 2, the highest L/S ratio, and the smallest particle size showed the highest recovery of heavy metals from ASR. The highest recovery rates were in the following order: Mn > Ni > Cr > Fe. Reduction of mobility factor for the heavy metals was observed in all the size fractions after the recovery. The results of the kinetic analysis for various experimental conditions supported that the reaction rate of the recovery process followed a second order reaction model (R(2) ⩾ 0.95). The high availability of water-soluble fractions of Mn, Fe, Ni, and Cr from the low grade ASR could be potential hazards to the environment. Bioavailability and toxicity risk of heavy metals reduced significantly with pH 2 of distilled water. However, water is a cost-effective extracting agent for the recovery of heavy metals and it could be useful for reducing the toxicity of ASR.

  7. [Distribution and bioavailability of seven heavy metals in mangrove wetland sediments in Dongzhai Harbor, Hainan Island, China].

    PubMed

    Ji, Yi-nuo; Zhao, Zhi-zhong; Wu, Dan; Fu, Xiao-nuo

    2016-02-01

    In this study, total and available contents of seven typical heavy metals (Cr, Ni, Cu, Zn, As, Cd and Pb) were determined in mangrove wetland sediments in Dongzhai Harbor, and the distribution characteristics and bioavailability of these heavy metals in sediment were analyzed. The results showed that all the metals contents in this area were higher than in mangrove wetlands in Yalong Bay and Sanya Bay, but lower than the average level in mangrove wetlands in South China and other areas in the world, which was at a moderate to low level. The contents of heavy metals in surface layer of sediment significantly differed among barren shoal, the edge and inside of forest. All the metals were obviously accompanyingly deposited in the columnar sediments, which indicated a strong homogeneous source. The available contents of seven heavy metals in the surface sediments were extracted by EDTA, which had the order of Cu>Cr>Zn>Ni>As>Pb>Cd. All the maximum ratios of available to total content of elements appeared in surface or -middle to upper layers, except Ni. There was significant positive correlation between available and total contents of target metals. PMID:27396135

  8. Statistical evaluation of biogeochemical variables affecting spatiotemporal distributions of multiple free metal ion concentrationsin an urban estuary

    EPA Science Inventory

    Free metal ion concentrations have been recognized as a better indicator of metal bioavailability in aquatic environments than total dissolved metal concentrations. However, our understanding of the determinants of free ion concentrations, especially in a metal mixture, is limite...

  9. Surface applied water treatment residuals affect bioavailable phosphorus losses in Florida sands.

    PubMed

    Oladeji, Olawale O; O'Connor, George A; Brinton, Scott R

    2008-09-01

    Water treatment residuals (WTR) can reduce runoff P loss and surface co-application of P-sources and WTR is a practical way of land applying the residuals. In a rainfall simulation study, we evaluated the effects of surface co-applied P-sources and an Al-WTR on runoff and leacheate bioavailable P (BAP) losses from a Florida sand. Four P-sources, namely poultry manure, Boca Raton biosolids (high water-soluble P), Pompano biosolids (moderate water-soluble P), and triple super phosphate (TSP) were surface applied at 56 and 224 kg P ha(-1) (by weight) to represent low and high soil P loads typical of P- and N-based amendments rates. The treatments further received surface applied WTR at 0 or 10 g WTR kg(-1) soil. BAP loss masses were greater in leachate (16.4-536 mg) than in runoff (0.91-46 mg), but were reduced in runoff and leachate by surface applied WTR. Masses of total BAP lost in the presence of surface applied WTR were less than approximately 75% of BAP losses in the absence of WTR. Total BAP losses from each of the organic sources applied at N-based rates were not greater than P loss from TSP applied at a P-based rate. The BAP loss at the N-based rate of moderate water-soluble P-source (Pompano biosolids) was not greater than BAP losses at the P-based rates of other organic sources tested. The hazards of excess P from applying organic P-sources at N-based rates are not greater than observed at P-based rates of mineral fertilizer. Results suggest that management of the environmental P hazards associated with N-based rates of organic materials in Florida sands is possible by either applying P-sources with WTR or using a moderate water-soluble P-source.

  10. Construction of a self-luminescent cyanobacterial bioreporter that detects a broad range of bioavailable heavy metals in aquatic environments

    PubMed Central

    Martín-Betancor, Keila; Rodea-Palomares, Ismael; Muñoz-Martín, M. A.; Leganés, Francisco; Fernández-Piñas, Francisca

    2015-01-01

    A self-luminescent bioreporter strain of the unicellular cyanobacterium Synechococcus sp. PCC 7942 was constructed by fusing the promoter region of the smt locus (encoding the transcriptional repressor SmtB and the metallothionein SmtA) to luxCDABE from Photorhabdus luminescens; the sensor smtB gene controlling the expression of smtA was cloned in the same vector. The bioreporter performance was tested with a range of heavy metals and was shown to respond linearly to divalent Zn, Cd, Cu, Co, Hg, and monovalent Ag. Chemical modeling was used to link bioreporter response with metal speciation and bioavailability. Limits of Detection (LODs), Maximum Permissive Concentrations (MPCs) and dynamic ranges for each metal were calculated in terms of free ion concentrations. The ranges of detection varied from 11 to 72 pM for Hg2+ (the ion to which the bioreporter was most sensitive) to 1.54–5.35 μM for Cd2+ with an order of decreasing sensitivity as follows: Hg2+ >> Cu2+ >> Ag+ > Co2+ ≥ Zn2+ > Cd2+. However, the maximum induction factor reached 75-fold in the case of Zn2+ and 56-fold in the case of Cd2+, implying that Zn2+ is the preferred metal in vivo for the SmtB sensor, followed by Cd2+, Ag+ and Cu2+ (around 45–50-fold induction), Hg2+ (30-fold) and finally Co2+ (20-fold). The bioreporter performance was tested in real environmental samples with different water matrix complexity artificially contaminated with increasing concentrations of Zn, Cd, Ag, and Cu, confirming its validity as a sensor of free heavy metal cations bioavailability in aquatic environments. PMID:25806029

  11. Construction of a self-luminescent cyanobacterial bioreporter that detects a broad range of bioavailable heavy metals in aquatic environments.

    PubMed

    Martín-Betancor, Keila; Rodea-Palomares, Ismael; Muñoz-Martín, M A; Leganés, Francisco; Fernández-Piñas, Francisca

    2015-01-01

    A self-luminescent bioreporter strain of the unicellular cyanobacterium Synechococcus sp. PCC 7942 was constructed by fusing the promoter region of the smt locus (encoding the transcriptional repressor SmtB and the metallothionein SmtA) to luxCDABE from Photorhabdus luminescens; the sensor smtB gene controlling the expression of smtA was cloned in the same vector. The bioreporter performance was tested with a range of heavy metals and was shown to respond linearly to divalent Zn, Cd, Cu, Co, Hg, and monovalent Ag. Chemical modeling was used to link bioreporter response with metal speciation and bioavailability. Limits of Detection (LODs), Maximum Permissive Concentrations (MPCs) and dynamic ranges for each metal were calculated in terms of free ion concentrations. The ranges of detection varied from 11 to 72 pM for Hg(2+) (the ion to which the bioreporter was most sensitive) to 1.54-5.35 μM for Cd(2+) with an order of decreasing sensitivity as follows: Hg(2+) > Cu(2+) > Ag(+) > Co(2+) ≥ Zn(2+) > Cd(2+). However, the maximum induction factor reached 75-fold in the case of Zn(2+) and 56-fold in the case of Cd(2+), implying that Zn(2+) is the preferred metal in vivo for the SmtB sensor, followed by Cd(2+), Ag(+) and Cu(2+) (around 45-50-fold induction), Hg(2+) (30-fold) and finally Co(2+) (20-fold). The bioreporter performance was tested in real environmental samples with different water matrix complexity artificially contaminated with increasing concentrations of Zn, Cd, Ag, and Cu, confirming its validity as a sensor of free heavy metal cations bioavailability in aquatic environments.

  12. Construction of a self-luminescent cyanobacterial bioreporter that detects a broad range of bioavailable heavy metals in aquatic environments.

    PubMed

    Martín-Betancor, Keila; Rodea-Palomares, Ismael; Muñoz-Martín, M A; Leganés, Francisco; Fernández-Piñas, Francisca

    2015-01-01

    A self-luminescent bioreporter strain of the unicellular cyanobacterium Synechococcus sp. PCC 7942 was constructed by fusing the promoter region of the smt locus (encoding the transcriptional repressor SmtB and the metallothionein SmtA) to luxCDABE from Photorhabdus luminescens; the sensor smtB gene controlling the expression of smtA was cloned in the same vector. The bioreporter performance was tested with a range of heavy metals and was shown to respond linearly to divalent Zn, Cd, Cu, Co, Hg, and monovalent Ag. Chemical modeling was used to link bioreporter response with metal speciation and bioavailability. Limits of Detection (LODs), Maximum Permissive Concentrations (MPCs) and dynamic ranges for each metal were calculated in terms of free ion concentrations. The ranges of detection varied from 11 to 72 pM for Hg(2+) (the ion to which the bioreporter was most sensitive) to 1.54-5.35 μM for Cd(2+) with an order of decreasing sensitivity as follows: Hg(2+) > Cu(2+) > Ag(+) > Co(2+) ≥ Zn(2+) > Cd(2+). However, the maximum induction factor reached 75-fold in the case of Zn(2+) and 56-fold in the case of Cd(2+), implying that Zn(2+) is the preferred metal in vivo for the SmtB sensor, followed by Cd(2+), Ag(+) and Cu(2+) (around 45-50-fold induction), Hg(2+) (30-fold) and finally Co(2+) (20-fold). The bioreporter performance was tested in real environmental samples with different water matrix complexity artificially contaminated with increasing concentrations of Zn, Cd, Ag, and Cu, confirming its validity as a sensor of free heavy metal cations bioavailability in aquatic environments. PMID:25806029

  13. Sediment analysis does not provide a good measure of heavy metal bioavailability to Cerastoderma glaucum (Mollusca: Bivalvia) in confined coastal ecosystems

    SciTech Connect

    Arjonilla, M.; Gomez-Parra, A. ); Forja, J.M. )

    1994-06-01

    Sediments are considered a sink for metals entering the marine environment, especially in coastal areas. Once in the sediment layer, metals are distributed amongst all different phases of the sediment, governed by physicochemical conditions. One fraction is immobilized due to its incorporation into weakly reactive phases of the sediment; Another fraction may remain weakly bound to organic or mineral phases as sorbed, precipitated, or coprecipitated and complexed forms and can be assimilated by detritivorous and suspension-feeding benthic organisms. Many selective procedures have been suggested for metal extraction from sediments in order to estimate concentrations of fractions which are directly or indirectly available to the biota. The absence of a chemical treatment adequate for accurate quantification of metal bioavailability is well-known. Nevertheless, a good correlation between metal content in some organisms and in the sediment after a specific extraction treatment has sometimes been found so sediments are frequently used as indicators in pollution studies. In this paper, concentrations of heavy metals (Fe, Mn, Cu, Ph and Cd) in the cockle Cerastoderma glaucum, and in sediments at the same sampling locations are compared. C. glaucum is a suspension and deposit feeder, inhabiting a wide range of salinities. The study sampled 8 saltponds in the south of Cadiz Bay, located along a gradient of contamination produced by urban and industrial sewage effluents. The study sought to identify areas with different relative risk from metal pollution, in terms of biological effects and effects on water quality due to natural resuspension of sediments or to human relocation of sediments. C. glaucum was selected because of its wide distribution in the Bay, and also because it has no commercial value. This second fact means that its distribution and growth is not directly affected by man. 19 refs., 4 figs., 1 tab.

  14. Cyclosporin A affects the bioavailability of ginkgolic acids via inhibition of P-gp and BCRP.

    PubMed

    Li, Li; Yao, Qing-Qing; Xu, Si-Yun; Hu, Hai-Hong; Shen, Qi; Tian, Ye; Pan, Lan-Ying; Zhou, Hui; Jiang, Hui-di; Lu, Chuang; Yu, Lu-Shan; Zeng, Su

    2014-11-01

    Ginkgolic acids (GAs) in natural product Ginkgobiloba L. are the pharmacological active but also toxic components. Two compounds, GA (C15:1) and GA (C17:1) are the most abundant GAs. In this study, several in vitro and in vivo models were applied to investigate transport mechanism of GAs. A rapid and sensitive LC-MS/MS method for the simultaneous determination of GA (C15:1) and GA (C17:1) was applied to analyze the biological specimens. The Papp(AP→BL) values of GA (C15:1) and GA (C17:1) were 1.66-2.13×10(-)(6)cm/s and 1.34-1.85×10(-)(6)cm/s determined using MDCK and MDCK-MDR1 cell monolayers, respectively. The Papp(BL→AP) were remarkably greater in the MDCK-MDR1 cell line, which were 6.77-11.2×10(-)(6)cm/s for GA (C15:1) and 4.73-5.15×10(-)(6)cm/s for GA (C17:1). Similar results were obtained in LLC-PK1 and LLC-PK1-BCRP cell monolayers. The net efflux ratio of GA (C15:1) and GA (C17:1) in both cell models was greater than 2 and markedly reduced by the presence of Cyclosporin A (CsA) or GF120918, inhibitors of P-gp and BCRP, suggesting that GAs are P-gp and BCRP substrates. The results from a rat bioavailability study also showed that co-administrating CsA intravenously (20mg/kg) could significantly increase GA (C15:1) and GA (C17:1) AUC0-t by 1.46-fold and 1.53-fold and brain concentration levels of 1.43-fold and 1.51-fold, respectively, due to the inhibition of P-gp and BCRP efflux transporters by CsA.

  15. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum).

    PubMed

    Hossain, Mustafa K; Strezov, Vladimir; Chan, K Yin; Nelson, Peter F

    2010-02-01

    This work presents agronomic values of a biochar produced from wastewater sludge through pyrolysis at a temperature of 550 degrees C. In order to investigate and quantify effects of wastewater sludge biochar on soil quality, growth, yield and bioavailability of metals in cherry tomatoes, pot experiments were carried out in a temperature controlled environment and under four different treatments consisting of control soil, soil with biochar; soil with biochar and fertiliser, and soil with fertiliser only. The soil used was chromosol and the applied wastewater sludge biochar was 10tha(-1). The results showed that the application of biochar improves the production of cherry tomatoes by 64% above the control soil conditions. The ability of biochar to increase the yield was attributed to the combined effect of increased nutrient availability (P and N) and improved soil chemical conditions upon amendment. The yield of cherry tomato production was found to be at its maximum when biochar was applied in combination with the fertiliser. Application of biochar was also found to significantly increase the soil electrical conductivity as well as phosphorus and nitrogen contents. Bioavailability of metals present in the biochar was found to be below the Australian maximum permitted concentrations for food. PMID:20110103

  16. Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China.

    PubMed

    Li, Lianzhen; Wu, Huifeng; van Gestel, Cornelis A M; Peijnenburg, Willie J G M; Allen, Herbert E

    2014-05-01

    The bioavailability of Cu, Zn, Pb and Cd from field-aged orchard soils in a certified fruit plantation area of the Northeast Jiaodong Peninsula in China was assessed using bioassays with earthworms (Eisenia fetida) and chemical assays. Soil acidity increased with increasing fruit cultivation periods with a lowest pH of 4.34. Metals were enriched in topsoils after decades of horticultural cultivation, with highest concentrations of Cu (132 kg(-1)) and Zn (168 mg kg(-1)) in old apple orchards and Pb (73 mg kg(-1)) and Cd (0.57 mg kg(-1)) in vineyard soil. Earthworm tissue concentrations of Cu and Pb significantly correlated with 0.01 M CaCl2-extractable soil concentrations (R(2) = 0.70, p < 0.001 for Cu; R(2) = 0.58, p < 0.01 for Pb). Because of the increased bioavailability, regular monitoring of soil conditions in old orchards and vineyards is recommended, and soil metal guidelines need reevaluation to afford appropriate environmental protection under acidifying conditions.

  17. Cooking enhances but the degree of ripeness does not affect provitamin A carotenoid bioavailability from bananas in Mongolian gerbils.

    PubMed

    Bresnahan, Kara A; Arscott, Sara A; Khanna, Harjeet; Arinaitwe, Geofrey; Dale, James; Tushemereirwe, Wilberforce; Mondloch, Stephanie; Tanumihardjo, Jacob P; De Moura, Fabiana F; Tanumihardjo, Sherry A

    2012-12-01

    Banana is a staple crop in many regions where vitamin A deficiency is prevalent, making it a target for provitamin A biofortification. However, matrix effects may limit provitamin A bioavailability from bananas. The retinol bioefficacies of unripe and ripe bananas (study 1A), unripe high-provitamin A bananas (study 1B), and raw and cooked bananas (study 2) were determined in retinol-depleted Mongolian gerbils (n = 97/study) using positive and negative controls. After feeding a retinol-deficient diet for 6 and 4 wk in studies 1 and 2, respectively, customized diets containing 60, 30, or 15% banana were fed for 17 and 13 d, respectively. In study 1A, the hepatic retinol of the 60% ripe Cavendish group (0.52 ± 0.13 μmol retinol/liver) differed from baseline (0.65 ± 0.15 μmol retinol/liver) and was higher than the negative control group (0.39 ± 0.16 μmol retinol/liver; P < 0.0065). In study 1B, no groups differed from baseline (0.65 ± 0.15 μmol retinol/liver; P = 0.20). In study 2, the 60% raw Butobe group (0.68 ± 0.17 μmol retinol/liver) differed from the 60% cooked Butobe group (0.87 ± 0.24 μmol retinol/liver); neither group differed from baseline (0.80 ± 0.27 μmol retinol/liver; P < 0.0001). Total liver retinol was higher in the groups fed cooked bananas than in those fed raw (P = 0.0027). Body weights did not differ even though gerbils ate more green, ripe, and raw bananas than cooked, suggesting a greater indigestible component. In conclusion, thermal processing, but not ripening, improves the retinol bioefficacy of bananas. Food matrix modification affects carotenoid bioavailability from provitamin A biofortification targets. PMID:23096010

  18. Cooking enhances but the degree of ripeness does not affect provitamin A carotenoid bioavailability from bananas in Mongolian gerbils.

    PubMed

    Bresnahan, Kara A; Arscott, Sara A; Khanna, Harjeet; Arinaitwe, Geofrey; Dale, James; Tushemereirwe, Wilberforce; Mondloch, Stephanie; Tanumihardjo, Jacob P; De Moura, Fabiana F; Tanumihardjo, Sherry A

    2012-12-01

    Banana is a staple crop in many regions where vitamin A deficiency is prevalent, making it a target for provitamin A biofortification. However, matrix effects may limit provitamin A bioavailability from bananas. The retinol bioefficacies of unripe and ripe bananas (study 1A), unripe high-provitamin A bananas (study 1B), and raw and cooked bananas (study 2) were determined in retinol-depleted Mongolian gerbils (n = 97/study) using positive and negative controls. After feeding a retinol-deficient diet for 6 and 4 wk in studies 1 and 2, respectively, customized diets containing 60, 30, or 15% banana were fed for 17 and 13 d, respectively. In study 1A, the hepatic retinol of the 60% ripe Cavendish group (0.52 ± 0.13 μmol retinol/liver) differed from baseline (0.65 ± 0.15 μmol retinol/liver) and was higher than the negative control group (0.39 ± 0.16 μmol retinol/liver; P < 0.0065). In study 1B, no groups differed from baseline (0.65 ± 0.15 μmol retinol/liver; P = 0.20). In study 2, the 60% raw Butobe group (0.68 ± 0.17 μmol retinol/liver) differed from the 60% cooked Butobe group (0.87 ± 0.24 μmol retinol/liver); neither group differed from baseline (0.80 ± 0.27 μmol retinol/liver; P < 0.0001). Total liver retinol was higher in the groups fed cooked bananas than in those fed raw (P = 0.0027). Body weights did not differ even though gerbils ate more green, ripe, and raw bananas than cooked, suggesting a greater indigestible component. In conclusion, thermal processing, but not ripening, improves the retinol bioefficacy of bananas. Food matrix modification affects carotenoid bioavailability from provitamin A biofortification targets.

  19. Assessment of different methods to estimate heavy metal bioavailability in 30 contrasting Spanish and New Zealand soils

    NASA Astrophysics Data System (ADS)

    Soriano-Disla, J. M.; Speir, T. W.; Gómez, I.; Clucas, L. M.; McLaren, R. G.; Navarro-Pedreño, J.

    2009-04-01

    The accumulation of heavy metals in soil from different sources (atmospheric deposition, agricultural practices, urban-industrial activities, etc.) is of a great environmental concern because of metal persistence and toxicity. In this sense, there is a consensus in the literature that the estimation of the bioavailable heavy metals in soil is a preferable tool to determine potential risks from soil contamination than the total contents. However, controversy exists around the definition of an accurate and universal bioavailability estimator that is useful for soils with different properties, since many factors control this parameter. Thus, the main objective of this work was to compare the effectiveness of different methods to predict heavy metals plant uptake from soils with different properties and heavy metal contents. For the development of the present work, 30 contrasting soils from New Zealand and Spain were selected. Apart from the analysis of the basic soil properties, different methods to estimate heavy metal bioavailability were performed: total heavy metals, DTPA-extractable soil metals, diffusive gradient technique (DGT), and total heavy metals in soil solution. In these soils, a bioassay using wheat (Triticum aestivum) was carried out in a constant environment room for 25 days (12 hours photoperiod, day and night temperature of 20°C and 15°C respectively). After this time, the plants were divided in roots and shoots and heavy metal content was analysed in each part. Simple correlations were performed comparing the phytoavailable contents with the bioavailability estimated by the different methods. As expected, higher heavy metal concentrations were found in roots compared with shoots. Comparing the theoretical available heavy metals estimated by the different methods with the root and shoot uptake, better correlations were found with the root contents, thus, the discussion is based in the comparisons with the uptake by this part of the plant

  20. Response of Benthic Foraminifera to Organic Matter Quantity and Quality and Bioavailable Concentrations of Metals in Aveiro Lagoon (Portugal)

    PubMed Central

    Martins, Maria Virgínia Alves; Silva, Frederico; Laut, Lazaro L. M.; Frontalini, Fabrizio; Clemente, Iara M. M. M.; Miranda, Paulo; Figueira, Rubens; Sousa, Silvia H. M.; Dias, João M. Alveirinho

    2015-01-01

    This work analyses the distribution of living benthic foraminiferal assemblages of surface sediments in different intertidal areas of Ria de Aveiro (Portugal), a polihaline and anthropized coastal lagoon. The relationships among foraminiferal assemblages in association with environmental parameters (temperature, salinity, Eh and pH), grain size, the quantity and quality of organic matter (enrichment in carbohydrates, proteins and lipids), pollution caused by metals, and mineralogical data are studied in an attempt to identify indicators of adaptability to environmental stress. In particular, concentrations of selected metals in the surficial sediment are investigated to assess environmental pollution levels that are further synthetically parameterised by the Pollution Load Index (PLI). The PLI variations allowed the identification of five main polluted areas. Concentrations of metals were also analysed in three extracted phases to evaluate their possible mobility, bioavailability and toxicity in the surficial sediment. Polluted sediment in the form of both organic matter and metals can be found in the most confined zones. Whereas enrichment in organic matter and related biopolymers causes an increase in foraminifera density, pollution by metals leads to a decline in foraminiferal abundance and diversity in those zones. The first situation may be justified by the existence of opportunistic species (with high reproduction rate) that can live in low oxic conditions. The second is explained by the sensitivity of some species to pressure caused by metals. The quality of the organic matter found in these places and the option of a different food source should also explain the tolerance of several species to pollution caused by metals, despite their low reproductive rate in the most polluted areas. In this study, species that are sensitive and tolerant to organic matter and metal enrichment are identified, as is the differential sensitivity/tolerance of some species to

  1. Response of benthic foraminifera to organic matter quantity and quality and bioavailable concentrations of metals in Aveiro Lagoon (Portugal).

    PubMed

    Martins, Maria Virgínia Alves; Silva, Frederico; Laut, Lazaro L M; Frontalini, Fabrizio; Clemente, Iara M M M; Miranda, Paulo; Figueira, Rubens; Sousa, Silvia H M; Dias, João M Alveirinho

    2015-01-01

    This work analyses the distribution of living benthic foraminiferal assemblages of surface sediments in different intertidal areas of Ria de Aveiro (Portugal), a polihaline and anthropized coastal lagoon. The relationships among foraminiferal assemblages in association with environmental parameters (temperature, salinity, Eh and pH), grain size, the quantity and quality of organic matter (enrichment in carbohydrates, proteins and lipids), pollution caused by metals, and mineralogical data are studied in an attempt to identify indicators of adaptability to environmental stress. In particular, concentrations of selected metals in the surficial sediment are investigated to assess environmental pollution levels that are further synthetically parameterised by the Pollution Load Index (PLI). The PLI variations allowed the identification of five main polluted areas. Concentrations of metals were also analysed in three extracted phases to evaluate their possible mobility, bioavailability and toxicity in the surficial sediment. Polluted sediment in the form of both organic matter and metals can be found in the most confined zones. Whereas enrichment in organic matter and related biopolymers causes an increase in foraminifera density, pollution by metals leads to a decline in foraminiferal abundance and diversity in those zones. The first situation may be justified by the existence of opportunistic species (with high reproduction rate) that can live in low oxic conditions. The second is explained by the sensitivity of some species to pressure caused by metals. The quality of the organic matter found in these places and the option of a different food source should also explain the tolerance of several species to pollution caused by metals, despite their low reproductive rate in the most polluted areas. In this study, species that are sensitive and tolerant to organic matter and metal enrichment are identified, as is the differential sensitivity/tolerance of some species to

  2. Bioavailability and toxicity of trace metals to the cladoceran Daphnia magna in relation to cadmium exposure history

    NASA Astrophysics Data System (ADS)

    Guan, Rui

    The cladoceran Daphnia magna is widely used in freshwater bioassessments and ecological risk assessments. This study designed a series of experiments employing radiotracer methodology to quantify the trace metals (mainly Cd and Zn) biokinetics in D. magna under different environmental and biological conditions and to investigate the influences of different Cd exposure histories on the bioavailability and toxicity of trace metals to D. magna. A bioenergetic-based kinetic model was finally applied in predicting the Cd accumulation dynamics in D. magna and the model validity under non-steady state was assessed. Cd assimilation was found in this study to be influenced by the food characteristics (e.g., metal concentration in food particles), the metal exposure history of the animals, and the genetic characteristics. Some of these influences could be interpreted by the capacity and/or competition of those metal binding sites within the digestive tract and/or the detoxifying proteins metallothionein (MT). My study demonstrated a significant induction of MT in response to Cd exposure and it was the dominant fraction in sequestering the internal nonessential trace metals in D. magna. The ratio of Cd body burden to MT might better predict the Cd toxicity on the digestion systems of D. magna than the Cd tissue burden alone within one-generational exposure to Cd. It was found that metal elimination (rate constant and contribution of different release routes) was independent of the food concentration and the dietary metal concentration, implying that the elimination may not be metabolically controlled. The incorporation of the bioenergetic-based kinetic model, especially under non-steady state, is invaluable in helping to understand the fate of trace metals in aquatic systems and potential environmental risks. The dependence of biokinetic parameters on environmental factors rather than on genotypes implies a great potential of using biokinetics in inter-laboratory comparisons.

  3. Response of benthic foraminifera to organic matter quantity and quality and bioavailable concentrations of metals in Aveiro Lagoon (Portugal).

    PubMed

    Martins, Maria Virgínia Alves; Silva, Frederico; Laut, Lazaro L M; Frontalini, Fabrizio; Clemente, Iara M M M; Miranda, Paulo; Figueira, Rubens; Sousa, Silvia H M; Dias, João M Alveirinho

    2015-01-01

    This work analyses the distribution of living benthic foraminiferal assemblages of surface sediments in different intertidal areas of Ria de Aveiro (Portugal), a polihaline and anthropized coastal lagoon. The relationships among foraminiferal assemblages in association with environmental parameters (temperature, salinity, Eh and pH), grain size, the quantity and quality of organic matter (enrichment in carbohydrates, proteins and lipids), pollution caused by metals, and mineralogical data are studied in an attempt to identify indicators of adaptability to environmental stress. In particular, concentrations of selected metals in the surficial sediment are investigated to assess environmental pollution levels that are further synthetically parameterised by the Pollution Load Index (PLI). The PLI variations allowed the identification of five main polluted areas. Concentrations of metals were also analysed in three extracted phases to evaluate their possible mobility, bioavailability and toxicity in the surficial sediment. Polluted sediment in the form of both organic matter and metals can be found in the most confined zones. Whereas enrichment in organic matter and related biopolymers causes an increase in foraminifera density, pollution by metals leads to a decline in foraminiferal abundance and diversity in those zones. The first situation may be justified by the existence of opportunistic species (with high reproduction rate) that can live in low oxic conditions. The second is explained by the sensitivity of some species to pressure caused by metals. The quality of the organic matter found in these places and the option of a different food source should also explain the tolerance of several species to pollution caused by metals, despite their low reproductive rate in the most polluted areas. In this study, species that are sensitive and tolerant to organic matter and metal enrichment are identified, as is the differential sensitivity/tolerance of some species to

  4. Characterization of metal kinetics and bioavailability using diffusive gradients in thin films technique in sediments of Taihu Lake, China.

    PubMed

    Lei, Kun; Han, Xuejiao; Zhao, Jian; Qiao, Fei; Li, Zicheng; Yu, Tao

    2016-06-01

    For an improved understanding of the metal behavior between the sediment and overlaying water of Taihu Lake, the technique of diffusive gradients in thin films (DGT) was used to characterize the DGT measured concentration in sediments and release kinetics of Cr, Ni, Cu, Zn, Cd and Pb in representative lake parts. Spatially, the DGT-measured concentration of heavy metals showed that Zn, Cu, Ni, Cr, and Pb had higher concentrations in the northern lake than in the eastern Lake Taihu. The order of the release flux for the studied metals from sediments to overlaying water was Zn>Cu>Ni, Cr>Pb>Cd (p<0.05). DGT devices were deployed over a series of time (0.5, 1, 2, 4, 8, 12, 24 and 48 h) in sediment cores from the two typical lake parts (northwest algae dominant area and southeast macrophyte dominant area) to explore the dynamics in the sediment/DGT system, and the best fitted regression model was selected to characterize the release of metals in the two lake parts. The fitted results showed that the equilibration time of the metal release was approximately 24h and Zn had a higher release capacity than other metals. Further analyses indicated that significant correlation existed between the DGT-measured metal concentrations in sediments and metal concentrations in lake organisms (r=0.943 and 0.996 for zoobenthos and coilia ectenes, p<0.05), suggesting that DGT technique is more effective to predict the metal bioavailability in lake sediments.

  5. Effects of dissolved organic matter on toxicity and bioavailability of copper for lettuce sprouts.

    PubMed

    Inaba, Shoko; Takenaka, Chisato

    2005-05-01

    It is well known that dissolved organic matter in soil solution may affect the toxicity or bioavailability of heavy metals to plants, but existing information on various organic substances is insufficient for treating problems with heavy metal-contaminated soils. To clarify how dissolved organic matter alters the toxicity and bioavailability of metals, we germinated lettuce seeds exposed to solutions containing Cu and several kinds of dissolved organic matters. Low molecular weight organic acids (citric, malic, and oxalic acids) increased the toxicity and bioavailability of Cu, but low concentrations of the synthetic chelators ethylenediamine tetra-acetic acid (EDTA) and diethylenetriamine penta-acetic acid (DTPA) decreased the toxicity and bioavailability of Cu. In contrast, humic acid appeared to be the most effective organic substance for detoxifying Cu, even though it did not significantly decrease the bioavailability of Cu. Consequently, the bioavailability and toxic effects of Cu in soil depend on the nature of coexisting organic substances in the soil solution.

  6. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.

    PubMed

    Smith, Stephen R

    2009-01-01

    The content, behaviour and significance of heavy metals in composted waste materials is important from two potentially conflicting aspects of environmental legislation in terms of: (a) defining end-of-waste criteria and increasing recycling of composted residuals on land and (b) protecting soil quality by preventing contamination. This review examines the effects of heavy metals in compost and amended soil as a basis for achieving a practical and sustainable balance between these different policy objectives, with particular emphasis on agricultural application. All types of municipal solid waste (MSW) compost contain more heavy metals than the background concentrations present in soil and will increase their contents in amended soil. Total concentrations of heavy metals in source-segregated and greenwaste compost are typically below UK PAS100 limits and mechanical segregated material can also comply with the metal limits in UK PAS100, although this is likely to be more challenging. Zinc and Pb are numerically the elements present in the largest amounts in MSW-compost. Lead is the most limiting element to use of mechanically-segregated compost in domestic gardens, but concentrations are typically below risk-based thresholds that protect human health. Composted residuals derived from MSW and greenwaste have a high affinity for binding heavy metals. There is general consensus in the scientific literature that aerobic composting processes increase the complexation of heavy metals in organic waste residuals, and that metals are strongly bound to the compost matrix and organic matter, limiting their solubility and potential bioavailability in soil. Lead is the most strongly bound element and Ni the weakest, with Zn, Cu and Cd showing intermediate sorption characteristics. The strong metal sorption properties of compost produced from MSW or sewage sludge have important benefits for the remediation of metal contaminated industrial and urban soils. Compost and sewage sludge

  7. EFFECT OF SOIL PROPERTIES ON THE TOXICITY AND BIOAVAILABILITY OF METALS

    EPA Science Inventory

    Heavy metal and organic chemical contamination of soils is a worldwide problem posing a risk to humans and more directly, soil organisms. Due to widespread metal contamination, it is necessary to characterize soils suspected of metal contamination and determine if the metal le...

  8. Effects of mining wastes on a seagrass ecosystem: metal accumulation and bioavailability, seagrass dynamics and associated community structure.

    PubMed

    Marín-Guirao, Lázaro; Atucha, Arnaldo Marín; Barba, Javier Lloret; López, Emma Martínez; Fernández, Antonio J García

    2005-09-01

    Two different Cymodocea nodosa (Ucria) Ascherson beds growing in mining-contaminated sediments were compared with two reference beds in the Mar Menor coastal lagoon. The accumulation of Zn, Pb and Cd in different fractions of the plant, the sediment parameters that regulate the availability of metals, the seabed structure and dynamics of each seagrass bed and its associated macroinvertebrate community were studied. C. nodosa accumulates metals from the sediments and reflects their bioavailability for this seagrass. At each station, the metal content of the rhizomes was lower than that of leaves and roots. The concentration of acid-volatile sulfides does not seem to influence the availability of metals to the seagrass, possibly due to oxygen transport to underground tissues. The highest metal concentration in all the contaminated stations was found in the leaf-biofilm, due to the formation of complexes between metals and the extracellular polymeric substances that form the biofilm. All the seagrass beds were seen to be undergoing expansion, those growing in contaminated sediments accumulating great quantities of metals and showing highest photosynthetic leaf surface area and highest leaf biomass. However, these structural parameters were not seen to be responsible for the differences in the faunal composition observed between contaminated and reference beds. Moreover, the multivariate analysis identified the metal content of leaves, biofilm and sediments as important variables that may be responsible for these differences in faunal composition. In this study we have demonstrated that both the seagrass C. nodosa and the biofilm on the plant leaves may be used as environmental tools in the Mar Menor lagoon. The former is an useful indicator of sediment contamination, whereas the latter seems to be a good sentinel of water quality.

  9. How physical alteration of technic materials affects mobility and phytoavailabilty of metals in urban soils?

    PubMed

    El Khalil, Hicham; Schwartz, Christophe; El Hamiani, Ouafae; Sirguey, Catherine; Kubiniok, Jochen; Boularbah, Ali

    2016-06-01

    One fundamental characteristic distinguishing urban soils from natural soils is the presence of technic materials or artefacts underlining the influence of human activity. These technic materials have different nature (organic or inorganic) and origins. They contribute to the enrichment of the soil solution by metallic trace elements. The present study aims to determine the effect of physical alteration of the technic coarse fraction on the bioavailability of metallic trace elements in urban Technosols. In general, results show that physical alteration increases the metallic trace elements water extractible concentrations of technic materials. The ability of lettuce to accumulate metallic trace elements, even at low concentrations, underlines the capacity of technic materials to contaminate the anthropised soil solution by bioavailable metals. The highest metal levels, accumulated by the various organs of the lettuce (leaves and roots), were measured in plants grown in presence of metallic particles mixtures. This indicates that the majority of metallic trace elements released by this technic constituent is bioavailable and explains the low plant biomass obtained. The abundant part of metallic trace elements released by the other technic constituents (building materials, bones, wood, plastic and fabric-paper) remains less bioavailable. Under anthropised soil conditions, technic materials have a significant effect on the metallic trace elements behavior. They impact the flow of these metallic elements in Technosols, which can increase their bioavailability and, therefore, the contamination of the food chain. PMID:26999750

  10. Distribution, bioavailability, and leachability of heavy metals in soil particle size fractions of urban soils (northeastern China).

    PubMed

    Yutong, Zong; Qing, Xiao; Shenggao, Lu

    2016-07-01

    This study examines the distribution, mobility, and potential environmental risks of heavy metals in various particle size fractions of urban soils. Representative urban topsoils (ten) collected from Anshan, Liaoning (northeastern China), were separated into six particle size fractions and their heavy metal contents (Cr, Cu, Cd, Pb, and Zn) were determined. The bioaccessibility and leachability of heavy metals in particle size fractions were evaluated using the toxicity characteristic leaching procedure (TCLP) and ethylenediaminetetraacetic acid (EDTA) extraction, respectively. The results indicated that the contents of five heavy metals (Cd, Cr, Cu, Pb and Zn) in the size fractions increased with the decrease of particle size. The clay fraction of <2 μm had the highest content of heavy metals, indicating that the clay fraction was polluted by heavy metals more seriously than the other size fractions in urban topsoils. Cr also concentrated in the coarse fraction of 2000-1000 μm, indicating a lithogenic contribution. However, the dominant size fraction responsible for heavy metal accumulation appeared to belong to particle fraction of 50-2 μm. The lowest distribution factors (DFs) of heavy metals were recorded in the 2000- to 1000-μm size fraction, while the highest in the clay fraction. The DFs of heavy metals in the clay fraction followed Zn (3.22) > Cu (2.84) > Pb (2.61) > Cr (2.19) > Cd (2.05). The enrichment factor suggested that the enrichment degree of heavy metal increased with the decrease of the particle size, especially for Cd and Zn. The TCLP- and EDTA-extractable concentrations of heavy metals in the clay fraction were relatively higher than those in coarse particles. Cd bioavailability was higher in the clay fraction than in other fractions or whole soils. In contrast, Cr exhibits similar bioaccessibilities in the six size fractions of soils. The results suggested that fine particles were the main sources of potentially toxic

  11. Copper binding affinity of rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis) gills: Implications for assessing bioavailable metal

    SciTech Connect

    MacRae, R.K.; Smith, D.E.; Swoboda-Colberg, N.; Meyer, J.S.; Bergman, H.L. . Dept. of Zoology and Physiology)

    1999-06-01

    In this study, the authors determined the conditional stability constant (log K[prime]) of copper for the gills of rainbow trout (Oncorhynchus mykiss; RBT) and brook trout (Salvelinus fontinalis; BT). Using toxicity-based complexation bioassays, which measure the effect of competing organic ligands on copper toxicity, the RBT gill copper log K[prime] range was 6.4 to 7.2. Using a Scatchard analysis of gill Cu accumulation, the RBT log K[prime] was 7.50 and the BT log K[prime] was 7.25. The close agreement in RBT log K[prime] values between these two methods suggests that measurement of gill copper accumulation is an acceptable alternative for determining a toxicity-based gill copper binding affinity. The results also suggest that there is either a single gill copper binding component or, more realistically, multiple components with similar binding properties that function collectively to define a single toxicologically relevant copper conditional stability constant. These results suggest analytical approaches to measuring bioavailable metal concentrations, such as geochemical modeling where biological ligands are included in speciation calculations, may adequately simulate complex biological ligands. A method to convert gill copper accumulation to a bioavailable water criterion is also discussed.

  12. Probabilistic approaches to accounting for data variability in the practical application of bioavailability in predicting aquatic risks from metals.

    PubMed

    Ciffroy, Philippe; Charlatchka, Rayna; Ferreira, Daniel; Marang, Laura

    2013-07-01

    The biotic ligand model (BLM) theoretically enables the derivation of environmental quality standards that are based on true bioavailable fractions of metals. Several physicochemical variables (especially pH, major cations, dissolved organic carbon, and dissolved metal concentrations) must, however, be assigned to run the BLM, but they are highly variable in time and space in natural systems. This article describes probabilistic approaches for integrating such variability during the derivation of risk indexes. To describe each variable using a probability density function (PDF), several methods were combined to 1) treat censored data (i.e., data below the limit of detection), 2) incorporate the uncertainty of the solid-to-liquid partitioning of metals, and 3) detect outliers. From a probabilistic perspective, 2 alternative approaches that are based on log-normal and Γ distributions were tested to estimate the probability of the predicted environmental concentration (PEC) exceeding the predicted non-effect concentration (PNEC), i.e., p(PEC/PNEC>1). The probabilistic approach was tested on 4 real-case studies based on Cu-related data collected from stations on the Loire and Moselle rivers. The approach described in this article is based on BLM tools that are freely available for end-users (i.e., the Bio-Met software) and on accessible statistical data treatments. This approach could be used by stakeholders who are involved in risk assessments of metals for improving site-specific studies. PMID:23505250

  13. Bioaccumulation of metals (Cd, Cu, Zn) by the marine bivalves M. galloprovincialis, P. radiata, V. verrucosa and C. chione in Mediterranean coastal microenvironments: association with metal bioavailability.

    PubMed

    Sakellari, Aikaterini; Karavoltsos, Sotirios; Theodorou, Dimitrios; Dassenakis, Manos; Scoullos, Michael

    2013-04-01

    The concentrations of Cd, Cu and Zn in both the whole soft tissue and separate organs (gills, mantle, muscle and digestive gland) of wild bivalves (Mytilus galloprovincialis, Pinctada radiata, Venus verrucosa and Callista chione) from three different coastal microenvironments of Greece were monitored from 2003 to 2004. In parallel, by employing appropriate analytical protocols for metal partitioning, the labile fraction of the metals was determined in the dissolved phase, suspended particulate matter and sediments. Differences in the metal levels were detected both among the study areas as well as among the bivalves examined. Significant bioaccumulation was demonstrated regarding Zn in M. galloprovincialis specimens from the highly industrialized Gulf of Elefsis and Cd in P. radiata and V. verrucosa from the Maliakos Gulf, which is influenced by extended agricultural activity occurring at the neighbouring area and a river outflow. Data of the metal levels in the various environmental phases were correlated with their concentrations in bivalves' tissues. The clear relationships obtained in many cases among the labile metal concentrations and the bioaccumulated concentrations in bivalves point out that the labile fraction of a metal is the most bioavailable. The lack of positive correlation for C. chione confirms the occurrence of effective mechanisms of internal regulation of metal concentrations.

  14. IMPROVED RISK ASSESSMENT AND REMEDIATION OF SOIL METALS BASED ON BIOAVAILABILITY MEASUREMENTS

    EPA Science Inventory

    Heavy metals in soils can comprise risk through plant uptake or soil ingestion. Recent research results and progress in understandings of risks and methods for soil metal remediation will be presented. Beneficial use of composts/bosolids plus limestone to remediate metal killed e...

  15. EFFECT OF SOIL MODIFYING FACTORS ON THE BIOAVAILABILITY AND TOXICITY OF METAL CONTAMINATED SOILS

    EPA Science Inventory

    Heavy metal and organic chemical contamination of soils is a worldwide problem posing a risk to humans and more directly, soil organisms. Metal toxicity is often not directly related to the total concentration of metals present due to a number of modifying factors that depend,...

  16. Acute toxicity of the cationic surfactant C12-benzalkonium in different bioassays: how test design affects bioavailability and effect concentrations.

    PubMed

    Chen, Yi; Geurts, Marc; Sjollema, Sascha B; Kramer, Nynke I; Hermens, Joop L M; Droge, Steven T J

    2014-03-01

    Using an ion-exchange-based solid-phase microextraction (SPME) method, the freely dissolved concentrations of C12-benzalkonium were measured in different toxicity assays, including 1) immobilization of Daphnia magna in the presence or absence of dissolved humic acid; 2) mortality of Lumbriculus variegatus in the presence or absence of a suspension of Organisation for Economic Co-Operation and Development (OECD) sediment; 3) photosystem II inhibition of green algae Chlorella vulgaris; and 4) viability of in vitro rainbow trout gill cell line (RTgill-W1) in the presence or absence of serum proteins. Furthermore, the loss from chemical adsorption to the different test vessels used in these tests was also determined. The C12-benzalkonium sorption isotherms to the different sorbent phases were established as well. Our results show that the freely dissolved concentration is a better indicator of the actual exposure concentration than the nominal or total concentration in most test assays. Daphnia was the most sensitive species to C12-benzalkonium. The acute Daphnia and Lumbriculus tests both showed no enhanced toxicity from possible ingestion of sorbed C12-benzalkonium in comparison with water-only exposure, which is in accordance with the equilibrium partitioning theory. Moreover, the present study demonstrates that commonly used sorbent phases can strongly affect bioavailability and observed effect concentrations for C12-benzalkonium. Even stronger effects of decreased actual exposure concentrations resulting from sorption to test vessels, cells, and sorbent phases can be expected for more hydrophobic cationic surfactants. PMID:24273010

  17. A structural equation model of soil metal bioavailability to earthworms: confronting causal theory and observations using a laboratory exposure to field-contaminated soils.

    PubMed

    Beaumelle, Léa; Vile, Denis; Lamy, Isabelle; Vandenbulcke, Franck; Gimbert, Frédéric; Hedde, Mickaël

    2016-11-01

    Structural equation models (SEM) are increasingly used in ecology as multivariate analysis that can represent theoretical variables and address complex sets of hypotheses. Here we demonstrate the interest of SEM in ecotoxicology, more precisely to test the three-step concept of metal bioavailability to earthworms. The SEM modeled the three-step causal chain between environmental availability, environmental bioavailability and toxicological bioavailability. In the model, each step is an unmeasured (latent) variable reflected by several observed variables. In an exposure experiment designed specifically to test this SEM for Cd, Pb and Zn, Aporrectodea caliginosa was exposed to 31 agricultural field-contaminated soils. Chemical and biological measurements used included CaC12-extractable metal concentrations in soils, free ion concentration in soil solution as predicted by a geochemical model, dissolved metal concentration as predicted by a semi-mechanistic model, internal metal concentrations in total earthworms and in subcellular fractions, and several biomarkers. The observations verified the causal definition of Cd and Pb bioavailability in the SEM, but not for Zn. Several indicators consistently reflected the hypothetical causal definition and could thus be pertinent measurements of Cd and Pb bioavailability to earthworm in field-contaminated soils. SEM highlights that the metals present in the soil solution and easily extractable are not the main source of available metals for earthworms. This study further highlights SEM as a powerful tool that can handle natural ecosystem complexity, thus participating to the paradigm change in ecotoxicology from a bottom-up to a top-down approach. PMID:27378153

  18. Extent and bioavailability of trace metal contamination due to acid rock drainage in Pennask Creek, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Walls, L. D.; Li, L. Y.; Hall, K. J.

    2010-05-01

    Pennask Creek is one of the most important rainbow trout producing streams in British Columbia (BC). Much of the Pennask Creek watershed is located within a BC Parks Protected Area, which was set aside to protect the spawning and rearing habitat of this wild rainbow trout population. Construction of Highway 97C, which bisects the Pennask Creek watershed, resulted in the exposure of a highly pyritic rock formation, which began releasing acid rock drainage and causing metals to be leached into Highway Creek, a tributary of Pennask Creek. Previous studies commissioned by the BC Ministry of Transportation and Infrastructure indicate that Highway Creek yields fewer invertebrates and elevated levels of some metals in the water when compared with downstream sites in Pennask Creek. This study examines the impacts of this acid rock drainage and metal leaching by determining the extent of trace metal contamination in the water and sediments of the Pennask Creek watershed and determining the bioavailability of these trace metals. Preliminary results indicate concentrations of Al, Cu, and Zn in the water as well as levels of total As, Cu, Fe, Ni, and Zn in the sediments that are above the BC Water and Sediment Quality Guidelines for the Protection of Aquatic Life. The highest level of trace metal contamination is found in Highway Creek, downstream of Highway 97C, with concentrations generally returning to near background levels downstream of the confluence with Pennask Creek. Levels of Cu in the water and Zn in the sediments appear to be of greatest concern in areas furthest from the highway.

  19. Do high levels of diffuse and chronic metal pollution in sediments of Rhine and Meuse floodplains affect structure and functioning of terrestrial ecosystems?

    PubMed

    Rozema, Jelte; Notten, Martje J M; Aerts, Rien; van Gestel, Cornelis A M; Hobbelen, Peter H F; Hamers, Timo H M

    2008-12-01

    This paper (re)considers the question if chronic and diffuse heavy metal pollution (cadmium, copper, lead and zinc) affects the structure and functioning of terrestrial ecosystems of Biesbosch National Park, the floodplain area of rivers Meuse and Rhine. To reach this aim, we integrated the results of three projects on: 1. the origin, transfer and effects of heavy metals in a soil-plant-snail food chain; 2. the impact of bioavailability on effects of heavy metals on the structure and functioning of detritivorous communities; 3. the risk assessment of heavy metals for an herbivorous and a carnivorous small mammal food chain. Metal pollution levels of the Biesbosch floodplain soils are high. The bioavailability of metals in the soils is low, causing low metal levels in plant leaves. Despite this, metal concentrations in soil dwelling detritivores and in land snails at polluted locations are elevated in comparison to animals from 'non-polluted' reference sites. However, no adverse effects on ecosystem structure (species richness, density, biomass) and functioning (litter decomposition, leaf consumption, reproduction) have been found. Sediment metal pollution may pose a risk to the carnivorous small mammal food chain, in which earthworms with elevated metal concentrations are eaten by the common shrew. Additional measurements near an active metal smelter, however, show reduced leaf consumption rates and reduced reproduction by terrestrial snails, reflecting elevated metal bioavailability at this site. Since future management may also comprise reintroduction of tidal action in the Biesbosch area, changes in metal bioavailability, and as a consequence future ecosystem effects, cannot be excluded.

  20. Do high levels of diffuse and chronic metal pollution in sediments of Rhine and Meuse floodplains affect structure and functioning of terrestrial ecosystems?

    PubMed

    Rozema, Jelte; Notten, Martje J M; Aerts, Rien; van Gestel, Cornelis A M; Hobbelen, Peter H F; Hamers, Timo H M

    2008-12-01

    This paper (re)considers the question if chronic and diffuse heavy metal pollution (cadmium, copper, lead and zinc) affects the structure and functioning of terrestrial ecosystems of Biesbosch National Park, the floodplain area of rivers Meuse and Rhine. To reach this aim, we integrated the results of three projects on: 1. the origin, transfer and effects of heavy metals in a soil-plant-snail food chain; 2. the impact of bioavailability on effects of heavy metals on the structure and functioning of detritivorous communities; 3. the risk assessment of heavy metals for an herbivorous and a carnivorous small mammal food chain. Metal pollution levels of the Biesbosch floodplain soils are high. The bioavailability of metals in the soils is low, causing low metal levels in plant leaves. Despite this, metal concentrations in soil dwelling detritivores and in land snails at polluted locations are elevated in comparison to animals from 'non-polluted' reference sites. However, no adverse effects on ecosystem structure (species richness, density, biomass) and functioning (litter decomposition, leaf consumption, reproduction) have been found. Sediment metal pollution may pose a risk to the carnivorous small mammal food chain, in which earthworms with elevated metal concentrations are eaten by the common shrew. Additional measurements near an active metal smelter, however, show reduced leaf consumption rates and reduced reproduction by terrestrial snails, reflecting elevated metal bioavailability at this site. Since future management may also comprise reintroduction of tidal action in the Biesbosch area, changes in metal bioavailability, and as a consequence future ecosystem effects, cannot be excluded. PMID:18707753

  1. Influence of soil ageing on bioavailability and ecotoxicity of lead carried by process waste metallic ultrafine particles.

    PubMed

    Schreck, E; Foucault, Y; Geret, F; Pradere, P; Dumat, C

    2011-11-01

    Ultrafine particulate matters enriched with metals are emitted into the atmosphere by industrial activities and can impact terrestrial and aquatic ecosystems. Thus, this study investigated the environmental effects of process particles from a lead-recycling facility after atmospheric deposition on soils and potential run-off to surface waters. The toxicity of lead-enriched PM for ecosystems was investigated on lettuce and bacteria by (i) germination tests, growth assays, lead transfer to plant tissues determination and (ii) Microtox analysis. The influence of ageing and soil properties on metal transfer and ecotoxicity was studied using three different soils and comparing various aged, spiked or historically long-term polluted soils. Finally, lead availability was assessed by 0.01 M CaCl(2) soil extraction. The results showed that process PM have a toxic effect on lettuce seedling growth and on Vibrio fischeri metabolism. Soil-PM interactions significantly influence PM ecotoxicity and bioavailability; the effect is complex and depends on the duration of ageing. Solubilisation or stabilisation processes with metal speciation changes could be involved. Finally, Microtox and phytotoxicity tests are sensitive and complementary tools for studying process PM ecotoxicity. PMID:21868052

  2. Mobility and bio-availability of heavy metals in anthropogenically contaminated alluvial (deluvial) meadow soils (EUTRIC FLUVISOLS)

    NASA Astrophysics Data System (ADS)

    Dinev, Nikolai; Hristova, Mariana; Tzolova, Venera

    2015-04-01

    The total content of heavy metals is not sufficient to assess the pollution and the risk for environment as it does not provide information for the type and solubility of heavy metals' compounds in soils. The purpose was to study and determine the mobility of heavy metals in anthropogenically contaminated alluvial (delluvial) meadow soils spread around the non-ferrous plant near the town of Asenovgrad in view of risk assessment for environment pollution. Soil samples from monitoring network (1x1 km) was used. The sequential extraction procedure described by Zein and Brummer (1989) was applied. Results showed that the easily mobilizable cadmium compounds predominate in both contaminated and not contaminated soils. The stable form of copper (associated with silicate minerals, carbonates or amorphous and crystalline oxide compounds) predominates only in non polluted soils and reviles the risk of the environment contamination. Lead spreads and accumulates as highly soluble (mobile) compounds and between 72.3 and 99.6 percent of the total lead is bioavailable in soils. The procedure is very suitable for studying the mobility of technogenic lead and copper in alluvial soils with neutral medium reaction and in particular at the high levels of cadmium contamination. In soils with alkaline reaction - polluted and unpolluted the error of analysis increases for all studied elements.

  3. Influence of soil ageing on bioavailability and ecotoxicity of lead carried by process waste metallic ultrafine particles.

    PubMed

    Schreck, E; Foucault, Y; Geret, F; Pradere, P; Dumat, C

    2011-11-01

    Ultrafine particulate matters enriched with metals are emitted into the atmosphere by industrial activities and can impact terrestrial and aquatic ecosystems. Thus, this study investigated the environmental effects of process particles from a lead-recycling facility after atmospheric deposition on soils and potential run-off to surface waters. The toxicity of lead-enriched PM for ecosystems was investigated on lettuce and bacteria by (i) germination tests, growth assays, lead transfer to plant tissues determination and (ii) Microtox analysis. The influence of ageing and soil properties on metal transfer and ecotoxicity was studied using three different soils and comparing various aged, spiked or historically long-term polluted soils. Finally, lead availability was assessed by 0.01 M CaCl(2) soil extraction. The results showed that process PM have a toxic effect on lettuce seedling growth and on Vibrio fischeri metabolism. Soil-PM interactions significantly influence PM ecotoxicity and bioavailability; the effect is complex and depends on the duration of ageing. Solubilisation or stabilisation processes with metal speciation changes could be involved. Finally, Microtox and phytotoxicity tests are sensitive and complementary tools for studying process PM ecotoxicity.

  4. Detection of bioavailable heavy metals in EILATox-Oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips.

    PubMed

    Hakkila, Kaisa; Green, Tal; Leskinen, Piia; Ivask, Angela; Marks, Robert; Virta, Marko

    2004-01-01

    At the EILATox-Oregon Workshop, nine luminescent whole-cell bacterial sensors were used for the determination of bioavailable metals in blind samples (17 synthetic and 3 environmental). A non-inducible luminescent control strain was used to determine sample matrix effects and bacterial toxicity. Whole-cell bacterial sensors capable of determining arsenic, inorganic mercury and its organic derivatives, cadmium, lead or copper were used in suspensions and a bacterial sensor for the detection of inorganic mercury was immobilized onto fibre-optic tips using calcium alginate. Bioavailable amounts of metals were estimated using calibration plots, that were constructed to determine the range of metals giving rise to a linear relationship between luminescence and the amount of metals present in the standard solutions. EILATox-Oregon sample 5, which contained 74 mg l(-1) of Hg, gave a significant response with both formats of the mercury sensor. The bioavailable amounts of mercury according to the measurement of bacterial sensor in suspension and immobilized onto a fibre-optic tip were 76 and 93 mg l(-1), respectively. The bacterial sensor for arsenic and copper showed a response with sample 6 (58 mg l(-1) of As) and sample 8 (400 mg l(-1) of metham sodium), respectively. This study showed that the bacterial sensors in suspension or immobilized onto optical fibres are capable of quantifying bioavailable metals from unknown samples. The measurement protocol of bacterial sensors is simple and possible to perform in the field. Moreover, the samples do not need any pretreatment before analysis. Construction and characterization of the strain for the detection of bioavailable copper are described.

  5. Dynamics of metal uptake by charged biointerphases: bioavailability and bulk depletion.

    PubMed

    Duval, Jérôme F L

    2013-05-28

    A theory is proposed for the dynamics of metal uptake by a spherical microorganism whose peripheral structure consists of a charged bioactive surface surrounded by a soft (ion-permeable) charged layer. The formalism explicitly considers the concomitant steady-state conductive diffusion transport of metals from bulk medium to the bioactive surface and the kinetics of intracellular metal internalisation described by a Michaelis-Menten mechanism. The spatial distribution of metals at the microorganism/solution interphase is derived from an explicit solution of the Nernst-Planck equation with differentiated metal diffusion coefficients inside and outside the microorganism soft surface layer. The metal concentration profile involves the interphasial electrostatic potential distribution governed by the Poisson-Boltzmann equation accounting for the dielectric permittivity gradient across the soft layer/solution interface. The resulting metal uptake flux is rationalized in terms of dimensionless metal-biosurface affinity and the ratio between limiting uptake flux and limiting conductive diffusion flux. Both parameters depend on background electrolyte concentration, microorganism soft surface composition and geometry via their connection to a Boltzmann surface term and a factor expressing the electrostatically-driven retardation or acceleration of metal diffusion. Illustrations demonstrate how metal transport dynamics impacts biouptake depending on electrolyte concentration and on the key bio-physico-chemical properties of the biointerphase. The mathematical framework is then applied to practical situations where a swarm of charged microorganisms deplete metals under steady-state transport conditions. Several depletion kinetic regimes are evaluated as a function of medium salinity and microorganism electrostatic features. Expressions of their characteristic timescales are derived and analogies with equivalent electrochemical circuits are formulated.

  6. Bioavailability and Chronic Toxicity of Metal Sulfide Minerals to Benthic Marine Invertebrates: Implications for Deep Sea Exploration, Mining and Tailings Disposal.

    PubMed

    Simpson, Stuart L; Spadaro, David A

    2016-04-01

    The exploration and proposed mining of sulfide massive deposits in deep-sea environments and increased use deep-sea tailings placement (DSTP) in coastal zones has highlighted the need to better understand the fate and effects of mine-derived materials in marine environments. Metal sulfide ores contain high concentrations of metal(loid)s, of which a large portion exist in highly mineralized or sulfidised forms and are predicted to exhibit low bioavailability. In this study, sediments were spiked with a range of natural sulfide minerals (including chalcopyrite, chalcocite, galena, sphalerite) to assess the bioavailability and toxicity to benthic invertebrates (bivalve survival and amphipod survival and reproduction). The metal sulfide phases were considerably less bioavailable than metal contaminants introduced to sediment in dissolved forms, or in urban estuarine sediments contaminated with mixtures of metal(loid)s. Compared to total concentrations, the dilute-acid extractable metal(loid) (AEM) concentrations, which are intended to represent the more oxidized and labile forms, were more effective for predicting the toxicity of the sulfide mineral contaminated sediments. The study indicates that sediment quality guidelines based on AEM concentrations provide a useful tool for assessing and monitoring the risk posed by sediments impacted by mine-derived materials in marine environments.

  7. Bioavailability and Chronic Toxicity of Metal Sulfide Minerals to Benthic Marine Invertebrates: Implications for Deep Sea Exploration, Mining and Tailings Disposal.

    PubMed

    Simpson, Stuart L; Spadaro, David A

    2016-04-01

    The exploration and proposed mining of sulfide massive deposits in deep-sea environments and increased use deep-sea tailings placement (DSTP) in coastal zones has highlighted the need to better understand the fate and effects of mine-derived materials in marine environments. Metal sulfide ores contain high concentrations of metal(loid)s, of which a large portion exist in highly mineralized or sulfidised forms and are predicted to exhibit low bioavailability. In this study, sediments were spiked with a range of natural sulfide minerals (including chalcopyrite, chalcocite, galena, sphalerite) to assess the bioavailability and toxicity to benthic invertebrates (bivalve survival and amphipod survival and reproduction). The metal sulfide phases were considerably less bioavailable than metal contaminants introduced to sediment in dissolved forms, or in urban estuarine sediments contaminated with mixtures of metal(loid)s. Compared to total concentrations, the dilute-acid extractable metal(loid) (AEM) concentrations, which are intended to represent the more oxidized and labile forms, were more effective for predicting the toxicity of the sulfide mineral contaminated sediments. The study indicates that sediment quality guidelines based on AEM concentrations provide a useful tool for assessing and monitoring the risk posed by sediments impacted by mine-derived materials in marine environments. PMID:26937684

  8. Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas.

    PubMed

    Pietrzykowski, Marcin; Socha, Jarosław; van Doorn, Natalie S

    2014-02-01

    This work deals with bioaccumulation of Zn, Pb, Cu and Cd in foliage of Scots pine, grown on mine soils. Regression models were used to describe relationships between pine elements bioavailability and biological (dehydrogenase activity) and physico-chemical properties of mine soils developed at different parental rocks. Concentration of trace elements in post-mine ecosystems did not differ from data for Scots pine on natural sites. We conclude that, in this part of Europe in afforested areas affected by hard coal, sand, lignite and sulphur mining, there is no risk of trace element concentrations in mine soils. An exception was in the case of Cd in soils on sand quarry and hard coal spoil heap located in the Upper Silesia region, which was more due to industrial pressure and pollutant deposition than the original Cd concentration in parental rocks.

  9. Aging Negatively Affects Estrogens-Mediated Effects on Nitric Oxide Bioavailability by Shifting ERα/ERβ Balance in Female Mice

    PubMed Central

    Novensà, Laura; Novella, Susana; Medina, Pascual; Segarra, Gloria; Castillo, Nadia; Heras, Magda; Hermenegildo, Carlos; Dantas, Ana Paula

    2011-01-01

    Aims Aging is among the major causes for the lack of cardiovascular protection by estrogen (E2) during postmenopause. Our study aims to determine the mechanisms whereby aging changes E2 effects on nitric oxide (NO) production in a mouse model of accelerated senescence (SAM). Methods and Results Although we found no differences on NO production in females SAM prone (SAMP, aged) compared to SAM resistant (SAMR, young), by either DAF-2 fluorescence or plasmatic nitrite/nitrate (NO2/NO3), in both cases, E2 treatment increased NO production in SAMR but had no effect in SAMP. Those results are in agreement with changes of eNOS protein and gene expression. E2 up-regulated eNOS expression in SAMR but not in SAMP. E2 is also known to increase NO by decreasing its catabolism by superoxide anion (O2-). Interestingly, E2 treatment decreased O2− production in young females, while increased O2− in aged ones. Furthermore, we observed that aging changed expression ratio of estrogen receptors (ERβ/ERα) and levels of DNA methylation. Increased ratio ERβ/ERα in aged females is associated to a lack of estrogen modulation of NO production and with a reversal in its antioxidant effect to a pro-oxidant profile. Conclusions Together, our data suggest that aging has detrimental effects on E2-mediated benefits on NO bioavailability, partially by affecting the ability of E2 to induce up regulation of eNOS and decrease of O2−. These modifications may be associated to aging-mediated modifications on global DNA methylation status, but not to a specific methylation at 5′flanking region of ERα gene. PMID:21966501

  10. BIOAVAILABILITY: SCIENCE AND ACCEPTANCE

    EPA Science Inventory

    Reducing risk from elevated levels of soil Pb involves removal, covering, or dilution by mixing with uncontaminated soil. Understanding that soil lead bioavailability is related to metal speciation and that in situ remediation techniques can alter metal speciation EPA's Na...

  11. TRACE ELEMENT CHEMISTRY IN RESIDUAL-TREATED SOIL: KEY CONCEPTS AND METAL BIOAVAILABILITY

    EPA Science Inventory

    Trace element solubility and availability in land-applied residuals is governed by fundamental chemical reactions between metal constituents, soil, and residual components. Iron, aluminum, and manganese oxides; organic matter; and phosphates, carbonates, and sulfides are importan...

  12. Effects of earthworm activity on fertility and heavy metal bioavailability in sewage sludge.

    PubMed

    Liu, Xiaoli; Hu, Chengxiao; Zhang, Shuzhen

    2005-08-01

    The potential for using earthworms (Eisenia fetida) to improve fertility and reduce copper and cadmium availability in sewage sludge was tested by laboratory incubation experiments. Results comparing sewage sludge with and without earthworm treatment showed that earthworm activity decreased the contents of organic matter, total nitrogen, but increased the contents of available nitrogen and phosphorus and had no significant effect on the contents of total phosphorus, total potassium and available potassium. After incubation of the sewage sludge with earthworms for 60 days, the contents of Cu and Cd in the earthworms increased with the increase of additional Cu up to 250 mg kg(-1) and Cd up to 10 mg kg(-1). Bioconcentration factors (BCF) were higher than 1 only for Cd when the addition rate was lower than 5 mg kg(-1), which indicates that the earthworms can only accumulate Cd when the concentration of Cd is low in sewage sludge. Bioavailability of Cd and Cu was evaluated by applying sewage sludge with and without earthworm treatment to soil and then growing cabbage plants. The results showed that earthworm treatment increased the biomass of cabbage and decreased the bioaccumulation of Cd and Cu in the cabbage plants.

  13. Bioavailability and assessment of heavy metal pollution in sediment cores off the Mejerda River Delta (Gulf of Tunis): How useful is a multiproxy approach?

    PubMed

    Helali, Mohamed Amine; Oueslati, Walid; Zaaboub, Noureddine; Added, Ayed; Aleya, Lotfi

    2016-04-15

    Three core samples were taken from zones offshore from the Mejerda River Delta (Tunisia) and analyzed for major and trace elements to assess their relationships with organic matter, monosulfides and carbonates, as well as for pollution and bioavailability. Chemical speciation, ∑ SEM/AVS, the enrichment factor (EF) and the geo-accumulation index (I-geo) were used. Iron, cadmium, lead and zinc - the most frequently mined metals in the Mejerda catchment - were found as contaminants in the offshore areas. Estimations of trace element accumulation using the EF and the I-geo index show that lead, and to a lesser extent zinc, are the most polluting metals off the Mejerda outlet. According to their bioavailability, these metals are also the most toxic. Only cadmium is heavily present in delta sediment (EF>100) though deeply sequestrated (100% bound to the residual fraction) and thus presents no toxicity. PMID:26902687

  14. Consideration of the bioavailability of metal/metalloid species in freshwaters: experiences regarding the implementation of biotic ligand model-based approaches in risk assessment frameworks.

    PubMed

    Rüdel, Heinz; Díaz Muñiz, Cristina; Garelick, Hemda; Kandile, Nadia G; Miller, Bradley W; Pantoja Munoz, Leonardo; Peijnenburg, Willie J G M; Purchase, Diane; Shevah, Yehuda; van Sprang, Patrick; Vijver, Martina; Vink, Jos P M

    2015-05-01

    After the scientific development of biotic ligand models (BLMs) in recent decades, these models are now considered suitable for implementation in regulatory risk assessment of metals in freshwater bodies. The BLM approach has been described in many peer-reviewed publications, and the original complex BLMs have been applied in prospective risk assessment reports for metals and metal compounds. BLMs are now also recommended as suitable concepts for the site-specific evaluation of monitoring data in the context of the European Water Framework Directive. However, the use is hampered by the data requirements for the original BLMs (about 10 water parameters). Recently, several user-friendly BLM-based bioavailability software tools for assessing the aquatic toxicity of relevant metals (mainly copper, nickel, and zinc) became available. These tools only need a basic set of commonly determined water parameters as input (i.e., pH, hardness, dissolved organic matter, and dissolved metal concentration). Such tools seem appropriate to foster the implementation of routine site-specific water quality assessments. This work aims to review the existing bioavailability-based regulatory approaches and the application of available BLM-based bioavailability tools for this purpose. Advantages and possible drawbacks of these tools (e.g., feasibility, boundaries of validity) are discussed, and recommendations for further implementation are given.

  15. Trace metal speciation and bioavailability in surface waters of the Black Sea coastal area evaluated by HF-PLM and DGT.

    PubMed

    Slaveykova, Vera I; Karadjova, Irina B; Karadjov, Metody; Tsalev, Dimiter L

    2009-03-15

    Trace metal speciation in seawater from the Bulgarian Black Sea coast was studied in situ by hollow fiber permeation liquid membrane (HF-PLM) and by diffusion gradients in thin-film gels (DGT). The concentrations of Cd, Cu, Ni, and Pb determined by HF-PLM were lower than those measured by DGT, in agreement with their analytical windows, e.g., free metal ions provided by the HF-PLM and dynamic (mobile and labile) species by the DGT. The obtained suite of data was further used to evaluate the bioavailability of these metals to the microorganisms, which was then compared with experimental results of metal uptake to green microalga Chlorella salina. Uptake fluxes of the Cd, Cu, Ni, and Pb to C. salina, were predicted from the measured HF-PLM concentrations and laboratory experimentation in artificial seawater, in agreement with theoretical considerations. The HF-PLM and DGT appear to be promising analytical techniques for speciation and bioavailability studies in complex environmental media and allow improved understanding of the role of different chemical species in metal bioavailability (and impact) in seawaters.

  16. Direct observation of heavy metal-mineral association from the Clark Fork River Superfund Complex: Implications for metal transport and bioavailability

    NASA Astrophysics Data System (ADS)

    Hochella, Michael F.; Moore, Johnnie N.; Putnis, Christine V.; Putnis, Andrew; Kasama, Takeshi; Eberl, Dennis D.

    2005-04-01

    Two sets of samples from riverbeds and adjacent floodplains, separated by 80 river kilometers, were collected from the Clark Fork River Superfund Complex, Montana, (the largest Superfund site in the United States), and studied primarily with transmission electron microscopy (TEM) with several supporting techniques to determine heavy metal-mineral association. Seven of the eight samples studied were strongly influenced by material that once resided in mining and smelting dumps and impoundments; this material was transported downstream sometime during the last century and a half from the Butte/Anaconda areas. The eighth sample was from a deeper floodplain level and dates to premining days. The TEM observations afford a direct look, down to the nanometer level, at secondary mineral formation as a result of the breakdown of sulfides and silicates in the acid environment of this massive mine-drainage system. In the shallow, oxic floodplain sediments, heavy metals of concern in this system (As, Cu, Pb, and Zn) are taken up by the formation of sulfates (particularly Pb in jarosite), as well as hydrous metal oxides (As, Cu, Pb, and Zn in and on ferrihydrite, and a possibly new vernadite-like mineral). The oxides are long-lived in these systems, as they were also found in the anoxic riverbeds. Metals are also taken up by the formation of sulfides in sulfate-reducing environments as observed in the formation of nanoclusters of chalcopyrite and sphalerite. In all samples, clays make up between 5 and 20% of the sediment and carry significant amounts of Cu and Zn. The hydrous oxides, secondary sulfides, and clays provide several routes for metal transport downstream over long distances. Besides the potential bioavailability of heavy metals exchanged on and off the hydrous metal oxides and clays, nanometer-sized sulfides may also be highly reactive in the presence of biologic systems.

  17. Direct observation of heavy metal-mineral association from the Clark Fork River Superfund Complex: Implications for metal transport and bioavailability

    USGS Publications Warehouse

    Hochella, M.F.; Moore, J.N.; Putnis, C.V.; Putnis, A.; Kasama, T.; Eberl, D.D.

    2005-01-01

    Two sets of samples from riverbeds and adjacent floodplains, separated by 80 river kilometers, were collected from the Clark Fork River Superfund Complex, Montana, (the largest Superfund site in the United States), and studied primarily with transmission electron microscopy (TEM) with several supporting techniques to determine heavy metal-mineral association. Seven of the eight samples studied were strongly influenced by material that once resided in mining and smelting dumps and impoundments; this material was transported downstream sometime during the last century and a half from the Butte/Anaconda areas. The eighth sample was from a deeper floodplain level and dates to premining days. The TEM observations afford a direct look, down to the nanometer level, at secondary mineral formation as a result of the breakdown of sulfides and silicates in the acid environment of this massive mine-drainage system. In the shallow, oxic floodplain sediments, heavy metals of concern in this system (As, Cu, Pb, and Zn) are taken up by the formation of sulfates (particularly Pb in jarosite), as well as hydrous metal oxides (As, Cu, Pb, and Zn in and on ferrihydrite, and a possibly new vernadite-like mineral). The oxides are long-lived in these systems, as they were also found in the anoxic riverbeds. Metals are also taken up by the formation of sulfides in sulfate-reducing environments as observed in the formation of nanoclusters of chalcopyrite and sphalerite. In all samples, clays make up between 5 and 20% of the sediment and carry significant amounts of Cu and Zn. The hydrous oxides, secondary sulfides, and clays provide several routes for metal transport downstream over long distances. Besides the potential bioavailability of heavy metals exchanged on and off the hydrous metal oxides and clays, nanometer-sized sulfides may also be highly reactive in the presence of biologic systems. Copyright ?? 2005 Elsevier Ltd.

  18. A multidisciplinary approach for assessing the toxicity of marine sediments: analysis of metal content and elutriate bioassays using metal bioavailability and genotoxicity biomarkers.

    PubMed

    Frassinetti, Stefania; Pitzalis, Emanuela; Mascherpa, Marco Carlo; Caltavuturo, Leonardo; Morelli, Elisabetta

    2012-01-01

    The goal of this article is to verify the applicability of two different biological assays for studying a coastal area that is subject to anthropogenic inputs. Phytochelatins in the marine diatom Thalassiosira weissflogii were used as a biomarker of metal bioavailability. The frequency of genetic damage in the sensitive D7 strain of the yeast Saccharomyces cerevisiae was used to estimate the mutagenic potential. Biological assays were carried out using sediment elutriates. Sediments were collected at three selected sites located in the Gulf of Follonica (Tuscany, Italy), during a 2-year sampling period: Cala Violina (reference site) and the mouths of the rivers Pecora and Cornia, named sites V, P and C, respectively. The chemical characterization of each site was determined in terms of metal concentrations (As, Cd, Cr, Cu, Ni, Pb), measured in 11 sediment samples for each site. The results showed that metal concentrations in sediments from sites C and P were 2-10 times higher than the reference values (site V, year 2004). In addition, we found generally higher metal concentrations in the 2007 sediments than in the 2008 ones, including those of site V, due to the occurrence of an unexpected pollution event. This enabled us to obtain a pollution gradient to validate the proposed bioassays. In fact, the bioassays showed a potential biological hazard in the 2007 elutriates. Significant mutagenic effects were found in samples exhibiting higher concentrations of Cd and Cr. The induction of phytochelatins in T. weissflogii correlated positively with the Cd concentration in the elutriates.

  19. Heavy metal accumulation in the mole, Talpa europea, and earthworms as an indicator of metal bioavailability in terrestrial environments

    SciTech Connect

    Ma, W.

    1987-12-01

    Bioaccumulation studies in animals can supply valuable information to supplement the data obtained by chemical analysis of pollutants in abiotic samples. With respect to the terrestrial ecosystem, suitable indicator species in the decomposer subsystem can be identified on the basis of functional characteristics and trophic level. Investigations on metal behavior at the first trophic level, done in lumbricid earthworms showed that the potential for bioaccumulation depends on the degree of contamination as well as on the metal-binding capacity of the soil. The present study was performed to investigate metal behavior at a higher trophic level, and the mole (Talpa europea) was chosen a representative of the terrestrial decomposer subsystem. As earthworms are the preferred food of moles, they provide the major source of ingested metals to these animals. The food chain involving earthworms and moles provides an example of a critical pathway for potentially toxic non-essential metals such as cadmium and lead.

  20. Seasonal bioavailability of sediment-associated heavy metals along the Mississippi river floodplain.

    PubMed

    Grabowski, L A; Houpis, J L; Woods, W I; Johnson, K A

    2001-11-01

    A value of simultaneously extracted metal to acid-volatile sulfide (SEM-AVS) can provide important information regarding metal availability in anaerobic sediment. SEM and AVS concentrations were obtained by the cold-acid purge-and-trap technique during spring and summer at six locations along the Mississippi River floodplain. SEM-AVS values and AVS concentrations did not vary significantly between locations during both seasons. AVS concentrations were significantly greater during summer than spring, resulting in significantly lower SEM-AVS values in summer. Total SEM concentrations did not significantly vary between seasons or specific locations. SEM-AVS values were greater than one at each location during both seasons. Sediment metal toxicity was predicted to be absent for benthic organisms along the river floodplain. PMID:11680760

  1. Heavy Metal Contaminated Soils in Riverside Park, Milwaukee, WI: Character, Bioavailability, and Distribution

    NASA Astrophysics Data System (ADS)

    Dansand, J. J.; Knudsen, A. C.

    2007-12-01

    Prior to being breached in 1990, the North Avenue Dam on the Milwaukee River had created a 2.5-mile impoundment for over 150 years. Upstream urban runoff and industrial pollution resulted in the deposition of heavy metal rich sediments in the slow moving waters of the impoundment. After the dam removal, the river returned to a more natural flowpath and as the river narrowed, newly exposed riverbed was annexed as part of Riverside Park, enabling ecological recovery efforts on the river and riparian zones. However, these newly exposed soils are enriched with heavy metal contaminants, most notably, Pb, Zn, Cd, Cu, and Ni, concentrated by the impoundment. The current study has analyzed the location and concentrations of these trace metals, as well as their mobility and availability. This study is being conducted in conjunction with the Urban Ecology Center, a nonprofit environmental organization located in Riverside Park that is dedicated to serving the local community and urban youth while restoring and protecting the natural areas along the Milwaukee River. Analyses have included determination of general soil parameters such as particle size, organic content, and point of zero charge analyses. Beyond bulk chemical analysis, we have conducted selective sequential extractions to estimate the chemical speciation of these elements, which showed that approximately 30 percent of contaminants are highly available. Additionally, the soils have been analyzed with an Electron Microprobe to directly observe phase relationships of metals in the soils. Microprobe and other analyses have shown that heavy metals are associated with a variety of phases, including Mn and Fe oxy-hydroxides, and vary in concentration and phase relationships with depth and distance from the river. Finally, a field-portable x-ray fluorescence spectrometer (pXRF), coupled with GPS data, is being used to create a geochemical map of heavy metal distributions throughout the park.

  2. Freshwater molluscs as indicators of bioavailability and toxicity of metals in surface-water systems

    USGS Publications Warehouse

    Elder, John F.; Collins, Jerilyn J.

    1991-01-01

    During the past several decades, studies from a variety of locations have demonstrated widespread occurrence of metals in surface waters at concentrations significantly higher than background levels. Elevated concentrations are not limited to certain water types or polluted areas; they appear in all types of systems and in all geographic areas. It is clear that metals enter the aquatic systems from diverse sources, both point and nonpoint, and they can be readily transported from one system to another. Transport routes include atmospheric, terrestrial, subterranean, aquatic, and biological pathways (Elder 1988; Salomons and Forstner 1984).

  3. Partitioning, bioavailability and origin of heavy metals from the Nador Lagoon sediments (Morocco) as a basis for their management

    NASA Astrophysics Data System (ADS)

    González, I.; Águila, E.; Galán, E.

    2007-08-01

    Nador Lagoon sediments show low trace element concentrations, and, in relation to the lagoon geochemical baseline, only some anomalies for As, Cd, Cu and Pb in the NW of the lagoon deserve to be outstanding. The distribution of major, minor and trace elements in the lagoon allows a breakdown in four zones. Between “Beni Ensar” and “Atelouane” (zone A), a quite confined zone rich in organic matter and S, the most important trace-element anomalies (As, Cd, Co, Cu, Mn, Pb, Zn) were found, mainly around industry and old mining activities. In the surrounding of the city of Nador (zone B), the anomalies correspond to Mn, Cu and Zn. The coastal barrier and Kebdana channel (zone C) show moderately concentrations of Cd, Cr and Ni at specific sites. The less polluted area is the SE of the lagoon (zone D), with no outstanding anomaly. In lagoon sediments, metal bioavailability is very low. The metal partitioning patterns show that Cu, Pb and Zn present a low availability because they are bounded to the residual, non-mobile phases of the sediments. Only in some sites, the fraction was associated with organic matter, which could be liberated easily. Arsenic is concentrated in both the residual phases and the organic matter, the latter being more available. Cadmium is mainly concentrated in some samples in the interchangeable fraction, which could be considered as a potentially toxic element because it is easily released. Concerning the origin of these trace elements, those found in zone A correspond mostly to a natural source by weathering of mount Gourougou volcanic rocks (As, Co, Cu, Pb and Zn), and to an anthropogenic origin (Cd) owing to the presence of industry and old mines. In zone B, contributions of Cu and Zn enter the lagoon through soil weathering and river-borne, and as anthropogenic pollution from urban wastes. In zone C the most important pollutant is Cd deduced to be of anthropogenic origin from the close industry and intensive agriculture area. In spite

  4. Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge.

    PubMed

    Kidd, P S; Domínguez-Rodríguez, M J; Díez, J; Monterroso, C

    2007-01-01

    Amendment of agricultural soils with municipal sewage sludges provides a valuable source of plant nutrients and organic matter. Nevertheless, addition of heavy metals and risks of eutrophication continue to be of concern. Metal behaviour in soils and plant uptake are dependent on the nature of the metal, sludge/soil physico-chemical properties and plant species. A pot experiment was carried out to evaluate plant production and heavy metal uptake, soil heavy metal pools and bioavailability, and soil P pools and possible leaching losses, in agricultural soils amended with sewage sludge for at least 10 years (F20) compared to non-amended soils (control). Sewage sludge application increased soil pH, N, Olsen-extractable-P, DOC and exchangeable Ca, Mg and K concentrations. Total and EDTA-extractable soil concentrations of Cu and Zn were also significantly greater in F20, and soil metal (Cu, Mn and Zn) and P fractionation altered. Compared to the control, in F20 relative amounts of acid-extractable (Mn, Zn), reducible (Mn, Zn) and oxidisable (Cu, Zn) metal fractions were greater, and a dominance of inorganic P forms was observed. Analyses of F20 soil solutions highlighted risks of PO4 and Cu leaching. However, despite the observed increases in metal bioavailability sewage sludge applications did not lead to an increase in plant shoot concentrations (in wild plants or crop species). On the contrary, depending on the plant species, Mn and Zn tissue concentrations were within the deficiency level for most plants.

  5. Metal distribution and bioavailability in surface sediments from the Huaihe River, Anhui, China.

    PubMed

    Wang, Jie; Liu, Guijian; Lu, Lanlan; Liu, Houqi

    2016-01-01

    This study presents the total concentrations and chemical fractionations of metals (Cu, Pb, Zn, Ni, Fe, and Mn) in 54 surface sediment samples collected from the Huaihe River (Anhui Province) in eastern China. Compared with the average shale values, Zn and Pb exhibited the most substantial anthropogenic enrichment, especially in Fengtai and Huainan areas, the main industrial districts along the Huaihe River (Anhui Province). Low levels of Cu and Ni were observed in the sediments. Based on risk assessment code (RAC), the metals associated with weak acid soluble (F1) in the Huaihe River sediments followed the order: Mn > Zn > Cu > Pb > Ni > Fe. Manganese presented the most potential for releasing into the aqueous environment and can easily enter the food chain. Copper, zinc, nickel, and iron were found dominant in the residual fraction, implying that these four metals were strongly bound to the sediments. Lead showed a different partitioning pattern from that of other metals studied, with a large percentage in Fe-Mn oxide fraction, indicating that slight redox potential changes may make significant influence on the removability of Pb. Moreover, Cu in oxidizable (F3) and residual (F4) fractions presented high positive correlation with organic matter, which can explain the high percentage of Cu in these two fractions. PMID:26627208

  6. Metal bioavailability and toxicity to fish in low-alkalinity lakes - a critical-review

    USGS Publications Warehouse

    Spry, D.J.; Wiener, J.G.

    1991-01-01

    Fish in low-alkalinity lakes having ph of 6.0-6.5 Or less often have higher body or tissue burdens of mercury, cadmium, and lead than do fish in nearby lakes with higher ph. The greater bioaccumulation of these metals in such waters seems to result partly from the greater aqueous abundances of biologically available forms (ch3hg+, cd2+, and pb2+) at low ph. In addition, the low concentrations of aqueous calcium in low-alkalinity lakes increase the permeability of biological membranes to these metals, which in fish may cause greater uptake from both water and food. Fish exposed to aqueous inorganic aluminum in the laboratory and field accumulate the metal in and on the epithelial cells of the gills; however, there is little accumulation of aluminum in the blood or internal organs. In low-ph water, both sublethal and lethal toxicity of aluminum has been clearly demonstrated in both laboratory and field studies at environmental concentrations. In contrast, recently measured aqueous concentrations of total mercury, methylmercury, cadmium, and lead in low-alkalinity lakes are much lower than the aqueous concentrations known to cause acute or chronic toxicity in fish, although the vast majority of toxicological research has involved waters with much higher ionic strength than that in low-alkalinity lakes. Additional work with fish is needed to better assess (1) the toxicity of aqueous metals in low-alkalinity waters, and (2) the toxicological significance of dietary methylmercury and cadmium.

  7. Assessing the bioavailability and risk from metal contaminated soils and dusts#

    EPA Science Inventory

    Exposure to contaminated soil and dust is an important pathway in human and ecological risk assessment and often is the "risk-driver" for metal contaminated soil. Site-specific soil physical and chemical characteristics, as well as biological factors, determine the bioavailabilit...

  8. Ecological risk assessment of boreal sediments affected by metal mining: Metal geochemistry, seasonality, and comparison of several risk assessment methods.

    PubMed

    Väänänen, Kristiina; Kauppila, Tommi; Mäkinen, Jari; Leppänen, Matti T; Lyytikäinen, Merja; Akkanen, Jarkko

    2016-10-01

    The mining industry is a common source of environmental metal emissions, which cause long-lasting effects in aquatic ecosystems. Metal risk assessment is challenging due to variations in metal distribution, speciation, and bioavailability. Therefore, seasonal effects must be better understood, especially in boreal regions in which seasonal changes are large. We sampled 4 Finnish lakes and sediments affected by mining for metals and geochemical characteristics in autumn and late winter, to evaluate seasonal changes in metal behavior, the importance of seasonality in risk assessment, and the sensitivity and suitability of different risk assessment methods. We compared metal concentrations in sediment, overlying water, and porewater against environmental quality guidelines (EQGs). We also evaluated the toxicity of metal mixtures using simultaneously extracted metals and an acid volatile sulfides (SEM-AVS) approach together with water quality criteria (US Environmental Protection Agency equilibrium partitioning benchmarks). Finally, site-specific risks for 3 metals (Cu, Ni, Zn) were assessed using 2 biotic ligand models (BLMs). The metal concentrations in the impacted lakes were elevated. During winter stratification, the hypolimnetic O2 saturation levels were low (<6%) and the pH was acidic (3.5-6.5); however, abundant O2 (>89%) and neutral pH (6.1-7.5) were found after the autumnal water overturn. Guidelines were the most conservative benchmark for showing an increased risk of toxicity in the all of the lakes. The situation remained stable between seasons. On the other hand, SEM-AVS, equilibrium partition sediment benchmarks (ESBs), and BLMs provided a clearer distinction between lakes and revealed a seasonal variation in risk among some of the lakes, which evidenced a higher risk during late winter. If a sediment risk assessment is based on the situation in the autumn, the overall risk may be underestimated. It is advisable to carry out sampling and risk assessment

  9. Distribution of pesticides, PAHs, PCBs, and bioavailable metals in depositional sediments of the lower Missouri River, USA

    USGS Publications Warehouse

    Echols, K.R.; Brumbaugh, W.G.; Orazio, C.E.; May, T.W.; Poulton, B.C.; Peterman, P.H.

    2008-01-01

    The lower Missouri River was studied to determine the distribution of selected persistent organic pollutants and bioavailable metals in depositional sediments. Nineteen sites between Omaha, Nebraska and Jefferson City, Missouri were sampled. This stretch of the river receives point-source and non-point-source inputs from industrial, urban, and agricultural activities. As part of an ecological assessment of the river, concentrations of 29 legacy organochlorine pesticides (OC pesticides), including chlordanes, DDTs, and hexachlorocyclohexanes; a select list of current-use pesticides, including trifluralin, diazinon, chlorpyrifos, and permethrin, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), divalent metals (copper, nickel, zinc, cadmium, and lead), and polybrominated diphenyl ethers (PBDEs) were determined. Concentrations (dry weight basis) of OC pesticides in the sediments were less than 1 ng/g, with the exception of the backwater sediment collected from the mouth of the Blue River in the Kansas City metropolitan area, which contained up to 20 ng/g total chlordane, 8.1 ng/g p,p???-DDE, 1.5 ng/g lindane, 4.8 ng/g dieldrin, and 3 ng/g endrin. Concentrations of chlorpyrifos and permethrin ranged from less than 1 ng/g to 5.5 ng/g and 44 ng/g, respectively. Concentrations of PCBs ranged from less than 11 ng/g to 250 ng/g, with the Blue River and Sibley sediments containing 100 and 250 ng/g total PCBs, respectively. Concentrations of total PAHs at 17 of the 19 sites ranged from 250 to 700 ng/g, whereas the Riverfront and Blue River sites in Kansas City contained 1100 ng/g and nearly 4000 ng/g, respectively. Concentrations of the metals did not vary significantly among most sites; however, the Blue River site contained elevated concentrations of zinc (104 ??g/g), cadmium (0.7 ??g/g), and lead (34 ??g/g) compared to the other sites. The moderately high concentrations of acid-volatile sulfide in the sediments suggest a low potential for metal

  10. Distribution of pesticides, PAHs, PCBs, and bioavailable metals in depositional sediments of the lower Missouri River, USA.

    PubMed

    Echols, Kathy R; Brumbaugh, William G; Orazio, Carl E; May, Thomas W; Poulton, Barry C; Peterman, Paul H

    2008-08-01

    The lower Missouri River was studied to determine the distribution of selected persistent organic pollutants and bioavailable metals in depositional sediments. Nineteen sites between Omaha, Nebraska and Jefferson City, Missouri were sampled. This stretch of the river receives point-source and non-point-source inputs from industrial, urban, and agricultural activities. As part of an ecological assessment of the river, concentrations of 29 legacy organochlorine pesticides (OC pesticides), including chlordanes, DDTs, and hexachlorocyclohexanes; a select list of current-use pesticides, including trifluralin, diazinon, chlorpyrifos, and permethrin, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), divalent metals (copper, nickel, zinc, cadmium, and lead), and polybrominated diphenyl ethers (PBDEs) were determined. Concentrations (dry weight basis) of OC pesticides in the sediments were less than 1 ng/g, with the exception of the backwater sediment collected from the mouth of the Blue River in the Kansas City metropolitan area, which contained up to 20 ng/g total chlordane, 8.1 ng/g p,p'-DDE, 1.5 ng/g lindane, 4.8 ng/g dieldrin, and 3 ng/g endrin. Concentrations of chlorpyrifos and permethrin ranged from less than 1 ng/g to 5.5 ng/g and 44 ng/g, respectively. Concentrations of PCBs ranged from less than 11 ng/g to 250 ng/g, with the Blue River and Sibley sediments containing 100 and 250 ng/g total PCBs, respectively. Concentrations of total PAHs at 17 of the 19 sites ranged from 250 to 700 ng/g, whereas the Riverfront and Blue River sites in Kansas City contained 1100 ng/g and nearly 4000 ng/g, respectively. Concentrations of the metals did not vary significantly among most sites; however, the Blue River site contained elevated concentrations of zinc (104 microg/g), cadmium (0.7 microg/g), and lead (34 microg/g) compared to the other sites. The moderately high concentrations of acid-volatile sulfide in the sediments suggest a low potential for

  11. Bioavailable metals in tourist beaches of Richards Bay, Kwazulu-Natal, South Africa.

    PubMed

    Vetrimurugan, E; Jonathan, M P; Roy, Priyadarsi D; Shruti, V C; Ndwandwe, O M

    2016-04-15

    Acid Leachable Trace Metal (ALTMs) concentrations in tourist beaches of Richards Bay, Kwazulu-Natal, South Africa were assessed. 53 surface sediment samples were collected from five different beaches (Kwambonambi Long Beach; Nhlabane Beach; Five Mile Beach; Alkanstrand Beach and Port Durnford Beach). The results of ALTMs (Fe, Mn, Cr, Cu, Ni, Co, Pb, Cd, Zn, As, Hg) suggest that they are enriched naturally and with some local industrial sources for (avg. in μgg(-1)) Fe (3530-7219), Mn (46-107.11), Cd (0.43-1.00) and Zn (48-103.98). Statistical results indicate that metal concentrations were from natural origin attributed to leaching, weathering process and industrial sources. Comparative studies of metal concentrations with sediment quality guidelines and ecotoxicological values indicate that there is no adverse biological effect. Enrichment factor and geoaccumulation indices results indicate moderate enhancement of Fe (Igeo class 1 in FMB), Cd (EF>50; Igeo classes 2-4) and Zn (Igeo classes 1 & 2).

  12. Bioavailable metals in tourist beaches of Richards Bay, Kwazulu-Natal, South Africa.

    PubMed

    Vetrimurugan, E; Jonathan, M P; Roy, Priyadarsi D; Shruti, V C; Ndwandwe, O M

    2016-04-15

    Acid Leachable Trace Metal (ALTMs) concentrations in tourist beaches of Richards Bay, Kwazulu-Natal, South Africa were assessed. 53 surface sediment samples were collected from five different beaches (Kwambonambi Long Beach; Nhlabane Beach; Five Mile Beach; Alkanstrand Beach and Port Durnford Beach). The results of ALTMs (Fe, Mn, Cr, Cu, Ni, Co, Pb, Cd, Zn, As, Hg) suggest that they are enriched naturally and with some local industrial sources for (avg. in μgg(-1)) Fe (3530-7219), Mn (46-107.11), Cd (0.43-1.00) and Zn (48-103.98). Statistical results indicate that metal concentrations were from natural origin attributed to leaching, weathering process and industrial sources. Comparative studies of metal concentrations with sediment quality guidelines and ecotoxicological values indicate that there is no adverse biological effect. Enrichment factor and geoaccumulation indices results indicate moderate enhancement of Fe (Igeo class 1 in FMB), Cd (EF>50; Igeo classes 2-4) and Zn (Igeo classes 1 & 2). PMID:26853593

  13. Bioavailability of metals and toxicity identification of the sediment pore waters from Plow Shop Pond, Fort Devens, Massachusetts

    SciTech Connect

    Jop, K.; Putt, A.; Shepherd, S.; Askew, A.; Bleiler, J.; Reed, S.; George, C.

    1995-12-31

    Plow Shop Pond is a shallow, 30-acre pond located at Fort Devens, Massachusetts. An ecological risk assessment was conducted at Plow Shop Pond as part of a remedial investigation. Preliminary analysis revealed high concentrations of arsenic, copper, chromium, lead, and mercury in the sediment. Therefore, a laboratory testing program was incorporated into this investigation to assess the toxicity of sediments to aquatic organisms. The screening testing program included short-term chronic exposure of Ceriodaphnia dubia to pore waters, 10-day exposures of Chironomus tentans and Hyalella azteca to bulk sediments and a bioaccumulation study with Lumbriculus variegatus. Survival and reproduction of C. dubia, growth of amphipods and reproduction of oligochaetes appeared to indicate sediment toxicity at some sites within the pond. Although high concentrations of arsenic, copper, mercury and lead were detected in the whole sediments and pore waters, the response could not be correlated to a particular element. Also, relatively low bioaccumulation of methyl mercury and high uptake of inorganic mercury was established for three sediment samples. To characterize and identify the source of toxicity, a toxicity identification evaluation program using sediments collected at several locations was performed. The pore water from these samples was used for fractionation coupled with a 10-day test using H. azteca. Survival and growth were evaluated as endpoints during the exposures. Partitioning of metals and their bioavailability was influenced primarily by organic carbon and AVS concentration. At least two constituents were responsible for the toxicity.

  14. Iron concentration, bioavailability, and nutritional quality of polished rice affected by different forms of foliar iron fertilizer.

    PubMed

    He, Wanling; Shohag, M J I; Wei, Yanyan; Feng, Ying; Yang, Xiaoe

    2013-12-15

    The present study compared the effects of four different forms of foliar iron (Fe) fertilizers on Fe concentration, bioavailability and nutritional quality of polished rice. The results showed that foliar fertilisation at the anthesis stage was an effective way to promote Fe concentration and bioavailability of polished rice, especially in case of DTPA-Fe. Compared to the control, foliar application of DTPA-Fe increased sulphur concentration and the nutrition promoter cysteine content, whereas decreased phosphorus concentration and the antinutrient phytic acid content of polished rice, as a result increased 67.2% ferrtin formation in Caco-2 cell. Moreover, foliar DTPA-Fe application could maintain amylase, protein and minerals quality of polished rice. According to the current study, DTPA-Fe is recommended as an excellent foliar Fe form for Fe biofortification program.

  15. Assessment of trace metals contamination level, bioavailability and toxicity in sediments from Dakar coast and Saint Louis estuary in Senegal, West Africa.

    PubMed

    Diop, Cheikh; Dewaelé, Dorothée; Cazier, Fabrice; Diouf, Amadou; Ouddane, Baghdad

    2015-11-01

    Trace metals have the potential to associate with sediments that have been recognised as significant source of contamination for the benthic environment. The current study aims assessing the trace metals contamination level in sediments from Dakar coast and Saint Louis estuary, and to examine their bioavailability to predict potential toxicity of sediments. Surface sediment samples were collected between June 2012 and January 2013 in three sampling periods from eight stations. Trace metals were analysed using inductively coupled plasma-optical emission spectrometer. Geoaccumulation indexes (Igeo) showed strong pollution by Cd, Cr, Cu and Pb confirmed by enrichment factor (EF) suggesting that these metals derived from anthropogenic sources. Toxicity indexes exceeded one in several sites suggesting the potential effects on sediment-dwelling organisms, which may constitute a risk to populations' health. However, seasonal variability of metal bioavailability was noted, revealing the best period to monitor metal contamination. From an ecotoxicological point of view, concentrations of Cd, Cr, Cu and Pb were above the effects range low threshold limit of the sediment quality guidelines for adverse biological effects. In addition, with Pb concentrations above the effect range medium values in some sites, biological effects may occur.

  16. Metal binding properties of the EPS produced by Halomonas sp. TG39 and its potential in enhancing trace element bioavailability to eukaryotic phytoplankton.

    PubMed

    Gutierrez, Tony; Biller, Dondra V; Shimmield, Tracy; Green, David H

    2012-12-01

    An emergent property of exopolysaccharides (EPS) produced by marine bacteria is their net negative charge, predominantly conferred by their high uronic acids content. Here, we investigated the EPS produced by an algal-associated marine bacterium, Halomonas sp. strain TG39, for its capacity to sequester trace metals and mediate their bioavailability to eukaryotic phytoplankton. Metal analysis of the purified EPS revealed that it contained high levels of K, Ca, Mg and several essential trace metals, including Zn, Cu, Fe and the metalloid Si. Desorption experiments with marine sediment showed that the EPS possessed a specific binding capacity for Ca, Si, Fe, Mn, Mg and Al. Depending on the ionic conditions, Fe was the third or fourth most highly-adsorbed metal out of 27 elements analyzed. Experiments employing Fe-limited synthetic ocean seawater showed that growth of the marine diatom Thalassiosira weissflogii (axenic strain) was enhanced when incubated in the presence of either purified EPS or EPS that had been pre-exposed to marine sediment, compared to non-EPS amended controls. This growth enhancement was attributed to the EPS binding and increasing the bioavailability of key trace metal elements, such as Fe(III). Since the bacterium used in this study was originally isolated from a marine micro-alga, this work highlights the possibility that bacterial associates of eukaryotic algae could be influencing the bioavailability of Fe(III) to phytoplankton via their production of polyanionic EPS. More widely, this work reinforces the potential importance of marine bacterial EPS in trace metal biogeochemical cycling.

  17. Toxicity and bioavailability of metals in the Missouri River adjacent to a lead refinery

    USGS Publications Warehouse

    Chapman, Duane C.; Allert, Ann L.; Fairchild, James F.; May, Thomas W.; Schmitt, Christopher J.; Callahan, Edward V.

    2001-01-01

    This study is an evaluation of the potential environmental impacts of contaminated groundwater from the ASARCO metals refining facility adjacent to the Missouri River in Omaha, Nebraska. Surface waters, sediments, and sediment pore waters were collected from the Burt-Izard drain, which transects the facility, and from the Missouri River adjacent to the facility. Groundwater was also collected from the facility. Waters and sediments were analyzed for inorganic contaminants, and the toxicity of the waters was evaluated with the Ceriodaphnia dubia 7-day test. Concentrations of several elemental contaminants were highly elevated in the groundwater, but not in river sediment pore waters. Lead concentrations were moderately elevated in whole sediment at one site, but lead concentrations in pore waters were low due to apparent sequestration by acid-volatile sulfides. The groundwater sample was highly toxic to C. dubia, causing 100% mortality. Even at the lowest groundwater concentration tested (6.25%) C. dubia survival was reduced; however, at that concentration, reproduction was not significantly different from upstream porewater reference samples. Sediment pore waters were not toxic, except reproduction in pore water collected from one downstream site was somewhat reduced. The decrease in reproduction could not be attributed to measured elemental contaminants.

  18. Factors Affecting Liquid-Metal Embrittlement in C-103

    NASA Technical Reports Server (NTRS)

    Mclemore, R.; Lampson, F. K.

    1982-01-01

    Results of a study of weld cracks on Space Shuttle control thrustors point toward better understanding of cracking problem in columbium metal, which has also plagued nonaerospace users. Although liquid-metal embrittlement is known to be cause of problem, factors affecting growth and severity of cracks are not well understood. New results tie crack growth to type of contaminants present, grain size and level of stress present while welding is done.

  19. Ability of 3 extraction methods (BCR, Tessier and protease K) to estimate bioavailable metals in sediments from Huelva estuary (Southwestern Spain).

    PubMed

    Rosado, Daniel; Usero, José; Morillo, José

    2016-01-15

    The bioavailable fraction of metals (Zn, Cu, Cd, Mn, Pb, Ni, Fe, and Cr) in sediments of the Huelva estuary and its littoral of influence has been estimated carrying out the most popular methods of sequential extraction (BCR and Tessier) and a biomimetic approach (protease K extraction). Results were compared to enrichment factors found in Arenicola marina. The linear correlation coefficients (R(2)) obtained between the fraction mobilized by the first step of the BCR sequential extraction, by the sum of the first and second steps of the Tessier sequential extraction, and by protease K, and enrichment factors in A. marina, are at their highest for protease K extraction (0.709), followed by BCR first step (0.507) and the sum of the first and second steps of Tessier (0.465). This observation suggests that protease K represents the bioavailable fraction more reliably than traditional methods (BCR and Tessier), which have a similar ability.

  20. Folate bioavailability.

    PubMed

    McNulty, Helene; Pentieva, Kristina

    2004-11-01

    The achievement of optimal folate status to prevent neural-tube defects, and possibly other diseases, is hindered by the well-recognised incomplete bioavailability of the natural folates found in foods compared with the synthetic vitamin, folic acid. Folate bioavailability from different foods is considered to be dependent on a number of factors, including the food matrix, the intestinal deconjugation of polyglutamyl folates, the instability of certain labile folates during digestion and the presence of certain dietary constituents that may enhance folate stability during digestion. There is conflicting evidence as to whether the extent of conjugation of polyglutamyl folate (in the absence of specific inhibitors of deconjugation in certain foods) is a limiting factor in folate bioavailability. Estimates of the extent of lower bioavailability of food folates compared with folic acid (relative bioavailability) show great variation, ranging anywhere between 10 and 98%, depending on the methodological approach used. The lack of accurate data on folate bioavailability from natural food sources is of particular concern in those countries in which there is no mandatory folic acid fortification, and therefore a greater reliance on natural food folates as a means to optimise status. Apart from the incomplete bioavailability of food folates, the poor stability of folates in foods (particularly green vegetables) under typical conditions of cooking can substantially reduce the amount of vitamin ingested and thereby be an additional factor limiting the ability of food folates to enhance folate status. A recent workshop convened by the Food Standards Agency concluded that gaining a better understanding of folate bioavailability in representative human diets is a high priority for future research.

  1. Bioavailability of heavy metals in water and sediments from a typical Mediterranean Bay (Málaga Bay, Region of Andalucía, Southern Spain).

    PubMed

    Alonso Castillo, M L; Sánchez Trujillo, I; Vereda Alonso, E; García de Torres, A; Cano Pavón, J M

    2013-11-15

    Concentrations of heavy metals were measured in sediment and water from Málaga Bay (South Spain). In the later twentieth century, cities such as Málaga, have suffered the impact of mass summer tourism. The ancient industrial activities, and the actual urbanization and coastal development, recreation and tourism, wastewaters treatment facilities, have been sources of marine pollution. In sediments, Ni was the most disturbing metal because Ni concentrations exceeded the effects range low (ERL), concentration at which toxicity could start to be observed in 85% of the samples analyzed. The metal bioavailability decreased in the order: Cd>Ni>Pb>Cu>Cr. In the sea water samples, Cd and Pb were the most disturbing metals because they exceeded the continuous criteria concentration (CCC) of US EPA in a 22.5% and 10.0% of the samples, respectively. Statistical analyses (ANOVA, PCA, CA) were performed.

  2. Metals in benthic macrofauna and biogeochemical factors affecting their trophic transfer to wild fish around fish farm cages.

    PubMed

    Kalantzi, I; Papageorgiou, N; Sevastou, K; Black, K D; Pergantis, S A; Karakassis, I

    2014-02-01

    Benthic macroinvertebrates and wild fish aggregating in the vicinity of four Mediterranean fish farms were sampled. Concentrations of metals and other elements were measured in macrofaunal taxa and in fish tissues (muscle, liver, gills, bone, gonad, stomach, intestine, and stomach content). Biological and geochemical characteristics play an important role in metal accumulation in benthic invertebrates, and consequently in metal transfer to higher trophic levels. Macroinvertebrates accumulated lower concentrations of most metals and elements than their respective sediment, except As, P, Na, Zn and Cd. Elemental concentrations of benthic organisms increased with increasing sediment metal content, except Cd, and with % silt, refractory organic matter and chlorophyll-a of sediment due to the influence of sediment geochemistry on metal bioavailability. Tolerant species were found to accumulate higher concentrations of most metals and elements, except for Cd, than equilibrium species. The ecological and morphological characteristics of the benthic invertebrates can affect the bioaccumulation of metals and elements in macrobenthos. Hg and P were found to increase their concentrations from zoobenthos to wild fish aggregating around fish cages feeding on macrofauna.

  3. How Environment Affects Galaxy Metallicity: Lessons from the Illustris Simulation

    NASA Astrophysics Data System (ADS)

    Genel, S.

    2016-06-01

    Recent studies have found higher galaxy metallicities in richer environments. It is not yet clear, however, whether metallicity-environment dependencies are merely an indirect consequence of environmentally dependent formation histories, or of environment related processes directly affecting metallicity. Here, we present a detailed study of metallicity-environment correlations in a cosmological hydrodynamical simulation, in particular the Illustris simulation. Illustris galaxies display similar relations to those observed. Utilizing our knowledge of simulated formation histories, and leveraging the large simulation volume, we construct galaxy samples of satellites and centrals that are matched in formation histories. This allows us to find that ˜1/3 of the metallicity-environment correlation is due to different formation histories in different environments. This is a combined effect of satellites (in particular, in denser environments) having on average lower z=0 star formation rates (SFRs), and of their older stellar ages, even at a given z=0 SFR. Most of the difference, ˜2/3, however, is caused by the higher concentration of star-forming disks of satellite galaxies, as this biases their SFR-weighted metallicities toward their inner, more metal-rich parts. With a newly defined quantity, the `radially averaged' metallicity, which captures the metallicity profile but is independent of the SFR profile, the metallicities of satellites and centrals become environmentally independent once they are matched in formation history. This effect may also explain most of the differences between metallicities of galaxies in different large-scale environmental densities. A prediction for observations is that those differences become smaller as smaller apertures are considered.

  4. Measuring bioavailable metals using diffusive gradients in thin films (DGT) and transplanted seaweed (Fucus vesiculosus), blue mussels (Mytilus edulis) and sea snails (Littorina saxatilis) suspended from monitoring buoys near a former lead-zinc mine in West Greenland.

    PubMed

    Søndergaard, Jens; Bach, Lis; Gustavson, Kim

    2014-01-15

    Measuring loads of bioavailable metals is important for environmental assessment near mines and other industrial sources. In this study, a setup of monitoring buoys was tested to assess loads of bioavailable metals near a former Pb-Zn mine in West Greenland using transplanted seaweed, mussels and sea snails. In addition, passive DGT samplers were installed. After a 9-day deployment period, concentrations of especially Pb, Zn and Fe in the species were all markedly elevated at the monitoring sites closest to the mine. Lead concentrations in all three species and the DGT-Pb results showed a significant linear correlation. Zinc and Fe concentrations were less correlated indicating that the mechanisms for Zn and Fe accumulation in the three species are more complex. The results show that there is still a significant load of metals from the mine and that such buoys can be an adequate method to assess present loads of bioavailable metals. PMID:24253021

  5. Measuring bioavailable metals using diffusive gradients in thin films (DGT) and transplanted seaweed (Fucus vesiculosus), blue mussels (Mytilus edulis) and sea snails (Littorina saxatilis) suspended from monitoring buoys near a former lead-zinc mine in West Greenland.

    PubMed

    Søndergaard, Jens; Bach, Lis; Gustavson, Kim

    2014-01-15

    Measuring loads of bioavailable metals is important for environmental assessment near mines and other industrial sources. In this study, a setup of monitoring buoys was tested to assess loads of bioavailable metals near a former Pb-Zn mine in West Greenland using transplanted seaweed, mussels and sea snails. In addition, passive DGT samplers were installed. After a 9-day deployment period, concentrations of especially Pb, Zn and Fe in the species were all markedly elevated at the monitoring sites closest to the mine. Lead concentrations in all three species and the DGT-Pb results showed a significant linear correlation. Zinc and Fe concentrations were less correlated indicating that the mechanisms for Zn and Fe accumulation in the three species are more complex. The results show that there is still a significant load of metals from the mine and that such buoys can be an adequate method to assess present loads of bioavailable metals.

  6. Bioavailable concentrations of germanium and rare earth elements in soil as affected by low molecular weight organic acids and root exudates

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Székely, Balázs; Kummer, Nicolai-Alexeji; Heinemann, Ute; Tesch, Silke; Heilmeier, Hermann

    2014-05-01

    , lanthan, neodymium, gadolinium and erbium in the rhizosphere and therefore the enhancement of bioavailability of the mentioned elements to plants. Based on the suction cup experiment we conclude that in vertical soil profile the bioavailable germanium is heavily affected by the activity of exudates, as the complexation processes of germanium take place at the root zone and below affected by the interplay of the infiltration of citric acid solutions and the actually produced exudates. These studies have been carried out in the framework of the PhytoGerm project, financed by the Federal Ministry of Education and Research, Germany. BS contributed as an Alexander von Humboldt Research Fellow. The authors are grateful to students and laboratory assistants contributing in the field work and sample preparation.

  7. The role of acid-volatile sulfide and interstitial water metal concentrations in determining bioavailability of cadmium and nickel from contaminated sediments to the marine polychaete Neanthes arenaceodentata

    SciTech Connect

    Pesch, C.E.; Hansen, D.J.; Boothman, W.S. . Environmental Research Lab.); Berry, W.J. ); Mahony, J.D. . Chemistry Dept.)

    1995-01-01

    This study investigated the influence of acid-volatile sulfide (AVS) and interstitial water (IW) metal concentrations on bioavailability and toxicity of Cd and Ni to an infaunal sediment-ingesting marine worm, Neanthes Arenaceodentata. Ten-d exposures were conducted with sediments, contaminated primarily with Cd and Ni, from Foundry Cove (Hudson River, NY), and with uncontaminated sediments spiked with Cd or Ni. Molar ratios of simultaneously extracted metal (SEM)/AVS ranged from < 0.02 to 44 for Cd-spiked, 0.02 to 241 for Ni-spiked, and <0.06 to 125 for Foundry Cove sediments. In all experiments, significant mortality was not observed when SEM/AVS ratios were <1.0 and interstitial water toxic units (IWTU) were <1.0. In the Cd and Ni-spiked experiments, when SEM/AVS ratios or IWTUs were >1.0, sediments were either lethal or worms did not burrow. Mortality of worms in Foundry Cove sediments was [le] 20%, and worms burrowed in all these sediments. However, IW contained <1.0 TU (Ni + Cd) in all Foundry Cove sediments except one (IWTU = 1.69). Metal concentrations in worms generally increased with increases in sediment metal concentration, SEM/AVS molar ratio, and IW metal concentration. The presence of metal in worms from sediments from SEM/AVS ratios <1.0 may be evidence of release of Cd or Ni from oxidized metal sulfide (a result of burrowing), uptake of metal from ingested sediment, or adsorption to body surfaces. These results support the hypothesis that when the concentration of AVS in sediments exceeds that of divalent metals sediments will not be acutely toxic. However, a greater number of sediments was correctly predicted to be nontoxic when interstitial water metal concentration of <1.0 TU was used.

  8. Integrating hierarchical bioavailability and population distribution into potential eco-risk assessment of heavy metals in road dust: A case study in Xiandao District, Changsha city, China.

    PubMed

    Huang, Jinhui; Li, Fei; Zeng, Guangming; Liu, Wenchu; Huang, Xiaolong; Xiao, Zhihua; Wu, Haipeng; Gu, Yanling; Li, Xue; He, Xiaoxiao; He, Yan

    2016-01-15

    Modified eco-risk assessment method (MEAM) integrated with the hierarchical bioavailability determined by the fraction detection of Cd, Pb, Zn, Cu, Cr in road dust samples and the local population distribution derived from the local land use map, was proposed to make the hierarchical eco-risk management strategy in Xiandao District (XDD), China. The geo-accumulation index (Igeo), the original potential eco-risk index (Er(i)) and the modified eco-risk assessment index (MEAI) were used to identify the priority pollutant. Compared with the Hunan soil background values, evaluated metal concentrations were found to different extent. The results of mean Igeo, Er(i) and bioavailability of studied metals revealed the following orders: Cd>Pb ≈ Zn>Cu ≈ Cr, Cd>Pb>Cu>Cr>Zn and Cd>Zn>Cu ≈ Pb>Cr, respectively. Therefore, Cd was regarded as the priority pollutant. To identify the priority areas taking into account cost consideration, the hierarchical risk map based on the results of the modified eco-risk assessment index with overlay of the population density map was needed and made. The west and partly south areas of XDD were under higher eco-risk generally. Moreover, the whole XDD area was divided into 4 area categories with different management priorities based on the possibility of occurrence of eco-risk, and the hierarchical risk management strategy associated with protecting local population was suggested to facilitate allocation of funds for risk management.

  9. The Freundlich adsorption isotherm constants and prediction of phosphorus bioavailability as affected by different phosphorus sources in two Kansas soils.

    PubMed

    Shafqat, Mustafa N; Pierzynski, Gary M

    2014-03-01

    Phosphorus (P) adsorption onto soil constituents influences P bioavailability from both agronomic and environmental perspectives. In this study, the P availability from different P sources along with utility of Freundlich adsorption coefficients on the predictability of various crop growth parameters were assessed. Two soils were amended with 150mgPkg(-1) each from six different P sources comprised of manures from two types of ruminants animals, three types of monogastric animals, and inorganic P fertilizer. Corn (Zea mays) was grown and harvested seven times under greenhouse conditions to remove P from the P amended treatments. The application of all P sources reduced the value of Freundlich K and increased the value of Freundlich 1/n and equilibrium P concentration (EPC0) in both soils compared to the un-amended control before cropping. The swine (Sus scrofa) manure (HM) resulted in significant smaller values of Freundlich K and larger values of 1/n in the P deficient Eram-Lebo soil compared to other P sources while, the opposite was true for the turkey (Meleagris gallopava) litter (TL) in the Ulysses soil. The corn biomass, tissue P concentration and P uptake were significantly influenced by all P sources during the first harvest and the total P uptake during seven harvests in both soils compared to the control treatment. Both Freundlich coefficients had strong relationships with the aforementioned corn parameters in the P deficient Eram-Lebo soil while, strength of the association was weak or missing in the Ulysses soil which had optimum levels of antecedent P. PMID:24238913

  10. The Freundlich adsorption isotherm constants and prediction of phosphorus bioavailability as affected by different phosphorus sources in two Kansas soils.

    PubMed

    Shafqat, Mustafa N; Pierzynski, Gary M

    2014-03-01

    Phosphorus (P) adsorption onto soil constituents influences P bioavailability from both agronomic and environmental perspectives. In this study, the P availability from different P sources along with utility of Freundlich adsorption coefficients on the predictability of various crop growth parameters were assessed. Two soils were amended with 150mgPkg(-1) each from six different P sources comprised of manures from two types of ruminants animals, three types of monogastric animals, and inorganic P fertilizer. Corn (Zea mays) was grown and harvested seven times under greenhouse conditions to remove P from the P amended treatments. The application of all P sources reduced the value of Freundlich K and increased the value of Freundlich 1/n and equilibrium P concentration (EPC0) in both soils compared to the un-amended control before cropping. The swine (Sus scrofa) manure (HM) resulted in significant smaller values of Freundlich K and larger values of 1/n in the P deficient Eram-Lebo soil compared to other P sources while, the opposite was true for the turkey (Meleagris gallopava) litter (TL) in the Ulysses soil. The corn biomass, tissue P concentration and P uptake were significantly influenced by all P sources during the first harvest and the total P uptake during seven harvests in both soils compared to the control treatment. Both Freundlich coefficients had strong relationships with the aforementioned corn parameters in the P deficient Eram-Lebo soil while, strength of the association was weak or missing in the Ulysses soil which had optimum levels of antecedent P.

  11. Effect of bioavailability on the fate of hydrophobic organic compounds and metal in treatment of young landfill leachate by membrane bioreactor.

    PubMed

    Zolfaghari, M; Droguia, P; Brar, S K; Buelna, G; Dubé, R

    2016-10-01

    Complex dissolved organic matter (DOM) present in landfill leachate provides reliable media for adsorption of highly hydrophobic contaminants, such as Di 2-ethyl hexyl phthalate (DEHP). In this research, the feasibility of submerged membrane bioreactor (SMBR) for treatment of landfill leachate (LFL) was determined. Later, the operating conditions were optimized for removal of DEHP, COD, NH4(+) and PO4(3-), and finally the effect of bioavailability was examined by introduction of different concentrations of humic acid into the influent. The result revealed that presence of complex agglomerated organic compounds increased the removal efficiency of DEHP and COD, even though DEHP biodegradation rate in sludge dramatically decreased (from 58.8% to 12.8%). MBR retention of different metals in the absence and in the presence of recalcitrant DOM was also studied. Like DEHP, ternary interaction between metals, DOM, and sludge play a pivotal role in their removal efficiency and their concentration in sludge. PMID:27448320

  12. Effect of bioavailability on the fate of hydrophobic organic compounds and metal in treatment of young landfill leachate by membrane bioreactor.

    PubMed

    Zolfaghari, M; Droguia, P; Brar, S K; Buelna, G; Dubé, R

    2016-10-01

    Complex dissolved organic matter (DOM) present in landfill leachate provides reliable media for adsorption of highly hydrophobic contaminants, such as Di 2-ethyl hexyl phthalate (DEHP). In this research, the feasibility of submerged membrane bioreactor (SMBR) for treatment of landfill leachate (LFL) was determined. Later, the operating conditions were optimized for removal of DEHP, COD, NH4(+) and PO4(3-), and finally the effect of bioavailability was examined by introduction of different concentrations of humic acid into the influent. The result revealed that presence of complex agglomerated organic compounds increased the removal efficiency of DEHP and COD, even though DEHP biodegradation rate in sludge dramatically decreased (from 58.8% to 12.8%). MBR retention of different metals in the absence and in the presence of recalcitrant DOM was also studied. Like DEHP, ternary interaction between metals, DOM, and sludge play a pivotal role in their removal efficiency and their concentration in sludge.

  13. Relevant role of dissolved humic matter in phosphorus bioavailability in natural and agronomical ecosystems through the formation of Humic-(Metal)-Phosphate complexes

    NASA Astrophysics Data System (ADS)

    Baigorri, Roberto; Urrutia, Óscar; Erro, Javier; Pazos-Pérez, Nicolás; María García-Mina, José

    2016-04-01

    Natural Organic Matter (NOM) and the NOM fraction present in soil solution (dissolved organic matter: DOM) are currently considered as fundamental actors in soil fertility and crop mineral nutrition. Indeed, decreases in crop yields as well as soil erosion are closely related to low values of NOM and, in fact, the use of organic amendments as both soil improvers and plant growth enhancers is very usual in countries with soils poor in NOM. This role of NOM (and DOM) seems to be associated with the presence of bio-transformed organic molecules (humic substances) with high cation chelating-complexing ability. In fact, bioavailable micronutrients with metallic character in soil solutions of alkaline and calcareous soils are forming stable complexes with DOM. This beneficial action of DOM also concerns other plant nutrients such as inorganic phosphate (Pi). Among the different mechanisms involved in the beneficial action of DOM on P bioavailability, the possible formation of poly-nuclear complexes including stable chemical bonds between negative binding sites in humic substances and Pi through metal bridges in soil solution might be relevant, especially in acidic soils. In fact, several studies have proven that these complexes can be obtained in the laboratory and are very efficient in prevent Pi soil fixation and improve Pi root uptake. However, clear experimental evidence about their presence in soil solutions of natural and agronomical soil ecosystems has not published yet. We present here experimental results supporting the real presence of stable Pi-metal-Humic (PMH) complexes in the soil solution of several acidic soils. The study is based on the physico-chemical characterization (31P-NMR, FTIR, TEM-EDAX, ICP-OES) of the DOM fraction isolated by ultrafiltration from the soil solution of several representative acidic soils. In average, more than 60 % of Pi was found in the soil solution humic fraction forming stable humic-metal (Fe, Al) complexes.

  14. The influence of metal speciation on the bioavailability and sub-cellular distribution of cadmium to the terrestrial isopod, Porcellio dilatatus.

    PubMed

    Calhôa, Carla Filipa; Monteiro, Marta S; Soares, Amadeu M V M; Mann, Reinier M

    2011-04-01

    Cadmium is a non-essential toxic metal that is able to bioaccumulate in both flora fauna and has the potential to biomagnify in some food chains. However, the form in which cadmium is presented to consumers can alter the bioavailability and possibly the internal distribution of assimilated Cd. Previous studies in our laboratory highlighted differences in Cd assimilation among isopods when they were provided with a plant-based food with either Cd biologically incorporated into plant tissue or superficially amended with ionic Cd(2+). Cd is known for its high affinity for sulphur ligands in cysteine residues which form the basis for metal-binding proteins such as metallothionein. This study compares Cd assimilation efficiency (AE) in Porcellio dilatatus fed with food amended with either cadmium cysteinate or cadmium nitrate in an examination of the influence of Cd speciation on metal bioavailability followed by an examination of the sub-cellular distribution using a centrifugal fractionation protocol. As hypothesized the AE of Cd among isopods fed with Cd(NO(3))(2) (64%, SE=5%) was higher than AE for isopods fed with Cd(Cys)(2) (20%, SE=3%). The sub-cellular distribution also depended on the Cd species provided. Those isopods fed Cd(Cys)(2) allocated significantly more Cd to the cell debris and organelles fractions at the expense of allocation to metal-rich granules (MRG). The significance of the difference in sub-cellular distribution with regard to toxicity is discussed. This paper demonstrates that the assimilation and internal detoxification of Cd is dependent on the chemical form of Cd presented to the isopod.

  15. Matching metal pollution with bioavailability, bioaccumulation and biomarkers response in fish (Centropomus parallelus) resident in neotropical estuaries.

    PubMed

    Souza, Iara C; Duarte, Ian D; Pimentel, Natieli Q; Rocha, Lívia D; Morozesk, Mariana; Bonomo, Marina M; Azevedo, Vinicius C; Pereira, Camilo D S; Monferrán, Magdalena V; Milanez, Camilla R D; Matsumoto, Silvia T; Wunderlin, Daniel A; Fernandes, Marisa N

    2013-09-01

    Two neotropical estuaries affected by different anthropogenic factors were studied. We report levels of metals and metalloids in water and sediment as well as their influence on genetic, biochemical and morphological biomarkers in the native fish Centropomus parallelus. Biomarkers reflected the fish health status. Multivariate statistics indicated both spatial and temporal changes in both water and sediment, which are linked to the elemental composition and health status of inhabitant fish, showing the biggest influence of surface water, followed by sediments and interstitial water. Bioaccumulation in fish muscle was useful to identify elements that were below detection limits in water, pointing out the risk of consuming fish exceeding allowance limits for some elements (As and Hg in this case). Multivariate statistics, including physical, chemical and biological issues, presents a suitable tool, integrating data from different origin allocated in the same estuary, which could be useful for future studies on estuarine systems.

  16. Bioavailability, Intracellular Mobilization of Nickel, and HIF-1α Activation in Human Lung Epithelial Cells Exposed to Metallic Nickel and Nickel Oxide Nanoparticles

    PubMed Central

    Liu, Xinyuan; Smith, Ashley; McNeil, Kevin; Weston, Paula; Zhitkovich, Anatoly; Hurt, Robert; Kane, Agnes B.

    2011-01-01

    Micron-sized particles of poorly soluble nickel compounds, but not metallic nickel, are established human and rodent carcinogens. In contrast, little is known about the toxic effects of a growing number of Ni-containing materials in the nano-sized range. Here, we performed physicochemical characterization of NiO and metallic Ni nanoparticles and examined their metal ion bioavailability and toxicological properties in human lung epithelial cells. Cellular uptake of metallic Ni and NiO nanoparticles, but not metallic Ni microparticles, was associated with the release of Ni(II) ions after 24–48 h as determined by Newport Green fluorescence. Similar to soluble NiCl2, NiO nanoparticles induced stabilization and nuclear translocation of hypoxia-inducible factor 1α (HIF-1α) transcription factor followed by upregulation of its target NRDG1 (Cap43). In contrast to no response to metallic Ni microparticles, nickel nanoparticles caused a rapid and prolonged activation of the HIF-1α pathway that was stronger than that induced by soluble Ni (II). Soluble NiCl2 and NiO nanoparticles were equally toxic to H460 human lung epithelial cells and primary human bronchial epithelial cells; metallic Ni nanoparticles showed lower toxicity and Ni microparticles were nontoxic. Cytotoxicity induced by all forms of Ni occurred concomitant with activation of an apoptotic response, as determined by dose- and time-dependent cleavage of caspases and poly (ADP-ribose) polymerase. Our results show that metallic Ni nanoparticles, in contrast to micron-sized Ni particles, activate a toxicity pathway characteristic of carcinogenic Ni compounds. Moderate cytotoxicity and sustained activation of the HIF-1α pathway by metallic Ni nanoparticles could promote cell transformation and tumor progression. PMID:21828359

  17. Distribution and ecotoxicology of bioavailable metals and As in surface sediments of Paraguaçu estuary, Todos os Santos Bay, Brazil.

    PubMed

    Pereira, Taís de S; Moreira, Ícaro T A; de Oliveira, Olívia M C; Rios, Mariana C; Filho, Wilton A C S; de Almeida, Marcos; de Carvalho, Gilson Correia

    2015-10-15

    Surface sediments collected in the intertidal zone of Paraguaçu estuary in July, 2013, were analyzed for organic matter, nitrogen, phosphorus, grain size fractions and partial concentrations of 16 metals. The USEPA 3051A method and ICP-OES and CV-AAS techniques were chosen to metal analysis. Pollution indices (EF, Igeo and PIN) and a comparison with sediment quality guidelines (UET, ERL, ERM, TEL and PEL of NOAA) were conducted in order to evaluate the potential metal impacts over the area. Principal Component Analysis (PCA) and Pearson correlation results showed the importance of organic matter content and the fine-grained fraction of sediments on the control of the bioavailable metals distribution. The Paraguaçu estuary already has anthropogenic enrichment relative to the background level, especially for Mn, whose values exceeded almost 30 times the background at one site (Mn: 1197.30 mg kg(-1)). However, metal levels are still below the reference values with the exception of Hg at one site (Hg: 0.25 mg kg(-1), exceeded TEL and ERL).

  18. Soluble metal pool as affected by soil addition with organic inputs.

    PubMed

    Hernandez-Soriano, Maria C; Peña, Aránzazu; Mingorance, Maria Dolores

    2013-04-01

    The potential impact of diverse inputs of organic matter (hay, maize straw, and peat) on the mobility and bioavailability of Cd, Cu, Pb, and Zn was examined at laboratory scale for three soils with contrasting properties and for two moisture regimes: field capacity and saturated conditions. Soil solution was characterized for total soluble metals, dissolved soil organic carbon, and ultraviolet absorbance at 254 nm. Speciation analyses were performed with WHAM VI. For field capacity conditions, metal mobility increased (Pb>Cu>Zn>Cd) for all soils and treatments compared with controls and was significantly correlated (p<0.05) with dissolved organic matter (r=0.540). Solubilization of organic matter was mostly driven by Al mobilization (r=0.580, p<0.05) and variations in solution pH. The bioavailable pool of metals, estimated as free ion activities, decreased with the increasing occurrence of metal-organic matter complexes, which was accompanied by an increase in solution of highly aromatic organic matter. Soil saturation generally decreased metal mobility and the ratio of metal-organo matter complexes in solution. Consistently, such effects were accompanied by a decrease in the solubilization of organic matter and lower mobilization of Al, Fe, and Mn.

  19. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil.

    PubMed

    Xu, Ping; Sun, Cai-Xia; Ye, Xue-Zhu; Xiao, Wen-Dan; Zhang, Qi; Wang, Qiang

    2016-10-01

    Biochar derived from various materials has been investigated with regard to its ability to decrease the bioavailability of heavy metals in contaminated soils, and thus reduce their potential to enter the food chain. However, little attention has been given to the adsorption capacity of untreated crop straws, which are commonly used as a biochar feedstock, especially in soils. Hence, this study was conducted to investigate the effect of crop straws on heavy metal immobilization and subsequent heavy metal uptake by maize and ryegrass in a soil artificially polluted by Cd and Pb. Bamboo biochar, rice straw, and wheat straw were mixed into soil four weeks before the experiment, enabling them to reach equilibrium at 2% (w/w), 1% (w/w), and 1% (w/w), respectively. The results showed that soil pH for both species was significantly increased by all treatments, except when wheat straw was used for ryegrass cultivation. Soil organic carbon was only improved in the rice straw treatment and the soil alkali-hydrolyzable N content was significantly decreased with all of the amendments, which may have contributed to the lack of an effect on plant biomass. Soil available Cd was significantly lower in the rice straw treatment than in the control soil, while Pb levels clearly decreased in wheat straw treatment. The Cd concentration in shoots of maize was reduced by 50.9%, 69.5%, and 66.9% with biochar, rice straw, and wheat straw, respectively. In addition, shoot Cd accumulation was decreased by 47.3%, 67.1%, and 66.4%, respectively. Shoot Pb concentration and accumulation were only reduced with the rice straw treatment for both species. However, metal uptake in plant roots was more complex, with increased metal concentrations also detected. Overall, the direct application of crop straw could be considered a feasible way to immobilize selected metals in soil, once the long-term effects are confirmed. PMID:27285283

  20. Selected trace metals and organic compounds and bioavailability of selected organic compounds in soils, Hackberry Flat, Tillman County, Oklahoma, 1994-95

    USGS Publications Warehouse

    Becker, M.F.

    1997-01-01

    In 1995 the Oklahoma Department of Wildlife Conservation acquired a drained wetland in southwest Oklahoma known as Hackberry Flat. Following restoration by Wildlife Conservation the wetland will be used by migratory birds and waterfowl. If naturally occurring trace metals and residual organic compounds from agriculture and industry were present, they may have posed a potential biohazard and were a concern for Wildlife Conservation. The U. S. Geological Survey, in cooperation with Wildlife Conservation and the Oklahoma Geological Survey, examined the soils of Hackberry Flat to determine trace metal concentrations, presence of selected organic compounds, and the bioavailability of selected organic compounds in the soils. The purpose of this report is to present the data that establish the baseline concentrations of selected trace metals and organic compounds in the soils of Hackberry Flat prior to wetland restoration. Sampling and analysis were performed using two approaches. One was to collect soil samples and analyze the composition with standard laboratory practices. The second exposed composite soils samples to organic-free water and a semipermeable membrane device that mimics an organism and then analyzed the device. Ten soil samples were collected in 1994 to be analyzed for trace metals, organochlorine pesticides, and polychlorinated biphenyls. Soil samples tested for bioavailability of selected organic compounds were collected in 1995. Most of the 182 soil samples collected were from the center of every 40-acre quarter-quarter section owned by the Wildlife Conservation. The samples were grouped by geographical area with a maximum of 16 sample sites per group. Concentrations of most selected trace metals measured from soils in Hackberry Flat are within the range of mean concentrations measured in cultivated soils within the United States. Organochlorine pesticides, polychlorinated biphenyls, and polyaromatic hydrocarbons were not found at concentrations above

  1. Trace metal partitioning over a tidal cycle in an estuary affected by acid mine drainage (Tinto estuary, SW Spain).

    PubMed

    Hierro, A; Olías, M; Cánovas, C R; Martín, J E; Bolivar, J P

    2014-11-01

    The Tinto River estuary is highly polluted with the acid lixiviates from old sulphide mines. In this work the behaviour of dissolved and particulate trace metals under strong chemical gradients during a tidal cycle is studied. The pH values range from 4.4 with low tide to 6.9 with high tide. Precipitation of Fe and Al is intense during rising tides and As and Pb are almost exclusively found in the particulate matter (PM). Sorption processes are very important in controlling the mobility (and hence bioavailability) of some metals and particularly affect Cu below pH 6. Above pH~6 Cu is desorbed, probably by the formation of Cu(I)-chloride complexes. Although less pronounced than Cu, also Zn desorption above pH 6.5 seems to occur. Mn and Co are affected by sorption processes at pH higher than ca. 6. Cd behaves conservatively and Ni is slightly affected by sorption processes.

  2. The exposition of a calcareous Mediterranean soil to toxic concentrations of Cr, Cd and Pb produces changes in the microbiota mainly related to differential metal bioavailability.

    PubMed

    Caliz, Joan; Montserrat, Genoveva; Martí, Esther; Sierra, Jordi; Cruañas, Robert; Garau, M Antonia; Triadó-Margarit, Xavier; Vila, Xavier

    2012-10-01

    The involvement of the bacterial community of an agricultural Mediterranean calcareous soil in relation to several heavy metals has been studied in microcosms under controlled laboratory conditions. Soil samples were artificially polluted with Cr(VI), Cd(II) and Pb(II) at concentrations ranging from 0.1 to 5000 mg kg(-1) and incubated along 28 d. The lowest concentrations with significant effects in soil respirometry were 10 mg kg(-1) Cr and 1000 mg kg(-1) Cd and Pb. However, only treatments showing more than 40% inhibition of respirometric activity led to significant changes in bacterial composition, as indicated by PCR-DGGE analyses. Presumable Cr- and Cd-resistant bacteria were detected in polluted microcosms, but development of the microbiota was severely impaired at the highest amendments of both metals. Results also showed that bioavailability is an important factor determining the impact of the heavy metals assayed, and even an inverted potential toxicity ranking could be achieved if their soluble fraction is considered instead of the total concentration. Moreover, multiresistant bacteria were isolated from Cr-polluted soil microcosms, some of them showing the capacity to reduce Cr(VI) concentrations between 26% and 84% of the initial value. Potentially useful strains for bioremediation were related to Arthrobacter crystallopoietes, Stenotrophomonas maltophilia and several species of Bacillus.

  3. Bioavailability of zinc oxide added to corn tortilla is similar to that of zinc sulfate and is not affected by simultaneous addition of iron

    PubMed Central

    Rosado, Jorge L.; Díaz, Margarita; Muñoz, Elsa; Westcott, Jamie L.; González, Karla E.; Krebs, Nancy F.; Caamaño, María C.; Hambidge, Michael

    2013-01-01

    Background Corn tortilla is the staple food of Mexico and its fortification with zinc, iron, and other micronutrients is intended to reduce micronutrient deficiencies. However, no studies have been performed to determine the relative amount of zinc absorbed from the fortified product and whether zinc absorption is affected by the simultaneous addition of iron. Objective To compare zinc absorption from corn tortilla fortified with zinc oxide versus zinc sulfate and to determine the effect of simultaneous addition of two doses of iron on zinc bioavailability. Methods A randomized, double-blind, crossover design was carried out in two phases. In the first phase, 10 adult women received corn tortillas with either 20 mg/kg of zinc oxide added, 20 mg/kg of zinc sulfate added, or no zinc added. In the second phase, 10 adult women received corn tortilla with 20 mg/kg of zinc oxide added and either with no iron added or with iron added at one of two different levels. Zinc absorption was measured by the stable isotope method. Results The mean (± SEM) fractional zinc absorption from unfortified tortilla, tortilla fortified with zinc oxide, and tortilla fortified with zinc sulfate did not differ among treatments: 0.35 ± 0.07, 0.36 ± 0.05, and 0.37 ± 0.07, respectively. The three treatment groups with 0, 30, and 60 mg/kg of added iron had similar fractional zinc absorption (0.32 ± 0.04, 0.33 ± 0.02, and 0.32 ± 0.05, respectively) and similar amounts of zinc absorbed (4.8 ± 0.7, 4.5 ± 0.3, and 4.8 ± 0.7 mg/day, respectively). Conclusions Since zinc oxide is more stable and less expensive and was absorbed equally as well as zinc sulfate, we suggest its use for corn tortilla fortification. Simultaneous addition of zinc and iron to corn tortilla does not modify zinc bioavailability at iron doses of 30 and 60 mg/kg of corn flour. PMID:23424892

  4. Metals in Particulate Pollutants Affect Peak Expiratory Flow of Schoolchildren

    PubMed Central

    Hong, Yun-Chul; Hwang, Seung-Sik; Kim, Jin Hee; Lee, Kyoung-Ho; Lee, Hyun-Jung; Lee, Kwan-Hee; Yu, Seung-Do; Kim, Dae-Seon

    2007-01-01

    Background The contribution of the metal components of particulate pollutants to acute respiratory effects has not been adequately evaluated. Moreover, little is known about the effects of genetic polymorphisms of xenobiotic metabolism on pulmonary function. Objectives This study was conducted to assess lung function decrement associated with metal components in particulate pollutants and genetic polymorphisms of glutathione S-transferase M1 and T1. Methods We studied 43 schoolchildren who were in the 3rd to 6th grades. Each student measured peak expiratory flow rate three times a day for 42 days. Particulate air concentrations were monitored every day, and the concentrations of iron, manganese, lead, zinc, and aluminum in the particles were measured. Glutathione S-transferase M1 and T1 genetic polymorphisms were determined using DNA extracted from participant buccal washings. We used a mixed linear regression model to estimate the association between peak expiratory flow rate and particulate air pollutants. Results We found significant reduction in the peak expiratory flow rate after the children’s exposure to particulate pollutants. The effect was shown most significantly 1 day after exposure to the ambient particles. Manganese and lead in the particles also reduced the peak expiratory flow rate. Genetic polymorphisms of glutathione S-transferase M1 and T1 did not significantly affect peak expiratory flow rate. Conclusions This study demonstrated that particulate pollutants and metals such as manganese and lead in the particles are associated with a decrement of peak expiratory flow rate. These effects were robust even with consideration of genetic polymorphisms of glutathione S-transferase. PMID:17431494

  5. Role of Brassica juncea (L.) Czern. (var. Vaibhav) in the phytoextraction of Ni from soil amended with fly ash: selection of extractant for metal bioavailability.

    PubMed

    Gupta, Amit K; Sinha, Sarita

    2006-08-21

    A pot experiment was carried out to study the potential of the plant of Brassica juncea for the phytoextraction of metal from fly ash amended soil and to study correlation between different pool of metals (total, DTPA, CaCl(2) and NH(4)NO(3)) and metal accumulated in the plant in order to assess better extractant for plant available metals. The results of total metal analysis in the soil revealed the presence of Cr, which was found below detection limit (BDL) in the plants. The fly ash (FA) amendments and soil samples were extracted with different extractants and the level of metal vary from one extractant to another. The regression analysis between total and extractable metals showed better regression for all the tested metals except Mn (R(2)=0.001) in DTPA extraction. Correlation coefficient between metal accumulation by the plant tissues and different pool of metals showed better correlation with DTPA in case of Fe, Zn and Ni, whereas, Cu was significantly correlated with NH(4)NO(3) and other metals (Pb, Mn) with CaCl(2). The soil analysis results revealed that the mobility and plant availability of metals (Fe, Mn, Zn, Ni) within the profiles of amended soils was influenced by the change in pH, however, Pb and Cu was not affected. The metal accumulation in total plant tissues was found in the order of Fe>Ni>Zn>Mn>Cu>Pb and its translocation was found more in upper part. The plants grown on soil amended with 25%FA have shown significant increase in plant biomass, shoot and plant height, whereas, no significant effect was observed in root length. The cluster analysis showed 10%FA behave differently on the basis of physico-chemical properties and metal behavior. Thus, it may be concluded that B. juncea can be used for phytoextraction of metals, especially Ni in fly ash amendment soil. PMID:16434138

  6. Soluble organic carbon and pH of organic amendments affect metal mobility and chemical speciation in mine soils.

    PubMed

    Pérez-Esteban, Javier; Escolástico, Consuelo; Masaguer, Alberto; Vargas, Carmen; Moliner, Ana

    2014-05-01

    We evaluated the effects of pH and soluble organic carbon affected by organic amendments on metal mobility to find out the optimal conditions for their application in the stabilization of metals in mine soils. Soil samples (pH 5.5-6.2) were mixed with 0, 30 and 60 th a(-1) of sheep-horse manure (pH 9.4) and pine bark compost (pH 5.7). A single-step extraction procedure was performed using 0.005 M CaCl2 adjusted to pH 4.0-7.0 and metal speciation in soil solution was simulated using NICA-Donnan model. Sheep-horse manure reduced exchangeable metal concentrations (up to 71% Cu, 75% Zn) due to its high pH and degree of maturity, whereas pine bark increased them (32% Cu, 33% Zn). However, at increasing dose and hence pH, sheep-horse manure increased soluble Cu because of higher soluble organic carbon, whereas soluble Cu and organic carbon increased at increasing dose and correspondingly decreasing pH in pine bark and non-amended treatments. Near the native pH of these soils (at pH 5.8-6.3), with small doses of amendments, there was minimum soluble Cu and organic carbon. Pine bark also increased Zn solubility, whereas sheep-horse manure reduced it as soluble Zn always decreased with increasing pH. Sheep-horse manure also reduced the proportion of free metals in soil solution (from 41% to 4% Cu, from 97% to 94% Zn), which are considered to be more bioavailable than organic species. Sheep-horse manure amendment could be efficiently used for the stabilization of metals with low risk of leaching to groundwater at low doses and at relatively low pH, such as the native pH of mine soils.

  7. Impact of metals on the biodegradation of organic pollutants.

    PubMed Central

    Sandrin, Todd R; Maier, Raina M

    2003-01-01

    Forty percent of hazardous waste sites in the United States are co-contaminated with organic and metal pollutants. Data from both aerobic and anaerobic systems demonstrate that biodegradation of the organic component can be reduced by metal toxicity. Metal bioavailability, determined primarily by medium composition/soil type and pH, governs the extent to which metals affect biodegradation. Failure to consider bioavailability rather than total metal likely accounts for much of the enormous variability among reports of inhibitory concentrations of metals. Metals appear to affect organic biodegradation through impacting both the physiology and ecology of organic degrading microorganisms. Recent approaches to increasing organic biodegradation in the presence of metals involve reduction of metal bioavailability and include the use of metal-resistant bacteria, treatment additives, and clay minerals. The addition of divalent cations and adjustment of pH are additional strategies currently under investigation. PMID:12826480

  8. Acid Volatile Sulfides (avs) and the Bioavailability of Trace Metals in the Channel of the SÃO Francisco River, Sepetiba Bay - de Janeiro-Brazil

    NASA Astrophysics Data System (ADS)

    Monte, Christiane; Rodrigues, Ana Paula; Marinho, Matheus; Quaresma, Tássia; Machado, Wilson

    2014-05-01

    Sepetiba Bay has 430 Km2 of internal and 2,500 Km2 area of the drainage basin (Lacerda et al., 2007), located 60 km west of the city of Rio de Janeiro. Sepetiba Bay has 430 Km2 of internal and 2,500 Km2 area of the drainage basin (Lacerda et al., 2007), located 60 km west of the city of Rio de Janeiro.The San Francisco channel comes from the Guandu River and empties into Sepetiba Bay and is the main contributor of freshwater to the estuarine system. The Guandu River system/channel of San Francisco receives contribution of domestic and industrial effluents, which go largely to Sepetiba Bay. This work aimed to evaluate the .This work aimed to evaluate the ratio SEM/AVS as a way of predicting bioavailability trace metals from industrial sewage, mainly, in the estuarine system of Sepetiba. This model is based on the property of some Divalent metal cations (Cd, Cu, Ni, Pb and Zn), by presenting a low solubility constant, are removed from the soluble fraction by precipitation, forming secondary metal sulfides. Were held four transects, made up of three points each, the coast line to the center of the Bay. The surface sediment was collected with a van Veen sampler type ,packed in glass jars and kept frozen until analysis.The determination of SEM/AVS followed the methodology described by Allen et al. (1991). The variation between sulfide 159.88 ± 0.05 µmol/g on 12 points. The metals that entered the sum of simultaneous extraction were: Cd, Cu, Ni, Pb and Zn ranging from: 6.47 ± 0.11 µmol/g on sum.The means (± standard deviation) ratio SEM/AVS per transect were: 1.04 ± 1.20 (transect 1); 0.48 ± 0.53 (transect 2); 1.26 ± 1.32 (transect 3) and 0.18 ± 0.14 (transect 4). Only transects 1 and 3 had higher results than 1 , meaning that there are more divalent metal sulfides in the environment. This means that only the sulfides would not be capable of complex and may reflect the potential bioavailability of these in the aquatic environment. There is no statistical

  9. Mimicked in-situ stabilization of metals in a cropped soil: Bioavailability and chemical form of zinc

    SciTech Connect

    Chlopecka, A.; Adriano, D.C.

    1996-11-01

    Agricultural lime, natural zeolite (clinoptilolite), hydroxyapatite, and an iron oxide waste byproduct (Fe-rich, a trademark name of E.I. du Pont de Nemours) were added to an artificially contaminated Applying silt loam soil to stabilize and limit the uptake of Zn by crops. A greenhouse pot study involves spiking the soil with flue dust FD at 0, 150, 300, 600, 1200, and 2400 mg of Zn kg{sup -1}. As much as 40% of the total Zn occurred in an exchangeable form, the form considered most bioavailable to plants, when the pH of the FD-spiked soil was below 6.0. The ameliorants (lime, zeolite, apatite, and Fe-rich) decreased the concentration of the exchangeable form of Zn at each level of FD in soil; however, the largest decrease occurred with the lowest dose. Maize (Zea mays), barley (Hordeum vulgare), and radish (Raphanus sativus) were growth to determine the effects of Zn on the plant growth and its uptake. The addition of ameliorants to soil enhanced the growth and yield of maize and barley, but only Fe-rich enhanced the growth of radish at all FD rates. Lime, zeolite, and apatite significantly reduced the Zn concentration in tissues of the 3-week-old maize, in mature maize tissues (roots, young leaves, old leaves, stems, grain), and in barley. The largest reduction (over 80%) in Zn uptake by all crops was effected by Fe-rich, which is consistent with the greatest reduction in soil-exchangeable Zn by this ameliorant. 44 refs., 4 figs., 7 tabs.

  10. Assessing the bioavailability and toxicity of isotopically modified ZnO nanoparticles using enriched isotope tracers and biodynamic modeling

    NASA Astrophysics Data System (ADS)

    Croteau, M.; Dybowska, A.; Luoma, S. N.; Valsami-Jones, E.

    2009-12-01

    Industrially produced nanoparticles (NPs) are dispersed in the environment with little knowledge of their environmental impacts. The unique physicochemical properties of metal NPs influence their interactions in the environment and modulate, in part, their bioavailability and toxicity. The limited research to date has focused on NPs dispersed in water at high concentrations, microscopic observation of their uptake, and acute toxicity responses. But the links between NP characteristics, bioaccumulation and toxicity are still unclear. Quantification of bioavailability from both food and water requires understanding uptake and loss rates, but few if any methodology exists for quantifying metallo-NP bioavailability. We introduce a novel approach to quantify engineered metal NPs bioavailability from food and water and develop links to toxicity. The approach combines the synthesis of isotopically modified metal NPs of defined size, composition and unique stable isotope ratios, and the use of organisms as integrators of the biogeochemical processes affecting metal bioavailability. Specifically, we used enriched Zn67 to synthesize isotopically modified ZnO nanoparticles, allowing distinguishing newly accumulated Zn from background Zn levels. We ask whether the NPs themselves are bioavailable or whether they act as a carrier for metals to enter cells. We conducted a series of experiments to determine the physiological parameters controlling the uptake and loss of 67Zn-NP in the freshwater snail Lymnaea stagnalis. We compared metal assimilation efficiency, uptake rates and loss rates between metal nanoparticles and those found for the pure metal. Our results indicate that 67ZnO-NPs are taken up by L. stagnalis through food. High dietborne concentrations of 67ZnO-NPs reduced feeding in the snail, suggesting that the particles elicited a biological response. Solubilisation of 67ZnO-NPs was negligible; suggesting that dietborne uptake of Zn is the most important uptake pathway

  11. Bioavailability of heavy metals in fresh water Tilapia nilotica (Oreachromis niloticus Linnaeus, 1758): potential risk to fishermen and consumers.

    PubMed

    El-Sadaawy, Manal M; El-Said, Ghada F; Sallam, Neama A

    2013-01-01

    The study was undertaken to assess the accumulation of some heavy metals (Cr, Co, Cu, Ni, Zn, Pb and Cd) in different tissues (muscle, gills, heart, liver, brain, bone and skin) of Tilapia nilotica. It is one of the most edible fish species in Egypt and was collected from a commercial fish farm in order to evaluate their potential risk to fishermen and consumers. This fish farm is fed with discharged water containing agricultural, industrial, sewage and domestic wastes. The length-weight relation and condition factor calculation of Tilapia nilotica samples showed a significant linear regression (r(2) = 0.920) and an average condition factor of 4.1 g/cm(3). This indicated that the health status for the studied fish samples was good. Metal pollution index (MPI) values for the determined heavy metals in the different tissues reflected that the muscle was the only tissue that had the lowest content. Provisional Tolerable Weekly Intake (PTWI) values for the investigated heavy metals were lower than those reported for the permissible limits. The data were evaluated by using ANOVA statistical analysis. For appraising the human health risk effects of heavy metals in fish muscle, estimated dietary intake (EDI) and hazard quotient (HQ) were determined. HQ levels indicated that Cr and Co were the only heavy metals among the determined ones that had values more than unity. Also, their relative contributions in fish consumptions were Cr> Co> Pb> Ni> Cu> Cd> Zn. The highest average HQ value of chromium determined in this study referred to the possible adverse effects of Cr on human health. Accordingly, the potential public health risks from dietary exposure to hazardous contaminants in fish species from fish farms must be continually subjected to research, regulation and debate.

  12. Heavy metals and toxic organic pollutants in MSW-composts: Research results on phytoavailability, bioavailability, fate, etc

    SciTech Connect

    Ryan, J.A.; Chaney, R.L.

    1994-01-01

    The paper is a review and interpretation of research which has been conducted to determine the fate, transport, and potential effects of heavy metals and toxic organic compounds in Municipal Solid Waste (MSW)-composts and sewage sludges. Evaluation of research findings identified a number of pathways by which these contaminants can be transferred from MSW-compost or compost-amended soils to humans, livestock, or wildlife. The pathways consider direct ingestion of compost or compost-amended soil by livestock and children, plant uptake by food or feed crops, and exposure to dust, vapor, and water to which metals and organics have migrated.

  13. Metal ions affecting the pulmonary and cardiovascular systems.

    PubMed

    Corradi, Massimo; Mutti, Antonio

    2011-01-01

    Some metals, such as copper and manganese, are essential to life and play irreplaceable roles in, e.g., the functioning of important enzyme systems. Other metals are xenobiotics, i.e., they have no useful role in human physiology and, even worse, as in the case of lead, may be toxic even at trace levels of exposure. Even those metals that are essential, however, have the potential to turn harmful at very high levels of exposure, a reflection of a very basic tenet of toxicology--"the dose makes the poison." Toxic metal exposure may lead to serious risks to human health. As a result of the extensive use of toxic metals and their compounds in industry and consumer products, these agents have been widely disseminated in the environment. Because metals are not biodegradable, they can persist in the environment and produce a variety of adverse effects. Exposure to metals can lead to damage in a variety of organ systems and, in some cases, metals also have the potential to be carcinogenic. Even though the importance of metals as environmental health hazards is now widely appreciated, the specific mechanisms by which metals produce their adverse effects have yet to be fully elucidated. The unifying factor in determining toxicity and carcinogenicity for most metals is the generation of reactive oxygen and nitrogen species. Metal-mediated formation of free radicals causes various modifications to nucleic acids, enhanced lipid peroxidation, and altered calcium and sulfhydryl homeostasis. Whilst copper, chromium, and cobalt undergo redox-cycling reactions, for metals such as cadmium and nickel the primary route for their toxicity is depletion of glutathione and bonding to sulfhydryl groups of proteins. This chapter attempts to show that the toxic effects of different metallic compounds may be manifested in the pulmonary and cardiovascular systems. The knowledge of health effects due to metal exposure is necessary for practising physicians, and should be assessed by inquiring

  14. COMPETITIVE INFLUENCE OF PHOSPHORUS AND CALCIUM ON PB IN-VITRO BIOAVAILABILITY (S11-SCHECKEL101231-POSTER)

    EPA Science Inventory

    The bioavailability of a metal is heavily related to the speciation of the particular metal. Further, the complexity of examining metal bioavailability is compounded by the presence of competitive ions. Thus, equally contaminated soils with varying concentrations of competitive e...

  15. How absorbed hydrogen affects the catalytic activity of transition metals.

    PubMed

    Aleksandrov, Hristiyan A; Kozlov, Sergey M; Schauermann, Swetlana; Vayssilov, Georgi N; Neyman, Konstantin M

    2014-12-01

    Heterogeneous catalysis is commonly governed by surface active sites. Yet, areas just below the surface can also influence catalytic activity, for instance, when fragmentation products of catalytic feeds penetrate into catalysts. In particular, H absorbed below the surface is required for certain hydrogenation reactions on metals. Herein, we show that a sufficient concentration of subsurface hydrogen, H(sub) , may either significantly increase or decrease the bond energy and the reactivity of the adsorbed hydrogen, H(ad) , depending on the metal. We predict a representative reaction, ethyl hydrogenation, to speed up on Pd and Pt, but to slow down on Ni and Rh in the presence of H(sub) , especially on metal nanoparticles. The identified effects of subsurface H on surface reactivity are indispensable for an atomistic understanding of hydrogenation processes on transition metals and interactions of hydrogen with metals in general.

  16. Invertebrate grazers affect metal/metalloid fixation during litter decomposition.

    PubMed

    Schaller, Jörg; Brackhage, Carsten

    2015-01-01

    Plant litter and organic sediments are main sinks for metals and metalloids in aquatic ecosystems. The effect of invertebrates as key species in aquatic litter decomposition on metal/metalloid fixation by organic matter is described only for shredders, but for grazers as another important animal group less is known. Consequently, a laboratory batch experiment was conducted to examine the effect of invertebrate grazers (Lymnaea stagnalis L.) on metal/metalloid fixation/remobilization during aquatic litter decomposition. It could be shown that invertebrate grazers facilitate significantly the formation of smaller sizes of particulate organic matter (POM), as shown previously for invertebrate shredders. The metal/metalloid binding capacity of these smaller particles of POM is higher compared to leaf litter residuals. But element enrichment is not as high as shown previously for the effect by invertebrate shredders. Invertebrate grazers enhance also the mobilization of selected elements to the water, in the range also proven for invertebrate shredders but different for the different elements. Nonetheless invertebrate grazers activity during aquatic litter decomposition leads to a metal/metalloid fixation into leaf litter as part of sediment organic matter. Hence, the effect of invertebrate grazers on metal/metalloid fixation/remobilization contrasts partly with former assessments revealing the possibility of an enhanced metal/metalloid fixation.

  17. Evaluation of medical stone amendment for the reduction of nitrogen loss and bioavailability of heavy metals during pig manure composting.

    PubMed

    Wang, Quan; Wang, Zhen; Awasthi, Mukesh Kumar; Jiang, Yahui; Li, Ronghua; Ren, Xiuna; Zhao, Junchao; Shen, Feng; Wang, Meijing; Zhang, Zengqiang

    2016-11-01

    The purpose of this research was to evaluate the effect of medical stone (MS) on nitrogen conservation and improving the compost quality during the pig manure (PM) composting. Five treatments were designed with different concentrations of MS0%, 2.5%, 5%, 7.5% and 10% (on dry weight of pig manure basis) mixed with initial feed stock and then composted for 60days. The results showed that MS amendment obviously (p<0.05) promoted the organic waste degradation and prolonged the thermophilic phase as well as enhanced the immobilization of heavy metals Cu and Zn. With increasing the amount of MS, the NH3 loss and N2O emission were significantly reduced by 27.9-48.8% and by 46.6-85.3%, respectively. Meanwhile, the MS amendment could reduce the NO2(-)-N formation and increase the NO3(-)-N content. Finally our results suggested that 10%MS addition could significantly reduce the nitrogen conservation as well as improve the quality of compost. PMID:27589824

  18. The utility of acid volatile sulfide and simultaneously extracted metals concentrations as an indicator of metal bioavailability and toxicity in estuarine sediments

    SciTech Connect

    Summers, K.; Windom, H.; Weisberg, S.

    1995-12-31

    As part of the Environmental Monitoring and Assessment Program, surficial sediment samples (upper 2 cm) were collected from over 1,000 estuarine sites along the Mid-Atlantic and Gulf of Mexico coastlines from 1990--1994. In addition, sediment samples from approximately 30 sites within the New York/New Jersey Harbor complex were collected in 1993. Acid volatile sulfide concentrations (AVS), simultaneously extracted metals (SEM), sediment toxicity bioassays, and benthic community compositions were determined for each of these sites. The present effort examined the hypotheses that: (1) the ratio of AVS to SEM is an indicator of metal availability and sediment toxicity and (2) that correction of other sources of mortality (organic contamination, narcosis, hypoxia, etc.) further strengthens this ratio relationship. Examination of highly metal contaminated sites in the New York/New Jersey harbor area, selected metal contaminated regions in the Mid-Atlantic and Gulf estuaries, as well as reference regions (uncontaminated zones) did not support these hypotheses. In fact, significant/or benthic community composition shifts that could not be attributed to other sources were observed in regions characterized by the alternate hypothesis. Normalized metal concentrations based on available aluminum appeared to be more closely related indicator of observed toxicity of benthic community attributes than AVS ratios.

  19. Lichen substances affect metal adsorption in Hypogymnia physodes.

    PubMed

    Hauck, Markus; Huneck, Siegfried

    2007-01-01

    Lichen substances are known to function as chelators of cations. We tested the hypothesis that lichen substances can control the uptake of toxic metals by adsorbing metal ions at cation exchange sites on cell walls. If true, this hypothesis would help to provide a mechanistic explanation for results of a recent study showing increased production of physodalic acid by thalli of the lichen Hypogymnia physodes transplanted to sites with heavy metal pollution. We treated cellulose filters known to mimic the cation exchange abilities of lichen thalli with four lichen substances produced by H. physodes (physodic acid, physodalic acid, protocetraric acid, and atranorin). Treated filters were exposed to solutions containing seven cations (Ca(2+), Cu(2+), Fe(2+), Fe(3+), Mg(2+), Mn(2+), and Na(+)), and changes to the solution concentrations were measured. Physodalic acid was most effective at influencing metal adsorption, as it increased the adsorption of Fe(3+), but reduced the adsorption of Cu(2+), Mn(2+), and Na(+), and to a lesser extent, that of Ca(2+) and Mg(2+). Reduced Na(+) adsorption matches with the known tolerance of this species to NaCl. The results may indicate a possible general role of lichen substances in metal homeostasis and pollution tolerance. PMID:17136464

  20. Bioavailability of Promethazine during Spaceflight

    NASA Technical Reports Server (NTRS)

    Boyd, Jason L.; Wang, Zuwei; Putcha, Lakshmi

    2009-01-01

    Promethazine (PMZ) is the choice anti-motion sickness medication for treating space motion sickness (SMS) during flight. The side effects associated with PMZ include dizziness, drowsiness, sedation, and impaired psychomotor performance which could impact crew performance and mission operations. Early anecdotal reports from crewmembers indicate that these central nervous system side effects of PMZ are absent or greatly attenuated in microgravity, potentially due to changes in pharmacokinetics (PK) and pharmacodynamics in microgravity. These changes could also affect the therapeutic effectiveness of drugs in general and PMZ, in particular. In this investigation, we examined bioavailability and associated pharmacokinetics of PMZ in astronauts during and after space flight. Methods. Nine astronauts received, per their preference, PMZ (25 or 50 mg as intramuscular injection, oral tablet, or rectal suppository) on flight day one for the treatment of SMS and subsequently collected saliva samples and completed sleepiness scores for 72 h post dose. Thirty days after the astronauts returned to Earth, they repeated the protocol. Bioavailability and PK parameters were calculated and compared between flight and ground. Results. Maximum concentration (Cmax) was lower and time to reach Cmax (tmax) was longer in flight than on the ground. Area under the curve (AUC), a measure of bioavailability, was lower and biological half-life (t1/2) was longer in flight than on the ground. Conclusion. Results indicate that bioavailability of PMZ is reduced during spaceflight. Number of samples, sampling method, and sampling schedule significantly affected PK parameter estimates.

  1. Influence of discharge and urbanization on the concentration, speciation, and bioavailability of trace metals in the Raritan River, New Jersey. Final report

    SciTech Connect

    McLaughlin, F.B.; Ashley, G.M.; Renwick, W.H.

    1988-01-01

    The Raritan River and its tributaries are a vital drinking water and recreational resource in central New Jersey. These waters also serve as disposal media for municipal and industrial wastes and urban stormwater runoff. Rapid development over the last several decades has intensified the pressures on the quality and use of Raritan waters. The concentration and speciation of ten trace metals (Ag, As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Zn) were investigated in the Raritan Basin. From September 1985 to April 1987, one hundred twenty depth-integrated samples were collected at four locations and analyzed by Direct-Current Plasma Atomic Emission Spectrometry for concentrations of dissolved, particulate-associated, total, and suspended sediment trace metals. The concentrations of trace metals readily available, potentially available, and not available to aquatic and terrestrial biota are also reported. Discharge is the most important factor influencing the concentration and speciation of trace metals in the Raritan River and its tributaries. Seasonal variations affect speciation patterns, but have a minor impact on concentration and availability to biota. The sub-basin draining a more-urbanized area in the Raritan Basin appeared to have elevated concentrations and increased biological availability of trace metals relative to less-urbanized basins.

  2. The Bioavailability of Soluble Cigarette Smoke Extract Is Reduced through Interactions with Cells and Affects the Cellular Response to CSE Exposure

    PubMed Central

    Bourgeois, Jeffrey S.; Jacob, Jeeva; Garewal, Aram; Ndahayo, Renata; Paxson, Julia

    2016-01-01

    Cellular exposure to cigarette smoke leads to an array of complex responses including apoptosis, cellular senescence, telomere dysfunction, cellular aging, and neoplastic transformation. To study the cellular response to cigarette smoke, a common in vitro model exposes cultured cells to a nominal concentration (i.e. initial concentration) of soluble cigarette smoke extract (CSE). However, we report that use of the nominal concentration of CSE as the only measure of cellular exposure is inadequate. Instead, we demonstrate that cellular response to CSE exposure is dependent not only on the nominal concentration of CSE, but also on specific experimental variables, including the total cell number, and the volume of CSE solution used. As found in other similar xenobiotic assays, our work suggests that the effective dose of CSE is more accurately related to the amount of bioavailable chemicals per cell. In particular, interactions of CSE components both with cells and other physical factors limit CSE bioavailability, as demonstrated by a quantifiably reduced cellular response to CSE that is first modified by such interactions. This has broad implications for the nature of cellular response to CSE exposure, and for the design of in vitro assays using CSE. PMID:27649082

  3. The Bioavailability of Soluble Cigarette Smoke Extract Is Reduced through Interactions with Cells and Affects the Cellular Response to CSE Exposure.

    PubMed

    Bourgeois, Jeffrey S; Jacob, Jeeva; Garewal, Aram; Ndahayo, Renata; Paxson, Julia

    2016-01-01

    Cellular exposure to cigarette smoke leads to an array of complex responses including apoptosis, cellular senescence, telomere dysfunction, cellular aging, and neoplastic transformation. To study the cellular response to cigarette smoke, a common in vitro model exposes cultured cells to a nominal concentration (i.e. initial concentration) of soluble cigarette smoke extract (CSE). However, we report that use of the nominal concentration of CSE as the only measure of cellular exposure is inadequate. Instead, we demonstrate that cellular response to CSE exposure is dependent not only on the nominal concentration of CSE, but also on specific experimental variables, including the total cell number, and the volume of CSE solution used. As found in other similar xenobiotic assays, our work suggests that the effective dose of CSE is more accurately related to the amount of bioavailable chemicals per cell. In particular, interactions of CSE components both with cells and other physical factors limit CSE bioavailability, as demonstrated by a quantifiably reduced cellular response to CSE that is first modified by such interactions. This has broad implications for the nature of cellular response to CSE exposure, and for the design of in vitro assays using CSE. PMID:27649082

  4. Chronic ingestion of cadmium and lead alters the bioavailability of essential and heavy metals, gene expression pathways and genotoxicity in mouse intestine.

    PubMed

    Breton, Jérôme; Le Clère, Kelly; Daniel, Catherine; Sauty, Mathieu; Nakab, Lauren; Chassat, Thierry; Dewulf, Joëlle; Penet, Sylvie; Carnoy, Christophe; Thomas, Patrick; Pot, Bruno; Nesslany, Fabrice; Foligné, Benoît

    2013-10-01

    Chronic ingestion of environmental heavy metals such as lead (Pb) and cadmium (Cd) causes various well-documented pathologies in specific target organs following their intestinal absorption and subsequent accumulation. However, little is known about the direct impact of the non-absorbed heavy metals on the small intestine and the colon homeostasis. The aim of our study was to compare the specific bioaccumulation and retention of Cd and Pb and their effect on the essential metal balance in primary organs, with those occurring specifically in the gastrointestinal tract of mice. Various doses of Cd (5, 20 and 100 mg l(-1)) and Pb (100 and 500 mg l(-1)) chloride salts were provided in drinking water for subchronic to chronic exposures (4, 8 and 12 weeks). In contrast to a clear dose- and time-dependent accumulation in target organs, results showed that intestines are poor accumulators for Cd and Pb. Notwithstanding, changes in gene expression of representative intestinal markers revealed that the transport-, oxidative- and inflammatory status of the gut epithelium of the duodenum, ileum and colon were specifically affected by both heavy metal species. Additionally, in vivo comet assay used to evaluate the impact of heavy metals on DNA damage showed clear genotoxic activities of Cd, on both the upper and distal parts of the gastrointestinal tract. Altogether, these results outline the resilience of the gut which balances the various effects of chronic Cd and Pb in the intestinal mucosa. Collectively, it provides useful information for the risk assessment of heavy metals in gut homeostasis and further disease's susceptibility.

  5. Increased calcium bioavailability in mice fed genetically engineered plants lacking calcium oxalate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioavailable calcium affects bone formation and calcification. Here we investigate how a single gene mutation altering calcium partitioning in the model forage crop Medicago truncatula affects calcium bioavailability. Previously, the cod5 M. truncatula mutant was identified which contains identical ...

  6. Bioavailability Challenges Associated with Development of Anti-Cancer Phenolics

    PubMed Central

    Gao, Song; Hu, Ming

    2010-01-01

    Phenolics including many polyphenols and flavonoids have the potentials to become chemoprevention and chemotherapy agents. However, poor bioavailability limits their biological effects in vivo. This paper reviews the factors that affect phenolics absorption and their bioavailabilities from the points of view of their physicochemical properties and disposition in the gastrointestinal tract. The up-to-date research data suggested that solubility and metabolism are the primary reasons that limit phenolic aglycones’ bioavailability although stability and poor permeation may also contribute to the poor bioavailabilities of the glycosides. Future investigations should further optimize phenolics’ bioavailabilities and realize their chemopreventive and chemotherapeutic effects in vivo. PMID:20370701

  7. Bioavailability of metals in stream food webs and hazards to brook trout (Salvelinus fontinalis) in the upper Animas River watershed, Colorado

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; May, T.W.; Church, S.E.; Kimball, B.A.

    2001-01-01

    The water quality, habitats, and biota of streams in the upper Animas River watershed of Colorado, USA, are affected by metal contamination associated with acid drainage. We determined metal concentrations in components of the food web of the Animas River and its tributaries - periphyton (aufwuchs), benthic invertebrates, and livers of brook trout (Salvelinus fontinalis) - and evaluated pathways of metal exposure and hazards of metal toxicity to stream biota. Concentrations of the toxic metals cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in periphyton, benthic invertebrates, and trout livers from one or more sites in the upper Animas River were significantly greater than those from reference sites. Periphyton from sites downstream from mixing zones of acid and neutral waters had elevated concentrations of aluminum (Al) and iron (Fe) reflecting deposition of colloidal Fe and Al oxides, and reduced algal biomass. Metal concentrations in benthic invertebrates reflected differences in feeding habits and body size among taxa, with greatest concentrations of Zn, Cu, and Cd in the small mayfly Rhithrogena, which feeds on periphyton, and greatest concentrations of Pb in the small stonefly Zapada, a detritivore. Concentrations of Zn and Pb decreased across each trophic linkage, whereas concentrations of Cu and Cd were similar across several trophic levels, suggesting that Cu and Cd were more efficiently transferred via dietary exposure. Concentrations of Cu in invertebrates and trout livers were more closely associated with impacts on trout populations and invertebrate communities than were concentrations of Zn, Cd, or Pb. Copper concentrations in livers of brook trout from the upper Animas River were substantially greater than background concentrations and approached levels associated with reduced brook trout populations in field studies and with toxic effects on other salmonids in laboratory studies. These results indicate that bioaccumulation and transfer of

  8. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species.

    PubMed

    Nawab, Javed; Khan, Sardar; Shah, Mohammad Tahir; Khan, Kifayatullah; Huang, Qing; Ali, Roshan

    2015-01-01

    Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p < 0.01) higher in mine affected soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg(-1), respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals.

  9. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species.

    PubMed

    Nawab, Javed; Khan, Sardar; Shah, Mohammad Tahir; Khan, Kifayatullah; Huang, Qing; Ali, Roshan

    2015-01-01

    Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p < 0.01) higher in mine affected soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg(-1), respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals. PMID:26079739

  10. Flavonoid Bioavailability and Attempts for Bioavailability Enhancement

    PubMed Central

    Thilakarathna, Surangi H.; Rupasinghe, H. P. Vasantha

    2013-01-01

    Flavonoids are a group of phytochemicals that have shown numerous health effects and have therefore been studied extensively. Of the six common food flavonoid classes, flavonols are distributed ubiquitously among different plant foods whereas appreciable amounts of isoflavones are found in leguminous plant-based foods. Flavonoids have shown promising health promoting effects in human cell culture, experimental animal and human clinical studies. They have shown antioxidant, hypocholesterolemic, anti-inflammatory effects as well as ability to modulate cell signaling and gene expression related disease development. Low bioavailability of flavonoids has been a concern as it can limit or even hinder their health effects. Therefore, attempts to improve their bioavailability in order to improve the efficacy of flavonoids are being studied. Further investigations on bioavailability are warranted as it is a determining factor for flavonoid biological activity. PMID:23989753

  11. Development of an all-metal thick film cost affective metallization system for solar cells

    NASA Technical Reports Server (NTRS)

    Ross, B.

    1981-01-01

    An economical thick film solar cell contact for high volume production of low cost silicon solar array modules was investigated. All metal screenable pastes using base metals were studied. Solar cells with junction depths varying by a factor of 3.3, with and without a deposited oxide coating were used. Cells were screened and fired by a two step firing process. Adhesion and metallurgical results are unsatisfactory. No electrical information is obtained due to inadequate contact adhesion.

  12. ASSESSING SOIL ARSENIC BIOAVAILABILITY IN THE LABORATORY MOUSE

    EPA Science Inventory

    Variation among soils in the bioavailability of arsenic can be a critical determinant of the risk posed by exposure to these soils. Although in vitro techniques can provide vital data on aspects of bioavailability of metals and metalloids from soils, these results must be valida...

  13. Temporal bioavailability of organochlorine pesticides and PCBs.

    PubMed

    Sethajintanin, D; Anderson, K A

    2006-06-15

    Because PCBs and organochlorine pesticides continue to be of global concern, studies that address information gaps, such as factors and influences of spatial and temporal effects on contaminant bioavailability, are valuable. The present study focused on the spatial and temporal distribution of bioavailable organochlorine pesticides and PCBs in surface waters of a contaminated harbor. Passive sampling devices were intensively deployed adjacent to various land uses on the Willamette River, OR, including Portland Harbor and McCormick and Baxter Superfund sites, during summer and fall, extreme conditions, 2001-2004. An increase of bioavailable sigmaDDTs (sum of p,p'-DDT, p,p'-DDD, and p,p'-DDE) concentrations was strongly affected bythe local historic production of DDTs and temporal changes in river conditions. The increase of bioavailable p,p'-DDD and high DDD/DDE ratios observed during summer indicates conditions favoring anaerobic reductive processes. In contrast to sigmaDDTs, the bioavailable concentrations and daily loads of dieldrin and PCBs increased during fall, especially during episodic rainstorms. On the basis of the PCB congener profiles, PCB inputs from urban runoff /sewer overflows were considered likely current sources of bioavailable PCB into the Harbor. The exceedence of the U.S. national and Oregon water quality criteria was a function of the temporal variability of each bioavailable contaminant. This illustrates the impacts associated with temporal changes of bioavailable organochlorine distributions in surface waters and the significance of considering realistic temporal, bioavailability, and site-specific conditions in risk assessment and water quality management.

  14. Do toxic heavy metals affect antioxidant defense mechanisms in humans?

    PubMed

    Wieloch, Monika; Kamiński, Piotr; Ossowska, Anna; Koim-Puchowska, Beata; Stuczyński, Tomasz; Kuligowska-Prusińska, Magdalena; Dymek, Grażyna; Mańkowska, Aneta; Odrowąż-Sypniewska, Grażyna

    2012-04-01

    The aim of this study was to prove whether anthropogenic pollution affects antioxidant defense mechanisms such as superoxide dismutase (SOD) and catalase (CAT) activity, ferritin (FRT) concentration and total antioxidant status (TAS) in human serum. The study area involves polluted and salted environment (Kujawy region; northern-middle Poland) and Tuchola Forestry (unpolluted control area). We investigated 79 blood samples of volunteers from polluted area and 82 from the control in 2008 and 2009. Lead, cadmium and iron concentrations were measured in whole blood by the ICP-MS method. SOD and CAT activities were measured in serum using SOD and CAT Assay Kits by the standardized colorimetric method. Serum TAS was measured spectrophotometrically by the modified Benzie and Strain (1996) method and FRT concentration-by the immunonefelometric method. Pb and Cd levels and SOD activity were higher in volunteers from polluted area as compared with those from the control (0.0236 mg l(-1) vs. 0.014 mg l(-1); 0.0008 mg l(-1) vs. 0.0005 mg l(-1); 0.137 Um l(-1) vs. 0.055 Um l(-1), respectively). Fe level, CAT activity and TAS were lower in serum of volunteers from polluted area (0.442 g l(-1) vs. 0.476 gl(-1); 3.336 nmol min(-1)ml(-1) vs. 6.017 nmol min(-1)ml(-1); 0.731 Trolox-equivalents vs. 0.936 Trolox-equivalents, respectively), whilst differences in FRT concentration were not significant (66.109 μg l(-1) vs. 37.667 μg l(-1), p=0.3972). Positive correlations between Pb (r=0.206), Cd (r=0.602) and SOD in the inhabitants of polluted area, and between Cd and SOD in the control (r=0.639) were shown. In volunteers from both studied environments TAS-FRT (polluted: r=0.625 vs. control: r=0.837) and Fe-FRT (polluted area: r=0.831 vs. control: r=0.407) correlations, and Pb-FRT (r=0.360) and Pb-TAS (r=0.283) in the control were stated. The higher lead and cadmium concentrations in blood cause an increase of SOD activity. It suggests that this is one of the defense mechanisms of an

  15. Sediment Metal Concentration Survey Along the Mine-Affected Molonglo River, NSW, Australia.

    PubMed

    Wadige, Chamani P M Marasinghe; Taylor, Anne M; Krikowa, Frank; Maher, William A

    2016-04-01

    Metal concentrations were measured in sediments of the mine-affected Molonglo River to determine current metal concentrations and distribution along the river. Compared with an uncontaminated site at 6.5 km upstream of the Captains Flat mine, sediments collected from the river at ≤12.5 km distance below the mine had a significantly higher percentage of finely divided silt and clay with higher concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn). The measured metal concentrations in the mine affected sites of the river were in the following order: Zn = 697-6818 > Pb = 23-1796 > Cu = 10-628 > Cd = 0.13-8.7 µg/g dry mass. The highest recorded metal concentrations were Cd at 48, Cu at 45, Pb at 240, and Zn at 81 times higher than the background concentrations of these metals in the river sediments. A clear sediment metal-contamination gradient from the mine site to 63 km downstream was established for Cd, Cu, Pb, and Zn in the river sediments. Compared with sediment metal concentrations before a major flood in 2010, only Zn concentrations increased. For all of the mine-affected sites studied, Cd and Zn concentrations exceeded the (ANZECC/ARMCANZ, Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council/Agriculture and Resource Management Council of Australia and New Zealand, 2000) interim sediment-quality guidelines low values for Cd (1.5 µg/g dry mass) and the high value for Zn (410 µg/g dry mass). Existing metal loads in the riverbed sediments may still be adversely affecting the river infauna. PMID:26795293

  16. CORRELATING METAL SPECIATION IN SOILS

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  17. Relative Bioavailability and Bioaccessability and Speciation of Arsenic in Contaminated Soils

    EPA Science Inventory

    Background: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessment...

  18. EFFECTS OF DIFFERENT FORMS OF ORGANIC CARBON ON THE PARTITIONING AND BIOAVAILABILITY OF NONPHENYL

    EPA Science Inventory

    Oxygenated nonpolar organic contaminants (NOCs) are underrepresented in studies of the partitioning and bioavailability of NOCs, including nonylphenol. In this investigation, we evaluated the toxicity, partitioning, and bioavailability of nonylphenol as affected by different form...

  19. Accumulation of cadmium by freshwater benthic organisms is affected by the presence of other metals

    SciTech Connect

    Stewart, A.R.; Malley, D.F. |

    1994-12-31

    The effect of a suite of metals (Cu, Zn, Pb and Ni) on Cd accumulation by a rooted macrophyte and a freshwater mussel was examined in a mesocosm experiment during the summer of 1992. Cd was added alone to treatment 1 and together with the metal suite (at three dosage levels) to treatments 2, 3 and 4. Each treatment was represented by two mesocosms. The limnocorrals were sampled at three times over the summer (t = 0, 40 and 80 days). The metal suite increased the residence time of Cd in the water column and caused a reduction in the adsorption of Cd onto sediment particles. Cd contents in plant roots were significantly higher in treatments with the metal suite and were found to increase with the dose of the metal suite. An overall reduction in the amount of metal-induced metallothionein (MT) in the mussel kidneys was found with the highest doses of the metal suite. These results suggest that the total metal complement affects the uptake of Cd in a dose-dependent fashion and should be considered when setting water or sediment quality guidelines.

  20. Assessments of chromium (and other metals) in vegetables and potential bio-accumulations in humans living in areas affected by tannery wastes.

    PubMed

    Chen, Hualin; Arocena, Joselito M; Li, Jianbing; Thring, Ronald W; Zhou, Jiangmin

    2014-10-01

    Chromium (Cr) commonly enters the food chain through uptake by vegetables. However, accurate prediction of plant uptake of Cr (and other metals) still remains a challenge. In this study, we evaluated 5 indices of availability for Cr (and other metals) to identify reliable predictors of metal transfer from soils to garlic, onion, bokchoy, radish and celery grown in soils impacted by tannery wastes. The potential bio-accumulation of Cr in humans was calculated from the Cr content of vegetable predicted by the best bio-availability index, amounts of vegetable consumed and recommended daily doses for Cr. Our results show that soil total Cr is the best predictor of Cr transfer from soils to onion (Cr in onion=8.51+0.005 Total Cr) while Cr extractable by Synthetic Precipitation Leaching Procedure at pH 5 correlates very well with Cr uptake by bokchoy (Cr bokchoy=5.86+7.32 SPLP-5 Cr) and garlic (Cr garlic=7.63+2.36 SPLP-5 Cr). The uptake of Cr by radish and celery could not be reliably estimated by any of the 5 indices of availability tested in this study. Potential bio-accumulation of Cr in humans (BA-Cr) increases from soils with low Cr (BA-Cr=11.5) to soil with high total Cr (BA-Cr=31.3). Due to numerous soil factors affecting the behavior of Cr in soils and the physiological differences among vegetables, we suggest that the prediction of the transfer of Cr (and other metals) from soils to plants should be specific to site, metal and vegetable. Potential bio-accumulation of Cr in humans can be derived from a transfer function of Cr from soils to plants and the human consumption of vegetables.

  1. Heavy metals in potable groundwater of mining-affected river catchments, northwestern Romania.

    PubMed

    Bird, Graham; Macklin, Mark G; Brewer, Paul A; Zaharia, Sorin; Balteanu, Dan; Driga, Basarab; Serban, Mihaela

    2009-12-01

    Groundwater, accessed using wells and municipal springs, represents the major source of potable water for the human population outside of major urban areas in northwestern Romania, a region with a long history of metal mining and metallurgy. The magnitude and spatial distribution of metal contamination in private-supply groundwater was investigated in four mining-affected river catchments in Maramureş and Satu Mare Counties through the collection of 144 groundwater samples. Bedrock geology, pH and Eh were found to be important controls on the solubility of metals in groundwater. Peak metal concentrations were found to occur in the Lapuş catchment, where metal levels exceed Dutch target and intervention values in up to 49% and 14% of samples, respectively. A 700 m wide corridor in the Lapuş catchment on either side of the main river channel was identified in which peak Cd (31 μg l(-1)), Cu (50 μg l(-1)), Pb (50 μg l(-1)) and Zn (3,000 μg l(-1)) concentrations were found to occur. Given the generally similar bedrock geologies, lower metal levels in other catchments are believed to reflect differences in the magnitude of metal loading to the local environment from both metal mining and other industrial and municipal sources. Sampling of groundwater in northwestern Romania has indicated areas of potential concern for human health, where heavy metal concentrations exceed accepted environmental quality guidelines. The presence of elevated metal levels in groundwater also has implications for the implementation of the EU Water Framework Directive (WFD) and achieving 'good' status for groundwater in this part of the Danube River Basin District (RBD).

  2. Temporal assessment of copper speciation, bioavailability and toxicity in UK freshwaters using chemical equilibrium and biotic ligand models: Implications for compliance with copper environmental quality standards.

    PubMed

    Lathouri, Maria; Korre, Anna

    2015-12-15

    Although significant progress has been made in understanding how environmental factors modify the speciation, bioavailability and toxicity of metals such as copper in aquatic environments, the current methods used to establish water quality standards do not necessarily consider the different geological and geochemical characteristics of a given site and the factors that affect copper fate, bioavailability potential and toxicity. In addition, the temporal variation in the concentration and bioavailable metal fraction is also important in freshwater systems. The work presented in this paper illustrates the temporal and seasonal variability of a range of water quality parameters, and Cu speciation, bioavailability and toxicity at four freshwaters sites in the UK. Rivers Coquet, Cree, Lower Clyde and Eden (Kent) were selected to cover a broad range of different geochemical environments and site characteristics. The monitoring data used covered a period of around six years at almost monthly intervals. Chemical equilibrium modelling was used to study temporal variations in Cu speciation and was combined with acute toxicity modelling to assess Cu bioavailability for two aquatic species, Daphnia magna and Daphnia pulex. The estimated copper bioavailability, toxicity levels and the corresponding ecosystem risks were analysed in relation to key water quality parameters (alkalinity, pH and DOC). Although copper concentrations did not vary much during the sampling period or between the seasons at the different sites; copper bioavailability varied markedly. In addition, through the chronic-Cu BLM-based on the voluntary risk assessment approach, the potential environmental risk in terms of the chronic toxicity was assessed. A much higher likelihood of toxicity effects was found during the cold period at all sites. It is suggested that besides the metal (copper) concentration in the surface water environment, the variability and seasonality of other important water quality

  3. Temporal assessment of copper speciation, bioavailability and toxicity in UK freshwaters using chemical equilibrium and biotic ligand models: Implications for compliance with copper environmental quality standards.

    PubMed

    Lathouri, Maria; Korre, Anna

    2015-12-15

    Although significant progress has been made in understanding how environmental factors modify the speciation, bioavailability and toxicity of metals such as copper in aquatic environments, the current methods used to establish water quality standards do not necessarily consider the different geological and geochemical characteristics of a given site and the factors that affect copper fate, bioavailability potential and toxicity. In addition, the temporal variation in the concentration and bioavailable metal fraction is also important in freshwater systems. The work presented in this paper illustrates the temporal and seasonal variability of a range of water quality parameters, and Cu speciation, bioavailability and toxicity at four freshwaters sites in the UK. Rivers Coquet, Cree, Lower Clyde and Eden (Kent) were selected to cover a broad range of different geochemical environments and site characteristics. The monitoring data used covered a period of around six years at almost monthly intervals. Chemical equilibrium modelling was used to study temporal variations in Cu speciation and was combined with acute toxicity modelling to assess Cu bioavailability for two aquatic species, Daphnia magna and Daphnia pulex. The estimated copper bioavailability, toxicity levels and the corresponding ecosystem risks were analysed in relation to key water quality parameters (alkalinity, pH and DOC). Although copper concentrations did not vary much during the sampling period or between the seasons at the different sites; copper bioavailability varied markedly. In addition, through the chronic-Cu BLM-based on the voluntary risk assessment approach, the potential environmental risk in terms of the chronic toxicity was assessed. A much higher likelihood of toxicity effects was found during the cold period at all sites. It is suggested that besides the metal (copper) concentration in the surface water environment, the variability and seasonality of other important water quality

  4. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy

    PubMed Central

    Rein, Maarit J.; Renouf, Mathieu; Cruz‐Hernandez, Cristina; Actis‐Goretta, Lucas; Thakkar, Sagar K.; da Silva Pinto, Marcia

    2013-01-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. PMID:22897361

  5. Influence of aging on copper bioavailability in soils.

    PubMed

    Lock, Koen; Janssen, Colin R

    2003-05-01

    Because of long-term chemical processes, metal bioavailability in field soils decreases with time. Metal toxicity may, therefore, be overestimated if toxicity data with freshly spiked soils are used to derive soil quality criteria, a current practice. In the present study, effects of the long-term processes, called aging, on copper partitioning and ecotoxicity are investigated. Twenty-five field soils contaminated by copper runoff from bronze statues and 25 uncontaminated control soils sampled at 5-m distance from these statues were collected in Flanders (Belgium). The soils were selected so that parameters affecting copper bioavailability (pH, cation-exchange capacity, organic matter content, etc.) varied considerably. To assess the effect of aging on copper toxicity, control soils were spiked at total copper concentrations comparable to those of historically contaminated soils. Pore-water copper concentrations and 0.01 M CaCl2-extracted copper concentrations were significantly higher in freshly spiked soils compared to contaminated field soils. However, this could be a pH effect, because pH decreased after spiking. Acute toxicity to Enchytraeus albidus (14 d) as well as chronic toxicity to Folsomia candida (28-d reproduction) and Trifolium pratense (14-d growth) indicated a dose-response relationship between copper toxicity and pore-water copper concentration or the CaCl2-extracted copper fraction.

  6. Trace metals in sediments of a Mediterranean estuary affected by human activities (Acheloos river estuary, Greece).

    PubMed

    Dassenakis, M; Degaita, A; Scoullos, M

    1995-05-19

    Trace metals were studied in the sediments of the ecologically, economically and scientifically important estuary of the Acheloos river, in western Greece. Human activities (dams, agriculture, traffic, etc.) influence the estuarine system of Acheloos and in combination with the hydrological, mineralogical and morphological characteristics of the estuary affect the chemical behaviour and the distribution patterns of trace metals in its sediments. The large scale disturbance of the system is imminent in the near future as it is planned to divert approximately 50% of the river water. A study of the distribution patterns of trace metals revealed that in the estuary there are zones with different metal levels. The concentrations of most metals (Al, Fe, Cu, Ni, Zn) are elevated in three of these zones (upstream, sill, seawards). A different behaviour was observed for Mn due to its association with carbonates that were observed in significant concentrations throughout the estuarine zone. A sequential extraction procedure, applied to the sediments, indicated low percentages of easily exchangeable metals, increased mobility of Cu and Zn and increased association of Ni, Cr and Fe with the aluminosilicate lattice. Although the river is not considered to be heavily polluted, some metals have shown an enrichment in the surface sediments as a result of general anthropogenic activities not derived from point sources.

  7. Human Folate Bioavailability

    PubMed Central

    Ohrvik, Veronica E.; Witthoft, Cornelia M.

    2011-01-01

    The vitamin folate is recognized as beneficial health-wise in the prevention of neural tube defects, anemia, cardiovascular diseases, poor cognitive performance, and some forms of cancer. However, suboptimal dietary folate intake has been reported in a number of countries. Several national health authorities have therefore introduced mandatory food fortification with synthetic folic acid, which is considered a convenient fortificant, being cost-efficient in production, more stable than natural food folate, and superior in terms of bioavailability and bioefficacy. Other countries have decided against fortification due to the ambiguous role of synthetic folic acid regarding promotion of subclinical cancers and other adverse health effects. This paper reviews recent studies on folate bioavailability after intervention with folate from food. Our conclusions were that limited folate bioavailability data are available for vegetables, fruits, cereal products, and fortified foods, and that it is difficult to evaluate the bioavailability of food folate or whether intervention with food folate improves folate status. We recommend revising the classical approach of using folic acid as a reference dose for estimating the plasma kinetics and relative bioavailability of food folate. PMID:22254106

  8. Trace metal accumulation in soil and their phytoavailability as affected by greenhouse types in north China.

    PubMed

    Yang, Lanqin; Huang, Biao; Mao, Mingcui; Yao, Lipeng; Hickethier, Martina; Hu, Wenyou

    2015-05-01

    Long-term heavy organic fertilizer application has linked greenhouse vegetable production (GVP) with trace metal contamination in north China. Given that trace metals release from fertilizers and their availability may be affected by discrepant environmental conditions, especially temperature under different greenhouses, this study investigated Cd, Cu, Pb, and Zn accumulation and contamination extent in soil as well as their phytoavailability under two major greenhouses in Tongshan, north China, namely solar greenhouse (SG) and round-arched plastic greenhouse (RAPG), to evaluate their presumed difference. The results showed significant Cd, Cu, Pb, and Zn accumulation in GVP soil by comparing with those in open-field soil, but their accumulation extent and rates were generally greater in SG than those in RAPG. This may be related to more release of trace metals to soil due to the acceleration of decomposition and humification process of organic fertilizers under higher soil temperature in SG relative to that in RAPG. Overall, soil in both greenhouses was generally less polluted or moderately polluted by the study metals. Similarly, decreased soil pH and elevated soil available metals in SG caused higher trace metals in leaf vegetables in SG than those in RAPG, although there was no obvious risk via vegetable consumption under both greenhouses. Lower soil pH may be predominantly ascribed to more intensive farming practices in SG while elevated soil available metals may be attributed to more release of dissolved organic matter-metal complexes from soil under higher temperature in SG. The data provided in this study may assist in developing reasonable and sustainable fertilization strategies to abate trace metal contamination in both greenhouses.

  9. A DGT technique for plutonium bioavailability measurements.

    PubMed

    Cusnir, Ruslan; Steinmann, Philipp; Bochud, François; Froidevaux, Pascal

    2014-09-16

    The toxicity of heavy metals in natural waters is strongly dependent on the local chemical environment. Assessing the bioavailability of radionuclides predicts the toxic effects to aquatic biota. The technique of diffusive gradients in thin films (DGT) is largely exploited for bioavailability measurements of trace metals in waters. However, it has not been applied for plutonium speciation measurements yet. This study investigates the use of DGT technique for plutonium bioavailability measurements in chemically different environments. We used a diffusion cell to determine the diffusion coefficients (D) of plutonium in polyacrylamide (PAM) gel and found D in the range of 2.06-2.29 × 10(-6) cm(2) s(-1). It ranged between 1.10 and 2.03 × 10(-6) cm(2) s(-1) in the presence of fulvic acid and in natural waters with low DOM. In the presence of 20 ppm of humic acid of an organic-rich soil, plutonium diffusion was hindered by a factor of 5, with a diffusion coefficient of 0.50 × 10(-6) cm(2) s(-1). We also tested commercially available DGT devices with Chelex resin for plutonium bioavailability measurements in laboratory conditions and the diffusion coefficients agreed with those from the diffusion cell experiments. These findings show that the DGT methodology can be used to investigate the bioaccumulation of the labile plutonium fraction in aquatic biota.

  10. Arsenic Bioavailability, Bioaccessibility, And Speciation

    EPA Science Inventory

    The term bioavailability has many different meanings across various disciplines. Often bioavailability is concerned with human health aspects such as the case of urban children interacting with contaminated soil. The still utilized approach to base risk assessment on total meta...

  11. How Hydrogen Bonds Affect the Growth of Reverse Micelles around Coordinating Metal Ions.

    PubMed

    Qiao, Baofu; Demars, Thomas; Olvera de la Cruz, Monica; Ellis, Ross J

    2014-04-17

    Extensive research on hydrogen bonds (H-bonds) have illustrated their critical role in various biological, chemical and physical processes. Given that existing studies are predominantly performed in aqueous conditions, how H-bonds affect both the structure and function of aggregates in organic phase is poorly understood. Herein, we investigate the role of H-bonds on the hierarchical structure of an aggregating amphiphile-oil solution containing a coordinating metal complex by means of atomistic molecular dynamics simulations and X-ray techniques. For the first time, we show that H-bonds not only stabilize the metal complex in the hydrophobic environment by coordinating between the Eu(NO3)3 outer-sphere and aggregating amphiphiles, but also affect the growth of such reverse micellar aggregates. The formation of swollen, elongated reverse micelles elevates the extraction of metal ions with increased H-bonds under acidic condition. These new insights into H-bonds are of broad interest to nanosynthesis and biological applications, in addition to metal ion separations.

  12. Municipal sludge metal contamination of old-field ecosystems: Do liming and tilling affect remediation

    SciTech Connect

    Benninger-Truax, M.; Taylor, D.H. . Dept. of Zoology)

    1993-10-01

    Mechanisms of ecosystem recovery following 11 years of sewage sludge disposal were addressed by examining the effects of tilling and/or liming on soil chemistry and the heavy metal (Cd, Cu, Pb, and Zn) concentrations in soil, earthworms, vegetation, spiders, and crickets. In 1989 and 1990, subplots in each of three former 0.1-ha, long-term treatments (sludge, fertilizer, and control) were either unmanipulated or manipulated via tilling and/or liming. Liming significantly increased the pH of soil from the long-term sludge and fertilizer plots, and the combination of tilling and liming affected the heavy metal concentrations in earthworms, as lower concentrations of Cd, Cu, Pb, and Zn were found in earthworms collected from subplots that had been both tilled and limed. However, most observed significant differences in heavy metal concentrations reflected the long-term treatments, as heavy metal concentrations tended to be greater in the soil and biota collected from sludge-treated plots. Thus, heavy metals remained in the soil in forms available to the biota, regardless of the cessation of sludge application or subplot manipulations (liming and/or tilling) for two years following cessation of sludge application.

  13. Multi-laminated metal hydroxide nanocontainers for oral-specific delivery for bioavailability improvement and treatment of inflammatory paw edema in mice.

    PubMed

    Kankala, Ranjith Kumar; Kuthati, Yaswanth; Sie, Huei-Wun; Shih, Hung-Yuan; Lue, Sheng-I; Kankala, Shravankumar; Jeng, Chien-Chung; Deng, Jin-Pei; Weng, Ching-Feng; Liu, Chen-Lun; Lee, Chia-Hung

    2015-11-15

    Multiple layers of pH-sensitive enteric copolymers were coated over layered double hydroxide (LDH) nanoparticles for controllable drug release and improved solubility of hydrophobic drugs. The nano-sized LDH carriers significantly improved the accessibility of sulfasalazine molecules that have positively charged frameworks. In addition, the successful encapsulation of negatively charged enteric copolymers was achieved via electrostatic attractions. The multi-layered enteric polymer coating could potentially protect nanoparticle dissolution at gastric pH and accelerate the dissolution velocity, which would improve the drug bioavailability in the colon. Next, biological studies of this formulation indicated a highly protective effect from the scavenging of superoxide free radicals and diethyl maleate (DEM) induced lipid peroxidation, which are major cell signalling pathways for inflammation. The histological view of the liver and kidney sections revealed that the nanoformulation is safe and highly biocompatible. The animal studies conducted via paw inflammation induced by complete Freund's adjuvant (CFA) revealed that enteric-coated LDH-sulfasalazine nanoparticles provided a sustained release that maintained the sulfasalazine concentrations in a therapeutic window. Therefore, this nanoformulation exhibited preferential efficacy in reducing the CFA-induced inflammation especially at day 4. PMID:26225492

  14. CORRELATING METAL SPECIATION IN SOILS TO RISK

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  15. What do losses in selenium and arsenic bioavailability signify for health?

    PubMed

    Frost, D V

    1983-06-01

    Levels of As and Se in human foods and animal feeds respectively have decreased in recent years as a result of official limits and other factors. The reduction of SeO2 by SO2 to Se0 results in less bioavailability in the food cycle. Acid rain further reduces the pH of Se-depleted soils and soluble forms of Se are bound by metal ions in fallout from burning of fossil fuels. However, there is evidence that Se and As act as essential nutrients with anticancer value. The need for As in nutrition was shown by three laboratories in four mammalian species. Selenium inadequacies among people, as well as animals, are being recognized worldwide in the form of Se-responsive diseases. Reported data indicate that we have yet to learn the optimal intake levels for Se or As and how their decreased bioavailabilities affect human health.

  16. Geochemical partitioning of Cu and Ni in mangrove sediments: relationships with their bioavailability.

    PubMed

    Chakraborty, Parthasarathi; Ramteke, Darwin; Chakraborty, Sucharita

    2015-04-15

    Sequential extraction study was performed to determine the concentrations of non-residual metal-complexes in the mangrove sediments from the Divar Island, (west coast of India). Accumulation of metal in the mangrove roots (from the same location) was determined and used as an indicator of bioavailability of metal. An attempt was made to establish a mechanistic linkage between the non-residual metal complexes and their bioavailability in the mangrove system. The non-residual fractions of Cu and Ni were mainly associated with Fe/Mn oxyhydroxide and organic phases in the sediments. A part of these metal fractions were bioavailable in the system. These two phases were the major controlling factors for Ni speciation and their bioavailability in the studied sediments. However, Cu was found to interact more strongly with the organic phases than Ni in the mangrove sediments. Organic phases in the mangrove sediments acted as buffer to control the speciation and bioavailability of Cu in the system.

  17. Sediment properties influencing the bioavailability of uranium to Chironomus dilutus larvae in spiked field sediments.

    PubMed

    Crawford, Sarah E; Liber, Karsten

    2016-04-01

    The partitioning of metals between dissolved and solid phases directly affects metal bioavailability to benthic invertebrates and is influenced by metal-binding properties of sediment phases. Little research has been done examining the effects of sediment properties on the bioavailability of uranium (U) to freshwater benthic invertebrates. In the present study, 18 field sediments with a wide range of properties (total organic carbon, fine fraction, cation exchange capacity, and iron content) were amended with the same concentrations of U to characterize the effects of these sediment properties on U bioavailability to freshwater midge, Chironomus dilutus. Bioaccumulation of U by C. dilutus larvae varied by over an order of magnitude when exposed to sediments spiked with 50 mg U kg(-1) d.w. (5-69 mg U kg(-1) d.w.) and 500 mg U kg(-1) d.w. (20-452 mg U kg(-1) d.w.), depending on the type of sediment. Variance in U bioaccumulation was best explained by differences in the cation exchange capacity, fine fraction (≤50 μm particle size), and Fe content of U-spiked sediment, with generated regression equations predicting observed bioaccumulation within a factor of two. The presented regression equations offer an easy-to-apply method for accounting for the influence of sediment properties on U bioavailability in freshwater sediment, with fine fraction being the single most practical variable. This research strongly supports that risk assessments and guidelines for U-contaminated sediments should not ignore the influence of sediment properties that can result in substantial differences in the bioaccumulation of U in benthic invertebrates. PMID:26802266

  18. Sediment properties influencing the bioavailability of uranium to Chironomus dilutus larvae in spiked field sediments.

    PubMed

    Crawford, Sarah E; Liber, Karsten

    2016-04-01

    The partitioning of metals between dissolved and solid phases directly affects metal bioavailability to benthic invertebrates and is influenced by metal-binding properties of sediment phases. Little research has been done examining the effects of sediment properties on the bioavailability of uranium (U) to freshwater benthic invertebrates. In the present study, 18 field sediments with a wide range of properties (total organic carbon, fine fraction, cation exchange capacity, and iron content) were amended with the same concentrations of U to characterize the effects of these sediment properties on U bioavailability to freshwater midge, Chironomus dilutus. Bioaccumulation of U by C. dilutus larvae varied by over an order of magnitude when exposed to sediments spiked with 50 mg U kg(-1) d.w. (5-69 mg U kg(-1) d.w.) and 500 mg U kg(-1) d.w. (20-452 mg U kg(-1) d.w.), depending on the type of sediment. Variance in U bioaccumulation was best explained by differences in the cation exchange capacity, fine fraction (≤50 μm particle size), and Fe content of U-spiked sediment, with generated regression equations predicting observed bioaccumulation within a factor of two. The presented regression equations offer an easy-to-apply method for accounting for the influence of sediment properties on U bioavailability in freshwater sediment, with fine fraction being the single most practical variable. This research strongly supports that risk assessments and guidelines for U-contaminated sediments should not ignore the influence of sediment properties that can result in substantial differences in the bioaccumulation of U in benthic invertebrates.

  19. Heavy metal ions affecting the removal of polycyclic aromatic hydrocarbons by fungi with heavy-metal resistance.

    PubMed

    Ma, Xiao-Kui; Ling Wu, Ling; Fam, Hala

    2014-12-01

    The co-occurrence of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) is very common in contaminated environments. It is of paramount importance and great challenge to exploit a bioremediation to remove PAHs in these environments with combined pollution. We approached this question by probing the influence of HMs coexisting with PAHs on the removal of PAHs by Acremonium sp. P0997 possessing metal resistance. A removal capability for naphthalene, fluorene, phenanthrene, anthracene, and fluoranthenepresentalone (98.6, 99.3, 89.9, 60.4, and 70 %, respectively) and in a mixture (96.9, 71.8, 67.0, 85.0, and 87.9 %, respectively) was achieved in mineral culture inoculated with Acremonium sp. P0997, and this strain also displayed high resistance to the individual HMs (Mn(2+), Fe(2+), Zn(2+), Cu(2+), Al(3+), and Pb(2+)). The removal of individual PAHs existing in a mixture was differently affected by the separately tested HMs. Cu(2+)enhanced the partition process of anthracene to dead or alive mycelia and the contribution of the biosorption by this strain but imposed a little negative influence on the contribution of biodegradation to the total removal of anthracene individually in a culture. However, Mn(2+) had an inhibitory effect on the partition process of anthracene to dead or alive mycelia and decreased the contributions of both biosorption and biodegradation to the total anthracene removal. This work showcased the value of fungi in bioremediation for the environments with combined pollution, and the findings have major implications for the bioremediation of organic pollutants in metal-organic mixed contaminated sites.

  20. A novel pollution index based on the bioavailability of elements: a study on Anzali wetland bed sediments.

    PubMed

    Zamani Hargalani, Fariba; Karbassi, Abdolreza; Monavari, Seyed Masoud; Abroomand Azar, Parviz

    2014-04-01

    In this research, we study on the distribution of several elements in bed sediments of Anzali wetland. Anzali, one of the most important international wetlands, is located on the southern coast of the Caspian Sea in Iran. This wetland receives discharges of domestic, agricultural, and industrial wastewater, which affect the distribution of elements. Our contribution in this study is threefold. First, we measured the total concentration of metals as well as their chemical partitioning and bioavailability in the sediments. Second, we calculated anthropogenic portions of metals in the sediment of this area. The results reveal anthropogenic portion of metals as Mo > Mn > Cd > As > Zn > Hg > Co > Sn > Cu > V > Ag > Ni > Pb > Fe > Cr > Al, respectively. We evaluated the intensity of pollution by using an enrichment factor, the geo-accumulation index and the pollution index. All these indices do not take into consideration the bioavailability of the elements. As our third and most important contribution, we introduced a new formula that takes into account the bioavailability of different elements. In comparison with aforementioned pollution indices, our newly introduced pollution index has a higher Pearson correlation with anthropogenic portion of metals. This high-correlation coefficient shows that our proposed pollution index is an effective indicator for determining the level of pollution, while other indices preserve their own merits. PMID:24317631

  1. Factors affecting acceptability of radioactive metal recycling to the public and stakeholders

    SciTech Connect

    Nieves, L.A.; Burke, C.J.

    1995-08-01

    The perception of risk takes place within a cultural context that is affected by individual and societal values, risk information, personal experience, and the physical environment. Researchers have found that measures of {open_quotes}voluntariness of risk assumption,{close_quotes} of {open_quotes}disaster potential,{close_quotes} and of {open_quotes}benefit{close_quotes} are important in explaining risk acceptability. A review of cross-cultural studies of risk perception and risk acceptance, as well as an informal stakeholder survey, are used to assess the public acceptability of radioactive scrap metal recycling.

  2. Preliminary assessment of pseudo-total and bioavailable metals in depth in the sediment of Luíz Rau stream in Novo Hamburgo (RS).

    PubMed

    Ávila, C L; Bianchin, L; Illi, J C

    2015-12-01

    The Luíz Rau stream is one of the main streams of Novo Hamburgo. In the stream industrial effluents are released from various sectors, from paint and adhesive industries, metallurgy and leather industry, besides receiving a large amount of domestic sewage. The emissions of these pollutants contribute to decrease water and sediment quality. Within this context, this study evaluated the conditions of the Luíz Rau stream bed sediments, with the determination of the metals like cadmium, lead, chromium and nickel, in depth. To perform the evaluation three points were chosen for sampling along the stream course. The sampling sites were identified as Point A, in Roselândia district and this corresponds to one of the springs and therefore considered as reference value, Point B, in Santo Afonso district being a midpoint of the stream, and Point C also located in Santo Afonso district, near the outfall in Rio dos Sinos river. Cadmium was not detected in any point. At the A and C points chromium was the metal observed in higher concentration in the sediment, up to 45.14 mg kg(-1) concentration. In the B point, the metal that was observed in the highest amount was nickel in the concentration of 20.69 mg kg(-1).

  3. Creep deformation and rupture behavior of 2.25Cr-1Mo steel weldments and its constituents (base metal, weld metal and simulated heat affected zones)

    SciTech Connect

    Laha, K.; Chandravathi, K.S.; Rao, K.B.S.; Mannan, S.L.

    1995-12-31

    Microstructure across a weldment base metal through transformed heat-affected zone (HAZ) to cast weld metal. HAZ of 2.25Cr-1Mo weldment consists of coarse-grain bainite, fine-grain bainite and intercritical region. These HAZ microstructures were simulated by isothermal heat-treatments. Creep tests were carried out on base metal, weld metal, weldment and the simulated HAZ structures. Creep deformation and fracture behavior of 2.25Cr-1Mo weldments has been assessed based on the properties of its constituents. Coarse-grain bainite with low ductility and intercritical structure with low strength are the critical components of HAZ determining performance of the weldments.

  4. [Evaluation of the bioavailability of radionuclides from soil in cattle by an in vitro method].

    PubMed

    Kalinichenko, S A

    2002-01-01

    Factors have been examined which influence the radionuclides sorption from soil particles by fluid imitating rumen liquid of the cattle. It is noted that the extent of extractability of 137Cs from soil is influenced mainly by presence of potassium ions in modelling liquid. Major factor influencing the release of 90Sr from soil is pH value of the medium. The presence of heavy metals salts affected the release of radionuclides from soil particles. The data observed make it possible to use the modelling solutions to predict bioavailability of radionuclides from soil as well as to predict possible contamination of animal products (milk and meat).

  5. Open-pit coal-mining effects on rice paddy soil composition and metal bioavailability to Oryza sativa L. plants in Cam Pha, northeastern Vietnam.

    PubMed

    Martinez, Raul E; Marquez, J Eduardo; Hòa, Hoàng Thị Bích; Gieré, Reto

    2013-11-01

    This study quantified Cd, Pb, and Cu content, and the soil-plant transfer factors of these elements in rice paddies within Cam Pha, Quang Ninh province, northeastern Vietnam. The rice paddies are located at a distance of 2 km from the large Coc Sau open-pit coal mine. Electron microprobe analysis combined with backscattered electron imaging and energy-dispersive spectroscopy revealed a relatively high proportion of carbon particles rimmed by an iron sulfide mineral (probably pyrite) in the quartz-clay matrix of rice paddy soils at 20-30 cm depth. Bulk chemical analysis of these soils revealed the presence of Cd, Cu, and Pb at concentrations of 0.146±0.004, 23.3±0.1, and 23.5±0.1 mg/kg which exceeded calculated background concentrations of 0.006±0.004, 1.9±0.5, and 2.4±1.5 mg/kg respectively at one of the sites. Metals and metalloids in Cam Pha rice paddy soils, including As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn, were found in concentrations ranging from 0.2±0.1 to 140±3 mg/kg, which were in close agreement with toxic metal contents in mine tailings and Coc Sau coal samples, suggesting mining operations as a major cause of paddy soil contamination. Native and model Oryza sativa L. rice plants were grown in the laboratory in a growth medium to which up to 1.5 mg/kg of paddy soil from Cam Pha was added to investigate the effects on plant growth. A decrease in growth by up to 60% with respect to a control sample was found for model plants, whereas a decrease of only 10% was observed for native (Nep cai hoa vang variety) rice plants. This result suggests an adaptation of native Cam Pha rice plants to toxic metals in the agricultural lands. The Cd, Cu, and Pb contents of the native rice plants from Cam Pha paddies exceeded permitted levels in foods. Cadmium and Pb were highest in the rice plant roots with concentrations of 0.84±0.02 and 7.7±0.3 mg/kg, suggesting an intake of these metals into the rice plant as shown, for example, by Cd and Pb concentrations of 0

  6. Study on Characteristics of Soil Elements Bio-availability and Their Interrelationship in Black Soil Area of Jilin Province

    NASA Astrophysics Data System (ADS)

    Wang, D. Y.

    2015-12-01

    Abstract: Based on systematic field investigation and surface soil(0-20cm) sampling in the middle part of Jilin province where the soil type mainly consists of black soil and chernozem, soil total content and bio-available content of Fe, Fe, Ca, Mg, K, P, Cu, Zn, Ni, Cr, B, Cd, As were tested. This paper summarizes the geochemical characteristics of the soil elements and takes the ratio of bio-available content to total content as the bio-availability characteristic of each element in soil and studies the interrelationship between their geochemical characteristics of bio-availability by PCA and correlation analysis. Cd、Cr、Ni、Zn、P、Ca are selected out by PCA due to the similar impact under 4 principal components. And their correlation analysis results indicate: the correlation coefficients between heavy metal elements(Cr, Cd, Zn, Ni) bio-availability are significant positive, i.e., the same spatial variation trends are found between them in study area; the same relationships are also found between the bioavailability of P and 4 heavy metal elements (Cr, Cd, Zn, Ni), the promotion of the bioavailability of heavy metal elements goes with P; However, the correlation coefficients between heavy metal(Cr, Cd, Zn, Ni) bio-availability and Ca are mostly significant negative and the adverse spatial variation trends are found between them. The promotion of the bioavailability of heavy metal elements goes against Ca. Key words: soil geochemistry; soil heavy metals; elements interaction; bio-availability

  7. Uptake and elimination kinetics of metals in soil invertebrates: a review.

    PubMed

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2014-10-01

    Uptake and elimination kinetics of metals in soil invertebrates are a function of both soil and organism properties. This study critically reviewed metal toxicokinetics in soil invertebrates and its potential use for assessing bioavailability. Uptake and elimination rate constants of different metals are summarized. Invertebrates have different strategies for essential and non-essential metals. As a consequence, different types of models must be applied to describe metal uptake and elimination kinetics. We discuss model parameters for each metal separately and show how they are influenced by exposure concentrations and by physiological properties of the organisms. Soil pH, cation exchange capacity, clay and organic matter content significantly affect uptake rates of non-essential metals in soil invertebrates. For essential metals, kinetics is hardly influenced by soil properties, but rather prone to physiological regulation mechanisms of the organisms. Our analysis illustrates that toxicokinetics can be a valuable measurement to assess bioavailability of soil-bound metals.

  8. Surface coating affects behavior of metallic nanoparticles in a biological environment.

    PubMed

    Jurašin, Darija Domazet; Ćurlin, Marija; Capjak, Ivona; Crnković, Tea; Lovrić, Marija; Babič, Michal; Horák, Daniel; Vinković Vrček, Ivana; Gajović, Srećko

    2016-01-01

    Silver (AgNPs) and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs) are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW), biological cell culture medium without addition of protein (BM), and BM supplemented with common serum protein (BMP). The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl) and blood plasma (BlPl), revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible.

  9. Surface coating affects behavior of metallic nanoparticles in a biological environment

    PubMed Central

    Jurašin, Darija Domazet; Ćurlin, Marija; Capjak, Ivona; Crnković, Tea; Lovrić, Marija; Babič, Michal; Horák, Daniel; Gajović, Srećko

    2016-01-01

    Summary Silver (AgNPs) and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs) are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW), biological cell culture medium without addition of protein (BM), and BM supplemented with common serum protein (BMP). The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl) and blood plasma (BlPl), revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible. PMID:26977382

  10. Sludge organics bioavailability

    SciTech Connect

    Eiceman, G.E.; Bellin, C.A.; Ryan, J.A.; O'Connor, G.A.

    1991-01-01

    Concern over the bioavailability of toxic organics that can occur in municipal sludges threatens routine land application of sludge. Available data, however, show that concentrations of priority organics in normal sludges are low. Sludges applied at agronomic rates yield chemical concentrations in soil-sludge mixtures 50 to 100 fold lower. Plant uptake at these pollutant concentrations (and at much higher concentrations) is minimal. Chemicals are either (1) accumulated at extremely low levels (PCBs), (2) possibly accumulated, but then rapidly metabolized within plants to extremely low levels (DEHP), or (3) likely degraded so rapidly in soil that only minor contamination occurs (PCP and 2,4-DNP).

  11. Atmospheric Deposition of Heavy Metals in Soil Affected by Different Soil Uses of Southern Spain

    NASA Astrophysics Data System (ADS)

    Acosta, J. A.; Faz, A.; Martínez-Martínez, S.; Bech, J.

    2009-04-01

    Heavy metals are a natural constituent of rocks, sediments and soils. However, the heavy metal content of top soils is also dependent on other sources than weathering of the indigenous minerals; input from atmospheric deposition seems to be an important pathway. Atmospheric deposition is defined as the process by which atmospheric pollutants are transferred to terrestrial and aquatic surfaces and is commonly classified as either dry or wet. The interest in atmospheric deposition has increased over the past decade due to concerns about the effects of deposited materials on the environment. Dry deposition provides a significant mechanism for the removal of particles from the atmosphere and is an important pathway for the loading of heavy metals into the soil ecosystem. Within the last decade, an intensive effort has been made to determine the atmospheric heavy metal deposition in both urban and rural areas. The main objective of this study was to identification of atmospheric heavy metals deposition in soil affected by different soil uses. Study area is located in Murcia Province (southeast of Spain), in the surroundings of Murcia City. The climate is typically semiarid Mediterranean with an annual average temperature of 18°C and precipitation of 350 mm. In order to determine heavy metals atmospheric deposition a sampling at different depths (0-1 cm, 1-5 cm, 5-15 cm and 15-30 cm) was carried out in 7 sites including agricultural soils, two industrial areas and natural sites. The samples were taken to the laboratory where, dried, passed through a 2 mm sieve, and grinded. For the determination of the moisture the samples were weighed and oven dried at 105 °C for 24 h. The total amounts of metals (Pb, Cu, Pb, Zn, Cd, Mn, Ni and Cr) were determined by digesting the samples with nitric/perchoric acids and measuring with ICP-MS. Results showed that zinc contamination in some samples of industrial areas was detected, even this contamination reaches 30 cm depth; thus it is

  12. Understanding the bioavailability and sequestration of different metal cations in the presence of a biodegradable chelant S,S-EDDS in biological fluids and natural waters.

    PubMed

    Bretti, Clemente; Cigala, Rosalia Maria; De Stefano, Concetta; Lando, Gabriele; Sammartano, Silvio

    2016-05-01

    Ethylenediamine-N,N'-disuccinic acid is a biodegradable alternative to EDTA, therefore its use for the sequestration of Ca(2+), Sn(2+), Cu(2+), Zn(2+) and Fe(3+) is analyzed. New data on its binding ability towards these cations were obtained with potentiometric, voltammetric and calorimetric measurements at different ionic strengths and at T = 298.15 K. Real multi-component fluids, namely fresh water, urine, sea water, saliva and blood plasma were chosen as case studies to evaluate the sequestering ability of EDDS in comparison with EDTA. Speciation diagrams were drawn in selected conditions, considering all interactions among the "natural" components of the fluid and those studied in this work, EDDS and EDTA (cL = 1 mmol dm(-3)) as sequestering agents and the cited metal cations (cM ∼ 10(-5) mol dm(-3)). The comparison of the sequestering ability of EDDS and EDTA is done using pM and pL0.5. In blood plasma the plasma mobilizing index was adopted. It was found that EDDS is a good alternative to EDTA, which tends to bind Ca(2+) and Mg(2+) more than EDDS. In particular, EDTA cannot be used as a sequestrant for Sn(2+) when cCa > cEDTA. EDDS is more efficient than EDTA at pH < 8, particularly in urine, where carbonate is absent. In sea water, the sequestering ability of EDDS towards Fe(3+) is higher than that of EDTA. In blood plasma, the PMI of EDDS towards Cu(2+) is higher than that of EDTA. Thermodynamic information, in terms of ΔH and ΔS, for the protonation and metal complex formation reactions are reported.

  13. Bioavailability of zinc, copper, and manganese from infant diets

    SciTech Connect

    Bell, J.G.

    1987-01-01

    A series of trace element absorption experiments were performed using the Sprague-Dawley suckling rat put and infant rhesis monkey (Macaca mulatta) with extrinsic radiolabeling to assess the bioavailability of Zn, Cu, and Mn from infant diets and to examine specific factors that affect absorption of these essential nutrients. Bioavailability of Cu as assessed by 6 h liver uptake (% of /sup 64/Cu dose) was highest from human milk and cow milk based formula and significantly lower from cow milk and soy based formula. Copper bioavailability from infant cereal products as assessed by whole body uptake (% of /sup 64/Cu dose) in d 20 rats, 9 h postintubation, was low compared to the bioavailability from cow milk or human milk alone. /sup 65/Zn uptake in d 20 rats, 9 h postintubation, was significantly lower from cereals fed alone or in combination with cow or human milk as compared to the uptake from the milks fed alone. Zn bioavailability varied among cereal diets, (lowest from cereals containing phytate and highest from cereal/fruit products). Mn bioavailability from infant diets was assessed using a modified suckling rat pup model. Bioavailability (24 h whole body retention of /sup 54/Mn) was high from all milks and commercial formulas tested.

  14. Groundwater contributions to metal transport in a small river affected by mining and smelting waste.

    PubMed

    Coynel, Alexandra; Schäfer, Jörg; Dabrin, Aymeric; Girardot, Naïg; Blanc, Gérard

    2007-08-01

    The Riou Mort watershed, strongly affected by former coal mining and Zn ore treatment, has been the major source of the historical polymetallic pollution of the Lot-Garonne-Gironde fluvial-estuarine system. Two decades after the end of ore treatment, the former industrial area still contributes important amounts of metals/metalloids from various, partly unidentified, sources to the downstream river system. This study presents the high spatial variability of metal/metalloid (Cd, Zn, As, Sb, U, V) concentrations in water and suspended particulate matter (SPM) from eight observation sites during a short, intense flood event. Despite important dilution effects, the observed concentration levels at the different sites suggested additional Cd and Zn inputs, probably from polluted groundwater. This formerly unknown metal source was then localized and characterized by sampling water and SPM along two longitudinal profiles during different hydrological situations. Groundwater inputs of "truly dissolved" (<0.02 microm) Cd and Zn occurred along approximately 200 m, contributing 43% and 28% to the total annual (2004) Cd and Zn fluxes in the Riou Mort River. The estimated groundwater concentrations of Cd and Zn (2500-6700 and 83,000-170,000 microg l(-1), respectively) in the source zone were consistent with values measured in samples from the near aquifer (5400-13,000 and 200,000-400,000 microg l(-1)). The present work induced concrete remediation actions (pumping and treatment of the polluted groundwater), that are expected to strongly reduce dissolved Cd and Zn emissions into the Riou Mort River.

  15. Age affects not only metabolome but also metal toxicity in Scenedesmus quadricauda cultures.

    PubMed

    Kováčik, Jozef; Klejdus, Bořivoj; Babula, Petr; Hedbavny, Josef

    2016-04-01

    Responses of Scenedesmus quadricauda grown in vitro and differing in age (old culture-13 months, young culture-1 month) to short-term cadmium (Cd) or nickel (Ni) excess (24h) were compared. Higher age of the culture led to lower amount of chlorophylls, ascorbic acid and glutathione but higher signal of ROS. Surprisingly, sucrose was detected using DART-Orbitrap MS in both old and young culture and subsequent quantification confirmed its higher amount (ca. 3-times) in the old culture. Cd affected viability and ROS amount more negatively than Ni that could arise from excessive Cd uptake which was also higher in all treatments than in respective Ni counterparts. Surprisingly, nitric oxide was not extensively different in response to age or metals. Strong induction of phytochelatin 2 is certainly Cd-specific response while Ni also elevated ascorbate content. Krebs cycle acids were more accumulated in the young culture but they were rather elevated in the old culture (citric acid under Ni excess). We conclude that organic solid 'Milieu Bristol' medium we tested is suitable for long-term storage of unicellular green algae (also successfully tested for Coccomyxa sp. and Parachlorella sp.) and the impact of age on metal uptake may be useful for bioremediation purposes. PMID:26687303

  16. Toxic metal interactions affect the bioaccumulation and dietary intake of macro- and micro-nutrients.

    PubMed

    Khan, Anwarzeb; Khan, Sardar; Alam, Mehboob; Khan, Muhammad Amjad; Aamir, Muhammad; Qamar, Zahir; Ur Rehman, Zahir; Perveen, Sajida

    2016-03-01

    The present study was conducted to evaluate the effects of heavy metals (cadmium (Cd), lead (Pb) and Cd-Pb mix) on bioaccumulation of different nutrients. Three plant species including potato, tomato and lettuce were grown in pots containing soil contaminated with Cd, Pb and Cd-Pb mix at four different levels. The edible portions of each plant were analysed for Cd, Pb and different macro- and micro-nutrients including protein, vitamin C, nitrogen (N), phosphorous (P), potassium (K), iron (Fe), manganese (Mn), calcium (Ca) and magnesium (Mg). Results indicated significant variations in selected elemental concentrations in all the three plants grown in different treatments. The projected daily dietary intake values of selected metals were significant (P < 0.001) for Fe, Mn, Ca and Mg but not significant for protein, vitamin C, N and P. The elemental contribution to Recommended Dietary Allowance (RDA) was significant for Mn. Similarly, Fe and Mg also showed substantial contribution to RDA, while Ca, N, P, K, protein and vitamin C showed the minimal contribution for different age groups. This study suggests that vegetables cultivated on Cd and Pb contaminated soil may significantly affect their quality, and the consumption of such vegetables may result in substantial negative effects on nutritional composition of the consumer body. Long term and continuous use of contaminated vegetables may result in malnutrition.

  17. Toxic metal interactions affect the bioaccumulation and dietary intake of macro- and micro-nutrients.

    PubMed

    Khan, Anwarzeb; Khan, Sardar; Alam, Mehboob; Khan, Muhammad Amjad; Aamir, Muhammad; Qamar, Zahir; Ur Rehman, Zahir; Perveen, Sajida

    2016-03-01

    The present study was conducted to evaluate the effects of heavy metals (cadmium (Cd), lead (Pb) and Cd-Pb mix) on bioaccumulation of different nutrients. Three plant species including potato, tomato and lettuce were grown in pots containing soil contaminated with Cd, Pb and Cd-Pb mix at four different levels. The edible portions of each plant were analysed for Cd, Pb and different macro- and micro-nutrients including protein, vitamin C, nitrogen (N), phosphorous (P), potassium (K), iron (Fe), manganese (Mn), calcium (Ca) and magnesium (Mg). Results indicated significant variations in selected elemental concentrations in all the three plants grown in different treatments. The projected daily dietary intake values of selected metals were significant (P < 0.001) for Fe, Mn, Ca and Mg but not significant for protein, vitamin C, N and P. The elemental contribution to Recommended Dietary Allowance (RDA) was significant for Mn. Similarly, Fe and Mg also showed substantial contribution to RDA, while Ca, N, P, K, protein and vitamin C showed the minimal contribution for different age groups. This study suggests that vegetables cultivated on Cd and Pb contaminated soil may significantly affect their quality, and the consumption of such vegetables may result in substantial negative effects on nutritional composition of the consumer body. Long term and continuous use of contaminated vegetables may result in malnutrition. PMID:26714294

  18. EFFECT OF SOIL PROPERTIES ON LEAD BIOAVAILABILITY AND TOXCITY TO EARTHWORMS

    EPA Science Inventory

    Soil properties are important factors modifying metal bioavailability to ecological receptors. Twenty-one soils with a wide range of soil properties were amended with a single concentration of Pb (2000 mg/kg) to determine the effects of soil properties on Pb bioavailability and ...

  19. Factors Affecting the Capture Efficiency of a Fume Extraction Torch for Gas Metal Arc Welding.

    PubMed

    Bonthoux, Francis

    2016-07-01

    Welding fumes are classified as Group 2B 'possibly carcinogenic' and this prompts to the implementation of local exhaust ventilation (LEV). The fume extraction torch with LEV integrated into the tool is the most attractive solution but its capture efficiency is often disappointing in practice. This study assesses the main parameters affecting fume capture efficiency namely the extraction flow rate, the positioning of the suction openings on the torch, the angle of inclination of the torch to the workpiece during welding, the metal transfer modes, and the welding deposition rate. The theoretical velocity induced by suction, estimated from the extraction flow rate and the position of the suction openings, is the main parameter affecting effectiveness of the device. This is the design parameter and its value should never be <0.25 m s(-1) The angle of the torch relative to the workpiece also has a great deal of influence. To improve efficiency, work station layouts need to favour positions where the torch is held with angles closer to perpendicular (<15°). Welding with high deposition rates (>1.1g s(-1)) and spray transfer leads to low capture efficiency if induced velocities are <0.5 m s(-1) The results of the study can be used in the design of integrated on-torch extraction systems and provide information for fixing system objectives. PMID:27074798

  20. Factors Affecting the Capture Efficiency of a Fume Extraction Torch for Gas Metal Arc Welding.

    PubMed

    Bonthoux, Francis

    2016-07-01

    Welding fumes are classified as Group 2B 'possibly carcinogenic' and this prompts to the implementation of local exhaust ventilation (LEV). The fume extraction torch with LEV integrated into the tool is the most attractive solution but its capture efficiency is often disappointing in practice. This study assesses the main parameters affecting fume capture efficiency namely the extraction flow rate, the positioning of the suction openings on the torch, the angle of inclination of the torch to the workpiece during welding, the metal transfer modes, and the welding deposition rate. The theoretical velocity induced by suction, estimated from the extraction flow rate and the position of the suction openings, is the main parameter affecting effectiveness of the device. This is the design parameter and its value should never be <0.25 m s(-1) The angle of the torch relative to the workpiece also has a great deal of influence. To improve efficiency, work station layouts need to favour positions where the torch is held with angles closer to perpendicular (<15°). Welding with high deposition rates (>1.1g s(-1)) and spray transfer leads to low capture efficiency if induced velocities are <0.5 m s(-1) The results of the study can be used in the design of integrated on-torch extraction systems and provide information for fixing system objectives.

  1. Factors Affecting the Capture Efficiency of a Fume Extraction Torch for Gas Metal Arc Welding

    PubMed Central

    Bonthoux, Francis

    2016-01-01

    Welding fumes are classified as Group 2B ‘possibly carcinogenic’ and this prompts to the implementation of local exhaust ventilation (LEV). The fume extraction torch with LEV integrated into the tool is the most attractive solution but its capture efficiency is often disappointing in practice. This study assesses the main parameters affecting fume capture efficiency namely the extraction flow rate, the positioning of the suction openings on the torch, the angle of inclination of the torch to the workpiece during welding, the metal transfer modes, and the welding deposition rate. The theoretical velocity induced by suction, estimated from the extraction flow rate and the position of the suction openings, is the main parameter affecting effectiveness of the device. This is the design parameter and its value should never be <0.25 m s−1. The angle of the torch relative to the workpiece also has a great deal of influence. To improve efficiency, work station layouts need to favour positions where the torch is held with angles closer to perpendicular (<15°). Welding with high deposition rates (>1.1g s−1) and spray transfer leads to low capture efficiency if induced velocities are <0.5 m s−1. The results of the study can be used in the design of integrated on-torch extraction systems and provide information for fixing system objectives. PMID:27074798

  2. The Content and Bioavailability of Mineral Nutrients of Selected Wild and Traditional Edible Plants as Affected by Household Preparation Methods Practiced by Local Community in Benishangul Gumuz Regional State, Ethiopia

    PubMed Central

    Hailu, Andinet Abera; Addis, Getachew

    2016-01-01

    Edible parts of some wild and traditional vegetables used by the Gumuz community, namely, Portulaca quadrifida, Dioscorea abyssinica, Abelmoschus esculentus, and Oxytenanthera abyssinica, were evaluated for their minerals composition and bioavailability. Mineral elements, namely, Ca, Fe, Zn, and Cu, were analyzed using Shimadzu atomic absorption spectrophotometer. Effects of household processing practices on the levels of mineral elements were evaluated and the bioavailability was predicted using antinutrient-mineral molar ratios. Fe, Zn, Ca, Cu, P, Na, and K level in raw edible portions ranged in (0.64 ± 0.02–27.0 ± 6.24), (0.46 ± 0.02–0.85 ± 0.02), (24.49 ± 1.2–131.7 ± 8.3), (0.11 ± 0.01–0.46 ± 0.04), (39.13 ± 0.34–57.27 ± 0.94), (7.34 ± 0.42–20.42 ± 1.31), and (184.4 ± 1.31–816.3 ± 11.731) mg/100 g FW, respectively. Although statistically significant losses in minerals as a result of household preparation practices were observed, the amount of nutrients retained could be valuable especially in communities that have limited alternative sources of these micronutrients. The predicted minerals' bioavailability shows adequacy in terms of calcium and zinc but not iron. PMID:26981523

  3. The Content and Bioavailability of Mineral Nutrients of Selected Wild and Traditional Edible Plants as Affected by Household Preparation Methods Practiced by Local Community in Benishangul Gumuz Regional State, Ethiopia.

    PubMed

    Hailu, Andinet Abera; Addis, Getachew

    2016-01-01

    Edible parts of some wild and traditional vegetables used by the Gumuz community, namely, Portulaca quadrifida, Dioscorea abyssinica, Abelmoschus esculentus, and Oxytenanthera abyssinica, were evaluated for their minerals composition and bioavailability. Mineral elements, namely, Ca, Fe, Zn, and Cu, were analyzed using Shimadzu atomic absorption spectrophotometer. Effects of household processing practices on the levels of mineral elements were evaluated and the bioavailability was predicted using antinutrient-mineral molar ratios. Fe, Zn, Ca, Cu, P, Na, and K level in raw edible portions ranged in (0.64 ± 0.02-27.0 ± 6.24), (0.46 ± 0.02-0.85 ± 0.02), (24.49 ± 1.2-131.7 ± 8.3), (0.11 ± 0.01-0.46 ± 0.04), (39.13 ± 0.34-57.27 ± 0.94), (7.34 ± 0.42-20.42 ± 1.31), and (184.4 ± 1.31-816.3 ± 11.731) mg/100 g FW, respectively. Although statistically significant losses in minerals as a result of household preparation practices were observed, the amount of nutrients retained could be valuable especially in communities that have limited alternative sources of these micronutrients. The predicted minerals' bioavailability shows adequacy in terms of calcium and zinc but not iron. PMID:26981523

  4. Effect of organic amendments and mineral fertilizer on zinc bioavailability, plant content and translocation

    NASA Astrophysics Data System (ADS)

    Chami, Ziad Al; Cavoski, Ivana; Mondelli, Donato; Miano, Teodoro

    2013-04-01

    treatments seem to not affect Zn bioavailability in the soil. In conclusion, compost was effective in binding heavy metals, reducing plant uptakes as well as translocation to aerial parts, ameliorating also plant tolerance and growth.

  5. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    PubMed Central

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  6. Influence of hardness on the bioavailability of silver to a freshwater snail after waterborne exposure to silver nitrate and silver nanoparticles

    USGS Publications Warehouse

    Stoiber, Tasha L.; Croteau, Marie-Noele; Romer, Isabella; Tejamaya, Mila; Lead, Jamie R.; Luoma, Samuel N.

    2015-01-01

    The release of Ag nanoparticles (AgNPs) into the aquatic environment is likely, but the influence of water chemistry on their impacts and fate remains unclear. Here, we characterize the bioavailability of Ag from AgNO3 and from AgNPs capped with polyvinylpyrrolidone (PVP AgNP) and thiolated polyethylene glycol (PEG AgNP) in the freshwater snail, Lymnaea stagnalis, after short waterborne exposures. Results showed that water hardness, AgNP capping agents, and metal speciation affected the uptake rate of Ag from AgNPs. Comparison of the results from organisms of similar weight showed that water hardness affected the uptake of Ag from AgNPs, but not that from AgNO3. Transformation (dissolution and aggregation) of the AgNPs was also influenced by water hardness and the capping agent. Bioavailability of Ag from AgNPs was, in turn, correlated to these physical changes. Water hardness increased the aggregation of AgNPs, especially for PEG AgNPs, reducing the bioavailability of Ag from PEG AgNPs to a greater degree than from PVP AgNPs. Higher dissolved Ag concentrations were measured for the PVP AgNPs (15%) compared to PEG AgNPs (3%) in moderately hard water, enhancing Ag bioavailability of the former. Multiple drivers of bioavailability yielded differences in Ag influx between very hard and deionized water where the uptake rate constants (kuw, l g-1 d-1 ± SE) varied from 3.1 ± 0.7 to 0.2 ± 0.01 for PEG AgNPs and from 2.3 ± 0.02 to 1.3 ± 0.01 for PVP AgNPs. Modeling bioavailability of Ag from NPs revealed that Ag influx into L. stagnalis comprised uptake from the NPs themselves and from newly dissolved Ag.

  7. Potassium Intake, Bioavailability, Hypertension, and Glucose Control

    PubMed Central

    Stone, Michael S.; Martyn, Lisa; Weaver, Connie M.

    2016-01-01

    Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+) ATPase pump. Approximately 90% of potassium consumed (60–100 mEq) is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN) is the leading cause of cardiovascular disease (CVD) and a major financial burden ($50.6 billion) to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics) may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health. PMID:27455317

  8. Potassium Intake, Bioavailability, Hypertension, and Glucose Control.

    PubMed

    Stone, Michael S; Martyn, Lisa; Weaver, Connie M

    2016-01-01

    Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+) ATPase pump. Approximately 90% of potassium consumed (60-100 mEq) is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN) is the leading cause of cardiovascular disease (CVD) and a major financial burden ($50.6 billion) to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics) may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health. PMID:27455317

  9. Bioavailability: implications for science/cleanup policy

    SciTech Connect

    Denit, Jeffery; Planicka, J. Gregory

    1998-12-01

    This paper examines the role of bioavailability in risk assessment and cleanup decisions. Bioavailability refers to how chemicals ''behave'' and their ''availability'' to interact with living organisms. Bioavailability has significant implications for exposure risks, cleanup goals, and site costs. Risk to human health and the environment is directly tied to the bioavailability of the chemicals of concern.

  10. Metal toxicity differently affects the Iris pseudacorus-arbuscular mycorrhiza fungi symbiosis in terrestrial and semi-aquatic habitats.

    PubMed

    Wężowicz, K; Turnau, K; Anielska, T; Zhebrak, I; Gołuszka, K; Błaszkowski, J; Rozpądek, P

    2015-12-01

    Phytoremediation offers an environmental friendly alternative to conventional cleanup techniques. In this study, mycorrhizal fungi isolated from the roots of Mentha longifolia grown in the basin of the Centuria River (S Poland) were used. Iris pseudacorus was grown in substratum from an industrial waste, enriched in Pb, Fe, Zn, and Cd in a terrestrial and water-logged habitat. Plant yield and photosynthetic performance was the highest in the aquatic environment; however, the presence of toxic metals (TM) negatively affected photosystem II (PSII) photochemistry as shown by the JIP test. Fungi colonization and Cd accumulation within plant tissues was decreased. In the terrestrial habitat, neither arbuscular mycorrhizal fungi (AMF) nor metal toxicity affected plant growth, although metal uptake, Cd in particular, as well as photosynthesis were affected. Inoculated plants accumulated significantly more Cd, and photosynthesis was downregulated. The results presented in this study clearly indicate that the I. pseudacorus-AMF symbiosis adapts itself to the presence of toxic metals in the environment, optimizing resource supply, energy fluxes, and possibly stress tolerance mechanisms. Plant/AMF consortia grown in terrestrial and water-logged habitats utilize different strategies to cope with metal toxicity. The use of AMF in improving the phytoremediation potential of I. pseudacorus needs, however, further research.

  11. Metal toxicity differently affects the Iris pseudacorus-arbuscular mycorrhiza fungi symbiosis in terrestrial and semi-aquatic habitats.

    PubMed

    Wężowicz, K; Turnau, K; Anielska, T; Zhebrak, I; Gołuszka, K; Błaszkowski, J; Rozpądek, P

    2015-12-01

    Phytoremediation offers an environmental friendly alternative to conventional cleanup techniques. In this study, mycorrhizal fungi isolated from the roots of Mentha longifolia grown in the basin of the Centuria River (S Poland) were used. Iris pseudacorus was grown in substratum from an industrial waste, enriched in Pb, Fe, Zn, and Cd in a terrestrial and water-logged habitat. Plant yield and photosynthetic performance was the highest in the aquatic environment; however, the presence of toxic metals (TM) negatively affected photosystem II (PSII) photochemistry as shown by the JIP test. Fungi colonization and Cd accumulation within plant tissues was decreased. In the terrestrial habitat, neither arbuscular mycorrhizal fungi (AMF) nor metal toxicity affected plant growth, although metal uptake, Cd in particular, as well as photosynthesis were affected. Inoculated plants accumulated significantly more Cd, and photosynthesis was downregulated. The results presented in this study clearly indicate that the I. pseudacorus-AMF symbiosis adapts itself to the presence of toxic metals in the environment, optimizing resource supply, energy fluxes, and possibly stress tolerance mechanisms. Plant/AMF consortia grown in terrestrial and water-logged habitats utilize different strategies to cope with metal toxicity. The use of AMF in improving the phytoremediation potential of I. pseudacorus needs, however, further research. PMID:26585452

  12. Bioavailability of riverine dissolved organic carbon and nitrogen in the Heilongjiang watershed of northeastern China.

    PubMed

    Shi, Jianhong; Cui, Hongyang; Jia, Liming; Qiu, Linlin; Zhao, Yue; Wei, Zimin; Wu, Junqiu; Wen, Xin

    2016-02-01

    The bioavailabilities of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) were examined in eight sampling stations of the Heilongjiang watershed, located in Heilongjiang Province, northeast China. Water samples were incubated for 55 days at 20 °C, and the decreases in the DOC and DON concentrations were measured during the laboratory incubations. The experiments showed that bioavailable DOC (BDOC) accounted for 15-30% of DOC and bioavailable DON (BDON) accounted for 29-57% of DON. DOM bioavailability was higher for DON compared to DOC, suggesting that DON was more bioavailable and had a faster turnover than DOC in the Heilongjiang watershed. Furthermore, the percent of bioavailable DOC (%BDOC) was significantly related to SUVA254, not the DOC concentration, suggesting that the chemistry composition of DOM played a more important role in affecting its bioavailability compared to the DOM concentration. In addition, significant negative correlations were observed between the initial DOC/DON ratios and the percent of bioavailable DOM fractions (%BDOC and %BDON), especially for %BDON, implying that low C/N molecules or N-rich compounds may be preferentially utilized by microbes. Graphical Abstract DOC concentrations of eight sampling sites, microbial decomposition of DOC over 55 days, % bioavailable DOC of eight sampling sites, DOM chemical composition of eight sampling sites, demonstrated chemical composition influence on DOM bioavailability.

  13. Effect of organic matter on nitrogenase metal cofactors homeostasis in Azotobacter vinelandii under diazotrophic conditions.

    PubMed

    Noumsi, Christelle Jouogo; Pourhassan, Nina; Darnajoux, Romain; Deicke, Michael; Wichard, Thomas; Burrus, Vincent; Bellenger, Jean-Philippe

    2016-02-01

    Biological nitrogen fixation can be catalysed by three isozymes of nitrogenase: molybdenum (Mo)-nitrogenase, vanadium (V)-nitrogenase and iron-only (Fe)-nitrogenase. The activity of these isozymes strongly depends on their metal cofactors, molybdenum, vanadium and iron, and their bioavailability in ecosystems. Here, we show how metal bioavailability can be affected by the presence of tannic acid (organic matter), and the subsequent consequences on diazotrophic growth of the soil bacterium Azotobacter vinelandii. In the presence of tannic acids, A. vinelandii produces a higher amount of metallophores, which coincides with an active, regulated and concomitant acquisition of molybdenum and vanadium under cellular conditions that are usually considered not molybdenum limiting. The associated nitrogenase genes exhibit decreased nifD expression and increased vnfD expression. Thus, in limiting bioavailable metal conditions, A. vinelandii takes advantage of its nitrogenase diversity to ensure optimal diazotrophic growth.

  14. Study of Plant Cell Wall Polymers Affected by Metal Accumulation Using Stimulated Raman Scattering Microscopy

    SciTech Connect

    Ding, Shi-You

    2015-03-02

    This project aims to employ newly-developed chemical imaging techniques to measure, in real-time, the concentration, dynamics and spatial distribution of plant cell wall polymers during biomass growth with inoculation of transgenic symbiotic fungi, and to explore a new pathway of delivering detoxified metal to plant apoplast using transgenic symbiotic fungi, which will enhance metal accumulation from soil, and potentially these metals may in turn be used as catalysts to improve the efficiency of biomass conversion to biofuels. The proposed new pathway of biomass production will: 1) benefit metal and radionuclide contaminant mobility in subsurface environments, and 2) potentially improve biomass production and process for bioenergy

  15. Metal sorption by peat and algae treated peat: kinetics and factors affecting the process.

    PubMed

    Lourie, Elena; Gjengedal, Elin

    2011-10-01

    The article presents a new approach that can be used for the purification of water contaminated by heavy metals. The treatment of peat with microalgae showed to be an effective way of increasing metal uptake by peat. Metal sorption was studied for a multimetal solution containing Cu, Cd, Ni, Zn, Cd, and Pb. Cu and Pb were found to be the metals having the highest affinity to peat. Water hardness has a strong effect on the uptake of borderline metals (Cd, Ni, Zn, Cd) from a solution. The use of algae for peat treatment resulted in less time to reach an equilibrium (24 h vs. 72 h for pure peat), and the effect of water hardness (Ca²⁺) on metal uptake was considerably reduced. Both peat and algal-treated peat were able to take up metals from rather acidic solutions (pH 3.0). pH had less influence on the metal uptake compared with water hardness. The affinity of heavy metals to peat was the following: Pb>Cu>Ni>Cd>Zn>Co. It slightly changed to Pb>Cu>Ni>Cd≈Co≈Zn when the combined sorbent, peat treated with microalga, was applied.

  16. Bioavailability of chemical pollutants in contaminated soils and pitfalls of chemical analyses in hazard assessment.

    PubMed

    Vasseur, P; Bonnard, M; Palais, F; Eom, I C; Morel, J L

    2008-10-01

    Decision-making for remediation of industrial wastelands are still based on the concentrations of pollutants of concern measured in soils. In this work, two soils polluted by polycyclic aromatic hydrocarbons (PAHs) and metals were investigated for their toxicity on earthworms (Eisenia fetida), collembolae (Folsomia candida), and higher plants (Brassica chinensis, Lactucca sativa and Avena sativa) in order to study the relationships between chemical contamination and biological effects. Although the level of contamination by PAHs was elevated and commensurate in the two soils, their toxicity profile was quite different. Soil A affected survival and reproduction of invertebrates and growth of higher plants. Surprisingly, soil B, heavily contaminated by metals in addition to PAHs, was devoid of toxicity. Our results indicate that toxicity cannot simply be extrapolated from pollutant concentrations in a complex matrix in which bioavailability of pollutants may be reduced by ageing. Moreover, the use of toxicity data obtained from spiked soils characterized by readily bioavailable pollutants can also be called into question for such extrapolations. Predicting biological effects therefore requires biological tools to avoid any erroneous conclusions that can be drawn from sole extrapolation of analytical results.

  17. Potential for bioavailability to limit degradation of herbicides in unsaturated soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is well established that biodegradation of organic compounds in soils can be limited by bioavailability if sorption reduces the pool of material available in solution. Bioavailability can also affect herbicidal function, reported herein in the complex processes of activation and degradation of t...

  18. Arbuscular mycorrhizal fungal phylogenetic groups differ in affecting host plants along heavy metal levels.

    PubMed

    He, Lei; Yang, Haishui; Yu, Zhenxing; Tang, Jianjun; Xu, Ligen; Chen, Xin

    2014-10-01

    Arbuscular mycorrhizal fungi (AMF) are important components of soil microbial communities, and play important role in plant growth. However, the effects of AMF phylogenetic groups (Glomeraceae and non-Glomeraceae) on host plant under various heavy metal levels are not clear. Here we conducted a meta-analysis to compare symbiotic relationship between AMF phylogenetic groups (Glomeraceae and non-Glomeraceae) and host plant functional groups (herbs vs. trees, and non-legumes vs. legumes) at three heavy metal levels. In the meta-analysis, we calculate the effect size (ln(RR)) by taking the natural logarithm of the response ratio of inoculated to non-inoculated shoot biomass from each study. We found that the effect size of Glomeraceae increased, but the effect size of non-Glomeraceae decreased under high level of heavy metal compared to low level. According to the effect size, both Glomeraceae and non-Glomeraceae promoted host plant growth, but had different effects under various heavy metal levels. Glomeraceae provided more benefit to host plants than non-Glomeraceae did under heavy metal condition, while non-Glomeraceae provided more benefit to host plants than Glomeraceae did under no heavy metal. AMF phylogenetic groups also differed in promoting plant functional groups under various heavy metal levels. Interacting with Glomeraceae, herbs and legumes grew better than trees and non-legumes did under high heavy metal level, while trees and legumes grew better than herbs and non-legumes did under medium heavy metal level. Interacting with non-Glomeraceae, herbs and legumes grew better than trees and non-legumes did under no heavy metal. We suggested that the combination of legume with Glomeraceae could be a useful way in the remediation of heavy metal polluted environment. PMID:25288547

  19. Arbuscular mycorrhizal fungal phylogenetic groups differ in affecting host plants along heavy metal levels.

    PubMed

    He, Lei; Yang, Haishui; Yu, Zhenxing; Tang, Jianjun; Xu, Ligen; Chen, Xin

    2014-10-01

    Arbuscular mycorrhizal fungi (AMF) are important components of soil microbial communities, and play important role in plant growth. However, the effects of AMF phylogenetic groups (Glomeraceae and non-Glomeraceae) on host plant under various heavy metal levels are not clear. Here we conducted a meta-analysis to compare symbiotic relationship between AMF phylogenetic groups (Glomeraceae and non-Glomeraceae) and host plant functional groups (herbs vs. trees, and non-legumes vs. legumes) at three heavy metal levels. In the meta-analysis, we calculate the effect size (ln(RR)) by taking the natural logarithm of the response ratio of inoculated to non-inoculated shoot biomass from each study. We found that the effect size of Glomeraceae increased, but the effect size of non-Glomeraceae decreased under high level of heavy metal compared to low level. According to the effect size, both Glomeraceae and non-Glomeraceae promoted host plant growth, but had different effects under various heavy metal levels. Glomeraceae provided more benefit to host plants than non-Glomeraceae did under heavy metal condition, while non-Glomeraceae provided more benefit to host plants than Glomeraceae did under no heavy metal. AMF phylogenetic groups also differed in promoting plant functional groups under various heavy metal levels. Interacting with Glomeraceae, herbs and legumes grew better than trees and non-legumes did under high heavy metal level, while trees and legumes grew better than herbs and non-legumes did under medium heavy metal level. Interacting with non-Glomeraceae, herbs and legumes grew better than trees and non-legumes did under no heavy metal. We suggested that the combination of legume with Glomeraceae could be a useful way in the remediation of heavy metal polluted environment.

  20. A comprehensive study of physical and physiological parameters that affect bio-sorption of metal pollutants from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Fosso-Kankeu, E.; Mulaba-Bafubiandi, A. F.; Mamba, B. B.; Marjanovic, L.; Barnard, T. G.

    An attempt was made to remove silver (I), chromium (III), and lead (II) from aqueous solutions. To optimize the bio-sorption capacity of microorganisms ( Bacillus subtilis and Bacillaceae bacterium), the effect of process parameters such as pH, temperature, metal load and culture age on the metal uptake was investigated. Indigenous strains of B. subtilis and Bacillaceae bacterium found in gold and copper mines in South Africa were exposed to silver (I), chromium (III), and lead (II) solutions under different physico-chemical and physiological conditions. Optimum conditions for the uptake of silver (I), chromium (III) and lead (II) by microorganisms used in this study were determined. The pH range 7-8, higher temperature (45 °C) and stationary growth phase, were observed as being suitable physical and physiological conditions for optimum removal of metals (Ag-87.2%; Cr-94% and Pb-98.5%). On the other hand very low pH (3) adversely affected the metal removal ability of bacteria. Silver (I) was the most poorly uptaken metal. It was also found that silver inhibited bacteria growth. Attempt to elute metal from the above cell biomass showed that 56.6% silver (I) and 88.3% lead (II) could effectively be desorbed at pH 5. It was additionally observed that optimum conditions for metal removal were specific to microbial bio-sorbent and the targeted metal. Design and implementation of bioremediation processes therefore require thorough study of specific interactions among metals and bio-sorbents involved.

  1. Factors affecting metal toxicity to (and accumulation by) aquatic organisms - overview

    SciTech Connect

    Wang, Wuncheng )

    1987-01-01

    This literature review encompasses aquatic environmental toxicities of metals and metalloids. The emphasis is on the influencing factors on metal toxicity to aquatic organisms. The effects of environmental factors on metal uptake are also discussed. The factors can be divided into biotic and abiotic. The biotic factors include tolerance, size and life stages, species, and nutrition related to the test organisms. The abiotic factors include organic substances, pH, temperature, alkalinity and hardness, inorganic ligands, interactions, sediments, and others. These factors can alter metal toxicity in the aquatic environment substantially, mostly causing attenuating effect. The literature shows divergent results. For example, the interactions between Cd and Zn were reported to be synergistic by some researchers and antagonistic by others. It is recommended that environmental hazard assessment takes into consideration the results of standard toxicity tests and site-specific conditions which can moderate metal toxicity considerably. 238 refs.

  2. Trace metal distribution in pristine permafrost-affected soils of the Lena River delta and its hinterland, northern Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Antcibor, I.; Eschenbach, A.; Zubrzycki, S.; Kutzbach, L.; Bolshiyanov, D.; Pfeiffer, E.-M.

    2014-01-01

    Soils are an important compartment of ecosystems and have the ability to buffer and immobilize substances of natural and anthropogenic origin to prevent their movement to other environment compartments. Predicted climatic changes together with other anthropogenic influences on Arctic terrestrial environments may affect biogeochemical processes enhancing leaching and migration of trace elements in permafrost-affected soils. This is especially important since Arctic ecosystems are considered to be highly sensitive to climatic changes as well as to chemical contamination. This study characterises background levels of trace metals in permafrost-affected soils of the Lena River delta and its hinterland in northern Siberia (73.5-69.5° N), representing a remote region far from evident anthropogenic trace metal sources. Investigations on the element content of iron (Fe), arsenic (As), manganese (Mn), zinc (Zn), nickel (Ni), copper (Cu), lead (Pb), cadmium (Cd), cobalt (Co), and mercury (Hg) in different soil types developed in different geological parent materials have been carried out. The highest median concentrations of Fe and Mn were observed in soils belonging to ice-rich permafrost sediments formed during the Pleistocene (ice-complex) while the highest median values of Ni, Pb and Zn were found in soils of both the ice-complex and the Holocene estuarine terrace of the Lena River delta region, as well as in the southernmost study unit of the hinterland area. Detailed observations of trace metal distribution on the micro scale showed that organic matter content, soil texture and iron-oxide contents influenced by cryogenic processes, temperature, and hydrological regimes are the most important factors determining the metal abundance in permafrost-affected soils. The observed range of trace element background concentrations was similar to trace metal levels reported for other pristine northern areas.

  3. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils.

    PubMed

    Adamo, Paola; Iavazzo, Pietro; Albanese, Stefano; Agrelli, Diana; De Vivo, Benedetto; Lima, Annamaria

    2014-12-01

    Soil pollution in agricultural lands poses a serious threat to food safety, and suggests the need for consolidated methods providing advisory indications for soil management and crop production. In this work, the three-step extraction procedure developed by the EU Measurement and Testing Programme and two soil-to-plant transfer factors (relative to total and bioavailable concentration of elements in soil) were applied on polluted agricultural soils from southern Italy to obtain information on the retention mechanisms of metals in soils and on their level of translocation to edible vegetables. The study was carried out in the Sarno river plain of Campania, an area affected by severe environmental degradation potentially impacting the health of those consuming locally produced vegetables. Soil samples were collected in 36 locations along the two main rivers flowing into the plain. In 11 sites, lettuce plants were collected at the normal stage of consumption. According to Italian environmental law governing residential soils, and on the basis of soil background reference values for the study area, we found diffuse pollution by Be, Sn and Tl, of geogenic origin, Cr and Cu from anthropogenic sources such as tanneries and intensive agriculture, and more limited pollution by Pb, Zn and V. It was found that metals polluting soils as a result of human activities were mainly associated to residual, oxidizable and reducible phases, relatively immobile and only potentially bioavailable to plants. By contrast, the essential elements Zn and Cu showed a tendency to become more readily mobile and bioavailable as their total content in soil increased and were more easily transported to the edible parts of lettuce than other pollutants. According to our results, current soil pollution in the studied area does not affect the proportion of metals taken up by lettuce plants and there is a limited health risk incurred.

  4. Factors affecting metal concentrations in the upper sediment layer of intertidal reedbeds along the river Scheldt.

    PubMed

    Du Laing, Gijs; Vandecasteele, Bart; De Grauwe, Pieter; Moors, Wouter; Lesage, Els; Meers, Erik; Tack, Filip M G; Verloo, Marc G

    2007-05-01

    Factors that play a role in determining metal accumulation in sediments of 26 intertidal marshes which are mainly vegetated by reed plants (Phragmites australis) were assessed along the Scheldt estuary (Belgium and The Netherlands). In the upper 20 cm sediment layer, several physico-chemical properties (clay, silt and sand content, organic matter, carbonate and chloride content, pH and conductivity) and aqua regia extractable metals (Cd, Cr, Cu, Ni, Pb, Zn) were determined. The sediments were significantly contaminated with trace metals. The Cd concentrations often exceeded the Flemish soil remediation thresholds for nature areas, whereas Cr, Cu and Zn levels indicated moderate contamination. Pb concentrations occasionally were high, whereas Ni concentrations leaned towards background values. Organic matter was the single most important predictor variable for total metal contents in regression models, except for Cr. Additional significant predictor variables were clay or chloride content, depending on the metal. Observed metal concentrations at sites within a range of a few km from specific point-sources of metals (e.g. shipyards, industrial areas with metallurgic activities, affluents, major motorways) were somewhat higher than predicted by the models, whereas they were lower than predicted at sites which are regularly subjected to flooding by water of high salinity. The ratio between observed and predicted concentrations seems to be a valuable tool for the identification of areas which are specifically impacted by point sources. PMID:17492090

  5. Plant water relations as affected by heavy metal stress: A review

    SciTech Connect

    Barcelo, J.; Poschenrieder, C. )

    1990-01-01

    Metal toxicity causes multiple direct and indirect effects in plants which concern practically all physiological functions. In this review the effects of excess heavy metals and aluminum on those functions which will alter plant water relations are considered. After a brief comment on the metal effects in cell walls and plasma-lemma, and their consequences for cell expansion growth, the influences of high meal availability on the factors which regulate water entry and water exit in plants are considered. Emphasis is placed on the importance of distinguishing between low water availability in mine and serpentine soils and toxicity effects in plants which may impair the ability of a plant to regulate water uptake. Examples on water relations of both plants grown on metalliferous soil and hydroponics are presented, and the effects of metal toxicity on root growth, water transport and transpiration are considered. It is concluded that future research has to focus on the mechanisms of metal-induced inhibition of both root elongation and morphogenetic processes within roots. In order to understand the relation between metal tolerance and drought resistance better, further studies into metal tolerance mechanisms at the cell wall, membrane and vacuolar level, as well as into the mechanisms of drought resistance of plants adapted to metalliferous soils are required. 135 refs., 7 figs., 6 tabs.

  6. Current Status of Trace Metal Pollution in Soils Affected by Industrial Activities

    PubMed Central

    Kabir, Ehsanul; Ray, Sharmila; Kim, Ki-Hyun; Yoon, Hye-On; Jeon, Eui-Chan; Kim, Yoon Shin; Cho, Yong-Sung; Yun, Seong-Taek; Brown, Richard J. C.

    2012-01-01

    There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (Igeo), calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution. PMID:22645468

  7. Current status of trace metal pollution in soils affected by industrial activities.

    PubMed

    Kabir, Ehsanul; Ray, Sharmila; Kim, Ki-Hyun; Yoon, Hye-On; Jeon, Eui-Chan; Kim, Yoon Shin; Cho, Yong-Sung; Yun, Seong-Taek; Brown, Richard J C

    2012-01-01

    There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (I(geo)), calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution.

  8. Cultivation practices affect heavy metal migration between soil and Vicia faba (broad bean).

    PubMed

    Li, Feili; Ni, Lijia; Yuan, Jin; Daniel Sheng, G

    2010-09-01

    Pot-test experiments were conducted to study the influences of mulching and fertilizing on the migration of heavy metals from soil to Vicia faba (broad bean). Semi-transparent film was used to mulch soil. Swine manure compost was mixed with soil at a rate of 50 mg kg(-1) to fertilize the soil. Broad bean was grown for several months until fruits were formed. Soils and bean parts were sampled to analyze and fractionate heavy metals (Cd, Cu, Fe, Mn, Pb, and Zn). Mulching promoted an obvious growth of broad bean. Fertilizing decreased soil pH and increased organic matter content and conductivity. Mulching reduced the exchangeable metal fractions by 5-52%. Fertilizing, in contrast, increased the exchangeable fractions of most of the metals except Fe and Pb by 20-295%. While the two cultivations increased obviously metal concentrations in bean laminas as compared to un-mulched and un-fertilized controls, the levels of most of the metals except Pb decreased in bean fruits. No clear relationships existed in roots and caudices in terms of metal levels. Calculated bioconcentration factors (BCF) and transfer factors (TF) indicate that the cultivations had little influences on the metal enrichments in roots, but promoted their migration from roots to laminas. In particular, mulching greatly promoted the absorption and translocation of Fe, while fertilizing enhanced the bean fruit uptake of Pb. Further studies on the influence of cultivation practices on heavy metal migration in soil-plant systems are recommended to acquire more information for evaluation of crop safety.

  9. Soils affected by heavy metals due to old mining on perudic conditions

    NASA Astrophysics Data System (ADS)

    Garrigo, Jordi; Elustondo, David; Laheras, Ester; Oiarzabal, Maite; Jaume, Bech

    2010-05-01

    The aim of this work is to assess the actual status of the soils of a natural environment surrounding an abandoned mine (exploited since the Roman Age) where Pb, Zn, Fe and Cu were obtained. The study has been carried out in the Aitzondo valley (Guipuzkoa, North of Iberian Peninsula), which cross the exploited mountainous area with middle temperatures and perudic soil moisture regime Soils in the valley are polygenic, acids, very washed and sometimes show redoximorphic features and have undergone a great mobilization of trace metals due to these physical-chemical characteristics that enhance the heavy metals solubility and mobility. The analysis of soil surface samples shows a punctual and intense pollution at Meazuri area (where the mine is located) and another more dispersal and wide pollution due to the parent material (Palaeozoic shales). The main soil type of the area has been characterized by means of the performance of a soil and six surface samples have been collected along an altitudinal transect, which goes down from 460 to 75 meters. Both profile and surface samples have been analysed for suitable parameters due to their repercussion in mobility and fixation of some heavy metals (organic matter, clay content…). Total (Na, K, Mg, Ca, Al, Fe, Mn, Ti, Cd, Cr) and extractable fraction (using NH4Ac-EDTA pH=4.65, as extracting agent, have been analysed. Trace elements Cd, Cr, Cu, Ni, Pb and Zn have been measured. On summary, the soils studied are characterized by high levels of trace metals inherited from the parent material whose composition shows a great metallic richness. Hence, values of trace metals are very high even in remote areas where there has not been anthropic influence. Besides, the physical-chemical properties (acidity, base saturation, organic matter) have enhanced the mobility of trace metals. The anthropogenic activity (mining activity) has caused an increase in values of several metals, reaching, in some cases, concentrations above the

  10. Trace metal distribution in pristine permafrost-affected soils of the Lena River Delta and its Hinterland, Northern Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Antcibor, I.; Zubrzycki, S.; Eschenbach, A.; Kutzbach, L.; Bol'shiyanov, D.; Pfeiffer, E.-M.

    2013-02-01

    Soils are an important compartment of ecosystems and have the ability to immobilize chemicals preventing their movement to other environment compartments. Predicted climatic changes together with other anthropogenic influences on Arctic terrestrial environments may affect biogeochemical processes enhancing leaching and migration of trace elements in permafrost-affected soils. This is especially important since the Arctic ecosystems are considered to be very sensitive to climatic changes as well as to chemical contamination. This study characterizes background levels of trace metals in permafrost-affected soils of the Lena River Delta and its hinterland in northern Siberia (73.5° N-69.5° N) representing a remote region far from evident anthropogenic trace metal sources. Investigations on total element contents of iron (Fe), arsenic (As), manganese (Mn), zinc (Zn), nickel (Ni), copper (Cu), lead (Pb), cadmium (Cd), cobalt (Co) and mercury (Hg) in different soil types developed in different geological parent materials have been carried out. The highest concentrations of the majority of the measured elements were observed in soils belonging to ice-rich permafrost sediments formed during the Pleistocene (ice-complex) in the Lena River Delta region. Correlation analyses of trace metal concentrations and soil chemical and physical properties at a Holocene estuarine terrace and two modern floodplain levels in the southern-central Lena River Delta (Samoylov Island) showed that the main factors controlling the trace metal distribution in these soils are organic matter content, soil texture and contents of iron and manganese-oxides. Principal Component Analysis (PCA) revealed that soil oxides play a significant role in trace metal distribution in both top and bottom horizons. Occurrence of organic matter contributes to Cd binding in top soils and Cu binding in bottom horizons. Observed ranges of the background concentrations of the majority of trace elements were similar to

  11. Flood-related contamination in catchments affected by historical metal mining: an unexpected and emerging hazard of climate change.

    PubMed

    Foulds, S A; Brewer, P A; Macklin, M G; Haresign, W; Betson, R E; Rassner, S M E

    2014-04-01

    Floods in catchments affected by historical metal mining result in the remobilisation of large quantities of contaminated sediment from floodplain soils and old mine workings. This poses a significant threat to agricultural production and is preventing many European river catchments achieving a 'good chemical and ecological status', as demanded by the Water Framework Directive. Analysis of overbank sediment following widespread flooding in west Wales in June 2012 showed that flood sediments were contaminated above guideline pollution thresholds, in some samples by a factor of 82. Most significantly, silage produced from flood affected fields was found to contain up to 1900 mg kg(-1) of sediment associated Pb, which caused cattle poisoning and mortality. As a consequence of climate related increases in flooding this problem is likely to continue and intensify. Management of contaminated catchments requires a geomorphological approach to understand the spatial and temporal cycling of metals through the fluvial system.

  12. Flood-related contamination in catchments affected by historical metal mining: an unexpected and emerging hazard of climate change.

    PubMed

    Foulds, S A; Brewer, P A; Macklin, M G; Haresign, W; Betson, R E; Rassner, S M E

    2014-04-01

    Floods in catchments affected by historical metal mining result in the remobilisation of large quantities of contaminated sediment from floodplain soils and old mine workings. This poses a significant threat to agricultural production and is preventing many European river catchments achieving a 'good chemical and ecological status', as demanded by the Water Framework Directive. Analysis of overbank sediment following widespread flooding in west Wales in June 2012 showed that flood sediments were contaminated above guideline pollution thresholds, in some samples by a factor of 82. Most significantly, silage produced from flood affected fields was found to contain up to 1900 mg kg(-1) of sediment associated Pb, which caused cattle poisoning and mortality. As a consequence of climate related increases in flooding this problem is likely to continue and intensify. Management of contaminated catchments requires a geomorphological approach to understand the spatial and temporal cycling of metals through the fluvial system. PMID:24463253

  13. Factors affecting the mobilization of DOC and metals in a peat soil under a warmer scenario

    NASA Astrophysics Data System (ADS)

    Carrera, Noela; Barreal, María. Esther; Briones, María. Jesús I.

    2010-05-01

    Most climate change models predict an increase of temperature of 3-5°C in Southern Europe by the end of this century (IPCC 2007). However, changes in summer precipitations are more uncertain, and although a decrease in rainfall inputs is forecasted by most models, the magnitude of this effect has not been assessed properly (Rowell & Jones 2006). Peatland areas are very sensitive to climate change. In Galicia they survive in upland areas where cold temperatures and continuous moisture supply allow their presence. Besides abiotic factors, alterations in soil fauna activities can also affect peat turnover. Among them, enchytraeids are usually the most numerous invertebrate group in these systems and both temperature and moisture content regulate their abundances and vertical distribution. Previous studies have demonstrated that changes in their populations associated to increasing temperatures can significantly affect metal mobilization, namely iron and aluminium, together with an important decline in the acidity of the soil solution, which possibly eliminates one of the critical mechanisms restricting DOC release (Carrera et al., 2009). In this study we investigated whether changes in water content of the peat soil and soil invertebrate activities associated to increasing temperatures could alter the mobilization rates of Fe and Al and in turn, DOC. 72 undisturbed soil cores (6 cm diameter x 10 cm deep) with their associated vegetation were taken from a blanket bog in Galicia (NW Spain). Back at the laboratory they were sliced horizontally into two layers, (0-5cm and 5-10cm) which were defaunated by means of a wet extraction. Thereafter, the two soil layers derived from the same core were introduced in each microcosm by placing them in their original position but separated by a 1 mm nylon mesh to allow the vertical movements of the organisms. Half of the experimental units were adjusted to the used moisture values observed in the field (80% SWC, H1), whereas in the

  14. Interactions between mercury and phytoplankton: speciation, bioavailability, and internal handling.

    PubMed

    Le Faucheur, Séverine; Campbell, Peter G C; Fortin, Claude; Slaveykova, Vera I

    2014-06-01

    The present review describes and discusses key interactions between mercury (Hg) and phytoplankton to highlight the role of phytoplankton in the biogeochemical cycle of Hg and to understand direct or indirect Hg effects on phytoplankton. Phytoplankton are exposed to various Hg species in surface waters. Through Hg uptake, phytoplankton affect the concentration, speciation, and fate of Hg in aquatic systems. The mechanisms by which phytoplankton take up Hg are still not well known, but several studies have suggested that both facilitated transport and passive diffusion could be involved. Once internalized, Hg will impact several physiological processes, including photosynthesis. To counteract these negative effects, phytoplankton have developed several detoxification strategies, such as the reduction of Hg to elemental Hg or its sequestration by intracellular ligands. Based on the toxicological studies performed so far in the laboratory, Hg is unlikely to be toxic to phytoplankton when they are exposed to environmentally relevant Hg concentrations. However, this statement should be taken with caution because questions remain as to which Hg species control Hg bioavailability and about Hg uptake mechanisms. Finally, phytoplankton are primary producers, and accumulated Hg will be transferred to higher consumers. Phytoplankton are a key component in aquatic systems, and their interactions with Hg need to be further studied to fully comprehend the biogeochemical cycle of Hg and the impact of this ubiquitous metal on ecosystems. PMID:24127330

  15. Strategies to predict metal mobility in surficial mining environments

    USGS Publications Warehouse

    Smith, Kathleen S.

    2007-01-01

    This report presents some strategies to predict metal mobility at mining sites. These strategies are based on chemical, physical, and geochemical information about metals and their interactions with the environment. An overview of conceptual models, metal sources, and relative mobility of metals under different geochemical conditions is presented, followed by a discussion of some important physical and chemical properties of metals that affect their mobility, bioavailability, and toxicity. The physical and chemical properties lead into a discussion of the importance of the chemical speciation of metals. Finally, environmental and geochemical processes and geochemical barriers that affect metal speciation are discussed. Some additional concepts and applications are briefly presented at the end of this report.

  16. Bioavailability of Cd, Cr, and Zn to bivalves in south San Francisco Bay

    SciTech Connect

    Lee, B.G.; Luoma, S.N.; Geen, A. van

    1995-12-31

    The bioavailability of Cd, Cr, and Zn to benthic bivalves (Potamocorbular amurensis and Macoma balthica) is affected by the type of natural particles the animals ingest, and the concentration and speciation of dissolved metals. During a spring phytoplankton bloom in south San Francisco Bay dissolved Cd and Zn concentrations decreased to about half of pre-bloom concentrations. The concentrations of particulate Cd and Zn concentrations increased due to preferential uptake of these metals by phytoplankton. Assimilation of Cd was more efficient when clams ate pure phytoplankton (80% for M. balthica and 29% for P. amurensis) than when they were exposed to inorganic-dominated particles. M. balthica and P. amurensis assimilated 72% and 42% of Zn associated with the particles during the bloom. Assimilation of Cr was low (<6%) and particle type had little effect on its availability. Accumulation of Cd via the dissolved route was low in high salinity waters (15 ppt). Metal bioaccumulation in the bivalves was modeled using the experimentally determined physiological parameters. The results were compared to metal concentrations in clams from the Bay. The model suggested that the clams accumulated Cd and Zn at higher rates during the phytoplankton bloom, although dissolved metal concentrations in the water column were reduced.

  17. Biogeochemical controls of uranium bioavailability from the dissolved phase

    USGS Publications Warehouse

    Croteau, Marie-Noele; Fuller, Christopher C.; Cain, Daniel J.; Campbell, Kate M.; Aiken, George R.

    2016-01-01

    To gain insights into the risks associated with uranium (U) mining and processing, we investigated the biogeochemical controls of U bioavailability in the model freshwater speciesLymnaea stagnalis (Gastropoda). Bioavailability of dissolved U(VI) was characterized in controlled laboratory experiments over a range of water hardness, pH, and in the presence of complexing ligands in the form of dissolved natural organic matter (DOM). Results show that dissolved U is bioavailable under all the geochemical conditions tested. Uranium uptake rates follow first order kinetics over a range encompassing most environmental concentrations. Uranium uptake rates in L. stagnalis ultimately demonstrate saturation uptake kinetics when exposure concentrations exceed 100 nM, suggesting uptake via a finite number of carriers or ion channels. The lack of a relationship between U uptake rate constants and Ca uptake rates suggest that U does not exclusively use Ca membrane transporters. In general, U bioavailability decreases with increasing pH, increasing Ca and Mg concentrations, and when DOM is present. Competing ions did not affect U uptake rates. Speciation modeling that includes formation constants for U ternary complexes reveals that the aqueous concentration of dicarbonato U species (UO2(CO3)2–2) best predicts U bioavailability to L. stagnalis, challenging the free-ion activity model postulate

  18. Site dependent bioavailability and metabolism of levosimendan in dogs.

    PubMed

    Antila, S; Huuskonen, H; Nevalainen, T; Kanerva, H; Vanninen, P; Lehtonen, L

    1999-10-01

    Site specific bioavailability and metabolism of levosimendan was studied in ten dogs by placing intestinal access port catheters in different parts of the gastrointestinal tract. 14C-labelled levosimendan (0.1 mg/kg) was administered intravenously, by gastric tube and directly through catheters that were placed in the duodenum, jejunum and ileum. Plasma samples were collected and radioactivity in the different organs and tissues was measured. The results of the present study showed that bioavailability of levosimendan was high varying from 71 to 86% after extravascular administration. Metabolite OR-1855 concentrations in the plasma were about 3-4 times higher after administration to the ileum compared to the other administration routes. It can be concluded that the bioavailability of levosimendan is not affected by site specific administration. The bacteria or enzymes responsible for the metabolism of levosimendan are located in the lower parts of the gastrointestinal tract.

  19. BIOSURFACES AND BIOAVAILABILITY: A NANOSCALE OVERVIEW

    EPA Science Inventory

    Environmentally, contaminant bioavailability is a key parameter in determining exposure assessment and ultimately risk assessment/risk management. Defining bioavailability requires knowledge of the contaminant spatial/temporal disposition and transportability and the thermodyna...

  20. Rice and Bean Targets for Biofortification Combined with High Carotenoid Content Crops Regulate Transcriptional Mechanisms Increasing Iron Bioavailability.

    PubMed

    Dias, Desirrê Morais; de Castro Moreira, Maria Eliza; Gomes, Mariana Juste Contin; Lopes Toledo, Renata Celi; Nutti, Marilia Regini; Pinheiro Sant'Ana, Helena Maria; Martino, Hércia Stampini Duarte

    2015-11-01

    Iron deficiency affects thousands of people worldwide. Biofortification of staple food crops aims to support the reduction of this deficiency. This study evaluates the effect of combinations of common beans and rice, targets for biofortification, with high carotenoid content crops on the iron bioavailability, protein gene expression, and antioxidant effect. Iron bioavailability was measured by the depletion/repletion method. Seven groups were tested (n = 7): Pontal bean (PB); rice + Pontal bean (R + BP); Pontal bean + sweet potato (PB + SP); Pontal bean + pumpkin (PB + P); Pontal bean + rice + sweet potato (PB + R + P); Pontal bean + rice + sweet potato (PB + R + SP); positive control (Ferrous Sulfate). The evaluations included: hemoglobin gain, hemoglobin regeneration efficiency (HRE), gene expression of divalente metal transporter 1 (DMT-1), duodenal citocromo B (DcytB), ferroportin, hephaestin, transferrin and ferritin and total plasma antioxidant capacity (TAC). The test groups, except the PB, showed higher HRE (p < 0.05) than the control. Gene expression of DMT-1, DcytB and ferroportin increased (p < 0.05) in the groups fed with high content carotenoid crops (sweet potato or pumpkin). The PB group presented lower (p < 0.05) TAC than the other groups. The combination of rice and common beans, and those with high carotenoid content crops increased protein gene expression, increasing the iron bioavailability and antioxidant capacity.

  1. Rice and Bean Targets for Biofortification Combined with High Carotenoid Content Crops Regulate Transcriptional Mechanisms Increasing Iron Bioavailability

    PubMed Central

    Dias, Desirrê Morais; de Castro Moreira, Maria Eliza; Gomes, Mariana Juste Contin; Lopes Toledo, Renata Celi; Nutti, Marilia Regini; Pinheiro Sant’Ana, Helena Maria; Martino, Hércia Stampini Duarte

    2015-01-01

    Iron deficiency affects thousands of people worldwide. Biofortification of staple food crops aims to support the reduction of this deficiency. This study evaluates the effect of combinations of common beans and rice, targets for biofortification, with high carotenoid content crops on the iron bioavailability, protein gene expression, and antioxidant effect. Iron bioavailability was measured by the depletion/repletion method. Seven groups were tested (n = 7): Pontal bean (PB); rice + Pontal bean (R + BP); Pontal bean + sweet potato (PB + SP); Pontal bean + pumpkin (PB + P); Pontal bean + rice + sweet potato (PB + R + P); Pontal bean + rice + sweet potato (PB + R + SP); positive control (Ferrous Sulfate). The evaluations included: hemoglobin gain, hemoglobin regeneration efficiency (HRE), gene expression of divalente metal transporter 1 (DMT-1), duodenal citocromo B (DcytB), ferroportin, hephaestin, transferrin and ferritin and total plasma antioxidant capacity (TAC). The test groups, except the PB, showed higher HRE (p < 0.05) than the control. Gene expression of DMT-1, DcytB and ferroportin increased (p < 0.05) in the groups fed with high content carotenoid crops (sweet potato or pumpkin). The PB group presented lower (p < 0.05) TAC than the other groups. The combination of rice and common beans, and those with high carotenoid content crops increased protein gene expression, increasing the iron bioavailability and antioxidant capacity. PMID:26610564

  2. Geological factors affecting the distribution of trace metals in glacial sediments of central Newfoundland

    USGS Publications Warehouse

    Klassen, R.A.

    1998-01-01

    In central Newfoundland (NTS 12A/10, 15, 16, 2H/1), As, Pb, and Zn concentrations in the clay-sized ( 1000 ppm), exceeding levels commonly set for purposes of environmental protection. Near Pb-Zn mines at Buchans, geochemical variation with depth reflects the dispersal of detritus from mineralized bedrock, and differences in sediment type and provenance. There, surface sediments are rich in granitic debris derived from the Topsails igneous terrane 5 km north of Buchans and contain low concentrations of trace metals. These sediments are compositionally unrelated to either Buchans Group volcanic rock or an underlying, older till enriched in sulphide minerals and trace metals. Metal-rich till extending up to 10 km southwest of Buchans results from combined glacial and debris flow transport related to two distinct geological events. Trace metals are enriched (two- to fourfold) in the clay-sized fraction of till compared to the silt and clay-sized, and are associated with Al- and Mg-bearing minerals that preferentially concentrate in the clay fraction. The geochemistry of the silt and clay-sized fraction can approximate that of the < 2-mm fraction. Background variations in till illustrate the important role of a geological framework to the interpretation of geochemical surveys and the origins of trace metals in the environment.

  3. Heavy metal balances of an Italian soil as affected by sewage sludge and Bordeaux mixture applications

    SciTech Connect

    Moolenaar, S.W.; Beltrami, P.

    1998-07-01

    Applications of sewage sludge and Bordeaux mixture (Bm) (a mixture of copper sulfate and lime) add heavy metals to the soil. At an experimental farm in the Cremona district (Italy), the authors measured current heavy metal contents in soil and their removal via harvested products. They also measured heavy metal adsorption by soil from this farm. With these data, projections were made of the long-term development of heavy metal (Cd, Cu, and Zn) contents in soil, crop removal, and leaching at different application rates of sewage sludge and Bm. These projections were compared with existing quality standards of the European Union (EU) and Italy with regard to soil and groundwater. The calculations reveal that the permitted annual application rates of sewage sludge and Bm are likely to result in exceedance of groundwater and soil standards. Sewage sludge applications, complying with the Italian legal limits, may pose problems for Cd, Cu, and Zn within 30, 70, and 100 yr, respectively. Furthermore, severe Cu pollution of integrated and especially organic (Bm only) vineyards is unavoidable with the currently allowed application rates of Bm. The results suggest that the current Italian soil protection policy as well as the EU policy are not conducive of a sustainable heavy metal management in agroecosystems.

  4. Factors affecting the strength of multipass low-alloy steel weld metal

    NASA Technical Reports Server (NTRS)

    Krantz, B. M.

    1972-01-01

    The mechanical properties of multipass high-strength steel weld metals depend upon several factors, among the most important being: (1) The interaction between the alloy composition and weld metal cooling rate which determines the as-deposited microstructure; and (2) the thermal effects of subsequent passes on each underlying pass which alter the original microstructure. The bulk properties of a multipass weld are therefore governed by both the initial microstructure of each weld pass and its subsequent thermal history. Data obtained for a high strength low alloy steel weld metal confirmed that a simple correlation exists between mechanical properties and welding conditions if the latter are in turn correlated as weld cooling rate.

  5. Repeated annual paper mill and alkaline residuals application affects soil metal fractions.

    PubMed

    Gagnon, Bernard; Robichaud, Annie; Ziadi, Noura; Karam, Antoine

    2014-03-01

    The application of industrial residuals in agriculture may raise concerns about soil and crop metal accumulation. A complete study using a fractionation scheme would reveal build-up in metal pools occurring after material addition and predict the transformation of metals in soil between the different forms and potential metal release into the environment. An experimental study was conducted from 2000 to 2008 on a loamy soil at Yamachiche, Quebec, Canada, to evaluate the effects of repeated annual addition of combined paper mill biosolids when applied alone or with several liming by-products on soil Cu, Zn, and Cd fractions. Wet paper mill biosolids at 0, 30, 60, or 90 Mg ha and calcitic lime, lime mud, or wood ash, each at 3 Mg ha with 30 Mg paper mill biosolids ha, were surface applied after seeding. The soils were sampled after 6 (soybean [ (L.) Merr.]) and 9 [corn ( L.)] crop years and analyzed using the Tessier fractionation procedure. Results indicated that biosolids addition increased exchangeable Zn and Cd, carbonate-bound Cd, Fe-Mn oxide-bound Zn and Cd, organically bound Cu and Zn, and total Zn and Cd fractions but decreased Fe-Mn oxide-bound Cu in the uppermost 30-cm layer. With liming by-products, there was a shift from exchangeable to carbonate-bound forms. Even with very small metals addition, paper mill and liming materials increased the mobility of soil Zn and Cd after 9 yr of application, and this metal redistribution resulted into higher crop grain concentrations. PMID:25602653

  6. Drug Bioavailability Data: (Un)Available.

    ERIC Educational Resources Information Center

    Capomacchia, Anthony C.; And Others

    1979-01-01

    The obtainability of drug bioavailability data from both brand-name and generic-drug manufacturers was studied to document the relative change in availability to pharmacy students of drug bioavailability data between 1978 and 1976 for drugs exhibiting bioavailability problems. The results indicate no major change. (JMD)

  7. The second-shell metal ligands of human arginase affect coordination of the nucleophile and substrate.

    PubMed

    Stone, Everett M; Chantranupong, Lynne; Georgiou, George

    2010-12-14

    The active sites of eukaryotic arginase enzymes are strictly conserved, especially the first- and second-shell ligands that coordinate the two divalent metal cations that generate a hydroxide molecule for nucleophilic attack on the guanidinium carbon of l-arginine and the subsequent production of urea and l-ornithine. Here by using comprehensive pairwise saturation mutagenesis of the first- and second-shell metal ligands in human arginase I, we demonstrate that several metal binding ligands are actually quite tolerant to amino acid substitutions. Of >2800 double mutants of first- and second-shell residues analyzed, we found more than 80 unique amino acid substitutions, of which four were in first-shell residues. Remarkably, certain second-shell mutations could modulate the binding of both the nucleophilic water/hydroxide molecule and substrate or product ligands, resulting in activity greater than that of the wild-type enzyme. The data presented here constitute the first comprehensive saturation mutagenesis analysis of a metallohydrolase active site and reveal that the strict conservation of the second-shell metal binding residues in eukaryotic arginases does not reflect kinetic optimization of the enzyme during the course of evolution. PMID:21053939

  8. The problems of weld metal or heat affected zone toughness in offshore structural steels

    SciTech Connect

    Hancock, P.; Spurrier, J.; Chubb, J.P.

    1996-12-01

    An extensive set of fracture toughness results for welded offshore structural steels, gathered from nine separate sponsoring companies, has been entered into a specially constructed database. With over eleven thousand Charpy results and over two thousand CTOD results available, it has been possible to analyze the occurrence of low toughness results with respect to variables such as thickness, PWHT, steel production route etc., even though the individual test programs were not specifically structured to do this. This paper concentrates on the toughness of the weld metal. The data demonstrates that the likelihood of a low toughness result from a CTOD test in weld metal at {minus}10 C is comparable with that from the HAZ region for welded offshore structural steels, and PWHT of the joint is beneficial in reducing the occurrence of low toughness values in the weld metal. It is therefore important that when the HAZ performance is assessed, either through weld procedure tests or plate prequalification procedures, adequate attention is also paid to the weld metal toughness.

  9. Creep properties of PWC-11 base metal and weldments as affected by heat treatment

    SciTech Connect

    Titran, R.H.; Moore, T.J.; Grobstein, T.L.

    1994-09-01

    In a preliminary study using single specimens for each condition, PWC-11 (a niobium-base alloy with a nominal composition of Nb-1%Zr-0.1%C) was creep tested at 1350 K and 40 MPa. Base metal specimens and specimens with transverse electrode beam welds were tested with and without a 1000 hr, 1350 K aging treatment prior to testing. In the annealed condition (1 hr at 1755 K + 2 hr at 1475 K), the base metal exhibited superior creep strength compared to the aged condition, reaching 1 percent strain in 3480 hr. A 1000 hr, 1350 K aging treatment prior to creep testing had a severe detrimental effect on creep strength of the base metal and transverse electron beam weldments, reducing the time to attain 1 percent strain by an order of magnitude. Extrapolated temperature compensated creep rates indicate that the present heat of PWC-11 may be four times as creep resistance as similarly tested Nb-1%Zr. The extrapolated stress to achieve 1 percent creep strain in 7 yr at 1350 K is 0.6 MPa for annealed Nb-1%Zr and 2.8 MPa for annealed and aged PWC-11 base metal with and without a transverse electron beam weld.

  10. Calibration of radiographs by a reference metal ball affects preoperative selection of implant size.

    PubMed

    Schropp, Lars; Stavropoulos, Andreas; Gotfredsen, Erik; Wenzel, Ann

    2009-12-01

    The aim was to evaluate the impact of a reference ball for calibration of periapical and panoramic radiographs on preoperative selection of implant size for three implant systems. Presurgical digital radiographs (70 panoramic, 43 periapical) from 70 patients scheduled for single-tooth implant treatment, recorded with a metal ball placed in the edentulous area, were evaluated by three observers with the intent to select the appropriate implant size. Four reference marks corresponding to the margins of the metal ball were manually placed on the digital image by means of computer software. Additionally, an implant with proper dimensions for the respective site was outlined by manually placing four reference marks. The diameter of the metal ball and the unadjusted length and width of the implant were calculated. Implant size was adjusted according to a "standard" calibration method (SCM; magnification factor 1.25 in panoramic images and 1.05 in periapical images) and according to a reference ball calibration method (RCM; true magnification). Based on the unadjusted as well as the adjusted implant dimensions, the implant size was selected among those available in a given implant system. For periapical radiographs, when comparing SCM and RCM with unadjusted implant dimensions, implant size changed in 42% and 58%, respectively. When comparing SCM and RCM, implant size changed in 24%. For panoramic radiographs, comparing SCM and RCM changed implant size in 48%. The use of a reference metal ball for calibration of periapical and panoramic radiographs when selecting implant size during treatment planning might be advantageous. PMID:19221809

  11. ENVIRONMENTAL RESEARCH BRIEF: SPATIAL HETEROGENEITY OF GEOCHEMICAL AND HYDROLOGIC PARAMETERS AFFECTING METAL TRANSPORT IN GROUND WATER

    EPA Science Inventory

    Reliable assessment of the hazards or risks arising from groundwater contamination and the design of effective means of rehabilitation of contaminated sites requires the capability to predict the movement and fate of dissolved solutes in groundwater. The modeling of metal transp...

  12. Creep properties of PWC-11 base metal and weldments as affected by heat treatment

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Moore, T. J.; Grobstein, T. L.

    1986-01-01

    In a preliminary study using single specimens for each condition, PWC-11 (a niobium-base alloy with a nominal composition of Nb-1%Zr-0.1%C) was creep tested at 1350 K and 40 MPa. Base metal specimens and specimens with transverse electron beam welds were tested with and without a 1000 hr, 1350 K aging treatment prior to testing. In the annealed condition (1 hr at 1755 K + 2 hr at 1475 K), the base metal exhibited superior creep strength compared to the nonaged condition, reaching 1 percent strain in 3480 hr. A 1000 hr, 1350 K aging treatment prior to creep testing had a severe detrimental effect on creep strength of the base metal and transverse electron beam weldments, reducing the time to attain 1 percent strain by an order of magnitude. Extrapolated temperature compensated creep rates indicate that the present heat of PWC-11 may be four times as creep resistant as similarly tested Nb-1%Zr. The extrapolated stress to achieve 1 percent creep strain in 7 yr at 1350 K is 2.7 MPa for annealed Nb-1%Zr and 12 MPa for annealed and aged PWC-11 base metal with and without a transverse electron beam weld.

  13. Evaluation of Metal Toxicity in Streams Affected by Abandoned Mine Lands, Upper Animas River Watershed, Colorado

    USGS Publications Warehouse

    Besser, John M.; Allert, Ann L.; Hardesty, Douglas K.; Ingersoll, Christopher G.; May, Thomas W.; Wang, Ning; Leib, Kenneth J.

    2001-01-01

    Acid drainage from abandoned mines and from naturally-acidic rocks and soil in the upper Animas River watershed of Colorado generates elevated concentrations of acidity and dissolved metals in stream waters and deposition of metal-contaminated particulates in streambed sediments, resulting in both toxicity and habitat degradation for stream biota. High concentrations of iron (Fe), aluminum (Al), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) occur in acid streams draining headwaters of the upper Animas River watershed, and high concentrations of some metals, especially Zn, persist in circumneutral reaches of the Animas River and Mineral Creek, downstream of mixing zones of acid tributaries. Seasonal variation of metal concentrations is reflected in variation in toxicity of stream water. Loadings of dissolved metals to the upper Animas River and tributaries are greatest during summer, during periods of high stream discharge from snowmelt and monsoonal rains, but adverse effects on stream biota may be greater during winter low-flow periods, when stream flows are dominated by inputs of groundwater and contain greatest concentrations of dissolved metals. Fine stream-bed sediments of the upper Animas River watershed also contain elevated concentrations of potentially toxic metals. Greatest sediment metal concentrations occur in the Animas River upstream from Silverton, where there are extensive deposits of mine and mill tailings, and in mixing zones in the Animas River and lower Mineral Creek, where precipitates of Fe and Al oxides also contain high concentrations of other metals. This report summarizes the findings of a series of toxicity studies in streams of the upper Animas River watershed, conducted on-site and in the laboratory between 1998 and 2000. The objectives of these studies were: (1) to determine the relative toxicity of stream water and fine stream-bed sediments to fish and invertebrates; (2) to determine the seasonal range of toxicity in stream

  14. Factors affecting the bond strength of denture base and reline acrylic resins to base metal materials

    PubMed Central

    TANOUE, Naomi; MATSUDA, Yasuhiro; YANAGIDA, Hiroaki; MATSUMURA, Hideo; SAWASE, Takashi

    2013-01-01

    Objective The shear bond strengths of two hard chairside reline resin materials and an auto-polymerizing denture base resin material to cast Ti and a Co-Cr alloy treated using four conditioning methods were investigated. Material and Methods Disk specimens (diameter 10 mm and thickness 2.5 mm) were cast from pure Ti and Co-Cr alloy. The specimens were wet-ground to a final surface finish of 600 grit, air-dried, and treated with the following bonding systems: 1) air-abraded with 50-70-µm grain alumina (CON); 2) 1) + conditioned with a primer, including an acidic phosphonoacetate monomer (MHPA); 3) 1) + conditioned with a primer including a diphosphate monomer (MDP); 4) treated with a tribochemical system. Three resin materials were applied to each metal specimen. Shear bond strengths were determined before and after 10,000 thermocycles. Results The strengths decreased after thermocycling for all combinations. Among the resin materials assessed, the denture base material showed significantly (p<0.05) greater shear bond strengths than the two reline materials, except for the CON condition. After 10,000 thermocycles, the bond strengths of two reline materials decreased to less than 10 MPa for both metals. The bond strengths of the denture base material with MDP were sufficient: 34.56 MPa for cast Ti and 38.30 for Co-Cr alloy. Conclusion Bonding of reline resin materials to metals assessed was clinically insufficient, regardless of metal type, surface treatment, and resin composition. For the relining of metal denture frameworks, a denture base material should be used. PMID:24037070

  15. Mining-caused changes to habitat structure affect amphibian and reptile population ecology more than metal pollution.

    PubMed

    Sasaki, Kiyoshi; Lesbarrères, David; Watson, Glen; Litzgus, Jacqueline

    2015-12-01

    Emissions from smelting not only contaminate water and soil with metals, but also induce extensive forest dieback and changes in resource availability and microclimate. The relative effects of such co-occurring stressors are often unknown, but this information is imperative in developing targeted restoration strategies. We assessed the role and relative effects of structural alterations of terrestrial habitat and metal pollution caused by century-long smelting operations on amphibian and reptile communities by collecting environmental and time- and area-standardized multivariate abundance data along three spatially replicated impact gradients. Overall, species richness, diversity, and abundance declined progressively with increasing levels of metals (As, Cu, and Ni) and soil temperature (T(s)) and decreasing canopy cover, amount of coarse woody debris (CWD), and relative humidity (RH). The composite habitat variable (which included canopy cover, CWD, T(s), and RH) was more strongly associated with most response metrics than the composite metal variable (As, Cu, and Ni), and canopy cover alone explained 19-74% of the variance. Moreover, species that use terrestrial habitat for specific behaviors (e.g., hibernation, dispersal), especially forest-dependent species, were more severely affected than largely aquatic species. These results suggest that structural alterations of terrestrial habitat and concomitant changes in the resource availability and microclimate have stronger effects than metal pollution per se. Furthermore, much of the variation in response metrics was explained by the joint action of several environmental variables, implying synergistic effects (e.g., exacerbation of metal toxicity by elevated temperatures in sites with reduced canopy cover). We thus argue that the restoration of terrestrial habitat conditions is a key to successful recovery of herpetofauna communities in smelting-altered landscapes. PMID:26910952

  16. Mining-caused changes to habitat structure affect amphibian and reptile population ecology more than metal pollution.

    PubMed

    Sasaki, Kiyoshi; Lesbarrères, David; Watson, Glen; Litzgus, Jacqueline

    2015-12-01

    Emissions from smelting not only contaminate water and soil with metals, but also induce extensive forest dieback and changes in resource availability and microclimate. The relative effects of such co-occurring stressors are often unknown, but this information is imperative in developing targeted restoration strategies. We assessed the role and relative effects of structural alterations of terrestrial habitat and metal pollution caused by century-long smelting operations on amphibian and reptile communities by collecting environmental and time- and area-standardized multivariate abundance data along three spatially replicated impact gradients. Overall, species richness, diversity, and abundance declined progressively with increasing levels of metals (As, Cu, and Ni) and soil temperature (T(s)) and decreasing canopy cover, amount of coarse woody debris (CWD), and relative humidity (RH). The composite habitat variable (which included canopy cover, CWD, T(s), and RH) was more strongly associated with most response metrics than the composite metal variable (As, Cu, and Ni), and canopy cover alone explained 19-74% of the variance. Moreover, species that use terrestrial habitat for specific behaviors (e.g., hibernation, dispersal), especially forest-dependent species, were more severely affected than largely aquatic species. These results suggest that structural alterations of terrestrial habitat and concomitant changes in the resource availability and microclimate have stronger effects than metal pollution per se. Furthermore, much of the variation in response metrics was explained by the joint action of several environmental variables, implying synergistic effects (e.g., exacerbation of metal toxicity by elevated temperatures in sites with reduced canopy cover). We thus argue that the restoration of terrestrial habitat conditions is a key to successful recovery of herpetofauna communities in smelting-altered landscapes.

  17. Metal pollution in a contaminated bay: relationship between metal geochemical fractionation in sediments and accumulation in a polychaete.

    PubMed

    Fan, Wenhong; Xu, Zhizhen; Wang, Wen-Xiong

    2014-08-01

    Jinzhou Bay in Northern China has been seriously contaminated with metals due to the impacts of smelting activities. In this study, we investigated the relationship between metal accumulation in a deposit-feeding polychaete Neanthes japonica and metal concentration and geochemical fractionation (Cd, Cu, Pb, Zn and Ni) in sediments of Jinzhou Bay. Compared with the historical data, metals in the more mobile geochemical fraction (exchangeable and carbonate fractions) were gradually partitioned into the more stable fraction (Fe-Mn oxides) over time. Metal concentration and geochemical fractionation in sediment significantly affected metal bioavailability and accumulation in polychaetes, except for Ni. Metal accumulation in polychaetes was significantly influenced by Fe or Mn content, and to a lesser degree by organic matter. Prediction of metal bioaccumulation in polychaetes was greatly improved by normalizing metal concentrations to Mn content in sediment. The geochemical fractionation of metals in sediments including the exchangeable, organic matter and Fe-Mn oxides were important in controlling the sediment metal bioavailability to polychaetes.

  18. Bioavailability of the Polyphenols: Status and Controversies

    PubMed Central

    D’Archivio, Massimo; Filesi, Carmelina; Varì, Rosaria; Scazzocchio, Beatrice; Masella, Roberta

    2010-01-01

    The current interest in polyphenols has been driven primarily by epidemiological studies. However, to establish conclusive evidence for the effectiveness of dietary polyphenols in disease prevention, it is useful to better define the bioavailability of the polyphenols, so that their biological activity can be evaluated. The bioavailability appears to differ greatly among the various phenolic compounds, and the most abundant ones in our diet are not necessarily those that have the best bioavailability profile. In the present review, we focus on the factors influencing the bioavailability of the polyphenols. Moreover, a critical overview on the difficulties and the controversies of the studies on the bioavailability is discussed. PMID:20480022

  19. Kinetic speciation and bioavailability of copper and nickel in mangrove sediments.

    PubMed

    Chakraborty, Parthasarathi; Chakraborty, Sucharita; Ramteke, Darwin; Chennuri, Kartheek

    2014-11-15

    An attempt was made to establish a mechanistic linkage between chemical speciation of copper and nickel, and their bioavailability in mangrove ecosystem. Kinetic speciation study was performed to determine the concentrations of labile metal-complexes and their dissociation rate constants in mangrove sediments. Concentrations of copper and nickel in the mangrove roots were used as indicators of their bioavailability. It was found that the bioaccumulation of both the metals gradually increased with the increasing concentrations of the labile metal complexes and their dissociation rate constants in the mangrove sediments. This study shows that concentration of labile metal (copper and nickel) complexes and their dissociation rate constants in mangrove sediment can be a good indicator of their bioavailability.

  20. Kinetic speciation and bioavailability of copper and nickel in mangrove sediments.

    PubMed

    Chakraborty, Parthasarathi; Chakraborty, Sucharita; Ramteke, Darwin; Chennuri, Kartheek

    2014-11-15

    An attempt was made to establish a mechanistic linkage between chemical speciation of copper and nickel, and their bioavailability in mangrove ecosystem. Kinetic speciation study was performed to determine the concentrations of labile metal-complexes and their dissociation rate constants in mangrove sediments. Concentrations of copper and nickel in the mangrove roots were used as indicators of their bioavailability. It was found that the bioaccumulation of both the metals gradually increased with the increasing concentrations of the labile metal complexes and their dissociation rate constants in the mangrove sediments. This study shows that concentration of labile metal (copper and nickel) complexes and their dissociation rate constants in mangrove sediment can be a good indicator of their bioavailability. PMID:25282180

  1. Determination of elastoplastic mechanical properties of the weld and heat affected zone metals in tailor-welded blanks by nanoindentation test

    NASA Astrophysics Data System (ADS)

    Ma, Xiangdong; Guan, Yingping; Yang, Liu

    2015-09-01

    The elastoplastic mechanical properties of the weld and heat affected zone metals have comparatively major impact on the forming process of tailor-welded blanks. A few scholars investigated the elastoplastic mechanical properties of the weld and heat affected zone, but they only simply assumed that it was a uniform distribution elastoplastic material different from the base materials. Four types of tailor-welded blanks which consist of ST12 and 304 stainless steel plates are selected as the research objects, the elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals are obtained based on the nanoindentation tests, and the Erichsen cupping tests are conducted by combining numerical simulation with physical experiment. The nanoindentation tests results demonstrate that the elastoplastic mechanical properties of the weld and heat affected zone metals are not only different from the base materials, but also varying between the weld metals and the heat affected zone metals. Comparing the Erichsen cupping test resulted from numerical with that from experimental method, it is found that the numerical value of Erichsen cupping test which consider the elastoplastic mechanical properties of the weld and heat affected zone metals have a good agreement with the experimental result, and the relative error is only 4.8%. The proposed research provides good solutions for the inhomogeneous elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals, and improves the control performance of tailor-welded blanks forming accuracy.

  2. Influence of dissolved organic nitrogen on Ni bioavailability in Prorocentrum donghaiense and Skeletonema costatum.

    PubMed

    Huang, Xu-Guang; Li, Hao; Huang, Bang-qin; Liu, Feng-Jiao

    2015-07-15

    Dissolved organic nitrogen (DON) is an important nutrient in the aquatic environment. This study examined the influence of DON addition on the adsorption, absorption, and distribution in macromolecular forms of environmentally deleterious trace metal (Ni) in Prorocentrum donghaiense and Skeletonema costatum over eight days. Ni adsorption and absorption of two species increased with the addition of urea, while Ni adsorption and absorption of two species in the presence of humic substances (HS) decreased. Meanwhile, Ni adsorption and absorption of P. donghaiense were higher than that of S. costatum. Furthermore, Ni contents in the protein fraction of the cells, both in P. donghaiense and S. costatum, were increased with both urea and HS addition. Thus, urea and HS input could impact Ni biogeochemistry and bioavailability, and then affect the biodynamics thereafter. PMID:25935806

  3. Trace metals in the brown mussel Perna perna from the coastal waters off Yemen (Gulf of Aden): how concentrations are affected by weight, sex, and seasonal cycle.

    PubMed

    Sokolowski, A; Bawazir, A S; Wolowicz, M

    2004-01-01

    The effects of seasonal cycle, sex of individuals, and changes of soft tissues weight on accumulated trace metal concentrations (Cd, Cu, Fe, Mn, Pb, Zn) were examined in the brown mussel Perna perna collected monthly from a natural rocky habitat in the coastal waters off Yemen, the Gulf of Aden, for a period of ten months. Basic hydrological parameters were recorded simultaneously. All metals analyzed displayed seasonal fluctuations with different temporal patterns and variable amplitudes. Similar seasonal cycles were observed for Cu, Mn, and Pb with an increase in accumulated concentration during the rainy period (NE monsoon), and a decrease thereafter. The concentrations of Cu, Mn, and partially Pb appeared to be related to environmental changes, the concentration of Pb possibly also being related to changes in body weight. Accumulated concentrations of Cu and Mn thus seem to reflect actual metal bioavailability in the ecosystem quite efficiently. The tissue levels of Fe and Cd changed inversely to fluctuations in body weight with additional variation due to monsoon-related environmental changes. The behaviors of Fe and Cd are therefore driven by seasonally changing body weight with a considerable contribution of external factors including fluctuations in hydrological conditions and metal exposure. The Zn concentrations tended to increase gradually throughout most of the year regardless of its concentration in the environment. Zinc is considered to be mainly regulated by physiological mechanisms in the mussel, making its accumulated metal concentration independent to some degree of environmental levels. Significant differences in trace metal concentrations between sexes (in favour of females) might have resulted from more intense formation of reproductive tissues and metal accumulation in sexual products of females during the prespawning and spawning periods. PMID:15025166

  4. Analysis of Operational Parameters Affecting the Sulfur Content in Hot Metal of the COREX Process

    NASA Astrophysics Data System (ADS)

    Wu, Shengli; Wang, Laixin; Kou, Mingyin; Wang, Yujue; Zhang, Jiacong

    2016-10-01

    The COREX process, which has obvious advantages in environment protection, still has some disadvantages. It has a higher sulfur content in hot metal (HM) than the blast furnace has. In the present work, the distribution and transfer of sulfur in the COREX have been analyzed and several operational parameters related to the sulfur content in HM ([pct S]) have been obtained. Based on this, the effects of the coal rate, slag ratio, temperature of HM, melting rate, binary basicity (R 2), the ratio of MgO/Al2O3, utilization of reducing gas, top gas consumption per ton burden solid, metallization rate, oxidation degree of reducing gas, and coal and DRI distribution index on the sulfur content in HM are investigated. What's more, a linear model has been developed and subsequently used for predicting and controlling the S content in HM of the COREX process.

  5. Bioavailability of lead in oysters fed to young Japanese quail

    SciTech Connect

    Stone, C.L.; Spivey Fox, M.R.; Hogye, K.S.

    1981-12-01

    The presence of lead in atmospheric particulates, soil, and seawater reflects the input of both domestic and industrial wastes. Because bivalves can concentrate large quantities of heavy metals, particularly lead, consumption of their meat may be a potential risk. The relative bioavailability of lead physiologicaly incorporated into oyster meat was investigated. Day-old Japanese quail were fed purified diets with three levels of lead added as either lead acetate, freeze-dried lead-dosed oyster, or lead acetate plus freeze-dried control oyster for 2 weeks. Feeding lead from any source had little or no effect on body weight, hemoglobin, hematocrit, or percentage ash in the tibia. The concentration of lead in tibia at each level of dietary lead for each type of diet was different from those for all other levels of dietary lead. Slope-ratio analysis of the data showed that lead intrinsically incorporated into oyster meat was 69-75% as bioavailable as lead in lead acetate at levels between 25 and 100 ppm dietary lead. The combinations of (1) control oyster meat with lead acetate and (2) lead acetate with copper and zinc levels equal to those in oyster meat gave responses similar to those of the lead-dosed oyster groups. Although these data showed lower bioavailability of lead in oyster meat as compared with lead acetate, the intercept of the lines at 25 ppm dietary lead suggests that the relative bioavailability may be reserved at lower levels of lead intake.

  6. Surface interactions affect the toxicity of engineered metal oxide nanoparticles toward Paramecium.

    PubMed

    Li, Kungang; Chen, Ying; Zhang, Wen; Pu, Zhichao; Jiang, Lin; Chen, Yongsheng

    2012-08-20

    To better understand the potential impacts of engineered metal oxide nanoparticles (NPs) in the ecosystem, we investigated the acute toxicity of seven different types of engineered metal oxide NPs against Paramecium multimicronucleatum, a ciliated protozoan, using the 48 h LC(50) (lethal concentration, 50%) test. Our results showed that the 48 h LC(50) values of these NPs to Paramecium ranged from 0.81 (Fe(2)O(3) NPs) to 9269 mg/L (Al(2)O(3) NPs); their toxicity to Paramecium increased as follows: Al(2)O(3) < TiO(2) < CeO(2) < ZnO < SiO(2) < CuO < Fe(2)O(3) NPs. On the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, interfacial interactions between NPs and cell membrane were evaluated, and the magnitude of interaction energy barrier correlated well with the 48 h LC(50) data of NPs to Paramecium; this implies that metal oxide NPs with strong association with the cell surface might induce more severe cytotoxicity in unicellular organisms.

  7. Variations in heavy metal contamination of stream water and groundwater affected by an abandoned lead-zinc mine in Korea.

    PubMed

    Lee, Jin-Yong; Choi, Jung-Chan; Lee, Kang-Kun

    2005-09-01

    This study evaluated variations in heavy metal contamination of stream waters and groundwaters affected by an abandoned lead-zinc mine, where a rockfill dam for water storage will be built 11 km downstream. For these purposes, a total of 10 rounds of stream and groundwater samplings and subsequent chemical analyses were performed during 2002-2003. Results of an exploratory investigation of stream waters in 2000 indicated substantial contamination with heavy metals including zinc (Zn), iron (Fe) and arsenic (As) for at least 6 km downstream from the mine. Stream waters near the mine showed metal contamination as high as arsenic (As) 8,923 microg L(-1), copper (Cu) 616 microg L(-1), cadmium (Cd) 223 microg L(-1) and lead (Pb) 10,590 microg L(-1), which greatly exceeded the Korean stream water guidelines. Remediation focused on the mine tailing piles largely improved the stream water qualities. However, there have still been quality problems for the waters containing relatively high concentrations of As (6-174 microg L(-1)), Cd (1-46 microg L(-1)) and Pb (2-26 microg L(-1)). Rainfall infiltration into the mine tailing piles resulted in an increase of heavy metals in the stream waters due to direct discharge of waste effluent, while dilution of the contaminated stream waters improved the water quality due to mixing with metal free rain waters. Levels of As, Cu and chromium (Cr) largely decreased after heavy rain but that of Pb was rather elevated. The stream waters were characterized by high concentrations of calcium (Ca) and sulfate (SO(4)), which were derived from dissolution and leaching of carbonate and sulfide minerals. It was observed that the proportions of Ca and SO(4) increased while those of bicarbonate (HCO(3)) and sodium and potassium (Na+K) decreased after a light rainfall event. Most interestingly, the reverse was generally detected for the groundwaters. The zinc, being the metal mined, was the most dominant heavy metal in the groundwaters (1758

  8. Variations in heavy metal contamination of stream water and groundwater affected by an abandoned lead-zinc mine in Korea.

    PubMed

    Lee, Jin-Yong; Choi, Jung-Chan; Lee, Kang-Kun

    2005-09-01

    This study evaluated variations in heavy metal contamination of stream waters and groundwaters affected by an abandoned lead-zinc mine, where a rockfill dam for water storage will be built 11 km downstream. For these purposes, a total of 10 rounds of stream and groundwater samplings and subsequent chemical analyses were performed during 2002-2003. Results of an exploratory investigation of stream waters in 2000 indicated substantial contamination with heavy metals including zinc (Zn), iron (Fe) and arsenic (As) for at least 6 km downstream from the mine. Stream waters near the mine showed metal contamination as high as arsenic (As) 8,923 microg L(-1), copper (Cu) 616 microg L(-1), cadmium (Cd) 223 microg L(-1) and lead (Pb) 10,590 microg L(-1), which greatly exceeded the Korean stream water guidelines. Remediation focused on the mine tailing piles largely improved the stream water qualities. However, there have still been quality problems for the waters containing relatively high concentrations of As (6-174 microg L(-1)), Cd (1-46 microg L(-1)) and Pb (2-26 microg L(-1)). Rainfall infiltration into the mine tailing piles resulted in an increase of heavy metals in the stream waters due to direct discharge of waste effluent, while dilution of the contaminated stream waters improved the water quality due to mixing with metal free rain waters. Levels of As, Cu and chromium (Cr) largely decreased after heavy rain but that of Pb was rather elevated. The stream waters were characterized by high concentrations of calcium (Ca) and sulfate (SO(4)), which were derived from dissolution and leaching of carbonate and sulfide minerals. It was observed that the proportions of Ca and SO(4) increased while those of bicarbonate (HCO(3)) and sodium and potassium (Na+K) decreased after a light rainfall event. Most interestingly, the reverse was generally detected for the groundwaters. The zinc, being the metal mined, was the most dominant heavy metal in the groundwaters (1758

  9. Geochemical partitioning of Cu and Ni in mangrove sediments: relationships with their bioavailability.

    PubMed

    Chakraborty, Parthasarathi; Ramteke, Darwin; Chakraborty, Sucharita

    2015-04-15

    Sequential extraction study was performed to determine the concentrations of non-residual metal-complexes in the mangrove sediments from the Divar Island, (west coast of India). Accumulation of metal in the mangrove roots (from the same location) was determined and used as an indicator of bioavailability of metal. An attempt was made to establish a mechanistic linkage between the non-residual metal complexes and their bioavailability in the mangrove system. The non-residual fractions of Cu and Ni were mainly associated with Fe/Mn oxyhydroxide and organic phases in the sediments. A part of these metal fractions were bioavailable in the system. These two phases were the major controlling factors for Ni speciation and their bioavailability in the studied sediments. However, Cu was found to interact more strongly with the organic phases than Ni in the mangrove sediments. Organic phases in the mangrove sediments acted as buffer to control the speciation and bioavailability of Cu in the system. PMID:25748786

  10. Drinking water aluminum and bioavailability

    SciTech Connect

    Reiber, S.H.; Kukull, W.; Standish-Lee, P.

    1995-05-01

    This article discusses chemical considerations relative to aluminum uptake in the body and reviews aluminum concentrations, species, and distribution in natural and treated waters. The issues of bioavailability and the likelihood that aluminum in drinking water is more readily assimilated than other forms of aluminum is reviewed and rejected based on issues of solubility and likely chemical transformations that take place in the human gut.

  11. Do fattening process and biological parameters affect the accumulation of metals in Atlantic bluefin tuna?

    PubMed

    Milatou, Niki; Dassenakis, Manos; Megalofonou, Persefoni

    2015-01-01

    The objective of this study was to determine the current levels of heavy metals and trace elements in Atlantic bluefin tuna muscle tissues and how they are influenced by the fattening process and various life history parameters to ascertain whether the concentrations in muscle tissue exceed the maximum levels defined by the European Commission Decision and to evaluate the health risk posed by fish consumption. A total of 20 bluefin tuna reared in sea cages, ranging from 160 to 295 cm in length and from 80 to 540 kg in weight, were sampled from a bluefin tuna farm in the Ionian Sea. The condition factor K of each specimen was calculated and their age was estimated. Heavy metal and trace element (Hg, Zn, Fe and Cu) contents were determined in muscle tissue using cold vapour atomic absorption spectrometry and flame and graphite furnace atomic absorption spectrometry. The total Hg concentrations ranged from 0.28 to 1.28 mg kg(-1) w/w, Zn from 5.81 to 76.37 mg kg(-1) w/w, Fe from 12.14 to 39.58 mg kg(-1) w/w, and Cu from 0.36 to 0.94 mg kg(-1) w/w. Only 5% of the muscle samples of tuna contained Hg above the maximum level laid down by the European Commission Decision. Moreover, 15% of the muscle samples contained Zn above the maximum level, while Fe and Cu concentrations were within the acceptable tolerable guideline values. The reared bluefin tuna had lower concentrations of Hg than the wild ones from the Mediterranean Sea. Hg and Fe concentrations showed a positive relationship with size and age of bluefin tuna, whereas negative relationships were found for the concentrations of Zn and Cu. The estimated dietary intake values of the analysed metals were mostly below the derived guidelines.

  12. Heavy metal desorption kinetic as affected by of anions complexation onto manganese dioxide surfaces.

    PubMed

    Zaman, Muhammad Iqbal; Mustafa, Syed; Khan, Sadullah; Xing, Baoshan

    2009-10-01

    Oxides of Fe, Al, and Mn have been studied extensively for heavy metals fixation in soil. However, little is known about the effect of anions on the desorption processes of these metals, especially from manganese dioxide. The purpose of this study was to examine the influence of residence time, temperature, and interacting anions on desorption of Pb(2+), Cd(2+) and Cu(2+) from MnO(2). MnO(2) was characterized by different experimental techniques prior to desorption studies. The sorption-desorption studies were conducted for Pb(2+), Cu(2+), and Cd(2+) ions in the presence of different electrolytes and at different temperature in the range 293-323 K. For all the sorption experiments, Pb(2+) sorption was the greatest and almost 100% sorption occurred in the presence of 0.001 M potassium phosphate. The sorption of metals under investigation followed the order Pb(2+)>Cu(2+)>Cd(2+), whereas the desorption order was Cd(2+)>Cu(2+)>Pb(2+) in 0.01 M potassium nitrate and sulphate. Only a small quantity of desorbed Pb was detected, even at the low value of pH 3. These results indicated the stability of lead phosphate precipitates or that phosphate treatment imparted stability to the ternary complexes formed at the MnO(2) surface. The detailed desorption kinetics were conducted only for Cd(2+) in 0.01 M potassium nitrate or 0.001 M phosphate at pH values of 3 and 4 in the temperature range 303-323 K. A substantial decrease in Cd(2+) desorption was noted with increasing pH and temperature and the desorption process reached equilibration in 3h at pH 4. However, at pH 3 the desorption fluctuated, which is probably due the dissolution of the solid at such low pH values.

  13. Friction, Wear, and Surface Damage of Metals as Affected by Solid Surface Films

    NASA Technical Reports Server (NTRS)

    Bisson, Edmond E; Johnson, Robert L; Swikert, Max A; Godfrey, Douglas

    1956-01-01

    As predicted by friction theory, experiments showed that friction and surface damage of metals can be reduced by solid surface films. The ability of materials to form surface films that prevent welding was a very important factor in wear of dry and boundary lubricated surfaces. Films of graphitic carbon on cast irons, nio on nickel alloys, and feo and fe sub 3 o sub 4 on ferrous materials were found to be beneficial. Abrasive films such as fe sub 2 o sub 3 or moo sub 3 were definitely detrimental. It appears that the importance of oxide films to friction and wear processes has not been fully appreciated.

  14. Chemical assessment and fractionation of some heavy metals and arsenic in agricultural soils of the mining affected Drama plain, Macedonia, northern Greece.

    PubMed

    Sofianska, E; Michailidis, K

    2015-03-01

    The concentration and chemical fractionation of some heavy metals (Mn, Pb, Zn, Cu, Cd) and As in agricultural soils of the western Drama plain (northern Greece) were determined using inductively coupled plasma-mass spectrometry (ICP-MS) technique. Drama plain constitutes the recipient of the effluents from Xiropotamos stream, which passes through the abandoned "25 km Mn-mine" place. Results showed that soils were found to have elevated concentrations of potentially harmful elements which are mainly associated with Mn mineralization. Peak total concentrations (in mg kg(-1)) of 130,013 for Mn, 1996 for Pb, 2140 for Zn, 147 for Cu, 28 for Cd, and 1077 for As were found in sampling points close and along both sides of the Xiropotamos stream, as a result of downstream transfer and dispersion of Mn mine wastes via flooding episodes. Contaminated sites are important sources of pollution and may pose significant environmental hazards for terrestrial and aquatic ecosystems. The geochemical influence of the mine wastes as a source of soil pollution is substantially reduced in sites 200 m remote of the Xiropotamos stream course. The chemical partitioning patterns indicated that the potential for Mn, Pb, Zn, Cu, Cd, and As remobilization and bioavailability is low, as most of these elements were present in the residual and/or the more stable Mn- and Fe-hydroxide fractions. The partitioning in significant percent (14-25 %) of Cd with the weakly bound exchangeable/carbonate fraction indicated that this metal could be highly mobile as well as bioavailable in the studied contaminated soils and this could be concern to human health. PMID:25663406

  15. Effect of cysteine and humic acids on bioavailability of Ag from Ag nanoparticles to a freshwater snail

    USGS Publications Warehouse

    Luoma, Samuel N.; Tasha Stoiber,; Croteau, Marie-Noele; Isabelle Romer,; Ruth Merrifeild,; Jamie Lead,

    2016-01-01

    Metal-based engineered nanoparticles (NPs) will undergo transformations that will affect their bioavailability, toxicity and ecological risk when released to the environment, including interactions with dissolved organic material. The purpose of this paper is to determine how interactions with two different types of organic material affect the bioavailability of silver nanoparticles (AgNPs). Silver uptake rates by the pond snail Lymnaea stagnalis were determined after exposure to 25 nmol l-1 of Ag as PVP AgNPs, PEG AgNPs or AgNO3, in the presence of either Suwannee River humic acid or cysteine, a high-affinity thiol-rich organic ligand. Total uptake rate of Ag from the two NPs was either increased or not strongly affected in the presence of 1 – 10 mg 1-1 humic acid. Humic substances contain relatively few strong ligands for Ag explaining their limited effects on Ag uptake rate. In contrast, Ag uptake rate was substantially reduced by cysteine. Three components of uptake from the AgNPs were quantified in the presence of cysteine using a biodynamic modeling approach: uptake of dissolved Ag released by the AgNPs, uptake of a polymer or large (>3kD) Ag-cysteine complex and uptake of the nanoparticle itself. Addition of 1:1 Ag:cysteine reduced concentrations of dissolved Ag, which contributed to, but did not fully explain the reductions in uptake. A bioavailable Ag-cysteine complex (> 3kD) appeared to be the dominant avenue of uptake from both PVP AgNPs and PEG AgNPs in the presence of cysteine. Quantifying the different avenues of uptake sets the stage for studies to assess toxicity unique to NPs.

  16. Cases of mercury exposure, bioavailability, and absorption.

    PubMed

    Gochfeld, Michael

    2003-09-01

    Mercury is a unique element that, unlike many metals, has no essential biological function. It is liquid at room temperature and is 13.6 times heavier than water. Its unique physical properties have been exploited for a variety of uses such as in mercury switches, thermostats, thermometers, and other instruments. Its ability to amalgamate with gold and silver are used in mining these precious metals and as a dental restorative. Its toxic properties have been exploited for medications, preservatives, antiseptics, and pesticides. For these reasons there have been many industrial uses of mercury, and occupational exposures of workers and industrial emissions and effluents contaminating air, water, soil, and ultimately food chains have long been a matter of great public health concern. This paper examines briefly six cases representing various forms of exposure to different species of mercury, and indicates the methodological issues in estimating exposure, bioavailability and absorption; these cases include Minamata disease in Japan, organic mercury poisoning in Iraq, methylmercury (MeHg) exposure in the Amazon, dimethylmercury (PMM) in the laboratory, an elemental mercury spill in Cajamarca, Peru, and a mercury-contaminated building in Hoboken, NJ, USA. Other scenarios that are not described include occupational exposure to mercury salts, mercurial preservatives in vaccines, cultural and ritualistic uses of mercury, and mercury in dental amalgams. PMID:12915150

  17. Binding intensity and metal partitioning in soils affected by mining and smelting activities in Minas Gerais, Brazil.

    PubMed

    Lopes, G; Costa, E T S; Penido, E S; Sparks, D L; Guilherme, L R G

    2015-09-01

    Mining and smelting activities are potential sources of heavy metal contamination, which pose a threat to human health and ecological systems. This study investigated single and sequential extractions of Zn, Pb, and Cd in Brazilian soils affected by mining and smelting activities. Soils from a Zn mining area (soils A, B, C, D, E, and the control soil) and a tailing from a smelting area were collected in Minas Gerais state, Brazil. The samples were subjected to single (using Mehlich I solution) and sequential extractions. The risk assessment code (RAC), the redistribution index (U ts ), and the reduced partition index (I R ) have been applied to the sequential extraction data. Zinc and Cd, in soil samples from the mining area, were found mainly associated with carbonate forms. This same pattern did not occur for Pb. Moreover, the Fe-Mn oxides and residual fractions had important contributions for Zn and Pb in those soils. For the tailing, more than 70 % of Zn and Cd were released in the exchangeable fraction, showing a much higher mobility and availability of these metals at this site, which was also supported by results of RAC and I R . These differences in terms of mobility might be due to different chemical forms of the metals in the two sites, which are attributable to natural occurrence as well as ore processing.

  18. Use of Tunable Whole-Cell Bioreporters to Assess Bioavailable Cadmium and Remediation Performance in Soils

    PubMed Central

    Yoon, Youngdae; Kim, Sunghoon; Chae, Yooeun; Kang, Yerin; Lee, Youngshim; Jeong, Seung-Woo; An, Youn-Joo

    2016-01-01

    It is important to have tools to measure the bioavailability to assess the risks of pollutants because the bioavailability is defined as the portions of pollutants showing the biological effects on living organisms. This study described the construction of tunable Escherichia coli whole-cell bioreporter (WCB) using the promoter region of zinc-inducible operon and its application on contaminated soils. It was verified that this WCB system showed specific and sensitive responses to cadmium rather than zinc in the experimental conditions. It was inferred that Cd(II) associates stronger with ZntR, a regulatory protein of zinc-inducible operon, than other metal ions. Moreover, the expression of reporter genes, egfp and mcherry, were proportional to the concentration of cadmium, thereby being a quantitative sensor to monitor bioavailable cadmium. The capability to determine bioavailable cadmium was verified with Cd(II) amended LUFA soils, and then the applicability on environmental systems was investigated with field soils collected from smelter area in Korea before and after soil-washing. The total amount of cadmium was decreased after soil washing, while the bioavailability was increased. Consequently, it would be valuable to have tools to assess bioavailability and the effectiveness of soil remediation should be evaluated in the aspect of bioavailability as well as removal efficiency. PMID:27171374

  19. 75 years after mining ends stream insect diversity is still affected by heavy metals.

    PubMed

    Lefcort, Hugh; Vancura, James; Lider, Edward L

    2010-11-01

    A century of heavy metal mining in the western United States has left a legacy of abandoned mines. While large operations have left a visible reminder, smaller one and two-man operations have been overgrown and largely forgotten. We revisited an area of northern Idaho that has not had active mining since at least 1932 and probably since 1910. At three sites along each of 10 mountain streams we sampled larval stream insects and correlated their community diversity to stream levels of arsenic, cadmium, lead, zinc, pH, temperature, oxygen content, and conductivity. Although the streams appear pristine, multivariate statistics indicated that cadmium and zinc levels were significantly correlated with fewer animals, fewer families, a smaller percentage of plecopterans (stoneflies), and lower Shannon H diversity values. After at least 75 years, abandoned mines appear to be still influencing stream communities. PMID:20680454

  20. Metal mobility in river and sea sediments affected by mine drainage (Sestri Levante, Italy)

    NASA Astrophysics Data System (ADS)

    Consani, Sirio; Capello, Marco; Cutroneo, Laura; Vagge, Greta; Zuccarelli, Andrea; Carbone, Cristina

    2016-04-01

    The Gromolo Torrent is a metal-polluted Apennine streamflow located near Sestri Levante (Liguria, Italy). It springs from the Monte Rocca Grande (850 m a.s.l.), and flows for 11.5 km through the Gromolo Valley before flowing into the Ligurian Sea. Inside the Gromolo basin is located the abandoned Fe-Cu mine of Libiola, which was the most important sulfide deposit of the Ligurian Apennines. In this mining site, extensive Acid Mine Drainage (AMD) processes are active, both inside the mine tunnels and in the sulfide rich waste-rock dumps; the solutions generated are characterised by low pH values and high amounts of dissolved SO42-, Fe, and other chemical elements such as Cu, Zn, Pb, Al, Co, and Ni. Moreover, exstensively precipitation of Fe and Cu-rich secondary minerals occurs both as soft crusts inside the mine adits and as loose suspensions associated with overland flow of mine drainage. AMD waters flowed into the uncontaminated Gromolo Torrent where abundant precipitation of amorphous Fe(III)-oxy-hydroxides occurred. The marine study area is characterised by the presence of the headland of Sestri Levante with two bays, the western one named "Baia delle Favole". The dynamics of the area is dominated by a permanent north-westward off-shore current flowing approximately along isobath, and an eastward counter-current along the north coast with a resulting drift of the coastal materials from the West to Est towards "Baia delle Favole". The bottom sediment are principally characterised by coarse materials, mostly consisting of fine sand, with a percentage of the fine sediment increasing inside the bay, where the dynamics is low. The aims of this work are to 1) evaluate the metal mobility of colloidal river precipitates for about 7 km up to its mouth in the Ligurian Sea; 2) verify the contamination state of the marine bottom sediments off the mouth of the Gromolo Torrent ("Baia delle Favole" of Sestri Levante), and 3) identify the main sources and diffusion ways of

  1. Recycled water sources influence the bioavailability of copper to earthworms.

    PubMed

    Kunhikrishnan, Anitha; Bolan, Nanthi S; Naidu, Ravi; Kim, Won-Il

    2013-10-15

    Re-use of wastewaters can overcome shortfalls in irrigation demand and mitigate environmental pollution. However, in an untreated or partially treated state, these water sources can introduce inorganic contaminants, including heavy metals, to soils that are irrigated. In this study, earthworms (Eisenia fetida) have been used to determine copper (Cu) bioavailability in two contrasting soils irrigated with farm dairy, piggery and winery effluents. Soils spiked with varying levels of Cu (0-1,000 mg/kg) were subsequently irrigated with recycled waters and Milli-Q (MQ) water and Cu bioavailability to earthworms determined by mortality and avoidance tests. Earthworms clearly avoided high Cu soils and the effect was more pronounced in the absence than presence of recycled water irrigation. At the highest Cu concentration (1,000 mg/kg), worm mortality was 100% when irrigated with MQ-water; however, when irrigated with recycled waters, mortality decreased by 30%. Accumulation of Cu in earthworms was significantly less in the presence of recycled water and was dependent on CaCl2-extractable free Cu(2+) concentration in the soil. Here, it is evident that organic carbon in recycled waters was effective in decreasing the toxic effects of Cu on earthworms, indicating that the metal-organic complexes decreased Cu bioavailability to earthworms.

  2. Assessment of the bioavailability of cadmium in Jamaican soils.

    PubMed

    Spence, Adrian; Hanson, Richard E; Grant, Charles N; Hoo Fung, Leslie; Rattray, Robin

    2014-07-01

    Extraordinary geogenic concentrations of cadmium (Cd) have been reported for some Jamaican soils. However, the bioavailability of the metal in these soils remains unknown. Here, the bioavailability of Cd in selected Jamaican soils was investigated through the determination of total and sequentially extractable concentrations in paired soil-plant (yam; Dioscorea sp.) samples (n = 24), using neutron activation analysis and atomic absorption spectroscopy as primary analytical techniques. Our results indicate that total soil Cd varied widely (2.2-148.7 mg kg(-1)), and on average, total extractable Cd accounted for ~55 % of the total soil Cd. The exchangeable and oxidizable species averaged 1.5 and 6.4 % of the total Cd, respectively, and, based on Spearman analysis, are the best predictors of yam Cd. There is also good evidence to suggest that variation in the bioavailability of the metal is in part controlled by the geochemical characteristics of the soils analyzed and is best explained by pH, cation exchange capacity (CEC) and organic matter content (% LOI).

  3. Contribution of trace metals in structuring in situ macroinvertebrate community composition along a salinity gradient

    SciTech Connect

    Peeters, E.T.H.M.; Gardeniers, J.J.P.; Koelmans, A.A.

    2000-04-01

    Macroinvertebrates were studied along a salinity gradient in the North Sea Canal, The Netherlands, to quantify the effect of trace metals (cadmium, copper, lead, zinc) on community composition. In addition, two methods for assessing metal bioavailability (normalizing metal concentrations on organic carbon and on the smallest sediment fraction) were compared. Factor analyses showed that normalizing trace metals resulted in an improved separation of trace metals from ecological factors (depth, organic carbon, granulometry, and chloride). The variation in the macroinvertebrate data was partitioned into four sources using partial canonical correspondence analysis, with the partitions being purely ecological factors, purely trace metals, mutual ecological factors and trace metals, and unexplained. Partial canonical correspondence analysis applied to total and normalized trace metal concentrations gave similar results in terms of unexplained variances. However, normalization on organic carbon resulted in the highest percentage of variation explained by purely ecological factors and purely trace metals. Accounting for bioavailability thus improves the identification of factors affecting the in situ community structure. Ecological factors explained 45.4% and trace metals 8.6% of the variation in the macroinvertebrate community composition in the ecosystem of the North Sea Canal. These contributions were significant, and it is concluded that trace metals significantly affected the community composition in an environment with multiple stressors. Variance partitioning is recommended for incorporation in further risk assessment studies.

  4. Effects of biochar and Arbuscular mycorrhizae on bioavailability of potentially toxic elements in an aged contaminated soil.

    PubMed

    Qiao, Yuhui; Crowley, David; Wang, Kun; Zhang, Huiqi; Li, Huafen

    2015-11-01

    Biochar pyrolyzed from corn stalks at 300°C/500°C and arbuscular mycorrhizae (AMF) were examined independently and in combination as possible treatments for soil remediation contaminated with Cd, Cr, Ni, Cu, Pb, Zn after 35 years following land application of sewage sludge in the 1970s. The results showed that biochar significantly decreased the heavy metal concentrations and their bioavailability for plants, and both biochars had similar such effects. AMF inoculation of corn plants had little effect on heavy metal bioavailability in either control or biochar amended soil, and no interaction between biochar and AMF was observed. Changes in DTPA extractable metals following biochar addition to soil were correlated with metal uptake by plants, whereas pore water metal concentrations were not predictive indicators. This research demonstrates positive benefits from biochar application for contaminated soil remediation, but remain ambiguous with regard to the benefits of simultaneous AMF inoculation on reduction of heavy metal bioavailability.

  5. Fate, bioavailability and toxicity of silver in estuarine environments

    USGS Publications Warehouse

    Luoma, S.N.; Ho, Y.B.; Bryan, G.W.

    1995-01-01

    The chemistry and bioavailability of Ag contribute to its high toxicity in marine and estuarine waters. Silver is unusual, in that both the dominant speciation reaction in seawater and the processes important in sorbing Ag in sediments favour enhanced bioavailability. Formation of a stable chloro complex favours dispersal of dissolved Ag, and the abundant chloro complex is available to biota. Sequestration by sediments also occurs, but with relatively slow kinetics. Amorphous aggregated coatings enhance Ag accumulation in sediments, as well as Ag uptake from sediments by deposit feeders. In estuaries, the bioaccumulation of Ag increases 56-fold with each unit of increased Ag concentration in sediments. Toxicity for sensitive marine species occurs at absolute concentrations as low as those observed for any nonalkylated metal, partly because bioaccumulation increases so steeply with contamination. The environmental window of tolerance to Ag in estuaries could be narrower than for many elements.

  6. Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters.

    PubMed

    Yoon, Youngdae; Kang, Yerin; Chae, Yooeun; Kim, Sunghoon; Lee, Youngshim; Jeong, Seung-Woo; An, Youn-Joo

    2016-02-01

    We investigated the quantification of bioavailable arsenic in contaminated soils and evaluation of soil-washing processes in the aspect of bioavailability using a novel bacterial bioreporter developed in present study. The whole-cell bioreporter (WCB) was genetically engineered by fusing the promoter of nik operon from Escherichia coli and green fluorescent protein as a sensing domain and reporter domain. Among eight well-known hazardous heavy metals and metalloid, this system responded specifically to arsenic, thereby inferring association of As(III) with NikR inhibits the repression. Moreover, the response was proportional to the concentration of As(III), thereby it was capable to determine the amount of bioavailable arsenic quantitatively in contaminated soils. The bioavailable portion of arsenic was 5.9 (3.46-10.96) and 0.9 (0.27-1.74) % of total from amended and site soils, respectively, suggesting the bioavailability of arsenic in soils was related to the soil properties and duration of aging. On the other hand, only 1.37 (0.21-2.97) % of total arsenic was extracted into soil solutions and 19.88 (11.86-28.27) % of arsenic in soil solution was bioavailable. This result showed that the soluble arsenic is not all bioavailable and most of bioavailable arsenic in soils is water non-extractable. In addition, the bioavailable arsenic was increased after soil-washing while total amount was decreased, thereby suggesting the soil-washing processes release arsenic associated with soil materials to be bioavailable. Therefore, it would be valuable to have a tool to assess bioavailability and the bioavailability should be taken into consideration for soil remediation plans. PMID:26411448

  7. Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters.

    PubMed

    Yoon, Youngdae; Kang, Yerin; Chae, Yooeun; Kim, Sunghoon; Lee, Youngshim; Jeong, Seung-Woo; An, Youn-Joo

    2016-02-01

    We investigated the quantification of bioavailable arsenic in contaminated soils and evaluation of soil-washing processes in the aspect of bioavailability using a novel bacterial bioreporter developed in present study. The whole-cell bioreporter (WCB) was genetically engineered by fusing the promoter of nik operon from Escherichia coli and green fluorescent protein as a sensing domain and reporter domain. Among eight well-known hazardous heavy metals and metalloid, this system responded specifically to arsenic, thereby inferring association of As(III) with NikR inhibits the repression. Moreover, the response was proportional to the concentration of As(III), thereby it was capable to determine the amount of bioavailable arsenic quantitatively in contaminated soils. The bioavailable portion of arsenic was 5.9 (3.46-10.96) and 0.9 (0.27-1.74) % of total from amended and site soils, respectively, suggesting the bioavailability of arsenic in soils was related to the soil properties and duration of aging. On the other hand, only 1.37 (0.21-2.97) % of total arsenic was extracted into soil solutions and 19.88 (11.86-28.27) % of arsenic in soil solution was bioavailable. This result showed that the soluble arsenic is not all bioavailable and most of bioavailable arsenic in soils is water non-extractable. In addition, the bioavailable arsenic was increased after soil-washing while total amount was decreased, thereby suggesting the soil-washing processes release arsenic associated with soil materials to be bioavailable. Therefore, it would be valuable to have a tool to assess bioavailability and the bioavailability should be taken into consideration for soil remediation plans.

  8. Biomonitoring metal deposition in Galicia (NW Spain) with mosses: factors affecting bioconcentration.

    PubMed

    Fernández, J A; Carballeira, A

    2002-01-01

    Three factors (canopy effect, lithology and seasonal variations) that may influence the concentrations of metals in terrestrial mosses were studied. The levels of 17 elements were determined in terrestrial mosses (Scleropodium purum (Hedw.) Limpr, and Hypnum cupressiforme Hedw.) collected from 75 sites in Galicia at two sampling times, in 1995 and 1997. In addition, monthly samples of S. purum were collected throughout a period of one year from four sites in the same area, for analysis of levels of eight elements. The first studied factor, collection of mosses from areas under tree cover, did not influence significantly the levels of the elements analysed. The second factor studied was the dominant lithology in the sampling area (granite, slate and schist). No significant differences were found between samples from sites where granites and slates dominated. Significant differences were found in the levels of Co, Cr, Ni and Mn in both species growing in granite and slate substrate areas when compared with those growing in schist areas. This was also found for Al and Fe in S. purum and for As in H. cupressiforme. The third factor investigated, using the results from the monthly survey, was the seasonal effect. No significant differences were found in the concentrations of all elements in S. purum throughout the year.

  9. Metal contaminated biochar and wood ash negatively affect plant growth and soil quality after land application.

    PubMed

    Jones, D L; Quilliam, R S

    2014-07-15

    Pyrolysis or combustion of waste wood can provide a renewable source of energy and produce byproducts which can be recycled back to land. To be sustainable requires that these byproducts pose minimal threat to the environment or human health. Frequently, reclaimed waste wood is contaminated by preservative-treated timber containing high levels of heavy metals. We investigated the effect of feedstock contamination from copper-preservative treated wood on the behaviour of pyrolysis-derived biochar and combustion-derived ash in plant-soil systems. Biochar and wood ash were applied to soil at typical agronomic rates. The presence of preservative treated timber in the feedstock increased available soil Cu; however, critical Cu guidance limits were only exceeded at high rates of feedstock contamination. Negative effects on plant growth and soil quality were only seen at high levels of biochar contamination (>50% derived from preservative-treated wood). Negative effects of wood ash contamination were apparent at lower levels of contamination (>10% derived from preservative treated wood). Complete removal of preservative treated timber from wood recycling facilities is notoriously difficult and low levels of contamination are commonplace. We conclude that low levels of contamination from Cu-treated wood should pose minimal environmental risk to biochar and ash destined for land application. PMID:24915641

  10. Bioavailability of quercetin: problems and promises.

    PubMed

    Cai, X; Fang, Z; Dou, J; Yu, A; Zhai, G

    2013-01-01

    Quercetin (QC) is a typical plant flavonoid, possesses diverse pharmacologic effects including antiinflammatory, antioxidant, anti-cancer, anti-anaphylaxis effects and against aging. However, the application of QC in pharmaceutical field is limited due to its poor solubility, low bioavailability, poor permeability and instability. To improve the bioavailability of QC, numerous approaches have been undertaken, involving the use of promising drug delivery systems such as inclusion complexes, liposomes, nanoparticles or micelles, which appear to provide higher solubility and bioavailability. Enhanced bioavailability of QC in the near future is likely to bring this product to the forefront of therapeutic agents for treatment of human disease.

  11. How contamination sources and soil properties can influence the Cd and Pb bioavailability to snails.

    PubMed

    Pauget, Benjamin; Gimbert, Frédéric; Coeurdassier, Mickael; Druart, Coline; Crini, Nadia; de Vaufleury, Annette

    2016-02-01

    To better understand the fate of metals in the environment, numerous parameters must be studied, such as the soil properties and the different sources of contamination for the organisms. Among bioindicators of soil quality, the garden snail (Cantareus aspersus) integrates multiple sources (e.g. soil, plant) and routes (e.g. digestive, cutaneous) of contamination. However, the contribution of each source on metal bioavailability and how soil properties influence these contributions have never been studied when considering the dynamic process of bioavailability. Using accumulation kinetics, this study showed that the main assimilation source of Cd was lettuce (68%), whereas the main source of Pb was the soil (90%). The plant contribution increased in response to a 2-unit soil pH decrease. Unexpectedly, an increase in the soil contribution to metal assimilation accompanied an increase in the organic matter (OM) content of the soil. For both metals, no significant excretion and influence of source on excretion have been modelled either during exposure or depuration. This study highlights how the contribution of different sources to metal bioavailability changes based on changes in soil parameters, such as pH and OM, and the complexity of the processes that modulate metal bioavailability.

  12. Bioavailability enhancement studies of amoxicillin with Nigella

    PubMed Central

    Ali, Babar; Amin, Saima; Ahmad, Javed; Ali, Abuzer; Ali, Mohd; Mir, Showkat R.

    2012-01-01

    Background & objectives: Nigella sativa Linn. is extensively used in the Indian diasporas as spice, which may interact with co-administered drugs and affect their intestinal availability. The purpose of this study was to investigate the effect of Nigella on bioavailability of amoxicillin in animal model. Methods: Everted rat intestinal sacs were used for in vitro experiment to study the transfer of amoxicillin across the gut. Amoxicillin (6 mg/ml) was co-infused with 3 and 6 mg of methanol and hexane extract of Nigella seeds separately. The amount of amoxicillin that traversed the gut was followed spectrophotometrically at 273 nm. For in vivo studies Wistar albino rats were used. Amoxicillin (25 mg/kg, po) was co-administered with hexane extract of Nigella seeds (25 mg/kg, po). The amount of amoxicillin in rat plasma was determined by UPLC-MS/MS method. Results: The in vitro studies both with methanol and hexane extracts of Nigella increased the permeation of amoxicillin significantly (P<0.001) as compared to control. Permeation was also found to be significantly higher for the hexane extract (P<0.001) in comparison to methanol extract at the same dose levels. In vivo experiments revealed that Cmax of amoxicillin in rat plasma when administered orally alone and in combination with hexane extract increased correspondingly from 4138.251 ± 156.93 to 5995.045 ± 196.28 ng/ml while as AUC0→t increased from 8890.40 ± 143.33 to 13483.46 ± 152.45 ng/ml.h. Interpretation & conclusions: Nigella enhanced amoxicillin availability in both in vivo and in vitro studies. As the increase in bioavailability is attributed, in part, to enhanced diffusivity across intestine, our study indicated that Nigella increased intestinal absorption of amoxicillin. PMID:22664507

  13. Do weirs affect the physical and geochemical mobility of toxic metals in mining-impacted floodplain sediments?

    NASA Astrophysics Data System (ADS)

    Bulcock, Amelia; Coleman, Alexandra; Whitfield, Elizabeth; Andres Lopez-Tarazon, Jose; Byrne, Patrick; Whitfield, Greg

    2015-04-01

    Weirs are common river structures designed to modify river channel hydraulics and hydrology for purposes of navigation, flood defence, irrigation and hydrometry. By design, weirs constrain natural flow processes and affect sediment flux and river channel forms leading to homogenous river habitats and reduced biodiversity. The recent movement towards catchment-wide river restoration, driven by the EU Water Framework Directive, has recognised weirs as a barrier to good ecological status. However, the removal of weirs to achieve more 'natural' river channels and flow processes is inevitably followed by a period of adjustment to the new flow regime and sediment flux. This period of adjustment can have knock-on effects that may increase flood risk, sedimentation and erosion until the river reaches a state of geomorphological equilibrium. Many catchments in the UK contain a legacy of toxic metals in floodplain sediments due to historic metal mining activities. The consequences of weir removal in these catchments may be to introduce 'stored' mine wastes into the river system with severe implications for water quality and biodiversity. The purpose of this study is to investigate the potential impact of a weir on the physical and geochemical mobilisation of mine wastes in the formerly mined River Twymyn catchment, Wales. Our initial investigations have shown floodplain and riverbed sediments to be grossly contaminated (up to 15,500 mg/kg Pb) compared to soil from a pre-mining Holocene terrace (180 mg/kg Pb). Geomorphological investigations also suggest that weir removal will re-establish more dynamic river channel processes resulting in lateral migration of the channel and erosion of contaminated floodplain sediments. These data will be used as a baseline for more detailed investigations of the potential impact of weirs on the physical and geochemical mobilisation of contaminated sediments. We have two specific objectives. (1) Geomorphological assessments will use unmanned

  14. Evaluation of factors affecting the analysis of metals using laser-induced breakdown spectroscopy

    SciTech Connect

    Cremers, D.A.; Romero, D.J.

    1986-01-01

    Some of the main factors affecting the analysis of solid steel using laser-induced break-down spectroscopy (LIBS) have been investigated and are reported here. Pulses from an electro-optically Q-switched Nd:YAG laser were focused on steel samples to generate a high temperature plasma. The spectrally resolved plasma light was time resolved and detected using a photodiode array. The effects that changes in the lens-to-sample distance, laser pulse energy, and position of the imaging lens had on the LIBS analysis are described. These effects were minimized by ratioing the absolute element signals to adjacent Fe-lines. Calibration curves for Mn, Si, and Cr are presented and the accuracy and precision of LIBS analysis listed for several elements. 12 refs.

  15. Model of the biotic cycle "plants germs - microorganisms" by affect heavy metal salts

    NASA Astrophysics Data System (ADS)

    Pisman, Tamara

    The growth of wheat germ roots exposed to heavy metal salts (ZnSO4) was studied experimentally and theoretically. During the experiment the plant seeds were preliminarily treated with an experimental microbial association. As a result, data were obtained about the decrease of the inhibiting effect of zinc on the growth of wheat germ roots where the seeds had been treated with the microbial association. To understand such effect, calculations were made to reveal the specific growth rate of a germ root depending on the inhibitor concentration with and without microorganism association treatment. It was shown that in case with the wheat germ roots the seeds of which had been treated with the microorganisms the inhibition constant (kI = 45 MPC (Maximum Permissible Concentration) was higher than in the case with the roots growing out of the seeds that hadn't been treated with the microorganisms (kI = 32 MPC). One of possible reasons for the decrease of growth inhibition of wheat germ roots by zinc salt is the protective function of microorganism's treatment of the seeds. To verify and confirm the experimental results, a mathematical model was created imitating the interaction between wheat germ roots and microbial association exposed to an inhibitor. Investigation of the model proved that the microbial association has a positive effect on the growth of wheat germ roots exposed to an inhibitor. The experimental and theoretical results agreed quantitatively. It was found out that the increase of the inhibitor concentration led to the effect of maximum relief of zinc inhibiting impact. The work is supported by grants Yenissei 07-04-96806.

  16. Bioavailability study for the Paducah Gaseous Diffusion Plant

    SciTech Connect

    Phipps, T.L.; Kszos, L.A.

    1996-08-01

    The overall purpose of this plan is to assess the bioavailability of metals in the continuous and intermittent outfalls. The results may be used to determine alternative metal limits that more appropriately measure the portion of metal present necessary for toxicity to aquatic life. These limits must remain protective of in-stream aquatic life; thus, the highest concentration of metal in the water will be determined concurrently with an assessment of acute or chronic toxicity on laboratory tests. Using the method developed by the Kentucky Division of Water (KDOW), biomonitoring results and chemical data will be used to recommend alternative metal limits for the outfalls of concern. The data will be used to meet the objectives of the study: (1) evaluate the toxicity of continuous outfalls and intermittent outfalls at Paducah Gaseous Diffusion Plant; (2) determine the mean ratio of dissolved to Total Recoverable metal for Cd, Cr, Cu, Pb, Ni, and Zn in the continuous and intermittent outfalls; (3) determine whether the concentration of total recoverable metal discharged causes toxicity to fathead minnows and /or Ceriodaphnia; and (4) determine alternative metal limits for each metal of concern (Cd, Cr, Cu, Pb, Ni, and Zn).

  17. Zinc bioavailability in pork loin

    SciTech Connect

    Hortin, A.E.; Bechtel, P.J. Baker, D.H. )

    1991-03-15

    Pork loins were uniformly trimmed and divided into three groups: raw, roasted and braised. Following cooking, the loins were freeze dried and then ground to a fine granular consistency. Zinc levels of 51, 60 and 63 mg/kg dry matter (DM) were contained in the raw, roasted and braised products, respectively. The chick bioavailability (BV) assay employed a Zn-deficient soy isolate basal diet that was supplemented with 0, 5 or 10 mg Zn/kg from ZnSO{sub 4}{center dot}H{sub 2}O to produce a standard straight-line response in tibia Zn as a function of supplemental Zn intake. Experimental Zn sources were also added to the basal diet to provide 10 mg Zn/kg. Standard curve methodology indicated that Zn BV was unaffected by cooking. Roasted pork lion had a Zn BV of 184% relative to ZnSO{sub 4}{center dot}H{sub 2}O. Addition of 0.40% L-cysteine to the diet containing 10 mg Zn/kg from ZnSO{sub 4}{center dot}H{sub 2}O increased Zn BV to 175%. Results with histidine as a Zn-enhancing factor were variable. It is apparent that pork loin is an excellent source of bioavailable Zn, and SH-containing compounds such as cysteine and glutathione that are present in meat may contribute to enhanced gut absorption of meat-source Zn.

  18. Bioavailability and toxicity of dietborne copper and zinc to fish

    USGS Publications Warehouse

    Clearwater, Susan J.; Farag, Aida M.; Meyer, J.S.

    2002-01-01

    To date, most researchers have used dietborne metal concentrations rather than daily doses to define metal exposure and this has resulted in contradictory data within and between fish species. It has also resulted in the impression that high concentrations of dietborne Cu and Zn (e.g.>900 mg kg−1 dry diet) are relatively non-toxic to fish. We re-analyzed existing data using rations and dietborne metal concentrations and used daily dose, species and life stage to define the toxicity of dietborne Cu and Zn to fish. Partly because of insufficient information we were unable to find consistent relationships between metal toxicity in laboratory-prepared diets and any other factor including, supplemented metal compound (e.g. CuSO4 or CuCl2), duration of metal exposure, diet type (i.e. practical, purified or live diets), or water quality (flow rates, temperature, hardness, pH, alkalinity). For laboratory-prepared diets, dietborne Cu toxicity occurred at daily doses of >1 mg kg−1 body weight d−1 for channel catfish (Ictalurus punctatus), 1–15 mg kg−1 body weight d−1 (depending on life stage) for Atlantic salmon (Salmo salar) and 35–45 mg kg−1 body weight d−1 for rainbow trout (Oncorhynchus mykiss). We found that dietborne Zn toxicity has not yet been demonstrated in rainbow trout or turbot (Scophthalmus maximus) probably because these species have been exposed to relatively low doses of metal (<90 mg kg−1 body weight d−1) and effects on growth and reproduction have not been analyzed. However, daily doses of 9–12 mg Zn kg−1 body weight d−1 in laboratory-prepared diets were toxic to three other species, carp Cyprinus carpio, Nile tilapia Oreochromis niloticus, and guppy Poecilia reticulata. Limited research indicates that biological incorporation of Cu or Zn into a natural diet can either increase or decrease metal bioavailability, and the relationship between bioavailability and toxicity remains unclear. We have resolved the contradictory data

  19. Influence of hardness on the bioavailability of silver to a freshwater snail after waterborne exposure to silver nitrate and silver nanoparticles.

    PubMed

    Stoiber, Tasha; Croteau, Marie-Noële; Römer, Isabella; Tejamaya, Mila; Lead, Jamie R; Luoma, Samuel N

    2015-01-01

    The release of Ag nanoparticles (AgNPs) into the aquatic environment is likely, but the influence of water chemistry on their impacts and fate remains unclear. Here, we characterize the bioavailability of Ag from AgNO(3) and from AgNPs capped with polyvinylpyrrolidone (PVP AgNP) and thiolated polyethylene glycol (PEG AgNP) in the freshwater snail, Lymnaea stagnalis, after short waterborne exposures. Results showed that water hardness, AgNP capping agents, and metal speciation affected the uptake rate of Ag from AgNPs. Comparison of the results from organisms of similar weight showed that water hardness affected the uptake of Ag from AgNPs, but not that from AgNO(3). Transformation (dissolution and aggregation) of the AgNPs was also influenced by water hardness and the capping agent. Bioavailability of Ag from AgNPs was, in turn, correlated to these physical changes. Water hardness increased the aggregation of AgNPs, especially for PEG AgNPs, reducing the bioavailability of Ag from PEG AgNPs to a greater degree than from PVP AgNPs. Higher dissolved Ag concentrations were measured for the PVP AgNPs (15%) compared to PEG AgNPs (3%) in moderately hard water, enhancing Ag bioavailability of the former. Multiple drivers of bioavailability yielded differences in Ag influx between very hard and deionized water where the uptake rate constants (k(uw), l g(-1) d(-1) ± SE) varied from 3.1 ± 0.7 to 0.2 ± 0.01 for PEG AgNPs and from 2.3 ± 0.02 to 1.3 ± 0.01 for PVP AgNPs. Modeling bioavailability of Ag from NPs revealed that Ag influx into L. stagnalis comprised uptake from the NPs themselves and from newly dissolved Ag. PMID:25676617

  20. Bioavailability and biodistribution of nanodelivered lutein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of the study was to evaluate the ability of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) to enhance lutein bioavailability. The bioavailability of free lutein and PLGA-NP lutein in rats was assessed by determining plasma pharmacokinetics and deposition in selected tissues. Lutein ...

  1. Microbe-induced changes in metal extractability from fly ash.

    PubMed

    Tiwari, Sadhna; Kumari, Babita; Singh, S N

    2008-04-01

    A low cost and eco-friendly technology to bioremediate toxic metals associated with fly ash dumps that contaminate ground and surface water in and around fly ash settling ponds, was investigated. The impact of augmentation of fly ash tolerant bacterial strains, isolated from Typha latifolia growing naturally on fly ash dumps, was studied for metal extractability. It was observed that most of the bacterial strains either induced the bioavailability of Fe, Zn and Ni or immobilized Pb, Cr, Cu, Cd in the fly ash. However, there were few exceptions also. In case of Ni, eight strains enhanced metal mobility, while others caused metal immobilization. The findings also suggest that metal solublization and immobilization are specific to bacterial strains. While induced bioavailability of metals by bacteria may be used to accelerate the phytoextraction of metals from fly ash by hyper accumulator plants, immobilization of metals can check their migration to water reservoirs and reduce the human suffering in affected areas. Thus, bacteria serve the dual purpose and may result in the microbe- assisted phytoremediation of contaminated sites.

  2. METHODS FOR THE SPECIATION OF METALS IN SOILS: A REVIEW

    EPA Science Inventory

    The inability to determine metal species in soils hampers efforts to understand the mobility, bioavailability, and fate of contaminant metals in environmental systems, to assess health risks posed by them, and to develop methods to remediate metal contaminated sites. Fortunately,...

  3. Bioavailability and chronic toxicity of cadmium in sediment to the estuarine amphipod Leptocheirus plumulosus

    SciTech Connect

    DeWitt, T.H.; Swartz, R.C.; Hansen, D.J.; McGovern, D.; Berry, W.J.

    1996-12-01

    Numerous studies have demonstrated the efficacy of interstitial water metal concentrations and simultaneously extracted metals/acid-volatile sulfide (SEM/AVS) ratios in explaining the acute toxicity of sediment-associated metals to benthic organisms. However, no full life-cycle chronic marine or estuarine tests have been conducted for this purpose. In this study, cohorts of newborn amphipods, Leptocheirus plumulosus, were exposed to cadmium-spiked estuarine sediment for 28 d to determine effects on mortality, growth, and reproduction relative to interstitial water and SEM/AVS normalization. Seven treatments of cadmium were tested: 0 (control), 0.34, 0.74, 1.31, 1.55, 2.23, and 4.82 M SEM{sub Cd}/AVS ratios (measured concentrations). Interstitial water cadmium (IW{sub Cd}) and sediment concentrations of SEM{sub Cd} and AVS were monitored periodically and by depth during the exposure. When sediment SEM{sub Cd}/AVS ratios were {le} 1.55, mean IW{sub Cd} concentrations were less than the 96-h water-only cadmium LC50 for juvenile and subadult L. plumulosus, and mortality, growth, and reproduction were not affected. When SEM{sub Cd}/AVD ratios were {ge} 2.23, IW{sub Cd} concentrations were more than 100 times greater than the 96-h water-only cadmium LC50, and all amphipods died. These results are consistent with predictions of metal bioavailability from acute tests with metal-spiked sediments, i.e., that sediments with SEM{sub Cd}/AVS ratios < 1 are not toxic, while sediments with SEM{sub Cd}/AVS ratios > 1 may be toxic.

  4. AVS regulation of cadmium bioavailability in a life-cycle sediment toxicity test using Leptocheirus plumulosus

    SciTech Connect

    DeWitt, T.H.; Swartz, R.C.; Hansen, D.J.; McGovern, D.; Berry, W.J.

    1995-12-31

    Numerous studies have shown the utility of interstitial water concentrations of metals and simultaneously extracted metals:acid volatile sulfide ratios (SEM:AVS) in explaining the acute toxicity of sediment-associated metals to benthic organisms, but no full life-cycle chronic tests have been conducted for this purpose. In this study, cohorts of newborn amphipods, Leptocheirus plumulosus, were exposed to cadmium-spiked estuarine sediment for 28 days to determine effects on mortality, growth, and reproduction relative to interstitial water and SEM:AVS normalizations. Seven treatments of Cd were tested: control, 0.35, 0.87, 1.32, 1.53, 2.22, and 5.10 molar SEM:AVS ratios. Overlying water, interstitial water and sediment concentrations of SEM Cd and AVS were monitored periodically and by depth during the exposure. When sediments SEM:AVS ratios were < 1.53, interstitial water concentrations of Cd were less than the 10-day water-only Cd LC50, and mortality, growth and reproduction were not affected. When SEM:AVS ratios were > 2.22, interstitial water Cd concentrations were greater than 100 times the 10-day water-only Cd LC50, and all amphipods died. These results are consistent with predictions of metal bioavailability from acute tests with metals-spiked sediments, i.e. that sediments with SEM:AVS ratios less than 1.0 and less than 0.5 interstitial water toxic units are not toxic, while sediments with SEM:AVS ratios greater than 1.0 and interstitial water toxic units (IWTUS) greater than 0.5 may be toxic.

  5. Climate change driven plant-metal-microbe interactions.

    PubMed

    Rajkumar, Mani; Prasad, Majeti Narasimha Vara; Swaminathan, Sandhya; Freitas, Helena

    2013-03-01

    Various biotic and abiotic stress factors affect the growth and productivity of crop plants. Particularly, the climatic and/or heavy metal stress influence various processes including growth, physiology, biochemistry, and yield of crops. Climatic changes particularly the elevated atmospheric CO₂ enhance the biomass production and metal accumulation in plants and help plants to support greater microbial populations and/or protect the microorganisms against the impacts of heavy metals. Besides, the indirect effects of climatic change (e.g., changes in the function and structure of plant roots and diversity and activity of rhizosphere microbes) would lead to altered metal bioavailability in soils and concomitantly affect plant growth. However, the effects of warming, drought or combined climatic stress on plant growth and metal accumulation vary substantially across physico-chemico-biological properties of the environment (e.g., soil pH, heavy metal type and its bio-available concentrations, microbial diversity, and interactive effects of climatic factors) and plant used. Overall, direct and/or indirect effects of climate change on heavy metal mobility in soils may further hinder the ability of plants to adapt and make them more susceptible to stress. Here, we review and discuss how the climatic parameters including atmospheric CO₂, temperature and drought influence the plant-metal interaction in polluted soils. Other aspects including the effects of climate change and heavy metals on plant-microbe interaction, heavy metal phytoremediation and safety of food and feed are also discussed. This review shows that predicting how plant-metal interaction responds to altering climatic change is critical to select suitable crop plants that would be able to produce more yields and tolerate multi-stress conditions without accumulating toxic heavy metals for future food security.

  6. Hydrolysis of soybean protein improves iron bioavailability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Iron is an important trace metal element in human body. Iron deficiency affects human health, especially pregnant women and children. Soybean protein is a popular food in Asia and can contain a high amount of iron (145.70±0.74 ug/g); however, it is usually reported as an inhibitor of iron absorption...

  7. Simultaneous detection of bioavailable arsenic and cadmium in contaminated soils using dual-sensing bioreporters.

    PubMed

    Yoon, Youngdae; Kim, Sunghoon; Chae, Yooeun; Kim, Shin Woong; Kang, Yerin; An, Gyeonghyeon; Jeong, Seung-Woo; An, Youn-Joo

    2016-04-01

    Whole-cell bioreporters (WCBs) have attracted increasing attention during the last few decades because they allow fast determination of bioavailable heavy metals in contaminated sites. Various WCBs to monitor specific heavy metals such as arsenic and cadmium in diverse environmental systems are available. However, currently, no study on simultaneous analysis of arsenic and cadmium has been reported, even though soils are contaminated by diverse heavy metals and metalloids. We demonstrated herein the development of dual-sensing WCBs to simultaneously quantify bioavailable arsenic and cadmium in contaminated sites by employing the promoter regions of the ars and znt operons as separate metal-sensing domains, and egfp and mcherry as reporter genes. The dual-sensing WCBs were generated by inserting two sets of genes into E. coli DH5α. The capability of WCBs was successfully proved to simultaneously quantify bioavailable arsenic and cadmium in amended Landwirtschaftliche Untersuchungs und Forschungsanstalt (LUFA) soils, and then, it was applied to contaminated field soils collected from a smelter area in Korea. As a result, it was noticed that the bioavailable portion of cadmium was higher than that of arsenic while the absolute amount of bioavailable arsenic and cadmium level was opposite. Since both cadmium and arsenic were assessed from the same E. coli cells, the data obtained by using dual-sensing WCBs would be more efficient and convenient than that from comparative WCB assay. In spite of advantageous aspects, to our knowledge, this is the first report on a dual-sensing WCB for rapid and concurrent quantification of bioavailable arsenic and cadmium in contaminated soils. PMID:26852408

  8. Simultaneous detection of bioavailable arsenic and cadmium in contaminated soils using dual-sensing bioreporters.

    PubMed

    Yoon, Youngdae; Kim, Sunghoon; Chae, Yooeun; Kim, Shin Woong; Kang, Yerin; An, Gyeonghyeon; Jeong, Seung-Woo; An, Youn-Joo

    2016-04-01

    Whole-cell bioreporters (WCBs) have attracted increasing attention during the last few decades because they allow fast determination of bioavailable heavy metals in contaminated sites. Various WCBs to monitor specific heavy metals such as arsenic and cadmium in diverse environmental systems are available. However, currently, no study on simultaneous analysis of arsenic and cadmium has been reported, even though soils are contaminated by diverse heavy metals and metalloids. We demonstrated herein the development of dual-sensing WCBs to simultaneously quantify bioavailable arsenic and cadmium in contaminated sites by employing the promoter regions of the ars and znt operons as separate metal-sensing domains, and egfp and mcherry as reporter genes. The dual-sensing WCBs were generated by inserting two sets of genes into E. coli DH5α. The capability of WCBs was successfully proved to simultaneously quantify bioavailable arsenic and cadmium in amended Landwirtschaftliche Untersuchungs und Forschungsanstalt (LUFA) soils, and then, it was applied to contaminated field soils collected from a smelter area in Korea. As a result, it was noticed that the bioavailable portion of cadmium was higher than that of arsenic while the absolute amount of bioavailable arsenic and cadmium level was opposite. Since both cadmium and arsenic were assessed from the same E. coli cells, the data obtained by using dual-sensing WCBs would be more efficient and convenient than that from comparative WCB assay. In spite of advantageous aspects, to our knowledge, this is the first report on a dual-sensing WCB for rapid and concurrent quantification of bioavailable arsenic and cadmium in contaminated soils.

  9. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).

    PubMed

    Liu, Hongyu; Probst, Anne; Liao, Bohan

    2005-03-01

    , and rice and capsicum had high Cd concentration in the edible parts. However, the toxic element concentrations in maize, sorghum, Adzuki bean, soybean and mung bean remained lower than the threshold levels. The bio-accumulation factors (BAFs) of crops were in the order: Cd>Zn>Cu>Pb>As. BAF was typically lower in the edible seeds or fruits than in stems and leaves. The accumulation effect strongly depends on the crop's physiological properties, the mobility, of the metals, and the availability of metals in soils but not entirely on the total element concentrations in the soils. Even so, the estimated daily intake amount of Cu, Zn, Cd, and Pb from the crops grown in the affected three sites and arsenic at SZY and GYB exceeded the RDA (Recommended dietary allowance) levels. Subsequently, the crops grown in Chenzhou Pb/Zn mine waste affected area might have a hazardous effect on the consumer's health. This area still needs effective measures to cure the As, Cd, Pb, Zn and Cu contamination. PMID:15740766

  10. Strategies to Overcome Heparins’ Low Oral Bioavailability

    PubMed Central

    Neves, Ana Rita; Correia-da-Silva, Marta; Sousa, Emília; Pinto, Madalena

    2016-01-01

    Even after a century, heparin is still the most effective anticoagulant available with few side effects. The poor oral absorption of heparins triggered the search for strategies to achieve oral bioavailability since this route has evident advantages over parenteral administration. Several approaches emerged, such as conjugation of heparins with bile acids and lipids, formulation with penetration enhancers, and encapsulation of heparins in micro and nanoparticles. Some of these strategies appear to have potential as good delivery systems to overcome heparin’s low oral bioavailability. Nevertheless, none have reached the market yet. Overall, this review aims to provide insights regarding the oral bioavailability of heparin. PMID:27367704

  11. Photo-transformation of pedogenic humic acid and consequences for Cd(II), Cu(II) and Pb(II) speciation and bioavailability to green microalga.

    PubMed

    Worms, Isabelle A M; Adenmatten, David; Miéville, Pascal; Traber, Jacqueline; Slaveykova, Vera I

    2015-11-01

    Humic substances (HS) play key role in toxic metal binding and protecting aquatic microorganisms from metal-induced stress. Any environmental changes that could alter HS concentration and reactivity can be expected to modify metal complexation and thus affect metal speciation and bioavailability to microalgae. The present study explores the influence of increased solar irradiance on the chemical structures and molecular weight of Elliott soil humic acid (EHA) and the associated consequences for Cd(II), Cu(II) and Pb(II) complexation and intracellular metal content in microalga. The results demonstrate that high radiance doses induce an oxidation of EHA with a formation of low molecular weight acids, an increase of -OH and -COOH group abundance, and a drop in EHA hydrodynamic size and molecular weight. The photo-induced structural changes are accompanied with a release of metal from M-EHA complexes and narrowing their size distribution, which in turn results in an increase of the intracellular Cd, Cu and Pb contents in microalga Chlamydomonas reinhardtii in agreement with the measured free metal ions concentrations. PMID:25563161

  12. Hologram QSAR model for the prediction of human oral bioavailability.

    PubMed

    Moda, Tiago L; Montanari, Carlos A; Andricopulo, Adriano D

    2007-12-15

    A drug intended for use in humans should have an ideal balance of pharmacokinetics and safety, as well as potency and selectivity. Unfavorable pharmacokinetics can negatively affect the clinical development of many otherwise promising drug candidates. A variety of in silico ADME (absorption, distribution, metabolism, and excretion) models are receiving increased attention due to a better appreciation that pharmacokinetic properties should be considered in early phases of the drug discovery process. Human oral bioavailability is an important pharmacokinetic property, which is directly related to the amount of drug available in the systemic circulation to exert pharmacological and therapeutic effects. In the present work, hologram quantitative structure-activity relationships (HQSAR) were performed on a training set of 250 structurally diverse molecules with known human oral bioavailability. The most significant HQSAR model (q(2)=0.70, r(2)=0.93) was obtained using atoms, bond, connection, and chirality as fragment distinction. The predictive ability of the model was evaluated by an external test set containing 52 molecules not included in the training set, and the predicted values were in good agreement with the experimental values. The HQSAR model should be useful for the design of new drug candidates having increased bioavailability as well as in the process of chemical library design, virtual screening, and high-throughput screening.

  13. Bioavailability of ranitidine in healthy Mexican volunteers: effect of food.

    PubMed

    Juárez-Olguín, H; Flores, J; Pérez, G; Hernández, G; Flores, C; Guillé, A; Camacho, A; Toledo, A; Carrasco, M; Lares, I

    2002-01-01

    Is well known that food can affect the bioavailability of several drugs, its impact is major for those drugs that have to act near of drug absorption. Documentation about alterations of ranitidine bioavailability by effect of food is poor. The purpose of this work was to evaluate the effect of food over the bioavailability of ranitidine. Twenty healthy Mexican volunteers were included for the study. The study was made in two stages, in the first one the volunteers had 12 hour fast and took a 300 mg of oral dose of ranitidine (without food, WOF) and blood samples were drawn. Two weeks later, the volunteers took a normal diet just before ranitidine intake (with food, WF). The area under the curve (AUC) was 30% greater in WOF, Cmax was 921.5 ng/ml (WF) vs. 1685.2 (WOF), and t1/2 was 2.70 +/- 1.38 (WF) h vs 3.66 +/- 1.34 (WOF). The AUC, Cmax and t1/2 were statistically different. It is evident that there are differences in the drug disposition due to the presence of food, then, it is possible that the efficacy of ranitidine as inhibitor of gastric secretion being limited by food.

  14. Precipitate microstructures and resulting properties of Al-Zn-Mg metal inert gas-weld heat-affected zones

    NASA Astrophysics Data System (ADS)

    Nicolas, M.; Deschamps, A.

    2004-05-01

    Using the combination of small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), the precipitate microstructure is quantitatively investigated in the heat-affected zones (HAZs) of Al-Zn-Mg metal inert gas (MIG)-welds, and the resulting mechanical properties are determined by hardness measurements. Three initial states prior to welding (T4, T6, and T7) are investigated, and the subsequent microstructure evolution during natural aging and postwelding heat treatments (PWHTs) is assessed. The critical part of the HAZ is shown to be the transition region where partial dissolution of the initially present precipitates occurs. In this transition zone, precipitate coarsening is shown to occur for the T6 and T7 initial states, contrarily to the T4 material. After PWHT, the T6 and T7 materials experience a weak region related to this coarsening behavior, whereas the T4 material HAZ is able to recover a homogeneous microstructure after a suitably chosen PWHT. Simple model ramp heat treatments are shown to describe the main phenomena involved in the HAZ. Finally, a precipitation hardening model is successfully applied to the microstructural data to describe the hardness profiles in the various HAZs.

  15. Bioavailability enhancement by addition of surfactant and surfactant-like compounds

    SciTech Connect

    Strong-Gunderson, J.M.; Palumbo, A.V.

    1995-12-31

    The bioavailability and microbial degradation of contaminant compounds (e.g., toluene and naphthalene) were enhanced by adding synthetic surfactants, biosurfactants, and nutrients with surfactant like properties. In addition to enhanced contaminant degradation, these surfactant compounds have the potential to change the availability of natural organic matter (NOM), and thus may affect overall site bioremediation. Two bacterial bioreporter strains that are induced by toluene or naphthalene were used to directly measure contaminant bioavailability. A cell-free biosurfactant product, Tween-80, and an oleophilic fertilizer were added to aqueous suspensions and soil slurries containing toluene or naphthalene. The addition of these surfactant compounds at or below the critical micelle concentration (CMC) enhanced bioavailability as measured by increased levels of bioluminescence. Bioluminescence data were coupled with gas chromatographic analyses. The addition of Tween-80 increased not only the bioavailability of the contaminants but also, in a separate assay, the bioavailability of recalcitrant NOM. The enhanced NOM bioavailability was inferred from measurements of biomass by optical density increases and plate counts. Thus, adding surfactant compounds for enhanced contaminant degradation has the potential to introduce additional competition for nutrients and microbial metabolism, a significant area of concern for in situ site remediation.

  16. Towards bioavailability-based soil criteria: past, present and future perspectives.

    PubMed

    Naidu, Ravi; Channey, Rufus; McConnell, Stuart; Johnston, Niall; Semple, Kirk T; McGrath, Steve; Dries, Victor; Nathanail, Paul; Harmsen, Joop; Pruszinski, Andrew; MacMillan, Janet; Palanisami, Thavamani

    2015-06-01

    Bioavailability has been used as a key indicator in chemical risk assessment yet poorly quantified risk factor. Worldwide, the framework used to assess potentially contaminated sites is similar, and the decisions are based on threshold contaminant concentration. The uncertainty in the definition and measurement of bioavailability had limited its application to environment risk assessment and remediation. Last ten years have seen major developments in bioavailability research and acceptance. The use of bioavailability in the decision making process as one of the key variables has led to a gradual shift towards a more sophisticated risk-based approach. Now a days, many decision makers and regulatory organisations 'more readily accept' this concept. Bioavailability should be the underlying basis for risk assessment and setting remediation goals of those contaminated sites that pose risk to environmental and human health. This paper summarises the potential application of contaminant bioavailability and bioaccessibility to the assessment of sites affected by different contaminants, and the potential for this to be the underlying basis for sustainable risk assessment and remediation in Europe, North America and Australia over the coming decade.

  17. Bioavailability of atrazine, pyrene and benzo[a]pyrene in European river waters

    USGS Publications Warehouse

    Akkanen, J.; Penttinen, S.; Haitzer, M.; Kukkonen, J.V.K.

    2001-01-01

    Thirteen river waters and one humic lake water were characterized. The effects of dissolved organic matter (DOM) on the bioavailability of atrazine, pyrene and benzo[a]pyrene (B[a]P) was evaluated. Binding of the chemicals by DOM was analyzed with the equilibrium dialysis technique. For each of the water samples, 24 h bioconcentration factors (BCFs) of the chemicals were measured in Daphnia magna. The relationship between DOM and other water characteristics (including conductivity, water hardness and pH), and bioavailability of the chemicals was studied by performing several statistical analyses, including multiple regression analyses, to determine how much of the variation of BCF values could be explained by the quantity and quality of DOM. The bioavailability of atrazine was not affected by DOM or any other water characteristics. Although equilibrium dialysis showed binding of pyrene to DOM, the bioavailability of pyrene was not significantly affected by DOM. The bioavailability of B[a]P was significantly affected by both the quality and quantity of DOM. Multiple regression analyses, using the quality (ABS270 and HbA%) and quantity of DOM as variables, explainedup to 70% of the variation in BCF of B[a]P in the waters studied. ?? 2001 Elsevier Science Ltd. All rights reserved.

  18. Monitoring bioavailable phosphorus in lotic systems: a polyphasic approach based on cyanobacteria.

    PubMed

    Muñoz-Martín, M Ángeles; Martínez-Rosell, Aitor; Perona, Elvira; Fernández-Piñas, Francisca; Mateo, Pilar

    2014-03-15

    Conventional assays to measure phosphorus in freshwater systems are sometimes not sufficient to quantify the actual bioavailable P for aquatic biota since some inorganic or organic P species may not be detected by chemical methods, and their bioavailability can be affected by a range of environmental factors. This situation could lead regulatory agencies to be unable to detect imminent ecosystem-degrading phenomena such as cyanobacterial blooms. It could also be an obstacle in studying the ecophysiological requirements of freshwater communities. P bioavailability in five rivers located in central Spain was analysed by a polyphasic approach (combinations of different marker types) based on cyanobacteria. This approach included a parallel study with the use of a self-luminescent P-cyanobacterial bioreporter based on a phosphatase alkaline promoter, determination of in situ alkaline phosphatase activities from cyanobacteria found at sampling sites, and the characterisation of cyanobacterial morphological features related to P bioavailability (hairs, polyphosphate granules and calyptras). An inverse relationship was found between values of bioavailable P, measured by the bioreporter and phosphatase activities. Cyanobacteria from sampling sites with low bioavailable P showed high phosphatase activity and vice versa, although some differences in values of this activity were observed in different cyanobacteria found at the same place, in relation to different growth strategies. Morphological characteristics associated with P limitation or P enrichment also varied between sampling locations. Cyanobacteria collected from sampling sites with reduced P bioavailability, measured by bioreporter and phosphatase activity, had a lower abundance of polyphosphate granules; those cyanobacteria capable of developing hairs or calyptras showed a greater abundance of these structures. Conversely, polyphosphate granules in cyanobacteria increased as P bioavailability increased as measured

  19. Influence of Diagenesis on Bioavailable Phosphorus in Lake Mendota, USA

    NASA Astrophysics Data System (ADS)

    Hoffman, A.; Armstrong, D.; Lathrop, R.; Penn, M.

    2013-12-01

    Phosphorus (P) is a major driver of productivity in many freshwater systems and in excess P can cause a variety of deleterious effects. Lake Mendota, located in Madison, Wisconsin (USA), is a eutrophic calcareous lake that is influenced by both urban and agricultural sources. As measures have been implemented to control point and non-point source pollution, internal sources, including release by sediments, has become more important. We collected multiple sediment cores from seven depositional basins to determine how diagenesis is influencing the bioavailability of sediment P. Cores were sliced in 1-cm intervals and analyzed for total P (TP), various P fractions, total metals, and multiple stable isotopes. While the average amount of total P that was bioavailable was 64.8%, the range noted was 39.2% to 88.6%. Spatial differences existed among the cores when comparing TP and bioavailable P among the cores. Depth profiles elucidated temporal differences as occasional increases in TP with depth were noted. These increases were found to contain a higher percent of bioavailable P. This variation was explored to determine if it resulted from differences in source material, for example inorganic P formed by diagenesis of organic P (algal derived) rather than soil P from external inputs. Saturation index modeling using MINEQL+ suggests that phosphorus concentrations in Lake Mendota pore waters are influenced by precipitation of vivianite (Fe3(PO4)2●8H2O) and certain calcium phosphates. However, hydroxyl apatite (Ca5(PO4)3(OH)), was highly supersaturated, indicating that precipitation of hydroxyl apatite is hindered and not important in controlling phosphate concentrations in these sediments. Yet even more important than precipitation reactions, adsorption/desorption characteristics of P seem to play a major role in P bioavailability. Sediment 210Pb and 137Cs activity profiles indicate differences exist among sedimentation rates for the various depositional sites in Lake

  20. Sources and accumulation of trace metals in sediments and the asiatic clam, corbicula fluminea in two South Carolina watersheds. Final report

    SciTech Connect

    Pickett, J.R.

    1992-01-01

    A survey of trace element concentrations in the benthic bivalve, Corbicula fluminea, was conducted on the Santee-Cooper River Basin, S.C. from 1989-1991 as part of a nonpoint source water quality assessment. Trace metal concentrations in clam tissues were examined in relation to temporal and spatial variations in river water and sediment. It was found that C. fluminea was a suitable bio-indicator for monitoring trace metal inputs within the basin. Solute concentrations of Cd, Cu and Zn underwent appreciable accumulation as demonstrated by strong solute vs. tissue correlations and high bioconcentration factors. Conversely, the bioavailability of trace elements to C. fluminea was not necessarily related to sediment concentrations, as correlations were not observed between trace elements in sediment and clam tissue. The differences in the bioavailability of metals observed between the watersheds was likely a function of physicochemical factors affecting the partitioning of metals between the water and sediment compartments.

  1. Influence of compost addition on lead and arsenic bioavailability in reclaimed orchard soil assessed using Porcellio scaber bioaccumulation test.

    PubMed

    Udovic, M; McBride, M B

    2012-02-29

    Long-term application of lead arsenate in orchards has led to a significant accumulation of Pb and As in the topsoil. Reclamation of old orchards for agricultural purposes entails the exposure of humans to Pb and As, which can be reduced by adequate remediation actions. In this study, we assessed the remediation efficiency of compost addition, commonly used as a sustainable agricultural practice, in decreasing the human exposure Pb and As by direct ingestion. The remediation was evaluated based on Pb and As bioavailability, assessed by means of a selective non-exhaustive chemical extraction (modified Morgan extraction, MME), with a physiologically based extraction test (PBET) for the assessment of Pb and As bioavailability in ingested soils and with a novel in vivo bioaccumulation test with isopods (Porcellio scaber). All the tests showed that compost addition consistently reduced Pb, but increased As potential bioavailability. The bioaccumulation test with P. scaber was sensitive to changes in Pb and As bioavailability in test soils. However, the results indicate that the bioavailability of As could be under- or overestimated using solely chemical extraction tests. Indirect assessment of trace metal bioavailability with bioaccumulation in isopods can be used as complementary source of data to the existing in vitro chemical extraction test approach for the estimation of human exposure to trace elements in polluted and remediated soil. This is the first report on the use of As accumulation in P. scaber as a tool for the assessment of As bioavailability in contaminated orchard soil.

  2. Inclusions and Microstructure of Ce-Added Weld Metal Coarse Grain Heat-Affected Zone in Twin-Wire Submerged-Arc Welding

    NASA Astrophysics Data System (ADS)

    Yu, S. F.; Yan, N.; Chen, Y.

    2016-06-01

    In high heat-input multi-pass twin-wire submerged-arc welding, weld metal of previous pass will be affected by the heat input of subsequent one and form coarse-grained heat-affected zone (CGHAZ). This study focused on the effects of welding thermal cycle on the inclusions and microstructure of Ce-alloyed weld metal CGHAZ. According to the study of inclusions and microstructure of weld metal CGHAZ, it was found that the composition and type of the inclusions did not change under the effect of welding thermal cycle. Although the inclusions were coarsened slightly, the promoting ability to acicular ferrite (AF) was not deprived after thermal cycling. There are three types of AF in weld metal CGHAZ, which include oxy-sulfides of Ce inclusions-promoted AF, home-position-precipitated AF, and sympathetic AF. Results showed more than 80% of microstructure was AF, which greatly benefited the mechanical properties of weld metal CGHAZ, even though granular bainite and M-A constituents were generated.

  3. Bioavailability enhancers of herbal origin: An overview

    PubMed Central

    Kesarwani, Kritika; Gupta, Rajiv

    2013-01-01

    Recently, the use of herbal medicines has been increased all over the world due to their therapeutic effects and fewer adverse effects as compared to the modern medicines. However, many herbal drugs and herbal extracts despite of their impressive in-vitro findings demonstrates less or negligible in-vivo activity due to their poor lipid solubility or improper molecular size, resulting in poor absorption and hence poor bioavailability. Nowadays with the advancement in the technology, novel drug delivery systems open the door towards the development of enhancing bioavailability of herbal drug delivery systems. For last one decade many novel carriers such as liposomes, microspheres, nanoparticles, transferosomes, ethosomes, lipid based systems etc. have been reported for successful modified delivery of various herbal drugs. Many herbal compounds including quercetin, genistein, naringin, sinomenine, piperine, glycyrrhizin and nitrile glycoside have demonstrated capability to enhance the bioavailability. The objective of this review is to summarize various available novel drug delivery technologies which have been developed for delivery of drugs (herbal), and to achieve better therapeutic response. An attempt has also been made to compile a profile on bioavailability enhancers of herbal origin with the mechanism of action (wherever reported) and studies on improvement in drug bioavailability, exhibited particularly by natural compounds. PMID:23620848

  4. Bioavailability enhancers of herbal origin: an overview.

    PubMed

    Kesarwani, Kritika; Gupta, Rajiv; Mukerjee, Alok

    2013-04-01

    Recently, the use of herbal medicines has been increased all over the world due to their therapeutic effects and fewer adverse effects as compared to the modern medicines. However, many herbal drugs and herbal extracts despite of their impressive in-vitro findings demonstrates less or negligible in-vivo activity due to their poor lipid solubility or improper molecular size, resulting in poor absorption and hence poor bioavailability. Nowadays with the advancement in the technology, novel drug delivery systems open the door towards the development of enhancing bioavailability of herbal drug delivery systems. For last one decade many novel carriers such as liposomes, microspheres, nanoparticles, transferosomes, ethosomes, lipid based systems etc. have been reported for successful modified delivery of various herbal drugs. Many herbal compounds including quercetin, genistein, naringin, sinomenine, piperine, glycyrrhizin and nitrile glycoside have demonstrated capability to enhance the bioavailability. The objective of this review is to summarize various available novel drug delivery technologies which have been developed for delivery of drugs (herbal), and to achieve better therapeutic response. An attempt has also been made to compile a profile on bioavailability enhancers of herbal origin with the mechanism of action (wherever reported) and studies on improvement in drug bioavailability, exhibited particularly by natural compounds. PMID:23620848

  5. Heavy metal contamination of agricultural soils affected by mining activities around the Ganxi River in Chenzhou, Southern China.

    PubMed

    Ma, Li; Sun, Jing; Yang, Zhaoguang; Wang, Lin

    2015-12-01

    Heavy metal contamination attracted a wide spread attention due to their strong toxicity and persistence. The Ganxi River, located in Chenzhou City, Southern China, has been severely polluted by lead/zinc ore mining activities. This work investigated the heavy metal pollution in agricultural soils around the Ganxi River. The total concentrations of heavy metals were determined by inductively coupled plasma-mass spectrometry. The potential risk associated with the heavy metals in soil was assessed by Nemerow comprehensive index and potential ecological risk index. In both methods, the study area was rated as very high risk. Multivariate statistical methods including Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis were employed to evaluate the relationships between heavy metals, as well as the correlation between heavy metals and pH, to identify the metal sources. Three distinct clusters have been observed by hierarchical cluster analysis. In principal component analysis, a total of two components were extracted to explain over 90% of the total variance, both of which were associated with anthropogenic sources. PMID:26547321

  6. Heavy metal contamination of agricultural soils affected by mining activities around the Ganxi River in Chenzhou, Southern China.

    PubMed

    Ma, Li; Sun, Jing; Yang, Zhaoguang; Wang, Lin

    2015-12-01

    Heavy metal contamination attracted a wide spread attention due to their strong toxicity and persistence. The Ganxi River, located in Chenzhou City, Southern China, has been severely polluted by lead/zinc ore mining activities. This work investigated the heavy metal pollution in agricultural soils around the Ganxi River. The total concentrations of heavy metals were determined by inductively coupled plasma-mass spectrometry. The potential risk associated with the heavy metals in soil was assessed by Nemerow comprehensive index and potential ecological risk index. In both methods, the study area was rated as very high risk. Multivariate statistical methods including Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis were employed to evaluate the relationships between heavy metals, as well as the correlation between heavy metals and pH, to identify the metal sources. Three distinct clusters have been observed by hierarchical cluster analysis. In principal component analysis, a total of two components were extracted to explain over 90% of the total variance, both of which were associated with anthropogenic sources.

  7. Metal speciation and immobilization reactions affecting the true efficiency of artificial wetlands to treat acid mine drainage. Research report

    SciTech Connect

    Karathanasis, A.D.; Thompson, Y.L.

    1990-08-01

    The ability of constructed wetlands to lower total Al, Cu, Fe, Mn, and Zn concentrations and organically complex the metals in acid mine drainage (AMD) was investigated under greenhouse and field conditions. In the greenhouse study, Typha plants grown in six different substrates received simulated acid mine drainage of low metal load for five months. Most effluents, especially those from ground flows, showed significant decreases in acidity and metal concentrations. The pine needle and hay substrates most effectively reduced acidity and total Al levels. The metal concentration and acidity of a very high metal load AMD were also reduced substantially during the first six months of treatment with a wetland which was constructed by the U.S. Forest Service in McCreary County, KY and used mushroom compost as a substrate. After 8 months of operation, however, and during periods of high flow rates (> 10 gallons/min) the efficiency of the wetland was drastically reduced, apparently due to reduced residence time, insufficient size and metal overloading. The metals in Fe, Mn, and Zn showed the highest tendency for residual retention, while Al and especially Cu showed high affinity for organic retention. Exchangeable and sorbed forms were present in very small concentrations and in many cases were almost negligible.

  8. Metals affect the structure and activity of human plasminogen activator inhibitor-1. II. Binding affinity and conformational changes

    PubMed Central

    Thompson, Lawrence C; Goswami, Sumit; Peterson, Cynthia B

    2011-01-01

    Human plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor with a metastable active conformation. The lifespan of the active form of PAI-1 is modulated via interaction with the plasma protein, vitronectin, and various metal ions. These metal ions fall into two categories: Type I metals, including calcium, magnesium, and manganese, stabilize PAI-1 in the absence of vitronectin, whereas Type II metals, including cobalt, copper, and nickel, destabilize PAI-1 in the absence of vitronectin, but stabilize PAI-1 in its presence. To provide a mechanistic basis for understanding the unusual modulation of PAI-1 structure and activity, the binding characteristics and conformational effects of these two types of metals were further evaluated. Steady-state binding measurements using surface plasmon resonance indicated that both active and latent PAI-1 exhibit a dissociation constant in the low micromolar range for binding to immobilized nickel. Stopped-flow measurements of approach-to-equilibrium changes in intrinsic protein fluorescence indicated that the Type I and Type II metals bind in different modes that induce distinct conformational effects on PAI-1. Changes in the observed rate constants with varying concentrations of metal allowed accurate determination of binding affinities for cobalt, nickel, and copper, yielding dissociation constants of ∼40, 30, and 0.09 μM, respectively. Competition experiments that tested effects on PAI-1 stability were consistent with these measurements of affinity and indicate that copper binds tightly to PAI-1. PMID:21280128

  9. Arsenic and other heavy metals in soils from an arsenic-affected area of West Bengal, India.

    PubMed

    Roychowdhury, Tarit; Uchino, Tadashi; Tokunaga, Hiroshi; Ando, Masanori

    2002-11-01

    Domkal is one of the 19, out of 26 blocks in Murshidabad district where groundwater contains arsenic above 0.05 mg/l. Many millions of cubic meters of groundwater along with arsenic and other heavy metals are coming out from both the hand tubewells, used by the villagers for their daily needs and shallow big diameter tubewells, installed for agricultural irrigation and depositing on soil throughout the year. So there is a possibility of soil contamination which can moreover affect the food chain, cultivated in this area. A somewhat detailed study was carried out, in both micro- and macrolevel, to get an idea about the magnitude of soil contamination in this area. The mean concentrations (mg/kg) of As (5.31), Fe (6740), Cu (18.3), Pb (10.4), Ni (18.8), Mn (342), Zn (44.3), Se (0.53), Mg (534), V (44.6), Cr (33.1), Cd (0.37), Sb (0.29) and Hg (0.54) in fallow land soils are within the normal range. The mean As (10.7), Fe (7860) and Mg (733) concentrations (mg/kg) are only in higher side whereas Hg (0.17 mg/kg) is in lower side in agricultural land soils, compared to the fallow land soils. Arsenic concentrations (11.5 and 28.0 mg/kg respectively) are high in those agricultural land soils where irrigated groundwater contains high arsenic (0.082 and 0.17 mg/l respectively). The total arsenic withdrawn and mean arsenic deposition per land by the 19 shallow tubewells per year are 43.9 kg (mean: 2.31 kg, range: 0.53-5.88 kg) and 8.04 kg ha(-1) (range: 1.66-16.8 kg ha(-1)) respectively. For the macrolevel study, soil arsenic concentration decreases with increase of distance from the source and higher the water arsenic concentration, higher the soil arsenic at any distance. A proper watershed management is urgently required to save the contamination.

  10. Metals, Parasites, and Environmental Conditions Affecting Breeding Populations of Spotted Salamanders (Ambystoma maculatum) in Northern Arkansas, USA.

    PubMed

    DeMali, Heather M; Trauth, Stanley E; Bouldin, Jennifer L

    2016-06-01

    The spotted salamander (Ambystoma maculatum) is indigenous to northern Arkansas, and several breeding sites are known to exist in the region. Spotted salamanders (n = 17) were collected and examined for parasites and only three females harbored nematodes (Physaloptera spp.). Chronic aquatic bioassays were conducted using water collected from eight breeding ponds during different hydroperiod events. No lethal or sublethal effects were measured in Ceriodaphnia dubia; however, decreased growth and survival were seen in Pimephales promelas. Aqueous, sediment, and salamander hepatic samples were analyzed for As, Cd, Cu, Pb, and Ni. Metal analysis revealed possible increased metal exposure following precipitation, with greatest metal concentrations measured in sediment samples. Hepatic metal concentrations were similar in parasitized and non-parasitized individuals, and greatest Pb concentrations were measured following normal precipitation events. Determining environmental stressors of amphibians, especially during their breeding and subsequent larval life stage, is imperative to improve species conservation. PMID:26886425

  11. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables.

    PubMed

    Waseem, Amir; Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid; Murtaza, Ghulam

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health.

  12. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables.

    PubMed

    Waseem, Amir; Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid; Murtaza, Ghulam

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health. PMID:25276818

  13. Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables

    PubMed Central

    Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health. PMID:25276818

  14. Bioavailability of Polyphenol