Science.gov

Sample records for affect metal bioavailability

  1. Caddisflies as biomonitors identifying thresholds of toxic metal bioavailability that affect the stream benthos.

    PubMed

    Rainbow, Philip S; Hildrew, Alan G; Smith, Brian D; Geatches, Tim; Luoma, Samuel N

    2012-07-01

    It has been proposed that bioaccumulated concentrations of toxic metals in tolerant biomonitors be used as indicators of metal bioavailability that could be calibrated against the ecological response to metals of sensitive biotic assemblages. Our hypothesis was that metal concentrations in caddisfly larvae Hydropsyche siltalai and Plectrocnemia conspersa, as tolerant biomonitors, indicate metal bioavailability in contaminated streams, and can be calibrated against metal-specific ecological responses of mayflies. Bioaccumulated concentrations of Cu, As, Zn and Pb in H. siltalai from SW English streams were related to the mayfly assemblage. Mayflies were always sparse where bioavailabilities were high and were abundant and diverse where bioavailabilities of all metals were low, a pattern particularly evident when the combined abundance of heptageniid and ephemerellid mayflies was the response variable. The results offer promise that bioaccumulated concentrations of metals in tolerant biomonitors can be used to diagnose ecological impacts on stream benthos from metal stressors.

  2. Have the bioavailabilities of trace metals to a suite of biomonitors changed over three decades in SW England estuaries historically affected by mining?

    PubMed

    Rainbow, P S; Kriefman, S; Smith, B D; Luoma, S N

    2011-03-15

    Many estuaries of southwest England were heavily contaminated with toxic metals associated with the mining of copper and other metals, particularly between 1850 and 1900. The question remains whether the passage of time has brought remediation to these estuaries. In 2003 and 2006 we revisited sites in 5 metal-contaminated estuaries sampled in the 1970s and 1980s - Restronguet Creek, Gannel, West Looe, East Looe and Tavy. We evaluate changes in metal contamination in sediments and in metal bioavailabilities in sediments and water to local organisms employed as biomonitors. We find that the decline in contamination in these estuaries is complex. Differences in bioavailable contamination in the water column were detectable, as were significant detectable changes in at least some estuaries in bioavailable metal contamination originating from sediments. However, in the 100 years since mining activities declined, bioavailable contamination has not declined to the regional baseline in any estuary affected by the mine wastes. The greatest decline in contamination occurred in the one instance (East Looe) where a previous industrial source of (Ag) contamination was considered. We used the macroalgae Fucus vesiculosus and Ascophyllum nodosum as biomonitors of dissolved metal bioavailabilities and the deposit feeders Nereis diversicolor and Scrobicularia plana as biomonitors of bioavailable metal in sediments. We found no systematic decrease in the atypically high Ag, Cu, Pb and Zn concentrations in the estuarine sediments over a 26 year period. Accumulated metal (Ag, As, Cu, Pb, and Zn) concentrations in the deposit feeders are similarly still atypically high in at least one estuary for each metal, and there is no consistent evidence for general decreases in sediment metal bioavailabilities over time. We conclude that the legacy of mining in sheltered estuaries of southwest England is the ongoing presence of sediments rich in metals bioavailable to deposit feeders, while

  3. Dietary factors affecting polyphenol bioavailability.

    PubMed

    Bohn, Torsten

    2014-07-01

    While many epidemiological studies have associated the consumption of polyphenols within fruits and vegetables with a decreased risk of developing several chronic diseases, intervention studies have generally not confirmed these beneficial effects. The reasons for this discrepancy are not fully understood but include potential differences in dosing, interaction with the food matrix, and differences in polyphenol bioavailability. In addition to endogenous factors such as microbiota and digestive enzymes, the food matrix can also considerably affect bioaccessibility, uptake, and further metabolism of polyphenols. While dietary fiber (such as hemicellulose), divalent minerals, and viscous and protein-rich meals are likely to cause detrimental effects on polyphenol bioaccessibility, digestible carbohydrates, dietary lipids (especially for hydrophobic polyphenols, e.g., curcumin), and additional antioxidants may enhance polyphenol availability. Following epithelial uptake, polyphenols such as flavonoids may reduce phase II metabolism and excretion, enhancing polyphenol bioavailability. Furthermore, polyphenols may act synergistically due to their influence on efflux transporters such as p-glycoprotein. In order to understand polyphenol bioactivity, increased knowledge of the factors affecting polyphenol bioavailability, including dietary factors, is paramount.

  4. Assessing bioavailability levels of metals in effluent-affected rivers: effect of Fe(III) and chelating agents on the distribution of metal speciation.

    PubMed

    Han, Shuping; Naito, Wataru; Masunaga, Shigeki

    To assess the effects of Fe(III) and anthropogenic ligands on the bioavailability of Ni, Cu, Zn, and Pb, concentrations of bioavailable metals were measured by the DGT (diffusive gradients in thin films) method in some urban rivers, and were compared with concentrations calculated by a chemical equilibrium model (WHAM 7.0). Assuming that dissolved Fe(III) (<0.45 μm membrane filtered) was in equilibrium with colloidal iron oxide, the WHAM 7.0 model estimated that bioavailable concentrations of Ni, Cu, and Zn were slightly higher than the corresponding values estimated assuming that dissolved Fe(III) was absent. In contrast, lower levels of free Pb were predicted by the WHAM 7.0 model when dissolved Fe(III) was included. Estimates showed that most of the dissolved Pb was present as colloidal iron-Pb complex. Ethylene-diamine-tetra-acetic acid (EDTA) concentrations at sampling sites were predicted from the relationship between EDTA and the calculated bioavailable concentration of Zn. When both colloidal iron and predicted EDTA concentrations were included in the WHAM 7.0 calculations, dissolved metals showed a strong tendency to form EDTA complexes, in the order Ni > Cu > Zn > Pb. With the inclusion of EDTA, bioavailable concentrations of Ni, Cu, and Zn predicted by WHAM 7.0 were different from those predicted considering only humic substances and colloidal iron.

  5. Bioavailability of Metal Ions and Evolutionary Adaptation

    PubMed Central

    Hong Enriquez, Rolando P.; Do, Trang N.

    2012-01-01

    The evolution of life on earth has been a long process that began nearly 3.5 × 109 years ago. In their initial moments, evolution was mainly influenced by anaerobic environments; with the rise of O2 and the corresponding change in bioavailability of metal ions, new mechanisms of survival were created. Here we review the relationships between ancient atmospheric conditions, metal ion bioavailability and adaptation of metals homeostasis during early evolution. A general picture linking geochemistry, biochemistry and homeostasis is supported by the reviewed literature and is further illustrated in this report using simple database searches. PMID:25371266

  6. Bioavailability of purified subcellular metals to a marine fish.

    PubMed

    Guo, Feng; Yao, Jie; Wang, Wen-Xiong

    2013-09-01

    In the present study, the authors used a supply of naturally contaminated oysters to investigate how the subcellular metal distribution and the metal burden in prey affected the transfer of metals to a marine fish, the grunt Terapon jarbua. The oysters, Crassostrea hongkongensis, each with different contamination histories, were collected and separated into 3 subcellular fractions: 1) metal-rich granules, 2) cellular debris, and 3) a combined fraction of organelles, heat-denatured proteins, and metallothionein-like proteins, defined as the trophically available metal (TAM). These purified fractions showed a wide range of metal concentrations and were fed to the fish for a period of 7 d at a daily comparable feeding rate of 3% of fish body weight. After 7 d exposure, the newly absorbed metals were mainly distributed in the intestine and liver, indicating a significant tissue-specific trophic transfer, especially for Cd and Cu. The trophic transfer factors (TTFs) showed a sequence of cellular debris >TAM > metal-rich granules, suggesting the impact of subcellular distribution in prey on metal bioavailability. However, significant inverse relationships between the TTFs and the metal concentrations in diets were also found in the present study, especially for Cd and Zn. The subcellular metal compartmentalization might be less important than the metal concentration in prey influencing the trophic transfer. The authors' results have important implications for bioavailability and environmental assessment of dietary metals.

  7. Bioavailability of metals in soils and sedimentes affected by old mining actitvities. The study case of the Portman bay (SE, Spain)

    NASA Astrophysics Data System (ADS)

    Martinez-Sanchez, Maria Jose; Agudo, Ines; Banegas, Ascension; Garcia-Lorenzo, Maria Luz; Gonzalez-Ciudad, Eva; Perez-Espinosa, Victor; Martinez-Lopez, Salvadora; Martinez, Lucia; Perz-Sirvent, Carmen

    2010-05-01

    A study on metal (Zn, Pb, Cd, Cu and As) mobilization and analysis of the health risk represented by ingestion from contaminated sediments in Portman Bay (SE Spain) was carried out. This zone has suffered a great impact from mining activity, since million tons of mine tailings were dumped into the bay for a long period, giving as a result the filling of the bay with them. The long-term deposition of metals in soils and sediments can lead to their accumulation and transport, while their toxicity depends on the mobility and bioavailability of a significant fraction of the metals. The ingestion of contaminated soil particles by grazing animals or young children may well represent a special exposure pathway for Pb, Cd and other hazardous metals. The aim of this study was to determine the bioaccessibility of Zn, Pb, Cd, Cu and As ,and the extent to which bioaccessibility is influenced by mineralogy in materials from this mining site as an indicator of the potential risk that metals pose to both environmental and human health. General analytical determinations (pH, particle size, organic matter, equivalent calcium carbonate content and mineralogical composition) were carried out to characterize the samples. The mineralogical composition was studied by X-ray diffraction (XRD), using a Philips PW3040 diffractometer with Cu-Kα. To determine the total metal content, the samples were digested in a Milestone ETHOS PLUS microwave, Zn, Pb, Cu and Cd contents were determined by electrothermal atomization atomic absorption spectrometry, while As was analysed by HG- AFS using an automated continuous flow hydride generation spectrometer. To assess bioaccessibility, the gastric solution was prepared according to the Standard Operating Procedure (SOP) developed by the Solubility/Bioavailability Research Consortium (SBRC). The mineralogical composition, corresponds to materials which have suffered a supergenic oxidation process which has been influenced by the presence of sea water

  8. EFFECTS OF HUMIC SUBSTANCES ON ATTENUATION OF METALS: BIOAVAILABILITY AND MOBILITY IN SOIL

    EPA Science Inventory

    Humic substances play vastly important roles in metal behavior in a wide variety of environments. They can affect the mobility and bioavailability of metals by binding and sequestration thereby decreasing the mobility of a metal. They can also transport metals into solution or ...

  9. Bioavailability of heavy metals, germanium and rare earth elements at Davidschacht dump-field in mine affected area of Freiberg (Saxony)

    NASA Astrophysics Data System (ADS)

    Midula, Pavol; Wiche, Oliver

    2016-04-01

    Bioavailability research presents an essential tool, in modern phytoremediation and phytomining technologies, allowing the estimation of plant available fractions of elements in soils. However, up to date, sufficient interdisciplinary knowledge on the biogeochemically impacted behavior of specific target elements, in particular Ge and REEs in mining affected soils and their uptake into strategically used plants is lacking. This presented work is focused on a correlation study between the concentrations of selected heavy metals, Ge and REEs in soils formed on the top of the dump-field of Davidschacht and the corresponding their concentrations in 12 vascular plant species. The mine-dump of Davidschacht, situated in the Freiberg (Saxony, Germany) municipality area was chosen as the study area, which has been considered to be a high contaminated enclave, due to the mining history of the region. In total 12 sampling sites with differing composition of plant species were selected. At each sampling site soil samples from a soil depth of 0 - 10 cm and samples of plant material (shoots) were taken. The soil samples were analysed for total concentration of elements, pH (H2O) and consequently analysed by 4-step sequential extraction (SE) to determine fractions of elements that are mobile (fraction 1), acid soluble (pH 5) (fraction 2), bound to organic and oxidizable matter (fraction 3) and bound to amorphic oxides (fraction 4). The plant material was decomposed by hydrofluoric acid in order to extract the elements. Concentrations of elements in soil extracts and digestion solutions were analysed by ICP-MS. For all species bioconcentration factor (BCF) was calculated of the total concentration of elements in order to investigate the bioaccumulation potential. Arsenic (As), cadmium (Cd) and lead (Pb) were chosen as the representative heavy metals. Within the REEs neodymium (Nd) and cerium (Ce) were selected as representatives for all REEs, since Nd and Ce correlated significant

  10. Biodegradation of chitosan and its effect on metal bioavailability.

    PubMed

    Kamari, A; Pulford, I D; Hargreaves, J S J

    2015-02-01

    The microbial breakdown of chitosan, a fishery waste-based material, and its derivative cross-linked chitosans, in both non-contaminated and contaminated conditions was investigated in a laboratory incubation study. Biodegradation of chitosan and cross-linked chitosans was affected by the presence of heavy metals. Zn was more pronounced in inhibiting microbial activity than Cu and Pb. It was estimated that a longer period is required to complete the breakdown of the cross-linked chitosans (up to approximately 100 years) than unmodified chitosan (up to approximately 10 years). The influence of biodegradation on the bioavailable fraction of heavy metals was studied concurrently with the biodegradation trial. It was found that the binding behaviour of chitosan for heavy metals was not affected by the biodegradation process.

  11. Trace metal speciation and bioavailability in anaerobic digestion: A review.

    PubMed

    Thanh, Pham Minh; Ketheesan, Balachandran; Yan, Zhou; Stuckey, David

    2016-01-01

    Trace metals are essential for the growth of anaerobic microorganisms, however, in practice they are often added to anaerobic digesters in excessive amounts, which can lead to inhibition. The concept of bioavailability of metals in anaerobic digestion has been poorly understood in the past, and a lack of deep understanding of the relationship between trace metal speciation and bioavailability can result in ineffective metal dosing strategies for anaerobic digesters. Sequential extraction schemes are useful for fractionating trace metals into their different forms, and metal sulfides can serve as a store and source for trace metals during anaerobic digestion, while natural/synthetic chelating agents (soluble microbial products-SMPs, extracellular polysaccharides-EPS, and EDTA/NTA) are capable of controlling trace metal bioavailability. Nevertheless, more work is needed to: investigate the speciation and bioavailability of Ca, Mg, Mn, W, and Se; compare the bioavailability of different forms of trace metals e.g. carbonates, sulfides, phosphates to different anaerobic trophic groups; determine what factors influence metal sulfide dissolution; investigate whether chelating agents can increase trace metal bioavailability; develop and adapt specialized analytical techniques, and; determine how trace metal dynamics change in an anaerobic membrane bioreactor (AnMBR).

  12. Influence of biochar amendments on marine sediment trace metal bioavailability

    NASA Astrophysics Data System (ADS)

    Gehrke, G. E.; Hsu-Kim, H.

    2014-12-01

    Biochar has become a desirable material for use in agricultural application to enhance soil quality and in-situ soil and sediment remediation to immobilize organic contaminants. We investigated the effects of biochar sediment amendments on the bioavailability of a suite of inorganic trace metals (Cr, Co, Ni, Cu, Zn, Pb) in contaminated sediments from multiple sites in Elizabeth River, VA. We incubated sediments in microcosms with a variety of water column redox and salinity conditions and compared sediments amended with two types of woody biochar to sediments amended with charcoal activated carbon and unamended sediments. We leached sediments in artificial gut fluid mimic of the benthic invertebrate Arenicola marina as a measure of bioavailability of the trace metals analyzed. In unamended anaerobic sediments, the gut fluid mimic leachable fraction of each trace metal is 1-4% of the total sediment concentration for each metal. Initial results indicate that in anaerobic microcosms, woody biochar sediment amendments (added to 5% dry wt) decrease the gut fluid mimic leachable fraction by 30-90% for all trace metals analyzed, and have comparable performance to charcoal activated carbon amendments. However, in microcosms without controlled redox conditions, woody biochar amendments increase the bioavailable fraction of Ni and Cu by up to 80%, while decreasing the bioavailable fraction of Co, Zn, and Pb by approximately 50%; charcoal activated carbon amendments decreased the bioavailability of all trace metals analyzed by approximately 20%. In microcosms without an overlying water column, biochar and activated carbon amendments had no significant effects on trace metal bioavailability. This research demonstrates that biochar can effectively decrease the bioavailability of trace metals in marine sediments, but its efficiency is metal-specific, and environmental conditions impact biochar performance.

  13. Assessing the bioavailability and risk from metal-contaminated ...

    EPA Pesticide Factsheets

    Exposure to contaminated soil and dust is an important pathway in human health risk assessment. Physical and chemical characteristics, as well as biological factors, determine the bioaccessibility/bioavailability of soil and dust contaminants. Within a single sample, contamination may arise from multiple sources of toxic elements that may exist as different forms (species) which impact bioavailability. In turn, the bioaccessibility/bioavailability of soil and dust contaminants has a direct impact on human health risk assessment and risk management practices. Novel research efforts focusing on development and application of in vitro and in vivo methods to measure the bioaccessibility/bioavailability of metal contaminated soils have advanced in the past few years. The objective of this workshop was to focus on recent developments in assessing the bioaccessibility/bioavailability of arsenic contaminated soils, metal contamination in urban residences in Canada and potential children’s exposures to toxic elements in house dust, a community-based study known as the West Oakland Residential Lead Assessment , studies of the bioavailability of soil cadmium, chromium, nickel and mercury and human exposures to contaminated Brownfield soils. These presentations covered issues related to human health and bioavailability along with the most recent studies on community participation in assessing metal contamination, studies of exposures to residential contamination, and

  14. TOTAL AND BIOAVAILABLE METALS AT MARINA SEDIMENTS IN LAKE TEXOMA

    EPA Science Inventory

    Total and bioavailable metals in sediments were measured at marina areas in Lake Texoma during the fall of 2001. The metals most often found in the highest concentrations in sediments were Ca (56811 mg/kg) and Al (31095 mg/kg), followed by Fe (19393 mg/kg), K (6089 mg/kg), and Mg...

  15. From conceptual model to remediation: bioavailability, a key to clean up heavy metal contaminated soils.

    NASA Astrophysics Data System (ADS)

    Petruzzelli, Gianniantonio; Pedron, Francesca; Pezzarossa, Beatrice

    2013-04-01

    Processes of metal bioavailability in the soil To know the bioavailability processes at site specific levels is essential to understand in detail the risks associated with pollution, and to support the decision-making process, i.e. description of the conceptual model and choice of clean up technologies. It is particularly important to assess how chemical, physical and biological processes in the soil affect the reactions leading to adsorption, precipitation or release of contaminants. The measurement of bioavailability One of the main difficulties in the practical application of the bioavailability concept in soil remediation is the lack of consensus on the method to be used to measure bioavailability. The best strategy is to apply a series of tests to assess bioavailability, since no applicable method is universally valid under all conditions. As an example, bioavailability tests for phytotechnology application should consider two distinct aspects: a physico-chemical driven solubilization process and a physiologically driven uptake process. Soil and plant characteristics strongly influence bioavailability. Bioavailability as a tool in remediation strategies Bioavailability can be used at all stages in remediation strategies: development of the conceptual model, evaluation of risk assessment, and selection of the best technology, considering different scenarios and including different environmental objectives. Two different strategies can be followed: the reduction and the increase of bioavailability. Procedures that reduce bioavailability aim to prevent the movement of pollutants from the soil to the living organisms, essentially by: i) removal of the labile phase of the contaminant, i.e. the fraction which is intrinsic to the processes of bioavailability (phytostabilization); ii) conversion of the labile fraction into a stable fraction (precipitation or adsorption); iii) increase of the resistance to mass transfer of the contaminants (inertization). Procedures

  16. Heavy metals in soils from Baia Mare mining impacted area (Romania) and their bioavailability

    NASA Astrophysics Data System (ADS)

    Roba, Carmen; Baciu, Calin; Rosu, Cristina; Pistea, Ioana; Ozunu, Alexandru

    2015-04-01

    Keywords: heavy metals, soil contamination, bioavailability, Romania The fate of various metals, including chromium, nickel, copper, manganese, mercury, cadmium, and lead, and metalloids, like arsenic, antimony, and selenium, in the natural environment is of great concern, particularly in the vicinity of former mining sites, dumps, tailings piles, and impoundments, but also in urban areas and industrial centres. Most of the studies focused on the heavy metal pollution in mining areas present only the total amounts of metals in soils. The bioavailable concentration of metals in soil may be a better predictor for environmental impact of historical and current dispersion of metals. Assessment of the metal bioavailability and bioaccessibility is critical in understanding the possible effects on soil biota. The bioavailability of metals in soil and their retention in the solid phase of soil is affected by different parameters like pH, metal amount, cation-exchange capacity, content of organic matter, or soil mineralogy. The main objectives of the present study were to determine the total fraction and the bioavailable fraction of Cu, Cd, Pb and Zn from soil in a well-known mining region in Romania, and to evaluate the influence of soil pH on the metal bioavailability in soil. The heavy metal contents and their bioavailability were monitored in a total of 50 soil samples, collected during June and July 2014 from private gardens of the inhabitants from Baia-Mare area. The main mining activities developed in the area consisted of non-ferrous sulphidic ores extraction and processing, aiming to obtain concentrates of lead, copper, zinc and precious metals. After 2006, the metallurgical industry has considerably reduced its activity by closing or diminishing its production capacity. The analysed soil samples proved to have high levels of Pb (50 - 830 mg/kg), Cu (40 - 600 mg/kg), Zn (100 - 700 mg/kg) and Cd (up to 10 mg/kg). The metal abundance in the total fraction is

  17. BIOAVAILABILITY OF METALS IN ENVIRONMENTAL MEDIA

    EPA Science Inventory

    Heavy metal and organic chemical contamination of soils is a worldwide problem posing a risk to humans and more directly, soil organisms. Due to widespread metal contamination, it is necessary to characterize soils suspected of metal contamination and determine if the metal le...

  18. Estimation of bioavailability of metals from drilling mud barite.

    PubMed

    Neff, Jerry M

    2008-04-01

    Drilling mud and associated drill cuttings are the largest volume wastes associated with drilling of oil and gas wells and often are discharged to the ocean from offshore drilling platforms. Barite (BaSO4) often is added as a weighting agent to drilling muds to counteract pressure in the geologic formations being drilled, preventing a blowout. Some commercial drilling mud barites contain elevated (compared to marine sediments) concentrations of several metals. The metals, if bioavailable, may harm the local marine ecosystem. The bioavailable fraction of metals is the fraction that dissolves from the nearly insoluble, solid barite into seawater or sediment porewater. Barite-seawater and barite-porewater distribution coefficients (Kd) were calculated for determining the predicted environmental concentration (PEC; the bioavailable fraction) of metals from drilling mud barite in the water column and sediments, respectively. Values for Kdbarite-seawater and Kdbarite-porewater were calculated for barium, cadmium, chromium, copper, mercury, lead, and zinc in different grades of barite. Log Kdbarite-seawater values were higher (solubility was lower) for metals in the produced water plume than log Kdbarite-porewater values for metals in sediments. The most soluble metals were cadmium and zinc and the least soluble were mercury and copper. Log Kd values can be used with data on concentrations of metals in barite and of barite in the drilling mud-cuttings plume and in bottom sediments to calculate PECseawater and PECsediment.

  19. Impacts of municipal wastewater oxidative treatments: changes in metal physical speciation and bioavailability.

    PubMed

    Gagnon, C; Turcotte, P; Trépanier, S; Gagné, F; Cejka, P-J

    2014-02-01

    The environmental repercussions of the discharge of disinfected effluents are still poorly understood. This study assessed the impact of ozonation and UV oxidative treatment processes on metal forms - particulate, colloidal and permeable fractions - and bioavailability in disinfected wastewaters. In addition to wastewater analyses, mussels were placed in continuous flow-through aquaria and exposed for 4wk to wastewater, then metals in their tissues were analysed in parallel with exposure biomarkers. Metal size distribution was affected by oxidative processes; results showed that ozonation treatment generally increases the permeable fraction of some metals, particularly Cd and Cu, in treated waters, whereas UV treatment fosters the formation of permeable Zn. Ozone treatment of wastewater generally increased the bioavailability of specific metals. Metal bioaccumulation was in most cases significantly higher in mussels exposed to ozone-treated effluent compared to the UV treatment: 58%, 32%, 42% and 47% higher, respectively, for Ag, Cd, Cr and Cu. Physical metal speciation in these wastewaters comparatively measured the permeable fraction of metals to relate them to the bioaccumulation results for the exposed mussels. The levels of lipid peroxidation were significantly increased in gills but not in the digestive gland. The levels of metallothionein in the digestive gland were also significantly reduced suggest decreased input of particulate metals. Results of bioaccumulation in mussels suggested that metal bioavailability can be modified by the different oxidative processes. Despite this disadvantage, ozonation still represents a great choice of treatment considering the overall environmental benefits.

  20. Effect of urban drainage on bioavailability of heavy metals in recipient.

    PubMed

    Kominkova, D; Nabelkova, J

    2007-01-01

    Heavy metals comprise one of the most hazardous groups of pollutants entering the aquatic environment. Their behaviour and ecotoxicological effects are not well understood especially if they are occur as a mix of metals. Drawing on data from three Prague creeks, the paper illustrates changes in heavy metals bioavailability resulting from different environmental conditions and related differences in urban drainage types. Heavy metals in sediment from creeks impacted by stormwater drain discharges are more bioavailable and accumulate in organisms to higher concentrations than in organisms from creeks affected by combined sewer overflows. The results also show that bioassay levels of lead in fish from the creeks exceed acceptable concentrations for human consumption (EC 466/2001) and therefore represent a potential health risk for humans. The results demonstrate the importance of providing improved interception efficiency in the drainage system structures. In particular, a higher level of interception of fine particles is critical, because of their higher metal adsorption capacity than for coarser particles.

  1. Pharmacological activity of metal binding agents that alter copper bioavailability

    PubMed Central

    Helsel, Marian E.

    2015-01-01

    Iron, copper and zinc are required nutrients for many organisms but also potent toxins if misappropriated. An overload of any of these metals can be cytotoxic and ultimately lead to organ failure, whereas deficiencies can result in anemia, weakened immune system function, and other medical conditions. Cellular metal imbalances have been implicated in neurodegenerative diseases, cancer and infection. It is therefore critical for living organisms to maintain careful control of both the total levels and subcellular distributions of these metals to maintain healthy function. This perspective explores several strategies envisioned to alter the bioavailability of metal ions by using synthetic metal-binding agents targeted for diseases where misappropriated metal ions are suspected of exacerbating cellular damage. Specifically, we discuss chemical properties that influence the pharmacological outcome of a subset of metal-binding agents known as ionophores, and review several examples that have shown multiple pharmacological activities in metal-related diseases, with a specific focus on copper. PMID:25797044

  2. Impact of Incremental Sampling Methodology (ISM) on Metals Bioavailability

    DTIC Science & Technology

    2016-05-01

    U.S. Environmental Protection Agency V Vanadium WDOE Washington State Department of Ecology Zn Zinc ERDC TR-16-4 xii ERDC TR-16-4 1 1...effect on metal bioavailability and ultimately human and ecological risk is ERDC TR-16-4 2 unknown (Clausen 2015). The ISM protocols may...Alaska 2009; Hawaii 2008) in the absence of data showing that these changes are ap- propriate for assessing human and ecological risk and for

  3. Biochars reduce mine land soil bioavailable metals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochars are being proposed as an amendment to remediate mine land soils. Therefore, two different feedstocks (pine beetle-killed lodgepole pine [Pinus contorta] and tamarisk [Tamarix spp.]), within close proximity to mine land affected soils, were used to create biochars in order to determine if t...

  4. Assessing the Effects of Bioturbation on Metal Bioavailability in Contaminated Sediments by Diffusive Gradients in Thin Films (DGT).

    PubMed

    Amato, Elvio D; Simpson, Stuart L; Remaili, Timothy M; Spadaro, David A; Jarolimek, Chad V; Jolley, Dianne F

    2016-03-15

    The burrowing and feeding activities of benthic organisms can alter metal speciation in sediments and affect an organisms' exposure to metals. Recently, the performance of the in situ technique of diffusive gradients in thin films (DGT) for predicting metal bioavailability has been investigated in response to the increasing demand of considering contaminant bioavailability in sediment quality assessments. In this study, we test the ability of the DGT technique for predicting the metal bioavailability in clean and contaminated sediments that are being subjected to varying degrees of sediments disturbance: low bioturbation (bivalve Tellina deltoidalis alone) and high bioturbation (bivalve and actively burrowing amphipod, Victoriopisa australiensis). Significant release of DGT-labile Cd, Ni, Pb, and Zn, but lower Cu and Fe, occurred in the pore and overlying waters of sediments exposed to high bioturbation conditions, resulting in higher bioaccumulation of zinc in bivalves. Strong relationships were found between bioaccumulation of Pb and Zn and time-integrated DGT-metal fluxes, whereas poor relationships were obtained using total or dilute-acid extractable metal concentrations. This results demonstrate that DGT is a useful tool for assessing metal bioavailability in sediments and can provide useful predictions of metal bioavailable to benthic organisms in dynamic sediment environments.

  5. The Effect of Soil Properties on Metal Bioavailability: Field Scale Validation to Support Regulatory Acceptance

    DTIC Science & Technology

    2013-06-01

    bioaccessibility, bioavailability, and toxicity of metals (As, Cd, Cr, Pb) in DoD soils as measured by biological models used to evaluate ecological...bioavailability, and toxicity of metals (Pb, As, Cd, Cr) in DoD soils as measured by biological models used to evaluate ecological risk (e.g., plants...screening tool for estimating in vivo toxic metal bioavailability in DoD soils; (2) To provide DoD with a scientifically and technically sound method for

  6. Development of Extraction Tests for Determining the Bioavailability of Metals in Soil

    DTIC Science & Technology

    2005-06-01

    References 28 5.2 Cadmium 29 6 Bioavailability of Metals to Wildlife 30 6.1 Relative Oral Bioavailability of Metals in Soil to the American Robin 30...American robin was determined to be an appropriate species for evaluating metals bioavailability. Surrogate avian receptors were determined to be...American robin and woodcock). These receptors may receive soil exposure from either direct soil ingestion or consumption of earthworms. Therefore

  7. Factors affecting sequestration and bioavailability of phenanthrene in soils

    SciTech Connect

    White, J.C.; Kelsey, J.W.; Hatzinger, P.B.; Alexander, M.

    1997-10-01

    A study was conducted to determine factors affecting the sequestration and changes in bioavailability as phenanthrene persists in soils. Phenanthrene became sequestered in seven soils differing appreciably in organic matter and clay content as measured by earthworm uptake, bacterial mineralization, or extractability. Phenanthrene also became sequestered as it aged in soil aggregates of various sizes as measured by decline in availability to a bacterium, a mild extractant, or both. Wetting and drying a soil during aging reduced the amount of phenanthrene recovered by a mild extractant and the rate and extent of bacterial mineralization of the hydrocarbon. After biodegradation of phenanthrene added to the soil, more of the compound remained if it had been aged than if it had not been aged. Wetting and drying the soil during aging further increased the amount of phenanthrene remaining after biodegradation. The rate and extent of bacterial mineralization of phenanthrene were less in leached than in unleached soil. Aging/sequestration is thus markedly affected by soil properties and environmental factors.

  8. Mineralogy affects geoavailability, bioaccessibility and bioavailability of zinc.

    PubMed

    Molina, Ramon M; Schaider, Laurel A; Donaghey, Thomas C; Shine, James P; Brain, Joseph D

    2013-11-01

    We correlated mineralogical and particle characteristics of Zn-containing particles with Zn geoavailability, bioaccessibility, and bioavailability following gavage and intranasal (IN) administration in rats. We compared samples of Zn/Pb mine waste and five pulverized pure-phase Zn minerals (<38 μm). Particles were neutron-activated to produce radioactive (65)Zn. We assessed geoavailability using sequential extractions and bioaccessibility using in vitro extraction tests simulating various pH and biological conditions. Zn in vivo bioavailability and in vitro bioaccessibility decreased as follows: mine waste > hydrozincite > hemimorphite > zincite ≈ smithsonite > sphalerite. We found significant correlations among geoavailability, bioaccessibility and bioavailability. In particular, Zn bioavailability post-gavage and post-IN was significantly correlated with bioaccessibility in simulated phagolysosomal fluid and gastric fluid. These data indicate that solid phase speciation influences biological uptake of Zn and that in vitro tests can be used to predict Zn bioavailability in exposure assessment and effective remediation design.

  9. Mineralogy affects geoavailability, bioaccessibility and bioavailability of zinc

    PubMed Central

    Molina, Ramon M.; Schaider, Laurel A.; Donaghey, Thomas C.; Shine, James P.; Brain, Joseph D.

    2013-01-01

    We correlated mineralogical and particle characteristics of Zn-containing particles with Zn geoavailability, bioaccessibility, and bioavailability following gavage and intranasal (IN) administration in rats. We compared samples of Zn/Pb mine waste and five pulverized pure-phase Zn minerals (<38 μm). Particles were neutron-activated to produce radioactive 65Zn. We assessed geoavailability using sequential extractions and bioaccessibility using in vitro extraction tests simulating various pH and biological conditions. Zn in vivo bioavailability and in vitro bioaccessibility decreased as follows: mine waste > hydrozincite > hemimorphite > zincite ≈ smithsonite ≫ sphalerite. We found significant correlations among geoavailability, bioaccessibility and bioavailability. In particular, Zn bioavailability post-gavage and post-IN was significantly correlated with bioaccessibility in simulated phagolysosomal fluid and gastric fluid. These data indicate that solid phase speciation influences biological uptake of Zn and that in vitro tests can be used to predict Zn bioavailability in exposure assessment and effective remediation design. PMID:23933126

  10. Bioavailability and bioaccumulation of metal-based engineered nanomaterials in aquatic environments: concepts and processes: chapter 5

    USGS Publications Warehouse

    Luoma, Samuel N.; Khan, Farhan R.; Croteau, Marie-Noële

    2014-01-01

    Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me-ENMs via water, ingestion, and incidental surface exposure. Both metal released from the Me-ENM and uptake of the nanoparticle itself contribute to bioaccumulation. Some mechanisms of toxicity and some of the metrics describing exposure may differ from metals alone. Bioavailability is driven by complex interaction of particle attributes, environmental transformations, and biological traits. Characterization of Me-ENMs is an essential part of understanding bioavailability and requires novel methodologies. The relative importance of the array of processes that could affect Me-ENM bioavailability remains poorly known, but new approaches and models are developing rapidly. Enough is known, however, to conclude that traditional approaches to exposure assessment for metals would not be adequate to assess risks from Me-ENMs.

  11. Bioavailability assessment of essential and toxic metals in edible nuts and seeds.

    PubMed

    Moreda-Piñeiro, Jorge; Herbello-Hermelo, Paloma; Domínguez-González, Raquel; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2016-08-15

    Bioavailability of essential and toxic metals in edible nuts and seeds has been assessed by using an in vitro dialyzability approach. The samples studied included walnuts, Brazil nuts, Macadamia nuts, pecans, hazelnuts, chestnuts, cashews, peanuts, pistachios and seeds (almond, pine, pumpkin and sunflower). Metals were measured by inductively coupled plasma-mass spectrometry in dialyzates and also in samples after a microwave assisted acid digestion pre-treatment. Low dialyzability percentages were found for Al, Fe and Hg; moderate percentages were found for Ba, Ca, Cd, Co, Cu, K, Li, Mg, Mn, Mo, P, Pb, Se, Sr, Tl and Zn; and high dialyzability ratios were found for As, Cr and Ni. The highest dialyzability percentages were found in raw chestnuts and raw hazelnuts. Metal dialyzability was found to be negatively affected by fat content. Positive correlation was found between carbohydrate content and metal dialyzability ratios. Protein and dietary fibre content did not influence metal bioavailability. Predicted dialyzability for some metals based on fat and protein content could also be established.

  12. Proceedings: ISEA Bioavailability Symposium, Durham, North Carolina Use of InVitro Bioaccessibility/Relative Bioavailability Estimates for Metals in Regulatory Settings: What is Needed?

    EPA Science Inventory

    Oral ingestion of soil and dust is a key pathway for human exposures to metal and metalloid contaminants. It is widely recognized that the site-specific bioavailability of metals in soil and dust may be reduced relative to the metal bioavailability in media such as water and food...

  13. Bioavailability of cyanide and metal-cyanide mixtures to aquatic life.

    PubMed

    Redman, Aaron; Santore, Robert

    2012-08-01

    Cyanide can be toxic to aquatic organisms, and the U.S. Environmental Protection Agency has developed ambient water-quality criteria to protect aquatic life. Recent work suggests that considering free, rather than total, cyanide provides a more accurate measure of the biological effects of cyanides and provides a basis for water-quality criteria. Aquatic organisms are sensitive to free cyanide, although certain metals can form stable complexes and reduce the amount of free cyanide. As a result, total cyanide is less toxic when complexing metals are present. Cyanide is often present in complex effluents, which requires understanding how other components within these complex effluents can affect cyanide speciation and bioavailability. The authors have developed a model to predict the aqueous speciation of cyanide and have shown that this model can predict the toxicity of metal-cyanide complexes in terms of free cyanide in solutions with varying water chemistry. Toxicity endpoints based on total cyanide ranged over several orders of magnitude for various metal-cyanide mixtures. However, predicted free cyanide concentrations among these same tests described the observed toxicity data to within a factor of 2. Aquatic toxicity can be well-described using free cyanide, and under certain conditions the toxicity was jointly described by free cyanide and elevated levels of bioavailable metals.

  14. [Effects of applying sewage sludge on chemical form distribution and bioavailability of heavy metals in soil].

    PubMed

    Song, Lin-Lin; Tie, Mei; Zhang, Zhao-Hong; Hui, Xiu-Juan; Jing, Kui; Chen, Zhong-Lin; Zhang, Ying

    2012-10-01

    A pot experiment was conducted to study the effects of applying sewage sludge on the chemical form distribution of heavy metals (Cd, Pb, Cu and Zn) in soil and the transfer and accumulation of the heavy metals in soil-plant (ryegrass) system. With the application of sewage sludge, the contents of bioavailable Cd and Zn in soil increased significantly but that of bioavailable Pb in soil had a significant decrease, and the content of residual form Pb in soil increased by 33.3% -74.5%, compared with CK. When the application rate of sewage sludge was 50% (M/M) of soil, the contents of exchangeable and reducible Cu in soil only occupied 0.7% and 0.2% of the total Cu respectively. The application of sewage sludge promoted the Cd, Cu and Zn absorption while inhibited the Pb absorption by ryegrass. Multiple linear regression analysis showed that the Cd, Zn and Cu contents in ryegrass were positively correlated with the reducible Cd and Zn and oxidizable Cu contents in soil, respectively, and Pb content in ryegrass was highly correlated with the soil exchangeable and oxidizable Pb contents. After planting ryegrass, the oxidizable Cd and Cu in rhizosphere soil were transformed into exchangeable Cd and residual form Cu, respectively, the exchangeable and reducible Zn transformed into oxidizable Zn, whereas the bioavailability of Pb was less affected.

  15. Assessment of metals bioavailability to vegetables under field conditions using DGT, single extractions and multivariate statistics

    PubMed Central

    2012-01-01

    Background The metals bioavailability in soils is commonly assessed by chemical extractions; however a generally accepted method is not yet established. In this study, the effectiveness of Diffusive Gradients in Thin-films (DGT) technique and single extractions in the assessment of metals bioaccumulation in vegetables, and the influence of soil parameters on phytoavailability were evaluated using multivariate statistics. Soil and plants grown in vegetable gardens from mining-affected rural areas, NW Romania, were collected and analysed. Results Pseudo-total metal content of Cu, Zn and Cd in soil ranged between 17.3-146 mg kg-1, 141–833 mg kg-1 and 0.15-2.05 mg kg-1, respectively, showing enriched contents of these elements. High degrees of metals extractability in 1M HCl and even in 1M NH4Cl were observed. Despite the relatively high total metal concentrations in soil, those found in vegetables were comparable to values typically reported for agricultural crops, probably due to the low concentrations of metals in soil solution (Csoln) and low effective concentrations (CE), assessed by DGT technique. Among the analysed vegetables, the highest metal concentrations were found in carrots roots. By applying multivariate statistics, it was found that CE, Csoln and extraction in 1M NH4Cl, were better predictors for metals bioavailability than the acid extractions applied in this study. Copper transfer to vegetables was strongly influenced by soil organic carbon (OC) and cation exchange capacity (CEC), while pH had a higher influence on Cd transfer from soil to plants. Conclusions The results showed that DGT can be used for general evaluation of the risks associated to soil contamination with Cu, Zn and Cd in field conditions. Although quantitative information on metals transfer from soil to vegetables was not observed. PMID:23079133

  16. Mineral surfaces and bioavailability of heavy metals: A molecular-scale perspective

    PubMed Central

    Brown, Gordon E.; Foster, Andrea L.; Ostergren, John D.

    1999-01-01

    There is a continual influx of heavy metal contaminants and pollutants into the biosphere from both natural and anthropogenic sources. A complex variety of abiotic and biotic processes affects their speciation and distribution, including adsorption onto and desorption from mineral surfaces, incorporation in precipitates or coprecipitates, release through the dissolution of minerals, and interactions with plants and microbes. Some of these processes can effectively isolate heavy metals from the biosphere, whereas others cause their release or transformation to different species that may be more (or less) bioavailable and/or toxic to organisms. Here we focus on abiotic adsorption and precipitation or coprecipitation processes involving the common heavy metal contaminant lead and the metalloids arsenic and selenium in mine tailings and contaminated soils. We have used extremely intense x-rays from synchrotron sources and a structure-sensitive method known as x-ray absorption fine structure (XAFS) spectroscopy to determine the molecular-level speciation of these elements at concentrations of 50 to several thousand ppm in the contaminated environmental samples as well as in synthetic sorption samples. Our XAFS studies of As and Pb in the mine tailings show that up to 50% of these contaminants in the samples studied may be present as adsorbed species on mineral surfaces, which makes them potentially more bioavailable than when present in sparingly soluble solid phases. Our XAFS studies of Se(VI) sorption on Fe2+-containing sulfates show that this element undergoes redox reactions that transform it into less bioavailable and less toxic species. This type of information on molecular-level speciation of heavy metal and metalloid contaminants in various environmental settings is needed to prioritize remediation efforts and to assess their potential hazard to humans and other organisms. PMID:10097048

  17. Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction.

    PubMed

    Peijnenburg, Willie J G M; Zablotskaja, Marina; Vijver, Martina G

    2007-06-01

    Bioavailability considerations are one of the tools for a proper assignment of sites potentially and actually at risk as it allows assessing both the extent (hazard) and probability (risk) of adverse effects. In this paper, bioavailability considerations are linked to physico-chemical methods available for assessing metal fractions in soils. The focus of the overview is on empirical methods for extraction of metals from soils as a surrogate for the metal-, species- and soil-type-dependent bioavailable and bioaccessible metal pools. This cumulates in a generalized flow chart for monitoring of metals in soils. In support of the general monitoring strategy, examples are given of successful applications of analytical methods for predicting metal uptake by plants and animals, for assessing the origin of metals in soils, as well as the leaching potential of soils and the extent of soil contamination. It is concluded that a large arrays of chemical assessment methodologies for metal speciation in solid and liquid soil phases are available. As most assessment methodologies are operationally defined instead of being functionally defined, examples of mechanistically based monitoring approaches of bioavailability are still scarce. The value of the methods for measuring bioavailability can be significantly improved when the species, metal, and soil specific aspects of bioavailability are more accurately taken into account in the design of chemical simulation methodologies.

  18. Food microstructure affects the bioavailability of several nutrients.

    PubMed

    Parada, J; Aguilera, J M

    2007-03-01

    There is an increased interest in the role that some nutrients may play in preventing or ameliorating the effect of major diseases (for example, some types of cancer, cardiovascular diseases, eye disorders, among others). In this respect, the bioavailability or the proportion of an ingested nutrient that is made available (that is, delivered to the bloodstream) for its intended mode of action is more relevant than the total amount present in the original food. Disruption of the natural matrix or the microstructure created during processing may influence the release, transformation, and subsequent absorption of some nutrients in the digestive tract. Alternatively, extracts of bioactive molecules (for example, nutraceuticals) and beneficial microorganisms may be protected during their transit in the digestive system to the absorption sites by encapsulation in designed matrices. This review summarizes relevant in vivo and in vitro methods used to assess the bioavailability of some nutrients (mostly phytochemicals), types of microstructural changes imparted by processing and during food ingestion that are relevant in matrix-nutrient interactions, and their effect on the bioavailability of selected nutrients.

  19. Assessing the oral bioavailability of metals in soil in terrestrial animals

    SciTech Connect

    Tier, A.J. La; Schoof, R.A.; Pastorok, R.A.

    1995-12-31

    The oral bioavailability of metals in soil is controlled by the mineral form of the metals, and by the physical and chemical characteristics of the soil matrix that limit metal dissolution in the gastrointestinal tract. Although soil metal bioavailability may be generally reduced compared to the bioavailability of metals in water or diet, anatomic and physiological characteristics of individual receptor species are expected to cause substantial variations in bioavailability among species. For example, the short gastrointestinal transit times in carnivores may minimize metal dissolution, while the longer transit times in ruminants may allow more time for metals to dissolve in the gastrointestinal tract. The actual extent of metal dissolution in these species will also be very dependent on the stomach pH, so that a higher pH in a species with a longer transit time might result in similar absorption rates as those observed in a species with a lower stomach pH and shorter transit times. Pertinent anatomical and physiological features of typical terrestrial receptor species will be summarized and evaluated. Recently published (and unpublished) data on the bioavailability of arsenic, cadmium and lead in soil in various animal species will be used to illustrate the differences among species. Important design factors to consider in evaluating bioavailability studies, such as age of the animals and method of administration of soil will be addressed.

  20. DISTRIBUTION OF PARAMETERS DETERMINING BIOAVAILABILITY OF METALS IN EUROPEAN SOILS

    EPA Science Inventory

    As part of a program to develop a predictive model of bioavailability and toxicity of copper in soils to terrestrial organisms, 19 soils from 9 countries of the EU were collected and analyzed for use in bioavailability tests. However, it is desired that the model be of use on a ...

  1. Salinity effects on the bioavailability of aqueous metals for the estuarine killifish Fundulus heteroclitus.

    PubMed

    Dutton, Jessica; Fisher, Nicholas S

    2011-09-01

    Estuarine organisms experience varying salinity conditions on a daily and seasonal basis, and these fluctuations could influence the amount of metal accumulated from the aqueous phase. The present study experimentally assessed the role of salinity (0, 2, 6, 12, and 25 ppt) on the uptake of As, Cd, Cr, inorganic Hg [Hg(II)], and methylmercury (MeHg) into the euryhaline killifish (Fundulus heteroclitus) from the aqueous phase using gamma-emitting radioisotopes. Patterns of metal uptake as a function of salinity varied by metal. Chromium showed no relationship with salinity; Cd, which was most affected by salinity, showed an inverse relationship; and As, Hg(II), and MeHg uptake increased as salinity increased from 0 ppt to 25 ppt. Arsenic (salinities ≤ 6 ppt) and Cr were regulated by the fish, whereas Cd, Hg(II), and MeHg were not. Cadmium, Hg(II), and MeHg are chloro-complexed, increasing bioavailability for Hg(II) and MeHg, and reducing bioavailability for Cd. Concentration factors (CFs) were >1 at all salinities for Cd, Hg(II), and MeHg, indicating that the fish were more enriched in the metal than the surrounding water, whereas As and Cr CFs were <1 at all salinities. Uptake rate constants (k(u)s) were highest for MeHg (0.79-2.29 L g(-1) d(-1)), followed by Hg(II), Cd, Cr, and lowest for As (0.0004-0.0008 L g(-1) d(-1)). Tissue distribution of each metal was determined by dissections. Data for Cd showed that as salinity increased, the concentration of this metal increased in the viscera, whereas it decreased in the head and gills, suggesting that drinking to osmoregulate may account for a portion of Cd uptake from the aqueous phase in marine fish.

  2. Targeted Removal of Bioavailable Metal as a Detoxification Strategy for Carbon Nanotubes

    PubMed Central

    Liu, Xinyuan; Guo, Lin; Morris, Daniel; Kane, Agnes B.; Hurt, Robert H.

    2008-01-01

    There is substantial evidence for toxicity and/or carcinogenicity upon inhalation of pure transition metals in fine particulate form. Carbon nanotube catalyst residues may trigger similar metal-mediated toxicity, but only if the metal is bioavailable and not fully encapsulated within fluid-protective carbon shells. Recent studies have documented the presence of bioavailable iron and nickel in a variety of commercial as-produced and vendor “purified” nanotubes, and the present article examines techniques to avoid or remove this bioavailable metal. First, data are presented on the mechanisms potentially responsible for free metal in “purified” samples, including kinetic limitations during metal dissolution, the re-deposition or adsorption of metal on nanotube outer surfaces, and carbon shell damage during last-step oxidation or one-pot purification. Optimized acid treatment protocols are presented for targeting the free metal, considering the effects of acid strength, composition, time, and conditions for post-treatment water washing. Finally, after optimized acid treatment, it is shown that the remaining, non-bioavailable (encapsulated) metal persists in a stable and biologically unavailable form up to two months in an in vitro biopersistence assay, suggesting that simple removal of bioavailable (free) metal is a promising strategy for reducing nanotube health risks. PMID:19255622

  3. Accounting for metal bioavailability in assessing water quality: A step change?

    PubMed

    Merrington, Graham; Peters, Adam; Schlekat, Christian E

    2016-02-01

    Bioavailability of metals to aquatic organisms can be considered to be a combination of the physicochemical factors governing metal behavior and the specific pathophysiological characteristics of the organism's biological receptor. Effectively this means that a measure of bioavailability will reflect the exposures that organisms in the water column actually "experience". This is important because it has long been established that measures of total metal in waters have limited relevance to potential environmental risk. The concept of accounting for bioavailability in regard to deriving and implementing environmental water quality standards is not new, but the regulatory reality has lagged behind the development of scientific evidence supporting the concept. Practical and technical reasons help to explain this situation. For example, concerns remain from regulators and the regulated that the efforts required to change existing systems of metal environmental protection that have been in place for over 35 yr are so great as not to be commensurate with likely benefits. However, more regulatory jurisdictions are now considering accounting for metal bioavailability in assessments of water quality as a means to support evidence-based decision-making. In the past decade, both the US Environmental Protection Agency and the European Commission have established bioavailability-based standards for metals, including Cu and Ni. These actions have shifted the debate toward identifying harmonized approaches for determining when knowledge is adequate to establish bioavailability-based approaches and how to implement them.

  4. Assessment of heavy metals bioavailability and toxicity toward Vibrio fischeri in sediment of the Huelva estuary.

    PubMed

    Rosado, Daniel; Usero, José; Morillo, José

    2016-06-01

    Relationship between toxicity and bioavailable metals in sediments from the Huelva estuary and its littoral of influence was analyzed. Toxicity was assessed with Microtox® bioassay using a marine luminescent bacterium: Vibrio fischeri. Bioavailable metals were considered as both, acid extractable fraction of BCR procedure and the sum of exchangeable and bound to carbonates fractions of Tessier sequential extraction. A bioavailable metals index was calculated to integrate results in a single figure. Toxicity and bioavailable metals showed a similar pattern. Higher levels were found in the estuary than in the littoral (140 TU/g). In Huelva estuary, highest levels were found in the Tinto estuary (5725 TU/g), followed by the Odiel estuary (5100 TU/g) and the Padre Santo Canal (2500 TU/g). Results in this area were well over than those in nearby estuaries. Furthermore, they are similar to or even higher than those in other polluted sediments around the world. Bioavailable metal index showed a stronger correlation with acid extractable fraction of BCR (R(2) = 0.704) than that for the sum of exchangeable and bound to carbonates fractions of Tessier (R(2) = 0.661). These results suggest that bioavailable metals are an important source of sediment toxicity in the Huelva estuary and its littoral of influence, an area with one of the highest mortality risks of Spain.

  5. Relationship between plant biodiversity and heavy metal bioavailability in grasslands overlying an abandoned mine.

    PubMed

    Hernández, A J; Pastor, J

    2008-04-01

    Abandoned metal mines in the Sierra de Guadarrama, Madrid, Spain, are often located in areas of high ecological value. This is true of an abandoned barium mine situated in the heart of a bird sanctuary. Today the area sustains grasslands, interspersed with oakwood formations of Quercus ilex and heywood scrub (Retama sphaerocarpa L.), used by cattle, sheep and wild animals. Our study was designed to establish a relationship between the plant biodiversity of these grasslands and the bioavailability of heavy metals in the topsoil layer of this abandoned mine. We conducted soil chemical analyses and performed a greenhouse evaluation of the effects of different soil heavy metal concentrations on biodiversity. The greenhouse bioassays were run for 6 months using soil samples obtained from the mine polluted with heavy metals (Cu, Zn, Pb and Cd) and from a control pasture. Soil heavy metal and Na concentrations, along with the pH, had intense negative effects on plant biodiversity, as determined through changes in the Shannon index and species richness. Numbers of grasses, legumes, and composites were reduced, whilst other species (including ruderals) were affected to a lesser extent. Zinc had the greatest effect on biodiversity, followed by Cd and Cu. When we compared the sensitivity of the biodiversity indicators to the different metal content variables, pseudototal metal concentrations determined by X-ray fluorescence (XRF) were the most sensitive, followed by available and soluble metal contents. Worse correlations between biodiversity variables and metal variables were shown by pseudototal contents obtained by plasma emission spectroscopy (ICP-OES). Our results highlight the importance of using as many different indicators as possible to reliably assess the response shown by plants to heavy metal soil pollution.

  6. Interactions between active pharmaceutical ingredients and excipients affecting bioavailability: impact on bioequivalence.

    PubMed

    García-Arieta, Alfredo

    2014-12-18

    The aim of the present paper is to illustrate the impact that excipients may have on the bioavailability of drugs and to review existing US-FDA, WHO and EMA regulatory guidelines on this topic. The first examples illustrate that small amounts of sorbitol (7, 50 or 60mg) affect the bioavailability of risperidone, a class I drug, oral solution, in contrast to what is stated in the US-FDA guidance. Another example suggests, in contrast to what is stated in the US-FDA BCS biowaivers guideline, that a small amount of sodium lauryl sulphate (SLS) (3.64mg) affects the bioavailability of risperidone tablets, although the reference product also includes SLS in an amount within the normal range for that type of dosage form. These factors are considered sufficient to ensure that excipients do not affect bioavailability according to the WHO guideline. The alternative criterion, defined in the WHO guideline and used in the FIP BCS biowaivers monographs, that asserts that excipients present in generic products of the ICH countries do not affect bioavailability if used in normal amounts, is shown to be incorrect with an example of alendronate (a class III drug) tablets, where 4mg of SLS increases bioavailability more than 5-fold, although a generic product in the USA contains SLS. Finally, another example illustrates that a 2mg difference in SLS may affect bioavailability of a generic product of a class II drug, even if SLS is contained in the comparator product, and in all cases its amount was within the normal range. Therefore, waivers of in vivo bioequivalence studies (e.g., BCS biowaivers, waivers of certain dosage forms in solution at the time of administration and variations in the excipient composition) should be assessed more cautiously.

  7. Reduction of bioavailability and leachability of heavy metals during vermicomposting of water hyacinth.

    PubMed

    Singh, Jiwan; Kalamdhad, Ajay S

    2013-12-01

    Vermicomposting of water hyacinth is a good alternative for the treatment of water hyacinth (Eichhornia crassipes) and subsequentially, beneficial for agriculture purposes. The bioavailability and leachability of heavy metals (Zn, Cu, Mn, Fe, Ni, Pb, Cd, and Cr) were evaluated during vermicomposting of E. crassipes employing Eisenia fetida earthworm. Five different proportions (trials 1, 2, 3, 4, and 5) of cattle manure, water hyacinth, and sawdust were prepared for the vermicomposting process. Results show that very poor biomass growth of earthworms was observed in the highest proportion of water hyacinth (trial 1). The water soluble, diethylenetriaminepentaacetic acid (DTPA) extractable, and leachable heavy metals concentration (percentage of total heavy metals) were reduced significantly in all trials except trial 1. The total concentration of some metals was low but its water soluble and DTPA extractable fractions were similar or more than other metals which were present in higher concentration. This study revealed that the toxicity of metals depends on bioavailable fraction rather than total metal concentration. Bioavailable fraction of metals may be toxic for plants and soil microorganisms. The vermicomposting of water hyacinth by E. fetida was very effective for reduction of bioavailability and leachability of selected heavy metals. Leachability test confirmed that prepared vermicompost is not hazardous for soil, plants, and human health. The feasibility of earthworms to mitigate the metal toxicity and to enhance the nutrient profile in water hyacinth vermicompost might be useful in sustainable land renovation practices at low-input basis.

  8. Assessing the bioavailability and bioaccessibility of metals and metalloids.

    PubMed

    Ng, Jack C; Juhasz, Albert; Smith, Euan; Naidu, Ravi

    2015-06-01

    Bioavailability (BA) determines the potential harm of a contaminant that exerts on the receptor. However, environmental guidelines for site contamination assessment are often set assuming the contaminant is 100 % bioavailable. This conservative approach to assessing site risk may result in the unnecessary and expensive remediation of a contaminated site. The National Environmental Protection Measures in Australia has undergone a statutory 5-year review that recommended that contaminant bioavailability and bioaccessibility (BAC) measures be adopted as part of the contaminated site risk assessment process by the National Environment Protection Council. We undertook a critical review of the current bioavailability and bioaccessibility approaches, methods and their respective limitations. The 'gold' standard to estimate the portion of a contaminant that reaches the system circulatory system (BA) of its receptor is to determine BA in an in vivo system. Various animal models have been utilised for this purpose. Because of animal ethics issues, and the expenses associated with performing in vivo studies, several in vitro methods have been developed to determine BAC as a surrogate model for the estimation of BA. However, few in vitro BAC studies have been calibrated against a reliable animal model, such as immature swine. In this review, we have identified suitable methods for assessing arsenic and lead BAC and proposed a decision tree for the determination of contaminant bioavailability and bioaccessibility for health risk assessment.

  9. Induced metal redistribution and bioavailability enhancement in contaminated river sediment during in situ biogeochemical remediation.

    PubMed

    Liu, Tongzhou; Zhang, Zhen; Mao, Yanqing; Yan, Dickson Y S

    2016-04-01

    In situ sediment remediation using Ca(NO3)2 or CaO2 for odor mitigation and acid volatile sulfide (AVS) and organic pollutant (such as TPH and PAHs) removal was reported in many studies and fieldwork. Yet, the associated effects on metal mobilization and potential distortion in bioavailability were not well documented. In this study, contaminated river sediment was treated by Ca(NO3)2 and CaO2 in bench studies. Through the investigation of AVS removal, organic matter removal, the changes in sediment oxidation-reduction potential (ORP), microbial activity, and other indigenous parameters, the effects on metal bioavailability, bioaccessibility, and fraction redistribution in sediment were evaluated. The major mechanisms for sediment treated by Ca(NO3)2 and CaO2 are biostimulation with indigenous denitrifying bacteria and chemical oxidation, respectively. After applying Ca(NO3)2 and CaO2, the decreases of metal concentrations in the treated sediment were insignificant within a 35-day incubation period. However, the [SEMtot-AVS]/f OC increased near to the effective boundary of toxicity (100 μmol g(-1) organic carbon (OC)), indicating that both bioavailability and bioaccessibility of metals (Cu, Zn, and Ni) to benthic organisms are enhanced after remediation. Metals were found redistributed from relatively stable fractions (oxidizable and residual fractions) to weakly bound fractions (exchangeable and reducible fractions), and the results are in line with the enhanced metal bioavailability. Compared with Ca(NO3)2, CaO2 led to higher enhancement in metal bioavailability and bioaccessibility, and more significant metal redistribution, probably due to its stronger chemical reactive capacity to AVS and sediment organic matter. The reactions in CaO2-treated sediment would probably shift from physicochemical to biochemical heterotrophic oxidation for sediment organic matter degradation. Therefore, further investigation on the long-term metal redistribution and associated

  10. Bioavailability of heavy metals in soils: definitions and practical implementation--a critical review.

    PubMed

    Kim, Rog-Young; Yoon, Jeong-Ki; Kim, Tae-Seung; Yang, Jae E; Owens, Gary; Kim, Kwon-Rae

    2015-12-01

    Worldwide regulatory frameworks for the assessment and remediation of contaminated soils have moved towards a risk-based approach, taking contaminant bioavailability into consideration. However, there is much debate on the precise definition of bioavailability and on the standardization of methods for the measurement of bioavailability so that it can be reliably applied as a tool for risk assessment. Therefore, in this paper, we reviewed the existing definitions of heavy metal bioavailability in relation to plant uptake (phytoavailability), in order to better understand both the conceptual and operational aspects of bioavailability. The related concepts of specific and non-specific adsorption, as well as complex formation and organic ligand affinity were also intensively discussed to explain the variations of heavy metal solubility and mobility in soils. Further, the most frequently used methods to measure bioavailable metal soil fractions based on both chemical extractions and mechanistic geochemical models were reviewed. For relatively highly mobile metals (Cd, Ni, and Zn), a neutral salt solution such as 0.01 M CaCl2 or 1 M NH4NO3 was recommended, whereas a strong acid or chelating solution such as 0.43 M HNO3 or 0.05 M DTPA was recommended for strongly soil-adsorbed and less mobile metals (Cu, Cr, and Pb). While methods which assessed the free metal ion activity in the pore water such as DGT and DMT or WHAM/Model VI, NICA-Donnan model, and TBLM are advantageous for providing a more direct measure of bioavailability, few of these models have to date been properly validated.

  11. Influence of organic matter transformations on the bioavailability of heavy metals in a sludge based compost.

    PubMed

    Ingelmo, Florencio; Molina, Maria José; Soriano, Maria Desamparados; Gallardo, Antonio; Lapeña, Leonor

    2012-03-01

    The agricultural use of anaerobically digested sewage sludge (ADSS) as stable, mature compost implies knowing its total content in heavy metals and their bioavailability. This depends not only on the initial characteristics of the composted substrates but also on the organic matter transformations during composting which may influence the chemical form of the metals and their bioavailability. The objective of this work was to examine the relationships between the changes in the organic matter content and humus fractions, and the bioavailability of heavy metals. A detailed sampling at 0, 14, 84, and 140 days of the composting process was performed to measure C contents in humic acids (HAs), fulvic acids, (FAs) and humin, the total content of Zn, Pb, Cu, Ni, and Cd, and also their distribution into mobile and mobilisable (MB), and low bioavailability (LB) forms. Significant changes of C contents in HA, FA, and Humin, and in the FA/HA, HA/Humin and C(humus)/TOC ratios were observed during composting. The MB and LB fractions of each metal also varied significantly during composting. The MB fraction increased for Zn, Cu, Ni, and Cd, and the LB fraction increased for Pb. Stepwise linear regressions and quadratic curve estimation conducted on the MB and LB fractions of each metal as dependent on the measured organic variables suggested that Zn bioavailability was mainly associated to percentage of C in FAs. Bioavailability of Cu, Ni and Cd during composting was associated to humin and HAs. Pb concentration increased in the LB form, and its variations followed a quadratic function with the C(humus)/TOC ratio. Our results suggest that the composting process renders the metals in more available forms. The main forms of metal binding in the sludge and their availability in the final compost may be better described when metal fractionation obtained in sequential extraction and humus fractionation during composting are considered together.

  12. Influences of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments

    USGS Publications Warehouse

    Lee, B.-G.

    2000-01-01

    Understanding how animals are exposed to the large repository of metal pollutants in aquatic sediments is complicated and is important in regulatory decisions. Experiments with four types of invertebrates showed that feeding behavior and dietary uptake control bioaccumulation of cadmium, silver, nickel, and zinc. Metal concentrations in animal tissue correlated with metal concentrations extracted from sediments, but not with metal in porewater, across a range of reactive sulfide concentrations, from 0.5 to 30 micromoles per gram. These results contradict the notion that metal bioavailability in sediments is controlled by geochemical equilibration of metals between porewater and reactive sulfides, a proposed basis for regulatory criteria for metals.

  13. Metal-solid interactions controlling the bioavailability of mercury from sediments to clams and sipunculans.

    PubMed

    Zhong, Huan; Wang, Wen-Xiong

    2006-06-15

    The bioavailability of sedimentary Hg(II) and methylmercury (MeHg) was quantified by measuring the assimilation efficiency (AE) in the clam Ruditapes philippinarum and the extraction of the gut juices from the sipunculan Sipunculus nudus. Three factors (Hg concentration in sediment, Hg sediment contact time, and organic content of sediments) were modified to examine metal-solid interactions in controlling Hg bioavailability. The Hg AEs in the clams were strongly correlated with the extraction from the sipunculan gut juices for both Hg species. The bioavailability of both Hg(II) and MeHg generally increased with increased sediment Hg concentration but decreased with sedimentmetal contact time and increasing organic content (except that MeHg was not influenced by organic content). Hg(II) speciation in sediments, quantified by sequential chemical extraction (SCE), was dependent on geochemical conditions and greatly controlled the mobility and bioavailability of Hg(II) in sediments. Most bioavailable Hg(II) originated from the strongly complexed phase (e.g., Hg bound up in Fe/Mn oxide, amorphous organosulfur, or mineral lattice), whereas Hg bound with the organocomplexed phase (Hg humic and Hg2Cl2) was not bioavailable. Hg bound with the other geochemical phases (water soluble, HgO, HgSO4, and HgS) contributed very little to the bioavailable Hg due to their low partitionings. Further, the amount of bioavailable Hg was inversely related to the particle reactivity of Hg with the sediments. Detailed analyses of metal-solid interactions provide a better understanding of how Hg in sediments can predict Hg concentration and therefore bioavailability in benthic invertebrates.

  14. Diffusive gradients in thin films (DGT) for the prediction of bioavailability of heavy metals in contaminated soils to earthworm (Eisenia foetida) and oral bioavailable concentrations.

    PubMed

    Bade, Rabindra; Oh, Sanghwa; Shin, Won Sik

    2012-02-01

    The applicability of diffusive gradients in thin-films (DGT) as a biomimic surrogate was investigated to determine the bioavailable heavy metal concentrations to earthworm (Eisenia foetida). The relationships between the amount of DGT and earthworm uptake; DGT uptake and the bioavailable concentrations of heavy metals in soils were evaluated. The one-compartment model for the dynamic uptake of heavy metals in the soil fitted well to both the earthworm (R(2)=0.641-0.990) and DGT (R(2)=0.473-0.998) uptake data. DGT uptake was linearly correlated with the total heavy metal concentrations in the soil (aqua regia), the bioavailable heavy metal concentrations estimated by fractions I+II of the standard measurements and testing (SM&T) and physiologically based extraction test (PBET, stomach+intestine). The coefficients of determination (R(2)) of DGT uptake vs. aqua regia were 0.433, 0.929 and 0.723; vs. SM&T fractions (I+II) were 0.901, 0.882 and 0.713 and vs. PBET (stomach+intestine) were 0.913, 0.850 and 0.649 for Pb, Zn and Cu, respectively. These results imply that DGT can be used as a biomimic surrogate for the earthworm uptake of heavy metals in contaminated soils as well as predict bioavailable concentrations of heavy metals estimated by SM&T (I+II) and PBET as a human oral bioavailable concentrations of heavy metals.

  15. BIOAVAILABILITY OF METALS IN CONTAMINATED SOIL AND DUST

    EPA Science Inventory

    Due to widespread metal contamination, it is necessary to characterize soils suspected of metal contamination and determine if the metal levels in these soils pose a hazard. Metal toxicity is often not directly related to the total concentration of metals present due to a numb...

  16. The Effect of Soil Properties on Metal Bioavailability: Field Scale Validation to Support Regulatory Acceptance

    DTIC Science & Technology

    2014-06-01

    The accuracy of these extraction methods to predict plant tissue contamination was limited to ± 35%. Similarly to metal bioaccessibility results...a soil extraction method will replicate the amount of metal absorbed by plants . The plant uptake system is too complex and dynamic to simulate by...available for making bioavailability adjustments 4 for metals exposure to soil invertebrates and plants . Weak salt extractions (e.g., calcium nitrate

  17. Bioavailability of Cd, Zn and Hg in Soil to Nine Recombinant Luminescent Metal Sensor Bacteria

    PubMed Central

    Bondarenko, Olesja; Rõlova, Taisia; Kahru, Anne; Ivask, Angela

    2008-01-01

    A set of nine recombinant heavy metal-specific luminescent bacterial sensors belonging to Gram-negative (Escherichia and Pseudomonas) and Gram-positive (Staphylococcus and Bacillus) genera and containing various types of recombinant metal-response genetic elements was characterized for heavy metal bioavailability studies. All nine strains were induced by Hg and Cd and five strains also by Zn. As a lowest limit, the sensors were detecting 0.03 μg·L-1 of Hg, 2 μg·L-1 of Cd and 400 μg·L-1 of Zn. Limit of determination of the sensors depended mostly on metal-response element, whereas the toxicity of those metals towards the sensor bacteria was mostly dependent on the type of the host bacterium, with Gram-positive strains being more sensitive than Gram-negative ones. The set of sensors was used to evaluate bioavailability of Hg, Cd and Zn in spiked soils. The bioavailable fraction of Cd and Zn in soil suspension assay (2.6 – 5.1% and 0.32 – 0.61%, of the total Cd and Zn, respectively) was almost comparable for all the sensors, whereas the bioavailability of Hg was about 10-fold higher for Gram-negative sensor cells (30.5% of total Hg), compared to Gram-positive ones (3.2% of the total Hg). For Zn, the bioavailable fraction in soil-water suspensions and respective extracts was comparable (0.37 versus 0.33% of the total Zn). However, in the case of Cd, for all the sensors used and for Hg concerning only Gram-negative sensor strains, the bioavailable fraction in soil-water suspensions exceeded the water-extracted fraction about 14-fold, indicating that upon direct contact, an additional fraction of Cd and Hg was mobilized by those sensor bacteria. Thus, for robust bioavailability studies of heavy metals in soils any type of genetic metal-response elements could be used for the construction of the sensor strains. However, Gram-positive and Gram-negative senor strains should be used in parallel as the bioavailability of heavy metals to those bacterial groups may be

  18. Effect of coastal eutrophication on heavy metal bioaccumulation and oral bioavailability in the razor clam, Sinonovacula constricta.

    PubMed

    Tu, Tengxiu; Li, Shunxing; Chen, Lihui; Zheng, Fengying; Huang, Xu-Guang

    2014-10-01

    As traditional seafoods, the razor clams are widely distributed from tropical to temperate areas. Coastal razor clams are often exposed to eutrophication. Heavy metal contamination is critical for seafood safety. However, how eutrophication affects bioaccumulation and oral bioavailability of heavy metals in the razor clams is unknown. After a four-month field experimental cultivation, heavy metals (Fe, Cu, Ni, V, As, and Pb) could be bioaccumulated by the razor clams (Sinonovacula constricta) through exposure to metals present in water and sediments or in the food chain, and then transferred to human via consumption of razor clams. Bionic gastrointestinal digestion and monolayer liposome extraction are used for metal oral bioavailability (OBA) assessment. The influence of eutrophication on OBA is decreased for Fe and Pb and increased for V. A significant positive linear correlation was observed between the bioaccumulation factors of Fe, Ni, V, and As in razor clams and the coastal eutrophication. These results may be due to the effect of eutrophication on metal species transformation in coastal seawater and subcellular distribution in razor clams. The maximum allowable daily intakes of razor clams are controlled by eutrophication status and the concentration of affinity-liposome As in razor clams.

  19. Bioavailability of Cd, Zn and Hg in Soil to Nine Recombinant Luminescent Metal Sensor Bacteria.

    PubMed

    Bondarenko, Olesja; Rõlova, Taisia; Kahru, Anne; Ivask, Angela

    2008-11-04

    A set of nine recombinant heavy metal-specific luminescent bacterial sensors belonging to Gram-negative (Escherichia and Pseudomonas) and Gram-positive (Staphylococcus and Bacillus) genera and containing various types of recombinant metalresponse genetic elements was characterized for heavy metal bioavailability studies. All nine strains were induced by Hg and Cd and five strains also by Zn. As a lowest limit, the sensors were detecting 0.03 μg·L(-1) of Hg, 2 μg·L(-1) of Cd and 400 μg·L(-1) of Zn. Limit of determination of the sensors depended mostly on metal-response element, whereas the toxicity of those metals towards the sensor bacteria was mostly dependent on the type of the host bacterium, with Gram-positive strains being more sensitive than Gram-negative ones. The set of sensors was used to evaluate bioavailability of Hg, Cd and Zn in spiked soils. The bioavailable fraction of Cd and Zn in soil suspension assay (2.6 - 5.1% and 0.32 - 0.61%, of the total Cd and Zn, respectively) was almost comparable for all the sensors, whereas the bioavailability of Hg was about 10-fold higher for Gram-negative sensor cells (30.5% of total Hg), compared to Gram-positive ones (3.2% of the total Hg). For Zn, the bioavailable fraction in soil-water suspensions and respective extracts was comparable (0.37 versus 0.33% of the total Zn). However, in the case of Cd, for all the sensors used and for Hg concerning only Gram-negative sensor strains, the bioavailable fraction in soilwater suspensions exceeded the water-extracted fraction about 14-fold, indicating that upon direct contact, an additional fraction of Cd and Hg was mobilized by those sensor bacteria. Thus, for robust bioavailability studies of heavy metals in soils any type of genetic metal-response elements could be used for the construction of the sensor strains. However, Gram-positive and Gram-negative senor strains should be used in parallel as the bioavailability of heavy metals to those bacterial groups may be

  20. TOTAL DISSOLVED AND BIOAVAILABLE METALS AT LAKE TEXOMA MARINAS

    EPA Science Inventory

    Dissolved metals in water and total metals in sediments have been measured at marina areas in Lake Texoma during June 1999 to October 2001, and October 2001, respectively. The metals most often found in the highest concentrations in marina water were Na and Ca, followed by Mg an...

  1. Trace Metals Monitoring In Water: Ability of Dgt Measurements For The Estimation of Bioavailability.

    NASA Astrophysics Data System (ADS)

    Gilbin, R.; Bakkaus, E.; Tusseau-Vuillemin, M.-H.

    The European Water Framework Directive point out the need for characterisation and monitoring of river waters in order to review the impact of human activity. Concern- ing trace metals pollution, it is now well established that the analysis of total con- centrations does not provide a good estimation of aquatic ecosystems exposure. Trace metals bioavailability depends on their speciation, i.e. their distribution among differ- ent forms (oxidation state, complexation with various ligands). Among these species, only the reactive species on cells surface are regarded as bioavailable (hydrated metal- lic ions and kinetically labile metal complexes). In this context, trace metals bioavail- ability was theorised by the formulation of the SFree Ion Activity ModelT and the & cedil;SBiotic Ligand ModelT. However, analytical methods used for the estimation of the & cedil; labile fraction of trace metals generally require a delicate calibration and are not eas- ily usable for field studies. Recently, a new technique for the measurement of effective hazardous metal concentrations was developed: Diffusion Gradients in Thin Films (Davison and Zhang, 1994). It allows to avoid some of the difficulties related to the traditional techniques, especially for in situ studies and monitoring: several in situ studies with this technique gave encouraging results. But prior to propose this ap- proach for a large use in trace metals monitoring in rivers, we still have to validate the technique by laboratory studies, by model simulations and an enlarge experience in field studies. The aim our work was to compare the experimental measurement by the DGT method with the measurement of biological effects by bioassays (acute toxicity) and the evaluation of free ion by chemical modelling (MINEQL+). Bioavailability of trace metals (Cu, Cd) in water was studied in the presence of characterised ligands (inorganic ligands, citrate, EDTA, standard humic substances). The results obtained should allow to

  2. Fate, behavior, and bioavailability of metal and metal oxide nanomaterials in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Bertsch, P. M.; Unrine, J. M.; Judy, J.; Tsyusko, O.

    2012-12-01

    Despite the benefits that are currently being manifested and those transformative breakthroughs that will undoubtedly result from advances in nanotechnology, concerns surrounding the potential negative impacts to the environment and human health and welfare continue to emerge. Information on the transport and fate of manufactured nanomaterials (MNMs) in the environment and on their potential effects to human and ecological receptors is emerging at an increasing rate. Notwithstanding these developments, the research enterprise focused on the environmental implications of nanotechnology is in its infancy and few unifying principles have yet to emerge. This lack of unanimity is related to many factors including, the vast diversity in chemical composition, size, shape, and surface chemical properties of MNMs, as well as the range of receptor species and cell lines investigated. Additionally, the large variation in exposure methodologies employed by various investigators as well as the discrepancies in the amount and quality of characterization data collected to support specific conclusions, provide major challenges for developing unifying concepts and principles. As the utilization of MNMs for a large variety of applications is currently in an exponential growth phase, there is great urgency to develop information that can be used to identify priority areas for assessing risks to humans and the environment, as well as in developing potential mitigation strategies. We have been investigating the fate, behavior, and potential impacts of MNMs released into terrestrial ecosystems by examining the bioavailability and toxicity as well as the trophic transfer of a range of metal and metal oxide nanoparticles (Ag, Au, Cu, TiO2, ZnO, CeO2) to microorganisms, detritivores, and plants. Interdisciplinary studies include the characterization of the nanoparticles and aged nanoparticles in complex media, the distribution of nanoparticles in biological tissues, nanoparticle toxicity

  3. Evaluation of trace metals bioavailability in Japanese river waters using DGT and a chemical equilibrium model.

    PubMed

    Han, Shuping; Naito, Wataru; Hanai, Yoshimichi; Masunaga, Shigeki

    2013-09-15

    To develop efficient and effective methods of assessing and managing the risk posed by metals to aquatic life, it is important to determine the effects of water chemistry on the bioavailability of metals in surface water. In this study, we employed the diffusive gradients in thin-films (DGT) to determine the bioavailability of metals (Ni, Cu, Zn, and Pb) in Japanese water systems. The DGT results were compared with a chemical equilibrium model (WHAM 7.0) calculation to examine its robustness and utility to predict dynamic metal speciation. The DGT measurements showed that biologically available fractions of metals in the rivers impacted by mine drainage and metal industries were relatively high compared with those in urban rivers. Comparison between the DGT results and the model calculation indicated good agreement for Zn. The model calculation concentrations for Ni and Cu were higher than the DGT concentrations at most sites. As for Pb, the model calculation depended on whether the precipitated iron(III) hydroxide or precipitated aluminum(III) hydroxide was assumed to have an active surface. Our results suggest that the use of WHAM 7.0 combined with the DGT method can predict bioavailable concentrations of most metals (except for Pb) with reasonable accuracy.

  4. On the bioavailability of trace metals in surface sediments: a combined geochemical and biological approach.

    PubMed

    Roosa, Stéphanie; Prygiel, Emilie; Lesven, Ludovic; Wattiez, Ruddy; Gillan, David; Ferrari, Benoît J D; Criquet, Justine; Billon, Gabriel

    2016-06-01

    The bioavailability of metals was estimated in three river sediments (Sensée, Scarpe, and Deûle Rivers) impacted by different levels of Cu, Cd, Pb, and Zn (Northern France). For that, a combination of geochemistry and biological responses (bacteria and chironomids) was used. The results obtained illustrate the complexity of the notion of "bioavailability." Indeed, geochemical indexes suggested a low toxicity, even in surface sediments with high concentrations of total metals and a predicted severe effect levels for the organisms. This was also suggested by the abundance of total bacteria as determined by DAPI counts, with high bacterial cell numbers even in contaminated areas. However, a fraction of metals may be bioavailable as it was shown for chironomid larvae which were able to accumulate an important quantity of metals in surface sediments within just a few days.We concluded that (1) the best approach to estimate bioavailability in the selected sediments is a combination of geochemical and biological approaches and that (2) the sediments in the Deûle and Scarpe Rivers are highly contaminated and may impact bacterial populations but also benthic invertebrates.

  5. Evaluation of small arms range soils for metal contamination and lead bioavailability.

    PubMed

    Bannon, Desmond I; Drexler, John W; Fent, Genevieve M; Casteel, Stan W; Hunter, Penelope J; Brattin, William J; Major, Michael A

    2009-12-15

    Although small arms ranges are known to be contaminated with lead, the full extent of metal contamination has not been described, nor has the oral bioavailability of lead in these soils. In this work, soil samples from ranges with diverse geochemical backgrounds were sieved to <250 microm and analyzed for total metal content. Soils had consistently high levels of lead and copper, ranging from 4549 to 24 484 microg/g and 223 to 2936 microg/g, respectively, while arsenic, antimony, nickel, and zinc concentrations were 100-fold lower. For lead bioavailability measurements, two widely accepted methods were used: an in vivo juvenile swine relative bioavailability method measuring lead absorption from ingested soils relative to equivalent lead acetate concentrations and an in vitro bioaccessibility procedure which measured acid-extractable lead as a percent of total lead in the soil. For eight samples, the mean relative bioavailability and bioaccessibility of lead for the eight soils was about 100% (108 +/- 18% and 95 +/- 6%, respectively) showing good agreement between both methods. Risk assessment and/or remediation of small arms ranges should therefore assume high bioavailability of lead.

  6. Influence of eutrophication on metal bioaccumulation and oral bioavailability in oysters, Crassostrea angulata.

    PubMed

    Li, Shun-Xing; Chen, Li-Hui; Zheng, Feng-Ying; Huang, Xu-Guang

    2014-07-23

    Oysters (Crassostrea angulata) are often exposed to eutrophication. However, how these exposures influence metal bioaccumulation and oral bioavailability (OBA) in oysters is unknown. After a four month field experimental cultivation, bioaccumulation factors (BAF) of metals (Fe, Cu, As, Cd, and Pb) from seawater to oysters and metal oral bioavailability in oysters by bionic gastrointestinal tract were determined. A positive effect of macronutrient (nitrate N and total P) concentration in seawater on BAF of Cd in oysters was observed, but such an effect was not significant for Fe, Cu, Pb, and As. Only OBA of As was significantly positively correlated to N and P contents. For Fe, OBA was negatively correlated with N. The regular variation of the OBA of Fe and As may be due to the effect of eutrophication on the synthesis of metal granules and heat-stable protein in oysters, respectively.

  7. Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models.

    PubMed Central

    Costa, D L; Dreher, K L

    1997-01-01

    Many epidemiologic reports associate ambient levels of particulate matter (PM) with human mortality and morbidity, particularly in people with preexisting cardiopulmonary disease (e.g., chronic obstructive pulmonary disease, infection, asthma). Because much ambient PM is derived from combustion sources, we tested the hypothesis that the health effects of PM arise from anthropogenic PM that contains bioavailable transition metals. The PM samples studied derived from three emission sources (two oil and one coal fly ash) and four ambient airsheds (St. Louis, MO; Washington; Dusseldorf, Germany; and Ottawa, Canada). PM was administered to rats by intratracheal instillation in equimass or equimetal doses to address directly the influence of PM mass versus metal content on acute lung injury and inflammation. Our results indicated that the lung dose of bioavailable transition metal, not instilled PM mass, was the primary determinant of the acute inflammatory response for both the combustion source and ambient PM samples. Residual oil fly ash, a combustion PM rich in bioavailable metal, was evaluated in a rat model of cardiopulmonary disease (pulmonary vasculitis/hypertension) to ascertain whether the disease state augmented sensitivity to that PM. Significant mortality and enhanced airway responsiveness were observed. Analysis of the lavaged lung fluids suggested that the milieu of the inflamed lung amplified metal-mediated oxidant chemistry to jeopardize the compromised cardiopulmonary system. We propose that soluble metals from PM mediate the array of PM-associated injuries to the cardiopulmonary system of the healthy and at-risk compromised host. PMID:9400700

  8. Bioavailability and Natural Pollution of Heavy Metals in Bahia de Magdalena, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Lee, W.; O'Shea, B.

    2012-12-01

    In the pristine environment of Bahia de Magdalena, Baja California, elevated concentrations of heavy metals have been reported in the biota within the bay, such as sea grasses, blue crabs, and marine turtles. While the hypothesized source of these metals has emphasized anthropogenic inputs from a local fish cannery, geologic enrichment of metals from natural ophiolite formations in the Puerto Magdalena region may be an increasingly feasible source. Total (XRF) chromium and nickel concentrations (max 4,450 ppm and 2,396 ppm, respectively) in rock and soil are orders of magnitude higher than average concentrations in the crust and the beach sands directly impacted by waste discharge from the cannery (mean Cr, 55ppm and mean Ni 17ppm at cannery). Bioavailable (HNO3 acid extracted) metals differ between rock and soil versus cannery-impacted sites. Most notably, Ni is very bioavailable (mean 70% total Ni extracted) in pristine ophiolite areas, but almost completely unavailable at cannery-impacted sites. In contrast, Zn is slightly more bioavailable at the impacted cannery site (mean 55% Zn extracted) than the ophiolite rocks (mean 45% Zn extracted). In addition, these results suggest that while metals, such as Cu, Fe, and Mn, have been previously studied in the biota of the bay, other heavy metals such as Ni and Cr should be included in future biological studies within Bahia de Magdalena.

  9. The impact of metal transport processes on bioavailability of free and complex metal ions in methanogenic granular sludge.

    PubMed

    Bartacek, Jan; Fermoso, Fernando G; Vergeldt, Frank; Gerkema, Edo; Maca, Josef; van As, Henk; Lens, Piet N L

    2012-01-01

    Bioavailability of metals in anaerobic granular sludge has been extensively studied, because it can have a major effect on metal limitation and metal toxicity to microorganisms present in the sludge. Bioavailability of metals can be manipulated by bonding to complexing molecules such as ethylenediaminetetraacetate (EDTA) or diethylenetriaminepentaacetate (DTPA). It has been shown that although the stimulating effect of the complexed metal species (e.g. [CoEDTA](2-)) is very fast, it is not sustainable when applied to metal-limited continuously operated reactors. The present paper describes transport phenomena taking place inside single methanogenic granules when the granules are exposed to various metal species. This was done using magnetic resonance imaging (MRI). The MRI results were subsequently related to technological observations such as changes in methanogenic activity upon cobalt injection into cobalt-limited up-flow anaerobic sludge blanket (UASB) reactors. It was shown that transport of complexed metal species is fast (minutes to tens of minutes) and complexed metal can therefore quickly reach the entire volume of the granule. Free metal species tend to interact with the granular matrix resulting in slower transport (tens of minutes to hours) but higher final metal concentrations.

  10. Assessment of metal bioavailability in the vineyard soil-grapevine system using different extraction methods.

    PubMed

    Vázquez Vázquez, Francisco A; Pérez Cid, Benita; Río Segade, Susana

    2016-10-01

    This study was focused on the assessment of single and sequential extraction methods to predict the bioavailability of metals in the vineyard soil-grapevine system. The modified BCR sequential extraction method and two single-step extraction methods based on the use of EDTA and acetic acid were applied to differently amended vineyard soils. The variety effect was studied on the uptake of metals by leaves and grapes. Most of the elements studied (Ca, Mg, Cu, Fe, Mn, Zn and Pb) were weakly mobilized from vineyard soils, with the exception of Cu and Mn. The determination of total metal content in leaves and grapes showed a different accumulation pattern in the two parts of the vine. A significant relationship was observed, for all the elements studied except for Fe, between the content bioavailable in the soil and the accumulated in both leaves and grapes (R=0.602-0.775, p<0.01).

  11. Predicting bioavailability of metals from sludge-amended soils.

    PubMed

    Golui, Debasis; Datta, S P; Rattan, R K; Dwivedi, B S; Meena, M C

    2014-12-01

    We attempted to develop a protocol for fixing the maximum permissible limit of sludge in agricultural lands based on transfer of metals from sludge-amended soils to human food chain. For this purpose, spinach was grown as a test crop on acid and alkaline soils with graded doses of sludge (0, 1.12, 2.24, 4.48, 8.96, 17.9, 35.8, 71.6, 142 and 285 g kg(-1) of soil) in a pot experiment. Biomass yield of spinach was increased due to sludge application in both acid and alkaline soils. Among the chemical extractants, EDTA extracted the highest amount of metals from sludge-amended soil followed by diethylenetriaminepentaacetic acid (DTPA) and CaCl2. Elevated levels of Zn, Cu, Fe, Mn, Ni, Cd and Pb in spinach were observed due to sludge application over control. Application of sludge was more effective in increasing metal content in spinach grown on acid soil than alkaline soil. Solubility-free ion activity model as a function of pH, organic carbon and extractable metal was far more effective in predicting metal uptake by spinach grown on sludge-amended soils as compared to that of chemical extractants. Risk in terms of hazard quotient (HQ) for intake of metals through consumption of spinach by humans grown on sludge-treated soils was computed for different metals separately. In a 90-day pot experiment, safe rates of sludge application were worked out as 4.48 and 71.6 g kg(-1) for acid and alkaline soils, respectively.

  12. Effects of acid-volatile sulfide on metal bioavailability and toxicity to midge (Chironomus tentans) larvae in black shale sediments

    USGS Publications Warehouse

    Ogendi, G.M.; Brumbaugh, W.G.; Hannigan, R.E.; Farris, J.L.

    2007-01-01

    Metal bioavailability and toxicity to aquatic organisms are greatly affected by variables such as pH, hardness, organic matter, and sediment acid-volatile sulfide (AVS). Sediment AVS, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides, has been studied intensely in recent years. Few studies, however, have determined the spatial variability of AVS and its interaction with simultaneously extracted metals (SEM) in sediments containing elevated concentrations of metals resulting from natural geochemical processes, such as weathering of black shales. We collected four sediment samples from each of four headwater bedrock streams in northcentral Arkansa (USA; three black shale-draining streams and one limestone-draining stream). We conducted 10-d acute whole-sediment toxicity tests using the midge Chironomus tentans and performed analyses for AVS, total metals, SEMs, and organic carbon. Most of the sediments from shale-draining streams had similar total metal and SEM concentrations but considerable differences in organic carbon and AVS. Zinc was the leading contributor to the SEM molar sum, averaging between 68 and 74%, whereas lead and cadmium contributed less than 3%. The AVS concentration was very low in all but two samples from one of the shale streams, and the sum of the SEM concentrations was in molar excess of AVS for all shale stream sediments. No significant differences in mean AVS concentrations between sediments collected from shale-draining or limestone-draining sites were noted (p > 0.05). Midge survival and growth in black shale-derived sediments were significantly less (p < 0.001) than that of limestone-derived sediments. On the whole, either SEM alone or SEM-AVS explained the total variation in midge survival and growth about equally well. However, survival and growth were significantly greater (p < 0.05) in the two sediment samples that contained measurable AVS compared with the two sediments from the

  13. Assessment of metal bioavailability in smelter-contaminated soil before and after lime amendment.

    PubMed

    Bade, Rabindra; Oh, Sanghwa; Sik Shin, Won

    2012-06-01

    In this study, changes in bioavailable concentrations of Pb, Zn, Cu and As in former smelter site soils (J1 and J2) were investigated before and after lime amendment. The immobilization efficiencies of metal(loid)s were evaluated by Toxicity Characteristic Leaching Procedure (TCLP). Their bioavailable concentrations in the soils were evaluated by the acid-extractable and -reducible fractions in Standard Measurement and Testing Program (i.e., SM&T(I+II)), in vitro physiologically based extraction test (PBET) and diffusive gradients in thin-films (DGT). The results showed that the bioavailable concentrations remarkably decreased after lime amendment in both J1 and J2 soils. DGT uptake and resupply (R) of Zn, Cu and As from soil to soil solution increased but that of Pb decreased. This pattern was consistent with SM&T(I+II)- and PBET-extractable concentrations after lime amendment. This indicates that lime amendment is highly effective for the immobilization of Zn, Cu and As, but not for Pb. Our results implicate that DGT can be used to estimate bioavailability of metal(loid)s in soils and further extended to estimate risk reduction after soil remediation.

  14. THE IMPORTANCE OF BIOAVAILABILITY IN REMEDIATION OF METAL CONTAMINATED SOILS

    EPA Science Inventory

    Reduction in exposure to soil metal contamination has typically been accomplished by soil removal and off site disposal, by covering, or by diluting with uncontaminated soil. Cost, logistical concerns, and regulatory requirements associated with excavation and disposal or ex-situ...

  15. Metal Immobilization Influence On Bioavailability And Remediation For Urban Environments

    EPA Science Inventory

    Immobilization of soil contaminants, such as lead, via phosphate amendments to alter the chemical environment of metals into highly insoluble forms is a well established process. The literature has documented numerous examples of highly contaminated Pb sites at shooting ranges, b...

  16. Comparison of single extraction procedures and the application of an index for the assessment of heavy metal bioavailability in river sediments.

    PubMed

    Sakan, Sanja; Popović, Aleksandar; Škrivanj, Sandra; Sakan, Nenad; Đorđević, Dragana

    2016-11-01

    Metals in sediments are present in different chemical forms which affect their ability to transfer. The objective of this body of work was to compare different extraction methods for the bioavailability evaluation of some elements, such as Ba, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, V and Zn from Serbian river sediments. A bioavailability risk assessment index (BRAI) was used for the quantification of heavy metal bioavailability in the sediments. Actual and potential element availability was assessed by single extractions with mild (CaCl2 and CH3COONH4) and acidic (CH3COOH) extractants and complexing agents (EDTA). Aqua regia extraction was used for the determination of the pseudo-total element content in river sediments. In different single extraction tests, higher extraction of Cd, Cu, Zn and Pb was observed than for the other elements. The results of the single extraction tests revealed that there is a considerable chance of metal leaching from the sediments assessed in this study. When the BRAI was applied, the results showed a high risk of heavy metal bioavailability in Serbian river sediments.

  17. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; Ivey, C.D.; Ingersoll, C.G.; Moran, P.W.

    2008-01-01

    We studied the bioavailability and toxicity of copper, zinc, arsenic, cadmium, and lead in sediments from Lake Roosevelt (LR), a reservoir on the Columbia River in Washington, USA that receives inputs of metals from an upstream smelter facility. We characterized chronic sediment toxicity, metal bioaccumulation, and metal concentrations in sediment and pore water from eight study sites: one site upstream in the Columbia River, six sites in the reservoir, and a reference site in an uncontaminated tributary. Total recoverable metal concentrations in LR sediments generally decreased from upstream to downstream in the study area, but sediments from two sites in the reservoir had metal concentrations much lower than adjacent reservoir sites and similar to the reference site, apparently due to erosion of uncontaminated bank soils. Concentrations of acid-volatile sulfide in LR sediments were too low to provide strong controls on metal bioavailability, and selective sediment extractions indicated that metals in most LR sediments were primarily associated with iron and manganese oxides. Oligochaetes (Lumbriculus variegatus) accumulated greatest concentrations of copper from the river sediment, and greatest concentrations of arsenic, cadmium, and lead from reservoir sediments. Chronic toxic effects on amphipods (Hyalella azteca; reduced survival) and midge larvae (Chironomus dilutus; reduced growth) in whole-sediment exposures were generally consistent with predictions of metal toxicity based on empirical and equilibrium partitioning-based sediment quality guidelines. Elevated metal concentrations in pore waters of some LR sediments suggested that metals released from iron and manganese oxides under anoxic conditions contributed to metal bioaccumulation and toxicity. Results of both chemical and biological assays indicate that metals in sediments from both riverine and reservoir habitats of Lake Roosevelt are available to benthic invertebrates. These findings will be used as

  18. The Pseudomonas community in metal-contaminated sediments as revealed by quantitative PCR: a link with metal bioavailability.

    PubMed

    Roosa, Stéphanie; Wauven, Corinne Vander; Billon, Gabriel; Matthijs, Sandra; Wattiez, Ruddy; Gillan, David C

    2014-10-01

    Pseudomonas bacteria are ubiquitous Gram-negative and aerobic microorganisms that are known to harbor metal resistance mechanisms such as efflux pumps and intracellular redox enzymes. Specific Pseudomonas bacteria have been quantified in some metal-contaminated environments, but the entire Pseudomonas population has been poorly investigated under these conditions, and the link with metal bioavailability was not previously examined. In the present study, quantitative PCR and cell cultivation were used to monitor and characterize the Pseudomonas population at 4 different sediment sites contaminated with various levels of metals. At the same time, total metals and metal bioavailability (as estimated using an HCl 1 m extraction) were measured. It was found that the total level of Pseudomonas, as determined by qPCR using two different genes (oprI and the 16S rRNA gene), was positively and significantly correlated with total and HCl-extractable Cu, Co, Ni, Pb and Zn, with high correlation coefficients (>0.8). Metal-contaminated sediments featured isolates of the Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas lutea and Pseudomonas aeruginosa groups, with other bacterial genera such as Mycobacterium, Klebsiella and Methylobacterium. It is concluded that Pseudomonas bacteria do proliferate in metal-contaminated sediments, but are still part of a complex community.

  19. In vitro bioavailability of heavy metals in pressure-treated wood dust.

    PubMed

    Gordon, Terry; Spanier, Jonathan; Butala, John H; Li, Ping; Rossman, Toby G

    2002-05-01

    Pressure treatment with chromium, copper, and arsenic (CCA) is the most prevalent method for protecting wood used in outdoor construction projects. Although these metals are tightly bound to the wood fibers and are not released under most conditions of use, we examined the bioavailability of metals in CCA pressure-treated wood dust in vitro. Cytotoxicity and metallothionein (MT) mRNA expression were examined in V79 Chinese hamster lung fibroblast cells incubated with respirable-size wood dust generated by sanding CCA-treated and untreated (control) Southern yellow pine. In colony survival studies, increased cytotoxicity (p < 0.05) occurred in V79 cells treated with CCA wood dust (351 +/- 77 microg/ml, mean +/- SE) compared with control wood dust (883 +/- 91 microg/ml). Increased cytotoxicity with CCA wood dust also occurred in an arsenic resistant subline of V79 cells, thus suggesting that arsenic was not responsible for the increased cytotoxicity. Metallothionein mRNA was significantly increased after 48 h of treatment with CCA wood dust compared with control wood dust. Incubation of CCA wood dust in cell culture media resulted in the transfer of copper, but not chromium or arsenic, into the media. Moreover, the treatment of cells with this filtered extract resulted in significantly increased metallothionein mRNA, suggesting that bioavailable copper is responsible for inducing metallothionein mRNA in V79 cells. Thus, these bioassays suggest that metals become bioavailable during in vitro culture of phagocytic V79 cells with CCA wood dust.

  20. [Influence of Dissimilatory Iron Reduction on the Speciation and Bioavailability of Heavy Metals in Soil].

    PubMed

    Si, You-bin; Wang, Juan

    2015-09-01

    Fe(III) dissimilatory reduction by microbes is an important process of producing energy in the oxidation of organic compounds under anaerobic condition with Fe(III) as the terminal electron acceptor and Fe(II) as the reduction product. This process is of great significance in element biogeochemical cycle. Iron respiration has been described as one of the most ancient forms of microbial metabolism on the earth, which is bound up with material cycle in water, soil and sediments. Dissimilatory iron reduction plays important roles in heavy metal form transformation and the remediation of heavy metal and radionuclide contaminated soils. In this paper, we summarized the research progress of iron reduction in the natural environment, and discussed the influence and the mechanism of dissimilatory iron reduction on the speciation and bioavailability of heavy metals in soil. The effects of dissimilatory iron reduction on the speciation of heavy metals may be attributed to oxidation and reduction, methytation and immobilization of heavy metals in relation to their bioavailability in soils. The mechanisms of Fe(III) dissimilatory reduction on heavy metal form transformation contain biological and chemical interactions, but the mode of interaction remains to be further investigated.

  1. Bioavailability of heavy metals in strongly acidic soils treated with exceptional quality biosolids

    SciTech Connect

    Basta, N.T.; Sloan, J.J.

    1999-03-01

    New federal regulations may increase application of exceptional quality (EQ) biosolids to acidic soils, and information on the effect of this practice on bioavailability of heavy metal is limited. The objective of this study was to compare bioavailability of heavy metal in soil treated with nonalkaline or alkaline EQ biosolids with limestone-treated soils. Three acidic soils (pH 3.7--4.3) were treated with three amounts of lime-stabilized biosolids (LS), anaerobic-digested biosolids (AN), or agricultural limestone (L), and incubated at 25 C. Soil solution Cd, Zn, and other chemical constituents were measured at 1, 30, 90, and 180 d incubation. Soil solution Cd and Zn were AN > LS {ge} L, C. Soil solution Cd and Zn increased with AN applied but decreased wit h LS applied. The high application of LS had soil solution Zn dramatically decreased at soil pH > 5.5 and >5.1, respectively. Soil solution Cd and Zn increases were AN > LS with incubation time. Biosolids treatments increased heavy metal in Ca(NO{sub 3}){sub 2} and NaOAc fractions. Except for Cd, most metal from biosolids were in EDTA and HNO{sub 3} fractions. Heavy metal bioavailability, measured using lettuce (Latuca sativa L.), was AN > LS {ge} L, C. Although state regulations prohibiting application of nonalkaline EQ biosolids to acidic soil is a prudent practice, application of EQ alkaline biosolids that achieves soil pH > 5 minimizes risk from soil solution Cd and Zn and plant uptake of heavy metal.

  2. Metals in sediments: bioavailability and toxicity in a tropical reservoir used for public water supply.

    PubMed

    Cardoso-Silva, Sheila; Da Silva, Daniel Clemente Vieira Rego; Lage, Fernanda; de Paiva, Teresa Cristina Brazil; Moschini-Carlos, Viviane; Rosa, André Henrique; Pompêo, Marcelo

    2016-05-01

    Sediments may be a repository of contaminants in freshwater ecosystems. One way to assess the quality of this compartment, in terms of potentially bioavailable metals, is by the analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM). In order to investigate the bioavailability, toxicity, and compartmentalization of different metals (Cd, Cr, Cu, Ni, Pb, Zn), sampling of surface sediments was performed at nine stations along the Paiva Castro reservoir (São Paulo, Brazil). The metals were analyzed using atomic absorption spectroscopy. Sediment organic matter (OM), organic carbon (OC), and grain size were also measured. The parameters pH, EH, temperature, and dissolved oxygen were determined at the sediment-water interface. Chronic and acute toxicological tests were performed with sediments from the area where water was extracted for the public water supply. Low levels of OM, associated with loss of stratification in the water column, explained the relatively low AVS values. The molar ratio ∑[SEM]-[AVS]/fOC was less than 130 mmol/kg(-1) for all the sampling stations, indicating that the metals were not bioavailable. With the exception of Cd, metal levels were in accordance with background concentrations and the threshold effect level (TEL) established by the Canadian Council of Ministers of the Environment. The ecotoxicological tests confirmed the absence of toxic effects to biota. Application of principal component analysis indicated the presence of four compartments along the reservoir: (1) a riverine zone, potentially threatened by contamination with Cd; (2) an intermediate zone; (3) a limnic area; and (4) the area where water was taken for the public water supply.

  3. Soil organic matter and salinity affect copper bioavailability in root zone and uptake by Vicia faba L. plants.

    PubMed

    Matijevic, Lana; Romic, Davor; Romic, Marija

    2014-10-01

    Processes that control the mobility, transformation and toxicity of metals in soil are of special importance in the root-developing zone. For this reason, there is a considerable interest in understanding trace elements (TEs) behavior in soil, emphasising the processes by which plants take them up. Increased root-zone salinity can affect plant TEs uptake and accumulation in plant tissue. Furthermore, copper (Cu) complexation by soil organic matter (SOM) is an effective mechanism of Cu retention in soils, controlling thus its bioavailability. Therefore, a greenhouse pot experiment was conducted to study the effects of soil Cu contamination in a saline environment on faba bean (Vicia faba L.) element uptake. Treatment with NaCl salinity was applied (control, 50 mM NaCl and 100 mM NaCl) on faba bean plants grown in a control and in a soil spiked with Cu (250 and 500 mg kg(-1)). Low and high SOM content trial variants were studied. Cu accumulation occurred in faba bean leaf, pod and seed. Cu contamination affected plant element concentrations in leaves (Na, Ca, Mg, Mn), pod (Zn, Mn) and seed (Mn, Mo, Zn). Root-zone salinity also affected faba bean element concentrations. Furthermore, Cu contamination-salinity and salinity-SOM interactions were significant for pod Cu concentration, suggesting that Cu phytoavailability could be affected by these interactions. Future research will be focused on the mechanisms of Cu translocation in plant and adaptation aspects of abiotic stress.

  4. Assessment of metal contamination, bioavailability, toxicity and bioaccumulation in extreme metallic environments (Iberian Pyrite Belt) using Corbicula fluminea.

    PubMed

    Bonnail, E; Sarmiento, A M; DelValls, T A; Nieto, J M; Riba, I

    2016-02-15

    The Iberian Pyrite Belt (SW Iberian Peninsula) has intense mining activity. Currently, its fluvial networks receive extremely acid lixiviate residue discharges that are rich in sulphates and metals in solution (acid mine drainage, AMD) from abandoned mines. In the current study, the sediment and water quality were analysed in three different areas of the Odiel River to assess the risk associated with the metal content and its speciation and bioavailability. Furthermore, sediment contact bioassays were performed using the freshwater clam Corbicula fluminea to determine its adequacy as a biomonitoring tool in relation to theoretical risk indexes and regulatory thresholds. Reburial activity and mortality were used as the toxic responses of clams when exposed to contaminated sediment. The results showed coherence between the water and sediment chemical contamination for most of the metals. The reburial activity was correlated with the metal toxicity, but no clam mortality was registered. The bioaccumulation of the studied metals in the clam did not have a significant correlation with the bioavailable fraction of the metal content in the environment, which could be related to a potential different speciation in this singular environment. The bioaccumulation responses were negative for As, Cd and Zn in highly contaminated environments and were characterized as severe, considerable and low potential environmental risks, respectively. The results show that C. fluminea is a good biomonitor of Cu and Pb.

  5. Impact of fly ash and phosphatic rock on metal stabilization and bioavailability during sewage sludge vermicomposting.

    PubMed

    Wang, Longmian; Zhang, Yimin; Lian, Jianjun; Chao, Jianying; Gao, Yuexiang; Yang, Fei; Zhang, Leiyan

    2013-05-01

    Sewage sludge (SS) was mixed with different proportions of fly ash (FA) and phosphoric rock (PR), as passivators, and earthworms, Eisenia fetida, were introduced to allow vermicomposting. The earthworm growth rates, reproduction rates, and metal (except Zn and Cd) concentrations were significantly higher in the vermireactors containing FA and PR than in the treatments without passivators. The total organic carbon (TOC) and total metal concentrations in the mixtures decreased, and the mixtures were brought to approximately pH 7 during vermicomposting. There were significant differences in the decreases in the metal bioavailability factors (BFs) between the passivator and control treatments, and adding 20% FA (for Cu and Zn) or 20% PR (for Pb, Cd, and As) to the vermicompost were the most effective treatments for mitigating metal toxicity. The BF appeared to be dependent on TOC in the all treatments, but was not closely dependent on pH in the different vermibeds.

  6. [Advance in the bioavailability monitoring of heavy metal based on microbial whole-cell sensor].

    PubMed

    Hou, Qi-Hui; Ma, An-Shou; Zhuang, Xiu-Liang; Zhuang, Guo-Qiang

    2013-01-01

    Microbial whole-cell biosensor is an excellent tool to assess the bioavailability of heavy metal in soil and water. However, the traditional physicochemical instruments are applied to detect the total metal. Furthermore, microbial whole-cell biosensor is simple, rapid and economical in manipulating, and is thus a highly qualified candidate for emergency detection of pollution incidents. The biological component of microbial whole-cell biosensor mostly consists of metalloregulatory proteins and reporter genes. In detail, metalloregulatory proteins mainly include the MerR family, ArsR family and RS family, and reporter genes mainly include gfp, lux and luc. Metalloregulatory protein and reporter gene are related to the sensitivity, specificity and properties in monitoring. The bioavailability of heavy metals is alterable under different conditions, influenced by pH, chelate and detection methods and so on. Increasing the accumulation of intracellular heavy metal, modifying the metalloregulatory proteins and optimizing the detecting conditions are important for improving the sensitivity, specificity and accuracy of the microbial whole-cell biosensor. The future direction of microbial whole-cell biosensor is to realize the monitoring of pollutions in situ and on line.

  7. Enhanced anaerobic digestion of food waste by trace metal elements supplementation and reduced metals dosage by green chelating agent [S, S]-EDDS via improving metals bioavailability.

    PubMed

    Zhang, Wanli; Zhang, Lei; Li, Aimin

    2015-11-01

    This study aimed at investigating the effects of trace metals on methane production from food waste and examining the feasibility of reducing metals dosage by ethylenediamine-N,N'-disuccinic acid (EDDS) via improving metals bioavailability. The results indicated that the effects of metal elements highly depended on the supplemental concentrations. Trace metals supplemented under moderate concentrations greatly enhanced the methane yield. However, the excessive supplementation of Fe (1000 mg/L) and Ni (50 mg/L) exhibited the obvious toxicity to methanogens. The combinations of trace metals exhibited remarkable synergistic effects. The supplementation of Fe (100 mg/L) + Co (1 mg/L) + Mo (5 mg/L) + Ni (5 mg/L) obtained the greatest methane yield of 504 mL/g VSadded and the highest increment of 35.5% compared to the reactor without metals supplementation (372 mL/g VSadded). The changes of metals speciation showed the reduction of metals bioavailability during anaerobic digestion, which might weaken the stimulative effects of trace metals. However, the addition of EDDS improved metals bioavailability for microbial uptake and stimulated the activity of methanogens, and therefore, strengthened the stimulative effects of metals on anaerobic digestion of food waste. The batch and semi-continuous experiments confirmed that the addition of EDDS (20 mg/L) bonded to trace metals prior to their supplementation could obtain a 50% reduction of optimal metals dosage. This study provided a feasible method to reduce trace metals dosage without the degeneration of process performance of anaerobic digestion.

  8. Bioavailability of biologically sequestered cadmium and the implications of metal detoxification

    USGS Publications Warehouse

    Wallace, W.G.; Lopez, G.R.

    1997-01-01

    The deposit-feeding oligochaete Limnodrilus hoffmeisteri possesses metallothionein-like proteins and metal-rich granules for storing and detoxifying cadmium (Cd). In this study we investigated the bioavailability of Cd sequestered within this oligochaete by conducting feeding experiments with 109Cd-labeled oligochaetes and the omnivorous grass shrimp Palaemonetes pugio. We also make predictions on Cd trophic transfer based on oligochaete subcellular Cd distributions and absorption efficiencies of Cd by shrimp Cytosol [including metallothionein-like proteins and other proteins) and a debris fraction (including metal-rich granules and tissue fragments) isolated from homogenized 109Cd-labeled oligochaetes were embedded in gelatin and fed to shrimp. The 109Cd absorption efficiencies of shrimp fed these subcellular fractions were 84.8 and 48.6%, respectively, and were significantly different (p < 0.001), indicating that 109Cd bound in these fractions was not equally available to a predator. Mass balance equations demonstrate that shrimp fed whole worms absorb 61.5% of the ingested 109Cd, an absorption efficiency similar to that obtained experimentally (57.1%). Furthermore, the majority of the absorbed 109Cd comes from the fraction containing metallothionein-like proteins (i.e. cytosol). 109Cd absorbed from the debris fraction probably comes from the digestion of tissue fragments, rather than metal-rich granules. The ecological significance of these findings is that prey detoxification mechanisms may mediate the bioreduction or bioaccumulation of toxic metals along fond chains by altering metal bioavailability. Another important finding is that trophic transfer of metal can be predicted based on the subcellular metal distribution of prey.

  9. Bioavailability of heavy metals in terrestrial and aquatic systems: A quantitative approach

    SciTech Connect

    Plette, A.C.C.; Nederlof, M.M.; Temminmghoff, E.J.M.; Riemsduk, W.H. van

    1999-09-01

    Speciation and bioavailability are the keywords in the relation between the total metal content of the system and the resulting effects for biota. The metal ion binding to the biotic surface is pH dependent, as is metal ion binding to soils. The binding of metal ion to the biotic surface of an organism when present in soil can decrease with increasing pH, whereas the binding behavior of the biotic surface as such will always increase with increasing pH. The metal toxicity for plants often increases with increasing pH for water culture experiments, in which the opposite effect is observed for plants growing in soils. These seemingly contradictive observations can be explained by considering the interaction between an organism and metal ions present in soil to be the result of competition for that metal ion by all components (including the organism) present in the system. This concept is illustrated on the basis of model calculations concerning cadmium binding to a bacterium present in a clay and a sandy soil as influenced by pH and calcium concentration. In addition, the concept is applied for calculating the impact of algal bloom on the copper speciation in an aquatic system. The concept might be a valuable tool in predicting quantitatively the metal ion sorption to biota present in a complex system and to predict the relative change in availability due to environmental changes.

  10. Palygorskite changes heavy metal bioavailability and microbial functional diversity in sewage sludge composting.

    PubMed

    Liu, Siying; Liu, Jia; Zhao, Juanjuan; Xia, Dongsheng; Pan, Fei; Liu, Ci; Kyzas, George Z; Fu, Jie

    2015-01-01

    To investigate the effects of palygorskite on chemical forms of heavy metal and microbial functional diversity in the sewage sludge composting, a compost matrix of sewage sludge, wheat straw and varying contents of palygorskite were inoculated with the compound microbial preparation. The chemical speciation analysis by a Community Bureau of Reference-sequential extraction indicated the contribution of palygorskite to reduce the bioavailability of a model metal, Cu, during the composting process. The Biolog EcoPlate(TM) test revealed that the microbial community showed better capability of utilizing complex macro-molecules (such as miscellaneous and polymers) in the presence of palygorskite. Increasing the palygorskite contents from 1% to 5%, the microbial activity showed an increasing tendency. However, continuously increasing the palygorskite resulted in a decline of the microbial metabolism. Therefore, appropriate content of palygorskite is an ideal additive for composting, not only enhancing the microbial activity, but also reducing the metal toxicity.

  11. Natural and anthropogenic heavy metals in estuarine cohesive sediments: geochemistry and bioavailability

    NASA Astrophysics Data System (ADS)

    Grecco, Laura Edith; Gómez, Eduardo Alberto; Botté, Sandra Elizabeth; Marcos, Ángel Omar; Marcovecchio, Jorge Eduardo; Cuadrado, Diana Graciela

    2011-03-01

    The geochemistry, mineralogy, and grain size distribution of several estuarine cohesive sediment samples from potentially human-influenced areas without such an influence were analyzed to determine the natural heavy metal content and evaluate its impact on the Bahía Blanca estuarine environment. The data were compared with different ranges of concentrations for heavy metals in marine sediments established by the NOAA Screening Quick Reference Tables in which values range from background levels to those considered toxic to the marine environment. Our total heavy metal contents were below the established hazardous levels in all the analyzed samples, even though the potentially human-influenced areas (harbors, industry, urban spread) showed the highest total concentration values as well as greater percentages of bioavailable compounds. This would imply a low and not extensive anthropogenic input into the environment. The relatively high proportions in which Cd, Pb, and Cr appear as bioavailable compounds at some sites not influenced by human activity suggest the presence of a natural source for these elements. This could be attributed to the weathering of naturally occurring volcanic minerals, indicating that special care must be taken when monitoring of sediment for anthropogenic activity is carried out within this environment. According to the results obtained, and in order to minimize the environmental impact caused by periodic water injection dredging, relocation of sewage outfalls from vessel mooring areas into open waters is strongly recommended.

  12. Influence of acid volatile sulfide and metal concentrations on metal bioavailability to marine invertebrates in contaminated sediments

    USGS Publications Warehouse

    Lee, B.-G.; Lee, J.-S.; Luoma, S.N.; Choi, H.J.; Koh, C.-H.

    2000-01-01

    allowed use of metal concentrations typical of nature and evaluation of processes important to chronic metal exposure. A vertical sediment column similar to that often found in nature was used to facilitate realistic biological behavior. Results showed that AVS or porewater (PW) metals controlled bioaccumulation in only 2 of 15 metal-animal combinations. Bioaccumulation of all three metals by the bivalves was related significantly to metal concentrations extracted from sediments (SEM) but not to [SEM - AVS] or PW metals. SEM predominantly influenced bioaccumulation of Ni and Zn in N. arenaceodentata, but Cd bioaccumulation followed PW Cd concentrations. SEM controlled tissue concentrations of all three metals in H. filiformis and S. missionensis, with minor influences from metal-sulfide chemistry. Significant bioaccumulation occurred when SEM was only a small fraction of AVS in several treatments. Three factors appeared to contribute to the differences between these bioaccumulation results and the results from toxicity tests reported previously: differences in experimental design, dietary uptake, and biological attributes of the species, including mode and depth of feeding.Microcosms were used to simulate environmentally realistic metal, acid volatile sulfide (AVS), and geochemical gradients in sediments to evaluate effects of metal bioavailability. The 18-d study involved five test species: two bivalves and three polychaetes. Two series of experiments were designed to evaluate the effects of metal concentration and AVS on bioaccumulation, respectively. The metals of interest were cadmium, nickel, and zinc. Results showed that the concentrations of pore-water Cd, Ni, and Zn were controlled by the concentration of AVS. Organisms bioaccumulated significant amounts of metals from the sediments when the simultaneously extracted metal was only a small fraction of the AVS. Bioavailability increased linearly with the sediment metal concentration irrespective of AVS or pore-w

  13. Anatomical, physiological and experimental factors affecting the bioavailability of sc administered large biotherapeutics

    PubMed Central

    Fathallah, Anas M.; Balu-Iyer, Sathy V.

    2014-01-01

    Subcutaneous route of administration is highly desirable for protein therapeutics. It improves patient compliance and quality of life1,2, while reducing healthcare cost2. Recent evidence also suggests that sc administration of protein therapeutics can increase tolerability to some treatments such as intravenous immunoglobulin therapy (IVIG) by administering it subcutaneously (subcutaneous immunoglobulin therapy SCIG), which will reduce fluctuation in plasma drug concentration3. Furthermore, sc administration may reduce the risk of systemic infections associated with iv infusion1,2. This route, however, has its challenges especially for large multi-domain proteins. Poor bioavailability and poor scalability from preclinical models are often cited. This commentary will discuss barriers to sc absorption as well as physiological and experimental factors that could affect pharmacokinetics of subcutaneously administered large protein therapeutics in preclinical models. A mechanistic pharmacokinetic model is proposed as a potential tool to address the issue of scalability of sc pharmacokinetic from preclinical models to humans PMID:25411114

  14. Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil.

    PubMed

    Bandara, Tharanga; Herath, Indika; Kumarathilaka, Prasanna; Hseu, Zeng-Yei; Ok, Yong Sik; Vithanage, Meththika

    2017-04-01

    Crops grown in metal-rich serpentine soils are vulnerable to phytotoxicity. In this study, Gliricidia sepium (Jacq.) biomass and woody biochar were examined as amendments on heavy metal immobilization in a serpentine soil. Woody biochar was produced by slow pyrolysis of Gliricidia sepium (Jacq.) biomass at 300 and 500 °C. A pot experiment was conducted for 6 weeks with tomato (Lycopersicon esculentum L.) at biochar application rates of 0, 22, 55 and 110 t ha(-1). The CaCl2 and sequential extractions were adopted to assess metal bioavailability and fractionation. Six weeks after germination, plants cultivated on the control could not survive, while all the plants were grown normally on the soils amended with biochars. The most effective treatment for metal immobilization was BC500-110 as indicated by the immobilization efficiencies for Ni, Mn and Cr that were 68, 92 and 42 %, respectively, compared to the control. Biochar produced at 500 °C and at high application rates immobilized heavy metals significantly. Improvements in plant growth in biochar-amended soil were related to decreasing in metal toxicity as a consequence of metal immobilization through strong sorption due to high surface area and functional groups.

  15. Improving the relationship between soil characteristics and metal bioavailability by using reactive fractions of soil parameters in calcareous soils.

    PubMed

    de Santiago-Martín, Ana; van Oort, Folkert; González, Concepción; Quintana, José R; Lafuente, Antonio L; Lamy, Isabelle

    2015-01-01

    The contribution of the nature instead of the total content of soil parameters relevant to metal bioavailability in lettuce was tested using a series of low-polluted Mediterranean agricultural calcareous soils offering natural gradients in the content and composition of carbonate, organic, and oxide fractions. Two datasets were compared by canonical ordination based on redundancy analysis: total concentrations (TC dataset) of main soil parameters (constituents, phases, or elements) involved in metal retention and bioavailability; and chemically defined reactive fractions of these parameters (RF dataset). The metal bioavailability patterns were satisfactorily explained only when the RF dataset was used, and the results showed that the proportion of crystalline Fe oxides, dissolved organic C, diethylene-triamine-pentaacetic acid (DTPA)-extractable Cu and Zn, and a labile organic pool accounted for 76% of the variance. In addition, 2 multipollution scenarios by metal spiking were tested that showed better relationships with the RF dataset than with the TC dataset (up to 17% more) and new reactive fractions involved. For Mediterranean calcareous soils, the use of reactive pools of soil parameters rather than their total contents improved the relationships between soil constituents and metal bioavailability. Such pool determinations should be systematically included in studies dealing with bioavailability or risk assessment.

  16. Effects of lime on bioavailability and leachability of heavy metals during agitated pile composting of water hyacinth.

    PubMed

    Singh, Jiwan; Kalamdhad, Ajay S

    2013-06-01

    In the present study composting of water hyacinth was done with cattle manure and saw dust (6:3:1) ratio and effects of addition of lime (1%, 2% and 3%) on heavy metal bioavailability and leachability was evaluated during 30 days of composting period. The changes in temperature, pH, electrical conductivity (EC), organic matter and extractable heavy metal contents were measured. Results showed that the total concentration of heavy metals was increased during the composting process. Due to addition of lime initial pH of the compost was raised effectively, caused a decrease in water soluble, diethylene triamine pentracetic acid (DTPA) and toxicity characteristics leaching procedure (TCLP) extractable metal contents in the final compost. Water soluble metals (Ni, Pb and Cd) and DTPA extractable metals (Pb and Cd) were not detected during water soluble fraction. Addition of lime significantly reduced the bioavailability and leachability of heavy metals during water hyacinth composting process.

  17. Challenges with tracing the fate and speciation of mine-derived metals in turbid river systems: implications for bioavailability.

    PubMed

    Cresswell, Tom; Smith, Ross E W; Nugegoda, Dayanthi; Simpson, Stuart L

    2013-11-01

    The fast-flowing and highly turbid Lagaip River (0.5-10 g/L suspended solids) in the central highlands of Papua New Guinea receives mine-derived metal inputs in both dissolved and particulate forms. Nearest the mine, metal concentrations in suspended solids were 360, 9, 90, 740 and 1,300 mg/kg for As, Cd, Cu, Pb and Zn, while dissolved concentrations were 2.7, 0.6, 3.1, 0.1 and 25 μg/L, respectively. This creates a significant metal exposure source for organisms nearer the mine. However, because the Lagaip River is diluted by a large number of tributaries, the extent to which mine-derived metals may affect biota in the lower catchments is uncertain. To improve our understanding of the forms of potentially bioavailable metals entering the lower river system, we studied the partitioning and speciation of metals within the Lagaip River system. Dissolved and particulate metal concentrations decreased rapidly downstream of the mine due to dilution from tributaries. As a portion of the particulate metal concentrations, the more labile dilute acid-extractable forms typically comprised 10-30% for As and Pb, 50-75% for Cu and Zn, and 50-100% for Cd. Only dissolved Cd, Cu and Zn remained elevated relative to the non-mine-impacted tributaries (<0.03, 0.5 and 0.3 μg/L), but the concentrations did not appreciably change with increasing dilution downriver. This indicated that release of Cd, Cu and Zn was likely occurring from the more labile metal phases of the mine-derived particulates. Chelex-labile metal analyses and speciation modelling indicated that dissolved copper and lead were largely non-labile and likely complexed by naturally occurring organic ligands, while dissolved cadmium and zinc were predominantly present in labile forms. The study confirmed that mine-derived particulates may represent a significant source of dissolved metals in the lower river system; however, comparison with water quality guidelines indicates the low concentrations would not adversely

  18. Health Risk Assessment using in vitro digestion model in assessing bioavailability of heavy metal in rice: A preliminary study.

    PubMed

    Omar, N A; Praveena, S M; Aris, A Z; Hashim, Z

    2015-12-01

    Little is known about the bioavailability of heavy metal contamination and its health risks after rice ingestion. This study aimed to determine bioavailability of heavy metal (As, Cd, Cu, Cr, Co, Al, Fe, Zn and Pb) concentrations in cooked rice and human Health Risk Assessment (HRA). The results found Zn was the highest (4.3±0.1 mg/kg), whereas As showed the lowest (0.015±0.001 mg/kg) bioavailability of heavy metal concentration in 22 varieties of cooked rice. For single heavy metal exposure, no potential of non carcinogenic health risks was found, while carcinogenic health risks were found only for As. Combined heavy metal exposures found that total Hazard Quotient (HQtotal) values for adult were higher than the acceptable range (HQTotal<1), whereas total Lifetime Cancer Risk (LCRTotal) values were higher than the acceptable range (LCRTotal values >1×10(-4)) for both adult and children. This study is done to understand that the inclusion of bioavailability heavy metal into HRA produces a more realistic estimation of human heavy metal exposure.

  19. Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: a review.

    PubMed

    Bayen, Stéphane

    2012-11-01

    Although their ecological and socioeconomic importance has received recent attention, mangrove ecosystems are one of the most threatened tropical environments. Besides direct clearance, hydrological alterations, climatic changes or insect infestations, chemical pollution could be a significant contributor of mangrove degradation. The present paper reviews the current knowledge on the occurrence, bioavailability and toxic effects of trace contaminants in mangrove ecosystems. The literature confirmed that trace metals, Polycyclic Aromatic Hydrocarbons (PAHs), Persistent Organic Pollutants (POPs), Pharmaceuticals and Personal Care Products (PPCPs) and Endocrine Disrupters Compounds (EDCs) have been detected in various mangrove compartments (water, sediments and biota). In some cases, these chemicals have associated toxic effects on mangrove ecosystem species, with potential impact on populations and biodiversity in the field. However, nearly all studies about the bioavailability and toxic effects of contaminants in mangrove ecosystems focus on selected trace metals, PAHs or some "conventional" POPs, and virtually no data exist for other contaminant groups. The specificities of mangrove ecosystems (e.g. biology, physico-chemistry and hydrology) support the need for specific ecotoxicological tools. This review highlights the major data and methodological gaps which should be addressed to refine the risk assessment of trace pollutants in mangrove ecosystems.

  20. Effect of the cp4-epsps gene on metal bioavailability in maize and soybean using bionic gastrointestinal tracts and ICP-MS determination.

    PubMed

    Li, Shun-Xing; Chen, Li-Hui; Zheng, Feng-Ying; Li, Yan-Cai

    2013-02-20

    The transformation and metabolism of dietary compounds are affected significantly by gut microbiota. Hence, gut microbiota are used to improve bionic gastrointestinal tracts. The effect of the cp4-epsps gene on metal bioavailability was proved by the comparison of the affinity-liposome metal content ratio (AMCR) in transgenic and conventional crops. The bioavailability of V, Mn, Co, Ga, Ag, Ba, and Pb in roundup ready soybean decreased significantly because the ratio of AMCR (R(AMCR)) in the transgenic crop and its corresponding conventional type ranged from 0.36 to 0.69. In roundup ready maize, metal bioavailability decreased for Li and Cr (i.e., R(AMCR) was 0.26 and 0.39, respectively) but increased for V, Co, and Pb (i.e., R(AMCR) was 1.48, 2.07, and 2.12, respectively). Compared with conventional crops, safe dosage and maximum consumption of roundup ready crops were 1.59 times for soybean and 0.78 times for maize.

  1. Metals other than uranium affected microbial community composition in a historical uranium-mining site.

    PubMed

    Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten

    2015-12-01

    To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.

  2. Bioavailability assessment of toxic metals using the technique "acid-volatile sulfide (AVS)-simultaneously extracted metals (SEM)" in marine sediments collected in Todos os Santos Bay, Brazil.

    PubMed

    Silva, Jucelino B; Nascimento, Rodrigo A; de Oliva, Sergio T; de Oliveira, Olívia M C; Ferreira, Sergio L C

    2015-10-01

    This paper reports the bioavailability of the metals (cadmium, copper, zinc, lead, and nickel) in sediment samples collected in seven stations from the São Paulo Estuary, Todos os Santos Bay, Brazil. The bioavailability was determined by employing the technique "acid-volatile sulfide (AVS) and simultaneously extracted metal (SEM)". The elements cadmium, copper, lead, and zinc were determined using differential pulse anodic stripping voltammetry (DPASV), while nickel was quantified utilizing electrothermal atomic absorption spectrometry (ET AAS). The accuracy of these methods was confirmed using a certified reference material of estuarine sediment (NIST 1646). The sulfide was quantified using potentiometry with selective electrode and the organic matter determination employing an indirect volumetric method using potassium dichromate and iron(II) sulfate solutions. The bioavailability of the metals was estimated by relationship between the concentration of AVS and the sum of the concentrations of the simultaneously extracted metals (ΣSEM), considering a significant toxicity when (ΣSEM)/(AVS) is higher than 1. The bioavailability values in the seven stations studied varied from 0.93 to 1.31 (June, 2014) and from 0.34 to 0.58 (September, 2014). These results demonstrated a critical condition of toxicity (bioavailability >1) in six of the seven sediment samples collected during the rainy season (June, 2014). In the other period (September, 2014), the bioavailability was always lower than 1 for all sediment samples collected in the seven stations. The individual values of the concentrations of the five metals were compared with the parameters PEL (probable effects level) and TEL (threshold effects level), which are commonly employed for characterization of ecological risk in environmental systems. This comparison revealed that all metals have concentrations lower than the PEL and only zinc and lead in some stations have contents higher than the TEL. The

  3. Graphical determination of metal bioavailability to soil invertebrates utilizing the Langmuir sorption model

    SciTech Connect

    Donkin, S.G.

    1997-09-01

    A new method of performing soil toxicity tests with free-living nematodes exposed to several metals and soil types has been adapted to the Langmuir sorption model in an attempt at bridging the gap between physico-chemical and biological data gathered in the complex soil matrix. Pseudo-Langmuir sorption isotherms have been developed using nematode toxic responses (lethality, in this case) in place of measured solvated metal, in order to more accurately model bioavailability. This method allows the graphical determination of Langmuir coefficients describing maximum sorption capacities and sorption affinities of various metal-soil combinations in the context of real biological responses of indigenous organisms. Results from nematode mortality tests with zinc, cadmium, copper, and lead in four soil types and water were used for isotherm construction. The level of agreement between these results and available literature data on metal sorption behavior in soils suggests that biologically relevant data may be successfully fitted to sorption models such as the Langmuir. This would allow for accurate prediction of soil contaminant concentrations which have minimal effect on indigenous invertebrates.

  4. Heavy metal pollution in Tianjin, China—its bioavailability prediction and mitigation practice

    NASA Astrophysics Data System (ADS)

    Sun, Hongwen; Wang, Ting; Zhang, Yanfeng; Jiang, Chunxiao; Wang, Jing

    2010-05-01

    Irrigation of sewage water has been applied for agriculture production in Tianjin for over 50 years, for Tianjin is a city lacking water resource. Based on the result of an extensive investigation on heavy metals in the farmland of Tianjin in 2005, 21 samples (including soil and lettuce) were collected from most the polluted areas along the three sewage rivers. Nine of the 21 soil samples exceeded the National Soil Quality Standard for cadmium (0.6 mg/kg) and 7 exceeded the standard for mercury (1.0 mg/kg). However, the heavy metal contents in lettuce did not correlate the heavy metal concentrations in soil. The bioavailability changed with soil properties. The part extracted by diethylene-triaminepentaacetic acid (DTPA) and another mixed extraction solvent, M3, were used to predict the bioavailability of heavy metals. The solvent extraction gave good prediction on Cd absorbance in lettuce, with correlative coefficient larger than 0.9. However, it failed for Hg. This may be because Hg is relatively volatile, and the absorption patterns are complex for Hg. To set up a mitigation method for heavy metal pollution in farm land, friendly to agricultural production, in-situ fixing strategy was adopted. Bacillus subtilis and Candida tropicalis were induced by ultraviolet (UV) radiation and HNO2 treatment to get mutated strains that can tolerate and accumulate higher level of cadmium. A strain of B38 from B. subtilis showed the highest Cd tolerance, and was used for further experiment. Though B38 could accumulate Cd from water solution, but it did not fix Cd in soil. This is due to that the amended microorganisms could not propagate well in the polluted soil. Novogro, which is produced from the waste of an enzyme factory, was selected out from several materials to amend together with B38. After the co-amendment of Novogro and B38, the DTPA extractable Cd decreased by 72%, and B38 could propagate efficiently as indicated by DGGE test. Applying conditions, such as amendment

  5. Investigation of Metal Bioavailability and Microbial Metal Utilization in Methane Seep Ecosystems through Integration of Geochemical and Biological Datasets

    NASA Astrophysics Data System (ADS)

    Glass, J. B.; Gadh, V.; Steele, J. A.; Adkins, J. F.; Orphan, V. J.

    2012-12-01

    Methane hydrate seeps are important sources of greenhouse gases and host unique microbial communities that couple anaerobic oxidation of methane and sulfate reduction. Microbial enzymes that catalyze the reactions driving these anaerobic metabolisms require transition metals such as Fe, Ni, Co, Zn, and Mo as essential cofactors. These metals are expected to be drawn down to low concentrations by precipitation as sulfide phases in the highly sulfidic porewaters at methane seep ecosystems. However, in situ concentrations of biologically-important metals in sulfidic methane seep pore fluids and the relative importance of different metals for anaerobic methanotrophic archaea (ANME) vs. sulfate reducing bacteria (SRB) are unknown. We are integrating geochemical and metagenomic datasets with nano-scale maps of cellular metal distributions to gain insights into metal bioavailability and utilization in methane seep ecosystems. We have measured porewater profiles of dissolved metals (V, Ni, Cu, Co, Fe, Mn, Zn, Mo and W) from three habitat types at Hydrate Ridge, offshore Oregon: Calyptogena clam beds, microbial mats and sites with low methane flux. Highly sulfidic sediment porewaters beneath microbial mats contained the lowest metal concentrations, suggesting that microbes inhabiting these environments may be limited by metal scarcity. Cobalt occurred at particularly low abundances (≤5 nM in all cores and frequently at sub-nanomolar levels). We also analyzed the taxonomic distribution of ABC (ATP-binding cassette) metal transporters in metagenomes from environmentally-enriched consortia of ANME-2 and SRB from Eel River Basin methane seeps. Our findings suggest that both ANME and SRB possess genes encoding ABC transporters with high affinity for Fe, Ni, Co, Zn and Mo. Combined with our geochemical data, these results imply that ANME-SRB consortia in highly sulfidic environments have specialized mechanisms that allow them to acquire metal micronutrients

  6. Freshwater molluscs as indicators of bioavailability and toxicity of metals in surface-water systems

    SciTech Connect

    Elder, J.F.; Collins, J.J. )

    1991-01-01

    Freshwater molluscs--snails and bivalves--have been used frequently as bioindicator organisms. With increasing needs for research on contaminant effects in freshwater ecosystems, this kind of biomonitoring is likely to develop further in the future. Molluscs can be used effectively for studies of both organic and inorganic contaminants; this review focuses on studies involving bioaccumulation and toxicity of metals. Two important advantages of snails and bivalves over most other freshwater organisms for biomonitoring research are their large size and limited mobility. In addition, they are abundant in many types of freshwater environments and are relatively easy to collect and identify. At metal concentrations that are within ranges common to natural waters, they are generally effective bioaccumulators of metals. Biomonitoring studies with freshwater molluscs have covered a wide diversity of species, metals, and environments. The principal generalization that can be drawn from this research is that bioaccumulation and toxicity are extremely situation dependent; hence, it is difficult to extrapolate results from any particular study to other situations where the biological species or environmental conditions are different. Even within one species, individual characteristics such as size, life stage, sex, and genotype can have significant effects on responses to contaminants. The bioavailability of the metal is highly variable and depends on pH, presence of organic ligands, water hardness, and numerous other controlling factors. Despite this variability, past studies provide some general principles that can facilitate planning of research with freshwater snails and bivalves as metal bioindicators. These principles may also be useful in understanding and managing freshwater ecosystems.

  7. Inoculum carrier and contaminant bioavailability affect fungal degradation performances of PAH-contaminated solid matrices from a wood preservation plant.

    PubMed

    Covino, Stefano; Svobodová, Katerina; Cvancarová, Monika; D'Annibale, Alessandro; Petruccioli, Maurizio; Federici, Federico; Kresinová, Zdena; Galli, Emanuela; Cajthaml, Tomás

    2010-05-01

    The objective of the study was to investigate the impact of chopped wheat straw (CWS), ground corn cobs (GCC) and commercial pellets (CP), as inoculum carriers, on both growth and polycyclic aromatic hydrocarbons (PAH) degradation performances of Dichomitus squalens, Pleurotus ostreatus and Coprinus comatus. A historically-contaminated soil (HCS) and creosote-treated shavings (CTS) from the Sobeslav wood preservation plant, characterized by different relative abundances of the PAH bioavailable fractions, were used to assess the contaminated matrix effect and its interaction with both carrier and fungal strain. In HCS, best results were obtained with CP-immobilized P. ostreatus, which was able to deplete benzo[a]anthracene, chrysene, benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF) and benzo[a]pyrene (BaP) by 69.1%, 29.7%, 39.7%, 32.8% and 85.2%, respectively. Only few high-molecular mass PAHs such as BbF, BkF and BaP were degraded beyond their respective bioavailable fractions and this effect was confined to a limited number of inoculants. In CTS, only phenanthrene degradation exceeded its respective bioavailability from 1.42 to 1.86-fold. Regardless of both inoculum carrier and fungal species, degradation was positively and significantly (P<0.001) correlated with bioavailability in fungal microcosms on HCS and CTS and such correlation was very similar in the two matrices (R(adj)(2) equal to 0.60 and 0.59, respectively). The ability of white-rot fungi to degrade certain PAHs beyond their bioavailability was experimentally proven by this study. Although CTS and HCS considerably differed in their physico-chemical properties, PAH contents and contaminant aging, the relationship between degradation and bioavailability was not significantly affected by the type of matrix.

  8. Heavy metal speciation, risk, and bioavailability in the sediments of rivers with different pollution sources and intensity.

    PubMed

    Tang, Wenzhong; Shan, Baoqing; Zhang, Hong; Zhu, Xiaolei; Li, Shanshan

    2016-12-01

    A comprehensive analysis of heavy metal speciation, risk, and bioavailability in the sediments of three rivers in northern China (Shaocun River (SR), Wangyang River (WR), and Xiao River (XR)) was conducted. The results showed that higher pollution input resulting from urbanization and industrialization caused higher heavy metal contents and bioavailable proportion in the studied sediments. Total contents of all studied metals (Cr, Cu, Ni, Pb, and Zn) in the sediments of SR, WR, and XR were 270.31, 902.62, and 2367.46 mg/kg, respectively. The average percentages of bioavailable fractions were 31.16, 61.73, and 81.69 %, respectively. Cr, Ni, and Pb were all mainly observed in the B4 (residual) fraction in the studied sediments, with an average percentage of 42.03, 48.19, and 55.08 %, respectively. Cu was mainly observed in the B2 (reducible) fraction (40.53 %). Zn was mainly observed in the B1 (exchangeable/acid soluble/carbonate) fraction (36.01 %), resulting in medium or high risk associated with Zn in the sediments of SR, WR, and XR. Sedimentary heavy metal risk and bioavailability associated with regional urbanization and industrialization should be taken into consideration with respect to the health of aquatic ecosystems.

  9. Bioavailable trace metals in micro-tidal Thambraparani estuary, Gulf of Mannar, SE coast of India

    NASA Astrophysics Data System (ADS)

    Jayaprakash, M.; Viswam, Arya; Gopal, V.; Muthuswamy, S.; Kalaivanan, P.; Giridharan, L.; Jonathan, M. P.

    2014-06-01

    Thirty surface sediment samples from two different seasons pre-monsoon (PRM), post-monsoon (POM) were analyzed for texture, carbonates, organic matter (OM) and leachable trace metals (LTMs) (Fe, Mn, Cr, Cu, Ni, Pb, Zn, Cd) from the micro-tidal estuary of Thambraparani river located in Gulf of Mannar, SE coast of India. Finer fractions (mud: 3-87%) and OM (2.6-8.0%) dominate the region and the concentration pattern of LTMs indicate that mostly all the metals are concentrated in the POM season than PRM. Correlation analysis indicates that LTMs are also bound with the OM, mud and are bound with Fe-Mn oxides. Pb concentration (14-103 μg g-1) exceeds the sediment quality guideline value indicating its anthropogenic origin. Low flow condition exists in the estuarine region due to the control over fresh water inflow in the upstream side and the higher concentration of metals [avg. (μg g-1) Cr 10; Cu 11; Zn 28] is due to the precipitation from estuarine water to the sediments and is also bioavailable to the marine biota in the region.

  10. Bioavailability of Heavy Metals in different land use in Drenica region, Kosovo

    NASA Astrophysics Data System (ADS)

    Zogaj, Muhamet; Düring, Rolf-Alexander; Kamberi, Muhamet; Paçarizi, Musa

    2013-04-01

    The assessment of land contamination with heavy metals requires analysis of both, total and bioavailable form. The aim of this paper is to show the level of heavy metals and their mobility in agricultural lands and meadows. To do so, two layers (topsoil and subsoil) are used. According to random method, 66 samples have been taken (27 in plough layer, 27 samples in subsoil of agricultural lands and 6 samples in topsoil, and 6 samples in subsoil of meadows). The total content and mobility of Ni, Zn, Cu, Cr, Cd and Pb has been determined after the extraction with Aqua Regia, EDTA and NH4NO3 respectively. The results have shown that 75 % of Ni values and about 3 % of Cr values extracted with Aqua Regia have exceeded the limit of values, concerning EU standards, into the two layers and both land use types. Other metals have shown lower values than the limit set by EU standards. The statistical analysis has shown that only the total form of Pb has shown statistical differences between the layers and the land use types in significance level of p<0,001. Even though there have not been statistical differences to the total form of heavy metals (besides Pb), Zn, Cd, Cu and Pb extracted with EDTA have shown statistical differences in significance level p<0,001 and p<0,05 among the layers and land use types. However, metals extracted with NH4NO3 have not shown statistical differences. We can conclude that the layers and the system of land use have shown impact in the amount of Zn, Cd, Cu and Pb extracted with EDTA, but not in their total form (except Pb) and that of leaching form (extracted with NH4NO3).

  11. Trace metal bioavailability: Modeling chemical and biological interactions of sediment-bound zinc

    USGS Publications Warehouse

    Luoma, S. N.; Bryan, G.W.; Jenne, Everett A.

    1979-01-01

    Extractable concentrations of sediment-bound Zn, as modified by the physicochemical form of the metal in the sediments, controlled Zn concentrations in the deposit-feeding bivalvesScrobicularia plana (collected from 40 stations in 17 estuaries in southwest England) andMacoma balthica (from 28 stations in San Francisco Bay). Over a wide range of concentrations, a significant correlation was found between ammonium acetate-soluble concentrations of Zn in sediments and Zn concentrations in Scrobicularia. This correlation was insufficiently precise to be of predictive value for Scrobicularia, and did not hold for Macoma over the narrower range of Zn concentrations observed in San Francisco Bay. Strong correlation of Zn concentrations inScrobicularia and the bioavailability of sediment-bound Zn to Macoma with ratios of sorption substrate (oxides of iron and manganese, organic carbon, carbonates, humic materials) concentrations in sediments were found in both the English and San Francisco Bay study areas. These correlations were attributed to substrate competition for sorption of Zn within sediments, assuming: 1) competition for sorption of Zn was largely controlled by the relative concentrations of substrates present in the sediments and 2) the bioavailability of Zn to the deposit feeders was determined by the partitioning of Zn among the substrates. The correlations indicated that the availability of Zn to the bivalves increased when concentrations of either amorphous inorganic oxides or humic substances increased in sediments. Availability was reduced at increased concentrations of organic carbon and, in San Francisco Bay, ammonium acetate-soluble Mn. Concentrations of biologically available Zn in solution and low salinities may also have enhanced Zn uptake, although the roles of these variables were less obvious from the statistical analysis.

  12. Speciation and bioavailability of some heavy metals in agricultural soils used for cultivating various vegetables in Bedugul, Bali

    NASA Astrophysics Data System (ADS)

    Siaka, I. Made; Utama, I. Made Supartha; Manuaba, I. B. Putra; Adnyana, I. Made; Sahara, Emmy

    2016-03-01

    This paper discusses the speciation and bioavailability of some heavy metals in agricultural soils used to cultivate various vegetables in Bedugul, Bali. Vegetables grown on contaminated soils where agrochemicals were applied uncontrolled could contain a number of heavy metals. This could occur in the vegetables produced from agricultural soils of Bedugul as the farmers applied agrochemicals excessively. In considering the metals transport to the vegetables, a speciation and bioavailability methods were necessary to be studied. Wet digestion and sequential extraction techniques were employed to the sample prior to the metals measurement by AAS. The results showed that the average concentrations of Pb, Cu, Cd, Cr, and Zn in the soils were 38.531, 132.126, 7.689, 15.952, and 147.275 mg/kg, respectively. The highest concentrations of Pb and Zn were found in the soil for cultivating lettuce, Cd and Cr in the soil for tomato, and Cu in the soil for potatoes. It was found that the speciation of Pb, Cu, Cd, and Cr were predominantly bound to Fe-Mn oxides fraction, while Zn was mostly associated with the EFLE (easily, freely, leachable, and exchangeable) fractions. The highest bioavailability among the metals in the studied soils was Cr, while the lowest was Cu.

  13. Assessing the Dietary Bioavailability of Metals Associated with Natural Particles: Extending the Use of the Reverse Labeling Approach to Zinc.

    PubMed

    Croteau, Marie-Noële; Cain, Daniel J; Fuller, Christopher C

    2017-02-22

    We extend the use of a novel tracing technique to quantify the bioavailability of zinc (Zn) associated with natural particles using snails enriched with a less common Zn stable isotope. Lymnaea stagnalis is a model species that has relatively fast Zn uptake rates from the dissolved phase, enabling their rapid enrichment in (67)Zn during the initial phase of labeling. Isotopically enriched snails were subsequently exposed to algae mixed with increasing amounts of metal-rich particles collected from two acid mine drainage impacted rivers. Zinc bioavailability from the natural particles was inferred from calculations of (66)Zn assimilation into the snail's soft tissues. Zinc assimilation efficiency (AE) varied from 28% for the Animas River particles to 45% for the Snake River particles, indicating that particle-bound, or sorbed Zn, was bioavailable from acid mine drainage wastes. The relative binding strength of Zn sorption to the natural particles was inversely related to Zn bioavailability; a finding that would not have been possible without using the reverse labeling approach. Differences in the chemical composition of the particles suggest that their geochemical properties may influence the extent of Zn bioavailability.

  14. Assessing the dietary bioavailability of metals associated with natural particles: Extending the use of the reverse labeling approach to zinc

    USGS Publications Warehouse

    Croteau, Marie-Noele; Cain, Daniel J.; Fuller, Christopher C.

    2017-01-01

    We extend the use of a novel tracing technique to quantify the bioavailability of zinc (Zn) associated with natural particles using snails enriched with a less common Zn stable isotope. Lymnaea stagnalis is a model species that has relatively fast Zn uptake rates from the dissolved phase, enabling their rapid enrichment in 67Zn during the initial phase of labeling. Isotopically enriched snails were subsequently exposed to algae mixed with increasing amounts of metal-rich particles collected from two acid mine drainage impacted rivers. Zinc bioavailability from the natural particles was inferred from calculations of 66Zn assimilation into the snail’s soft tissues. Zinc assimilation efficiency (AE) varied from 28% for the Animas River particles to 45% for the Snake River particles, indicating that particle-bound, or sorbed Zn, was bioavailable from acid mine drainage wastes. The relative binding strength of Zn sorption to the natural particles was inversely related to Zn bioavailability; a finding that would not have been possible without using the reverse labeling approach. Differences in the chemical composition of the particles suggest that their geochemical properties may influence the extent of Zn bioavailability.

  15. Concentration and partitioning of metals in intertidal biofilms: implications for metal bioavailability to shorebirds.

    PubMed

    McCormick, Jodine; St Clair, C Toby; Bendell, L I

    2014-03-01

    We compared zinc, copper and cadmium concentrations and the operationally defined geochemical partitioning of the three metals in sediments enriched with biofilm versus sediments without obvious biofilm present (reference) sampled from five locations within the Fraser River Delta, British Columbia, Canada. Two-way ANOVA's with site and biofilm (enriched or reference) as the two factors were applied to determine if metal concentrations or the partitioning of the metal was dependent on the two factors. Sediment enriched in biofilm contained greater amounts of aqua regia extracted zinc and copper and tended to have greater amounts of reducible cadmium as compared to reference sediments. By contrast, reference sediments had greater concentrations of easily reducible copper suggesting differences in speciation between the two sediment types. Greater concentrations of reducible cadmium within biofilm may provide a route of contaminant exposure to shorebirds whose diet is dependent on biofilm.

  16. Science, policy, and trends of metals risk assessment at EPA: how understanding metals bioavailability has changed metals risk assessment at US EPA.

    PubMed

    Reiley, Mary C

    2007-08-30

    The US Environmental Protection Agency (EPA) and the Office of Water have made significant changes in the approaches taken to assessing metals in the aquatic environment. Over the last 20 years, the Office of Water has progressed through a variety of metals assessment tools from total recoverable metal to the biotic ligand model. These changes were initially driven by the recognition that the total metals criteria were out of date and that emerging science would make it possible to address bioavailability more thoroughly. More recent drivers are expectations that the agency ensure the criteria are protective of endangered species and that the agency can bring the best available science to conducting total maximum daily loads (TMDLs) for waters not meeting uses because of metal contamination. Changes have included: moving from total recoverable metals concentration to dissolved metals and the development of dissolved metal to total metal translator guidance, the development of water effect ratios (WERs) guidance, and most recently incorporation of the biotic ligand model (BLM) into criteria derivation for aquatic life protection (USEPA, 2007a. Aquatic Life Ambient Freshwater Quality Criteria-Copper 2007 Revision. EPA-822-R-07-001. http://www.epa.gov/waterscience/criteria/copper/index.htm.). On March 8, 2007, the agency published its Framework for Metals Risk Assessment (USEPA, 2007b. Framework for Metals Risk Assessment. EPA 120/R-07/001. http://www.epa.gov/osa/metalsframework.) discussing the state of the science for the persistent bioaccumulative, and toxic nature of metals and the considerations of this science that will impact many programs. This paper provides a brief insight to these agency activities.

  17. Caddisflies Hydropsyche spp. as biomonitors of trace metal bioavailability thresholds causing disturbance in freshwater stream benthic communities.

    PubMed

    Awrahman, Zmnako A; Rainbow, Philip S; Smith, Brian D; Khan, Farhan R; Fialkowski, Wojciech

    2016-09-01

    Demonstration of an ecotoxicological effect of raised toxic metal bioavailabilities on benthic macroinvertebrate communities in contaminated freshwater streams typically requires the labour-intensive identification and quantification of such communities before the application of multivariate statistical analysis. A simpler approach is the use of accumulated trace metal concentrations in a metal-resistant biomonitor to define thresholds that indicate the presence of raised trace metal bioavailabilities causing ecotoxicological responses in populations of more metal-sensitive members of the community. We explore further the hypothesis that concentrations of toxic metals in larvae of species of the caddisfly genus Hydropsyche can be used to predict metal-driven ecotoxicological responses in more metal-sensitive mayflies, especially ephemerellid and heptageniid mayflies, in metal-contaminated rivers. Comparative investigation of two caddisflies, Hydropsyche siltalai and Hydropsyche angustipennis, from metal-contaminated rivers in Cornwall and Upper Silesia, Poland respectively, has provided preliminary evidence that this hypothesis is applicable across caddisfly species and contaminated river systems. Use of a combined toxic unit approach, relying on independent data sets, suggested that copper and probably also arsenic are the drivers of mayfly ecotoxicity in the River Hayle and the Red River in Cornwall, while cadmium, lead and zinc are the toxic agents in the Biala Przemsza River in Poland. This approach has great potential as a simple tool to detect the more subtle effects of mixed trace metal contamination in freshwater systems. An informed choice of suitable biomonitor extends the principle to different freshwater habitats over different ranges of severity of trace metal contamination.

  18. Advances in Assessing Bioavailability of Metal(loid)s in Contaminated Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The term bioavailability has many different meanings across various disciplines of toxicology and pharmacology. Often bioavailability is concerned with human health aspects such in the case of lead (Pb) ingestion by children. However, some of the most contaminated sites are found in non-public acc...

  19. Advances In Assessing Bioavailability Of Metal(Loid)s In Contaminated Soils

    EPA Science Inventory

    The term bioavailability has many different meanings across various disciplines of toxicology and pharmacology. Often bioavailability is concerned with human health aspects such as in the case of lead (Pb) ingestion by children. However, some of the most contaminated sites are ...

  20. Bioavailability of organic phosphorus to Pseudokirchneriella subcapitata as affected by phosphorus starvation: an isotope dilution study.

    PubMed

    Van Moorleghem, Christoff; De Schutter, Nynke; Smolders, Erik; Merckx, Roel

    2013-06-01

    Phosphorus (P) starved algae have a capacity to rapidly take up P when resupplied to P. This study was set-up to measure to what extent P starvation enhances the potential of algae to utilize organic P forms. The initial (<0.5 h) PO4 uptake rates of cells of Pseudokirchneriella subcapitata increased up to 18-fold with increasing starvation. Algae from different levels of P starvation were subsequently exposed to different model organic P forms and carrier-free (33)PO4. Uptake (1h) of P from organic P-increased up to 5-fold with increasing P starvation. The bioavailability of organic P, relative to PO4, was calculated from uptake of (31)P and (33)P isotopes assuming no isotopic exchange with organic P-forms. This relative bioavailability ranged from 0 to 57% and remained generally unaffected by the extent of P-starvation. This result was found for cells that were either or not treated by a wash method to remove extracellular phosphatases. Short-term P uptake rate sharply increases with decreasing internal P content of the algal cells but the bioavailability of organic P, relative to PO4, is not enhanced. Such finding suggests that P-starvation enhances PO4 uptake capacity and organic P hydrolysis capacity to about the same extent.

  1. Novel and non-traditional use of stable isotope tracers to study metal bioavailability from natural particles

    USGS Publications Warehouse

    Croteau, Marie-Noële; Cain, Daniel J.; Fuller, Christopher C.

    2013-01-01

    We devised a novel tracing approach that involves enriching test organisms with a stable metal isotope of low natural abundance prior to characterizing metal bioavailability from natural inorganic particles. In addition to circumventing uncertainties associated with labeling natural particles and distinguishing background metals, the proposed "reverse labeling" technique overcomes many drawbacks inherent to using radioisotope tracers. Specifically, we chronically exposed freshwater snails (Lymnaea stagnalis) to synthetic water spiked with Cu that was 99.4% 65Cu to increase the relative abundance of 65Cu in the snail’s tissues from 32% to >80%. The isotopically enriched snails were then exposed to benthic algae mixed with Cu-bearing Fe–Al particles collected from the Animas River (Colorado), an acid mine drainage impacted river. We used 63Cu to trace Cu uptake from the natural particles and inferred their bioavailability from calculation of Cu assimilation into tissues. Cu assimilation from these particles was 44%, indicating that 44% of the particulate Cu was absorbed by the invertebrate. This demonstrates that inorganic particulate Cu can be bioavailable. The reverse labeling approach shows great potential in various scientific areas such as environmental contamination and nutrition for addressing questions involving uptake of an element that naturally has multiple isotopes.

  2. The influence of seasonality (dry and rainy) on the bioavailability and bioconcentration of metals in an estuarine zone

    NASA Astrophysics Data System (ADS)

    Milazzo, Alexandre Dacorso Daltro; Silva, Ana Carina Matos; Oliveira, Daiane Aparecida Francisco de; Cruz, Manoel Jerônimo Moreira da

    2014-08-01

    Knowledge on the concentration of metallic elements is important to certify the quality of ecosystems. Such behaviors in estuarine environments are dependent of factors such as rainfall and temperature of the water, interfering directly on the metal concentrations in biotic and abiotic components. This study observed the role that seasonality (dry and rainy) had on the bioavailability of metals (Fe, Zn, Mn, Cu, Ni, and Al) in surface water and sediment, and bioconcentration in oysters (Cassostrea rhizophorae) in the mangrove area of the São Paulo river estuary, Todos os Santos Bay. The metals concentration in three matrices analyzed varied between the periods studied. The values of physicochemical parameters also had significant variations. High levels of Zn and Cu were found in mollusks. The highest concentrations of metals analyzed were Al in waters, Fe in sediments and Zn in mollusks. These results showed that seasonality interferes directly in the physicochemical parameters analyzed (pH, dissolved oxygen, temperature, salinity and Eh), as well as on the bioavailability of metals in both water and sediment, influencing directly on the concentrations found in mollusks.

  3. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals.

    PubMed

    Devi, Parmila; Saroha, Anil K

    2014-06-01

    The risk analysis was performed to study the bioavailability and eco-toxicity of heavy metals in biochar obtained from pyrolysis of sludge of pulp and paper mill effluent treatment plant. The sludge was pyrolyzed at different temperatures (200-700°C) and the resultant biochar were analyzed for fractionation of heavy metals by sequential extraction procedure. It was observed that all the heavy metals get enriched in biochar matrix after pyrolysis, but the bioavailability and eco-toxicity of the heavy metals in biochar were significantly reduced as the mobile and bioavailable heavy metal fractions were transformed into the relatively stable fractions. Moreover, it was observed that the leaching potential of heavy metals decreased after pyrolysis and the best results were obtained for biochar pyrolyzed at 700°C.

  4. Combined SEM/AVS and attenuation of concentration models for the assessment of bioavailability and mobility of metals in sediments of Sepetiba Bay (SE Brazil).

    PubMed

    Ribeiro, Andreza Portella; Figueiredo, Ana Maria Graciano; dos Santos, José Osman; Dantas, Elizabeth; Cotrim, Marycel Elena Barboza; Figueira, Rubens Cesar Lopes; Silva Filho, Emmanoel V; Wasserman, Julio Cesar

    2013-03-15

    This study proposes a new methodology to study contamination, bioavailability and mobility of metals (Cd, Cu, Ni, Pb, and Zn) using chemical and geostatistics approaches in marine sediments of Sepetiba Bay (SE Brazil). The chemical model of SEM (simultaneously extracted metals)/AVS (acid volatile sulfides) ratio uses a technique of cold acid extraction of metals to evaluate their bioavailability, and the geostatistical model of attenuation of concentrations estimates the mobility of metals. By coupling the two it was observed that Sepetiba Port, the urban area of Sepetiba and the riverine discharges may constitute potential sources of metals to Sepetiba Bay. The metals are concentrated in the NE area of the bay, where they tend to have their lowest mobility, as shown by the attenuation model, and are not bioavailable, as they tend to associate with sulfide and organic matter originated in the mangrove forests of nearby Guaratiba area.

  5. The poor bioavailability of elemental iron in corn masa flour is not affected by disodium EDTA.

    PubMed

    Walter, Tomas; Pizarro, Fernando; Boy, Erick; Abrams, Steven A

    2004-02-01

    The most sustainable way to eradicate iron deficiency is through food fortification. Elemental iron powders are commonly utilized as fortificants due to their low cost and few sensory problems. However, their bioavailability is unknown. Our goals were to measure the bioavailability of elemental iron in Mexican style corn masa flour tortillas and to evaluate the effects of Na(2)EDTA. We used a stable isotope of H(2)-reduced iron powder, with and without Na(2)EDTA in tortillas prepared with corn masa flour. Two groups of 5- to 7-y-old children (n = 12/group) were fed tortillas to which was added 3 mg/100 g of H(2)-reduced (58)Fe with a mean particle size of 15 micro m. In one group, Na(2)EDTA was incorporated at a ratio of 1:2 mol/mol. The next day, (57)Fe ascorbate was given as a reference dose. After 14 d, blood samples were analyzed for isotopic enrichment. When normalized to 40% absorption of the reference dose, the geometric mean (+/-range 1 SD) bioavailability of reduced iron in tortilla was 3.8% (2.7-5.3). The addition of Na(2)EDTA, tended to increase it (P = 0.18) to 5.1% (2.8-9.2). This observed low absorption was compounded by the use of iron isotopes with smaller particle size (mean diameter 15 micro m) than typical of commercial elemental iron powder (<45 micro m). We conclude that H(2)-reduced iron powder is an ineffective fortificant in corn tortillas.

  6. Assessing the bioavailability and risk from metal-contaminated soils and dusts

    EPA Science Inventory

    Exposure to contaminated soil and dust is an important pathway in human health risk assessment. Physical and chemical characteristics, as well as biological factors, determine the bioaccessibility/bioavailability of soil and dust contaminants. Within a single sample, contaminat...

  7. Assessment of relative bioavailability of heavy metals in soil using in vivo mouse model and its implication for risk assessment compared with bioaccessibility using in vitro assay.

    PubMed

    Kang, Yuan; Pan, Weijian; Liang, Siyun; Li, Ning; Zeng, Lixuan; Zhang, Qiuyun; Luo, Jiwen

    2016-10-01

    There is limited study to simultaneously determine the relative bioavailability of heavy metals such as Cd, Pb, Cu, Cr(VI), and Ni in soil samples. In the present study, the bioaccessibility of heavy metals using in vitro assay was compared with the relative bioavailability of heavy metals using in vivo mouse model. The bioaccessibility of heavy metals ranged from 9.05 ± 0.97 % (Cr) to 42.8 ± 3.52 % (Cd). The uptake profile of heavy metals in soil and solution samples in mouse revealed that the uptake kinetics could be fitted to a two-compartment model. The relative bioavailability of heavy meals ranged from 34.8 ± 7.0 % (Ni) to 131 ± 20.3 % (Cu). Poor correlation between bioaccessibility and relative bioavailability of heavy metals was observed (r (2) = 0.11, p > 0.05). The relative bioavailability of heavy metals was significantly higher than the bioaccessibility of heavy metals (p < 0.05). The present study indicated that the in vitro digestion method should be carefully employed in risk assessment.

  8. Effects of soil water content and organic matter addition on the speciation and bioavailability of heavy metals.

    PubMed

    Hernandez-Soriano, Maria C; Jimenez-Lopez, Jose C

    2012-04-15

    The mobility and bioavailability of cadmium, copper, lead and zinc were evaluated in three soils amended with different organic materials for two moisture regimes. Agricultural and reclamation activities impose fresh inputs of organic matter on soil while intensive irrigation and rainstorm increase soil waterlogging incidence. Moreover, scarcity of irrigation water has prompted the use of greywater, which contain variable concentrations of organic compounds such as anionic surfactants. Soils added with hay, maize straw or peat at 1% w/w were irrigated, at field capacity (FC) or saturated (S), with an aqueous solution of the anionic surfactant Aerosol 22 (A22), corresponding to an addition of 200 mgC/kgsoil/day. Soil solution was extracted after one month and analysed for total soluble metals, dissolved soil organic matter and UV absorbance at 254 nm. Speciation analyses were performed with WHAM VI for Cd, Cu, Pb, and Zn. For selected scenarios, metal uptake by barley was determined. Metal mobility increased for all treatments and soils (Pb>Cu>Cd≥Zn) compared to control assays. The increase was significantly correlated (p<0.05) with soil organic matter solubilisation for Cd (R=0.68), Cu (R=0.73) and Zn (R=0.86). Otherwise, Pb release was related to aluminium solubilisation (R=0.75), which suggests that Pb was originally co-precipitated with Al-DOC complexes in the solid phase. The effect of A22 in metal bioavailability, determined as free ion activities (FIA), was mainly controlled by soil moisture regime. For soil 3, metal bioavailability was up to 20 times lower for soil amended with hay, peat or maize compared to soil treated only with A22. When soil was treated with A22 at FC barley yield significantly decreased (p<0.05) for the increase of Pb (R=0.71) and Zn (R=0.79) concentrations in shoot, while for saturated conditions such uptake was up to 3 times lower. Overall, metal bioavailability was controlled by solubilisation of soil organic matter and formation

  9. Chemical versus Enzymatic Digestion of Contaminated Estuarine Sediment: Relative Importance of Iron and Manganese Oxides in Controlling Trace Metal Bioavailability

    NASA Astrophysics Data System (ADS)

    Turner, A.; Olsen, Y. S.

    2000-12-01

    Chemical and enzymatic reagents have been employed to determine available concentrations of Fe, Mn, Cu and Zn in contaminated estuarine sediment. Gastric and intestinal enzymes (pepsin, pH 2, and trypsin, pH 7·6, respectively) removed significantly more metal than was water-soluble or exchangeable (by seawater or ammonium acetate), while gastro-intestinal fluid of the demersal teleost, Pleuronectes platessa L. (plaice), employed to operationally define a bioavailable fraction of contaminants, generally solubilized more metal than the model enzymes. Manganese was considerably more available than Fe under these conditions and it is suggested that the principal mechanism of contaminant release is via surface complexation and reductive solubilization of Mn oxides, a process which is enhanced under conditions of low pH. Of the chemical reagents tested, acetic acid best represents the fraction of Mn (as well as Cu and Zn) which is available under gastro-intestinal conditions, suggesting that the reducing tendency of acetate is similar to that of the ligands encountered in the natural digestive environment. Although the precise enzymatic and non-enzymatic composition of plaice gastro-intestinal fluid may be different to that encountered in more representative, filter-feeding or burrowing organisms, a general implication of this study is that contaminants associated with Mn oxides are significantly more bioavailable than those associated with Fe oxides, and that contaminant bioavailability may be largely dictated by the oxidic composition of contaminated sediment.

  10. Potential bioavailability assessment, source apportionment and ecological risk of heavy metals in the sediment of Brisbane River estuary, Australia.

    PubMed

    Duodu, Godfred Odame; Goonetilleke, Ashantha; Ayoko, Godwin A

    2017-02-12

    A weak acid extraction was used to mobilize the loosely bound metals in estuary sediment samples. More than 30% of Ag, As, Ca, Cd, Co, Cu, Hg, Mn Ni, Pb and Zn were leached from the sediment showing that these metals are significantly present in the bioavailable form. PCA/APCS identified three sources of the metals, namely: lithogenic accounting for 72%, shipping related contributing 15% and traffic related representing 13% of the total load. Application of pollution index (PI) and modified pollution index (MPI) revealed that the sediment range from unpolluted to heavily polluted while ecological risk index (RI) classifies the sediment as posing low ecological risk modified ecological risk index (MRI) suggests considerable to very high ecological risk. To provide holistic insights into the ecological risks posed by metals, enrichment factor, MPI and MRI are recommended for the assessment of sediment in complex environments such as estuaries.

  11. Integrating bioavailability approaches into waste rock evaluations

    USGS Publications Warehouse

    Ranville, James F.; Blumenstein, E. P.; Adams, Michael J.; Choate, LaDonna M.; Smith, Kathleen S.; Wildeman, Thomas R.

    2006-01-01

    The presence of toxic metals in soils affected by mining, industry, agriculture and urbanization, presents problems to human health, the establishment and maintenance of plant and animal habitats, and the rehabilitation of affected areas. A key to managing these problems is predicting the fraction of metal in a given soil that will be biologically labile, and potentially harmful ('bioavailable'). The molecular form of metals and metalloids, particularly the uncomplexed (free) form, controls their bioavailability and toxicity in solution. One computational approach for determining bioavailability, the biotic ligand model (BLM), takes into account not only metal complexation by ligands in solution, but also competitive binding of hardness cations (Ca 2+,Mg 2+,) and metal ions to biological receptor sites. The more direct approach to assess bioavailability is to explicitly measure the response of an organism to a contaminant. A number of microbial enzyme tests have been developed to assess the impact of pollution in a rapid and procedurally simple way. These different approaches in making bioavailability predictions may have value in setting landuse priorities, remediation goals, and habitat reclamation strategies.

  12. Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies.

    PubMed

    Olaniran, Ademola O; Balgobind, Adhika; Pillay, Balakrishna

    2013-05-15

    Co-contamination of the environment with toxic chlorinated organic and heavy metal pollutants is one of the major problems facing industrialized nations today. Heavy metals may inhibit biodegradation of chlorinated organics by interacting with enzymes directly involved in biodegradation or those involved in general metabolism. Predictions of metal toxicity effects on organic pollutant biodegradation in co-contaminated soil and water environments is difficult since heavy metals may be present in a variety of chemical and physical forms. Recent advances in bioremediation of co-contaminated environments have focussed on the use of metal-resistant bacteria (cell and gene bioaugmentation), treatment amendments, clay minerals and chelating agents to reduce bioavailable heavy metal concentrations. Phytoremediation has also shown promise as an emerging alternative clean-up technology for co-contaminated environments. However, despite various investigations, in both aerobic and anaerobic systems, demonstrating that metal toxicity hampers the biodegradation of the organic component, a paucity of information exists in this area of research. Therefore, in this review, we discuss the problems associated with the degradation of chlorinated organics in co-contaminated environments, owing to metal toxicity and shed light on possible improvement strategies for effective bioremediation of sites co-contaminated with chlorinated organic compounds and heavy metals.

  13. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies

    PubMed Central

    Olaniran, Ademola O.; Balgobind, Adhika; Pillay, Balakrishna

    2013-01-01

    Co-contamination of the environment with toxic chlorinated organic and heavy metal pollutants is one of the major problems facing industrialized nations today. Heavy metals may inhibit biodegradation of chlorinated organics by interacting with enzymes directly involved in biodegradation or those involved in general metabolism. Predictions of metal toxicity effects on organic pollutant biodegradation in co-contaminated soil and water environments is difficult since heavy metals may be present in a variety of chemical and physical forms. Recent advances in bioremediation of co-contaminated environments have focussed on the use of metal-resistant bacteria (cell and gene bioaugmentation), treatment amendments, clay minerals and chelating agents to reduce bioavailable heavy metal concentrations. Phytoremediation has also shown promise as an emerging alternative clean-up technology for co-contaminated environments. However, despite various investigations, in both aerobic and anaerobic systems, demonstrating that metal toxicity hampers the biodegradation of the organic component, a paucity of information exists in this area of research. Therefore, in this review, we discuss the problems associated with the degradation of chlorinated organics in co-contaminated environments, owing to metal toxicity and shed light on possible improvement strategies for effective bioremediation of sites co-contaminated with chlorinated organic compounds and heavy metals. PMID:23676353

  14. Analysis of bioavailable Ge in agricultural and mining-affected-soils in Freiberg area (Saxony, Germany)

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Székely, Balázs; Kummer, Nicolai-Alexeji; Heinemann, Ute; Heilmeier, Hermann

    2014-05-01

    Germanium (Ge) concentrations in different soil fraction were investigated using a sequential selective dissolution analysis and a rhizosphere-based single-step extraction method for the identification of Ge-bearing soil fractions and prediction of bioavailability of Ge in soil to plants. About 50 soil samples were collected from various soil depths (horizons A and B) and study sites with different types of land use (dry and moist grassland, arable land, mine dumps) in Freiberg area (Saxony, Germany). Ge has been extracted in six soil fractions: mobile fraction, organic matter and sulfides, Mn- and Fe-oxides (amorphous and crystalline), and kaolinite and phytoliths, and residual fraction. The rhizosphere-based method included a 7-day-long extraction sequence with various organic acids like citric acid, malic acid and acetic acid. For the residue the aforementioned sequential extraction has been applied. The Ge-content of the samples have been measured with ICP-MS using rhodium internal standard and two different soil standards. Total Ge concentrations were found to be in the range of 1.6 to 5.5 ppm with highest concentrations on the tailing site in the mining area of Altenberg. The mean Ge concentration in agriculturally used soils was 2.6 ± 0.67 ppm, whereas the maximum values reach 2.9 ± 0.64 ppm and 3.2 ± 0.67 ppm in Himmelsfürst and in a grassland by the Mulde river, respectively. With respect to the fractions, the vast majority of Ge is contained in the last three fractions, indicating that the bioavailable Ge is typically low in the samples. On the other hand at the soil horizons A at the aforementioned two sites characterised by high total Ge, together with that of Reiche Zeche mine dump have also the highest concentrations of Ge in the first three fractions, reaching levels of 1.74 and 0.98 ppm which account for approximately 40% of the total Ge content. Ge concentrations of soil samples extracted with 0.01 or 0.1 M citric acid and malic acid were

  15. An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability

    PubMed Central

    Wang, Cheng; Li, Wei; Yang, Zhongfang; Chen, Yang; Shao, Wenjing; Ji, Junfeng

    2015-01-01

    It is well known that carbonates inhibit heavy metals transferring from soil to plants, yet the mechanism is poorly understood. Based on the Yangtze River delta area, we investigated bioaccumulation of Ni and Cd in winter wheat as affected by the presence of carbonates in soil. This study aimed to determine the mechanism through which soil carbonates restrict transport and plant uptake of heavy metals in the wheat cropping system. The results indicate that soil carbonates critically influenced heavy metal transfer from soil to plants and presented a tipping point. Wheat grains harvested from carbonates-depleted (due to severe leaching) soils showed Ni and Cd concentrations 2–3 times higher than those of the wheat grains from carbonates-containing soils. Correspondingly, the incidence of Ni or Cd contamination in the wheat grain samples increased by about three times. With the carbonate concentration >1% in soil, uptake and bioaccumulation of Ni and Cd by winter wheat was independent with the soil pH and carbonate content. The findings suggest that soil carbonates play a critical role in heavy metal transfer from soil to plants, implying that monitoring soil carbonate may be necessary in addition to soil pH for the evaluating soil quality and food safety. PMID:26227091

  16. An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability.

    PubMed

    Wang, Cheng; Li, Wei; Yang, Zhongfang; Chen, Yang; Shao, Wenjing; Ji, Junfeng

    2015-07-31

    It is well known that carbonates inhibit heavy metals transferring from soil to plants, yet the mechanism is poorly understood. Based on the Yangtze River delta area, we investigated bioaccumulation of Ni and Cd in winter wheat as affected by the presence of carbonates in soil. This study aimed to determine the mechanism through which soil carbonates restrict transport and plant uptake of heavy metals in the wheat cropping system. The results indicate that soil carbonates critically influenced heavy metal transfer from soil to plants and presented a tipping point. Wheat grains harvested from carbonates-depleted (due to severe leaching) soils showed Ni and Cd concentrations 2-3 times higher than those of the wheat grains from carbonates-containing soils. Correspondingly, the incidence of Ni or Cd contamination in the wheat grain samples increased by about three times. With the carbonate concentration >1% in soil, uptake and bioaccumulation of Ni and Cd by winter wheat was independent with the soil pH and carbonate content. The findings suggest that soil carbonates play a critical role in heavy metal transfer from soil to plants, implying that monitoring soil carbonate may be necessary in addition to soil pH for the evaluating soil quality and food safety.

  17. An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Li, Wei; Yang, Zhongfang; Chen, Yang; Shao, Wenjing; Ji, Junfeng

    2015-07-01

    It is well known that carbonates inhibit heavy metals transferring from soil to plants, yet the mechanism is poorly understood. Based on the Yangtze River delta area, we investigated bioaccumulation of Ni and Cd in winter wheat as affected by the presence of carbonates in soil. This study aimed to determine the mechanism through which soil carbonates restrict transport and plant uptake of heavy metals in the wheat cropping system. The results indicate that soil carbonates critically influenced heavy metal transfer from soil to plants and presented a tipping point. Wheat grains harvested from carbonates-depleted (due to severe leaching) soils showed Ni and Cd concentrations 2-3 times higher than those of the wheat grains from carbonates-containing soils. Correspondingly, the incidence of Ni or Cd contamination in the wheat grain samples increased by about three times. With the carbonate concentration >1% in soil, uptake and bioaccumulation of Ni and Cd by winter wheat was independent with the soil pH and carbonate content. The findings suggest that soil carbonates play a critical role in heavy metal transfer from soil to plants, implying that monitoring soil carbonate may be necessary in addition to soil pH for the evaluating soil quality and food safety.

  18. A structural equation model of soil metal bioavailability to earthworms: confronting causal theory and observations using a laboratory exposure to field-contaminated soils.

    PubMed

    Beaumelle, Léa; Vile, Denis; Lamy, Isabelle; Vandenbulcke, Franck; Gimbert, Frédéric; Hedde, Mickaël

    2016-11-01

    Structural equation models (SEM) are increasingly used in ecology as multivariate analysis that can represent theoretical variables and address complex sets of hypotheses. Here we demonstrate the interest of SEM in ecotoxicology, more precisely to test the three-step concept of metal bioavailability to earthworms. The SEM modeled the three-step causal chain between environmental availability, environmental bioavailability and toxicological bioavailability. In the model, each step is an unmeasured (latent) variable reflected by several observed variables. In an exposure experiment designed specifically to test this SEM for Cd, Pb and Zn, Aporrectodea caliginosa was exposed to 31 agricultural field-contaminated soils. Chemical and biological measurements used included CaC12-extractable metal concentrations in soils, free ion concentration in soil solution as predicted by a geochemical model, dissolved metal concentration as predicted by a semi-mechanistic model, internal metal concentrations in total earthworms and in subcellular fractions, and several biomarkers. The observations verified the causal definition of Cd and Pb bioavailability in the SEM, but not for Zn. Several indicators consistently reflected the hypothetical causal definition and could thus be pertinent measurements of Cd and Pb bioavailability to earthworm in field-contaminated soils. SEM highlights that the metals present in the soil solution and easily extractable are not the main source of available metals for earthworms. This study further highlights SEM as a powerful tool that can handle natural ecosystem complexity, thus participating to the paradigm change in ecotoxicology from a bottom-up to a top-down approach.

  19. Statistical evaluation of biogeochemical variables affecting spatiotemporal distributions of multiple free metal ion concentrationsin an urban estuary

    EPA Science Inventory

    Free metal ion concentrations have been recognized as a better indicator of metal bioavailability in aquatic environments than total dissolved metal concentrations. However, our understanding of the determinants of free ion concentrations, especially in a metal mixture, is limite...

  20. Using estimates of metal bioavailability in the soil and genetic variation of allozymes to investigate heavy metal tolerance in the earthworm Eisenia fetida (Oligochaeta).

    PubMed

    Voua Otomo, P; Owojori, O J; Reinecke, S A; Daniels, S; Reinecke, A J

    2011-10-01

    In a recent study, we showed that the earthworm species Eisenia fetida, inhabiting an extremely high metal polluted compost heap on a wine farm, did not have elevated body loads of the metals but exhibited genotoxic tolerance when exposed to Cd in the laboratory (Voua Otomo and Reinecke, 2010). To unravel the mechanism behind the surprisingly low metal body burdens on one hand and genotoxic tolerance on the other hand, we investigated the estimated bioavailability of these metals (Cu, Zn, Pb and Cd) using sequential extraction methods with CaCl(2) and di-ethylene-triamine-pentaacetic acid (DTPA) and allozyme polymorphism in this field population, a laboratory control as well as a long-term Cd exposed population. The amounts of mobile (extracted with CaCl(2)) and mobilizable (extracted with DTPA) metals in relation to the total (extracted with nitric acid) metals were all below 0.05% for all four metals, suggesting low availability for uptake. The low availability of these metals could not be explained by physico-chemical properties of soil but by the phenomenon of aging of the metals. There was no difference in allozyme frequency between metal tolerant and non-metal tolerant populations of E. fetida. This suggested that the tolerance found in earlier studies could be a mere physiological adaptation.

  1. Kolliphor surfactants affect solubilization and bioavailability of fenofibrate. Studies of in vitro digestion and absorption in rats.

    PubMed

    Berthelsen, Ragna; Holm, René; Jacobsen, Jette; Kristensen, Jakob; Abrahamsson, Bertil; Müllertz, Anette

    2015-04-06

    Selection of excipients for drug formulations requires both intellectual and experimental considerations as many of the used excipients are affected by physiological factors, e.g., they may be digested by pancreatic enzymes in the gastrointestinal tract. In the present paper we have looked systematically into the differences between Kolliphor ELP, EL, and RH40 and how they affect the bioavailability of fenofibrate, through pharmacokinetic studies in rats and in vitro lipolysis studies. The study design was made as simple as possible to avoid confounding factors, for which reason the tested formulations only comprised an aqueous micellar solution of the model drug (fenofibrate) in varying concentrations (2-25% (w/v)) of the three tested surfactants. Increased concentrations of Kolliphor ELP and EL led to increased fenofibrate AUC0-24h values. For the Kolliphor RH40 formulations, an apparent fenofibrate absorption optimum was seen at 15% (w/v) surfactant, displaying both the highest AUC0-24h and Cmax. The reduced absorption of fenofibrate from the formulation containing the highest level of surfactant (25% w/v) was thought to be caused by some degree of trapping within Kolliphor RH40 micelles. In vitro, Kolliphor ELP and EL were found to be more prone to digestion than Kolliphor RH40, though not affecting the in vivo results. The highest fenofibrate bioavailability was attained from formulations with high Kolliphor ELP/EL levels (25% (w/v)), indicating that these surfactants are the better choice for solubilizing fenofibrate in order to increase the absorption upon oral administration. Due to drug dependent effects of the different types of Kolliphor, more studies are recommended in order to understand which type of Kolliphor is best suited for a given drug.

  2. Effects of carbon nanotube and biochar on bioavailability of Pb, Cu and Sb in multi-metal contaminated soil.

    PubMed

    Vithanage, Meththika; Herath, Indika; Almaroai, Yaser A; Rajapaksha, Anushka Upamali; Huang, Longbin; Sung, Jwa-Kyung; Lee, Sang Soo; Ok, Yong Sik

    2017-03-22

    This study examined the effects of carbon nanotube and biochar on the bioavailability of Pb, Cu and Sb in the shooting range soils for developing low-cost remediation technology. Commercially available multi-walled carbon nanotube (MWCNT) and biochar pyrolyzed from soybean stover at 300 °C (BC) at 0.5, 1 and 2.5% (w w(-1)) were used to remediate the contaminated soil in an incubation experiment. Both DTPA (bioavailable) and TCLP (leaching) extraction procedures were used to compare the metal/loid availability and leaching by the amendments in soil. The addition of BC was more effective in immobilizing mobile Pb and Cu in the soil than that in MWCNT. The BC reduced the concentrations of Pb and Cu in the soil by 17.6 and 16.2%, respectively. However, both MWCNTs and BC increased Sb bioavailability by 1.4-fold and 1.6-fold, respectively, in DTPA extraction, compared to the control. The toxicity characteristic leaching procedure (TCLP) test showed that the leachability of Pb in the soil amended with 2.5% MWCNT was 1.3-fold higher than that the unamended soil, whereas the BC at 2.5% decreased the TCLP-extractable Pb by 19.2%. Precipitation and adsorption via electrostatic and π-π electron donor-acceptor interactions were postulated to be involved in the interactions of Pb and Cu with surfaces of the BC in the amended soils, whereas ion exchange mechanisms might be involved in the immobilization of Cu in the MWCNT-amended soils. The application of BC derived from soybean stover can be a low-cost technology for simultaneously immobilizing bioavailable Pb and Cu in the shooting range soils; however, neither of amendments was effective in Sb immobilization.

  3. Pollution control and metal resource recovery for low grade automobile shredder residue: a mechanism, bioavailability and risk assessment.

    PubMed

    Singh, Jiwan; Lee, Byeong-Kyu

    2015-04-01

    Automobile shredder residue (ASR) is considered as hazardous waste in Japan and European countries due to presence of heavy metals. This study was carried on the extraction characteristics of heavy metals (Mn, Fe, Ni, and Cr) from automobile shredder residue (ASR). The effects of pH, temperature, particle size, and liquid/solid ratio (L/S) on the extraction of heavy metals were investigated. The recovery rate of Mn, Fe, Ni, and Cr increased with increasing extraction temperature and L/S ratio. The lowest pH 2, the highest L/S ratio, and the smallest particle size showed the highest recovery of heavy metals from ASR. The highest recovery rates were in the following order: Mn > Ni > Cr > Fe. Reduction of mobility factor for the heavy metals was observed in all the size fractions after the recovery. The results of the kinetic analysis for various experimental conditions supported that the reaction rate of the recovery process followed a second order reaction model (R(2) ⩾ 0.95). The high availability of water-soluble fractions of Mn, Fe, Ni, and Cr from the low grade ASR could be potential hazards to the environment. Bioavailability and toxicity risk of heavy metals reduced significantly with pH 2 of distilled water. However, water is a cost-effective extracting agent for the recovery of heavy metals and it could be useful for reducing the toxicity of ASR.

  4. Sediment analysis does not provide a good measure of heavy metal bioavailability to Cerastoderma glaucum (Mollusca: Bivalvia) in confined coastal ecosystems

    SciTech Connect

    Arjonilla, M.; Gomez-Parra, A. ); Forja, J.M. )

    1994-06-01

    Sediments are considered a sink for metals entering the marine environment, especially in coastal areas. Once in the sediment layer, metals are distributed amongst all different phases of the sediment, governed by physicochemical conditions. One fraction is immobilized due to its incorporation into weakly reactive phases of the sediment; Another fraction may remain weakly bound to organic or mineral phases as sorbed, precipitated, or coprecipitated and complexed forms and can be assimilated by detritivorous and suspension-feeding benthic organisms. Many selective procedures have been suggested for metal extraction from sediments in order to estimate concentrations of fractions which are directly or indirectly available to the biota. The absence of a chemical treatment adequate for accurate quantification of metal bioavailability is well-known. Nevertheless, a good correlation between metal content in some organisms and in the sediment after a specific extraction treatment has sometimes been found so sediments are frequently used as indicators in pollution studies. In this paper, concentrations of heavy metals (Fe, Mn, Cu, Ph and Cd) in the cockle Cerastoderma glaucum, and in sediments at the same sampling locations are compared. C. glaucum is a suspension and deposit feeder, inhabiting a wide range of salinities. The study sampled 8 saltponds in the south of Cadiz Bay, located along a gradient of contamination produced by urban and industrial sewage effluents. The study sought to identify areas with different relative risk from metal pollution, in terms of biological effects and effects on water quality due to natural resuspension of sediments or to human relocation of sediments. C. glaucum was selected because of its wide distribution in the Bay, and also because it has no commercial value. This second fact means that its distribution and growth is not directly affected by man. 19 refs., 4 figs., 1 tab.

  5. Construction of a self-luminescent cyanobacterial bioreporter that detects a broad range of bioavailable heavy metals in aquatic environments

    PubMed Central

    Martín-Betancor, Keila; Rodea-Palomares, Ismael; Muñoz-Martín, M. A.; Leganés, Francisco; Fernández-Piñas, Francisca

    2015-01-01

    A self-luminescent bioreporter strain of the unicellular cyanobacterium Synechococcus sp. PCC 7942 was constructed by fusing the promoter region of the smt locus (encoding the transcriptional repressor SmtB and the metallothionein SmtA) to luxCDABE from Photorhabdus luminescens; the sensor smtB gene controlling the expression of smtA was cloned in the same vector. The bioreporter performance was tested with a range of heavy metals and was shown to respond linearly to divalent Zn, Cd, Cu, Co, Hg, and monovalent Ag. Chemical modeling was used to link bioreporter response with metal speciation and bioavailability. Limits of Detection (LODs), Maximum Permissive Concentrations (MPCs) and dynamic ranges for each metal were calculated in terms of free ion concentrations. The ranges of detection varied from 11 to 72 pM for Hg2+ (the ion to which the bioreporter was most sensitive) to 1.54–5.35 μM for Cd2+ with an order of decreasing sensitivity as follows: Hg2+ >> Cu2+ >> Ag+ > Co2+ ≥ Zn2+ > Cd2+. However, the maximum induction factor reached 75-fold in the case of Zn2+ and 56-fold in the case of Cd2+, implying that Zn2+ is the preferred metal in vivo for the SmtB sensor, followed by Cd2+, Ag+ and Cu2+ (around 45–50-fold induction), Hg2+ (30-fold) and finally Co2+ (20-fold). The bioreporter performance was tested in real environmental samples with different water matrix complexity artificially contaminated with increasing concentrations of Zn, Cd, Ag, and Cu, confirming its validity as a sensor of free heavy metal cations bioavailability in aquatic environments. PMID:25806029

  6. Construction of a self-luminescent cyanobacterial bioreporter that detects a broad range of bioavailable heavy metals in aquatic environments.

    PubMed

    Martín-Betancor, Keila; Rodea-Palomares, Ismael; Muñoz-Martín, M A; Leganés, Francisco; Fernández-Piñas, Francisca

    2015-01-01

    A self-luminescent bioreporter strain of the unicellular cyanobacterium Synechococcus sp. PCC 7942 was constructed by fusing the promoter region of the smt locus (encoding the transcriptional repressor SmtB and the metallothionein SmtA) to luxCDABE from Photorhabdus luminescens; the sensor smtB gene controlling the expression of smtA was cloned in the same vector. The bioreporter performance was tested with a range of heavy metals and was shown to respond linearly to divalent Zn, Cd, Cu, Co, Hg, and monovalent Ag. Chemical modeling was used to link bioreporter response with metal speciation and bioavailability. Limits of Detection (LODs), Maximum Permissive Concentrations (MPCs) and dynamic ranges for each metal were calculated in terms of free ion concentrations. The ranges of detection varied from 11 to 72 pM for Hg(2+) (the ion to which the bioreporter was most sensitive) to 1.54-5.35 μM for Cd(2+) with an order of decreasing sensitivity as follows: Hg(2+) > Cu(2+) > Ag(+) > Co(2+) ≥ Zn(2+) > Cd(2+). However, the maximum induction factor reached 75-fold in the case of Zn(2+) and 56-fold in the case of Cd(2+), implying that Zn(2+) is the preferred metal in vivo for the SmtB sensor, followed by Cd(2+), Ag(+) and Cu(2+) (around 45-50-fold induction), Hg(2+) (30-fold) and finally Co(2+) (20-fold). The bioreporter performance was tested in real environmental samples with different water matrix complexity artificially contaminated with increasing concentrations of Zn, Cd, Ag, and Cu, confirming its validity as a sensor of free heavy metal cations bioavailability in aquatic environments.

  7. Surface applied water treatment residuals affect bioavailable phosphorus losses in Florida sands.

    PubMed

    Oladeji, Olawale O; O'Connor, George A; Brinton, Scott R

    2008-09-01

    Water treatment residuals (WTR) can reduce runoff P loss and surface co-application of P-sources and WTR is a practical way of land applying the residuals. In a rainfall simulation study, we evaluated the effects of surface co-applied P-sources and an Al-WTR on runoff and leacheate bioavailable P (BAP) losses from a Florida sand. Four P-sources, namely poultry manure, Boca Raton biosolids (high water-soluble P), Pompano biosolids (moderate water-soluble P), and triple super phosphate (TSP) were surface applied at 56 and 224 kg P ha(-1) (by weight) to represent low and high soil P loads typical of P- and N-based amendments rates. The treatments further received surface applied WTR at 0 or 10 g WTR kg(-1) soil. BAP loss masses were greater in leachate (16.4-536 mg) than in runoff (0.91-46 mg), but were reduced in runoff and leachate by surface applied WTR. Masses of total BAP lost in the presence of surface applied WTR were less than approximately 75% of BAP losses in the absence of WTR. Total BAP losses from each of the organic sources applied at N-based rates were not greater than P loss from TSP applied at a P-based rate. The BAP loss at the N-based rate of moderate water-soluble P-source (Pompano biosolids) was not greater than BAP losses at the P-based rates of other organic sources tested. The hazards of excess P from applying organic P-sources at N-based rates are not greater than observed at P-based rates of mineral fertilizer. Results suggest that management of the environmental P hazards associated with N-based rates of organic materials in Florida sands is possible by either applying P-sources with WTR or using a moderate water-soluble P-source.

  8. Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China.

    PubMed

    Li, Lianzhen; Wu, Huifeng; van Gestel, Cornelis A M; Peijnenburg, Willie J G M; Allen, Herbert E

    2014-05-01

    The bioavailability of Cu, Zn, Pb and Cd from field-aged orchard soils in a certified fruit plantation area of the Northeast Jiaodong Peninsula in China was assessed using bioassays with earthworms (Eisenia fetida) and chemical assays. Soil acidity increased with increasing fruit cultivation periods with a lowest pH of 4.34. Metals were enriched in topsoils after decades of horticultural cultivation, with highest concentrations of Cu (132 kg(-1)) and Zn (168 mg kg(-1)) in old apple orchards and Pb (73 mg kg(-1)) and Cd (0.57 mg kg(-1)) in vineyard soil. Earthworm tissue concentrations of Cu and Pb significantly correlated with 0.01 M CaCl2-extractable soil concentrations (R(2) = 0.70, p < 0.001 for Cu; R(2) = 0.58, p < 0.01 for Pb). Because of the increased bioavailability, regular monitoring of soil conditions in old orchards and vineyards is recommended, and soil metal guidelines need reevaluation to afford appropriate environmental protection under acidifying conditions.

  9. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum).

    PubMed

    Hossain, Mustafa K; Strezov, Vladimir; Chan, K Yin; Nelson, Peter F

    2010-02-01

    This work presents agronomic values of a biochar produced from wastewater sludge through pyrolysis at a temperature of 550 degrees C. In order to investigate and quantify effects of wastewater sludge biochar on soil quality, growth, yield and bioavailability of metals in cherry tomatoes, pot experiments were carried out in a temperature controlled environment and under four different treatments consisting of control soil, soil with biochar; soil with biochar and fertiliser, and soil with fertiliser only. The soil used was chromosol and the applied wastewater sludge biochar was 10tha(-1). The results showed that the application of biochar improves the production of cherry tomatoes by 64% above the control soil conditions. The ability of biochar to increase the yield was attributed to the combined effect of increased nutrient availability (P and N) and improved soil chemical conditions upon amendment. The yield of cherry tomato production was found to be at its maximum when biochar was applied in combination with the fertiliser. Application of biochar was also found to significantly increase the soil electrical conductivity as well as phosphorus and nitrogen contents. Bioavailability of metals present in the biochar was found to be below the Australian maximum permitted concentrations for food.

  10. Assessment of different methods to estimate heavy metal bioavailability in 30 contrasting Spanish and New Zealand soils

    NASA Astrophysics Data System (ADS)

    Soriano-Disla, J. M.; Speir, T. W.; Gómez, I.; Clucas, L. M.; McLaren, R. G.; Navarro-Pedreño, J.

    2009-04-01

    The accumulation of heavy metals in soil from different sources (atmospheric deposition, agricultural practices, urban-industrial activities, etc.) is of a great environmental concern because of metal persistence and toxicity. In this sense, there is a consensus in the literature that the estimation of the bioavailable heavy metals in soil is a preferable tool to determine potential risks from soil contamination than the total contents. However, controversy exists around the definition of an accurate and universal bioavailability estimator that is useful for soils with different properties, since many factors control this parameter. Thus, the main objective of this work was to compare the effectiveness of different methods to predict heavy metals plant uptake from soils with different properties and heavy metal contents. For the development of the present work, 30 contrasting soils from New Zealand and Spain were selected. Apart from the analysis of the basic soil properties, different methods to estimate heavy metal bioavailability were performed: total heavy metals, DTPA-extractable soil metals, diffusive gradient technique (DGT), and total heavy metals in soil solution. In these soils, a bioassay using wheat (Triticum aestivum) was carried out in a constant environment room for 25 days (12 hours photoperiod, day and night temperature of 20°C and 15°C respectively). After this time, the plants were divided in roots and shoots and heavy metal content was analysed in each part. Simple correlations were performed comparing the phytoavailable contents with the bioavailability estimated by the different methods. As expected, higher heavy metal concentrations were found in roots compared with shoots. Comparing the theoretical available heavy metals estimated by the different methods with the root and shoot uptake, better correlations were found with the root contents, thus, the discussion is based in the comparisons with the uptake by this part of the plant

  11. Bioavailability evaluation, uptake of heavy metals and potential health risks via dietary exposure in urban-industrial areas.

    PubMed

    Yousaf, Balal; Liu, Guijian; Wang, Ruwei; Imtiaz, Muhammad; Zia-Ur-Rehman, Muhammad; Munir, Mehr Ahmed Mujtaba; Niu, Zhiyuan

    2016-11-01

    A verity of human activities i.e. urbanization and industrialization have been resulted serious environmental contaminations by heavy metals in all over the world. The settlement of populations in urban and nearby industrial areas for economic development has significant share in their exposure to these metallic contaminants. Depending on the nature and type of the pollutants, targeted urban-industrial environments can have harmful and chronic health risk impacts on exposed local inhabitants and may require detoxification, healing and remedial therapy. Consequently, environmental monitoring as well as human health risk assessments of urban environments under industrial influence are key dominant features. We believe this work will provide new insights into the studies of metals exposure and associated health risks in emerging industrials cities of developing countries. Present study aimed to study the bioavailability of metals, quantify the changeability in soil and vegetable metal concentrations and estimation of human health risks via dietary exposure, focusing on urban-industrial environment. Soil and vegetable samples were collected in six random sites within the urban, periurban and industrial areas and analyzed for metal concentrations. In addition, risk assessment model proposed by US-EPA was employed to estimate the potential health risk of heavy metals via dietary intake. Results indicated that the heavy metal concentrations were noteworthy in periurban and urban-industrial areas. However, contamination levels varied with the type of vegetable, and the point source pollution such as traffic, urban wastes and industrial effluent. According to the estimated THQ and HI values for non-carcinogenic risk, little or no negative impact of heavy metals was observed on local inhabitants. However, the concentrations of Cr, Cd, Pb and Ni were nearly closed to the permissible limits described by US-EPA in urban-industrial areas. Conclusively, some efficient remedial

  12. Bioavailability and toxicity of trace metals to the cladoceran Daphnia magna in relation to cadmium exposure history

    NASA Astrophysics Data System (ADS)

    Guan, Rui

    The cladoceran Daphnia magna is widely used in freshwater bioassessments and ecological risk assessments. This study designed a series of experiments employing radiotracer methodology to quantify the trace metals (mainly Cd and Zn) biokinetics in D. magna under different environmental and biological conditions and to investigate the influences of different Cd exposure histories on the bioavailability and toxicity of trace metals to D. magna. A bioenergetic-based kinetic model was finally applied in predicting the Cd accumulation dynamics in D. magna and the model validity under non-steady state was assessed. Cd assimilation was found in this study to be influenced by the food characteristics (e.g., metal concentration in food particles), the metal exposure history of the animals, and the genetic characteristics. Some of these influences could be interpreted by the capacity and/or competition of those metal binding sites within the digestive tract and/or the detoxifying proteins metallothionein (MT). My study demonstrated a significant induction of MT in response to Cd exposure and it was the dominant fraction in sequestering the internal nonessential trace metals in D. magna. The ratio of Cd body burden to MT might better predict the Cd toxicity on the digestion systems of D. magna than the Cd tissue burden alone within one-generational exposure to Cd. It was found that metal elimination (rate constant and contribution of different release routes) was independent of the food concentration and the dietary metal concentration, implying that the elimination may not be metabolically controlled. The incorporation of the bioenergetic-based kinetic model, especially under non-steady state, is invaluable in helping to understand the fate of trace metals in aquatic systems and potential environmental risks. The dependence of biokinetic parameters on environmental factors rather than on genotypes implies a great potential of using biokinetics in inter-laboratory comparisons.

  13. Response of Benthic Foraminifera to Organic Matter Quantity and Quality and Bioavailable Concentrations of Metals in Aveiro Lagoon (Portugal)

    PubMed Central

    Martins, Maria Virgínia Alves; Silva, Frederico; Laut, Lazaro L. M.; Frontalini, Fabrizio; Clemente, Iara M. M. M.; Miranda, Paulo; Figueira, Rubens; Sousa, Silvia H. M.; Dias, João M. Alveirinho

    2015-01-01

    This work analyses the distribution of living benthic foraminiferal assemblages of surface sediments in different intertidal areas of Ria de Aveiro (Portugal), a polihaline and anthropized coastal lagoon. The relationships among foraminiferal assemblages in association with environmental parameters (temperature, salinity, Eh and pH), grain size, the quantity and quality of organic matter (enrichment in carbohydrates, proteins and lipids), pollution caused by metals, and mineralogical data are studied in an attempt to identify indicators of adaptability to environmental stress. In particular, concentrations of selected metals in the surficial sediment are investigated to assess environmental pollution levels that are further synthetically parameterised by the Pollution Load Index (PLI). The PLI variations allowed the identification of five main polluted areas. Concentrations of metals were also analysed in three extracted phases to evaluate their possible mobility, bioavailability and toxicity in the surficial sediment. Polluted sediment in the form of both organic matter and metals can be found in the most confined zones. Whereas enrichment in organic matter and related biopolymers causes an increase in foraminifera density, pollution by metals leads to a decline in foraminiferal abundance and diversity in those zones. The first situation may be justified by the existence of opportunistic species (with high reproduction rate) that can live in low oxic conditions. The second is explained by the sensitivity of some species to pressure caused by metals. The quality of the organic matter found in these places and the option of a different food source should also explain the tolerance of several species to pollution caused by metals, despite their low reproductive rate in the most polluted areas. In this study, species that are sensitive and tolerant to organic matter and metal enrichment are identified, as is the differential sensitivity/tolerance of some species to

  14. Response of benthic foraminifera to organic matter quantity and quality and bioavailable concentrations of metals in Aveiro Lagoon (Portugal).

    PubMed

    Martins, Maria Virgínia Alves; Silva, Frederico; Laut, Lazaro L M; Frontalini, Fabrizio; Clemente, Iara M M M; Miranda, Paulo; Figueira, Rubens; Sousa, Silvia H M; Dias, João M Alveirinho

    2015-01-01

    This work analyses the distribution of living benthic foraminiferal assemblages of surface sediments in different intertidal areas of Ria de Aveiro (Portugal), a polihaline and anthropized coastal lagoon. The relationships among foraminiferal assemblages in association with environmental parameters (temperature, salinity, Eh and pH), grain size, the quantity and quality of organic matter (enrichment in carbohydrates, proteins and lipids), pollution caused by metals, and mineralogical data are studied in an attempt to identify indicators of adaptability to environmental stress. In particular, concentrations of selected metals in the surficial sediment are investigated to assess environmental pollution levels that are further synthetically parameterised by the Pollution Load Index (PLI). The PLI variations allowed the identification of five main polluted areas. Concentrations of metals were also analysed in three extracted phases to evaluate their possible mobility, bioavailability and toxicity in the surficial sediment. Polluted sediment in the form of both organic matter and metals can be found in the most confined zones. Whereas enrichment in organic matter and related biopolymers causes an increase in foraminifera density, pollution by metals leads to a decline in foraminiferal abundance and diversity in those zones. The first situation may be justified by the existence of opportunistic species (with high reproduction rate) that can live in low oxic conditions. The second is explained by the sensitivity of some species to pressure caused by metals. The quality of the organic matter found in these places and the option of a different food source should also explain the tolerance of several species to pollution caused by metals, despite their low reproductive rate in the most polluted areas. In this study, species that are sensitive and tolerant to organic matter and metal enrichment are identified, as is the differential sensitivity/tolerance of some species to

  15. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.

    PubMed

    Smith, Stephen R

    2009-01-01

    The content, behaviour and significance of heavy metals in composted waste materials is important from two potentially conflicting aspects of environmental legislation in terms of: (a) defining end-of-waste criteria and increasing recycling of composted residuals on land and (b) protecting soil quality by preventing contamination. This review examines the effects of heavy metals in compost and amended soil as a basis for achieving a practical and sustainable balance between these different policy objectives, with particular emphasis on agricultural application. All types of municipal solid waste (MSW) compost contain more heavy metals than the background concentrations present in soil and will increase their contents in amended soil. Total concentrations of heavy metals in source-segregated and greenwaste compost are typically below UK PAS100 limits and mechanical segregated material can also comply with the metal limits in UK PAS100, although this is likely to be more challenging. Zinc and Pb are numerically the elements present in the largest amounts in MSW-compost. Lead is the most limiting element to use of mechanically-segregated compost in domestic gardens, but concentrations are typically below risk-based thresholds that protect human health. Composted residuals derived from MSW and greenwaste have a high affinity for binding heavy metals. There is general consensus in the scientific literature that aerobic composting processes increase the complexation of heavy metals in organic waste residuals, and that metals are strongly bound to the compost matrix and organic matter, limiting their solubility and potential bioavailability in soil. Lead is the most strongly bound element and Ni the weakest, with Zn, Cu and Cd showing intermediate sorption characteristics. The strong metal sorption properties of compost produced from MSW or sewage sludge have important benefits for the remediation of metal contaminated industrial and urban soils. Compost and sewage sludge

  16. Cooking enhances but the degree of ripeness does not affect provitamin A carotenoid bioavailability from bananas in Mongolian gerbils.

    PubMed

    Bresnahan, Kara A; Arscott, Sara A; Khanna, Harjeet; Arinaitwe, Geofrey; Dale, James; Tushemereirwe, Wilberforce; Mondloch, Stephanie; Tanumihardjo, Jacob P; De Moura, Fabiana F; Tanumihardjo, Sherry A

    2012-12-01

    Banana is a staple crop in many regions where vitamin A deficiency is prevalent, making it a target for provitamin A biofortification. However, matrix effects may limit provitamin A bioavailability from bananas. The retinol bioefficacies of unripe and ripe bananas (study 1A), unripe high-provitamin A bananas (study 1B), and raw and cooked bananas (study 2) were determined in retinol-depleted Mongolian gerbils (n = 97/study) using positive and negative controls. After feeding a retinol-deficient diet for 6 and 4 wk in studies 1 and 2, respectively, customized diets containing 60, 30, or 15% banana were fed for 17 and 13 d, respectively. In study 1A, the hepatic retinol of the 60% ripe Cavendish group (0.52 ± 0.13 μmol retinol/liver) differed from baseline (0.65 ± 0.15 μmol retinol/liver) and was higher than the negative control group (0.39 ± 0.16 μmol retinol/liver; P < 0.0065). In study 1B, no groups differed from baseline (0.65 ± 0.15 μmol retinol/liver; P = 0.20). In study 2, the 60% raw Butobe group (0.68 ± 0.17 μmol retinol/liver) differed from the 60% cooked Butobe group (0.87 ± 0.24 μmol retinol/liver); neither group differed from baseline (0.80 ± 0.27 μmol retinol/liver; P < 0.0001). Total liver retinol was higher in the groups fed cooked bananas than in those fed raw (P = 0.0027). Body weights did not differ even though gerbils ate more green, ripe, and raw bananas than cooked, suggesting a greater indigestible component. In conclusion, thermal processing, but not ripening, improves the retinol bioefficacy of bananas. Food matrix modification affects carotenoid bioavailability from provitamin A biofortification targets.

  17. How physical alteration of technic materials affects mobility and phytoavailabilty of metals in urban soils?

    PubMed

    El Khalil, Hicham; Schwartz, Christophe; El Hamiani, Ouafae; Sirguey, Catherine; Kubiniok, Jochen; Boularbah, Ali

    2016-06-01

    One fundamental characteristic distinguishing urban soils from natural soils is the presence of technic materials or artefacts underlining the influence of human activity. These technic materials have different nature (organic or inorganic) and origins. They contribute to the enrichment of the soil solution by metallic trace elements. The present study aims to determine the effect of physical alteration of the technic coarse fraction on the bioavailability of metallic trace elements in urban Technosols. In general, results show that physical alteration increases the metallic trace elements water extractible concentrations of technic materials. The ability of lettuce to accumulate metallic trace elements, even at low concentrations, underlines the capacity of technic materials to contaminate the anthropised soil solution by bioavailable metals. The highest metal levels, accumulated by the various organs of the lettuce (leaves and roots), were measured in plants grown in presence of metallic particles mixtures. This indicates that the majority of metallic trace elements released by this technic constituent is bioavailable and explains the low plant biomass obtained. The abundant part of metallic trace elements released by the other technic constituents (building materials, bones, wood, plastic and fabric-paper) remains less bioavailable. Under anthropised soil conditions, technic materials have a significant effect on the metallic trace elements behavior. They impact the flow of these metallic elements in Technosols, which can increase their bioavailability and, therefore, the contamination of the food chain.

  18. EFFECT OF SOIL PROPERTIES ON THE TOXICITY AND BIOAVAILABILITY OF METALS

    EPA Science Inventory

    Heavy metal and organic chemical contamination of soils is a worldwide problem posing a risk to humans and more directly, soil organisms. Due to widespread metal contamination, it is necessary to characterize soils suspected of metal contamination and determine if the metal le...

  19. Effects of mining wastes on a seagrass ecosystem: metal accumulation and bioavailability, seagrass dynamics and associated community structure.

    PubMed

    Marín-Guirao, Lázaro; Atucha, Arnaldo Marín; Barba, Javier Lloret; López, Emma Martínez; Fernández, Antonio J García

    2005-09-01

    Two different Cymodocea nodosa (Ucria) Ascherson beds growing in mining-contaminated sediments were compared with two reference beds in the Mar Menor coastal lagoon. The accumulation of Zn, Pb and Cd in different fractions of the plant, the sediment parameters that regulate the availability of metals, the seabed structure and dynamics of each seagrass bed and its associated macroinvertebrate community were studied. C. nodosa accumulates metals from the sediments and reflects their bioavailability for this seagrass. At each station, the metal content of the rhizomes was lower than that of leaves and roots. The concentration of acid-volatile sulfides does not seem to influence the availability of metals to the seagrass, possibly due to oxygen transport to underground tissues. The highest metal concentration in all the contaminated stations was found in the leaf-biofilm, due to the formation of complexes between metals and the extracellular polymeric substances that form the biofilm. All the seagrass beds were seen to be undergoing expansion, those growing in contaminated sediments accumulating great quantities of metals and showing highest photosynthetic leaf surface area and highest leaf biomass. However, these structural parameters were not seen to be responsible for the differences in the faunal composition observed between contaminated and reference beds. Moreover, the multivariate analysis identified the metal content of leaves, biofilm and sediments as important variables that may be responsible for these differences in faunal composition. In this study we have demonstrated that both the seagrass C. nodosa and the biofilm on the plant leaves may be used as environmental tools in the Mar Menor lagoon. The former is an useful indicator of sediment contamination, whereas the latter seems to be a good sentinel of water quality.

  20. Distribution, bioavailability, and leachability of heavy metals in soil particle size fractions of urban soils (northeastern China).

    PubMed

    Yutong, Zong; Qing, Xiao; Shenggao, Lu

    2016-07-01

    This study examines the distribution, mobility, and potential environmental risks of heavy metals in various particle size fractions of urban soils. Representative urban topsoils (ten) collected from Anshan, Liaoning (northeastern China), were separated into six particle size fractions and their heavy metal contents (Cr, Cu, Cd, Pb, and Zn) were determined. The bioaccessibility and leachability of heavy metals in particle size fractions were evaluated using the toxicity characteristic leaching procedure (TCLP) and ethylenediaminetetraacetic acid (EDTA) extraction, respectively. The results indicated that the contents of five heavy metals (Cd, Cr, Cu, Pb and Zn) in the size fractions increased with the decrease of particle size. The clay fraction of <2 μm had the highest content of heavy metals, indicating that the clay fraction was polluted by heavy metals more seriously than the other size fractions in urban topsoils. Cr also concentrated in the coarse fraction of 2000-1000 μm, indicating a lithogenic contribution. However, the dominant size fraction responsible for heavy metal accumulation appeared to belong to particle fraction of 50-2 μm. The lowest distribution factors (DFs) of heavy metals were recorded in the 2000- to 1000-μm size fraction, while the highest in the clay fraction. The DFs of heavy metals in the clay fraction followed Zn (3.22) > Cu (2.84) > Pb (2.61) > Cr (2.19) > Cd (2.05). The enrichment factor suggested that the enrichment degree of heavy metal increased with the decrease of the particle size, especially for Cd and Zn. The TCLP- and EDTA-extractable concentrations of heavy metals in the clay fraction were relatively higher than those in coarse particles. Cd bioavailability was higher in the clay fraction than in other fractions or whole soils. In contrast, Cr exhibits similar bioaccessibilities in the six size fractions of soils. The results suggested that fine particles were the main sources of potentially toxic

  1. Bioaccumulation of metals (Cd, Cu, Zn) by the marine bivalves M. galloprovincialis, P. radiata, V. verrucosa and C. chione in Mediterranean coastal microenvironments: association with metal bioavailability.

    PubMed

    Sakellari, Aikaterini; Karavoltsos, Sotirios; Theodorou, Dimitrios; Dassenakis, Manos; Scoullos, Michael

    2013-04-01

    The concentrations of Cd, Cu and Zn in both the whole soft tissue and separate organs (gills, mantle, muscle and digestive gland) of wild bivalves (Mytilus galloprovincialis, Pinctada radiata, Venus verrucosa and Callista chione) from three different coastal microenvironments of Greece were monitored from 2003 to 2004. In parallel, by employing appropriate analytical protocols for metal partitioning, the labile fraction of the metals was determined in the dissolved phase, suspended particulate matter and sediments. Differences in the metal levels were detected both among the study areas as well as among the bivalves examined. Significant bioaccumulation was demonstrated regarding Zn in M. galloprovincialis specimens from the highly industrialized Gulf of Elefsis and Cd in P. radiata and V. verrucosa from the Maliakos Gulf, which is influenced by extended agricultural activity occurring at the neighbouring area and a river outflow. Data of the metal levels in the various environmental phases were correlated with their concentrations in bivalves' tissues. The clear relationships obtained in many cases among the labile metal concentrations and the bioaccumulated concentrations in bivalves point out that the labile fraction of a metal is the most bioavailable. The lack of positive correlation for C. chione confirms the occurrence of effective mechanisms of internal regulation of metal concentrations.

  2. Copper binding affinity of rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis) gills: Implications for assessing bioavailable metal

    SciTech Connect

    MacRae, R.K.; Smith, D.E.; Swoboda-Colberg, N.; Meyer, J.S.; Bergman, H.L. . Dept. of Zoology and Physiology)

    1999-06-01

    In this study, the authors determined the conditional stability constant (log K[prime]) of copper for the gills of rainbow trout (Oncorhynchus mykiss; RBT) and brook trout (Salvelinus fontinalis; BT). Using toxicity-based complexation bioassays, which measure the effect of competing organic ligands on copper toxicity, the RBT gill copper log K[prime] range was 6.4 to 7.2. Using a Scatchard analysis of gill Cu accumulation, the RBT log K[prime] was 7.50 and the BT log K[prime] was 7.25. The close agreement in RBT log K[prime] values between these two methods suggests that measurement of gill copper accumulation is an acceptable alternative for determining a toxicity-based gill copper binding affinity. The results also suggest that there is either a single gill copper binding component or, more realistically, multiple components with similar binding properties that function collectively to define a single toxicologically relevant copper conditional stability constant. These results suggest analytical approaches to measuring bioavailable metal concentrations, such as geochemical modeling where biological ligands are included in speciation calculations, may adequately simulate complex biological ligands. A method to convert gill copper accumulation to a bioavailable water criterion is also discussed.

  3. Do high levels of diffuse and chronic metal pollution in sediments of Rhine and Meuse floodplains affect structure and functioning of terrestrial ecosystems?

    PubMed

    Rozema, Jelte; Notten, Martje J M; Aerts, Rien; van Gestel, Cornelis A M; Hobbelen, Peter H F; Hamers, Timo H M

    2008-12-01

    This paper (re)considers the question if chronic and diffuse heavy metal pollution (cadmium, copper, lead and zinc) affects the structure and functioning of terrestrial ecosystems of Biesbosch National Park, the floodplain area of rivers Meuse and Rhine. To reach this aim, we integrated the results of three projects on: 1. the origin, transfer and effects of heavy metals in a soil-plant-snail food chain; 2. the impact of bioavailability on effects of heavy metals on the structure and functioning of detritivorous communities; 3. the risk assessment of heavy metals for an herbivorous and a carnivorous small mammal food chain. Metal pollution levels of the Biesbosch floodplain soils are high. The bioavailability of metals in the soils is low, causing low metal levels in plant leaves. Despite this, metal concentrations in soil dwelling detritivores and in land snails at polluted locations are elevated in comparison to animals from 'non-polluted' reference sites. However, no adverse effects on ecosystem structure (species richness, density, biomass) and functioning (litter decomposition, leaf consumption, reproduction) have been found. Sediment metal pollution may pose a risk to the carnivorous small mammal food chain, in which earthworms with elevated metal concentrations are eaten by the common shrew. Additional measurements near an active metal smelter, however, show reduced leaf consumption rates and reduced reproduction by terrestrial snails, reflecting elevated metal bioavailability at this site. Since future management may also comprise reintroduction of tidal action in the Biesbosch area, changes in metal bioavailability, and as a consequence future ecosystem effects, cannot be excluded.

  4. IMPROVED RISK ASSESSMENT AND REMEDIATION OF SOIL METALS BASED ON BIOAVAILABILITY MEASUREMENTS

    EPA Science Inventory

    Heavy metals in soils can comprise risk through plant uptake or soil ingestion. Recent research results and progress in understandings of risks and methods for soil metal remediation will be presented. Beneficial use of composts/bosolids plus limestone to remediate metal killed e...

  5. EFFECT OF SOIL MODIFYING FACTORS ON THE BIOAVAILABILITY AND TOXICITY OF METAL CONTAMINATED SOILS

    EPA Science Inventory

    Heavy metal and organic chemical contamination of soils is a worldwide problem posing a risk to humans and more directly, soil organisms. Metal toxicity is often not directly related to the total concentration of metals present due to a number of modifying factors that depend,...

  6. Fraction distribution and bioavailability of soil heavy metals in the Yangtze River Delta--a case study of Kunshan City in Jiangsu Province, China.

    PubMed

    Zhong, Xiao-lan; Zhou, Sheng-lu; Zhu, Qing; Zhao, Qi-guo

    2011-12-30

    Mobility and bioavailability of soil heavy metals strongly depend on their fractions. Secondary-phase fraction (SPF) of heavy metal, including acid-soluble, reducible and oxidizable fractions, is considered as direct and potential hazardous fraction to organisms. The ratio of SPF to the total concentration of heavy metal represents its bioavailability. In this study, 126 topsoil samples were collected in Kunshan, Jiangsu, China. Fraction concentrations of heavy metals, and their bioavailability and spatial distributions were determined, and relationships between their fractions and types of industry zones were analyzed. Results showed that Cd and Pb had the greatest SPFs among all metals (78.61% and 62.60%, respectively). Great SPFs of Cd and Pb were observed in the dyeing and paper-making industry zone, while great SPFs of Cr, Cu, Zn, Ni were in the smelting and plating industry zone. For most metals, fraction distributions were controlled by soil organic matter and clay contents. Spatial principal component analysis showed SPFs of heavy metals can be explained by two principle components (PCs). PC1 represented SPFs of Cd, Cr, Cu, Pb and Zn, while PC2 represented SPFs of Ni and Co. The spatial distributions of SPFs were influenced by geochemical character, industrial sewage irrigation and soil physico-chemical properties.

  7. The importance of biological factors affecting trace metal concentration as revealed from accumulation patterns in co-occurring terrestrial invertebrates.

    PubMed

    Hendrickx, Frederik; Maelfait, Jean-Pierre; Bogaert, Nicolas; Tojal, Catarina; Du Laing, Gijs; Tack, Filip M G; Verloo, Marc G

    2004-01-01

    As physicochemical properties of the soil highly influence the bioavailable fraction of a particular trace metal, measured metal body burdens in a particular species are often assumed to be more reliable estimators of the contamination of the biota. To test this we compared the Cd, Cu and Zn content of three spiders (generalist predators) and two amphipods (detritivores), co-occurring in seven tidal marshes along the river Schelde, between each other and with the total metal concentrations and the concentrations of four sequential extractions of the soils. Correlations were significant in only one case and significant site x species interactions for all metals demonstrate that factors affecting metal concentration were species and site specific and not solely determined by site specific characteristics. These results emphasize that site and species specific biological factors might be of the utmost importance in determining the contamination of the biota, at least for higher trophic levels. A hypothetical example clarifies these findings.

  8. Acute toxicity of the cationic surfactant C12-benzalkonium in different bioassays: how test design affects bioavailability and effect concentrations.

    PubMed

    Chen, Yi; Geurts, Marc; Sjollema, Sascha B; Kramer, Nynke I; Hermens, Joop L M; Droge, Steven T J

    2014-03-01

    Using an ion-exchange-based solid-phase microextraction (SPME) method, the freely dissolved concentrations of C12-benzalkonium were measured in different toxicity assays, including 1) immobilization of Daphnia magna in the presence or absence of dissolved humic acid; 2) mortality of Lumbriculus variegatus in the presence or absence of a suspension of Organisation for Economic Co-Operation and Development (OECD) sediment; 3) photosystem II inhibition of green algae Chlorella vulgaris; and 4) viability of in vitro rainbow trout gill cell line (RTgill-W1) in the presence or absence of serum proteins. Furthermore, the loss from chemical adsorption to the different test vessels used in these tests was also determined. The C12-benzalkonium sorption isotherms to the different sorbent phases were established as well. Our results show that the freely dissolved concentration is a better indicator of the actual exposure concentration than the nominal or total concentration in most test assays. Daphnia was the most sensitive species to C12-benzalkonium. The acute Daphnia and Lumbriculus tests both showed no enhanced toxicity from possible ingestion of sorbed C12-benzalkonium in comparison with water-only exposure, which is in accordance with the equilibrium partitioning theory. Moreover, the present study demonstrates that commonly used sorbent phases can strongly affect bioavailability and observed effect concentrations for C12-benzalkonium. Even stronger effects of decreased actual exposure concentrations resulting from sorption to test vessels, cells, and sorbent phases can be expected for more hydrophobic cationic surfactants.

  9. Bioavailable metals and cellular effects in the digestive gland of marine limpets living close to shallow water hydrothermal vents.

    PubMed

    Cunha, Luís; Amaral, André; Medeiros, Vera; Martins, Gustavo M; Wallenstein, Francisco F M M; Couto, Ruben P; Neto, Ana I; Rodrigues, Armindo

    2008-04-01

    The pressure exerted by shallow water hydrothermal vents on edible gastropods and their cellular responses triggered by these stresses are almost unknown. The aims of this study were to evaluate the bioavailability of metals in the Macaronesian endemic limpet Patella candei gomesii living close to shallow water hydrothermal vents, and the structural differences in their digestive gland as well as the levels of apoptosis in that organ. Limpets were sampled in four sites, two with the presence of hydrothermalism and the other two without it. Whole body concentrations of several metals (Ca, Cd, Cs, Co, Cu, Fe, Hg, Mg, Mn, Pb, Rb, Se, Sr, and Zn) were obtained, morphometry analysis of the digestive gland and TUNEL test for apoptosis were also performed. Results revealed that the presence of shallow water hydrothermal vents is a source of chronic metal stress to limpets, imposing modifications in the morphometry and cell composition of the digestive gland of those limpets that may constitute cell and tissue adaptations to the environment they live in. This study sets up new baseline data for further research on the influence of shallow water hydrothermal vents over communities living in these habitats.

  10. Conductivity of graphene affected by metal adatoms

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Li, Jing-Tian; Meng, Jian-Wei; Jiang, An-Quan; Zhuang, Jun; Ning, Xi-Jing

    2017-03-01

    It has been a mystery how metal atoms adsorbed on perfect graphene impact the conductivity. We deposited Al, Cu, or Ag atoms onto graphene sheet on SiO2 substrate at room temperature or 573 K by pulsed laser ablation and measured the zero-gate resistance in-situ, showing that the resistance increased suddenly just after each of the deposition pulse and then decayed slowly to an elevated plateau, forming a sequential jagged peaks. Based on the fact that most areas of the graphene sheet are of perfect lattice structure, our calculations via first principles suggest that the resistance peaks result directly from the contribution of metal atoms landed on the perfect regions, and decaying of the peaks corresponds to the clustering process of the metal atoms.

  11. How composting affects heavy metal content

    SciTech Connect

    Canarutto, S.; Petruzzelli, G.; Lubrano, L.; Guidi, G.V.

    1991-06-01

    This paper describes ways in which a properly conducted composting process can alter the chemical forms of heavy metals and consequently the quality of the compost. This process is of particular interest in the Italian policy of waste management due to the low level of organic matter in Italian agricultural soils. Results of the studies show that the proper process of compost maturation seems to increase the concentrations of humic acids with respect to those of fulvic acids. These variations in the quantity and quality of humic substances influence the speciation of heavy metals with a large part of the metals complexed and reaching the soil in a less mobile form. The distribution of copper, cadmium, zinc, nickel, lead and chromium among humic fractions is compared in two composting procedures.

  12. Bioavailability and Chronic Toxicity of Metal Sulfide Minerals to Benthic Marine Invertebrates: Implications for Deep Sea Exploration, Mining and Tailings Disposal.

    PubMed

    Simpson, Stuart L; Spadaro, David A

    2016-04-05

    The exploration and proposed mining of sulfide massive deposits in deep-sea environments and increased use deep-sea tailings placement (DSTP) in coastal zones has highlighted the need to better understand the fate and effects of mine-derived materials in marine environments. Metal sulfide ores contain high concentrations of metal(loid)s, of which a large portion exist in highly mineralized or sulfidised forms and are predicted to exhibit low bioavailability. In this study, sediments were spiked with a range of natural sulfide minerals (including chalcopyrite, chalcocite, galena, sphalerite) to assess the bioavailability and toxicity to benthic invertebrates (bivalve survival and amphipod survival and reproduction). The metal sulfide phases were considerably less bioavailable than metal contaminants introduced to sediment in dissolved forms, or in urban estuarine sediments contaminated with mixtures of metal(loid)s. Compared to total concentrations, the dilute-acid extractable metal(loid) (AEM) concentrations, which are intended to represent the more oxidized and labile forms, were more effective for predicting the toxicity of the sulfide mineral contaminated sediments. The study indicates that sediment quality guidelines based on AEM concentrations provide a useful tool for assessing and monitoring the risk posed by sediments impacted by mine-derived materials in marine environments.

  13. Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas.

    PubMed

    Pietrzykowski, Marcin; Socha, Jarosław; van Doorn, Natalie S

    2014-02-01

    This work deals with bioaccumulation of Zn, Pb, Cu and Cd in foliage of Scots pine, grown on mine soils. Regression models were used to describe relationships between pine elements bioavailability and biological (dehydrogenase activity) and physico-chemical properties of mine soils developed at different parental rocks. Concentration of trace elements in post-mine ecosystems did not differ from data for Scots pine on natural sites. We conclude that, in this part of Europe in afforested areas affected by hard coal, sand, lignite and sulphur mining, there is no risk of trace element concentrations in mine soils. An exception was in the case of Cd in soils on sand quarry and hard coal spoil heap located in the Upper Silesia region, which was more due to industrial pressure and pollutant deposition than the original Cd concentration in parental rocks.

  14. SOIL-DIFFUSIVE GRADIENT IN THIN FILMS PARTITION COEFFICIENTS ESTIMATE METAL BIOAVAILABILITY TO CROPS AT FERTILIZED FIELD SITES

    PubMed Central

    PEREZ, ANGELA L.

    2014-01-01

    Field trials in four distinct agricultural soils were conducted to examine changes to total recoverable and labile soil Cd and Ni concentrations with applications of commercial phosphate fertilizers. The edible portion of wheat and potato crops grown at the field plots were analyzed for recoverable Cd and Ni. Total recoverable Ni and Cd concentrations in agricultural soils increased by 10 and 22%, respectively, each year of the study at recommended application rates. Labile Cd and Ni were measured using diffusive gradients in thin films (DGT), a passive sampling device reported to estimate the plant bioavailable metal fraction. Nickel concentrations measured with DGT did not significantly change with treatment nor did they change over time. Cadmium concentrations measured with DGT increased with application rate and over time from 2003 to 2005, then decreased in 2006. Wheat grain Cd concentrations and Cd and Ni levels in tubers increased significantly with fertilizer treatment level. Grain and tuber Cd values exceeded the minimal risk levels for chronic oral exposure. At agronomical P-fertilizer application rates, 25% of plant samples deviated from the Cd minimal risk levels. The present study reports the use of Kd-BIO, defined as the ratio of total recoverable metal to GT measured metal, as a significant indicator of crop metal accumulation in the edible portion. The Kd-BIO values were well correlated with both grain and tuber concentrations over multiple growing seasons. Results from long-term field trials emphasize Kd-BIO as a dynamic term that provides risk characterization information about the fate of Cd and Ni in aged, fertilized agricultural soils and crops. PMID:19432507

  15. TRACE ELEMENT CHEMISTRY IN RESIDUAL-TREATED SOIL: KEY CONCEPTS AND METAL BIOAVAILABILITY

    EPA Science Inventory

    Trace element solubility and availability in land-applied residuals is governed by fundamental chemical reactions between metal constituents, soil, and residual components. Iron, aluminum, and manganese oxides; organic matter; and phosphates, carbonates, and sulfides are importan...

  16. Direct observation of heavy metal-mineral association from the Clark Fork River Superfund Complex: Implications for metal transport and bioavailability

    NASA Astrophysics Data System (ADS)

    Hochella, Michael F.; Moore, Johnnie N.; Putnis, Christine V.; Putnis, Andrew; Kasama, Takeshi; Eberl, Dennis D.

    2005-04-01

    Two sets of samples from riverbeds and adjacent floodplains, separated by 80 river kilometers, were collected from the Clark Fork River Superfund Complex, Montana, (the largest Superfund site in the United States), and studied primarily with transmission electron microscopy (TEM) with several supporting techniques to determine heavy metal-mineral association. Seven of the eight samples studied were strongly influenced by material that once resided in mining and smelting dumps and impoundments; this material was transported downstream sometime during the last century and a half from the Butte/Anaconda areas. The eighth sample was from a deeper floodplain level and dates to premining days. The TEM observations afford a direct look, down to the nanometer level, at secondary mineral formation as a result of the breakdown of sulfides and silicates in the acid environment of this massive mine-drainage system. In the shallow, oxic floodplain sediments, heavy metals of concern in this system (As, Cu, Pb, and Zn) are taken up by the formation of sulfates (particularly Pb in jarosite), as well as hydrous metal oxides (As, Cu, Pb, and Zn in and on ferrihydrite, and a possibly new vernadite-like mineral). The oxides are long-lived in these systems, as they were also found in the anoxic riverbeds. Metals are also taken up by the formation of sulfides in sulfate-reducing environments as observed in the formation of nanoclusters of chalcopyrite and sphalerite. In all samples, clays make up between 5 and 20% of the sediment and carry significant amounts of Cu and Zn. The hydrous oxides, secondary sulfides, and clays provide several routes for metal transport downstream over long distances. Besides the potential bioavailability of heavy metals exchanged on and off the hydrous metal oxides and clays, nanometer-sized sulfides may also be highly reactive in the presence of biologic systems.

  17. Direct observation of heavy metal-mineral association from the Clark Fork River Superfund Complex: Implications for metal transport and bioavailability

    USGS Publications Warehouse

    Hochella, M.F.; Moore, J.N.; Putnis, C.V.; Putnis, A.; Kasama, T.; Eberl, D.D.

    2005-01-01

    Two sets of samples from riverbeds and adjacent floodplains, separated by 80 river kilometers, were collected from the Clark Fork River Superfund Complex, Montana, (the largest Superfund site in the United States), and studied primarily with transmission electron microscopy (TEM) with several supporting techniques to determine heavy metal-mineral association. Seven of the eight samples studied were strongly influenced by material that once resided in mining and smelting dumps and impoundments; this material was transported downstream sometime during the last century and a half from the Butte/Anaconda areas. The eighth sample was from a deeper floodplain level and dates to premining days. The TEM observations afford a direct look, down to the nanometer level, at secondary mineral formation as a result of the breakdown of sulfides and silicates in the acid environment of this massive mine-drainage system. In the shallow, oxic floodplain sediments, heavy metals of concern in this system (As, Cu, Pb, and Zn) are taken up by the formation of sulfates (particularly Pb in jarosite), as well as hydrous metal oxides (As, Cu, Pb, and Zn in and on ferrihydrite, and a possibly new vernadite-like mineral). The oxides are long-lived in these systems, as they were also found in the anoxic riverbeds. Metals are also taken up by the formation of sulfides in sulfate-reducing environments as observed in the formation of nanoclusters of chalcopyrite and sphalerite. In all samples, clays make up between 5 and 20% of the sediment and carry significant amounts of Cu and Zn. The hydrous oxides, secondary sulfides, and clays provide several routes for metal transport downstream over long distances. Besides the potential bioavailability of heavy metals exchanged on and off the hydrous metal oxides and clays, nanometer-sized sulfides may also be highly reactive in the presence of biologic systems. Copyright ?? 2005 Elsevier Ltd.

  18. Bioavailability and assessment of heavy metal pollution in sediment cores off the Mejerda River Delta (Gulf of Tunis): How useful is a multiproxy approach?

    PubMed

    Helali, Mohamed Amine; Oueslati, Walid; Zaaboub, Noureddine; Added, Ayed; Aleya, Lotfi

    2016-04-15

    Three core samples were taken from zones offshore from the Mejerda River Delta (Tunisia) and analyzed for major and trace elements to assess their relationships with organic matter, monosulfides and carbonates, as well as for pollution and bioavailability. Chemical speciation, ∑ SEM/AVS, the enrichment factor (EF) and the geo-accumulation index (I-geo) were used. Iron, cadmium, lead and zinc - the most frequently mined metals in the Mejerda catchment - were found as contaminants in the offshore areas. Estimations of trace element accumulation using the EF and the I-geo index show that lead, and to a lesser extent zinc, are the most polluting metals off the Mejerda outlet. According to their bioavailability, these metals are also the most toxic. Only cadmium is heavily present in delta sediment (EF>100) though deeply sequestrated (100% bound to the residual fraction) and thus presents no toxicity.

  19. Trace metal speciation and bioavailability in surface waters of the Black Sea coastal area evaluated by HF-PLM and DGT.

    PubMed

    Slaveykova, Vera I; Karadjova, Irina B; Karadjov, Metody; Tsalev, Dimiter L

    2009-03-15

    Trace metal speciation in seawater from the Bulgarian Black Sea coast was studied in situ by hollow fiber permeation liquid membrane (HF-PLM) and by diffusion gradients in thin-film gels (DGT). The concentrations of Cd, Cu, Ni, and Pb determined by HF-PLM were lower than those measured by DGT, in agreement with their analytical windows, e.g., free metal ions provided by the HF-PLM and dynamic (mobile and labile) species by the DGT. The obtained suite of data was further used to evaluate the bioavailability of these metals to the microorganisms, which was then compared with experimental results of metal uptake to green microalga Chlorella salina. Uptake fluxes of the Cd, Cu, Ni, and Pb to C. salina, were predicted from the measured HF-PLM concentrations and laboratory experimentation in artificial seawater, in agreement with theoretical considerations. The HF-PLM and DGT appear to be promising analytical techniques for speciation and bioavailability studies in complex environmental media and allow improved understanding of the role of different chemical species in metal bioavailability (and impact) in seawaters.

  20. Mechanisms of Divalent Metal Toxicity in Affective Disorders

    PubMed Central

    Menon, Archita Venugopal; Chang, JuOae; Kim, Jonghan

    2016-01-01

    Metals are required for proper brain development and play an important role in a number of neurobiological functions. The Divalent Metal Transporter 1 (DMT1) is a major metal transporter involved in the absorption and metabolism of several essential metals like iron and manganese. However, non-essential divalent metals are also transported through this transporter. Therefore, altered expression of DMT1 can modify the absorption of toxic metals and metal-induced toxicity. An accumulating body of evidence has suggested that increased metal stores in the brain are associated with elevated oxidative stress mediated by the ability of metals to catalyze redox reactions, resulting in abnormal neurobehavioral function and the progression of neurodegenerative diseases. Metal overload has also been implicated in impaired emotional behavior, although the underlying mechanisms are not well understood with limited information. The current review focuses on psychiatric dysfunction associated with imbalanced metabolism of metals that are transported by DMT1. The investigations with respect to the toxic effects of metal overload on behavior and their underlying mechanisms of toxicity could provide several new therapeutic targets to treat metal-associated affective disorders. PMID:26551072

  1. Aging Negatively Affects Estrogens-Mediated Effects on Nitric Oxide Bioavailability by Shifting ERα/ERβ Balance in Female Mice

    PubMed Central

    Novensà, Laura; Novella, Susana; Medina, Pascual; Segarra, Gloria; Castillo, Nadia; Heras, Magda; Hermenegildo, Carlos; Dantas, Ana Paula

    2011-01-01

    Aims Aging is among the major causes for the lack of cardiovascular protection by estrogen (E2) during postmenopause. Our study aims to determine the mechanisms whereby aging changes E2 effects on nitric oxide (NO) production in a mouse model of accelerated senescence (SAM). Methods and Results Although we found no differences on NO production in females SAM prone (SAMP, aged) compared to SAM resistant (SAMR, young), by either DAF-2 fluorescence or plasmatic nitrite/nitrate (NO2/NO3), in both cases, E2 treatment increased NO production in SAMR but had no effect in SAMP. Those results are in agreement with changes of eNOS protein and gene expression. E2 up-regulated eNOS expression in SAMR but not in SAMP. E2 is also known to increase NO by decreasing its catabolism by superoxide anion (O2-). Interestingly, E2 treatment decreased O2− production in young females, while increased O2− in aged ones. Furthermore, we observed that aging changed expression ratio of estrogen receptors (ERβ/ERα) and levels of DNA methylation. Increased ratio ERβ/ERα in aged females is associated to a lack of estrogen modulation of NO production and with a reversal in its antioxidant effect to a pro-oxidant profile. Conclusions Together, our data suggest that aging has detrimental effects on E2-mediated benefits on NO bioavailability, partially by affecting the ability of E2 to induce up regulation of eNOS and decrease of O2−. These modifications may be associated to aging-mediated modifications on global DNA methylation status, but not to a specific methylation at 5′flanking region of ERα gene. PMID:21966501

  2. Measuring bioavailable copper using anodic stripping voltammetry

    SciTech Connect

    Deaver, E.; Rodgers, J.H. Jr.

    1996-11-01

    Since speciation can affect bioavailability and toxicity of copper in aquatic systems, accurate predictions of effects of bioavailable forms require detection and/or measurement of these forms. To develop an approach for measurement of bioavailable copper, a copper sulfate solution was used in 10-d aqueous and sediment toxicity tests with Hyalella azteca Saussure. These tests encompassed ranges of pH, alkalinity, hardness, and conductivity. Changes in copper speciation were measured using atomic absorption spectroscopy (AA) for dissolved copper and differential pulse anodic stripping voltammetry (DPASV) for labile copper, and concentrations were evaluated relative to amphipod survival. Ten-day LC50s based on AA-measured aqueous copper concentrations ranged from 42 to 142 {micro}g Cu/L, and LC50s based on DPASV-measured copper concentrations ranged from 17.4 to 24.8 {micro}g Cu/L. In 10-d tests using copper-amended sediments with diverse characteristics and AA-measured copper concentrations spanning an order of magnitude, total copper concentrations were not predictive of sediment toxicity, but H. azteca survival was explained by DPASV measurements that varied by {le}4%. In order to make defensible estimates of the potential risk of metals in sediments or water, it is essential to identify the fraction of total metal that is bioavailable. In these experiments, DPASV was useful for measuring bioavailable copper in aqueous and sediment tests with H. azteca.

  3. Heavy metal accumulation in the mole, Talpa europea, and earthworms as an indicator of metal bioavailability in terrestrial environments

    SciTech Connect

    Ma, W.

    1987-12-01

    Bioaccumulation studies in animals can supply valuable information to supplement the data obtained by chemical analysis of pollutants in abiotic samples. With respect to the terrestrial ecosystem, suitable indicator species in the decomposer subsystem can be identified on the basis of functional characteristics and trophic level. Investigations on metal behavior at the first trophic level, done in lumbricid earthworms showed that the potential for bioaccumulation depends on the degree of contamination as well as on the metal-binding capacity of the soil. The present study was performed to investigate metal behavior at a higher trophic level, and the mole (Talpa europea) was chosen a representative of the terrestrial decomposer subsystem. As earthworms are the preferred food of moles, they provide the major source of ingested metals to these animals. The food chain involving earthworms and moles provides an example of a critical pathway for potentially toxic non-essential metals such as cadmium and lead.

  4. Ecological risk assessment of boreal sediments affected by metal mining: Metal geochemistry, seasonality, and comparison of several risk assessment methods.

    PubMed

    Väänänen, Kristiina; Kauppila, Tommi; Mäkinen, Jari; Leppänen, Matti T; Lyytikäinen, Merja; Akkanen, Jarkko

    2016-10-01

    The mining industry is a common source of environmental metal emissions, which cause long-lasting effects in aquatic ecosystems. Metal risk assessment is challenging due to variations in metal distribution, speciation, and bioavailability. Therefore, seasonal effects must be better understood, especially in boreal regions in which seasonal changes are large. We sampled 4 Finnish lakes and sediments affected by mining for metals and geochemical characteristics in autumn and late winter, to evaluate seasonal changes in metal behavior, the importance of seasonality in risk assessment, and the sensitivity and suitability of different risk assessment methods. We compared metal concentrations in sediment, overlying water, and porewater against environmental quality guidelines (EQGs). We also evaluated the toxicity of metal mixtures using simultaneously extracted metals and an acid volatile sulfides (SEM-AVS) approach together with water quality criteria (US Environmental Protection Agency equilibrium partitioning benchmarks). Finally, site-specific risks for 3 metals (Cu, Ni, Zn) were assessed using 2 biotic ligand models (BLMs). The metal concentrations in the impacted lakes were elevated. During winter stratification, the hypolimnetic O2 saturation levels were low (<6%) and the pH was acidic (3.5-6.5); however, abundant O2 (>89%) and neutral pH (6.1-7.5) were found after the autumnal water overturn. Guidelines were the most conservative benchmark for showing an increased risk of toxicity in the all of the lakes. The situation remained stable between seasons. On the other hand, SEM-AVS, equilibrium partition sediment benchmarks (ESBs), and BLMs provided a clearer distinction between lakes and revealed a seasonal variation in risk among some of the lakes, which evidenced a higher risk during late winter. If a sediment risk assessment is based on the situation in the autumn, the overall risk may be underestimated. It is advisable to carry out sampling and risk assessment

  5. Freshwater molluscs as indicators of bioavailability and toxicity of metals in surface-water systems

    USGS Publications Warehouse

    Elder, John F.; Collins, Jerilyn J.; Ware, George W.

    1991-01-01

    During the past several decades, studies from a variety of locations have demonstrated widespread occurrence of metals in surface waters at concentrations significantly higher than background levels. Elevated concentrations are not limited to certain water types or polluted areas; they appear in all types of systems and in all geographic areas. It is clear that metals enter the aquatic systems from diverse sources, both point and nonpoint, and they can be readily transported from one system to another. Transport routes include atmospheric, terrestrial, subterranean, aquatic, and biological pathways (Elder 1988; Salomons and Forstner 1984).

  6. Partitioning, bioavailability and origin of heavy metals from the Nador Lagoon sediments (Morocco) as a basis for their management

    NASA Astrophysics Data System (ADS)

    González, I.; Águila, E.; Galán, E.

    2007-08-01

    Nador Lagoon sediments show low trace element concentrations, and, in relation to the lagoon geochemical baseline, only some anomalies for As, Cd, Cu and Pb in the NW of the lagoon deserve to be outstanding. The distribution of major, minor and trace elements in the lagoon allows a breakdown in four zones. Between “Beni Ensar” and “Atelouane” (zone A), a quite confined zone rich in organic matter and S, the most important trace-element anomalies (As, Cd, Co, Cu, Mn, Pb, Zn) were found, mainly around industry and old mining activities. In the surrounding of the city of Nador (zone B), the anomalies correspond to Mn, Cu and Zn. The coastal barrier and Kebdana channel (zone C) show moderately concentrations of Cd, Cr and Ni at specific sites. The less polluted area is the SE of the lagoon (zone D), with no outstanding anomaly. In lagoon sediments, metal bioavailability is very low. The metal partitioning patterns show that Cu, Pb and Zn present a low availability because they are bounded to the residual, non-mobile phases of the sediments. Only in some sites, the fraction was associated with organic matter, which could be liberated easily. Arsenic is concentrated in both the residual phases and the organic matter, the latter being more available. Cadmium is mainly concentrated in some samples in the interchangeable fraction, which could be considered as a potentially toxic element because it is easily released. Concerning the origin of these trace elements, those found in zone A correspond mostly to a natural source by weathering of mount Gourougou volcanic rocks (As, Co, Cu, Pb and Zn), and to an anthropogenic origin (Cd) owing to the presence of industry and old mines. In zone B, contributions of Cu and Zn enter the lagoon through soil weathering and river-borne, and as anthropogenic pollution from urban wastes. In zone C the most important pollutant is Cd deduced to be of anthropogenic origin from the close industry and intensive agriculture area. In spite

  7. Metal bioavailability and toxicity to fish in low-alkalinity lakes - a critical-review

    USGS Publications Warehouse

    Spry, D.J.; Wiener, J.G.

    1991-01-01

    Fish in low-alkalinity lakes having ph of 6.0-6.5 Or less often have higher body or tissue burdens of mercury, cadmium, and lead than do fish in nearby lakes with higher ph. The greater bioaccumulation of these metals in such waters seems to result partly from the greater aqueous abundances of biologically available forms (ch3hg+, cd2+, and pb2+) at low ph. In addition, the low concentrations of aqueous calcium in low-alkalinity lakes increase the permeability of biological membranes to these metals, which in fish may cause greater uptake from both water and food. Fish exposed to aqueous inorganic aluminum in the laboratory and field accumulate the metal in and on the epithelial cells of the gills; however, there is little accumulation of aluminum in the blood or internal organs. In low-ph water, both sublethal and lethal toxicity of aluminum has been clearly demonstrated in both laboratory and field studies at environmental concentrations. In contrast, recently measured aqueous concentrations of total mercury, methylmercury, cadmium, and lead in low-alkalinity lakes are much lower than the aqueous concentrations known to cause acute or chronic toxicity in fish, although the vast majority of toxicological research has involved waters with much higher ionic strength than that in low-alkalinity lakes. Additional work with fish is needed to better assess (1) the toxicity of aqueous metals in low-alkalinity waters, and (2) the toxicological significance of dietary methylmercury and cadmium.

  8. Assessing the bioavailability and risk from metal contaminated soils and dusts#

    EPA Science Inventory

    Exposure to contaminated soil and dust is an important pathway in human and ecological risk assessment and often is the "risk-driver" for metal contaminated soil. Site-specific soil physical and chemical characteristics, as well as biological factors, determine the bioavailabilit...

  9. Soil Amendments to Reduce Bioavailability of Metals in Soils: Experimental Studies and Spectroscopic Verification

    DTIC Science & Technology

    2008-07-01

    1979). However, slow kinetics of reaction and low total Cd concentrations in soil often prevent otavite formation. Cation exchange and adsorption...copepod Tigriopus brevicornis (Muller) exposed to the metals arsenic and cadmium and the pesticides atrazine, carbofuran, dichlorvos, and malathion ...1253. Piotrowski, K., K. Mondal, T. Wiltowski, P. Dydo, and G. Rizeg. 2007. Topochemical approach of kinetics of the reduction to hematite to

  10. The effects of ocean acidification and a carbon dioxide capture and storage leak on the early life stages of the marine mussel Perna perna (Linneaus, 1758) and metal bioavailability.

    PubMed

    Szalaj, D; De Orte, M R; Goulding, T A; Medeiros, I D; DelValls, T A; Cesar, A

    2017-01-01

    The study assesses the effects of carbon dioxide capture and storage (CCS) leaks and ocean acidification (OA) on the metal bioavailability and reproduction of the mytilid Perna perna. In laboratory-scale experiments, CCS leakage scenarios (pH 7.0, 6.5, 6.0) and one OA (pH 7.6) scenario were tested using metal-contaminated sediment elutriates and seawater from Santos Bay. The OA treatment did not have an effect on fertilisation, while significant effects were observed in larval-development bioassays where only 16 to 27 % of larva developed normally. In treatments that simulated CO2 leaks, when compared with control, fertilisation success gradually decreased and no larva developed to the D-shaped stage. A fall in pH increased the bioavailability of metals to marine mussels. Larva shell size was significantly affected by both elutriates when compared with seawater; moreover, a significant difference occurred at pH 6.5 between elutriates in the fertilisation bioassay.

  11. Distribution of pesticides, PAHs, PCBs, and bioavailable metals in depositional sediments of the lower Missouri River, USA

    USGS Publications Warehouse

    Echols, K.R.; Brumbaugh, W.G.; Orazio, C.E.; May, T.W.; Poulton, B.C.; Peterman, P.H.

    2008-01-01

    The lower Missouri River was studied to determine the distribution of selected persistent organic pollutants and bioavailable metals in depositional sediments. Nineteen sites between Omaha, Nebraska and Jefferson City, Missouri were sampled. This stretch of the river receives point-source and non-point-source inputs from industrial, urban, and agricultural activities. As part of an ecological assessment of the river, concentrations of 29 legacy organochlorine pesticides (OC pesticides), including chlordanes, DDTs, and hexachlorocyclohexanes; a select list of current-use pesticides, including trifluralin, diazinon, chlorpyrifos, and permethrin, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), divalent metals (copper, nickel, zinc, cadmium, and lead), and polybrominated diphenyl ethers (PBDEs) were determined. Concentrations (dry weight basis) of OC pesticides in the sediments were less than 1 ng/g, with the exception of the backwater sediment collected from the mouth of the Blue River in the Kansas City metropolitan area, which contained up to 20 ng/g total chlordane, 8.1 ng/g p,p???-DDE, 1.5 ng/g lindane, 4.8 ng/g dieldrin, and 3 ng/g endrin. Concentrations of chlorpyrifos and permethrin ranged from less than 1 ng/g to 5.5 ng/g and 44 ng/g, respectively. Concentrations of PCBs ranged from less than 11 ng/g to 250 ng/g, with the Blue River and Sibley sediments containing 100 and 250 ng/g total PCBs, respectively. Concentrations of total PAHs at 17 of the 19 sites ranged from 250 to 700 ng/g, whereas the Riverfront and Blue River sites in Kansas City contained 1100 ng/g and nearly 4000 ng/g, respectively. Concentrations of the metals did not vary significantly among most sites; however, the Blue River site contained elevated concentrations of zinc (104 ??g/g), cadmium (0.7 ??g/g), and lead (34 ??g/g) compared to the other sites. The moderately high concentrations of acid-volatile sulfide in the sediments suggest a low potential for metal

  12. Bioavailable metals in tourist beaches of Richards Bay, Kwazulu-Natal, South Africa.

    PubMed

    Vetrimurugan, E; Jonathan, M P; Roy, Priyadarsi D; Shruti, V C; Ndwandwe, O M

    2016-04-15

    Acid Leachable Trace Metal (ALTMs) concentrations in tourist beaches of Richards Bay, Kwazulu-Natal, South Africa were assessed. 53 surface sediment samples were collected from five different beaches (Kwambonambi Long Beach; Nhlabane Beach; Five Mile Beach; Alkanstrand Beach and Port Durnford Beach). The results of ALTMs (Fe, Mn, Cr, Cu, Ni, Co, Pb, Cd, Zn, As, Hg) suggest that they are enriched naturally and with some local industrial sources for (avg. in μgg(-1)) Fe (3530-7219), Mn (46-107.11), Cd (0.43-1.00) and Zn (48-103.98). Statistical results indicate that metal concentrations were from natural origin attributed to leaching, weathering process and industrial sources. Comparative studies of metal concentrations with sediment quality guidelines and ecotoxicological values indicate that there is no adverse biological effect. Enrichment factor and geoaccumulation indices results indicate moderate enhancement of Fe (Igeo class 1 in FMB), Cd (EF>50; Igeo classes 2-4) and Zn (Igeo classes 1 & 2).

  13. Bioanalytical effect-balance model to determine the bioavailability of organic contaminants in sediments affected by black and natural carbon.

    PubMed

    Bräunig, Jennifer; Tang, Janet Y M; Warne, Michael St J; Escher, Beate I

    2016-08-01

    In sediments several binding phases dictate the fate and bioavailability of organic contaminants. Black carbon (BC) has a high sorptive capacity for organic contaminants and can limit their bioavailability, while the fraction bound to organic carbon (OC) is considered to be readily desorbable and bioavailable. We investigated the bioavailability and mixture toxicity of sediment-associated contaminants by combining different extraction techniques with in vitro bioanalytical tools. Sediments from a harbour with high fraction of BC, and sediments from remote, agricultural and urban areas with lower BC were treated with exhaustive solvent extraction, Tenax extraction and passive sampling to estimate total, bioaccessible and bioavailable fractions, respectively. The extracts were characterized with cell-based bioassays that measure dioxin-like activity (AhR-CAFLUX) and the adaptive stress response to oxidative stress (AREc32). Resulting bioanalytical equivalents, which are effect-scaled concentrations, were applied in an effect-balance model, consistent with a mass balance-partitioning model for single chemicals. Sediments containing BC had most of the bioactivity associated to the BC fraction, while the OC fraction played a role for sediments with lower BC. As effect-based sediment-water distribution ratios demonstrated, most of the bioactivity in the AhR-CAFLUX was attributable to hydrophobic chemicals while more hydrophilic chemicals activated AREc32, even though bioanalytical equivalents in the aqueous phase remained negligible. This approach can be used to understand the fate and effects of mixtures of diverse organic contaminants in sediments that would not be possible if single chemicals were targeted by chemical analysis; and make informed risk-based decisions concerning the management of contaminated sediments.

  14. Encaged Chironomus riparius larvae in assessment of trace metal bioavailability and transfer in a landfill leachate collection pond.

    PubMed

    Gimbert, Frédéric; Petitjean, Quentin; Al-Ashoor, Ahmed; Cretenet, Céline; Aleya, Lotfi

    2017-01-09

    Household wastes may constitute a vector of environmental contamination when buried, in particular through degradation and production of leachates containing significant trace metal (TM) concentrations that may constitute a serious risk to biota. The objectives of this study were to assess the bioavailability and transfer potential of various TMs present in water and sediments in a reservoir receiving landfill leachates. An active biomonitoring approach was adopted consisting of exposing naive laboratory organisms in cages deployed in the field. Aquatic insects such as Chironomus riparius larvae are good candidates since they represent key organisms in the trophic functioning of aquatic ecosystems. The results show that water, suspended particles, and sediments were significantly contaminated by various TMs (As, Cd, Cu, Ni, Pb, and Zn). Their contribution to the transfer of TMs depends, however, on the specific element considered, e.g., Cd in sediments or Pb in both suspended particles and sediments. The internal fate of TMs was investigated according to their fractionation between an insoluble and a cytosolic fraction. This approach revealed different detoxification strategies capable of preventing the induction of deleterious effects at the individual scale. However, the accumulation of several TMs in C. riparius larvae tissues may also represent a significant load potentially transferable to higher trophic levels.

  15. Bioavailability of metals and toxicity identification of the sediment pore waters from Plow Shop Pond, Fort Devens, Massachusetts

    SciTech Connect

    Jop, K.; Putt, A.; Shepherd, S.; Askew, A.; Bleiler, J.; Reed, S.; George, C.

    1995-12-31

    Plow Shop Pond is a shallow, 30-acre pond located at Fort Devens, Massachusetts. An ecological risk assessment was conducted at Plow Shop Pond as part of a remedial investigation. Preliminary analysis revealed high concentrations of arsenic, copper, chromium, lead, and mercury in the sediment. Therefore, a laboratory testing program was incorporated into this investigation to assess the toxicity of sediments to aquatic organisms. The screening testing program included short-term chronic exposure of Ceriodaphnia dubia to pore waters, 10-day exposures of Chironomus tentans and Hyalella azteca to bulk sediments and a bioaccumulation study with Lumbriculus variegatus. Survival and reproduction of C. dubia, growth of amphipods and reproduction of oligochaetes appeared to indicate sediment toxicity at some sites within the pond. Although high concentrations of arsenic, copper, mercury and lead were detected in the whole sediments and pore waters, the response could not be correlated to a particular element. Also, relatively low bioaccumulation of methyl mercury and high uptake of inorganic mercury was established for three sediment samples. To characterize and identify the source of toxicity, a toxicity identification evaluation program using sediments collected at several locations was performed. The pore water from these samples was used for fractionation coupled with a 10-day test using H. azteca. Survival and growth were evaluated as endpoints during the exposures. Partitioning of metals and their bioavailability was influenced primarily by organic carbon and AVS concentration. At least two constituents were responsible for the toxicity.

  16. Assessment of trace metals contamination level, bioavailability and toxicity in sediments from Dakar coast and Saint Louis estuary in Senegal, West Africa.

    PubMed

    Diop, Cheikh; Dewaelé, Dorothée; Cazier, Fabrice; Diouf, Amadou; Ouddane, Baghdad

    2015-11-01

    Trace metals have the potential to associate with sediments that have been recognised as significant source of contamination for the benthic environment. The current study aims assessing the trace metals contamination level in sediments from Dakar coast and Saint Louis estuary, and to examine their bioavailability to predict potential toxicity of sediments. Surface sediment samples were collected between June 2012 and January 2013 in three sampling periods from eight stations. Trace metals were analysed using inductively coupled plasma-optical emission spectrometer. Geoaccumulation indexes (Igeo) showed strong pollution by Cd, Cr, Cu and Pb confirmed by enrichment factor (EF) suggesting that these metals derived from anthropogenic sources. Toxicity indexes exceeded one in several sites suggesting the potential effects on sediment-dwelling organisms, which may constitute a risk to populations' health. However, seasonal variability of metal bioavailability was noted, revealing the best period to monitor metal contamination. From an ecotoxicological point of view, concentrations of Cd, Cr, Cu and Pb were above the effects range low threshold limit of the sediment quality guidelines for adverse biological effects. In addition, with Pb concentrations above the effect range medium values in some sites, biological effects may occur.

  17. Iron concentration, bioavailability, and nutritional quality of polished rice affected by different forms of foliar iron fertilizer.

    PubMed

    He, Wanling; Shohag, M J I; Wei, Yanyan; Feng, Ying; Yang, Xiaoe

    2013-12-15

    The present study compared the effects of four different forms of foliar iron (Fe) fertilizers on Fe concentration, bioavailability and nutritional quality of polished rice. The results showed that foliar fertilisation at the anthesis stage was an effective way to promote Fe concentration and bioavailability of polished rice, especially in case of DTPA-Fe. Compared to the control, foliar application of DTPA-Fe increased sulphur concentration and the nutrition promoter cysteine content, whereas decreased phosphorus concentration and the antinutrient phytic acid content of polished rice, as a result increased 67.2% ferrtin formation in Caco-2 cell. Moreover, foliar DTPA-Fe application could maintain amylase, protein and minerals quality of polished rice. According to the current study, DTPA-Fe is recommended as an excellent foliar Fe form for Fe biofortification program.

  18. Toxicity and bioavailability of metals in the Missouri River adjacent to a lead refinery

    USGS Publications Warehouse

    Chapman, Duane C.; Allert, Ann L.; Fairchild, James F.; May, Thomas W.; Schmitt, Christopher J.; Callahan, Edward V.

    2001-01-01

    This study is an evaluation of the potential environmental impacts of contaminated groundwater from the ASARCO metals refining facility adjacent to the Missouri River in Omaha, Nebraska. Surface waters, sediments, and sediment pore waters were collected from the Burt-Izard drain, which transects the facility, and from the Missouri River adjacent to the facility. Groundwater was also collected from the facility. Waters and sediments were analyzed for inorganic contaminants, and the toxicity of the waters was evaluated with the Ceriodaphnia dubia 7-day test. Concentrations of several elemental contaminants were highly elevated in the groundwater, but not in river sediment pore waters. Lead concentrations were moderately elevated in whole sediment at one site, but lead concentrations in pore waters were low due to apparent sequestration by acid-volatile sulfides. The groundwater sample was highly toxic to C. dubia, causing 100% mortality. Even at the lowest groundwater concentration tested (6.25%) C. dubia survival was reduced; however, at that concentration, reproduction was not significantly different from upstream porewater reference samples. Sediment pore waters were not toxic, except reproduction in pore water collected from one downstream site was somewhat reduced. The decrease in reproduction could not be attributed to measured elemental contaminants.

  19. Metals in benthic macrofauna and biogeochemical factors affecting their trophic transfer to wild fish around fish farm cages.

    PubMed

    Kalantzi, I; Papageorgiou, N; Sevastou, K; Black, K D; Pergantis, S A; Karakassis, I

    2014-02-01

    Benthic macroinvertebrates and wild fish aggregating in the vicinity of four Mediterranean fish farms were sampled. Concentrations of metals and other elements were measured in macrofaunal taxa and in fish tissues (muscle, liver, gills, bone, gonad, stomach, intestine, and stomach content). Biological and geochemical characteristics play an important role in metal accumulation in benthic invertebrates, and consequently in metal transfer to higher trophic levels. Macroinvertebrates accumulated lower concentrations of most metals and elements than their respective sediment, except As, P, Na, Zn and Cd. Elemental concentrations of benthic organisms increased with increasing sediment metal content, except Cd, and with % silt, refractory organic matter and chlorophyll-a of sediment due to the influence of sediment geochemistry on metal bioavailability. Tolerant species were found to accumulate higher concentrations of most metals and elements, except for Cd, than equilibrium species. The ecological and morphological characteristics of the benthic invertebrates can affect the bioaccumulation of metals and elements in macrobenthos. Hg and P were found to increase their concentrations from zoobenthos to wild fish aggregating around fish cages feeding on macrofauna.

  20. Development and validation of a metal mixture bioavailability model (MMBM) to predict chronic toxicity of Ni-Zn-Pb mixtures to Ceriodaphnia dubia.

    PubMed

    Nys, Charlotte; Janssen, Colin R; De Schamphelaere, Karel A C

    2017-01-01

    Recently, several bioavailability-based models have been shown to predict acute metal mixture toxicity with reasonable accuracy. However, the application of such models to chronic mixture toxicity is less well established. Therefore, we developed in the present study a chronic metal mixture bioavailability model (MMBM) by combining the existing chronic daphnid bioavailability models for Ni, Zn, and Pb with the independent action (IA) model, assuming strict non-interaction between the metals for binding at the metal-specific biotic ligand sites. To evaluate the predictive capacity of the MMBM, chronic (7d) reproductive toxicity of Ni-Zn-Pb mixtures to Ceriodaphnia dubia was investigated in four different natural waters (pH range: 7-8; Ca range: 1-2 mM; Dissolved Organic Carbon range: 5-12 mg/L). In each water, mixture toxicity was investigated at equitoxic metal concentration ratios as well as at environmental (i.e. realistic) metal concentration ratios. Statistical analysis of mixture effects revealed that observed interactive effects depended on the metal concentration ratio investigated when evaluated relative to the concentration addition (CA) model, but not when evaluated relative to the IA model. This indicates that interactive effects observed in an equitoxic experimental design cannot always be simply extrapolated to environmentally realistic exposure situations. Generally, the IA model predicted Ni-Zn-Pb mixture toxicity more accurately than the CA model. Overall, the MMBM predicted Ni-Zn-Pb mixture toxicity (expressed as % reproductive inhibition relative to a control) in 85% of the treatments with less than 20% error. Moreover, the MMBM predicted chronic toxicity of the ternary Ni-Zn-Pb mixture at least equally accurately as the toxicity of the individual metal treatments (RMSEMix = 16; RMSEZn only = 18; RMSENi only = 17; RMSEPb only = 23). Based on the present study, we believe MMBMs can be a promising tool to account for the effects of water

  1. Measuring bioavailable metals using diffusive gradients in thin films (DGT) and transplanted seaweed (Fucus vesiculosus), blue mussels (Mytilus edulis) and sea snails (Littorina saxatilis) suspended from monitoring buoys near a former lead-zinc mine in West Greenland.

    PubMed

    Søndergaard, Jens; Bach, Lis; Gustavson, Kim

    2014-01-15

    Measuring loads of bioavailable metals is important for environmental assessment near mines and other industrial sources. In this study, a setup of monitoring buoys was tested to assess loads of bioavailable metals near a former Pb-Zn mine in West Greenland using transplanted seaweed, mussels and sea snails. In addition, passive DGT samplers were installed. After a 9-day deployment period, concentrations of especially Pb, Zn and Fe in the species were all markedly elevated at the monitoring sites closest to the mine. Lead concentrations in all three species and the DGT-Pb results showed a significant linear correlation. Zinc and Fe concentrations were less correlated indicating that the mechanisms for Zn and Fe accumulation in the three species are more complex. The results show that there is still a significant load of metals from the mine and that such buoys can be an adequate method to assess present loads of bioavailable metals.

  2. Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass.

    PubMed

    Munier-Lamy, C; Deneux-Mustin, S; Mustin, C; Merlet, D; Berthelin, J; Leyval, C

    2007-01-01

    The aim of this study was to investigate the influence of plant species, especially of their rhizosphere soil, and of inoculation with an arbuscular mycorrhizal (AM) fungus on the bioavailability of selenium and its transfer in soil-plant systems. A pot experiment was performed with a loamy clay soil and four plant species: maize, lettuce, radish and ryegrass, the last one being inoculated or not with an arbuscular mycorrhizal fungus (Glomus mosseae). Plant biomass and Se concentration in shoots and roots were estimated at harvest. Se bioavailability in rhizosphere and unplanted soil was evaluated using sequential extractions. Plant biomass and selenium uptake varied with plant species. The quantity of rhizosphere soil also differed between plants and was not proportional to plant biomass. The highest plant biomass, Se concentration in plants, and soil to plant transfer factor were obtained with radish. The lowest Se transfer factors were obtained with ryegrass. For the latter, mycorrhizal inoculation did not significantly affect plant growth, but reduced selenium transfer from soil to plant by 30%. In unplanted soil after 65 days aging, more than 90% of added Se was water-extractable. On the contrary, Se concentration in water extracts of rhizosphere soil represented less than 1% and 20% of added Se for ryegrass and maize, respectively. No correlation was found between the water-extractable fraction and Se concentration in plants. The speciation of selenium in the water extracts indicated that selenate was reduced, may be under organic forms, in the rhizosphere soil.

  3. The role of acid-volatile sulfide and interstitial water metal concentrations in determining bioavailability of cadmium and nickel from contaminated sediments to the marine polychaete Neanthes arenaceodentata

    SciTech Connect

    Pesch, C.E.; Hansen, D.J.; Boothman, W.S. . Environmental Research Lab.); Berry, W.J. ); Mahony, J.D. . Chemistry Dept.)

    1995-01-01

    This study investigated the influence of acid-volatile sulfide (AVS) and interstitial water (IW) metal concentrations on bioavailability and toxicity of Cd and Ni to an infaunal sediment-ingesting marine worm, Neanthes Arenaceodentata. Ten-d exposures were conducted with sediments, contaminated primarily with Cd and Ni, from Foundry Cove (Hudson River, NY), and with uncontaminated sediments spiked with Cd or Ni. Molar ratios of simultaneously extracted metal (SEM)/AVS ranged from < 0.02 to 44 for Cd-spiked, 0.02 to 241 for Ni-spiked, and <0.06 to 125 for Foundry Cove sediments. In all experiments, significant mortality was not observed when SEM/AVS ratios were <1.0 and interstitial water toxic units (IWTU) were <1.0. In the Cd and Ni-spiked experiments, when SEM/AVS ratios or IWTUs were >1.0, sediments were either lethal or worms did not burrow. Mortality of worms in Foundry Cove sediments was [le] 20%, and worms burrowed in all these sediments. However, IW contained <1.0 TU (Ni + Cd) in all Foundry Cove sediments except one (IWTU = 1.69). Metal concentrations in worms generally increased with increases in sediment metal concentration, SEM/AVS molar ratio, and IW metal concentration. The presence of metal in worms from sediments from SEM/AVS ratios <1.0 may be evidence of release of Cd or Ni from oxidized metal sulfide (a result of burrowing), uptake of metal from ingested sediment, or adsorption to body surfaces. These results support the hypothesis that when the concentration of AVS in sediments exceeds that of divalent metals sediments will not be acutely toxic. However, a greater number of sediments was correctly predicted to be nontoxic when interstitial water metal concentration of <1.0 TU was used.

  4. Integrating hierarchical bioavailability and population distribution into potential eco-risk assessment of heavy metals in road dust: A case study in Xiandao District, Changsha city, China.

    PubMed

    Huang, Jinhui; Li, Fei; Zeng, Guangming; Liu, Wenchu; Huang, Xiaolong; Xiao, Zhihua; Wu, Haipeng; Gu, Yanling; Li, Xue; He, Xiaoxiao; He, Yan

    2016-01-15

    Modified eco-risk assessment method (MEAM) integrated with the hierarchical bioavailability determined by the fraction detection of Cd, Pb, Zn, Cu, Cr in road dust samples and the local population distribution derived from the local land use map, was proposed to make the hierarchical eco-risk management strategy in Xiandao District (XDD), China. The geo-accumulation index (Igeo), the original potential eco-risk index (Er(i)) and the modified eco-risk assessment index (MEAI) were used to identify the priority pollutant. Compared with the Hunan soil background values, evaluated metal concentrations were found to different extent. The results of mean Igeo, Er(i) and bioavailability of studied metals revealed the following orders: Cd>Pb ≈ Zn>Cu ≈ Cr, Cd>Pb>Cu>Cr>Zn and Cd>Zn>Cu ≈ Pb>Cr, respectively. Therefore, Cd was regarded as the priority pollutant. To identify the priority areas taking into account cost consideration, the hierarchical risk map based on the results of the modified eco-risk assessment index with overlay of the population density map was needed and made. The west and partly south areas of XDD were under higher eco-risk generally. Moreover, the whole XDD area was divided into 4 area categories with different management priorities based on the possibility of occurrence of eco-risk, and the hierarchical risk management strategy associated with protecting local population was suggested to facilitate allocation of funds for risk management.

  5. The impact of sediment bioturbation by secondary organisms on metal bioavailability, bioaccumulation and toxicity to target organisms in benthic bioassays: Implications for sediment quality assessment.

    PubMed

    Remaili, Timothy M; Simpson, Stuart L; Amato, Elvio D; Spadaro, David A; Jarolimek, Chad V; Jolley, Dianne F

    2016-01-01

    Bioturbation alters the properties of sediments and modifies contaminant bioavailability to benthic organisms. These naturally occurring disturbances are seldom considered during the assessment of sediment quality. We investigated how the presence (High bioturbation) and absence (Low bioturbation) of a strongly bioturbating amphipod within three different sediments influenced metal bioavailability, survival and bioaccumulation of metals to the bivalve Tellina deltoidalis. The concentrations of dissolved copper decreased and manganese increased with increased bioturbation. For copper a strong correlation was observed between increased bivalve survival (53-100%) and dissolved concentrations in the overlying water. Increased bioturbation intensity resulted in greater tissue concentrations for chromium and zinc in some test sediments. Overall, the results highlight the strong influence that the natural bioturbation activities from one organism may have on the risk contaminants pose to other organisms within the local environment. The characterisation of field-based exposure conditions concerning the biotic or abiotic resuspension of sediments and the rate of attenuation of released contaminants through dilution or readsorption may enable laboratory-based bioassay designs to be adapted to better match those of the assessed environment.

  6. Urban legacies and soil management affect the concentration and speciation of trace metals in Los Angeles community garden soils.

    PubMed

    Clarke, Lorraine Weller; Jenerette, G Darrel; Bain, Daniel J

    2015-02-01

    Heavy metals in urban soils can compromise human health, especially in urban gardens, where gardeners may ingest contaminated dust or crops. To identify patterns of urban garden metal contamination, we measured concentrations and bioavailability of Pb, As, and Cd in soils associated with twelve community gardens in Los Angeles County, CA. This included sequential extractions to partition metals among exchangeable, reducible, organic, or residual fractions. Proximity to road increased all metal concentrations, suggesting vehicle emissions sources. Reducible Pb increased with neighborhood age, suggesting leaded paint as a likely pollutant source. Exchangeable Cd and As both increased with road proximity. Only cultivated soils showed an increase in exchangeable As with road proximity, potentially due to reducing humic acid interactions while Cd bioavailability was mitigated by organic matter. Understanding the geochemical phases and metal bioavailability allows incorporation of contamination patterns into urban planning.

  7. Bioavailable concentrations of germanium and rare earth elements in soil as affected by low molecular weight organic acids and root exudates

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Székely, Balázs; Kummer, Nicolai-Alexeji; Heinemann, Ute; Tesch, Silke; Heilmeier, Hermann

    2014-05-01

    , lanthan, neodymium, gadolinium and erbium in the rhizosphere and therefore the enhancement of bioavailability of the mentioned elements to plants. Based on the suction cup experiment we conclude that in vertical soil profile the bioavailable germanium is heavily affected by the activity of exudates, as the complexation processes of germanium take place at the root zone and below affected by the interplay of the infiltration of citric acid solutions and the actually produced exudates. These studies have been carried out in the framework of the PhytoGerm project, financed by the Federal Ministry of Education and Research, Germany. BS contributed as an Alexander von Humboldt Research Fellow. The authors are grateful to students and laboratory assistants contributing in the field work and sample preparation.

  8. Short-term acute hypercapnia affects cellular responses to trace metals in the hard clams Mercenaria mercenaria.

    PubMed

    Ivanina, Anna V; Beniash, Elia; Etzkorn, Markus; Meyers, Tiffany B; Ringwood, Amy H; Sokolova, Inna M

    2013-09-15

    Estuarine and coastal habitats experience large fluctuations of environmental factors such as temperature, salinity, partial pressure of CO2 ( [Formula: see text] ) and pH; they also serve as the natural sinks for trace metals. Benthic filter-feeding organisms such as bivalves are exposed to the elevated concentrations of metals in estuarine water and sediments that can strongly affect their physiology. The effects of metals on estuarine organisms may be exacerbated by other environmental factors. Thus, a decrease in pH caused by high [Formula: see text] (hypercapnia) can modulate the effects of trace metals by affecting metal bioavailability, accumulation or binding. To better understand the cellular mechanisms of interactions between [Formula: see text] and trace metals in marine bivalves, we exposed isolated mantle cells of the hard clams (Mercenaria mercenaria) to different levels of [Formula: see text] (0.05, 1.52 and 3.01 kPa) and two major trace metal pollutants - cadmium (Cd) and copper (Cu). Elevated [Formula: see text] resulted in a decrease in intracellular pH (pHi) of the isolated mantle cells from 7.8 to 7.4. Elevated [Formula: see text] significantly but differently affected the trace metal accumulation by the cells. Cd uptake was suppressed at elevated [Formula: see text] levels while Cu accumulation has greatly accelerated under hypercapnic conditions. Interestingly, at higher extracellular Cd levels, labile intracellular Cd(2+) concentration remained the same, while intracellular levels of free Zn(2+) increased suggesting that Cd(2+) substitutes bound Zn(2+) in these cells. In contrast, Cu exposure did not affect intracellular Zn(2+) but led to a profound increase in the intracellular levels of labile Cu(2+) and Fe(2+). An increase in the extracellular concentrations of Cd and Cu led to the elevated production of reactive oxygen species under the normocapnic conditions (0.05 kPa [Formula: see text] ); surprisingly, this effect was mitigated in

  9. Genetic variability for iron and zinc as well as antinutrients affecting bioavailability in black gram (Vigna mungo (L.) Hepper).

    PubMed

    Singh, Jagdish; Kanaujia, Rajani; Srivastava, A K; Dixit, G P; Singh, N P

    2017-03-01

    The mineral content of pulses is generally high, but the bioavailability is poor due to the presence of phytate and polyphenols which inhibits Fe absorption. In the present study, the genetic variability and heritability for seed Fe and Zn content was studied. The effect of genotypes was significant for all the quality traits indicating presence of enough variability among the blackgram genotypes for the traits. The Fe content in 26 blackgram genotypes ranged from 71.02 to 100.20 ppm, whereas Zn content ranged from 18.93 to 60.58 ppm. Maximum Fe as well as Zn was recorded in genotype SHEKHAR 2 (100.2 and 60.58 ppm respectively). The Phytic acid and polyphenol content among genotypes varied significantly and it ranged from 0.06-0.37% to 5.88-9.03 mg/g, respectively. High phytic acid content was recorded in black gram genotypes COBG 653, Nodai Urd, NP 03 and PKG U 03, whereas high polyphenol content was recorded in PU 31, IPU 99-200, PDU 1 and YAKUBPUR 2. Blackgram genotype COBG 653 had high phytic acid but low polyphenol content. The genotype × year interaction was significant for all the traits under study which indicates differential reaction to the expression of quality characters over years. Fe content in blackgram genotypes showed significant positive phenotypic correlation with Zn content while at genotypic level in addition to Zn, it showed positive correlation with phytic acid and polyphenol content as well. This indicates that although the traits are genotypically correlated, the expression is masked by the environmental influence. This is further exhibited from low heritability estimates for phytic acid and polyphenol content among the genotypes.

  10. The influence of metal speciation on the bioavailability and sub-cellular distribution of cadmium to the terrestrial isopod, Porcellio dilatatus.

    PubMed

    Calhôa, Carla Filipa; Monteiro, Marta S; Soares, Amadeu M V M; Mann, Reinier M

    2011-04-01

    Cadmium is a non-essential toxic metal that is able to bioaccumulate in both flora fauna and has the potential to biomagnify in some food chains. However, the form in which cadmium is presented to consumers can alter the bioavailability and possibly the internal distribution of assimilated Cd. Previous studies in our laboratory highlighted differences in Cd assimilation among isopods when they were provided with a plant-based food with either Cd biologically incorporated into plant tissue or superficially amended with ionic Cd(2+). Cd is known for its high affinity for sulphur ligands in cysteine residues which form the basis for metal-binding proteins such as metallothionein. This study compares Cd assimilation efficiency (AE) in Porcellio dilatatus fed with food amended with either cadmium cysteinate or cadmium nitrate in an examination of the influence of Cd speciation on metal bioavailability followed by an examination of the sub-cellular distribution using a centrifugal fractionation protocol. As hypothesized the AE of Cd among isopods fed with Cd(NO(3))(2) (64%, SE=5%) was higher than AE for isopods fed with Cd(Cys)(2) (20%, SE=3%). The sub-cellular distribution also depended on the Cd species provided. Those isopods fed Cd(Cys)(2) allocated significantly more Cd to the cell debris and organelles fractions at the expense of allocation to metal-rich granules (MRG). The significance of the difference in sub-cellular distribution with regard to toxicity is discussed. This paper demonstrates that the assimilation and internal detoxification of Cd is dependent on the chemical form of Cd presented to the isopod.

  11. Relevant role of dissolved humic matter in phosphorus bioavailability in natural and agronomical ecosystems through the formation of Humic-(Metal)-Phosphate complexes

    NASA Astrophysics Data System (ADS)

    Baigorri, Roberto; Urrutia, Óscar; Erro, Javier; Pazos-Pérez, Nicolás; María García-Mina, José

    2016-04-01

    Natural Organic Matter (NOM) and the NOM fraction present in soil solution (dissolved organic matter: DOM) are currently considered as fundamental actors in soil fertility and crop mineral nutrition. Indeed, decreases in crop yields as well as soil erosion are closely related to low values of NOM and, in fact, the use of organic amendments as both soil improvers and plant growth enhancers is very usual in countries with soils poor in NOM. This role of NOM (and DOM) seems to be associated with the presence of bio-transformed organic molecules (humic substances) with high cation chelating-complexing ability. In fact, bioavailable micronutrients with metallic character in soil solutions of alkaline and calcareous soils are forming stable complexes with DOM. This beneficial action of DOM also concerns other plant nutrients such as inorganic phosphate (Pi). Among the different mechanisms involved in the beneficial action of DOM on P bioavailability, the possible formation of poly-nuclear complexes including stable chemical bonds between negative binding sites in humic substances and Pi through metal bridges in soil solution might be relevant, especially in acidic soils. In fact, several studies have proven that these complexes can be obtained in the laboratory and are very efficient in prevent Pi soil fixation and improve Pi root uptake. However, clear experimental evidence about their presence in soil solutions of natural and agronomical soil ecosystems has not published yet. We present here experimental results supporting the real presence of stable Pi-metal-Humic (PMH) complexes in the soil solution of several acidic soils. The study is based on the physico-chemical characterization (31P-NMR, FTIR, TEM-EDAX, ICP-OES) of the DOM fraction isolated by ultrafiltration from the soil solution of several representative acidic soils. In average, more than 60 % of Pi was found in the soil solution humic fraction forming stable humic-metal (Fe, Al) complexes.

  12. Matching metal pollution with bioavailability, bioaccumulation and biomarkers response in fish (Centropomus parallelus) resident in neotropical estuaries.

    PubMed

    Souza, Iara C; Duarte, Ian D; Pimentel, Natieli Q; Rocha, Lívia D; Morozesk, Mariana; Bonomo, Marina M; Azevedo, Vinicius C; Pereira, Camilo D S; Monferrán, Magdalena V; Milanez, Camilla R D; Matsumoto, Silvia T; Wunderlin, Daniel A; Fernandes, Marisa N

    2013-09-01

    Two neotropical estuaries affected by different anthropogenic factors were studied. We report levels of metals and metalloids in water and sediment as well as their influence on genetic, biochemical and morphological biomarkers in the native fish Centropomus parallelus. Biomarkers reflected the fish health status. Multivariate statistics indicated both spatial and temporal changes in both water and sediment, which are linked to the elemental composition and health status of inhabitant fish, showing the biggest influence of surface water, followed by sediments and interstitial water. Bioaccumulation in fish muscle was useful to identify elements that were below detection limits in water, pointing out the risk of consuming fish exceeding allowance limits for some elements (As and Hg in this case). Multivariate statistics, including physical, chemical and biological issues, presents a suitable tool, integrating data from different origin allocated in the same estuary, which could be useful for future studies on estuarine systems.

  13. Distribution and ecotoxicology of bioavailable metals and As in surface sediments of Paraguaçu estuary, Todos os Santos Bay, Brazil.

    PubMed

    Pereira, Taís de S; Moreira, Ícaro T A; de Oliveira, Olívia M C; Rios, Mariana C; Filho, Wilton A C S; de Almeida, Marcos; de Carvalho, Gilson Correia

    2015-10-15

    Surface sediments collected in the intertidal zone of Paraguaçu estuary in July, 2013, were analyzed for organic matter, nitrogen, phosphorus, grain size fractions and partial concentrations of 16 metals. The USEPA 3051A method and ICP-OES and CV-AAS techniques were chosen to metal analysis. Pollution indices (EF, Igeo and PIN) and a comparison with sediment quality guidelines (UET, ERL, ERM, TEL and PEL of NOAA) were conducted in order to evaluate the potential metal impacts over the area. Principal Component Analysis (PCA) and Pearson correlation results showed the importance of organic matter content and the fine-grained fraction of sediments on the control of the bioavailable metals distribution. The Paraguaçu estuary already has anthropogenic enrichment relative to the background level, especially for Mn, whose values exceeded almost 30 times the background at one site (Mn: 1197.30 mg kg(-1)). However, metal levels are still below the reference values with the exception of Hg at one site (Hg: 0.25 mg kg(-1), exceeded TEL and ERL).

  14. COMPETITIVE INFLUENCE OF PHOSPHORUS AND CALCIUM ON PB IN-VITRO BIOAVAILABILITY

    EPA Science Inventory

    The bioavailability of a metal is heavily related to the speciation of the particular metal. Further, the complexity of examining metal bioavailability is compounded by the presence of competitive ions. Thus, equally contaminated soils with varying concentrations of competitive e...

  15. Trace metal partitioning over a tidal cycle in an estuary affected by acid mine drainage (Tinto estuary, SW Spain).

    PubMed

    Hierro, A; Olías, M; Cánovas, C R; Martín, J E; Bolivar, J P

    2014-11-01

    The Tinto River estuary is highly polluted with the acid lixiviates from old sulphide mines. In this work the behaviour of dissolved and particulate trace metals under strong chemical gradients during a tidal cycle is studied. The pH values range from 4.4 with low tide to 6.9 with high tide. Precipitation of Fe and Al is intense during rising tides and As and Pb are almost exclusively found in the particulate matter (PM). Sorption processes are very important in controlling the mobility (and hence bioavailability) of some metals and particularly affect Cu below pH 6. Above pH~6 Cu is desorbed, probably by the formation of Cu(I)-chloride complexes. Although less pronounced than Cu, also Zn desorption above pH 6.5 seems to occur. Mn and Co are affected by sorption processes at pH higher than ca. 6. Cd behaves conservatively and Ni is slightly affected by sorption processes.

  16. Compost amendment of Cu-Zn minespoil reduces toxic bioavailable heavy metal concentrations and promotes establishment and biomass production of Bromus carinatus (Hook and Arn.).

    PubMed

    O'Dell, Ryan; Silk, Wendy; Green, Peter; Claassen, Victor

    2007-07-01

    A series of lab and greenhouse studies were undertaken to understand how Cu and Zn toxicity influences Bromus carinatus (Hook and Arn.) growth, to what degree an organic amendment (yard waste compost) may reduce Cu and Zn bioavailability in Cu-Zn minespoil and promote plant growth in combination with fertilizer, and how the vertical distribution of compost in the minespoil influences rooting depth. Root Cu and Zn toxicity thresholds were determined to be 1 mgL(-1) and 10 mgL(-1) in solution, respectively. The compost amendment had exceptionally high Cu and Zn binding capacities (0.17 and 0.08 g metal g C(-1), for Cu and Zn, respectively) that were attributed to high compost humic and fulvic acid concentrations. Maximum plant biomass was achieved when minespoil was amended with compost and fertilizer in combination. Fertilizer alone had no effect on plant growth. Mixing compost into the minespoil was essential to promote adequate rooting depth.

  17. Battlefield-Acquired Immunogenicity to Metals Affects Orthopaedic Implant Outcome

    DTIC Science & Technology

    2016-12-01

    indicated for subacute removal when they are located near or within a joint, in weight bearing areas, or in proximity to neurovascular structures...and Cr) had metal-on-metal bearing surfaces. In the past these elevated metal ion concentrations demonstrated a positive correlation with...associated with metal-on-metal bearings : A local effect of metal hypersensitivity? J Bone Joint Surg Am 2006 Jun;88(6):1171-2. (5) Ren W, Wu B, Peng

  18. Selected trace metals and organic compounds and bioavailability of selected organic compounds in soils, Hackberry Flat, Tillman County, Oklahoma, 1994-95

    USGS Publications Warehouse

    Becker, M.F.

    1997-01-01

    In 1995 the Oklahoma Department of Wildlife Conservation acquired a drained wetland in southwest Oklahoma known as Hackberry Flat. Following restoration by Wildlife Conservation the wetland will be used by migratory birds and waterfowl. If naturally occurring trace metals and residual organic compounds from agriculture and industry were present, they may have posed a potential biohazard and were a concern for Wildlife Conservation. The U. S. Geological Survey, in cooperation with Wildlife Conservation and the Oklahoma Geological Survey, examined the soils of Hackberry Flat to determine trace metal concentrations, presence of selected organic compounds, and the bioavailability of selected organic compounds in the soils. The purpose of this report is to present the data that establish the baseline concentrations of selected trace metals and organic compounds in the soils of Hackberry Flat prior to wetland restoration. Sampling and analysis were performed using two approaches. One was to collect soil samples and analyze the composition with standard laboratory practices. The second exposed composite soils samples to organic-free water and a semipermeable membrane device that mimics an organism and then analyzed the device. Ten soil samples were collected in 1994 to be analyzed for trace metals, organochlorine pesticides, and polychlorinated biphenyls. Soil samples tested for bioavailability of selected organic compounds were collected in 1995. Most of the 182 soil samples collected were from the center of every 40-acre quarter-quarter section owned by the Wildlife Conservation. The samples were grouped by geographical area with a maximum of 16 sample sites per group. Concentrations of most selected trace metals measured from soils in Hackberry Flat are within the range of mean concentrations measured in cultivated soils within the United States. Organochlorine pesticides, polychlorinated biphenyls, and polyaromatic hydrocarbons were not found at concentrations above

  19. Soluble organic carbon and pH of organic amendments affect metal mobility and chemical speciation in mine soils.

    PubMed

    Pérez-Esteban, Javier; Escolástico, Consuelo; Masaguer, Alberto; Vargas, Carmen; Moliner, Ana

    2014-05-01

    We evaluated the effects of pH and soluble organic carbon affected by organic amendments on metal mobility to find out the optimal conditions for their application in the stabilization of metals in mine soils. Soil samples (pH 5.5-6.2) were mixed with 0, 30 and 60 th a(-1) of sheep-horse manure (pH 9.4) and pine bark compost (pH 5.7). A single-step extraction procedure was performed using 0.005 M CaCl2 adjusted to pH 4.0-7.0 and metal speciation in soil solution was simulated using NICA-Donnan model. Sheep-horse manure reduced exchangeable metal concentrations (up to 71% Cu, 75% Zn) due to its high pH and degree of maturity, whereas pine bark increased them (32% Cu, 33% Zn). However, at increasing dose and hence pH, sheep-horse manure increased soluble Cu because of higher soluble organic carbon, whereas soluble Cu and organic carbon increased at increasing dose and correspondingly decreasing pH in pine bark and non-amended treatments. Near the native pH of these soils (at pH 5.8-6.3), with small doses of amendments, there was minimum soluble Cu and organic carbon. Pine bark also increased Zn solubility, whereas sheep-horse manure reduced it as soluble Zn always decreased with increasing pH. Sheep-horse manure also reduced the proportion of free metals in soil solution (from 41% to 4% Cu, from 97% to 94% Zn), which are considered to be more bioavailable than organic species. Sheep-horse manure amendment could be efficiently used for the stabilization of metals with low risk of leaching to groundwater at low doses and at relatively low pH, such as the native pH of mine soils.

  20. Impact of metals on the biodegradation of organic pollutants.

    PubMed Central

    Sandrin, Todd R; Maier, Raina M

    2003-01-01

    Forty percent of hazardous waste sites in the United States are co-contaminated with organic and metal pollutants. Data from both aerobic and anaerobic systems demonstrate that biodegradation of the organic component can be reduced by metal toxicity. Metal bioavailability, determined primarily by medium composition/soil type and pH, governs the extent to which metals affect biodegradation. Failure to consider bioavailability rather than total metal likely accounts for much of the enormous variability among reports of inhibitory concentrations of metals. Metals appear to affect organic biodegradation through impacting both the physiology and ecology of organic degrading microorganisms. Recent approaches to increasing organic biodegradation in the presence of metals involve reduction of metal bioavailability and include the use of metal-resistant bacteria, treatment additives, and clay minerals. The addition of divalent cations and adjustment of pH are additional strategies currently under investigation. PMID:12826480

  1. Bioavailability of zinc oxide added to corn tortilla is similar to that of zinc sulfate and is not affected by simultaneous addition of iron

    PubMed Central

    Rosado, Jorge L.; Díaz, Margarita; Muñoz, Elsa; Westcott, Jamie L.; González, Karla E.; Krebs, Nancy F.; Caamaño, María C.; Hambidge, Michael

    2013-01-01

    Background Corn tortilla is the staple food of Mexico and its fortification with zinc, iron, and other micronutrients is intended to reduce micronutrient deficiencies. However, no studies have been performed to determine the relative amount of zinc absorbed from the fortified product and whether zinc absorption is affected by the simultaneous addition of iron. Objective To compare zinc absorption from corn tortilla fortified with zinc oxide versus zinc sulfate and to determine the effect of simultaneous addition of two doses of iron on zinc bioavailability. Methods A randomized, double-blind, crossover design was carried out in two phases. In the first phase, 10 adult women received corn tortillas with either 20 mg/kg of zinc oxide added, 20 mg/kg of zinc sulfate added, or no zinc added. In the second phase, 10 adult women received corn tortilla with 20 mg/kg of zinc oxide added and either with no iron added or with iron added at one of two different levels. Zinc absorption was measured by the stable isotope method. Results The mean (± SEM) fractional zinc absorption from unfortified tortilla, tortilla fortified with zinc oxide, and tortilla fortified with zinc sulfate did not differ among treatments: 0.35 ± 0.07, 0.36 ± 0.05, and 0.37 ± 0.07, respectively. The three treatment groups with 0, 30, and 60 mg/kg of added iron had similar fractional zinc absorption (0.32 ± 0.04, 0.33 ± 0.02, and 0.32 ± 0.05, respectively) and similar amounts of zinc absorbed (4.8 ± 0.7, 4.5 ± 0.3, and 4.8 ± 0.7 mg/day, respectively). Conclusions Since zinc oxide is more stable and less expensive and was absorbed equally as well as zinc sulfate, we suggest its use for corn tortilla fortification. Simultaneous addition of zinc and iron to corn tortilla does not modify zinc bioavailability at iron doses of 30 and 60 mg/kg of corn flour. PMID:23424892

  2. Physicochemical Factors that Affect Metal and Metal Oxide Nanoparticle Passage Across Epithelial Barriers

    PubMed Central

    Elder, Alison; Vidyasagar, Sadasivan; DeLouise, Lisa

    2014-01-01

    The diversity of nanomaterials in terms of size, shape, and surface chemistry poses a challenge to those who are trying to characterize the human health and environmental risks associated with incidental and unintentional exposures. There are numerous products that are already commercially available that contain solid metal and metal oxide nanoparticles, either embedded in a matrix or in solution. Exposure assessments for these products are often incomplete or difficult due to technological challenges associated with detection and quantitation of nanoparticles in gaseous or liquid carriers. The main focus of recent research has been on hazard identification. However, risk is a product of hazard and exposure, and one significant knowledge gap is that of the target organ dose following in vivo exposures. In order to reach target organs, nanoparticles must first breech the protective barriers of the respiratory tract, gastrointestinal tract, or skin. The fate of those nanoparticles that reach physiological barriers is in large part determined by the properties of the particles and the barriers themselves. This article reviews the physiological properties of the lung, gut, and skin epithelia, the physicochemical properties of metal and metal oxide nanoparticles that are likely to affect their ability to breech epithelial barriers, and what is known about their fate following in vivo exposures. PMID:20049809

  3. Heavy metal bioavailability and effects: I. Bioaccumulation caused by mining activities in the Gulf of Cádiz (SW, Spain).

    PubMed

    Riba, I; Blasco, J; Jiménez-Tenorio, N; Delvalls, T Angel

    2005-02-01

    The bioaccumulation of six metals (Fe, Mn, Zn, Cd, Pb and Cu) was studied as part of the monitoring of the Aznalcóllar mining spill (April 1998) on the Guadalquivir estuary and in other estuaries located in the Gulf of Cádiz. Fish, clams and oysters were collected during different seasonal periods along the years 2000 and 2001 in the Guadalquivir estuary to determine the bioaccumulation of the metals originated by the mining spill. Results were compared to the bioaccumulation of the same metals in fish and clams exposed in the laboratory to sediments collected in the same areas during autumn 2001. The bioaccumulation of these metals was compared to the concentration of metals measured in tissues of same taxas collected in the areas of the ria of Huelva and the Bay of Cádiz. Results show that the bioaccumulation of Zn and Cd in the organisms sampled in the Guadalquivir estuary was associated with the enrichment of these metals in the estuary from the mining spill and decreased along the time reaching the lowest values in autumn 2001. The metal Cu show different trends that are associated with other sources of contamination than the spill and related to the transport of this metal from Huelva to Guadalquivir estuary and/or to the use of this metal as plaguicide in the rice fields located in the area. The comparison between bioaccumulation results under field and laboratory conditions obtained in the different areas of study shows that these data can be used to discriminate between acute and chronic impacts associated with mining activities.

  4. Metal ions affecting the pulmonary and cardiovascular systems.

    PubMed

    Corradi, Massimo; Mutti, Antonio

    2011-01-01

    Some metals, such as copper and manganese, are essential to life and play irreplaceable roles in, e.g., the functioning of important enzyme systems. Other metals are xenobiotics, i.e., they have no useful role in human physiology and, even worse, as in the case of lead, may be toxic even at trace levels of exposure. Even those metals that are essential, however, have the potential to turn harmful at very high levels of exposure, a reflection of a very basic tenet of toxicology--"the dose makes the poison." Toxic metal exposure may lead to serious risks to human health. As a result of the extensive use of toxic metals and their compounds in industry and consumer products, these agents have been widely disseminated in the environment. Because metals are not biodegradable, they can persist in the environment and produce a variety of adverse effects. Exposure to metals can lead to damage in a variety of organ systems and, in some cases, metals also have the potential to be carcinogenic. Even though the importance of metals as environmental health hazards is now widely appreciated, the specific mechanisms by which metals produce their adverse effects have yet to be fully elucidated. The unifying factor in determining toxicity and carcinogenicity for most metals is the generation of reactive oxygen and nitrogen species. Metal-mediated formation of free radicals causes various modifications to nucleic acids, enhanced lipid peroxidation, and altered calcium and sulfhydryl homeostasis. Whilst copper, chromium, and cobalt undergo redox-cycling reactions, for metals such as cadmium and nickel the primary route for their toxicity is depletion of glutathione and bonding to sulfhydryl groups of proteins. This chapter attempts to show that the toxic effects of different metallic compounds may be manifested in the pulmonary and cardiovascular systems. The knowledge of health effects due to metal exposure is necessary for practising physicians, and should be assessed by inquiring

  5. Acid Volatile Sulfides (avs) and the Bioavailability of Trace Metals in the Channel of the SÃO Francisco River, Sepetiba Bay - de Janeiro-Brazil

    NASA Astrophysics Data System (ADS)

    Monte, Christiane; Rodrigues, Ana Paula; Marinho, Matheus; Quaresma, Tássia; Machado, Wilson

    2014-05-01

    Sepetiba Bay has 430 Km2 of internal and 2,500 Km2 area of the drainage basin (Lacerda et al., 2007), located 60 km west of the city of Rio de Janeiro. Sepetiba Bay has 430 Km2 of internal and 2,500 Km2 area of the drainage basin (Lacerda et al., 2007), located 60 km west of the city of Rio de Janeiro.The San Francisco channel comes from the Guandu River and empties into Sepetiba Bay and is the main contributor of freshwater to the estuarine system. The Guandu River system/channel of San Francisco receives contribution of domestic and industrial effluents, which go largely to Sepetiba Bay. This work aimed to evaluate the .This work aimed to evaluate the ratio SEM/AVS as a way of predicting bioavailability trace metals from industrial sewage, mainly, in the estuarine system of Sepetiba. This model is based on the property of some Divalent metal cations (Cd, Cu, Ni, Pb and Zn), by presenting a low solubility constant, are removed from the soluble fraction by precipitation, forming secondary metal sulfides. Were held four transects, made up of three points each, the coast line to the center of the Bay. The surface sediment was collected with a van Veen sampler type ,packed in glass jars and kept frozen until analysis.The determination of SEM/AVS followed the methodology described by Allen et al. (1991). The variation between sulfide 159.88 ± 0.05 µmol/g on 12 points. The metals that entered the sum of simultaneous extraction were: Cd, Cu, Ni, Pb and Zn ranging from: 6.47 ± 0.11 µmol/g on sum.The means (± standard deviation) ratio SEM/AVS per transect were: 1.04 ± 1.20 (transect 1); 0.48 ± 0.53 (transect 2); 1.26 ± 1.32 (transect 3) and 0.18 ± 0.14 (transect 4). Only transects 1 and 3 had higher results than 1 , meaning that there are more divalent metal sulfides in the environment. This means that only the sulfides would not be capable of complex and may reflect the potential bioavailability of these in the aquatic environment. There is no statistical

  6. Heavy metals and toxic organic pollutants in MSW-composts: Research results on phytoavailability, bioavailability, fate, etc

    SciTech Connect

    Ryan, J.A.; Chaney, R.L.

    1994-01-01

    The paper is a review and interpretation of research which has been conducted to determine the fate, transport, and potential effects of heavy metals and toxic organic compounds in Municipal Solid Waste (MSW)-composts and sewage sludges. Evaluation of research findings identified a number of pathways by which these contaminants can be transferred from MSW-compost or compost-amended soils to humans, livestock, or wildlife. The pathways consider direct ingestion of compost or compost-amended soil by livestock and children, plant uptake by food or feed crops, and exposure to dust, vapor, and water to which metals and organics have migrated.

  7. Mimicked in-situ stabilization of metals in a cropped soil: Bioavailability and chemical form of zinc

    SciTech Connect

    Chlopecka, A.; Adriano, D.C.

    1996-11-01

    Agricultural lime, natural zeolite (clinoptilolite), hydroxyapatite, and an iron oxide waste byproduct (Fe-rich, a trademark name of E.I. du Pont de Nemours) were added to an artificially contaminated Applying silt loam soil to stabilize and limit the uptake of Zn by crops. A greenhouse pot study involves spiking the soil with flue dust FD at 0, 150, 300, 600, 1200, and 2400 mg of Zn kg{sup -1}. As much as 40% of the total Zn occurred in an exchangeable form, the form considered most bioavailable to plants, when the pH of the FD-spiked soil was below 6.0. The ameliorants (lime, zeolite, apatite, and Fe-rich) decreased the concentration of the exchangeable form of Zn at each level of FD in soil; however, the largest decrease occurred with the lowest dose. Maize (Zea mays), barley (Hordeum vulgare), and radish (Raphanus sativus) were growth to determine the effects of Zn on the plant growth and its uptake. The addition of ameliorants to soil enhanced the growth and yield of maize and barley, but only Fe-rich enhanced the growth of radish at all FD rates. Lime, zeolite, and apatite significantly reduced the Zn concentration in tissues of the 3-week-old maize, in mature maize tissues (roots, young leaves, old leaves, stems, grain), and in barley. The largest reduction (over 80%) in Zn uptake by all crops was effected by Fe-rich, which is consistent with the greatest reduction in soil-exchangeable Zn by this ameliorant. 44 refs., 4 figs., 7 tabs.

  8. Regulatory consideration of bioavailability for metals: simplification of input parameters for the chronic copper biotic ligand model.

    PubMed

    Peters, Adam; Merrington, Graham; de Schamphelaere, Karel; Delbeke, Katrien

    2011-07-01

    The chronic Cu biotic ligand model (CuBLM) provides a means by which the bioavailability of Cu can be taken into account in assessing the potential chronic risks posed by Cu at specific freshwater locations. One of the barriers to the widespread regulatory application of the CuBLM is the perceived complexity of the approach when compared to the current systems that are in place in many regulatory organizations. The CuBLM requires 10 measured input parameters, although some of these have a relatively limited influence on the predicted no-effect concentration (PNEC) for Cu. Simplification of the input requirements of the CuBLM is proposed by estimating the concentrations of the major ions Mg2+, Na+, K+, SO4(2-), Cl- , and alkalinity from Ca concentrations. A series of relationships between log10 (Ca, mg l(-1)) and log10 (major ion, mg l(-1)) was established from surface water monitoring data for Europe, and applied in the prediction of Cu PNEC values for some UK freshwater monitoring data. The use of default values for major ion concentrations was also considered, and both approaches were compared to the use of measured major ion concentrations. Both the use of fixed default major ion concentrations, and major ion concentrations estimated from Ca concentrations, provided Cu PNEC predictions which were in good agreement with the results of calculations using measured data. There is a slight loss of accuracy when using estimates of major ion concentrations compared to using measured concentration data, although to a lesser extent than when fixed default values are applied. The simplifications proposed provide a practical evidence-based methodology to facilitate the regulatory implementation of the CuBLM.

  9. Refinement and cross-validation of nickel bioavailability in PNEC-pro, a regulatory tool for site-specific risk assessment of metals in surface water.

    PubMed

    Verschoor, Anja J; Vijver, Martina G; Vink, Jos P M

    2017-02-22

    The European Water Framework Directive prescribes that the environmental quality standards for nickel in surface waters should be based on bioavailable concentrations. Biotic ligand models (BLMs) are powerful tools to account for site-specific bioavailability within risk assessments. Several BLMs and simplified tools are available. For nickel, most of them are based on the same toxicity dataset and chemical speciation methodology as laid down in the 2008 European Union Environmental-Risk Assessment Report (RAR). Since then, insights on toxic effects of nickel on aquatic species have progressed and new data and methodologies were generated and implemented in PNEC-pro tool. The aim of this study is to provide maximum transparency on data revisions and how this affects the derived environmental quality standards. A case study with seven different ecoregions was used to determine differences in species sensitivity distributions and in HC5-values between the original Ni-RAR BLMs and the PNEC-pro BLMs. The BLM parameters used were pH dependent, which extended the applicability domain of PNEC-pro up to a pH of 8.7 for surface waters. After inclusion of additional species, adjustment of cross-species extrapolation and the HC5s are well within the prediction range of the RAR. Based on the latest data and scientific insights, transfer functions in the user-friendly PNEC-pro tool have been updated accordingly without compromising the original considerations of the Ni-RAR. This article is protected by copyright. All rights reserved.

  10. Do metallic ports in tissue expanders affect postmastectomy radiation delivery?

    SciTech Connect

    Damast, Shari; Beal, Kathryn . E-mail: bealk@mskcc.org; Ballangrud, Ase; Losasso, Thomas J.; Cordeiro, Peter G.; Disa, Joseph J.; Hong, Linda; McCormick, Beryl L.

    2006-09-01

    Purpose: Postmastectomy radiation therapy (PMRT) is often delivered to patients with permanent breast implants. On occasion, patients are irradiated with a tissue expander (TE) in place before their permanent implant exchange. Because of concern of potential under-dosing in these patients, we examined the dosimetric effects of the Magna-Site (Santa Barbara, CA) metallic port that is present in certain TEs. Methods and Materials: We performed ex vivo film dosimetry with single 6-MV and 15-MV photon beams on a water phantom containing a Magna-Site disc in two orientations. Additionally, using in vivo films, we measured the exit dose from 1 patient's TE-reconstructed breast during chest wall treatment with 15-MV tangent beams. Finally, we placed thermoluminescent dosimeters (TLDs) on 6 patients with TEs who received PMRT delivered with 15-MV tangent beams. Results: Phantom film dosimetry revealed decreased transmission in the region of the Magna-Site, particularly with the magnet in the parallel orientation (at 22 mm: 78% transmission with 6 MV, 84% transmission with 15 MV). The transmission measured by in vivo films during single beam treatment concurred with ex vivo results. TLD data showed acceptable variation in median dose to the skin (86-101% prescription dose). Conclusion: Because of potential dosimetric effects of the Magna-Site, it is preferable to treat PMRT patients with permanent implants. However, it is not unreasonable to treat with a TE because the volume of tissue affected by attenuation from the Magna-Site is small. In this scenario, we recommend using 15 MV photons with compensating bolus.

  11. COMPETITIVE INFLUENCE OF PHOSPHORUS AND CALCIUM ON PB IN-VITRO BIOAVAILABILITY (S11-SCHECKEL101231-POSTER)

    EPA Science Inventory

    The bioavailability of a metal is heavily related to the speciation of the particular metal. Further, the complexity of examining metal bioavailability is compounded by the presence of competitive ions. Thus, equally contaminated soils with varying concentrations of competitive e...

  12. How absorbed hydrogen affects the catalytic activity of transition metals.

    PubMed

    Aleksandrov, Hristiyan A; Kozlov, Sergey M; Schauermann, Swetlana; Vayssilov, Georgi N; Neyman, Konstantin M

    2014-12-01

    Heterogeneous catalysis is commonly governed by surface active sites. Yet, areas just below the surface can also influence catalytic activity, for instance, when fragmentation products of catalytic feeds penetrate into catalysts. In particular, H absorbed below the surface is required for certain hydrogenation reactions on metals. Herein, we show that a sufficient concentration of subsurface hydrogen, H(sub) , may either significantly increase or decrease the bond energy and the reactivity of the adsorbed hydrogen, H(ad) , depending on the metal. We predict a representative reaction, ethyl hydrogenation, to speed up on Pd and Pt, but to slow down on Ni and Rh in the presence of H(sub) , especially on metal nanoparticles. The identified effects of subsurface H on surface reactivity are indispensable for an atomistic understanding of hydrogenation processes on transition metals and interactions of hydrogen with metals in general.

  13. EDTA-enhanced phytoremediation of contaminated calcareous soils: heavy metal bioavailability, extractability, and uptake by maize and sesbania.

    PubMed

    Suthar, Vishandas; Memon, Kazi Suleman; Mahmood-ul-Hassan, Muhammad

    2014-06-01

    Natural and chemically enhanced phytoextraction potentials of maize (Zea mays L.) and sesbania (Sesbania aculeata Willd.) were explored by growing them on two soils contaminated with heavy metals. The soils, Gujranwala (fine, loamy, mixed, hyperthermic Udic Haplustalf) and Pacca (fine, mixed, hyperthermic Ustollic Camborthid), were amended with varying amounts of ethylenediaminetetraacetic acid (EDTA) chelating agent, at 0, 1.25, 2.5, and 5.0 mM kg(-1) soil to enhance metal solubility. The EDTA was applied in two split applications at 46 and 60 days after sowing (DAS). The plants were harvested at 75 DAS. Addition of EDTA significantly increased the lead (Pb) and cadmium (Cd) concentrations in roots and shoots, uptake, bioconcentration factor, and phytoextraction rate over the control. Furthermore, addition of EDTA also significantly increased the soluble fractions of Pb and Cd in soil over the controls; the maximum increase of Pb and Cd was 13.1-fold and 3.1-fold, respectively, with addition of 5.0 mM EDTA kg(-1)soil. Similarly, the maximum Pb and Cd root and shoot concentrations, translocation, bioconcentration, and phytoextraction efficiency were observed at 5.0 mM EDTA kg(-1) soil. The results suggest that both crops can successfully be used for phytoremediation of metal-contaminated calcareous soils.

  14. Chemical forms of heavy metals in agricultural soils affected by coal mining in the Linhuan subsidence of Huaibei Coalfield, Anhui Province, China.

    PubMed

    Shang, Wenqin; Tang, Quan; Zheng, Liugen; Cheng, Hua

    2016-12-01

    Total concentrations of heavy metals in soils may not be enough to understand their mobility and bioavailability. It is important to evaluate the degree of association of heavy metals with different chemical forms of soil. The sequential extraction method was applied to evaluate the mobile behavior of Cd, Cr, Cu, Ni, Pb, and Zn in 42 representative soil samples from the Linhuan subsidence of Huaibei Coalfield, Anhui Province, China. The results showed that mean concentrations of heavy metals were higher than background values of Huaibei City surface soil by a factor of 1.16 to 3.21 (Cd, 3.21; Cr, 1.19; Cu, 1.16; Ni, 1.23; Zn, 1.85) except Pb (0.89). Most of the total Cr, Cu, Ni, Pb, and Zn were present in the residual forms (above 70 %), while Cd was dominated by the exchangeable forms (42 %). The correlations analysis showed that the mobility of Cd, Cu, Pb, and Zn in soil was affected by both physicochemical properties and total metal concentrations. In contrast, the moblity of Cr and Ni of soil was mainly affected by their total metal concentrations. According to assessments by the potential ecological risk index (RI) and the risk assessment code (RAC), Cr, Cu, Ni, Pb, and Zn posed no or low risk. However, Cd presents high to very high risk, due to its higher exchangeable and carbonate-bound fractions.

  15. Invertebrate grazers affect metal/metalloid fixation during litter decomposition.

    PubMed

    Schaller, Jörg; Brackhage, Carsten

    2015-01-01

    Plant litter and organic sediments are main sinks for metals and metalloids in aquatic ecosystems. The effect of invertebrates as key species in aquatic litter decomposition on metal/metalloid fixation by organic matter is described only for shredders, but for grazers as another important animal group less is known. Consequently, a laboratory batch experiment was conducted to examine the effect of invertebrate grazers (Lymnaea stagnalis L.) on metal/metalloid fixation/remobilization during aquatic litter decomposition. It could be shown that invertebrate grazers facilitate significantly the formation of smaller sizes of particulate organic matter (POM), as shown previously for invertebrate shredders. The metal/metalloid binding capacity of these smaller particles of POM is higher compared to leaf litter residuals. But element enrichment is not as high as shown previously for the effect by invertebrate shredders. Invertebrate grazers enhance also the mobilization of selected elements to the water, in the range also proven for invertebrate shredders but different for the different elements. Nonetheless invertebrate grazers activity during aquatic litter decomposition leads to a metal/metalloid fixation into leaf litter as part of sediment organic matter. Hence, the effect of invertebrate grazers on metal/metalloid fixation/remobilization contrasts partly with former assessments revealing the possibility of an enhanced metal/metalloid fixation.

  16. Biologics formulation factors affecting metal leachables from stainless steel.

    PubMed

    Zhou, Shuxia; Schöneich, Christian; Singh, Satish K

    2011-03-01

    An area of increasing concern and scientific scrutiny is the potential contamination of drug products by leachables entering the product during manufacturing and storage. These contaminants may either have a direct safety impact on the patients or act indirectly through the alteration of the physicochemical properties of the product. In the case of biotherapeutics, trace amounts of metal contaminants can arise from various sources, but mainly from contact with stainless steel (ss). The effect of the various factors, buffer species, solution fill volume per unit contact surface area, metal chelators, and pH, on metal leachables from contact with ss over time were investigated individually. Three major metal leachables, iron, chromium, and nickel, were monitored by inductively coupled plasma-mass spectrometry because they are the major components of 316L ss. Iron was primarily used to evaluate the effect of each factor since it is the most abundant. It was observed that each studied factor exhibited its own effect on metal leachables from contact with ss. The effect of buffer species and pH exhibited temperature dependence over the studied temperature range. The metal leachables decreased with the increased fill volume (mL) per unit contact ss surface area (cm(2)) but a plateau was achieved at approximately 3 mL/cm(2). Metal chelators produced the strongest effect in facilitating metal leaching. In order to minimize the metal leachables and optimize biological product stability, each formulation factor must be evaluated for its impact, to balance its risk and benefit in achieving the target drug product shelf life.

  17. Relative Bioavailability and Bioaccessability and Speciation of ...

    EPA Pesticide Factsheets

    Background: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessments and remediation goals, convenient, rapid, reliable, and inexpensive tools are needed to determine soil As bioavailability. Objectives: We evaluated inexpensive methods for assessing As bioavailability in soil as a means to improve human exposure estimates and potentially reduce remediation costs. Methods: Nine soils from residential sites affected by mining or smelting activity and two National Institute of Standards and Technology standard reference materials were evaluated for As bioavailability, bioaccessibility, and speciation. Arsenic bioavailability was determined using an in vivo mouse model, and As bioaccessibility was determined using the Solubility/Bioavailability Research Consortium in vitro assay. Arsenic speciation in soil and selected soil physicochemical properties were also evaluated to determine whether these parameters could be used as predictors of As bio¬availability and bioaccessibility. Results: In the mouse assay, we compared bioavailabilities of As in soils with that for sodium arsenate. Relative bioavailabilities (RBAs) of soil As ranged from 11% to 53% (mean, 33%). In vitro soil As bioaccessibility values were strongly correlated with soil As RBAs (R

  18. Key factors affecting mechanical behavior of metallic glass nanowires

    PubMed Central

    Zhang, Qi; Li, Qi-Kai; Li, Mo

    2017-01-01

    Both strengthening and weakening trends with decreasing diameter have been observed for metallic glass nanowires, sometimes even in the samples with the same chemical composition. How to reconcile the results has reminded a puzzle. Since the detailed stress state and microstructure of metallic glass nanowires may differ from each other significantly depending on preparation, to discover the intrinsic size effect it is necessary to study metallic glass nanowires fabricated differently. Here we show the complex size effects from one such class of metallic glass nanowires prepared by casting using molecular dynamics simulations. As compared with the nanowires of the same composition prepared by other methods, the cast nanowires deform nearly homogeneously with much lower strength but better ductility; and also show strengthening in tension but weakening in compression with decreasing wire diameter. The subtle size dependence is shown to be related to the key factors including internal and surface stress state, atomic structure variation, and presence of various gradients. The complex interplay of these factors at decreasing size leads to the different deformation behaviors. PMID:28134292

  19. Key factors affecting mechanical behavior of metallic glass nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Li, Qi-Kai; Li, Mo

    2017-01-01

    Both strengthening and weakening trends with decreasing diameter have been observed for metallic glass nanowires, sometimes even in the samples with the same chemical composition. How to reconcile the results has reminded a puzzle. Since the detailed stress state and microstructure of metallic glass nanowires may differ from each other significantly depending on preparation, to discover the intrinsic size effect it is necessary to study metallic glass nanowires fabricated differently. Here we show the complex size effects from one such class of metallic glass nanowires prepared by casting using molecular dynamics simulations. As compared with the nanowires of the same composition prepared by other methods, the cast nanowires deform nearly homogeneously with much lower strength but better ductility; and also show strengthening in tension but weakening in compression with decreasing wire diameter. The subtle size dependence is shown to be related to the key factors including internal and surface stress state, atomic structure variation, and presence of various gradients. The complex interplay of these factors at decreasing size leads to the different deformation behaviors.

  20. Cost-effective enhanced iron bioavailability in rice grain grown on calcareous soil by sulfur mediation and its effect on heavy metals mineralization.

    PubMed

    Ramzani, Pia Muhammad Adnan; Khalid, Muhammad; Anjum, Shazia; Khan, Waqas-Ud-Din; Ali, Shafaqat; Hannan, Fakhir; Iqbal, Muhammad

    2017-01-01

    Calcareous soil, high pH, and low organic matter are the major factors that limit iron (Fe) availability to rice crop. The present study was planned with the aim to biofortified rice grain with Fe, by integrated use of chemical and organic amendments in pH-manipulated calcareous soil. The soil pH was reduced (pHL2) by using elemental sulfur (S) at the rate of 0.25 % (w/w). The organic amendments, biochar (BC) and poultry manure (PM) [1 % (w/w)], along with ferrous sulfate at the rate of 7.5 mg kg(-1) soil were used. The incorporation of Fe with BC in soil at pHL2 significantly improved plant biomass, photosynthetic rate, and paddy yield up to 99, 97, and 36 %, respectively, compared to control. A significant increase in grain Fe (190 %), protein (58 %), and ferritin (400 %) contents was observed while anti-nutrients, i.e., polyphenols (37 %) and phytate (21 %) were significantly decreased by the addition of Fe and BC in soil at pHL2 relative to control. Among the organic amendments, PM significantly increased Cd, Pb, Ni, and Cr concentrations in rice grain relative to control but their concentration values were below as compared to the toxic limits of hazard quotients and hazard index (HQ and HI). Hence, this study implies that Fe applied with BC in the soil at pHL2 can be considered as an effective strategy to augment Fe bioavailability and to reduce non-essential heavy metal accumulation in rice grain.

  1. Battlefield Acquired Immunogenicity to Metals Affects Orthopedic Implant Outcome

    DTIC Science & Technology

    2013-10-01

    include minor bruising/ hematoma (12.3%), diaphoresis with hypotension (2.6%), syncope (ə%), and cellulitis or phlebitis (ə%). Standard aseptic...PROBLEMS, AND DEVIATIONS Possible adverse events Possible adverse events following phlebotomy include: • Minor bruising/ hematoma (12.3...Lucht U. Metal sensitivity in patients treated for tibial fractures with plates of stainless steel. Acta Orthopedica Scandinavia 1977;48:245-9. Page 11

  2. Influence of discharge and urbanization on the concentration, speciation, and bioavailability of trace metals in the Raritan River, New Jersey. Final report

    SciTech Connect

    McLaughlin, F.B.; Ashley, G.M.; Renwick, W.H.

    1988-01-01

    The Raritan River and its tributaries are a vital drinking water and recreational resource in central New Jersey. These waters also serve as disposal media for municipal and industrial wastes and urban stormwater runoff. Rapid development over the last several decades has intensified the pressures on the quality and use of Raritan waters. The concentration and speciation of ten trace metals (Ag, As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Zn) were investigated in the Raritan Basin. From September 1985 to April 1987, one hundred twenty depth-integrated samples were collected at four locations and analyzed by Direct-Current Plasma Atomic Emission Spectrometry for concentrations of dissolved, particulate-associated, total, and suspended sediment trace metals. The concentrations of trace metals readily available, potentially available, and not available to aquatic and terrestrial biota are also reported. Discharge is the most important factor influencing the concentration and speciation of trace metals in the Raritan River and its tributaries. Seasonal variations affect speciation patterns, but have a minor impact on concentration and availability to biota. The sub-basin draining a more-urbanized area in the Raritan Basin appeared to have elevated concentrations and increased biological availability of trace metals relative to less-urbanized basins.

  3. Estimating relative bioavailability of soil lead in the mouse.

    PubMed

    Bradham, Karen D; Green, William; Hayes, Hunter; Nelson, Clay; Alava, Pradeep; Misenheimer, John; Diamond, Gary L; Thayer, William C; Thomas, David J

    2016-01-01

    Lead (Pb) in soil is an important exposure source for children. Thus, determining bioavailability of Pb in soil is critical in evaluating risk and selecting appropriate strategies to minimize exposure. A mouse model was developed to estimate relative bioavailability of Pb in NIST SRM 2710a (Montana 1 Soil). Based on Pb levels in tissues, the mean relative bioavailability of this metal in this soil was 0.5. Estimates of relative bioavailabilities derived from mouse compared favorably with those obtained in juvenile swine. The mouse model is thus an efficient and inexpensive method to obtain estimates of relative bioavailability of soil Pb.

  4. Statistical evaluation of biogeochemical variables affecting spatiotemporal distributions of multiple free metal ion concentrations in an urban estuary.

    PubMed

    Dong, Zhao; Lewis, Christopher G; Burgess, Robert M; Coull, Brent; Shine, James P

    2016-05-01

    Free metal ion concentrations have been recognized as a better indicator of metal bioavailability in aquatic environments than total dissolved metal concentrations. However, our understanding of the determinants of free ion concentrations, especially in a metal mixture, is limited, due to underexplored techniques for measuring multiple free metal ions simultaneously. In this work, we performed statistical analyses on a large dataset containing repeated measurements of free ion concentrations of Cu, Zn, Pb, Ni, and Cd, the most commonly measured metals in seawater, at five inshore locations in Boston Harbor, previously collected using an in-situ equilibrium-based multi-metal free ion sampler, the 'Gellyfish'. We examined correlations among these five metals by season, and evaluated effects of 10 biogeochemical variables on free ion concentrations over time and location through multivariate regressions. We also explored potential clustering among the five metals through a principal component analysis. We found significant correlations among metals, with varying patterns over season. Our regression results suggest that instead of dissolved metals, pH, salinity, temperature and rainfall were the most significant determinants of free metal ion concentrations. For example, a one-unit decrease in pH was associated with a 2.2 (Cd) to 99 (Cu) times increase in free ion concentrations. This work is among the first to reveal key contributors to spatiotemporal variations in free ion concentrations, and demonstrated the usefulness of the Gellyfish sampler in routine sampling of free ions within metal mixtures and in generating data for statistical analyses.

  5. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species.

    PubMed

    Nawab, Javed; Khan, Sardar; Shah, Mohammad Tahir; Khan, Kifayatullah; Huang, Qing; Ali, Roshan

    2015-01-01

    Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p < 0.01) higher in mine affected soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg(-1), respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals.

  6. Membrane transporters and protein traffic networks differentially affecting metal tolerance: a genomic phenotyping study in yeast

    PubMed Central

    Ruotolo, Roberta; Marchini, Gessica; Ottonello, Simone

    2008-01-01

    Background The cellular mechanisms that underlie metal toxicity and detoxification are rather variegated and incompletely understood. Genomic phenotyping was used to assess the roles played by all nonessential Saccharomyces cerevisiae proteins in modulating cell viability after exposure to cadmium, nickel, and other metals. Results A number of novel genes and pathways that affect multimetal as well as metal-specific tolerance were discovered. Although the vacuole emerged as a major hot spot for metal detoxification, we also identified a number of pathways that play a more general, less direct role in promoting cell survival under stress conditions (for example, mRNA decay, nucleocytoplasmic transport, and iron acquisition) as well as proteins that are more proximally related to metal damage prevention or repair. Most prominent among the latter are various nutrient transporters previously not associated with metal toxicity. A strikingly differential effect was observed for a large set of deletions, the majority of which centered on the ESCRT (endosomal sorting complexes required for transport) and retromer complexes, which - by affecting transporter downregulation and intracellular protein traffic - cause cadmium sensitivity but nickel resistance. Conclusion The data show that a previously underestimated variety of pathways are involved in cadmium and nickel tolerance in eukaryotic cells. As revealed by comparison with five additional metals, there is a good correlation between the chemical properties and the cellular toxicity signatures of various metals. However, many conserved pathways centered on membrane transporters and protein traffic affect cell viability with a surprisingly high degree of metal specificity. PMID:18394190

  7. [Bioavailability and factors influencing its rate].

    PubMed

    Vraníková, Barbora; Gajdziok, Jan

    2015-01-01

    Bioavailability can be defined as the rate and range of active ingredient absorption, when it becomes available in the systemic circulation or at the desired site of drug action, respectively. Drug bioavailability after oral administration is affected by anumber of different factors, including physicochemical properties of the drug, physiological aspects, the type of dosage form, food intake, biorhythms, and intra- and interindividual variability of the human population. This article is the first from the series dealing with the bioavailability and methods leading to its improvement. The aim of the present paper is to provide an overview of aspects influencing the rate of bioavailability after oral administration of the active ingredient. Subsequentarticles will provide detailed descriptions of methods used for dug bioavailability improvement, which are here only summarized.

  8. Bioavailability of Promethazine during Spaceflight

    NASA Technical Reports Server (NTRS)

    Boyd, Jason L.; Wang, Zuwei; Putcha, Lakshmi

    2009-01-01

    Promethazine (PMZ) is the choice anti-motion sickness medication for treating space motion sickness (SMS) during flight. The side effects associated with PMZ include dizziness, drowsiness, sedation, and impaired psychomotor performance which could impact crew performance and mission operations. Early anecdotal reports from crewmembers indicate that these central nervous system side effects of PMZ are absent or greatly attenuated in microgravity, potentially due to changes in pharmacokinetics (PK) and pharmacodynamics in microgravity. These changes could also affect the therapeutic effectiveness of drugs in general and PMZ, in particular. In this investigation, we examined bioavailability and associated pharmacokinetics of PMZ in astronauts during and after space flight. Methods. Nine astronauts received, per their preference, PMZ (25 or 50 mg as intramuscular injection, oral tablet, or rectal suppository) on flight day one for the treatment of SMS and subsequently collected saliva samples and completed sleepiness scores for 72 h post dose. Thirty days after the astronauts returned to Earth, they repeated the protocol. Bioavailability and PK parameters were calculated and compared between flight and ground. Results. Maximum concentration (Cmax) was lower and time to reach Cmax (tmax) was longer in flight than on the ground. Area under the curve (AUC), a measure of bioavailability, was lower and biological half-life (t1/2) was longer in flight than on the ground. Conclusion. Results indicate that bioavailability of PMZ is reduced during spaceflight. Number of samples, sampling method, and sampling schedule significantly affected PK parameter estimates.

  9. Animal versus human oral drug bioavailability: do they correlate?

    PubMed

    Musther, Helen; Olivares-Morales, Andrés; Hatley, Oliver J D; Liu, Bo; Rostami Hodjegan, Amin

    2014-06-16

    Oral bioavailability is a key consideration in development of drug products, and the use of preclinical species in predicting bioavailability in human has long been debated. In order to clarify whether any correlation between human and animal bioavailability exist, an extensive analysis of the published literature data was conducted. Due to the complex nature of bioavailability calculations inclusion criteria were applied to ensure integrity of the data. A database of 184 compounds was assembled. Linear regression for the reported compounds indicated no strong or predictive correlations to human data for all species, individually and combined. The lack of correlation in this extended dataset highlights that animal bioavailability is not quantitatively predictive of bioavailability in human. Although qualitative (high/low bioavailability) indications might be possible, models taking into account species-specific factors that may affect bioavailability are recommended for developing quantitative prediction.

  10. Bioavailability of metals in stream food webs and hazards to brook trout (Salvelinus fontinalis) in the upper Animas River watershed, Colorado

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; May, T.W.; Church, S.E.; Kimball, B.A.

    2001-01-01

    The water quality, habitats, and biota of streams in the upper Animas River watershed of Colorado, USA, are affected by metal contamination associated with acid drainage. We determined metal concentrations in components of the food web of the Animas River and its tributaries - periphyton (aufwuchs), benthic invertebrates, and livers of brook trout (Salvelinus fontinalis) - and evaluated pathways of metal exposure and hazards of metal toxicity to stream biota. Concentrations of the toxic metals cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in periphyton, benthic invertebrates, and trout livers from one or more sites in the upper Animas River were significantly greater than those from reference sites. Periphyton from sites downstream from mixing zones of acid and neutral waters had elevated concentrations of aluminum (Al) and iron (Fe) reflecting deposition of colloidal Fe and Al oxides, and reduced algal biomass. Metal concentrations in benthic invertebrates reflected differences in feeding habits and body size among taxa, with greatest concentrations of Zn, Cu, and Cd in the small mayfly Rhithrogena, which feeds on periphyton, and greatest concentrations of Pb in the small stonefly Zapada, a detritivore. Concentrations of Zn and Pb decreased across each trophic linkage, whereas concentrations of Cu and Cd were similar across several trophic levels, suggesting that Cu and Cd were more efficiently transferred via dietary exposure. Concentrations of Cu in invertebrates and trout livers were more closely associated with impacts on trout populations and invertebrate communities than were concentrations of Zn, Cd, or Pb. Copper concentrations in livers of brook trout from the upper Animas River were substantially greater than background concentrations and approached levels associated with reduced brook trout populations in field studies and with toxic effects on other salmonids in laboratory studies. These results indicate that bioaccumulation and transfer of

  11. The Bioavailability of Soluble Cigarette Smoke Extract Is Reduced through Interactions with Cells and Affects the Cellular Response to CSE Exposure

    PubMed Central

    Bourgeois, Jeffrey S.; Jacob, Jeeva; Garewal, Aram; Ndahayo, Renata; Paxson, Julia

    2016-01-01

    Cellular exposure to cigarette smoke leads to an array of complex responses including apoptosis, cellular senescence, telomere dysfunction, cellular aging, and neoplastic transformation. To study the cellular response to cigarette smoke, a common in vitro model exposes cultured cells to a nominal concentration (i.e. initial concentration) of soluble cigarette smoke extract (CSE). However, we report that use of the nominal concentration of CSE as the only measure of cellular exposure is inadequate. Instead, we demonstrate that cellular response to CSE exposure is dependent not only on the nominal concentration of CSE, but also on specific experimental variables, including the total cell number, and the volume of CSE solution used. As found in other similar xenobiotic assays, our work suggests that the effective dose of CSE is more accurately related to the amount of bioavailable chemicals per cell. In particular, interactions of CSE components both with cells and other physical factors limit CSE bioavailability, as demonstrated by a quantifiably reduced cellular response to CSE that is first modified by such interactions. This has broad implications for the nature of cellular response to CSE exposure, and for the design of in vitro assays using CSE. PMID:27649082

  12. Increased calcium bioavailability in mice fed genetically engineered plants lacking calcium oxalate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioavailable calcium affects bone formation and calcification. Here we investigate how a single gene mutation altering calcium partitioning in the model forage crop Medicago truncatula affects calcium bioavailability. Previously, the cod5 M. truncatula mutant was identified which contains identical ...

  13. Development of an all-metal thick film cost affective metallization system for solar cells

    NASA Technical Reports Server (NTRS)

    Ross, B.

    1981-01-01

    An economical thick film solar cell contact for high volume production of low cost silicon solar array modules was investigated. All metal screenable pastes using base metals were studied. Solar cells with junction depths varying by a factor of 3.3, with and without a deposited oxide coating were used. Cells were screened and fired by a two step firing process. Adhesion and metallurgical results are unsatisfactory. No electrical information is obtained due to inadequate contact adhesion.

  14. Bioavailability Challenges Associated with Development of Anti-Cancer Phenolics

    PubMed Central

    Gao, Song; Hu, Ming

    2010-01-01

    Phenolics including many polyphenols and flavonoids have the potentials to become chemoprevention and chemotherapy agents. However, poor bioavailability limits their biological effects in vivo. This paper reviews the factors that affect phenolics absorption and their bioavailabilities from the points of view of their physicochemical properties and disposition in the gastrointestinal tract. The up-to-date research data suggested that solubility and metabolism are the primary reasons that limit phenolic aglycones’ bioavailability although stability and poor permeation may also contribute to the poor bioavailabilities of the glycosides. Future investigations should further optimize phenolics’ bioavailabilities and realize their chemopreventive and chemotherapeutic effects in vivo. PMID:20370701

  15. Do toxic heavy metals affect antioxidant defense mechanisms in humans?

    PubMed

    Wieloch, Monika; Kamiński, Piotr; Ossowska, Anna; Koim-Puchowska, Beata; Stuczyński, Tomasz; Kuligowska-Prusińska, Magdalena; Dymek, Grażyna; Mańkowska, Aneta; Odrowąż-Sypniewska, Grażyna

    2012-04-01

    The aim of this study was to prove whether anthropogenic pollution affects antioxidant defense mechanisms such as superoxide dismutase (SOD) and catalase (CAT) activity, ferritin (FRT) concentration and total antioxidant status (TAS) in human serum. The study area involves polluted and salted environment (Kujawy region; northern-middle Poland) and Tuchola Forestry (unpolluted control area). We investigated 79 blood samples of volunteers from polluted area and 82 from the control in 2008 and 2009. Lead, cadmium and iron concentrations were measured in whole blood by the ICP-MS method. SOD and CAT activities were measured in serum using SOD and CAT Assay Kits by the standardized colorimetric method. Serum TAS was measured spectrophotometrically by the modified Benzie and Strain (1996) method and FRT concentration-by the immunonefelometric method. Pb and Cd levels and SOD activity were higher in volunteers from polluted area as compared with those from the control (0.0236 mg l(-1) vs. 0.014 mg l(-1); 0.0008 mg l(-1) vs. 0.0005 mg l(-1); 0.137 Um l(-1) vs. 0.055 Um l(-1), respectively). Fe level, CAT activity and TAS were lower in serum of volunteers from polluted area (0.442 g l(-1) vs. 0.476 gl(-1); 3.336 nmol min(-1)ml(-1) vs. 6.017 nmol min(-1)ml(-1); 0.731 Trolox-equivalents vs. 0.936 Trolox-equivalents, respectively), whilst differences in FRT concentration were not significant (66.109 μg l(-1) vs. 37.667 μg l(-1), p=0.3972). Positive correlations between Pb (r=0.206), Cd (r=0.602) and SOD in the inhabitants of polluted area, and between Cd and SOD in the control (r=0.639) were shown. In volunteers from both studied environments TAS-FRT (polluted: r=0.625 vs. control: r=0.837) and Fe-FRT (polluted area: r=0.831 vs. control: r=0.407) correlations, and Pb-FRT (r=0.360) and Pb-TAS (r=0.283) in the control were stated. The higher lead and cadmium concentrations in blood cause an increase of SOD activity. It suggests that this is one of the defense mechanisms of an

  16. Stability of Commercial Lead in the Presence of Iron(III)-Sequestering Biogenic Ligands: Implications for Metal Mobility and Bioavailability in Natural Iron-Rich Environments

    NASA Astrophysics Data System (ADS)

    Cornejo-Garrido, H.; Fernández-Lomelin, P.; Guzman-Mendoza, J.; Sedov, S.; Cervini-Silva, J.

    2007-05-01

    Mexico is a leader in the production of lead. Exposure of soils contaminated with lead ore waste, ingestion of contaminated waters, or inhalation of suspended particles, among others are examples of common routes of exposure. Solubility often becomes limiting for Pb bioavailability, therein the need to further characterize natural processes that contribute to its mobility in the environment. In oxic environments, such as highly weathered soils or surficial seawater, microorganisms and higher plants produce biogenic ligands such as siderophores to mobilize Fe that otherwise would be unavailable. Siderophores ligands facilitate the dissolution of natural particles that represent a primary reservoir of iron. On the other hand, lead sorbs strongly to minerals, particularly to those bearing high contents of iron. Siderophore ligands have been identified to influence the adsorption behavior of Pb(II) on iron mineral surfaces. Yet, little is known on how siderophore ligands may affect the stability of Pb(0). In this paper we study the stability of Pb(0) in the presence of desferrioxamine (DFO-B), a common siderophore ligand. Batch dissolution experiments of Pb(0) (1 g L-1) in the presence of DFO-B ([DFO-B]0 ? 200M) at pH 5 were conducted for 7 days. The adsorption behavior of DFO-B was also characterized. Corresponding experiments in the absence of DFO-B for the purpose of comparison were also conducted. Analyses for soluble Pb were conducted by AA and ICP-AES. Solid characterization was conducted by XRD and SEM-EDX. Analyses for soluble Pb reveal concentrations of up to ca. 40 ppm. White small-sized particles were identified after reaction, regardless of the presence of DFO-B. The suspension chemical composition influenced colloidal stability. In the presence of DFO-B, forming solids showed small aspect ratio ( < 2m), while remained suspended in supernatant solutions. In the absence of DFO-B, solids formed showed varied in size. The were found to remain associated with

  17. Application of multivariate techniques in the optimization of a procedure for the determination of bioavailable concentrations of Se and As in estuarine sediments by ICP OES using a concomitant metals analyzer as a hydride generator.

    PubMed

    Lopes, Watson da Luz; Santelli, Ricardo Erthal; Oliveira, Eliane Padua; de Carvalho, Maria de Fátima Batista; Bezerra, Marcos Almeida

    2009-10-15

    A procedure has been developed for the determination of bioavailable concentrations of selenium and arsenic in estuarine sediments employing inductively coupled plasma optical emission spectrometry (ICP OES) using a concomitant metals analyzer device to perform hydride generation. The optimization of hydride generation was done in two steps: using a two-level factorial design for preliminary evaluation of studied factors and a Doehlert design to assess the optimal experimental conditions for analysis. Interferences of transition metallic ions (Cd(2+), Co(2+), Cu(2+), Fe(3+) and Ni(2+)) to selenium and arsenic signals were minimized by using higher hydrochloric acid concentrations. In this way, the procedure allowed the determination of selenium and arsenic in sediments with a detection limit of 25 and 30 microg kg(-1), respectively, assuming a 50-fold sample dilution (0.5 g sample extraction to 25 mL sample final volume). The precision, expressed as a relative standard deviation (% RSD, n=10), was 0.2% for both selenium and arsenic in 200 microg L(-1) solutions, which corresponds to 10 microg g(-1) in sediment samples after acid extraction. Applying the proposed procedure, a linear range of 0.08-10 and 0.10-10 microg g(-1) was obtained for selenium and arsenic, respectively. The developed procedure was validated by the analysis of two certified reference materials: industrial sludge (NIST 2782) and river sediment (NIST 8704). The results were in agreement with the certified values. The developed procedure was applied to evaluate the bioavailability of both elements in four sediment certified reference materials, in which there are not certified values for bioavailable fractions, and also in estuarine sediment samples collected in several sites of Guanabara Bay, an impacted environment in Rio de Janeiro, Brazil.

  18. Sediment Metal Concentration Survey Along the Mine-Affected Molonglo River, NSW, Australia.

    PubMed

    Wadige, Chamani P M Marasinghe; Taylor, Anne M; Krikowa, Frank; Maher, William A

    2016-04-01

    Metal concentrations were measured in sediments of the mine-affected Molonglo River to determine current metal concentrations and distribution along the river. Compared with an uncontaminated site at 6.5 km upstream of the Captains Flat mine, sediments collected from the river at ≤12.5 km distance below the mine had a significantly higher percentage of finely divided silt and clay with higher concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn). The measured metal concentrations in the mine affected sites of the river were in the following order: Zn = 697-6818 > Pb = 23-1796 > Cu = 10-628 > Cd = 0.13-8.7 µg/g dry mass. The highest recorded metal concentrations were Cd at 48, Cu at 45, Pb at 240, and Zn at 81 times higher than the background concentrations of these metals in the river sediments. A clear sediment metal-contamination gradient from the mine site to 63 km downstream was established for Cd, Cu, Pb, and Zn in the river sediments. Compared with sediment metal concentrations before a major flood in 2010, only Zn concentrations increased. For all of the mine-affected sites studied, Cd and Zn concentrations exceeded the (ANZECC/ARMCANZ, Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council/Agriculture and Resource Management Council of Australia and New Zealand, 2000) interim sediment-quality guidelines low values for Cd (1.5 µg/g dry mass) and the high value for Zn (410 µg/g dry mass). Existing metal loads in the riverbed sediments may still be adversely affecting the river infauna.

  19. Flavonoid Bioavailability and Attempts for Bioavailability Enhancement

    PubMed Central

    Thilakarathna, Surangi H.; Rupasinghe, H. P. Vasantha

    2013-01-01

    Flavonoids are a group of phytochemicals that have shown numerous health effects and have therefore been studied extensively. Of the six common food flavonoid classes, flavonols are distributed ubiquitously among different plant foods whereas appreciable amounts of isoflavones are found in leguminous plant-based foods. Flavonoids have shown promising health promoting effects in human cell culture, experimental animal and human clinical studies. They have shown antioxidant, hypocholesterolemic, anti-inflammatory effects as well as ability to modulate cell signaling and gene expression related disease development. Low bioavailability of flavonoids has been a concern as it can limit or even hinder their health effects. Therefore, attempts to improve their bioavailability in order to improve the efficacy of flavonoids are being studied. Further investigations on bioavailability are warranted as it is a determining factor for flavonoid biological activity. PMID:23989753

  20. ASSESSING SOIL ARSENIC BIOAVAILABILITY IN THE LABORATORY MOUSE

    EPA Science Inventory

    Variation among soils in the bioavailability of arsenic can be a critical determinant of the risk posed by exposure to these soils. Although in vitro techniques can provide vital data on aspects of bioavailability of metals and metalloids from soils, these results must be valida...

  1. Optimized mixed oils remarkably reduce the amount of surfactants in microemulsions without affecting oral bioavailability of ibuprofen by simultaneously enlarging microemulsion areas and enhancing drug solubility.

    PubMed

    Chen, Yizhen; Tuo, Jue; Huang, Huizhi; Liu, Dan; You, Xiuhua; Mai, Jialuo; Song, Jiaqi; Xie, Yanqi; Wu, Chuanbin; Hu, Haiyan

    2015-06-20

    The toxicity and irritation associated with high amounts of surfactants restrict the extensive utilization of microemulsions. To address these shortcomings, employing mixed oils to enlarge microemulsion areas therefore reducing surfactant contents is a promising strategy. However, what kinds of mixed oils are more efficient in enlarging microemulsion areas still remains unclear. In this research, we found that the chain length and degree of unsaturation of oils play a key role in enlarging microemulsion areas. The combination of moderate chain saturated oil caprylic/capric triglyceride (GTCC) with long chain unsaturated oil glycerol trioleate significantly increased the microemulsion areas. Solubility of ibuprofen in the mixed oils was unexpectedly and remarkably increased (almost 300mg/mL) compared with that (around 100mg/mL) of the single oil (GTCC), which also resulted in greatly increased solubility of ibuprofen in mixed oils-containing microemulsions. By optimizing the mixed oil formulation, the absolute amount of surfactant in drug-loaded microemulsions was reduced but increased drug oral bioavailability in rats was maintained. It could be concluded that the combined use of moderate chain oils and long chain unsaturated oils could not only acquire enlarged microemulsion areas but also enhanced drug solubility, therefore doubly reducing surfactant amount, which is extremely beneficial for developing safe microemulsions.

  2. CORRELATING METAL SPECIATION IN SOILS

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  3. Mixtures of herbicides and metals affect the redox system of honey bees.

    PubMed

    Jumarie, Catherine; Aras, Philippe; Boily, Monique

    2017-02-01

    The increasing loss of bee colonies in many countries has prompted a surge of studies on the factors affecting bee health. In North America, main crops such as maize and soybean are cultivated with extensive use of pesticides that may affect non-target organisms such as bees. Also, biosolids, used as a soil amendment, represent additional sources of metals in agroecosystems; however, there is no information about how these metals could affect the bees. In previous studies we investigated the effects of environmentally relevant doses of herbicides and metals, each individually, on caged honey bees. The present study aimed at investigating the effects of mixtures of herbicides (glyphosate and atrazine) and metals (cadmium and iron), as these mixtures represent more realistic exposure conditions. Levels of metal, vitamin E, carotenoids, retinaldehyde, at-retinol, retinoic acid isomers (9-cis RA, 13-cis RA, at-RA) and the metabolites 13-cis-4-oxo-RA and at-4-oxo-RA were measured in bees fed for 10 days with contaminated syrup. Mixtures of herbicides and cadmium that did not affect bee viability, lowered bee α- and β-carotenoid contents and increased 9-cis-RA as well as 13-cis-4-oxo-RA without modifying the levels of at-retinol. Bee treatment with either glyphosate, a combination of atrazine and cadmium, or mixtures of herbicides promoted lipid peroxidation. Iron was bioconcentrated in bees and led to high levels of lipid peroxidation. Metals also decreased zeaxanthin bee contents. These results show that mixtures of atrazine, glyphosate, cadmium and iron may affect different reactions occurring in the metabolic pathway of vitamin A in the honey bee.

  4. Trace Metals Affect Early Maternal Transfer of Immune Components in the Feral Pigeon.

    PubMed

    Chatelain, M; Gasparini, J; Haussy, C; Frantz, A

    2016-01-01

    Maternal early transfers of immune components influence eggs' hatching probability and nestlings' survival. They depend on females' own immunity and, because they are costly, on their physiological state. Therefore, trace metals, whether toxic and immunosuppressive (e.g., lead, cadmium, etc.) or necessary and immunostimulant (e.g., zinc, copper, iron, etc.), are likely to affect the amount of immune components transferred into the eggs. It may also vary with plumage eumelanin level, which is known to be linked to immunity, to transfer of antibodies, and to metal detoxification. In feral pigeons (Columba livia) injected with an antigen and experimentally exposed to lead and/or zinc (two highly abundant trace metals in urban areas), we measured specific antibody transfer and concentrations of two antimicrobial proteins (lysozyme and ovotransferrin) in eggs. As expected, lead had negative effects on specific antibody transfer, while zinc positively affected lysozyme egg concentrations. Moreover, eggs from lead-exposed females exhibited higher ovotransferrin concentrations; because it binds metal ions, ovotransferrin may enable egg detoxification and embryo protection. Finally, eggs' lysozyme concentrations increased with plumage darkness of females not exposed to zinc, while the relation was opposite among zinc-exposed females, suggesting that benefits and costs of plumage melanism depend on trace metal environmental levels. Overall, our study underlines the potential ecotoxicological effects of trace metals on maternal transfers of immune components and the role of plumage melanism in modulating these effects.

  5. Heavy metals in potable groundwater of mining-affected river catchments, northwestern Romania.

    PubMed

    Bird, Graham; Macklin, Mark G; Brewer, Paul A; Zaharia, Sorin; Balteanu, Dan; Driga, Basarab; Serban, Mihaela

    2009-12-01

    Groundwater, accessed using wells and municipal springs, represents the major source of potable water for the human population outside of major urban areas in northwestern Romania, a region with a long history of metal mining and metallurgy. The magnitude and spatial distribution of metal contamination in private-supply groundwater was investigated in four mining-affected river catchments in Maramureş and Satu Mare Counties through the collection of 144 groundwater samples. Bedrock geology, pH and Eh were found to be important controls on the solubility of metals in groundwater. Peak metal concentrations were found to occur in the Lapuş catchment, where metal levels exceed Dutch target and intervention values in up to 49% and 14% of samples, respectively. A 700 m wide corridor in the Lapuş catchment on either side of the main river channel was identified in which peak Cd (31 μg l(-1)), Cu (50 μg l(-1)), Pb (50 μg l(-1)) and Zn (3,000 μg l(-1)) concentrations were found to occur. Given the generally similar bedrock geologies, lower metal levels in other catchments are believed to reflect differences in the magnitude of metal loading to the local environment from both metal mining and other industrial and municipal sources. Sampling of groundwater in northwestern Romania has indicated areas of potential concern for human health, where heavy metal concentrations exceed accepted environmental quality guidelines. The presence of elevated metal levels in groundwater also has implications for the implementation of the EU Water Framework Directive (WFD) and achieving 'good' status for groundwater in this part of the Danube River Basin District (RBD).

  6. Heterogeneous processes affecting metal ion transport in the presence of organic ligands: Reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Kantar, Cetin

    2007-04-01

    The development of models to accurately simulate metal ion transport through saturated systems under variable chemical conditions, e.g., in systems containing organic ligands (L) such as natural organic matter (NOM), has two essential aspects: (1) establishing the ability to simulate metal ion sorption to aquifer solids over a range of metal/ligand ratios; and (2) to incorporate this ability to simulate metal speciation over a range in chemical conditions (e.g., pH, ligand activity) into mass transport models. Modeling approaches to evaluate metal ion sorption and transport in the presence of NOM include: (1) isotherm-based transport models, and (2) multicomponent (MC) transport models. The accuracy of transport models depends on how well the chemical interactions affecting metal ion transport in the presence of organic ligands (e.g., metal/ligand complexation) are described in transport equations. The isotherm-based transport models often fail to accurately describe metal ion transport in the presence of NOM since these models treat NOM as a single solute despite the fact that NOM is a multicomponent mixture of subcomponents with different chemical and polyfunctional behavior. On the other hand, the calculations presented in this study suggest that a multicomponent reactive transport model, in conjunction with a mechanistic modeling approach for the description of metal ion binding by NOM in a manner conducive to the application of surface complexation modeling (SCM), can effectively be used as an important predictive tool in simulating metal ion sorption and transport under variable chemical conditions in the presence of NOM.

  7. Use of chemical methods to assess Cd and Pb bioavailability to the snail Cantareus aspersus: a first attempt taking into account soil characteristics.

    PubMed

    Pauget, B; Gimbert, F; Coeurdassier, M; Scheifler, R; de Vaufleury, A

    2011-09-15

    Bioavailability is a key parameter in conditioning contaminant transfer to biota. However, in risk assessment of terrestrial contamination, insufficient attention is being paid to the influence of soil type on trace metal bioavailability. This paper addresses the influence of soil properties on the chemical availability of cadmium (Cd) and lead (Pb) (CaCl(2) extraction and ionic activity) and bioavailability (accumulation kinetics) to the land snail Cantareus aspersus. Snails were exposed to nine contaminated soils differing by a single characteristic (pH or organic matter content or clay content) for 28 days. Toxicokinetic models were applied to determine metal uptake and excretion rates in snails and multivariate regression was used to relate uptake parameters to soil properties. The results showed that alkalinisation of soil and an increase of the organic matter content decreased Pb and Cd bioavailability to snails whereas kaolin clay had no significant influence. The CaCl(2)-extractable concentrations tended to overestimate the effects of pH when used to explain metal uptake rate. We conclude that factors other than those controlling the extractable fraction affect metal bioavailability to snails, confirming the requirement of biota measurements in risk assessment procedures.

  8. Trace metal accumulation in soil and their phytoavailability as affected by greenhouse types in north China.

    PubMed

    Yang, Lanqin; Huang, Biao; Mao, Mingcui; Yao, Lipeng; Hickethier, Martina; Hu, Wenyou

    2015-05-01

    Long-term heavy organic fertilizer application has linked greenhouse vegetable production (GVP) with trace metal contamination in north China. Given that trace metals release from fertilizers and their availability may be affected by discrepant environmental conditions, especially temperature under different greenhouses, this study investigated Cd, Cu, Pb, and Zn accumulation and contamination extent in soil as well as their phytoavailability under two major greenhouses in Tongshan, north China, namely solar greenhouse (SG) and round-arched plastic greenhouse (RAPG), to evaluate their presumed difference. The results showed significant Cd, Cu, Pb, and Zn accumulation in GVP soil by comparing with those in open-field soil, but their accumulation extent and rates were generally greater in SG than those in RAPG. This may be related to more release of trace metals to soil due to the acceleration of decomposition and humification process of organic fertilizers under higher soil temperature in SG relative to that in RAPG. Overall, soil in both greenhouses was generally less polluted or moderately polluted by the study metals. Similarly, decreased soil pH and elevated soil available metals in SG caused higher trace metals in leaf vegetables in SG than those in RAPG, although there was no obvious risk via vegetable consumption under both greenhouses. Lower soil pH may be predominantly ascribed to more intensive farming practices in SG while elevated soil available metals may be attributed to more release of dissolved organic matter-metal complexes from soil under higher temperature in SG. The data provided in this study may assist in developing reasonable and sustainable fertilization strategies to abate trace metal contamination in both greenhouses.

  9. Relative Bioavailability and Bioaccessability and Speciation of Arsenic in Contaminated Soils

    EPA Science Inventory

    Background: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessment...

  10. EFFECTS OF DIFFERENT FORMS OF ORGANIC CARBON ON THE PARTITIONING AND BIOAVAILABILITY OF NONPHENYL

    EPA Science Inventory

    Oxygenated nonpolar organic contaminants (NOCs) are underrepresented in studies of the partitioning and bioavailability of NOCs, including nonylphenol. In this investigation, we evaluated the toxicity, partitioning, and bioavailability of nonylphenol as affected by different form...

  11. Metal/metalloid fixation by litter during decomposition affected by silicon availability during plant growth.

    PubMed

    Schaller, Jörg

    2013-03-01

    Organic matter is known to accumulate high amounts of metals/metalloids, enhanced during the process of decomposition by heterotrophic biofilms (with high fixation capacity for metals/metalloids). The colonization by microbes and the decay rate of the organic matter depends on different litter properties. Main litter properties affecting the decomposition of organic matter such as the nutrient ratios and the content of cellulose, lignin and phenols are currently described to be changed by silicon availability. But less is known about the impact of silicon availability during plant growth on elemental fixation during decay. Hence, this research focuses on the impact of silicon availability during plant growth on fixation of 42 elements during litter decay, by controlling the litter properties. The results of this experiment are a significantly higher metal/metalloid accumulation during decomposition of plant litter grown under low silicon availability. This may be explained by the altered litter properties (mainly nutrient content) affecting the microbial decomposition of the litter, the microbial growth on the litter and possibly by the silicon double layer, which is evident in leaf litter with high silicon content and reduces the binding sites for metals/metalloids. Furthermore, this silicon double layer may also reduce the growing biofilm by reducing the availability of carbon compounds at the litter surface and has to be elucidated in further research. Hence, low silicon availability during plant growth enhances the metal/metalloid accumulation into plant litter during aquatic decomposition.

  12. The addition of organic carbon and nitrate affects reactive transport of heavy metals in sandy aquifers.

    PubMed

    Satyawali, Yamini; Seuntjens, Piet; Van Roy, Sandra; Joris, Ingeborg; Vangeel, Silvia; Dejonghe, Winnie; Vanbroekhoven, Karolien

    2011-04-25

    Organic carbon introduction in the soil to initiate remedial measures, nitrate infiltration due to agricultural practices or sulphate intrusion owing to industrial usage can influence the redox conditions and pH, thus affecting the mobility of heavy metals in soil and groundwater. This study reports the fate of Zn and Cd in sandy aquifers under a variety of plausible in-situ redox conditions that were induced by introduction of carbon and various electron acceptors in column experiments. Up to 100% Zn and Cd removal (from the liquid phase) was observed in all the four columns, however the mechanisms were different. Metal removal in column K1 (containing sulphate), was attributed to biological sulphate reduction and subsequent metal precipitation (as sulphides). In the presence of both nitrate and sulphate (K2), the former dominated the process, precipitating the heavy metals as hydroxides and/or carbonates. In the presence of sulphate, nitrate and supplemental iron (Fe(OH)(3)) (K3), metal removal was also due to precipitation as hydroxides and/or carbonates. In abiotic column, K4, (with supplemental iron (Fe(OH)(3)), but no nitrate), cation exchange with soil led to metal removal. The results obtained were modeled using the reactive transport model PHREEQC-2 to elucidate governing processes and to evaluate scenarios of organic carbon, sulphate and nitrate inputs.

  13. Temporal assessment of copper speciation, bioavailability and toxicity in UK freshwaters using chemical equilibrium and biotic ligand models: Implications for compliance with copper environmental quality standards.

    PubMed

    Lathouri, Maria; Korre, Anna

    2015-12-15

    Although significant progress has been made in understanding how environmental factors modify the speciation, bioavailability and toxicity of metals such as copper in aquatic environments, the current methods used to establish water quality standards do not necessarily consider the different geological and geochemical characteristics of a given site and the factors that affect copper fate, bioavailability potential and toxicity. In addition, the temporal variation in the concentration and bioavailable metal fraction is also important in freshwater systems. The work presented in this paper illustrates the temporal and seasonal variability of a range of water quality parameters, and Cu speciation, bioavailability and toxicity at four freshwaters sites in the UK. Rivers Coquet, Cree, Lower Clyde and Eden (Kent) were selected to cover a broad range of different geochemical environments and site characteristics. The monitoring data used covered a period of around six years at almost monthly intervals. Chemical equilibrium modelling was used to study temporal variations in Cu speciation and was combined with acute toxicity modelling to assess Cu bioavailability for two aquatic species, Daphnia magna and Daphnia pulex. The estimated copper bioavailability, toxicity levels and the corresponding ecosystem risks were analysed in relation to key water quality parameters (alkalinity, pH and DOC). Although copper concentrations did not vary much during the sampling period or between the seasons at the different sites; copper bioavailability varied markedly. In addition, through the chronic-Cu BLM-based on the voluntary risk assessment approach, the potential environmental risk in terms of the chronic toxicity was assessed. A much higher likelihood of toxicity effects was found during the cold period at all sites. It is suggested that besides the metal (copper) concentration in the surface water environment, the variability and seasonality of other important water quality

  14. Aedes aegypti pharate 1st instar quiescence affects larval fitness and metal tolerance.

    PubMed

    Perez, Mario H; Noriega, Fernando G

    2012-06-01

    The eggs of the mosquito Aedes aegypti possess the ability to undergo an extended quiescence hosting a fully developed 1st instar larvae within the chorion. As a result of this life history trait pharate larvae can withstand months of quiescence inside the egg where they depend on stored maternal reserves. A. aegypti mosquitoes are frequently associated with urban habitats that may contain significant metal pollution. Therefore, the duration of quiescence and extent of nutritional depletion may affect the physiology and survival of larvae that hatch in a suboptimal habitat. The aim of this study was to determine the effect of an extended quiescence on larval nutrient reserves and the subsequent effects of metal exposure on larval fitness, survival and development. We hypothesized that an extended quiescence would reduce nutritional reserves and alter the molecular response to metal exposure thereby reducing larval survival and altering larval development. As a molecular marker for metal stress responses, we evaluated transcriptional changes in the metallothionein gene (AaMtn) in response to quiescence and metal exposure. Extended 1st instar quiescence resulted in a significant decrease in lipid reserves and negatively affected larval fitness and development. AaMtn transcription and metal tolerance were compromised in first instars emerged from eggs that had undergone an extended quiescence. These findings suggest that newly emerged mosquito larvae that had survived a relatively long pharate 1st instar quiescence (as might occur during a dry season) are more vulnerable to environmental stress. Pharate 1st instar quiescence could have implications for vector control strategies. Newly emerged mosquito larvae at the end of the dry season or start of the wet season are physiologically compromised, and therefore potentially more susceptible to vector control strategies than mosquito larvae hatched subsequently throughout the wet season.

  15. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy

    PubMed Central

    Rein, Maarit J.; Renouf, Mathieu; Cruz‐Hernandez, Cristina; Actis‐Goretta, Lucas; Thakkar, Sagar K.; da Silva Pinto, Marcia

    2013-01-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. PMID:22897361

  16. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy.

    PubMed

    Rein, Maarit J; Renouf, Mathieu; Cruz-Hernandez, Cristina; Actis-Goretta, Lucas; Thakkar, Sagar K; da Silva Pinto, Marcia

    2013-03-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds.

  17. Heavy metal deposition fluxes affecting an Atlantic coastal area in the southwest of Spain

    NASA Astrophysics Data System (ADS)

    Castillo, Sonia; de la Rosa, Jesús D.; Sánchez de la Campa, Ana M.; González-Castanedo, Yolanda; Fernández-Camacho, Rocío

    2013-10-01

    The present study seeks to estimate the impact of industrial emissions and harbour activities on total atmospheric deposition in an Atlantic coastal area in the southwest of the Iberian Peninsula. Three large industrial estates and a busy harbour have a notable influence on air quality in the city of Huelva and the surrounding area. The study is based on a geochemical characterization of trace elements deposited (soluble and insoluble fractions) in samples collected at a rate of 15 days/sample from June 2008 to May 2011 in three sampling sites, one in the principal industrial belt, another in the city of Huelva, and the last, 56 km outside Huelva city in an area of high ecological interest. The industrial emissions emitted by the Huelva industrial belt exert a notable influence on atmospheric deposition. Major deposition fluxes were registered for Fe, Cu, V, Ni, P, Pb, As, Sn, Sb, Se and Bi, principally in the insoluble fraction, derived from industrial funnel emissions and from harbour activities. Metals such as Mn, Ni, Cu and Zn, and elements such as P also have a significant presence in the soluble fraction converting them into potentially bio-available nutrients for the living organism in the ocean. A principal component analysis certifies three common emissions sources in the area: 1) a mineral factor composed mainly of elements derived from silicate minerals mixed with certain anthropogenic species (Mg, K, Sr, Na, Al, Ba, LREE, Li, Mn, HREE, Ti, Fe, Se, V, SO-, Ni, Ca and P); 2) an industrial factor composed of the same trace elements in the three areas (Sb, Mo, Bi, As, Pb, Sn and Cd) thus confirming the impact of the emissions from the Huelva industrial belt on remote areas; and 3) a marine factor composed of Na, Cl, Mg and SO.

  18. How surface density of galaxy disks affects metallicity? Outflow and Accretion

    NASA Astrophysics Data System (ADS)

    Wu, Po-Feng; Kudritzki, Rolf-Peter; Tully, R. Brent; Neill, J. D.

    2015-08-01

    The surface density of disk is considered as a second parameter affecting the evolution of disk galaxies other than mass. Several physical and chemical properties of galaxies are found to be correlated with surface density of disk galaxies. However, the surface density, or surface brightness, is also strongly correlated with mass. It's not clear whether surface density really plays a role, or those correlations simply reflect the effect from stellar mass. To ask the question properly, one should take away the dependence on mass of galaxies, i.e., compare galaxies with the same mass but different surface densities.In this study, we ask, besides stellar mass, whether the surface density of disks also affects chemical evolution of galaxies. We demonstrate that, after removing the dependence on stellar mass and gas mass, the metallicity of galaxy still correlates with surface density of the galaxy disk. At the same stellar and gas mass, higher surface brightness galaxies on average possess both higher stellar and gas-phase metallicity, inferred from broadband color and spectrosopy of HII regions, respectively.We use an analytical model of chemical evolution involving gas outflow and accretion to explore possible reasons causing the difference in metallicity. Accroding to the model, at the same mass, lower metallicity galaxies should have experienced severer mass loss during star-formation events, and/or be inert to gas accretion. Both scenarios are consistent with general expections from properties of low surface density disks of shallow potential wells and dynamical stability.

  19. Heat-affected zone of metals ablated with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Hirayama, Yoichi; Obara, Minoru

    2003-07-01

    The melted area is found on the surface ablated by nanosecond and picosecond laser pulses. However, the heat effect is little on the ablated surface in the case of femtosecond laser due to non-thermal ablation process. Heat-affected zone of metallic bulk crystal ablated with femtosecond Ti:sapphire laser pulses is experimentally studied. As a result of XRD (X-ray diffraction) measurements, the XRD peak signal of the area ablated with Ti:sapphire laser becomes smaller than that of the crystalline metal sample. While the crystallinity of the metal sample is crystalline before the laser ablation, the crystallinity in the ablated area is partially changed into the amorphous form. Because the residual pulse energy that is not used for the ablation process remains, leading to the formation of thin layer of melt phase. The melt layer is abruptly cooled down not to be re-crystallized, but to transform into the amorphous form. It is evident that the area ablated with femtosecond laser is changed into the amorphous metal. Additionally XRD measurements and AR+ etching are performed alternately to measure the thickness of the amorphous layer. In the case of iron, the thickness is measured to be 1 μm approximately, therefore heat-affected zone is quite small.

  20. How Hydrogen Bonds Affect the Growth of Reverse Micelles around Coordinating Metal Ions.

    PubMed

    Qiao, Baofu; Demars, Thomas; Olvera de la Cruz, Monica; Ellis, Ross J

    2014-04-17

    Extensive research on hydrogen bonds (H-bonds) have illustrated their critical role in various biological, chemical and physical processes. Given that existing studies are predominantly performed in aqueous conditions, how H-bonds affect both the structure and function of aggregates in organic phase is poorly understood. Herein, we investigate the role of H-bonds on the hierarchical structure of an aggregating amphiphile-oil solution containing a coordinating metal complex by means of atomistic molecular dynamics simulations and X-ray techniques. For the first time, we show that H-bonds not only stabilize the metal complex in the hydrophobic environment by coordinating between the Eu(NO3)3 outer-sphere and aggregating amphiphiles, but also affect the growth of such reverse micellar aggregates. The formation of swollen, elongated reverse micelles elevates the extraction of metal ions with increased H-bonds under acidic condition. These new insights into H-bonds are of broad interest to nanosynthesis and biological applications, in addition to metal ion separations.

  1. Municipal sludge metal contamination of old-field ecosystems: Do liming and tilling affect remediation

    SciTech Connect

    Benninger-Truax, M.; Taylor, D.H. . Dept. of Zoology)

    1993-10-01

    Mechanisms of ecosystem recovery following 11 years of sewage sludge disposal were addressed by examining the effects of tilling and/or liming on soil chemistry and the heavy metal (Cd, Cu, Pb, and Zn) concentrations in soil, earthworms, vegetation, spiders, and crickets. In 1989 and 1990, subplots in each of three former 0.1-ha, long-term treatments (sludge, fertilizer, and control) were either unmanipulated or manipulated via tilling and/or liming. Liming significantly increased the pH of soil from the long-term sludge and fertilizer plots, and the combination of tilling and liming affected the heavy metal concentrations in earthworms, as lower concentrations of Cd, Cu, Pb, and Zn were found in earthworms collected from subplots that had been both tilled and limed. However, most observed significant differences in heavy metal concentrations reflected the long-term treatments, as heavy metal concentrations tended to be greater in the soil and biota collected from sludge-treated plots. Thus, heavy metals remained in the soil in forms available to the biota, regardless of the cessation of sludge application or subplot manipulations (liming and/or tilling) for two years following cessation of sludge application.

  2. A DGT technique for plutonium bioavailability measurements.

    PubMed

    Cusnir, Ruslan; Steinmann, Philipp; Bochud, François; Froidevaux, Pascal

    2014-09-16

    The toxicity of heavy metals in natural waters is strongly dependent on the local chemical environment. Assessing the bioavailability of radionuclides predicts the toxic effects to aquatic biota. The technique of diffusive gradients in thin films (DGT) is largely exploited for bioavailability measurements of trace metals in waters. However, it has not been applied for plutonium speciation measurements yet. This study investigates the use of DGT technique for plutonium bioavailability measurements in chemically different environments. We used a diffusion cell to determine the diffusion coefficients (D) of plutonium in polyacrylamide (PAM) gel and found D in the range of 2.06-2.29 × 10(-6) cm(2) s(-1). It ranged between 1.10 and 2.03 × 10(-6) cm(2) s(-1) in the presence of fulvic acid and in natural waters with low DOM. In the presence of 20 ppm of humic acid of an organic-rich soil, plutonium diffusion was hindered by a factor of 5, with a diffusion coefficient of 0.50 × 10(-6) cm(2) s(-1). We also tested commercially available DGT devices with Chelex resin for plutonium bioavailability measurements in laboratory conditions and the diffusion coefficients agreed with those from the diffusion cell experiments. These findings show that the DGT methodology can be used to investigate the bioaccumulation of the labile plutonium fraction in aquatic biota.

  3. CORRELATING METAL SPECIATION IN SOILS TO RISK

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  4. Influence of dissolved organic matter on nickel bioavailability and toxicity to Hyalella azteca in water-only exposures.

    PubMed

    Doig, Lorne E; Liber, Karsten

    2006-03-10

    Dissolved organic matter (DOM) is known to reduce the bioavailability of metals in aquatic systems. This study evaluated the effects of DOM from various sources (e.g., Little Bear Lake sediment, Suwannee River, peat moss) and various DOM fractions (humic acids, HA; fulvic acids, FA) on the bioavailability of nickel (Ni) to Hyalella azteca, a common freshwater benthic invertebrate. In particular, this study was conducted to evaluate the effect of surficial sediment DOM on Ni bioavailability. Short-term (48 h) acute toxicity tests with H. azteca conducted in synthetic water demonstrated that the aqueous Ni concentrations required for lethality were greater than what could be significantly complexed by environmentally relevant concentrations of dissolved organic carbon (DOC: 0.6-30.4 mg/L). At Ni concentrations sublethal to H. azteca (500 microg/L), the bioavailability of Ni was significantly reduced in the presence of representative surface water DOC concentrations regardless of DOC source or fraction. DOC fraction (i.e., FA and HA) differentially affected Ni speciation, but had little or no effect on Ni accumulation by H. azteca. Tissue Ni was found to be strongly dependent upon the Ni(2+) concentration in the exposure solutions and the Ni:DOC ratio. Overall, the concentration of DOC played a greater role than either DOC source or fraction in determining Ni speciation and hence bioavailability and toxicity to H. azteca.

  5. Arsenic Bioavailability, Bioaccessibility, And Speciation

    EPA Science Inventory

    The term bioavailability has many different meanings across various disciplines. Often bioavailability is concerned with human health aspects such as the case of urban children interacting with contaminated soil. The still utilized approach to base risk assessment on total meta...

  6. Molecular dynamics simulation of heat-affected zone of copper metal ablated with femtosecond laser

    NASA Astrophysics Data System (ADS)

    Hirayama, Yoichi; Obara, Minoru

    2005-03-01

    Femtosecond laser ablation of materials with high thermal conductivity is of paramount importance, because the chemical composition and properties of the area ablated with femtosecond laser are kept unchanged. The material processing by femtosecond laser can well control the heat-affected zone, compared to nanosecond laser ablation. We report on the heat-affected zone of crystalline copper (Cu) by use of femtosecond laser experimentally and theoretically. Laser ablation of Cu is investigated theoretically by two temperature model and molecular dynamics (MD) simulation. The MD simulation takes into account of electron temperature and thermal diffusion length calculated by two temperature model. The dependence of lattice temperature on time and depth is calculated by the MD simulation and two temperature model. The heat-affected zone estimated from the temperature is mainly studied and calculated to be 3 nm at 0.02 J/cm2 which is below the threshold fluence of 0.137 J/cm2. In addition, the thickness of heat-affected zone of copper crystal ablated with femtosecond Ti:sapphire laser is experimentally studied. As a result of X-ray diffraction (XRD) of the ablated surface, the surface crystallinity is partially changed into disordered structure from crystal form. The residual energy left in the metal, which is not used for ablation, will induce liquid phase, leading to the amorphous phase of the metal during resolidification. The thickness of heat-affected zone depends on laser fluence and is experimentally measured to be less than 1 μm at higher laser fluences than the ablation threshold.

  7. Thermodynamically Correct Bioavailability Estimations

    DTIC Science & Technology

    1992-04-30

    6448 I 1. SWPPUMENTA* NOTIS lIa. OISTUAMJTiOAVAILAIILTY STATIMENT 121 OT REbT ostwosCo z I Approved for public release; distribution unlimited... research is to develop thermodynamically correct bioavailability estimations using chromatographic stationary phases as a model of the "interphase

  8. Factors affecting acceptability of radioactive metal recycling to the public and stakeholders

    SciTech Connect

    Nieves, L.A.; Burke, C.J.

    1995-08-01

    The perception of risk takes place within a cultural context that is affected by individual and societal values, risk information, personal experience, and the physical environment. Researchers have found that measures of {open_quotes}voluntariness of risk assumption,{close_quotes} of {open_quotes}disaster potential,{close_quotes} and of {open_quotes}benefit{close_quotes} are important in explaining risk acceptability. A review of cross-cultural studies of risk perception and risk acceptance, as well as an informal stakeholder survey, are used to assess the public acceptability of radioactive scrap metal recycling.

  9. Phase measurements of erythrocytes affected by metal ions with quantitative interferometric microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Shouyu; Yan, Keding; Shan, Yanke; Xu, Mingfei; Liu, Fei; Xue, Liang

    2015-12-01

    Erythrocyte morphology is an important factor in disease diagnosis, however, traditional setups as microscopes and cytometers cannot provide enough quantitative information of cellular morphology for in-depth statistics and analysis. In order to capture variations of erythrocytes affected by metal ions, quantitative interferometric microscopy (QIM) is applied to monitor their morphology changes. Combined with phase retrieval and cell recognition, erythrocyte phase images, as well as phase area and volume, can be accurately and automatically obtained. The research proves that QIM is an effective tool in cellular observation and measurement.

  10. Geochemical partitioning of Cu and Ni in mangrove sediments: relationships with their bioavailability.

    PubMed

    Chakraborty, Parthasarathi; Ramteke, Darwin; Chakraborty, Sucharita

    2015-04-15

    Sequential extraction study was performed to determine the concentrations of non-residual metal-complexes in the mangrove sediments from the Divar Island, (west coast of India). Accumulation of metal in the mangrove roots (from the same location) was determined and used as an indicator of bioavailability of metal. An attempt was made to establish a mechanistic linkage between the non-residual metal complexes and their bioavailability in the mangrove system. The non-residual fractions of Cu and Ni were mainly associated with Fe/Mn oxyhydroxide and organic phases in the sediments. A part of these metal fractions were bioavailable in the system. These two phases were the major controlling factors for Ni speciation and their bioavailability in the studied sediments. However, Cu was found to interact more strongly with the organic phases than Ni in the mangrove sediments. Organic phases in the mangrove sediments acted as buffer to control the speciation and bioavailability of Cu in the system.

  11. Sediment properties influencing the bioavailability of uranium to Chironomus dilutus larvae in spiked field sediments.

    PubMed

    Crawford, Sarah E; Liber, Karsten

    2016-04-01

    The partitioning of metals between dissolved and solid phases directly affects metal bioavailability to benthic invertebrates and is influenced by metal-binding properties of sediment phases. Little research has been done examining the effects of sediment properties on the bioavailability of uranium (U) to freshwater benthic invertebrates. In the present study, 18 field sediments with a wide range of properties (total organic carbon, fine fraction, cation exchange capacity, and iron content) were amended with the same concentrations of U to characterize the effects of these sediment properties on U bioavailability to freshwater midge, Chironomus dilutus. Bioaccumulation of U by C. dilutus larvae varied by over an order of magnitude when exposed to sediments spiked with 50 mg U kg(-1) d.w. (5-69 mg U kg(-1) d.w.) and 500 mg U kg(-1) d.w. (20-452 mg U kg(-1) d.w.), depending on the type of sediment. Variance in U bioaccumulation was best explained by differences in the cation exchange capacity, fine fraction (≤50 μm particle size), and Fe content of U-spiked sediment, with generated regression equations predicting observed bioaccumulation within a factor of two. The presented regression equations offer an easy-to-apply method for accounting for the influence of sediment properties on U bioavailability in freshwater sediment, with fine fraction being the single most practical variable. This research strongly supports that risk assessments and guidelines for U-contaminated sediments should not ignore the influence of sediment properties that can result in substantial differences in the bioaccumulation of U in benthic invertebrates.

  12. Solubilization of manganese and trace metals in soils affected by acid mine runoff.

    PubMed

    Green, C H; Heil, D M; Cardon, G E; Butters, G L; Kelly, E F

    2003-01-01

    Manganese solubility has become a primary concern in the soils and water supplies in the Alamosa River basin, Colorado due to both crop toxicity problems and concentrations that exceed water quality standards. Some of the land in this region has received inputs of acid and trace metals as a result of irrigation with water affected by acid mine drainage and naturally occurring acid mineral seeps. The release of Mn, Zn, Ni, and Cu following saturation with water was studied in four soils from the Alamosa River basin. Redox potentials decreased to values adequate for dissolution of Mn oxides within 24 h following saturation. Soluble Mn concentrations were increased to levels exceeding water quality standards within 84 h. Soluble concentrations of Zn and Ni correlated positively with Mn following reduction for all four soils studied. The correlation between Cu and Mn was significant for only one of the soils studied. The soluble concentrations of Zn and Ni were greater than predicted based on the content of each of these metals in the Mn oxide fraction only. Increases in total electrolyte concentration during reduction indicate that this may be the result of displacement of exchangeable metals by Mn following reductive dissolution of Mn oxides.

  13. Types and concentrations of metal ions affect local structure and dynamics of RNA

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Xiao, Yi

    2016-10-01

    The roles that metal ions play in the structure and dynamics of RNA molecules are long-standing problems that have been studied extensively but are still not well understood. Here we show that metal ions have distributions around RNA molecules that strongly depend on the types and concentrations of the metal ions and also the electrostatic surface of the molecule. In particular, the ion distributions may not balance all the local electronegativity of the molecule. These ion distributions do not only greatly affect local structures but also lead to different local dynamics of RNA. We studied the effects of different ion solutions on the structure and dynamics of RNA by taking the pre Q1 riboswitch aptamer domain as an illustrative example and using molecular dynamics simulations. Since the local structures and dynamics of RNAs are important to their functions, our results also indicate that the selection of proper ion conditions is necessary to model them correctly, in contrast to the use of diverse ion solutions in current molecular dynamics simulations.

  14. A novel pollution index based on the bioavailability of elements: a study on Anzali wetland bed sediments.

    PubMed

    Zamani Hargalani, Fariba; Karbassi, Abdolreza; Monavari, Seyed Masoud; Abroomand Azar, Parviz

    2014-04-01

    In this research, we study on the distribution of several elements in bed sediments of Anzali wetland. Anzali, one of the most important international wetlands, is located on the southern coast of the Caspian Sea in Iran. This wetland receives discharges of domestic, agricultural, and industrial wastewater, which affect the distribution of elements. Our contribution in this study is threefold. First, we measured the total concentration of metals as well as their chemical partitioning and bioavailability in the sediments. Second, we calculated anthropogenic portions of metals in the sediment of this area. The results reveal anthropogenic portion of metals as Mo > Mn > Cd > As > Zn > Hg > Co > Sn > Cu > V > Ag > Ni > Pb > Fe > Cr > Al, respectively. We evaluated the intensity of pollution by using an enrichment factor, the geo-accumulation index and the pollution index. All these indices do not take into consideration the bioavailability of the elements. As our third and most important contribution, we introduced a new formula that takes into account the bioavailability of different elements. In comparison with aforementioned pollution indices, our newly introduced pollution index has a higher Pearson correlation with anthropogenic portion of metals. This high-correlation coefficient shows that our proposed pollution index is an effective indicator for determining the level of pollution, while other indices preserve their own merits.

  15. Uptake and elimination kinetics of metals in soil invertebrates: a review.

    PubMed

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2014-10-01

    Uptake and elimination kinetics of metals in soil invertebrates are a function of both soil and organism properties. This study critically reviewed metal toxicokinetics in soil invertebrates and its potential use for assessing bioavailability. Uptake and elimination rate constants of different metals are summarized. Invertebrates have different strategies for essential and non-essential metals. As a consequence, different types of models must be applied to describe metal uptake and elimination kinetics. We discuss model parameters for each metal separately and show how they are influenced by exposure concentrations and by physiological properties of the organisms. Soil pH, cation exchange capacity, clay and organic matter content significantly affect uptake rates of non-essential metals in soil invertebrates. For essential metals, kinetics is hardly influenced by soil properties, but rather prone to physiological regulation mechanisms of the organisms. Our analysis illustrates that toxicokinetics can be a valuable measurement to assess bioavailability of soil-bound metals.

  16. Surface coating affects behavior of metallic nanoparticles in a biological environment

    PubMed Central

    Jurašin, Darija Domazet; Ćurlin, Marija; Capjak, Ivona; Crnković, Tea; Lovrić, Marija; Babič, Michal; Horák, Daniel; Gajović, Srećko

    2016-01-01

    Summary Silver (AgNPs) and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs) are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW), biological cell culture medium without addition of protein (BM), and BM supplemented with common serum protein (BMP). The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl) and blood plasma (BlPl), revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible. PMID:26977382

  17. Assessment of heavy metal pollution risks in Yonki Reservoir environmental matrices affected by gold mining activity.

    PubMed

    Kapia, Samuel; Rao, B K Rajashekhar; Sakulas, Harry

    2016-10-01

    This study reports the heavy metal (Hg, Cd, Cr, Cu, and Pb) contamination risks to and safety of two species of fresh water fish (tilapia, Oreochromis mossambicus and carp, Cyprinus carpio) that are farmed in the Yonki Reservoir in the Eastern Highlands of Papua New Guinea (PNG). The upper reaches of the reservoir are affected by alluvial and large-scale gold mining activities. We also assessed heavy metal levels in the surface waters and sediments and in selected aquatic plant species from the reservoir and streams that intersect the gold mining areas. The water quality was acceptable, except for the Cr concentration, which exceeded the World Health Organization (WHO) standard for water contamination. The sediments were contaminated with Cd and Cu in most of the sampling stations along the upstream waters and the reservoir. The Cd concentration in the sediments exceeded the US Environmental Protection Agency's Sediment Quality Guideline (SQG) values, and the geoaccumulation index (Igeo) values indicated heavy to extreme pollution. In addition, the Cd, Cu, and Pb concentrations in aquatic plants exceeded the WHO guidelines for these contaminants. Between the fish species, tilapia accumulated significantly higher (P < 0.05) Cu in their organ tissues than carp, confirming the bioaccumulation of some metals in the aquatic fauna. The edible muscles of the fish specimens had metal concentrations below the maximum permissible levels established by statutory guidelines. In addition, a human health risk assessment, performed using the estimated weekly intake (EWI) values, indicated that farmed fish from the Yonki Reservoir are safe for human consumption.

  18. Speciation and bioavailability of lead in complementary medicines.

    PubMed

    Bolan, S; Naidu, R; Kunhikrishnan, A; Seshadri, B; Ok, Y S; Palanisami, T; Dong, M; Clark, I

    2016-01-01

    Complementary medicines have associated risks which include toxic heavy metal(loid) and pesticide contamination. The objective of this study was to examine the speciation and bioavailability of lead (Pb) in selected complementary medicines. Six herbal and six ayurvedic medicines were analysed for: (i) total heavy metal(loid) contents including arsenic (As), cadmium (Cd), Pb and mercury (Hg); (ii) speciation of Pb using sequential fractionation and extended x-ray absorption fine structure (EXAFS) techniques; and (iii) bioavailability of Pb using a physiologically-based in vitro extraction test (PBET). The daily intake of Pb through the uptake of these medicines was compared with the safety guidelines for Pb. The results indicated that generally ayurvedic medicines contained higher levels of heavy metal(loid)s than herbal medicines with the amount of Pb much higher than the other metal(loid)s. Sequential fractionation indicated that while organic-bound Pb species dominated the herbal medicines, inorganic-bound Pb species dominated the ayurvedic medicines. EXAFS data indicated the presence of various Pb species in ayurvedic medicines. This implies that Pb is derived from plant uptake and inorganic mineral input in herbal and ayurvedic medicines, respectively. Bioavailability of Pb was higher in ayurvedic than herbal medicines, indicating that Pb added as a mineral therapeutic input is more bioavailable than that derived from plant uptake. There was a positive relationship between soluble Pb fraction and bioavailability indicating that solubility is an important factor controlling bioavailability. The daily intake values for Pb as estimated by total and bioavailable metal(loid) contents are likely to exceed the safe threshold level in certain ayurvedic medicines. This research demonstrated that Pb toxicity is likely to result from the regular intake of these medicines which requires further investigation.

  19. Atmospheric Deposition of Heavy Metals in Soil Affected by Different Soil Uses of Southern Spain

    NASA Astrophysics Data System (ADS)

    Acosta, J. A.; Faz, A.; Martínez-Martínez, S.; Bech, J.

    2009-04-01

    Heavy metals are a natural constituent of rocks, sediments and soils. However, the heavy metal content of top soils is also dependent on other sources than weathering of the indigenous minerals; input from atmospheric deposition seems to be an important pathway. Atmospheric deposition is defined as the process by which atmospheric pollutants are transferred to terrestrial and aquatic surfaces and is commonly classified as either dry or wet. The interest in atmospheric deposition has increased over the past decade due to concerns about the effects of deposited materials on the environment. Dry deposition provides a significant mechanism for the removal of particles from the atmosphere and is an important pathway for the loading of heavy metals into the soil ecosystem. Within the last decade, an intensive effort has been made to determine the atmospheric heavy metal deposition in both urban and rural areas. The main objective of this study was to identification of atmospheric heavy metals deposition in soil affected by different soil uses. Study area is located in Murcia Province (southeast of Spain), in the surroundings of Murcia City. The climate is typically semiarid Mediterranean with an annual average temperature of 18°C and precipitation of 350 mm. In order to determine heavy metals atmospheric deposition a sampling at different depths (0-1 cm, 1-5 cm, 5-15 cm and 15-30 cm) was carried out in 7 sites including agricultural soils, two industrial areas and natural sites. The samples were taken to the laboratory where, dried, passed through a 2 mm sieve, and grinded. For the determination of the moisture the samples were weighed and oven dried at 105 °C for 24 h. The total amounts of metals (Pb, Cu, Pb, Zn, Cd, Mn, Ni and Cr) were determined by digesting the samples with nitric/perchoric acids and measuring with ICP-MS. Results showed that zinc contamination in some samples of industrial areas was detected, even this contamination reaches 30 cm depth; thus it is

  20. Open-pit coal-mining effects on rice paddy soil composition and metal bioavailability to Oryza sativa L. plants in Cam Pha, northeastern Vietnam.

    PubMed

    Martinez, Raul E; Marquez, J Eduardo; Hòa, Hoàng Thị Bích; Gieré, Reto

    2013-11-01

    This study quantified Cd, Pb, and Cu content, and the soil-plant transfer factors of these elements in rice paddies within Cam Pha, Quang Ninh province, northeastern Vietnam. The rice paddies are located at a distance of 2 km from the large Coc Sau open-pit coal mine. Electron microprobe analysis combined with backscattered electron imaging and energy-dispersive spectroscopy revealed a relatively high proportion of carbon particles rimmed by an iron sulfide mineral (probably pyrite) in the quartz-clay matrix of rice paddy soils at 20-30 cm depth. Bulk chemical analysis of these soils revealed the presence of Cd, Cu, and Pb at concentrations of 0.146±0.004, 23.3±0.1, and 23.5±0.1 mg/kg which exceeded calculated background concentrations of 0.006±0.004, 1.9±0.5, and 2.4±1.5 mg/kg respectively at one of the sites. Metals and metalloids in Cam Pha rice paddy soils, including As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn, were found in concentrations ranging from 0.2±0.1 to 140±3 mg/kg, which were in close agreement with toxic metal contents in mine tailings and Coc Sau coal samples, suggesting mining operations as a major cause of paddy soil contamination. Native and model Oryza sativa L. rice plants were grown in the laboratory in a growth medium to which up to 1.5 mg/kg of paddy soil from Cam Pha was added to investigate the effects on plant growth. A decrease in growth by up to 60% with respect to a control sample was found for model plants, whereas a decrease of only 10% was observed for native (Nep cai hoa vang variety) rice plants. This result suggests an adaptation of native Cam Pha rice plants to toxic metals in the agricultural lands. The Cd, Cu, and Pb contents of the native rice plants from Cam Pha paddies exceeded permitted levels in foods. Cadmium and Pb were highest in the rice plant roots with concentrations of 0.84±0.02 and 7.7±0.3 mg/kg, suggesting an intake of these metals into the rice plant as shown, for example, by Cd and Pb concentrations of 0

  1. Metal cycling during sediment early diagenesis in a water reservoir affected by acid mine drainage.

    PubMed

    Torres, E; Ayora, C; Canovas, C R; García-Robledo, E; Galván, L; Sarmiento, A M

    2013-09-01

    The discharge of acid mine drainage (AMD) into a reservoir may seriously affect the water quality. To investigate the metal transfer between the water and the sediment, three cores were collected from the Sancho Reservoir (Iberian Pyrite Belt, SW Spain) during different seasons: turnover event; oxic, stratified period; anoxic and under shallow perennially oxic conditions. The cores were sliced in an oxygen-free atmosphere, after which pore water was extracted by centrifugation and analyzed. A sequential extraction was then applied to the sediments to extract the water-soluble, monosulfide, low crystallinity Fe(III)-oxyhydroxide, crystalline Fe(III)-oxide, organic, pyrite and residual phases. The results showed that, despite the acidic chemistry of the water column (pH<4), the reservoir accumulated a high amount of autochthonous organic matter (up to 12 wt.%). Oxygen was consumed in 1mm of sediment due to organic matter and sulfide oxidation. Below the oxic layer, Fe(III) and sulfate reduction peaks developed concomitantly and the resulting Fe(II) and S(II) were removed as sulfides and probably as S linked to organic matter. During the oxic season, schwertmannite precipitated in the water column and was redissolved in the organic-rich sediment, after which iron and arsenic diffused upwards again to the water column. The flux of precipitates was found to be two orders of magnitude higher than the aqueous one, and therefore the sediment acted as a sink for As and Fe. Trace metals (Cu, Zn, Cd, Pb, Ni, Co) and Al always diffused from the reservoir water and were incorporated into the sediments as sulfides and oxyhydroxides, respectively. In spite of the fact that the benthic fluxes estimated for trace metal and Al were much higher than those reported for lake and marine sediments, they only accounted for less than 10% of their total inventory dissolved in the column water.

  2. Factors influencing micronutrient bioavailability in biofortified crops.

    PubMed

    Bechoff, Aurélie; Dhuique-Mayer, Claudie

    2017-02-01

    Dietary and human factors have been found to be the major factors influencing the bioavailability of micronutrients, such as provitamin A carotenoid (pVAC), iron, and zinc, in biofortified crops. Dietary factors are related to food matrix structure and composition. Processing can improve pVAC bioavailability by disrupting the food matrix but can also result in carotenoid losses. By degrading antinutrients, such as phytate, processing can also enhance mineral bioavailability. In in vivo interventions, biofortified crops have been shown to be overall efficacious in reducing micronutrient deficiency, with bioconversion factors varying between 2.3:1 and 10.4:1 for trans-β-carotene and amounts of iron and zinc absorbed varying between 0.7 and 1.1 mg/day and 1.1 and 2.1 mg/day, respectively. Micronutrient bioavailability was dependent on the crop type and the presence of fat for pVACs and on antinutrients for minerals. In addition to dietary factors, human factors, such as inflammation and disease, can affect micronutrient status. Understanding the interactions between micronutrients is also essential, for example, the synergic effect of iron and pVACs or the competitive effect of iron and zinc. Future efficacy trials should consider human status and genetic polymorphisms linked to interindividual variations.

  3. Evaluation of remediation techniques in soils affected by residual contamination with heavy metals and arsenic.

    PubMed

    García-Carmona, M; Romero-Freire, A; Sierra Aragón, M; Martínez Garzón, F J; Martín Peinado, F J

    2017-04-15

    Residual soil pollution from the Aznalcóllar mine spill is still a problem in some parts of the affected area, today converted in the Guadiamar Green Corridor. Dispersed spots of polluted soils, identified by the absence of vegetation, are characterized by soil acid pH and high concentrations of As, Pb, Cu and Zn. Ex situ remediation techniques were performed with unrecovered soil samples. Landfarming, Composting and Biopiles techniques were tested in order to immobilize pollutants, to improve soil properties and to promote vegetation recovery. The effectiveness of these techniques was assessed by toxicity bioassays: Lactuca sativa L. root elongation test, Vibrio fischeri bioluminescence reduction test, soil induced respiration test, and Eisenia andrei survival and metal bioaccumulation tests. Landfarming and Composting were not effective techniques, mainly due to the poor improvement of soil properties which maintained high soluble concentrations of Zn and Cu after treatments. Biopile technique, using adjacent recovered soils in the area, was the most effective action in the reduction of soil toxicity; the improvement of soil properties and the reduction in pollutants solubility were key to improve the response of the tested organisms. Therefore, the mixture of recovered soils with polluted soils in the areas affected by residual contamination is considered a more suitable technique to reduce the residual pollution and to promote the complete soil recovery in the Guadiamar Green Corridor.

  4. Factors Affecting the Capture Efficiency of a Fume Extraction Torch for Gas Metal Arc Welding

    PubMed Central

    Bonthoux, Francis

    2016-01-01

    Welding fumes are classified as Group 2B ‘possibly carcinogenic’ and this prompts to the implementation of local exhaust ventilation (LEV). The fume extraction torch with LEV integrated into the tool is the most attractive solution but its capture efficiency is often disappointing in practice. This study assesses the main parameters affecting fume capture efficiency namely the extraction flow rate, the positioning of the suction openings on the torch, the angle of inclination of the torch to the workpiece during welding, the metal transfer modes, and the welding deposition rate. The theoretical velocity induced by suction, estimated from the extraction flow rate and the position of the suction openings, is the main parameter affecting effectiveness of the device. This is the design parameter and its value should never be <0.25 m s−1. The angle of the torch relative to the workpiece also has a great deal of influence. To improve efficiency, work station layouts need to favour positions where the torch is held with angles closer to perpendicular (<15°). Welding with high deposition rates (>1.1g s−1) and spray transfer leads to low capture efficiency if induced velocities are <0.5 m s−1. The results of the study can be used in the design of integrated on-torch extraction systems and provide information for fixing system objectives. PMID:27074798

  5. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    PubMed Central

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  6. Bioavailability of zinc, copper, and manganese from infant diets

    SciTech Connect

    Bell, J.G.

    1987-01-01

    A series of trace element absorption experiments were performed using the Sprague-Dawley suckling rat put and infant rhesis monkey (Macaca mulatta) with extrinsic radiolabeling to assess the bioavailability of Zn, Cu, and Mn from infant diets and to examine specific factors that affect absorption of these essential nutrients. Bioavailability of Cu as assessed by 6 h liver uptake (% of /sup 64/Cu dose) was highest from human milk and cow milk based formula and significantly lower from cow milk and soy based formula. Copper bioavailability from infant cereal products as assessed by whole body uptake (% of /sup 64/Cu dose) in d 20 rats, 9 h postintubation, was low compared to the bioavailability from cow milk or human milk alone. /sup 65/Zn uptake in d 20 rats, 9 h postintubation, was significantly lower from cereals fed alone or in combination with cow or human milk as compared to the uptake from the milks fed alone. Zn bioavailability varied among cereal diets, (lowest from cereals containing phytate and highest from cereal/fruit products). Mn bioavailability from infant diets was assessed using a modified suckling rat pup model. Bioavailability (24 h whole body retention of /sup 54/Mn) was high from all milks and commercial formulas tested.

  7. The filter feeder Dreissena polymorpha affects nutrient, silicon, and metal(loid) mobilization from freshwater sediments.

    PubMed

    Schaller, Jörg; Planer-Friedrich, Britta

    2017-05-01

    Organic sediments in aquatic ecosystems are well known sinks for nutrients, silicon, and metal(loid)s. Organic matter-consuming organisms like invertebrate shredders, grazers, and bioturbators significantly affect element fixation or remobilization by changing redox conditions or binding properties of organic sediments. Little is known about the effect of filter feeders, like the zebra mussel Dreissena polymorpha, an invasive organism in North American and European freshwater ecosystems. A laboratory batch experiment exposing D. polymorpha (∼1200 organisms per m(2)) to organic sediment from a site contaminated with arsenic, copper, lead, and uranium revealed a significant uptake and accumulation of arsenic, copper, iron, and especially uranium both into the soft body tissues and the seashell. This is in line with previous observations of metal(loid) accumulation from biomonitoring studies. Regarding its environmental impact, D. polymorpha significantly contributed to mobilization of silicon, iron, phosphorus, arsenic, and copper and to immobilization of uranium (p < 0.001), probably driven by redox conditions, microbial activity within the gut system, or active control of element homeostasis. No net mobilization or immobilization was observed for zinc and lead, because of their low mobility at the prevailing pH of 7.5-8.5. The present results suggest that D. polymorpha can both ameliorate (nutrient mobilization, immobilization of toxicants mobile under oxic conditions) or aggravate negative effects (mobilization of toxicants mobile under reducing conditions) in ecosystems. Relating the results of the present study to observed population densities in natural freshwater ecosystems suggests a significant influence of D. polymorpha on element cycling and needs to be considered in future studies.

  8. Geochemical behavior of metals and metalloids in an estuary affected by acid mine drainage (AMD).

    PubMed

    Hierro, A; Olías, M; Ketterer, M E; Vaca, F; Borrego, J; Cánovas, C R; Bolivar, J P

    2014-02-01

    The Tinto and Odiel rivers in southwest Spain drain the world's largest sulfide mineral formation: the Iberian Pyrite Belt which has been worked since 2,500 BC. The Tinto and Odiel estuarine zones include both an extensive area of salt marsh and an intensively industrialized urban area. As a consequence of pyrite oxidation, the Tinto and Odiel rivers are strongly acidic (pH < 3) with unusually high and quite variable metal concentrations. In this study, seasonally varying concentrations of dissolved major and trace elements were determined in the acid mine drainage affected estuary of the Ría de Huelva. During estuarine mixing, ore-derived metal concentrations exhibit excellent correlations with pH as the main controlling parameter. As pH increases, concentrations of dissolved ore-associated elements are attenuated, and this process is enhanced during the summer months. The decrease in Fe and Al concentrations ranged from 80 to 100 % as these elements are converted from dissolved to sediment-associated forms in the estuary. Coprecipitation/adsorption processes also removed between 60 and 90 % of the originally dissolved Co, Cu, Mn, Pb, Zn, and Th; however, Cd and Ni exhibited a greater propensity to remain in solution, with an average removal of approximately 60 %. On the other hand, As and U exhibited a different behavior; it is likely that these elements remain in dissolved forms because of the formation of U carbonates and soluble As species. Concentrations of As remain at elevated levels in the outer estuary (average = 48 μg L(-1)) which exceeds concentrations present in the Tinto River. Nevertheless, the estuary has recently witnessed improvements in water quality, as compared to results of several previous studies reported in the 1990s.

  9. EFFECT OF SOIL PROPERTIES ON LEAD BIOAVAILABILITY AND TOXCITY TO EARTHWORMS

    EPA Science Inventory

    Soil properties are important factors modifying metal bioavailability to ecological receptors. Twenty-one soils with a wide range of soil properties were amended with a single concentration of Pb (2000 mg/kg) to determine the effects of soil properties on Pb bioavailability and ...

  10. Heat-affected zone in microdrilling of metals by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Audouard, E.; LeHarzic, R.; Huot, Nicolas; Laporte, Pierre; Valette, S.; Fourtunier, R.

    2002-09-01

    Several works on laser-matter interaction has shown the differences in sizes for the Heat Affected Zone (HAZ) obtained with nanosecond and femtosecond regimes in laser cutting or drilling. To understand more clearly the basic phenomena that occur in femtosecond regime during the absorption of light by matter, and specially in the case of metals, we have developed both an experimental and a theoretical approach. We use a new method aimed at quantifying the dimensions of the HAZ, using thin-down samples which are micro-drilled and then observed by a transmission electronic microscopy (TEM) technique. The grain size in the samples is analysed near the micro-holes. According to theoretical studies, the thermal diffusion is due to the smaller value of the electron specific heat compared to the lattice one. The thermal diffusion length is found to be a few hundred of nanometers in the case of metals. We use a thermal model to describe the heat diffusion in the sample in order to obtain a theoretical estimation of the HAZ. Holes are drilled in Aluminum using nanosecond and femtosecond laser pulses and characterized by Transmission Electronic Microscopy (TEM). The method for quantifying the dimensions of the heat affected zone (HAZ) surrounding micro-holes is based on the analyze of the grain size evolution. The experiments are using the same Ti-Sapphire laser source (1 kHz, 800 nm). The regeneratively amplified ultra-short pulses (150 fs) are utilized at a low fluence regime (typically 0.01-0.5 mJ/pulse), while the longer pulses (ns) are obtained from the regenerative amplifier without oscillator seeding (0.5 mJ,τ approximately 7-8 ns). The main conclusion is that a 40 micrometers wide HAZ is induced by nanosecond pulses, whereas the femtosecond regime does not produce any TEM observable HAZ. It has to be noticed that the width of the femtosecond HAZ is roughly less than 2 micrometers , which is our observation limit. These results are in agreement with theoretical

  11. Plants defective in calcium oxalate crystal formation have more bioavailable calcium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioavailable calcium affects bone formation and calcification. Here we investigate how a single gene mutation altering calcium partitioning in the forage crop Medicago truncatula affects calcium bioavailability. Previously, the cod5 Medicago mutant was identified which contains wild-type amounts o...

  12. Effect of organic amendments and mineral fertilizer on zinc bioavailability, plant content and translocation

    NASA Astrophysics Data System (ADS)

    Chami, Ziad Al; Cavoski, Ivana; Mondelli, Donato; Miano, Teodoro

    2013-04-01

    treatments seem to not affect Zn bioavailability in the soil. In conclusion, compost was effective in binding heavy metals, reducing plant uptakes as well as translocation to aerial parts, ameliorating also plant tolerance and growth.

  13. Cyclic peptide oral bioavailability: Lessons from the past.

    PubMed

    Wang, Conan K; Craik, David J

    2016-11-01

    Achieving high oral bioavailability for drugs is a key design objective in drug development. It is not surprising then that with the growing expectation of peptides as future drugs, there has also been an increasing interest in developing oral peptide therapeutics. Brought to the fore are questions such as what makes peptides orally bioavailable and how this can be achieved; questions which have inspired research into the area for decades. Early research in the area focused on linear peptides with more recent literature focusing on cyclic peptides, motivated in part by cyclic peptides like cyclosporine A that have demonstrated drug-like oral bioavailability. In this review, we take a look at research on the oral bioavailability of peptides, focusing on factors that affect passive permeability. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 901-909, 2016.

  14. Metal toxicity differently affects the Iris pseudacorus-arbuscular mycorrhiza fungi symbiosis in terrestrial and semi-aquatic habitats.

    PubMed

    Wężowicz, K; Turnau, K; Anielska, T; Zhebrak, I; Gołuszka, K; Błaszkowski, J; Rozpądek, P

    2015-12-01

    Phytoremediation offers an environmental friendly alternative to conventional cleanup techniques. In this study, mycorrhizal fungi isolated from the roots of Mentha longifolia grown in the basin of the Centuria River (S Poland) were used. Iris pseudacorus was grown in substratum from an industrial waste, enriched in Pb, Fe, Zn, and Cd in a terrestrial and water-logged habitat. Plant yield and photosynthetic performance was the highest in the aquatic environment; however, the presence of toxic metals (TM) negatively affected photosystem II (PSII) photochemistry as shown by the JIP test. Fungi colonization and Cd accumulation within plant tissues was decreased. In the terrestrial habitat, neither arbuscular mycorrhizal fungi (AMF) nor metal toxicity affected plant growth, although metal uptake, Cd in particular, as well as photosynthesis were affected. Inoculated plants accumulated significantly more Cd, and photosynthesis was downregulated. The results presented in this study clearly indicate that the I. pseudacorus-AMF symbiosis adapts itself to the presence of toxic metals in the environment, optimizing resource supply, energy fluxes, and possibly stress tolerance mechanisms. Plant/AMF consortia grown in terrestrial and water-logged habitats utilize different strategies to cope with metal toxicity. The use of AMF in improving the phytoremediation potential of I. pseudacorus needs, however, further research.

  15. Influence of hardness on the bioavailability of silver to a freshwater snail after waterborne exposure to silver nitrate and silver nanoparticles

    USGS Publications Warehouse

    Stoiber, Tasha L.; Croteau, Marie-Noele; Romer, Isabella; Tejamaya, Mila; Lead, Jamie R.; Luoma, Samuel N.

    2015-01-01

    The release of Ag nanoparticles (AgNPs) into the aquatic environment is likely, but the influence of water chemistry on their impacts and fate remains unclear. Here, we characterize the bioavailability of Ag from AgNO3 and from AgNPs capped with polyvinylpyrrolidone (PVP AgNP) and thiolated polyethylene glycol (PEG AgNP) in the freshwater snail, Lymnaea stagnalis, after short waterborne exposures. Results showed that water hardness, AgNP capping agents, and metal speciation affected the uptake rate of Ag from AgNPs. Comparison of the results from organisms of similar weight showed that water hardness affected the uptake of Ag from AgNPs, but not that from AgNO3. Transformation (dissolution and aggregation) of the AgNPs was also influenced by water hardness and the capping agent. Bioavailability of Ag from AgNPs was, in turn, correlated to these physical changes. Water hardness increased the aggregation of AgNPs, especially for PEG AgNPs, reducing the bioavailability of Ag from PEG AgNPs to a greater degree than from PVP AgNPs. Higher dissolved Ag concentrations were measured for the PVP AgNPs (15%) compared to PEG AgNPs (3%) in moderately hard water, enhancing Ag bioavailability of the former. Multiple drivers of bioavailability yielded differences in Ag influx between very hard and deionized water where the uptake rate constants (kuw, l g-1 d-1 ± SE) varied from 3.1 ± 0.7 to 0.2 ± 0.01 for PEG AgNPs and from 2.3 ± 0.02 to 1.3 ± 0.01 for PVP AgNPs. Modeling bioavailability of Ag from NPs revealed that Ag influx into L. stagnalis comprised uptake from the NPs themselves and from newly dissolved Ag.

  16. Metal sorption by peat and algae treated peat: kinetics and factors affecting the process.

    PubMed

    Lourie, Elena; Gjengedal, Elin

    2011-10-01

    The article presents a new approach that can be used for the purification of water contaminated by heavy metals. The treatment of peat with microalgae showed to be an effective way of increasing metal uptake by peat. Metal sorption was studied for a multimetal solution containing Cu, Cd, Ni, Zn, Cd, and Pb. Cu and Pb were found to be the metals having the highest affinity to peat. Water hardness has a strong effect on the uptake of borderline metals (Cd, Ni, Zn, Cd) from a solution. The use of algae for peat treatment resulted in less time to reach an equilibrium (24 h vs. 72 h for pure peat), and the effect of water hardness (Ca²⁺) on metal uptake was considerably reduced. Both peat and algal-treated peat were able to take up metals from rather acidic solutions (pH 3.0). pH had less influence on the metal uptake compared with water hardness. The affinity of heavy metals to peat was the following: Pb>Cu>Ni>Cd>Zn>Co. It slightly changed to Pb>Cu>Ni>Cd≈Co≈Zn when the combined sorbent, peat treated with microalga, was applied.

  17. Study of Plant Cell Wall Polymers Affected by Metal Accumulation Using Stimulated Raman Scattering Microscopy

    SciTech Connect

    Ding, Shi-You

    2015-03-02

    This project aims to employ newly-developed chemical imaging techniques to measure, in real-time, the concentration, dynamics and spatial distribution of plant cell wall polymers during biomass growth with inoculation of transgenic symbiotic fungi, and to explore a new pathway of delivering detoxified metal to plant apoplast using transgenic symbiotic fungi, which will enhance metal accumulation from soil, and potentially these metals may in turn be used as catalysts to improve the efficiency of biomass conversion to biofuels. The proposed new pathway of biomass production will: 1) benefit metal and radionuclide contaminant mobility in subsurface environments, and 2) potentially improve biomass production and process for bioenergy

  18. Heavy metals species affect fungal-bacterial synergism during the bioremediation of fluoranthene.

    PubMed

    Ma, Xiao-Kui; Ding, Ning; Peterson, Eric Charles; Daugulis, Andrew J

    2016-09-01

    The co-occurrence of polycyclic aromatic hydrocarbons (PAHs) with heavy metals (HMs) is very common in contaminated soils, but the influence of HMs on fungal-bacterial synergism during PAH bioremediation has not been investigated. The bioremediation of fluoranthene-contaminated sand using co-cultures of Acremonium sp. P0997 and Bacillus subtilis showed increases of 109.4 and 9.8 % in degradation compared to pure bacterial and fungal cultures, respectively, removing 64.1 ± 1.4 % fluoanthene in total. The presence of Cu(2+) reduced fluoranthene removal to 53.7 ± 1.7 %, while inhibiting bacterial growth, and reducing translocation of bacteria on fungal hyphae by 49.5 %, in terms of the bacterial translocation ratio. Cu(2+) reduced bacterial diffusion by 46.8 and 31.9 %, as reflected by D (a bulk random motility diffusional coefficient) and D eff (the effective one-dimensional diffusion coefficient) compared to the control without HM supplementation, respectively. However, Mn(2+) resulted in a 78.2 ± 1.9 % fluoranthene degradation, representing an increase of 21.9 %, while enhancing bacterial growth and bacterial translocation on fungal hyphae, showing a 12.0 % increase in translocation ratio, with no observable impact on D and D eff. Hence, the presence of HMs has been shown to affect fungal-bacterial synergism in PAH degradation, and this effect differs with HM species.

  19. A comprehensive study of physical and physiological parameters that affect bio-sorption of metal pollutants from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Fosso-Kankeu, E.; Mulaba-Bafubiandi, A. F.; Mamba, B. B.; Marjanovic, L.; Barnard, T. G.

    An attempt was made to remove silver (I), chromium (III), and lead (II) from aqueous solutions. To optimize the bio-sorption capacity of microorganisms ( Bacillus subtilis and Bacillaceae bacterium), the effect of process parameters such as pH, temperature, metal load and culture age on the metal uptake was investigated. Indigenous strains of B. subtilis and Bacillaceae bacterium found in gold and copper mines in South Africa were exposed to silver (I), chromium (III), and lead (II) solutions under different physico-chemical and physiological conditions. Optimum conditions for the uptake of silver (I), chromium (III) and lead (II) by microorganisms used in this study were determined. The pH range 7-8, higher temperature (45 °C) and stationary growth phase, were observed as being suitable physical and physiological conditions for optimum removal of metals (Ag-87.2%; Cr-94% and Pb-98.5%). On the other hand very low pH (3) adversely affected the metal removal ability of bacteria. Silver (I) was the most poorly uptaken metal. It was also found that silver inhibited bacteria growth. Attempt to elute metal from the above cell biomass showed that 56.6% silver (I) and 88.3% lead (II) could effectively be desorbed at pH 5. It was additionally observed that optimum conditions for metal removal were specific to microbial bio-sorbent and the targeted metal. Design and implementation of bioremediation processes therefore require thorough study of specific interactions among metals and bio-sorbents involved.

  20. Arbuscular mycorrhizal fungal phylogenetic groups differ in affecting host plants along heavy metal levels.

    PubMed

    He, Lei; Yang, Haishui; Yu, Zhenxing; Tang, Jianjun; Xu, Ligen; Chen, Xin

    2014-10-01

    Arbuscular mycorrhizal fungi (AMF) are important components of soil microbial communities, and play important role in plant growth. However, the effects of AMF phylogenetic groups (Glomeraceae and non-Glomeraceae) on host plant under various heavy metal levels are not clear. Here we conducted a meta-analysis to compare symbiotic relationship between AMF phylogenetic groups (Glomeraceae and non-Glomeraceae) and host plant functional groups (herbs vs. trees, and non-legumes vs. legumes) at three heavy metal levels. In the meta-analysis, we calculate the effect size (ln(RR)) by taking the natural logarithm of the response ratio of inoculated to non-inoculated shoot biomass from each study. We found that the effect size of Glomeraceae increased, but the effect size of non-Glomeraceae decreased under high level of heavy metal compared to low level. According to the effect size, both Glomeraceae and non-Glomeraceae promoted host plant growth, but had different effects under various heavy metal levels. Glomeraceae provided more benefit to host plants than non-Glomeraceae did under heavy metal condition, while non-Glomeraceae provided more benefit to host plants than Glomeraceae did under no heavy metal. AMF phylogenetic groups also differed in promoting plant functional groups under various heavy metal levels. Interacting with Glomeraceae, herbs and legumes grew better than trees and non-legumes did under high heavy metal level, while trees and legumes grew better than herbs and non-legumes did under medium heavy metal level. Interacting with non-Glomeraceae, herbs and legumes grew better than trees and non-legumes did under no heavy metal. We suggested that the combination of legume with Glomeraceae could be a useful way in the remediation of heavy metal polluted environment.

  1. Potassium Intake, Bioavailability, Hypertension, and Glucose Control

    PubMed Central

    Stone, Michael S.; Martyn, Lisa; Weaver, Connie M.

    2016-01-01

    Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+) ATPase pump. Approximately 90% of potassium consumed (60–100 mEq) is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN) is the leading cause of cardiovascular disease (CVD) and a major financial burden ($50.6 billion) to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics) may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health. PMID:27455317

  2. Potassium Intake, Bioavailability, Hypertension, and Glucose Control.

    PubMed

    Stone, Michael S; Martyn, Lisa; Weaver, Connie M

    2016-07-22

    Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+) ATPase pump. Approximately 90% of potassium consumed (60-100 mEq) is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN) is the leading cause of cardiovascular disease (CVD) and a major financial burden ($50.6 billion) to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics) may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health.

  3. Bioavailability: implications for science/cleanup policy

    SciTech Connect

    Denit, Jeffery; Planicka, J. Gregory

    1998-12-01

    This paper examines the role of bioavailability in risk assessment and cleanup decisions. Bioavailability refers to how chemicals ''behave'' and their ''availability'' to interact with living organisms. Bioavailability has significant implications for exposure risks, cleanup goals, and site costs. Risk to human health and the environment is directly tied to the bioavailability of the chemicals of concern.

  4. Trace metal distribution in pristine permafrost-affected soils of the Lena River delta and its hinterland, northern Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Antcibor, I.; Eschenbach, A.; Zubrzycki, S.; Kutzbach, L.; Bolshiyanov, D.; Pfeiffer, E.-M.

    2014-01-01

    Soils are an important compartment of ecosystems and have the ability to buffer and immobilize substances of natural and anthropogenic origin to prevent their movement to other environment compartments. Predicted climatic changes together with other anthropogenic influences on Arctic terrestrial environments may affect biogeochemical processes enhancing leaching and migration of trace elements in permafrost-affected soils. This is especially important since Arctic ecosystems are considered to be highly sensitive to climatic changes as well as to chemical contamination. This study characterises background levels of trace metals in permafrost-affected soils of the Lena River delta and its hinterland in northern Siberia (73.5-69.5° N), representing a remote region far from evident anthropogenic trace metal sources. Investigations on the element content of iron (Fe), arsenic (As), manganese (Mn), zinc (Zn), nickel (Ni), copper (Cu), lead (Pb), cadmium (Cd), cobalt (Co), and mercury (Hg) in different soil types developed in different geological parent materials have been carried out. The highest median concentrations of Fe and Mn were observed in soils belonging to ice-rich permafrost sediments formed during the Pleistocene (ice-complex) while the highest median values of Ni, Pb and Zn were found in soils of both the ice-complex and the Holocene estuarine terrace of the Lena River delta region, as well as in the southernmost study unit of the hinterland area. Detailed observations of trace metal distribution on the micro scale showed that organic matter content, soil texture and iron-oxide contents influenced by cryogenic processes, temperature, and hydrological regimes are the most important factors determining the metal abundance in permafrost-affected soils. The observed range of trace element background concentrations was similar to trace metal levels reported for other pristine northern areas.

  5. Zinc bioavailability in the chick

    SciTech Connect

    Hempe, J.M.

    1987-01-01

    Methods for assessing zinc bioavailability were evaluated in the chick. A low-zinc chick diet was developed using rehydrated, spray-dried egg white autoclaved at 121 C for 30 min as the primary protein source. The relative bioavailability of zinc from soy flour and beef was determined by whole-body retention of extrinsic /sup 65/Zn, and in slope ratio assays for growth rate and tissue zinc. Compared to zinc carbonate added to an egg white-based diet, all methods gave similar estimates of approximately 100% zinc bioavailability for beef but estimates for soy flour varied widely. The slope ratio assay for growth rate gave the best estimate of zinc bioavailability for soy flour. True absorption, as measured by percent isotope retention from extrinsically labeled soy flour, was 47%.

  6. Plant water relations as affected by heavy metal stress: A review

    SciTech Connect

    Barcelo, J.; Poschenrieder, C. )

    1990-01-01

    Metal toxicity causes multiple direct and indirect effects in plants which concern practically all physiological functions. In this review the effects of excess heavy metals and aluminum on those functions which will alter plant water relations are considered. After a brief comment on the metal effects in cell walls and plasma-lemma, and their consequences for cell expansion growth, the influences of high meal availability on the factors which regulate water entry and water exit in plants are considered. Emphasis is placed on the importance of distinguishing between low water availability in mine and serpentine soils and toxicity effects in plants which may impair the ability of a plant to regulate water uptake. Examples on water relations of both plants grown on metalliferous soil and hydroponics are presented, and the effects of metal toxicity on root growth, water transport and transpiration are considered. It is concluded that future research has to focus on the mechanisms of metal-induced inhibition of both root elongation and morphogenetic processes within roots. In order to understand the relation between metal tolerance and drought resistance better, further studies into metal tolerance mechanisms at the cell wall, membrane and vacuolar level, as well as into the mechanisms of drought resistance of plants adapted to metalliferous soils are required. 135 refs., 7 figs., 6 tabs.

  7. Current Status of Trace Metal Pollution in Soils Affected by Industrial Activities

    PubMed Central

    Kabir, Ehsanul; Ray, Sharmila; Kim, Ki-Hyun; Yoon, Hye-On; Jeon, Eui-Chan; Kim, Yoon Shin; Cho, Yong-Sung; Yun, Seong-Taek; Brown, Richard J. C.

    2012-01-01

    There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (Igeo), calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution. PMID:22645468

  8. Current status of trace metal pollution in soils affected by industrial activities.

    PubMed

    Kabir, Ehsanul; Ray, Sharmila; Kim, Ki-Hyun; Yoon, Hye-On; Jeon, Eui-Chan; Kim, Yoon Shin; Cho, Yong-Sung; Yun, Seong-Taek; Brown, Richard J C

    2012-01-01

    There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (I(geo)), calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution.

  9. Cultivation practices affect heavy metal migration between soil and Vicia faba (broad bean).

    PubMed

    Li, Feili; Ni, Lijia; Yuan, Jin; Daniel Sheng, G

    2010-09-01

    Pot-test experiments were conducted to study the influences of mulching and fertilizing on the migration of heavy metals from soil to Vicia faba (broad bean). Semi-transparent film was used to mulch soil. Swine manure compost was mixed with soil at a rate of 50 mg kg(-1) to fertilize the soil. Broad bean was grown for several months until fruits were formed. Soils and bean parts were sampled to analyze and fractionate heavy metals (Cd, Cu, Fe, Mn, Pb, and Zn). Mulching promoted an obvious growth of broad bean. Fertilizing decreased soil pH and increased organic matter content and conductivity. Mulching reduced the exchangeable metal fractions by 5-52%. Fertilizing, in contrast, increased the exchangeable fractions of most of the metals except Fe and Pb by 20-295%. While the two cultivations increased obviously metal concentrations in bean laminas as compared to un-mulched and un-fertilized controls, the levels of most of the metals except Pb decreased in bean fruits. No clear relationships existed in roots and caudices in terms of metal levels. Calculated bioconcentration factors (BCF) and transfer factors (TF) indicate that the cultivations had little influences on the metal enrichments in roots, but promoted their migration from roots to laminas. In particular, mulching greatly promoted the absorption and translocation of Fe, while fertilizing enhanced the bean fruit uptake of Pb. Further studies on the influence of cultivation practices on heavy metal migration in soil-plant systems are recommended to acquire more information for evaluation of crop safety.

  10. Constructed wetlands for the removal of metals from livestock wastewater - Can the presence of veterinary antibiotics affect removals?

    PubMed

    Almeida, C Marisa R; Santos, Filipa; Ferreira, A Catarina F; Gomes, Carlos Rocha; Basto, M Clara P; Mucha, Ana P

    2017-03-01

    The presence of emergent antibiotics, in livestock wastewater may affect constructed wetlands (CWs) performance in the removal of other pollutants. The main objective of this study was to evaluate the influence of two antibiotics commonly used in livestock industry, enrofloxacin and ceftiofur, on metal removal by CWs. Microcosms (0.4m×0.3m×0.3m), simulating CWs, were constructed with Phragmites australis to treat livestock wastewater spiked or not with 100µg/L of enrofloxacin or ceftiofur (individually or in mixture). Wastewater was treated during 20 one-week cycles. After one-week cycle wastewater was removed and replaced by new wastewater (with or without spiking). At weeks 1, 2, 4, 8, 14, 18 and 20, treated wastewater was analysed to determine the removal rates of metals (Zn, Cu, Fe and Mn) and of each antibiotic. At weeks 1, 8 and 20 portions of the plant root substrate were collected and metals determined. At the end of the experiment metal levels were also determined in plant tissues. Removal rate of Fe from wastewater was 99%. Removal rates of Cu and Zn were higher than 85% and 89%, respectively, whereas for Mn removal rates up to 75% were obtained. In general, no significant differences were observed through time in the removals of the different metals, indicating that the systems maintained their functionality during the experimental period. Antibiotics did not interfere with the system depuration capacity, in terms of metals removals from wastewater, and ceftiofur even promoted metal uptake by P. australis. Therefore, CWs seem to be a valuable alternative to remove pollutants, including antibiotics and metals, from livestock wastewaters, reducing the risk the release of these wastewaters might pose into the environment, although more research should be conducted with other antibiotics in CWs.

  11. How does metallicity affect the gas and dust properties of galaxies?

    NASA Astrophysics Data System (ADS)

    Madden, Suzanne C.; Cormier, Diane; Rémy-Ruyer, Aurélie

    Comparison of the ISM properties of a wide range of metal poor galaxies with normal metal-rich galaxies reveals striking differences. We find that the combination of the low dust abundance and the active star formation results in a very porous ISM filled with hard photons, heating the dust in dwarf galaxies to overall higher temperatures than their metal-rich counterparts. This results in photodissociation of molecular clouds to greater depths, leaving relatively large PDR envelopes and difficult-to-detect CO cores. From detailed modeling of the low-metallicity ISM, we find significant fractions of CO-dark H2 - a reservoir of molecular gas not traced by CO, but present in the [CII] and [CI]-emitting envelopes. Self-consistent analyses of the neutral and ionized gas diagnostics along with the dust SED is the necessary way forward in uncovering the multiphase structure of galaxies.

  12. Soils affected by heavy metals due to old mining on perudic conditions

    NASA Astrophysics Data System (ADS)

    Garrigo, Jordi; Elustondo, David; Laheras, Ester; Oiarzabal, Maite; Jaume, Bech

    2010-05-01

    The aim of this work is to assess the actual status of the soils of a natural environment surrounding an abandoned mine (exploited since the Roman Age) where Pb, Zn, Fe and Cu were obtained. The study has been carried out in the Aitzondo valley (Guipuzkoa, North of Iberian Peninsula), which cross the exploited mountainous area with middle temperatures and perudic soil moisture regime Soils in the valley are polygenic, acids, very washed and sometimes show redoximorphic features and have undergone a great mobilization of trace metals due to these physical-chemical characteristics that enhance the heavy metals solubility and mobility. The analysis of soil surface samples shows a punctual and intense pollution at Meazuri area (where the mine is located) and another more dispersal and wide pollution due to the parent material (Palaeozoic shales). The main soil type of the area has been characterized by means of the performance of a soil and six surface samples have been collected along an altitudinal transect, which goes down from 460 to 75 meters. Both profile and surface samples have been analysed for suitable parameters due to their repercussion in mobility and fixation of some heavy metals (organic matter, clay content…). Total (Na, K, Mg, Ca, Al, Fe, Mn, Ti, Cd, Cr) and extractable fraction (using NH4Ac-EDTA pH=4.65, as extracting agent, have been analysed. Trace elements Cd, Cr, Cu, Ni, Pb and Zn have been measured. On summary, the soils studied are characterized by high levels of trace metals inherited from the parent material whose composition shows a great metallic richness. Hence, values of trace metals are very high even in remote areas where there has not been anthropic influence. Besides, the physical-chemical properties (acidity, base saturation, organic matter) have enhanced the mobility of trace metals. The anthropogenic activity (mining activity) has caused an increase in values of several metals, reaching, in some cases, concentrations above the

  13. Vitamin D bioavailability: state of the art.

    PubMed

    Borel, P; Caillaud, D; Cano, N J

    2015-01-01

    There has been renewed interest in vitamin D since numerous recent studies have suggested that besides its well-established roles in bone metabolism and immunity, vitamin D status is inversely associated with the incidence of several diseases, e.g., cancers, cardio-vascular diseases, and neurodegenerative diseases. Surprisingly, there is very little data on factors that affect absorption of this fat-soluble vitamin, although it is acknowledged that dietary vitamin D could help to fight against the subdeficient vitamin D status that is common in several populations. This review describes the state of the art concerning the fate of vitamin D in the human upper gastrointestinal tract and on the factors assumed to affect its absorption efficiency. The main conclusions are: (i) ergocalciferol (vitamin D2), the form mostly used in supplements and fortified foods, is apparently absorbed with similar efficiency to cholecalciferol (vitamin D3, the main dietary form), (ii) 25-hydroxyvitamin D (25OHD), the metabolite produced in the liver, and which can be found in foods, is better absorbed than the nonhydroxy vitamin D forms cholecalciferol and ergocalciferol, (iii) the amount of fat with which vitamin D is ingested does not seem to significantly modify the bioavailability of vitamin D3, (iv) the food matrix has apparently little effect on vitamin D bioavailability, (v) sucrose polyesters (Olestra) and tetrahydrolipstatin (orlistat) probably diminish vitamin D absorption, and (vi) there is apparently no effect of aging on vitamin D absorption efficiency. We also find that there is insufficient, or even no data on the following factors suspected of affecting vitamin D bioavailability: (i) effect of type and amount of dietary fiber, (ii) effect of vitamin D status, and (iii) effect of genetic variation in proteins involved in its intestinal absorption. In conclusion, further studies are needed to improve our knowledge of factors affecting vitamin D absorption efficiency

  14. Trace metal distribution in pristine permafrost-affected soils of the Lena River Delta and its Hinterland, Northern Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Antcibor, I.; Zubrzycki, S.; Eschenbach, A.; Kutzbach, L.; Bol'shiyanov, D.; Pfeiffer, E.-M.

    2013-02-01

    Soils are an important compartment of ecosystems and have the ability to immobilize chemicals preventing their movement to other environment compartments. Predicted climatic changes together with other anthropogenic influences on Arctic terrestrial environments may affect biogeochemical processes enhancing leaching and migration of trace elements in permafrost-affected soils. This is especially important since the Arctic ecosystems are considered to be very sensitive to climatic changes as well as to chemical contamination. This study characterizes background levels of trace metals in permafrost-affected soils of the Lena River Delta and its hinterland in northern Siberia (73.5° N-69.5° N) representing a remote region far from evident anthropogenic trace metal sources. Investigations on total element contents of iron (Fe), arsenic (As), manganese (Mn), zinc (Zn), nickel (Ni), copper (Cu), lead (Pb), cadmium (Cd), cobalt (Co) and mercury (Hg) in different soil types developed in different geological parent materials have been carried out. The highest concentrations of the majority of the measured elements were observed in soils belonging to ice-rich permafrost sediments formed during the Pleistocene (ice-complex) in the Lena River Delta region. Correlation analyses of trace metal concentrations and soil chemical and physical properties at a Holocene estuarine terrace and two modern floodplain levels in the southern-central Lena River Delta (Samoylov Island) showed that the main factors controlling the trace metal distribution in these soils are organic matter content, soil texture and contents of iron and manganese-oxides. Principal Component Analysis (PCA) revealed that soil oxides play a significant role in trace metal distribution in both top and bottom horizons. Occurrence of organic matter contributes to Cd binding in top soils and Cu binding in bottom horizons. Observed ranges of the background concentrations of the majority of trace elements were similar to

  15. In vivo and in vitro testing for selenium and selenium compounds bioavailability assessment in foodstuff.

    PubMed

    Moreda-Piñeiro, Jorge; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar

    2017-03-04

    The assessment of selenium and selenium species bioavailability in foodstuff is of special concern on the context of human nutrition. In vivo (human and animal), and in vitro tests are important approaches for estimating the bioavailability of toxic and essential compounds to humans. An overview on in vivo and in vitro bioavailability assays for releasing selenium and selenium species in foodstuffs is summarized. Se and Se species content in a foodstuff critically influence Se bioavailability and bioactivity to humans and animals. Se bioavailability is affected by foodstuff-matrix major composition and minor components. Foodstuffs processing and/or treatments could enhancement or decrease Se bioavailability. Experimental conditions such as the selection of healthy status of examined people (in in vivo humans approaches), the selection of animal model (in vivo animals approaches), or the selection of GI conditions (in in vitro tests) could determines the results. Thus, international standardized protocol for in vivo and in vitro approaches assessment is mandatory.

  16. Biotherapeutic formulation factors affecting metal leachables from stainless steel studied by design of experiments.

    PubMed

    Zhou, Shuxia; Evans, Brad; Schöneich, Christian; Singh, Satish K

    2012-03-01

    Trace amounts of metals are inevitably present in biotherapeutic products. They can arise from various sources. The impact of common formulation factors such as protein concentration, antioxidant, metal chelator concentration and type, surfactant, pH, and contact time with stainless steel on metal leachables was investigated by a design of experiments approach. Three major metal leachables, iron, chromium, and nickel were monitored by inductively coupled plasma-mass spectrometry. It was observed that among all the tested factors, contact time, metal chelator concentration, and protein concentration were statistically significant factors with higher temperature resulting in higher levels of leached metals. Within a pH range of 5.5-6.5, solution pH played a minor role for chromium leaching at 25°C. No statistically significant difference was observed due to type of chelator, presence of antioxidant, or surfactant. In order to optimize a biotherapeutic formulation to achieve a target drug product shelf life with acceptable quality, each formulation component must be evaluated for its impact.

  17. Flood-related contamination in catchments affected by historical metal mining: an unexpected and emerging hazard of climate change.

    PubMed

    Foulds, S A; Brewer, P A; Macklin, M G; Haresign, W; Betson, R E; Rassner, S M E

    2014-04-01

    Floods in catchments affected by historical metal mining result in the remobilisation of large quantities of contaminated sediment from floodplain soils and old mine workings. This poses a significant threat to agricultural production and is preventing many European river catchments achieving a 'good chemical and ecological status', as demanded by the Water Framework Directive. Analysis of overbank sediment following widespread flooding in west Wales in June 2012 showed that flood sediments were contaminated above guideline pollution thresholds, in some samples by a factor of 82. Most significantly, silage produced from flood affected fields was found to contain up to 1900 mg kg(-1) of sediment associated Pb, which caused cattle poisoning and mortality. As a consequence of climate related increases in flooding this problem is likely to continue and intensify. Management of contaminated catchments requires a geomorphological approach to understand the spatial and temporal cycling of metals through the fluvial system.

  18. Factors affecting the mobilization of DOC and metals in a peat soil under a warmer scenario

    NASA Astrophysics Data System (ADS)

    Carrera, Noela; Barreal, María. Esther; Briones, María. Jesús I.

    2010-05-01

    Most climate change models predict an increase of temperature of 3-5°C in Southern Europe by the end of this century (IPCC 2007). However, changes in summer precipitations are more uncertain, and although a decrease in rainfall inputs is forecasted by most models, the magnitude of this effect has not been assessed properly (Rowell & Jones 2006). Peatland areas are very sensitive to climate change. In Galicia they survive in upland areas where cold temperatures and continuous moisture supply allow their presence. Besides abiotic factors, alterations in soil fauna activities can also affect peat turnover. Among them, enchytraeids are usually the most numerous invertebrate group in these systems and both temperature and moisture content regulate their abundances and vertical distribution. Previous studies have demonstrated that changes in their populations associated to increasing temperatures can significantly affect metal mobilization, namely iron and aluminium, together with an important decline in the acidity of the soil solution, which possibly eliminates one of the critical mechanisms restricting DOC release (Carrera et al., 2009). In this study we investigated whether changes in water content of the peat soil and soil invertebrate activities associated to increasing temperatures could alter the mobilization rates of Fe and Al and in turn, DOC. 72 undisturbed soil cores (6 cm diameter x 10 cm deep) with their associated vegetation were taken from a blanket bog in Galicia (NW Spain). Back at the laboratory they were sliced horizontally into two layers, (0-5cm and 5-10cm) which were defaunated by means of a wet extraction. Thereafter, the two soil layers derived from the same core were introduced in each microcosm by placing them in their original position but separated by a 1 mm nylon mesh to allow the vertical movements of the organisms. Half of the experimental units were adjusted to the used moisture values observed in the field (80% SWC, H1), whereas in the

  19. Potential for bioavailability to limit degradation of herbicides in unsaturated soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is well established that biodegradation of organic compounds in soils can be limited by bioavailability if sorption reduces the pool of material available in solution. Bioavailability can also affect herbicidal function, reported herein in the complex processes of activation and degradation of t...

  20. Strategies to predict metal mobility in surficial mining environments

    USGS Publications Warehouse

    Smith, Kathleen S.

    2007-01-01

    This report presents some strategies to predict metal mobility at mining sites. These strategies are based on chemical, physical, and geochemical information about metals and their interactions with the environment. An overview of conceptual models, metal sources, and relative mobility of metals under different geochemical conditions is presented, followed by a discussion of some important physical and chemical properties of metals that affect their mobility, bioavailability, and toxicity. The physical and chemical properties lead into a discussion of the importance of the chemical speciation of metals. Finally, environmental and geochemical processes and geochemical barriers that affect metal speciation are discussed. Some additional concepts and applications are briefly presented at the end of this report.

  1. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils.

    PubMed

    Adamo, Paola; Iavazzo, Pietro; Albanese, Stefano; Agrelli, Diana; De Vivo, Benedetto; Lima, Annamaria

    2014-12-01

    Soil pollution in agricultural lands poses a serious threat to food safety, and suggests the need for consolidated methods providing advisory indications for soil management and crop production. In this work, the three-step extraction procedure developed by the EU Measurement and Testing Programme and two soil-to-plant transfer factors (relative to total and bioavailable concentration of elements in soil) were applied on polluted agricultural soils from southern Italy to obtain information on the retention mechanisms of metals in soils and on their level of translocation to edible vegetables. The study was carried out in the Sarno river plain of Campania, an area affected by severe environmental degradation potentially impacting the health of those consuming locally produced vegetables. Soil samples were collected in 36 locations along the two main rivers flowing into the plain. In 11 sites, lettuce plants were collected at the normal stage of consumption. According to Italian environmental law governing residential soils, and on the basis of soil background reference values for the study area, we found diffuse pollution by Be, Sn and Tl, of geogenic origin, Cr and Cu from anthropogenic sources such as tanneries and intensive agriculture, and more limited pollution by Pb, Zn and V. It was found that metals polluting soils as a result of human activities were mainly associated to residual, oxidizable and reducible phases, relatively immobile and only potentially bioavailable to plants. By contrast, the essential elements Zn and Cu showed a tendency to become more readily mobile and bioavailable as their total content in soil increased and were more easily transported to the edible parts of lettuce than other pollutants. According to our results, current soil pollution in the studied area does not affect the proportion of metals taken up by lettuce plants and there is a limited health risk incurred.

  2. Partitioning and bioaccumulation of metals from oil sands process affected water in indigenous Parachlorella kessleri.

    PubMed

    Mahdavi, Hamed; Liu, Yang; Ulrich, Ania C

    2013-02-01

    This paper studies the partitioning and bioaccumulation of ten target metals ((53)Cr, Mn, Co, (60)Ni, (65)Cu, (66)Zn, As, (88)Sr, (95)Mo and Ba) from oil sands tailings pond water (TPW) by indigenous Parachlorella kessleri. To determine the role of extracellular and intracellular bioaccumulation in metal removal by P. kessleri, TPW samples taken from two oil sands operators (Syncrude Canada Ltd. and Albian Sands Energy Inc.) were enriched with nutrient supplements. Results indicate that intracellular bioaccumulation played the main role in metal removal from TPW; whereas extracellular bioaccumulation was only observed to some extent for Mn, Co, (60)Ni, (65)Cu, (88)Sr, (95)Mo and Ba. The FTIR scan and titration of functional groups on the cell surface indicated low metal binding capacity by indigenous P. kessleri. However, it is believed that the dissolved cations and organic ligand content in TPW (such as naphthenic acids) may interfere with metal binding on the cell surface and lower extracellular bioaccumulation. In addition, the total bioaccumulation and bioconcentration factor (BCF) varied during the cultivation period in different growth regimes.

  3. Heavy metal balances of an Italian soil as affected by sewage sludge and Bordeaux mixture applications

    SciTech Connect

    Moolenaar, S.W.; Beltrami, P.

    1998-07-01

    Applications of sewage sludge and Bordeaux mixture (Bm) (a mixture of copper sulfate and lime) add heavy metals to the soil. At an experimental farm in the Cremona district (Italy), the authors measured current heavy metal contents in soil and their removal via harvested products. They also measured heavy metal adsorption by soil from this farm. With these data, projections were made of the long-term development of heavy metal (Cd, Cu, and Zn) contents in soil, crop removal, and leaching at different application rates of sewage sludge and Bm. These projections were compared with existing quality standards of the European Union (EU) and Italy with regard to soil and groundwater. The calculations reveal that the permitted annual application rates of sewage sludge and Bm are likely to result in exceedance of groundwater and soil standards. Sewage sludge applications, complying with the Italian legal limits, may pose problems for Cd, Cu, and Zn within 30, 70, and 100 yr, respectively. Furthermore, severe Cu pollution of integrated and especially organic (Bm only) vineyards is unavoidable with the currently allowed application rates of Bm. The results suggest that the current Italian soil protection policy as well as the EU policy are not conducive of a sustainable heavy metal management in agroecosystems.

  4. Geological factors affecting the distribution of trace metals in glacial sediments of central Newfoundland

    USGS Publications Warehouse

    Klassen, R.A.

    1998-01-01

    In central Newfoundland (NTS 12A/10, 15, 16, 2H/1), As, Pb, and Zn concentrations in the clay-sized ( 1000 ppm), exceeding levels commonly set for purposes of environmental protection. Near Pb-Zn mines at Buchans, geochemical variation with depth reflects the dispersal of detritus from mineralized bedrock, and differences in sediment type and provenance. There, surface sediments are rich in granitic debris derived from the Topsails igneous terrane 5 km north of Buchans and contain low concentrations of trace metals. These sediments are compositionally unrelated to either Buchans Group volcanic rock or an underlying, older till enriched in sulphide minerals and trace metals. Metal-rich till extending up to 10 km southwest of Buchans results from combined glacial and debris flow transport related to two distinct geological events. Trace metals are enriched (two- to fourfold) in the clay-sized fraction of till compared to the silt and clay-sized, and are associated with Al- and Mg-bearing minerals that preferentially concentrate in the clay fraction. The geochemistry of the silt and clay-sized fraction can approximate that of the < 2-mm fraction. Background variations in till illustrate the important role of a geological framework to the interpretation of geochemical surveys and the origins of trace metals in the environment.

  5. Factors affecting the strength of multipass low-alloy steel weld metal

    NASA Technical Reports Server (NTRS)

    Krantz, B. M.

    1972-01-01

    The mechanical properties of multipass high-strength steel weld metals depend upon several factors, among the most important being: (1) The interaction between the alloy composition and weld metal cooling rate which determines the as-deposited microstructure; and (2) the thermal effects of subsequent passes on each underlying pass which alter the original microstructure. The bulk properties of a multipass weld are therefore governed by both the initial microstructure of each weld pass and its subsequent thermal history. Data obtained for a high strength low alloy steel weld metal confirmed that a simple correlation exists between mechanical properties and welding conditions if the latter are in turn correlated as weld cooling rate.

  6. Bioavailability of Cd, Cr, and Zn to bivalves in south San Francisco Bay

    SciTech Connect

    Lee, B.G.; Luoma, S.N.; Geen, A. van

    1995-12-31

    The bioavailability of Cd, Cr, and Zn to benthic bivalves (Potamocorbular amurensis and Macoma balthica) is affected by the type of natural particles the animals ingest, and the concentration and speciation of dissolved metals. During a spring phytoplankton bloom in south San Francisco Bay dissolved Cd and Zn concentrations decreased to about half of pre-bloom concentrations. The concentrations of particulate Cd and Zn concentrations increased due to preferential uptake of these metals by phytoplankton. Assimilation of Cd was more efficient when clams ate pure phytoplankton (80% for M. balthica and 29% for P. amurensis) than when they were exposed to inorganic-dominated particles. M. balthica and P. amurensis assimilated 72% and 42% of Zn associated with the particles during the bloom. Assimilation of Cr was low (<6%) and particle type had little effect on its availability. Accumulation of Cd via the dissolved route was low in high salinity waters (15 ppt). Metal bioaccumulation in the bivalves was modeled using the experimentally determined physiological parameters. The results were compared to metal concentrations in clams from the Bay. The model suggested that the clams accumulated Cd and Zn at higher rates during the phytoplankton bloom, although dissolved metal concentrations in the water column were reduced.

  7. Calibration of radiographs by a reference metal ball affects preoperative selection of implant size.

    PubMed

    Schropp, Lars; Stavropoulos, Andreas; Gotfredsen, Erik; Wenzel, Ann

    2009-12-01

    The aim was to evaluate the impact of a reference ball for calibration of periapical and panoramic radiographs on preoperative selection of implant size for three implant systems. Presurgical digital radiographs (70 panoramic, 43 periapical) from 70 patients scheduled for single-tooth implant treatment, recorded with a metal ball placed in the edentulous area, were evaluated by three observers with the intent to select the appropriate implant size. Four reference marks corresponding to the margins of the metal ball were manually placed on the digital image by means of computer software. Additionally, an implant with proper dimensions for the respective site was outlined by manually placing four reference marks. The diameter of the metal ball and the unadjusted length and width of the implant were calculated. Implant size was adjusted according to a "standard" calibration method (SCM; magnification factor 1.25 in panoramic images and 1.05 in periapical images) and according to a reference ball calibration method (RCM; true magnification). Based on the unadjusted as well as the adjusted implant dimensions, the implant size was selected among those available in a given implant system. For periapical radiographs, when comparing SCM and RCM with unadjusted implant dimensions, implant size changed in 42% and 58%, respectively. When comparing SCM and RCM, implant size changed in 24%. For panoramic radiographs, comparing SCM and RCM changed implant size in 48%. The use of a reference metal ball for calibration of periapical and panoramic radiographs when selecting implant size during treatment planning might be advantageous.

  8. Two-photon up-conversion affected by inter-molecule correlations near metallic nanostructure

    NASA Astrophysics Data System (ADS)

    Osaka, Yoshiki; Yokoshi, Nobuhiko; Ishihara, Hajime

    Optical antennas, which consist of metallic nanostructures, concentrate free-propagating light into localized surface plasmons (LSP). Such a localized field enables effective interactions between light and molecules nearby the metal surfaces. However, as the light intensity decreases to single-photon level, large dissipation in the metals always inhibits the effective photon-molecule interaction via LSP. We have theoretically elucidated that controlling quantum interference in an antenna-molecule coupled system strongly suppresses the photon-dissipations, and leads to efficient two-photon processes in the molecule. However, it is difficult to prepare only one molecule nearby the metal. Therefore, as a beachhead into a multi-molecule system, we will consider the case that two photons couple with two molecules under one LSP. In rapid intuition, the appearance of the second molecule seemingly damages the up-conversion process. In the presentation, we reveal that controlling the inter-molecule interaction could resolve the difficulty, and lead to the efficient up-conversion through the quantum interference among three-bodies, i.e., LSP and two molecules. Supported by a Grant-in-Aid for JSPS Fellows No. 13J09308.

  9. The second-shell metal ligands of human arginase affect coordination of the nucleophile and substrate.

    PubMed

    Stone, Everett M; Chantranupong, Lynne; Georgiou, George

    2010-12-14

    The active sites of eukaryotic arginase enzymes are strictly conserved, especially the first- and second-shell ligands that coordinate the two divalent metal cations that generate a hydroxide molecule for nucleophilic attack on the guanidinium carbon of l-arginine and the subsequent production of urea and l-ornithine. Here by using comprehensive pairwise saturation mutagenesis of the first- and second-shell metal ligands in human arginase I, we demonstrate that several metal binding ligands are actually quite tolerant to amino acid substitutions. Of >2800 double mutants of first- and second-shell residues analyzed, we found more than 80 unique amino acid substitutions, of which four were in first-shell residues. Remarkably, certain second-shell mutations could modulate the binding of both the nucleophilic water/hydroxide molecule and substrate or product ligands, resulting in activity greater than that of the wild-type enzyme. The data presented here constitute the first comprehensive saturation mutagenesis analysis of a metallohydrolase active site and reveal that the strict conservation of the second-shell metal binding residues in eukaryotic arginases does not reflect kinetic optimization of the enzyme during the course of evolution.

  10. Heavy metals affect regulatory volume decrease (RVD) in nematocytes isolated from the jellyfish Pelagia noctiluca.

    PubMed

    Morabito, R; Marino, A; La Spada, G

    2013-06-01

    The environmental contamination caused by heavy metals raises the question of their effect on biological systems. Among bio-indicators useful to monitor the toxicological effects of these chemicals, Cnidarians offer a unique model. Cnidarians possess highly specialized stinging cells, termed nematocytes, which respond to hyposmotic solution with well established homeostatic parameters as an acute osmotic phase (OP), leading to cell swelling, and then a slower regulatory volume decrease (RVD) phase, causing cell shrinkage. Here we report the effect of 65% artificial sea water (ASW) containing heavy metals, such as Cd, La, Co, Cu and Zn (concentrations comprised between 100 and 0.1 μM) on both OP and RVD in nematocytes isolated from the jellyfish Pelagia noctiluca by 605 mM NaSCN plus 0.01 mM Ca(2+). The exposure of the cells to Co and La inhibited RVD but not OP. However, Cu, Cd and Zn prevented the OP in a dose-dependent manner and, hence, also the detection of RVD. These results suggest that, in isolated nematocytes, heavy metal pollutants impair RVD either directly or indirectly through interference with the OP, thus negating RVD. Although further studies need to clarify the exact mechanisms whereby heavy metals exert their toxicity, it is evident that nematocytes of Cnidarians could serve as a model for ecotoxicological investigations.

  11. Evaluation of Metal Toxicity in Streams Affected by Abandoned Mine Lands, Upper Animas River Watershed, Colorado

    USGS Publications Warehouse

    Besser, John M.; Allert, Ann L.; Hardesty, Douglas K.; Ingersoll, Christopher G.; May, Thomas W.; Wang, Ning; Leib, Kenneth J.

    2001-01-01

    Acid drainage from abandoned mines and from naturally-acidic rocks and soil in the upper Animas River watershed of Colorado generates elevated concentrations of acidity and dissolved metals in stream waters and deposition of metal-contaminated particulates in streambed sediments, resulting in both toxicity and habitat degradation for stream biota. High concentrations of iron (Fe), aluminum (Al), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) occur in acid streams draining headwaters of the upper Animas River watershed, and high concentrations of some metals, especially Zn, persist in circumneutral reaches of the Animas River and Mineral Creek, downstream of mixing zones of acid tributaries. Seasonal variation of metal concentrations is reflected in variation in toxicity of stream water. Loadings of dissolved metals to the upper Animas River and tributaries are greatest during summer, during periods of high stream discharge from snowmelt and monsoonal rains, but adverse effects on stream biota may be greater during winter low-flow periods, when stream flows are dominated by inputs of groundwater and contain greatest concentrations of dissolved metals. Fine stream-bed sediments of the upper Animas River watershed also contain elevated concentrations of potentially toxic metals. Greatest sediment metal concentrations occur in the Animas River upstream from Silverton, where there are extensive deposits of mine and mill tailings, and in mixing zones in the Animas River and lower Mineral Creek, where precipitates of Fe and Al oxides also contain high concentrations of other metals. This report summarizes the findings of a series of toxicity studies in streams of the upper Animas River watershed, conducted on-site and in the laboratory between 1998 and 2000. The objectives of these studies were: (1) to determine the relative toxicity of stream water and fine stream-bed sediments to fish and invertebrates; (2) to determine the seasonal range of toxicity in stream

  12. Factors affecting the bond strength of denture base and reline acrylic resins to base metal materials

    PubMed Central

    TANOUE, Naomi; MATSUDA, Yasuhiro; YANAGIDA, Hiroaki; MATSUMURA, Hideo; SAWASE, Takashi

    2013-01-01

    Objective The shear bond strengths of two hard chairside reline resin materials and an auto-polymerizing denture base resin material to cast Ti and a Co-Cr alloy treated using four conditioning methods were investigated. Material and Methods Disk specimens (diameter 10 mm and thickness 2.5 mm) were cast from pure Ti and Co-Cr alloy. The specimens were wet-ground to a final surface finish of 600 grit, air-dried, and treated with the following bonding systems: 1) air-abraded with 50-70-µm grain alumina (CON); 2) 1) + conditioned with a primer, including an acidic phosphonoacetate monomer (MHPA); 3) 1) + conditioned with a primer including a diphosphate monomer (MDP); 4) treated with a tribochemical system. Three resin materials were applied to each metal specimen. Shear bond strengths were determined before and after 10,000 thermocycles. Results The strengths decreased after thermocycling for all combinations. Among the resin materials assessed, the denture base material showed significantly (p<0.05) greater shear bond strengths than the two reline materials, except for the CON condition. After 10,000 thermocycles, the bond strengths of two reline materials decreased to less than 10 MPa for both metals. The bond strengths of the denture base material with MDP were sufficient: 34.56 MPa for cast Ti and 38.30 for Co-Cr alloy. Conclusion Bonding of reline resin materials to metals assessed was clinically insufficient, regardless of metal type, surface treatment, and resin composition. For the relining of metal denture frameworks, a denture base material should be used. PMID:24037070

  13. Stability and heavy metal distribution of soil aggregates affected by application of apatite, lime, and charcoal.

    PubMed

    Cui, Hongbiao; Ma, Kaiqiang; Fan, Yuchao; Peng, Xinhua; Mao, Jingdong; Zhou, Dongmei; Zhang, Zhongbin; Zhou, Jing

    2016-06-01

    Only a few studies have been reported on the stability and heavy metal distribution of soil aggregates after soil treatments to reduce the availability of heavy metals. In this study, apatite (22.3 t ha(-1)), lime (4.45 t ha(-1)), and charcoal (66.8 t ha(-1)) were applied to a heavy metal-contaminated soil for 4 years. The stability and heavy metal distribution of soil aggregates were investigated by dry and wet sieving. No significant change in the dry mean weight diameter was observed in any treatments. Compared with the control, three-amendment treatments significantly increased the wet mean weight diameter, but only charcoal treatment significantly increased the wet aggregate stability. The soil treatments increased the content of soil organic carbon, and the fraction 0.25-2 mm contained the highest content of soil organic carbon. Amendments' application slightly increased soil total Cu and Cd, but decreased the concentrations of CaCl2 -extractable Cu and Cd except for the fraction <0.053 mm. The fractions >2 and 0.25-2 mm contained the highest concentrations of CaCl2-extractable Cu and Cd, accounted for about 74.5-86.8 % of CaCl2-extractable Cu and Cd in soil. The results indicated that amendments' application increased the wet soil aggregate stability and decreased the available Cu and Cd. The distribution of available heavy metals in wet soil aggregates was not controlled by soil aggregate stability, but possibly by soil organic carbon.

  14. Oxidative damage of workers in secondary metal recovery plants affected by smoking status and joining the smelting work.

    PubMed

    Chia, Taipau; Hsu, Ching Yi; Chen, Hsiu Ling

    2008-04-01

    In Taiwan, secondary copper smelters and zinc recovery plants primarily utilize recovering metal from scrap and dross, and handles mostly fly ash and slag with high temperature to produce ZnO from the iron and steel industry. The materials may contain organic impurities, such as plastic and organic chloride chemicals, and amounts of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) are produced during the smelting process. Therefore, secondary metal recovery industries are major emission sources of PCDD/Fs, which may have been demonstrated to elicit oxidative stress and to involve the production of plasma malondialdehyde (MDA). Many studies have also indicated that the intake of antioxidants, smoking, age and exposure to environmental pollutants may be implicated to DNA damage or lipid peroxidation. This study therefore aims to elucidate the roles of occupational exposure like joining the smelting work, age, smoking and alcohol status, and antioxidant intake on oxidative damage in secondary metal recovery workers in Taiwan. 73 workers were recruited from 2 secondary metal recovery plants. The analysis of 8-hydroxydeoxyguanosine (8-OH-dG) in urine, DNA strand breakage (comet assay) and lipid peroxidation (MDA) in blood samples were completed for all of the workers. The results showed that the older subjects exhibited significantly lower levels of 8-OH-dG and MDA than younger subjects. Our investigation also showed that working departments were in related to plasma MDA and DNA strand breakage levels of nonsmokers, however, the observation become negligible in smokers. And it is implicated that cigarette type might affect 8-OH-dG levels in secondary metal recovery workers. Since, adding to results above, the MDA level in production workers was significantly higher than those in managerial departments, it is important for the employers to make efforts on improving occupational environments or serving protective equipments to protect workers

  15. Mining-caused changes to habitat structure affect amphibian and reptile population ecology more than metal pollution.

    PubMed

    Sasaki, Kiyoshi; Lesbarrères, David; Watson, Glen; Litzgus, Jacqueline

    2015-12-01

    Emissions from smelting not only contaminate water and soil with metals, but also induce extensive forest dieback and changes in resource availability and microclimate. The relative effects of such co-occurring stressors are often unknown, but this information is imperative in developing targeted restoration strategies. We assessed the role and relative effects of structural alterations of terrestrial habitat and metal pollution caused by century-long smelting operations on amphibian and reptile communities by collecting environmental and time- and area-standardized multivariate abundance data along three spatially replicated impact gradients. Overall, species richness, diversity, and abundance declined progressively with increasing levels of metals (As, Cu, and Ni) and soil temperature (T(s)) and decreasing canopy cover, amount of coarse woody debris (CWD), and relative humidity (RH). The composite habitat variable (which included canopy cover, CWD, T(s), and RH) was more strongly associated with most response metrics than the composite metal variable (As, Cu, and Ni), and canopy cover alone explained 19-74% of the variance. Moreover, species that use terrestrial habitat for specific behaviors (e.g., hibernation, dispersal), especially forest-dependent species, were more severely affected than largely aquatic species. These results suggest that structural alterations of terrestrial habitat and concomitant changes in the resource availability and microclimate have stronger effects than metal pollution per se. Furthermore, much of the variation in response metrics was explained by the joint action of several environmental variables, implying synergistic effects (e.g., exacerbation of metal toxicity by elevated temperatures in sites with reduced canopy cover). We thus argue that the restoration of terrestrial habitat conditions is a key to successful recovery of herpetofauna communities in smelting-altered landscapes.

  16. Metal pollution in a contaminated bay: relationship between metal geochemical fractionation in sediments and accumulation in a polychaete.

    PubMed

    Fan, Wenhong; Xu, Zhizhen; Wang, Wen-Xiong

    2014-08-01

    Jinzhou Bay in Northern China has been seriously contaminated with metals due to the impacts of smelting activities. In this study, we investigated the relationship between metal accumulation in a deposit-feeding polychaete Neanthes japonica and metal concentration and geochemical fractionation (Cd, Cu, Pb, Zn and Ni) in sediments of Jinzhou Bay. Compared with the historical data, metals in the more mobile geochemical fraction (exchangeable and carbonate fractions) were gradually partitioned into the more stable fraction (Fe-Mn oxides) over time. Metal concentration and geochemical fractionation in sediment significantly affected metal bioavailability and accumulation in polychaetes, except for Ni. Metal accumulation in polychaetes was significantly influenced by Fe or Mn content, and to a lesser degree by organic matter. Prediction of metal bioaccumulation in polychaetes was greatly improved by normalizing metal concentrations to Mn content in sediment. The geochemical fractionation of metals in sediments including the exchangeable, organic matter and Fe-Mn oxides were important in controlling the sediment metal bioavailability to polychaetes.

  17. Interactions between mercury and phytoplankton: speciation, bioavailability, and internal handling.

    PubMed

    Le Faucheur, Séverine; Campbell, Peter G C; Fortin, Claude; Slaveykova, Vera I

    2014-06-01

    The present review describes and discusses key interactions between mercury (Hg) and phytoplankton to highlight the role of phytoplankton in the biogeochemical cycle of Hg and to understand direct or indirect Hg effects on phytoplankton. Phytoplankton are exposed to various Hg species in surface waters. Through Hg uptake, phytoplankton affect the concentration, speciation, and fate of Hg in aquatic systems. The mechanisms by which phytoplankton take up Hg are still not well known, but several studies have suggested that both facilitated transport and passive diffusion could be involved. Once internalized, Hg will impact several physiological processes, including photosynthesis. To counteract these negative effects, phytoplankton have developed several detoxification strategies, such as the reduction of Hg to elemental Hg or its sequestration by intracellular ligands. Based on the toxicological studies performed so far in the laboratory, Hg is unlikely to be toxic to phytoplankton when they are exposed to environmentally relevant Hg concentrations. However, this statement should be taken with caution because questions remain as to which Hg species control Hg bioavailability and about Hg uptake mechanisms. Finally, phytoplankton are primary producers, and accumulated Hg will be transferred to higher consumers. Phytoplankton are a key component in aquatic systems, and their interactions with Hg need to be further studied to fully comprehend the biogeochemical cycle of Hg and the impact of this ubiquitous metal on ecosystems.

  18. Chemical measures of bioavailability/bioaccessibility of PAHs in soil: fundamentals to application.

    PubMed

    Riding, Matthew J; Doick, Kieron J; Martin, Francis L; Jones, Kevin C; Semple, Kirk T

    2013-10-15

    Risk assessment and remediation of contaminated land is inherently dependent on the contaminants present and their availability for interaction with soil biota. An ever-growing body of evidence suggests that current regulatory procedures over-estimate the 'true' fraction available to biota. Thus, a procedure that predicts the 'bioavailable fraction' would be useful for predicting 'actual' exposure limits and provide a more relevant basis for risk assessment. The aim of this paper is to address several important questions: "How should bioavailability be defined?" "What factors affect bioavailability measurement?" "To what extent have existing protocols measured bioavailability?" "What is actually measured by chemical techniques purported to determine bioavailability?" We offer two definitions (namely 'bioavailability' and 'bioaccessibility') and review commonly employed chemical extraction techniques to measure putative bioavailability. Relative advantages and disadvantages of the techniques are highlighted to elucidate underlying factors for the wide range of conclusions observed in the literature. Although the concept of bioavailability is implicit to contaminated land risk assessment and remediation, explicit reference to and use of adjustment factors is rare amongst regulatory bodies and remediators. Use of chemical determinants for bioavailability, applicable within current legislation and due consideration to inherent variability, are proposed and barriers to their implementation discussed.

  19. Rice and Bean Targets for Biofortification Combined with High Carotenoid Content Crops Regulate Transcriptional Mechanisms Increasing Iron Bioavailability.

    PubMed

    Dias, Desirrê Morais; de Castro Moreira, Maria Eliza; Gomes, Mariana Juste Contin; Lopes Toledo, Renata Celi; Nutti, Marilia Regini; Pinheiro Sant'Ana, Helena Maria; Martino, Hércia Stampini Duarte

    2015-11-23

    Iron deficiency affects thousands of people worldwide. Biofortification of staple food crops aims to support the reduction of this deficiency. This study evaluates the effect of combinations of common beans and rice, targets for biofortification, with high carotenoid content crops on the iron bioavailability, protein gene expression, and antioxidant effect. Iron bioavailability was measured by the depletion/repletion method. Seven groups were tested (n = 7): Pontal bean (PB); rice + Pontal bean (R + BP); Pontal bean + sweet potato (PB + SP); Pontal bean + pumpkin (PB + P); Pontal bean + rice + sweet potato (PB + R + P); Pontal bean + rice + sweet potato (PB + R + SP); positive control (Ferrous Sulfate). The evaluations included: hemoglobin gain, hemoglobin regeneration efficiency (HRE), gene expression of divalente metal transporter 1 (DMT-1), duodenal citocromo B (DcytB), ferroportin, hephaestin, transferrin and ferritin and total plasma antioxidant capacity (TAC). The test groups, except the PB, showed higher HRE (p < 0.05) than the control. Gene expression of DMT-1, DcytB and ferroportin increased (p < 0.05) in the groups fed with high content carotenoid crops (sweet potato or pumpkin). The PB group presented lower (p < 0.05) TAC than the other groups. The combination of rice and common beans, and those with high carotenoid content crops increased protein gene expression, increasing the iron bioavailability and antioxidant capacity.

  20. Rice and Bean Targets for Biofortification Combined with High Carotenoid Content Crops Regulate Transcriptional Mechanisms Increasing Iron Bioavailability

    PubMed Central

    Dias, Desirrê Morais; de Castro Moreira, Maria Eliza; Gomes, Mariana Juste Contin; Lopes Toledo, Renata Celi; Nutti, Marilia Regini; Pinheiro Sant’Ana, Helena Maria; Martino, Hércia Stampini Duarte

    2015-01-01

    Iron deficiency affects thousands of people worldwide. Biofortification of staple food crops aims to support the reduction of this deficiency. This study evaluates the effect of combinations of common beans and rice, targets for biofortification, with high carotenoid content crops on the iron bioavailability, protein gene expression, and antioxidant effect. Iron bioavailability was measured by the depletion/repletion method. Seven groups were tested (n = 7): Pontal bean (PB); rice + Pontal bean (R + BP); Pontal bean + sweet potato (PB + SP); Pontal bean + pumpkin (PB + P); Pontal bean + rice + sweet potato (PB + R + P); Pontal bean + rice + sweet potato (PB + R + SP); positive control (Ferrous Sulfate). The evaluations included: hemoglobin gain, hemoglobin regeneration efficiency (HRE), gene expression of divalente metal transporter 1 (DMT-1), duodenal citocromo B (DcytB), ferroportin, hephaestin, transferrin and ferritin and total plasma antioxidant capacity (TAC). The test groups, except the PB, showed higher HRE (p < 0.05) than the control. Gene expression of DMT-1, DcytB and ferroportin increased (p < 0.05) in the groups fed with high content carotenoid crops (sweet potato or pumpkin). The PB group presented lower (p < 0.05) TAC than the other groups. The combination of rice and common beans, and those with high carotenoid content crops increased protein gene expression, increasing the iron bioavailability and antioxidant capacity. PMID:26610564

  1. Enhanced PCBs sorption on biochars as affected by environmental factors: Humic acid and metal cations.

    PubMed

    Wang, Yu; Wang, Lei; Fang, Guodong; Herath, H M S K; Wang, Yujun; Cang, Long; Xie, Zubin; Zhou, Dongmei

    2013-01-01

    Biochar plays an important role in the behaviors of organic pollutants in the soil environment. The role of humic acid (HA) and metal cations on the adsorption affinity of polychlorinated biphenyls (PCBs) to the biochars in an aqueous medium and an extracted solution from a PCBs-contaminated soil was studied using batch experiments. Biochars were produced with pine needles and wheat straw at 350 °C and 550 °C under anaerobic condition. The results showed that the biochars had high adsorption affinity for PCBs. Pine needle chars adsorbed less nonplanar PCBs than planar ones due to dispersive interactions and separation. Coexistence of HA and metal cations increased PCBs sorption on the biochars accounted for HA adsorption and cation complexation. The results will aid in a better understanding of biochar sorption mechanism of contaminants in the environment.

  2. Analysis of Operational Parameters Affecting the Sulfur Content in Hot Metal of the COREX Process

    NASA Astrophysics Data System (ADS)

    Wu, Shengli; Wang, Laixin; Kou, Mingyin; Wang, Yujue; Zhang, Jiacong

    2017-02-01

    The COREX process, which has obvious advantages in environment protection, still has some disadvantages. It has a higher sulfur content in hot metal (HM) than the blast furnace has. In the present work, the distribution and transfer of sulfur in the COREX have been analyzed and several operational parameters related to the sulfur content in HM ([pct S]) have been obtained. Based on this, the effects of the coal rate, slag ratio, temperature of HM, melting rate, binary basicity ( R 2), the ratio of MgO/Al2O3, utilization of reducing gas, top gas consumption per ton burden solid, metallization rate, oxidation degree of reducing gas, and coal and DRI distribution index on the sulfur content in HM are investigated. What's more, a linear model has been developed and subsequently used for predicting and controlling the S content in HM of the COREX process.

  3. Biological Processes Affecting Bioaccumulation, Transfer, and Toxicity of Metal Contaminants in Estuarine Sediments

    DTIC Science & Technology

    2011-12-01

    acclimation……………………………………………………………………….p. 59 Figure 26. Interactive transcriptome revealed……………………………………p. 60 Figure 27. Functional network of... interacting genes……………………………...p. 61 4 Tables: Table 1. Salinity, DOC and metal concentration additions…………………..….p. 13 Table 2. AVS-SEM... ecology , metal biogeochemistry, ecotoxicology, applied genomics) to investigate “fundamental pathways and processes controlling the movement of

  4. Interfacial phenomena affecting contaminant remediation with zero-valent iron metal

    SciTech Connect

    Tratnyek, P.G.; Johnson, T.; Schattauer, A.

    1995-12-31

    The purposes of this paper are to discuss the importance of oxygen (or anoxia) in organic contaminant degradation by granular iron metal, and to explore the various ways in which corrosion, precipitation, and mass transport effects on iron reactivity reflect interfacial phenomena. Studies illustrating the importance of zone-scale and grain-scale interfaces are summarized. The effect of O{sub 2} on dechlorination rates is also briefly discussed, along with possible reaction mechanisms.

  5. Variations in heavy metal contamination of stream water and groundwater affected by an abandoned lead-zinc mine in Korea.

    PubMed

    Lee, Jin-Yong; Choi, Jung-Chan; Lee, Kang-Kun

    2005-09-01

    This study evaluated variations in heavy metal contamination of stream waters and groundwaters affected by an abandoned lead-zinc mine, where a rockfill dam for water storage will be built 11 km downstream. For these purposes, a total of 10 rounds of stream and groundwater samplings and subsequent chemical analyses were performed during 2002-2003. Results of an exploratory investigation of stream waters in 2000 indicated substantial contamination with heavy metals including zinc (Zn), iron (Fe) and arsenic (As) for at least 6 km downstream from the mine. Stream waters near the mine showed metal contamination as high as arsenic (As) 8,923 microg L(-1), copper (Cu) 616 microg L(-1), cadmium (Cd) 223 microg L(-1) and lead (Pb) 10,590 microg L(-1), which greatly exceeded the Korean stream water guidelines. Remediation focused on the mine tailing piles largely improved the stream water qualities. However, there have still been quality problems for the waters containing relatively high concentrations of As (6-174 microg L(-1)), Cd (1-46 microg L(-1)) and Pb (2-26 microg L(-1)). Rainfall infiltration into the mine tailing piles resulted in an increase of heavy metals in the stream waters due to direct discharge of waste effluent, while dilution of the contaminated stream waters improved the water quality due to mixing with metal free rain waters. Levels of As, Cu and chromium (Cr) largely decreased after heavy rain but that of Pb was rather elevated. The stream waters were characterized by high concentrations of calcium (Ca) and sulfate (SO(4)), which were derived from dissolution and leaching of carbonate and sulfide minerals. It was observed that the proportions of Ca and SO(4) increased while those of bicarbonate (HCO(3)) and sodium and potassium (Na+K) decreased after a light rainfall event. Most interestingly, the reverse was generally detected for the groundwaters. The zinc, being the metal mined, was the most dominant heavy metal in the groundwaters (1758

  6. Heavy metals uptake from contaminated soils as affected by peat, lime, and chelates

    SciTech Connect

    Albasel, N.; Cottenie, A.

    1985-01-01

    Heavy metal contamination of soils may reduce yields as well as the suitability for consumption of crop growth (Keeney et al., Leeper). In an effort to find possible ways to counter this danger, the effect of lime, chelating agents, and peat applied to Zn-, Cu- and Pb-contaminated soils on the uptake of metal ions were studied. Pot experiments with barley (Hordeum vulgare L.), perennial ryegrass (Lolium perenne) and Italian ryegrass (Lolium multiflorum) plants and soils, humic podzols (haplohumads) contaminated with Zn (3030 mg kg/sup -1/) and with Pb, Zn and Cu (110, 630, and 40 mg kg/sup -//sub 1/, respectively) were carried out. The concentration of the acid extracts of soils and plants were determined with the aid of the simultaneous direct reading spectrograph and atomic absorption. In all cases, raising the pH of the soil by liming appeared to be the most efficient method for reducing plant absorption of toxic micronutrients and heavy metals. However, the uptake of Fe and Mn was more markedly dependent on pH than that of Zn and Cu.

  7. Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments

    SciTech Connect

    Cuypers, C.; Grotenhuis, T.; Joziasse, J.; Rulkens, W.

    2000-05-15

    Persulfate oxidation was validated as a method to predict polycyclic aromatic hydrocarbon (PAH) bioavailability in soils and sediments. It was demonstrated for 14 field contaminated soils and sediments that residual PAH concentrations after a short (3 h) persulfate oxidation correspond well to residual PAH concentrations after 21 days of biodegradation. Persulfate oxidation of samples that had first been subjected to biodegradation yielded only limited additional PAH oxidation. This implies that oxidation and biodegradation removed approximately the same PAH fraction. Persulfate oxidation thus provides a good and rapid method for the prediction of PAH bioavailability. Thermogravimetric analysis of oxidized and untreated samples showed that persulfate oxidation primarily affected expanded organic matter. The results indicate that this expanded organic matter contained mainly readily bioavailable PAHs.

  8. BIOSURFACES AND BIOAVAILABILITY: A NANOSCALE OVERVIEW

    EPA Science Inventory

    Environmentally, contaminant bioavailability is a key parameter in determining exposure assessment and ultimately risk assessment/risk management. Defining bioavailability requires knowledge of the contaminant spatial/temporal disposition and transportability and the thermodyna...

  9. Hydrogen abstraction from metal surfaces: when electron-hole pair excitations strongly affect hot-atom recombination.

    PubMed

    Galparsoro, Oihana; Pétuya, Rémi; Busnengo, Fabio; Juaristi, Joseba Iñaki; Crespos, Cédric; Alducin, Maite; Larregaray, Pascal

    2016-11-23

    Using molecular dynamics simulations, we predict that the inclusion of nonadiabatic electronic excitations influences the dynamics of preadsorbed hydrogen abstraction from the W(110) surface by hydrogen scattering. The hot-atom recombination, which involves hyperthermal diffusion of the impinging atom on the surface, is significantly affected by the dissipation of energy mediated by electron-hole pair excitations at low coverage and low incidence energy. This issue is of importance as this abstraction mechanism is thought to largely contribute to molecular hydrogen formation from metal surfaces.

  10. Drug Bioavailability Data: (Un)Available.

    ERIC Educational Resources Information Center

    Capomacchia, Anthony C.; And Others

    1979-01-01

    The obtainability of drug bioavailability data from both brand-name and generic-drug manufacturers was studied to document the relative change in availability to pharmacy students of drug bioavailability data between 1978 and 1976 for drugs exhibiting bioavailability problems. The results indicate no major change. (JMD)

  11. Friction, Wear, and Surface Damage of Metals as Affected by Solid Surface Films

    NASA Technical Reports Server (NTRS)

    Bisson, Edmond E; Johnson, Robert L; Swikert, Max A; Godfrey, Douglas

    1956-01-01

    As predicted by friction theory, experiments showed that friction and surface damage of metals can be reduced by solid surface films. The ability of materials to form surface films that prevent welding was a very important factor in wear of dry and boundary lubricated surfaces. Films of graphitic carbon on cast irons, nio on nickel alloys, and feo and fe sub 3 o sub 4 on ferrous materials were found to be beneficial. Abrasive films such as fe sub 2 o sub 3 or moo sub 3 were definitely detrimental. It appears that the importance of oxide films to friction and wear processes has not been fully appreciated.

  12. Kinetic speciation and bioavailability of copper and nickel in mangrove sediments.

    PubMed

    Chakraborty, Parthasarathi; Chakraborty, Sucharita; Ramteke, Darwin; Chennuri, Kartheek

    2014-11-15

    An attempt was made to establish a mechanistic linkage between chemical speciation of copper and nickel, and their bioavailability in mangrove ecosystem. Kinetic speciation study was performed to determine the concentrations of labile metal-complexes and their dissociation rate constants in mangrove sediments. Concentrations of copper and nickel in the mangrove roots were used as indicators of their bioavailability. It was found that the bioaccumulation of both the metals gradually increased with the increasing concentrations of the labile metal complexes and their dissociation rate constants in the mangrove sediments. This study shows that concentration of labile metal (copper and nickel) complexes and their dissociation rate constants in mangrove sediment can be a good indicator of their bioavailability.

  13. Influence of dissolved organic nitrogen on Ni bioavailability in Prorocentrum donghaiense and Skeletonema costatum.

    PubMed

    Huang, Xu-Guang; Li, Hao; Huang, Bang-qin; Liu, Feng-Jiao

    2015-07-15

    Dissolved organic nitrogen (DON) is an important nutrient in the aquatic environment. This study examined the influence of DON addition on the adsorption, absorption, and distribution in macromolecular forms of environmentally deleterious trace metal (Ni) in Prorocentrum donghaiense and Skeletonema costatum over eight days. Ni adsorption and absorption of two species increased with the addition of urea, while Ni adsorption and absorption of two species in the presence of humic substances (HS) decreased. Meanwhile, Ni adsorption and absorption of P. donghaiense were higher than that of S. costatum. Furthermore, Ni contents in the protein fraction of the cells, both in P. donghaiense and S. costatum, were increased with both urea and HS addition. Thus, urea and HS input could impact Ni biogeochemistry and bioavailability, and then affect the biodynamics thereafter.

  14. Chemical assessment and fractionation of some heavy metals and arsenic in agricultural soils of the mining affected Drama plain, Macedonia, northern Greece.

    PubMed

    Sofianska, E; Michailidis, K

    2015-03-01

    The concentration and chemical fractionation of some heavy metals (Mn, Pb, Zn, Cu, Cd) and As in agricultural soils of the western Drama plain (northern Greece) were determined using inductively coupled plasma-mass spectrometry (ICP-MS) technique. Drama plain constitutes the recipient of the effluents from Xiropotamos stream, which passes through the abandoned "25 km Mn-mine" place. Results showed that soils were found to have elevated concentrations of potentially harmful elements which are mainly associated with Mn mineralization. Peak total concentrations (in mg kg(-1)) of 130,013 for Mn, 1996 for Pb, 2140 for Zn, 147 for Cu, 28 for Cd, and 1077 for As were found in sampling points close and along both sides of the Xiropotamos stream, as a result of downstream transfer and dispersion of Mn mine wastes via flooding episodes. Contaminated sites are important sources of pollution and may pose significant environmental hazards for terrestrial and aquatic ecosystems. The geochemical influence of the mine wastes as a source of soil pollution is substantially reduced in sites 200 m remote of the Xiropotamos stream course. The chemical partitioning patterns indicated that the potential for Mn, Pb, Zn, Cu, Cd, and As remobilization and bioavailability is low, as most of these elements were present in the residual and/or the more stable Mn- and Fe-hydroxide fractions. The partitioning in significant percent (14-25 %) of Cd with the weakly bound exchangeable/carbonate fraction indicated that this metal could be highly mobile as well as bioavailable in the studied contaminated soils and this could be concern to human health.

  15. Binding intensity and metal partitioning in soils affected by mining and smelting activities in Minas Gerais, Brazil.

    PubMed

    Lopes, G; Costa, E T S; Penido, E S; Sparks, D L; Guilherme, L R G

    2015-09-01

    Mining and smelting activities are potential sources of heavy metal contamination, which pose a threat to human health and ecological systems. This study investigated single and sequential extractions of Zn, Pb, and Cd in Brazilian soils affected by mining and smelting activities. Soils from a Zn mining area (soils A, B, C, D, E, and the control soil) and a tailing from a smelting area were collected in Minas Gerais state, Brazil. The samples were subjected to single (using Mehlich I solution) and sequential extractions. The risk assessment code (RAC), the redistribution index (U ts ), and the reduced partition index (I R ) have been applied to the sequential extraction data. Zinc and Cd, in soil samples from the mining area, were found mainly associated with carbonate forms. This same pattern did not occur for Pb. Moreover, the Fe-Mn oxides and residual fractions had important contributions for Zn and Pb in those soils. For the tailing, more than 70 % of Zn and Cd were released in the exchangeable fraction, showing a much higher mobility and availability of these metals at this site, which was also supported by results of RAC and I R . These differences in terms of mobility might be due to different chemical forms of the metals in the two sites, which are attributable to natural occurrence as well as ore processing.

  16. Metal mobility in river and sea sediments affected by mine drainage (Sestri Levante, Italy)

    NASA Astrophysics Data System (ADS)

    Consani, Sirio; Capello, Marco; Cutroneo, Laura; Vagge, Greta; Zuccarelli, Andrea; Carbone, Cristina

    2016-04-01

    The Gromolo Torrent is a metal-polluted Apennine streamflow located near Sestri Levante (Liguria, Italy). It springs from the Monte Rocca Grande (850 m a.s.l.), and flows for 11.5 km through the Gromolo Valley before flowing into the Ligurian Sea. Inside the Gromolo basin is located the abandoned Fe-Cu mine of Libiola, which was the most important sulfide deposit of the Ligurian Apennines. In this mining site, extensive Acid Mine Drainage (AMD) processes are active, both inside the mine tunnels and in the sulfide rich waste-rock dumps; the solutions generated are characterised by low pH values and high amounts of dissolved SO42-, Fe, and other chemical elements such as Cu, Zn, Pb, Al, Co, and Ni. Moreover, exstensively precipitation of Fe and Cu-rich secondary minerals occurs both as soft crusts inside the mine adits and as loose suspensions associated with overland flow of mine drainage. AMD waters flowed into the uncontaminated Gromolo Torrent where abundant precipitation of amorphous Fe(III)-oxy-hydroxides occurred. The marine study area is characterised by the presence of the headland of Sestri Levante with two bays, the western one named "Baia delle Favole". The dynamics of the area is dominated by a permanent north-westward off-shore current flowing approximately along isobath, and an eastward counter-current along the north coast with a resulting drift of the coastal materials from the West to Est towards "Baia delle Favole". The bottom sediment are principally characterised by coarse materials, mostly consisting of fine sand, with a percentage of the fine sediment increasing inside the bay, where the dynamics is low. The aims of this work are to 1) evaluate the metal mobility of colloidal river precipitates for about 7 km up to its mouth in the Ligurian Sea; 2) verify the contamination state of the marine bottom sediments off the mouth of the Gromolo Torrent ("Baia delle Favole" of Sestri Levante), and 3) identify the main sources and diffusion ways of

  17. Bioavailability of the Polyphenols: Status and Controversies

    PubMed Central

    D’Archivio, Massimo; Filesi, Carmelina; Varì, Rosaria; Scazzocchio, Beatrice; Masella, Roberta

    2010-01-01

    The current interest in polyphenols has been driven primarily by epidemiological studies. However, to establish conclusive evidence for the effectiveness of dietary polyphenols in disease prevention, it is useful to better define the bioavailability of the polyphenols, so that their biological activity can be evaluated. The bioavailability appears to differ greatly among the various phenolic compounds, and the most abundant ones in our diet are not necessarily those that have the best bioavailability profile. In the present review, we focus on the factors influencing the bioavailability of the polyphenols. Moreover, a critical overview on the difficulties and the controversies of the studies on the bioavailability is discussed. PMID:20480022

  18. Bioavailability of lead in oysters fed to young Japanese quail

    SciTech Connect

    Stone, C.L.; Spivey Fox, M.R.; Hogye, K.S.

    1981-12-01

    The presence of lead in atmospheric particulates, soil, and seawater reflects the input of both domestic and industrial wastes. Because bivalves can concentrate large quantities of heavy metals, particularly lead, consumption of their meat may be a potential risk. The relative bioavailability of lead physiologicaly incorporated into oyster meat was investigated. Day-old Japanese quail were fed purified diets with three levels of lead added as either lead acetate, freeze-dried lead-dosed oyster, or lead acetate plus freeze-dried control oyster for 2 weeks. Feeding lead from any source had little or no effect on body weight, hemoglobin, hematocrit, or percentage ash in the tibia. The concentration of lead in tibia at each level of dietary lead for each type of diet was different from those for all other levels of dietary lead. Slope-ratio analysis of the data showed that lead intrinsically incorporated into oyster meat was 69-75% as bioavailable as lead in lead acetate at levels between 25 and 100 ppm dietary lead. The combinations of (1) control oyster meat with lead acetate and (2) lead acetate with copper and zinc levels equal to those in oyster meat gave responses similar to those of the lead-dosed oyster groups. Although these data showed lower bioavailability of lead in oyster meat as compared with lead acetate, the intercept of the lines at 25 ppm dietary lead suggests that the relative bioavailability may be reserved at lower levels of lead intake.

  19. A Review of Mercury Bioavailability in Humans and Fish.

    PubMed

    Bradley, Mark A; Barst, Benjamin D; Basu, Niladri

    2017-02-10

    To estimate human exposure to methylmercury (MeHg), risk assessors often assume 95%-100% bioavailability in their models. However, recent research suggests that assuming all, or most, of the ingested mercury (Hg) is absorbed into systemic circulation may be erroneous. The objective of this paper is to review and discuss the available state of knowledge concerning the assimilation or bioavailability of Hg in fish and humans. In fish, this meant reviewing studies on assimilation efficiency, that is the difference between ingested and excreted Hg over a given period of time. In humans, this meant reviewing studies that mostly investigated bioaccessibility (digestive processes) rather than bioavailability (cumulative digestive + absorptive processes), although studies incorporating absorption for a fuller picture of bioavailability were also included where possible. The outcome of this review shows that in a variety of organisms and experimental models that Hg bioavailability and assimilation is less than 100%. Specifically, 25 studies on fish were reviewed, and assimilation efficiencies ranged from 10% to 100% for MeHg and from 2% to 51% for Hg(II). For humans, 20 studies were reviewed with bioaccessibility estimates ranging from 2% to 100% for MeHg and 0.2% to 94% for Hg(II). The overall absorption estimates ranged from 12% to 79% for MeHg and 49% to 69% for Hg(II), and were consistently less than 100%. For both fish and humans, a number of cases are discussed in which factors (e.g., Hg source, cooking methods, nutrients) are shown to affect Hg bioavailability. The summaries presented here challenge a widely-held assumption in the Hg risk assessment field, and the paper discusses possible ways forward for the field.

  20. A Review of Mercury Bioavailability in Humans and Fish

    PubMed Central

    Bradley, Mark A.; Barst, Benjamin D.; Basu, Niladri

    2017-01-01

    To estimate human exposure to methylmercury (MeHg), risk assessors often assume 95%–100% bioavailability in their models. However, recent research suggests that assuming all, or most, of the ingested mercury (Hg) is absorbed into systemic circulation may be erroneous. The objective of this paper is to review and discuss the available state of knowledge concerning the assimilation or bioavailability of Hg in fish and humans. In fish, this meant reviewing studies on assimilation efficiency, that is the difference between ingested and excreted Hg over a given period of time. In humans, this meant reviewing studies that mostly investigated bioaccessibility (digestive processes) rather than bioavailability (cumulative digestive + absorptive processes), although studies incorporating absorption for a fuller picture of bioavailability were also included where possible. The outcome of this review shows that in a variety of organisms and experimental models that Hg bioavailability and assimilation is less than 100%. Specifically, 25 studies on fish were reviewed, and assimilation efficiencies ranged from 10% to 100% for MeHg and from 2% to 51% for Hg(II). For humans, 20 studies were reviewed with bioaccessibility estimates ranging from 2% to 100% for MeHg and 0.2% to 94% for Hg(II). The overall absorption estimates ranged from 12% to 79% for MeHg and 49% to 69% for Hg(II), and were consistently less than 100%. For both fish and humans, a number of cases are discussed in which factors (e.g., Hg source, cooking methods, nutrients) are shown to affect Hg bioavailability. The summaries presented here challenge a widely-held assumption in the Hg risk assessment field, and the paper discusses possible ways forward for the field. PMID:28208586

  1. Biomonitoring metal deposition in Galicia (NW Spain) with mosses: factors affecting bioconcentration.

    PubMed

    Fernández, J A; Carballeira, A

    2002-01-01

    Three factors (canopy effect, lithology and seasonal variations) that may influence the concentrations of metals in terrestrial mosses were studied. The levels of 17 elements were determined in terrestrial mosses (Scleropodium purum (Hedw.) Limpr, and Hypnum cupressiforme Hedw.) collected from 75 sites in Galicia at two sampling times, in 1995 and 1997. In addition, monthly samples of S. purum were collected throughout a period of one year from four sites in the same area, for analysis of levels of eight elements. The first studied factor, collection of mosses from areas under tree cover, did not influence significantly the levels of the elements analysed. The second factor studied was the dominant lithology in the sampling area (granite, slate and schist). No significant differences were found between samples from sites where granites and slates dominated. Significant differences were found in the levels of Co, Cr, Ni and Mn in both species growing in granite and slate substrate areas when compared with those growing in schist areas. This was also found for Al and Fe in S. purum and for As in H. cupressiforme. The third factor investigated, using the results from the monthly survey, was the seasonal effect. No significant differences were found in the concentrations of all elements in S. purum throughout the year.

  2. Metal contaminated biochar and wood ash negatively affect plant growth and soil quality after land application.

    PubMed

    Jones, D L; Quilliam, R S

    2014-07-15

    Pyrolysis or combustion of waste wood can provide a renewable source of energy and produce byproducts which can be recycled back to land. To be sustainable requires that these byproducts pose minimal threat to the environment or human health. Frequently, reclaimed waste wood is contaminated by preservative-treated timber containing high levels of heavy metals. We investigated the effect of feedstock contamination from copper-preservative treated wood on the behaviour of pyrolysis-derived biochar and combustion-derived ash in plant-soil systems. Biochar and wood ash were applied to soil at typical agronomic rates. The presence of preservative treated timber in the feedstock increased available soil Cu; however, critical Cu guidance limits were only exceeded at high rates of feedstock contamination. Negative effects on plant growth and soil quality were only seen at high levels of biochar contamination (>50% derived from preservative-treated wood). Negative effects of wood ash contamination were apparent at lower levels of contamination (>10% derived from preservative treated wood). Complete removal of preservative treated timber from wood recycling facilities is notoriously difficult and low levels of contamination are commonplace. We conclude that low levels of contamination from Cu-treated wood should pose minimal environmental risk to biochar and ash destined for land application.

  3. Amelioration of metal-induced toxicity in Caenorhabditis elegans: utility of chelating agents in the bioremediation of metals.

    PubMed

    Harrington, James M; Boyd, Windy A; Smith, Marjolein V; Rice, Julie R; Freedman, Jonathan H; Crumbliss, Alvin L

    2012-09-01

    The presence of toxic amounts of transition metals in the environment may originate from a range of human activities and natural processes. One method for the removal of toxic levels of metals is through chelation by small molecules. However, chelation is not synonymous with detoxification and may not affect the bioavailability of the metal. To test the bioavailability of chelated metals in vivo, the effects of several metal/chelator combinations were tested in the environmentally relevant organism Caenorhabditis elegans. The effect of metal exposure on nematode growth was used to determine the toxicity of cadmium, copper, nickel, and zinc. The restoration of growth to levels observed in nonexposed nematodes was used to determine the protective effects of the polydentate chelators: acetohydroxamic acid (AHA), cyclam, cysteine, calcium EDTA, desferrioxamine B, 1,2-dimethyl,3-hydroxy,4-pyridinone, and histidine. Cadmium toxicity was removed only by EDTA; copper toxicity was removed by all of the chelators except AHA; nickel toxicity was removed by cyclam, EDTA, and histidine; and zinc toxicity was removed by only EDTA. These results demonstrate the utility of polydentate chelators in the remediation of metal-contaminated systems. They also demonstrate that although the application of a chelator to metal contaminants may be effective, binding alone cannot be used to predict the level of remediation. Remediation depends on a number of factors, including metal complex speciation in the environment.

  4. Do weirs affect the physical and geochemical mobility of toxic metals in mining-impacted floodplain sediments?

    NASA Astrophysics Data System (ADS)

    Bulcock, Amelia; Coleman, Alexandra; Whitfield, Elizabeth; Andres Lopez-Tarazon, Jose; Byrne, Patrick; Whitfield, Greg

    2015-04-01

    Weirs are common river structures designed to modify river channel hydraulics and hydrology for purposes of navigation, flood defence, irrigation and hydrometry. By design, weirs constrain natural flow processes and affect sediment flux and river channel forms leading to homogenous river habitats and reduced biodiversity. The recent movement towards catchment-wide river restoration, driven by the EU Water Framework Directive, has recognised weirs as a barrier to good ecological status. However, the removal of weirs to achieve more 'natural' river channels and flow processes is inevitably followed by a period of adjustment to the new flow regime and sediment flux. This period of adjustment can have knock-on effects that may increase flood risk, sedimentation and erosion until the river reaches a state of geomorphological equilibrium. Many catchments in the UK contain a legacy of toxic metals in floodplain sediments due to historic metal mining activities. The consequences of weir removal in these catchments may be to introduce 'stored' mine wastes into the river system with severe implications for water quality and biodiversity. The purpose of this study is to investigate the potential impact of a weir on the physical and geochemical mobilisation of mine wastes in the formerly mined River Twymyn catchment, Wales. Our initial investigations have shown floodplain and riverbed sediments to be grossly contaminated (up to 15,500 mg/kg Pb) compared to soil from a pre-mining Holocene terrace (180 mg/kg Pb). Geomorphological investigations also suggest that weir removal will re-establish more dynamic river channel processes resulting in lateral migration of the channel and erosion of contaminated floodplain sediments. These data will be used as a baseline for more detailed investigations of the potential impact of weirs on the physical and geochemical mobilisation of contaminated sediments. We have two specific objectives. (1) Geomorphological assessments will use unmanned

  5. Effect of cysteine and humic acids on bioavailability of Ag from Ag nanoparticles to a freshwater snail

    USGS Publications Warehouse

    Luoma, Samuel N.; Tasha Stoiber,; Croteau, Marie-Noele; Isabelle Romer,; Ruth Merrifeild,; Lead, Jamie

    2016-01-01

    Metal-based engineered nanoparticles (NPs) will undergo transformations that will affect their bioavailability, toxicity and ecological risk when released to the environment, including interactions with dissolved organic material. The purpose of this paper is to determine how interactions with two different types of organic material affect the bioavailability of silver nanoparticles (AgNPs). Silver uptake rates by the pond snail Lymnaea stagnalis were determined after exposure to 25 nmol l-1 of Ag as PVP AgNPs, PEG AgNPs or AgNO3, in the presence of either Suwannee River humic acid or cysteine, a high-affinity thiol-rich organic ligand. Total uptake rate of Ag from the two NPs was either increased or not strongly affected in the presence of 1 – 10 mg 1-1 humic acid. Humic substances contain relatively few strong ligands for Ag explaining their limited effects on Ag uptake rate. In contrast, Ag uptake rate was substantially reduced by cysteine. Three components of uptake from the AgNPs were quantified in the presence of cysteine using a biodynamic modeling approach: uptake of dissolved Ag released by the AgNPs, uptake of a polymer or large (>3kD) Ag-cysteine complex and uptake of the nanoparticle itself. Addition of 1:1 Ag:cysteine reduced concentrations of dissolved Ag, which contributed to, but did not fully explain the reductions in uptake. A bioavailable Ag-cysteine complex (> 3kD) appeared to be the dominant avenue of uptake from both PVP AgNPs and PEG AgNPs in the presence of cysteine. Quantifying the different avenues of uptake sets the stage for studies to assess toxicity unique to NPs.

  6. Model of the biotic cycle "plants germs - microorganisms" by affect heavy metal salts

    NASA Astrophysics Data System (ADS)

    Pisman, Tamara

    The growth of wheat germ roots exposed to heavy metal salts (ZnSO4) was studied experimentally and theoretically. During the experiment the plant seeds were preliminarily treated with an experimental microbial association. As a result, data were obtained about the decrease of the inhibiting effect of zinc on the growth of wheat germ roots where the seeds had been treated with the microbial association. To understand such effect, calculations were made to reveal the specific growth rate of a germ root depending on the inhibitor concentration with and without microorganism association treatment. It was shown that in case with the wheat germ roots the seeds of which had been treated with the microorganisms the inhibition constant (kI = 45 MPC (Maximum Permissible Concentration) was higher than in the case with the roots growing out of the seeds that hadn't been treated with the microorganisms (kI = 32 MPC). One of possible reasons for the decrease of growth inhibition of wheat germ roots by zinc salt is the protective function of microorganism's treatment of the seeds. To verify and confirm the experimental results, a mathematical model was created imitating the interaction between wheat germ roots and microbial association exposed to an inhibitor. Investigation of the model proved that the microbial association has a positive effect on the growth of wheat germ roots exposed to an inhibitor. The experimental and theoretical results agreed quantitatively. It was found out that the increase of the inhibitor concentration led to the effect of maximum relief of zinc inhibiting impact. The work is supported by grants Yenissei 07-04-96806.

  7. Macroalgal biomonitors of trace metal contamination in acid sulfate soil aquaculture ponds.

    PubMed

    Gosavi, K; Sammut, J; Gifford, S; Jankowski, J

    2004-05-25

    Earthen shrimp aquaculture ponds are often impacted by acid sulfate soils (ASS), typically resulting in increased disease and mortality of cultured organisms. Production losses have been attributed to either low pH or to elevated concentrations of toxic metals, both direct products of pyrite oxidation in ASS. The standard farm management practice to minimise effects of pyrite oxidation is to maintain pH of pond waters above 5, based on the assumption that dissolved metal bioavailability is negligible at this pH. This study aimed to test the validity of this assumption, and therefore elucidate a possible role of toxic heavy metals in observed decreases in farm productivity. Metal bioaccumulation in four genera of macroalgae, Ulva sp., Enteromorpha sp., Cladophora sp. and Chaetomorpha sp., sampled from ASS-affected shrimp aquaculture ponds were measured using inductively coupled plasma-optical emission spectroscopy (ICP-OES) to assess the relative bioavailability of dissolved metals within the system. Results showed that all four genera of macroalgae accumulated appreciable quantities of Fe, Al, Zn, Cd, Cu, As and Pb. Iron and Al, the most common metals mobilised from ASS, were both accumulated in all algal genera to concentrations three orders of magnitude greater than all other metals analysed. These findings indicate that dissolved heavy metals are indeed bioavailable within the aquaculture pond system. A literature search of heavy metal bioaccumulation by these algal genera revealed concentrations recorded in this study are comparable to highly contaminated environments, such as those exposed to urban, industrial and mining pollution. The results of this study indicate that dissolved metal bioavailability in many earthen shrimp aquaculture ponds may be higher than previously thought.

  8. Evaluation of factors affecting the analysis of metals using laser-induced breakdown spectroscopy

    SciTech Connect

    Cremers, D.A.; Romero, D.J.

    1986-01-01

    Some of the main factors affecting the analysis of solid steel using laser-induced break-down spectroscopy (LIBS) have been investigated and are reported here. Pulses from an electro-optically Q-switched Nd:YAG laser were focused on steel samples to generate a high temperature plasma. The spectrally resolved plasma light was time resolved and detected using a photodiode array. The effects that changes in the lens-to-sample distance, laser pulse energy, and position of the imaging lens had on the LIBS analysis are described. These effects were minimized by ratioing the absolute element signals to adjacent Fe-lines. Calibration curves for Mn, Si, and Cr are presented and the accuracy and precision of LIBS analysis listed for several elements. 12 refs.

  9. Effects of biochar and Arbuscular mycorrhizae on bioavailability of potentially toxic elements in an aged contaminated soil.

    PubMed

    Qiao, Yuhui; Crowley, David; Wang, Kun; Zhang, Huiqi; Li, Huafen

    2015-11-01

    Biochar pyrolyzed from corn stalks at 300°C/500°C and arbuscular mycorrhizae (AMF) were examined independently and in combination as possible treatments for soil remediation contaminated with Cd, Cr, Ni, Cu, Pb, Zn after 35 years following land application of sewage sludge in the 1970s. The results showed that biochar significantly decreased the heavy metal concentrations and their bioavailability for plants, and both biochars had similar such effects. AMF inoculation of corn plants had little effect on heavy metal bioavailability in either control or biochar amended soil, and no interaction between biochar and AMF was observed. Changes in DTPA extractable metals following biochar addition to soil were correlated with metal uptake by plants, whereas pore water metal concentrations were not predictive indicators. This research demonstrates positive benefits from biochar application for contaminated soil remediation, but remain ambiguous with regard to the benefits of simultaneous AMF inoculation on reduction of heavy metal bioavailability.

  10. Recycled water sources influence the bioavailability of copper to earthworms.

    PubMed

    Kunhikrishnan, Anitha; Bolan, Nanthi S; Naidu, Ravi; Kim, Won-Il

    2013-10-15

    Re-use of wastewaters can overcome shortfalls in irrigation demand and mitigate environmental pollution. However, in an untreated or partially treated state, these water sources can introduce inorganic contaminants, including heavy metals, to soils that are irrigated. In this study, earthworms (Eisenia fetida) have been used to determine copper (Cu) bioavailability in two contrasting soils irrigated with farm dairy, piggery and winery effluents. Soils spiked with varying levels of Cu (0-1,000 mg/kg) were subsequently irrigated with recycled waters and Milli-Q (MQ) water and Cu bioavailability to earthworms determined by mortality and avoidance tests. Earthworms clearly avoided high Cu soils and the effect was more pronounced in the absence than presence of recycled water irrigation. At the highest Cu concentration (1,000 mg/kg), worm mortality was 100% when irrigated with MQ-water; however, when irrigated with recycled waters, mortality decreased by 30%. Accumulation of Cu in earthworms was significantly less in the presence of recycled water and was dependent on CaCl2-extractable free Cu(2+) concentration in the soil. Here, it is evident that organic carbon in recycled waters was effective in decreasing the toxic effects of Cu on earthworms, indicating that the metal-organic complexes decreased Cu bioavailability to earthworms.

  11. Use of Tunable Whole-Cell Bioreporters to Assess Bioavailable Cadmium and Remediation Performance in Soils

    PubMed Central

    Yoon, Youngdae; Kim, Sunghoon; Chae, Yooeun; Kang, Yerin; Lee, Youngshim; Jeong, Seung-Woo; An, Youn-Joo

    2016-01-01

    It is important to have tools to measure the bioavailability to assess the risks of pollutants because the bioavailability is defined as the portions of pollutants showing the biological effects on living organisms. This study described the construction of tunable Escherichia coli whole-cell bioreporter (WCB) using the promoter region of zinc-inducible operon and its application on contaminated soils. It was verified that this WCB system showed specific and sensitive responses to cadmium rather than zinc in the experimental conditions. It was inferred that Cd(II) associates stronger with ZntR, a regulatory protein of zinc-inducible operon, than other metal ions. Moreover, the expression of reporter genes, egfp and mcherry, were proportional to the concentration of cadmium, thereby being a quantitative sensor to monitor bioavailable cadmium. The capability to determine bioavailable cadmium was verified with Cd(II) amended LUFA soils, and then the applicability on environmental systems was investigated with field soils collected from smelter area in Korea before and after soil-washing. The total amount of cadmium was decreased after soil washing, while the bioavailability was increased. Consequently, it would be valuable to have tools to assess bioavailability and the effectiveness of soil remediation should be evaluated in the aspect of bioavailability as well as removal efficiency. PMID:27171374

  12. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops*

    PubMed Central

    Islam, Ejaz ul; Yang, Xiao-e; He, Zhen-li; Mahmood, Qaisar

    2007-01-01

    Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary

  13. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops.

    PubMed

    Islam, Ejaz ul; Yang, Xiao-e; He, Zhen-li; Mahmood, Qaisar

    2007-01-01

    Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary

  14. Investigation of planarization characteristics and novel defects in metal CMP affected by physical, chemical and mechanical factors

    NASA Astrophysics Data System (ADS)

    Cheemalapati, Krishnayya

    Chemical Mechanical Planarization (CMP) has emerged as a widely used technology in the present day fabrication of Integrated Circuit (IC) chips in microelectronics. With the device size shrinking every year, the need for smaller and faster chips is also increasing. The use of novel materials and methods of fabrication are becoming inevitable. The replacement of aluminum with copper, low-k dielectrics in place of SiO2 in the Back End Of the Line processing (BEOL), multi-level metallization are some of the recent developments which the industry has witnessed. The patterning of features with smaller critical dimensions requires the Depth Of Focus (DOF) to be as low as possible. The requirement on the DOF hence increases with the reduction in the critical dimensions hence increasing the planarity requirements. Three different factors that impact the planarity in metal CMP have been investigated in detail in the thesis. The first topic of the thesis deals with a novel defect in Cu patterned wafer polishing where the feature experiences extra erosion at the edge of the feature in comparison to the center. Various first-step Cu slurries with different passivation chemistries were employed in the study supported by CFD modeling of slurry flow over patterned features. The relative roles of slurry passivation and fluid flow on the inception of the defect were investigated. The second topic deals with the impact of process temperature in CMP. Different factors such as process variables, slurry components and its effect on process temperature were investigated. The effect of process temperature on slurry physical properties in turn affecting the slurry performance was investigated in detail with different first-step Cu slurries. The final topic of the thesis deals with some important factors that determine the planarization efficiency in metal CMP. The impact of slurry physical properties, pad and wafer specifications and slurry abrasive content were studied in detail.

  15. Toxicity and deficiency of copper in Elsholtzia splendens affect photosynthesis biophysics, pigments and metal accumulation.

    PubMed

    Peng, Hongyun; Kroneck, Peter M H; Küpper, Hendrik

    2013-06-18

    Elsholtzia splendens is a copper-tolerant plant species growing on copper deposits in China. Spatially and spectrally resolved kinetics of in vivo absorbance and chlorophyll fluorescence in mesophyll of E. splendens were used to investigate the copper-induced stress from deficiency and toxicity as well as the acclimation to excess copper stress. The plants were cultivated in nutrient solutions containing either Fe(III)-EDTA or Fe(III)-EDDHA. Copper toxicity affected light-acclimated electron flow much stronger than nonphotochemical quenching (NPQ) or dark-acclimated photochemical efficiency of PSIIRC (Fv/Fm). It also changed spectrally resolved Chl fluorescence kinetics, in particular by strengthening the short-wavelength (<700 nm) part of NPQ altering light harvesting complex II (LHCII) aggregation. Copper toxicity reduced iron accumulation, decreased Chls and carotenoids in leaves. During acclimation to copper toxicity, leaf copper decreased but leaf iron increased, with photosynthetic activity and pigments recovering to normal levels. Copper tolerance in E. splendens was inducible; acclimation seems be related to homeostasis of copper and iron in E. splendens. Copper deficiency appeared at 10 mg copper per kg leaf DW, leading to reduced growth and decreased photosynthetic parameters (F0, Fv/Fm, ΦPSII). The importance of these results for evaluating responses of phytoremediation plants to stress in their environment is discussed.

  16. Fractionation of metals and As in sediments from a biosphere reserve (Odiel salt marshes) affected by acidic mine drainage.

    PubMed

    Morillo, José; Usero, José; Rojas, Raquel

    2008-04-01

    The Odiel salt marshes (Marismas del Odiel) are an important nature area declared a Biosphere Reserve, but they are greatly affected by pollution from the Odiel River. Surface sediments from this area were analysed using the latest version of the BCR sequential extraction procedure to determine the fractionation of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn among four geochemical phases (acid-soluble, reducible, oxidisable and residual). The total content of each of the metals and As was also determined. The results showed high concentrations of As, Cd, Cu, Pb and Zn, with maximums of 791 mg kg(-1) of As, 8.5 mg kg(-1) of Cd, 2,740 mg kg(-1) of Cu, 1,580 mg kg(-1) of Pb and 3,920 mg kg(-1) of Zn. The concentrations of Cr, Mn and Ni were low since there are no sources of pollution by them in the area. A comparison of the metal and As levels with the sediment quality guidelines showed that the pollution is sufficient to produce noxious effects in aquatic organisms in most of the Odiel salt marshes. Based on the chemical distribution of the elements, it was found that Cd and Zn were the most mobile (i.e., elements that can pass easily into the water under changing environmental conditions). However, Cr, Fe, Ni and As were present in the greatest percentages in the residual fraction, which implies that these elements are strongly linked to the sediments.

  17. Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters.

    PubMed

    Yoon, Youngdae; Kang, Yerin; Chae, Yooeun; Kim, Sunghoon; Lee, Youngshim; Jeong, Seung-Woo; An, Youn-Joo

    2016-02-01

    We investigated the quantification of bioavailable arsenic in contaminated soils and evaluation of soil-washing processes in the aspect of bioavailability using a novel bacterial bioreporter developed in present study. The whole-cell bioreporter (WCB) was genetically engineered by fusing the promoter of nik operon from Escherichia coli and green fluorescent protein as a sensing domain and reporter domain. Among eight well-known hazardous heavy metals and metalloid, this system responded specifically to arsenic, thereby inferring association of As(III) with NikR inhibits the repression. Moreover, the response was proportional to the concentration of As(III), thereby it was capable to determine the amount of bioavailable arsenic quantitatively in contaminated soils. The bioavailable portion of arsenic was 5.9 (3.46-10.96) and 0.9 (0.27-1.74) % of total from amended and site soils, respectively, suggesting the bioavailability of arsenic in soils was related to the soil properties and duration of aging. On the other hand, only 1.37 (0.21-2.97) % of total arsenic was extracted into soil solutions and 19.88 (11.86-28.27) % of arsenic in soil solution was bioavailable. This result showed that the soluble arsenic is not all bioavailable and most of bioavailable arsenic in soils is water non-extractable. In addition, the bioavailable arsenic was increased after soil-washing while total amount was decreased, thereby suggesting the soil-washing processes release arsenic associated with soil materials to be bioavailable. Therefore, it would be valuable to have a tool to assess bioavailability and the bioavailability should be taken into consideration for soil remediation plans.

  18. How contamination sources and soil properties can influence the Cd and Pb bioavailability to snails.

    PubMed

    Pauget, Benjamin; Gimbert, Frédéric; Coeurdassier, Mickael; Druart, Coline; Crini, Nadia; de Vaufleury, Annette

    2016-02-01

    To better understand the fate of metals in the environment, numerous parameters must be studied, such as the soil properties and the different sources of contamination for the organisms. Among bioindicators of soil quality, the garden snail (Cantareus aspersus) integrates multiple sources (e.g. soil, plant) and routes (e.g. digestive, cutaneous) of contamination. However, the contribution of each source on metal bioavailability and how soil properties influence these contributions have never been studied when considering the dynamic process of bioavailability. Using accumulation kinetics, this study showed that the main assimilation source of Cd was lettuce (68%), whereas the main source of Pb was the soil (90%). The plant contribution increased in response to a 2-unit soil pH decrease. Unexpectedly, an increase in the soil contribution to metal assimilation accompanied an increase in the organic matter (OM) content of the soil. For both metals, no significant excretion and influence of source on excretion have been modelled either during exposure or depuration. This study highlights how the contribution of different sources to metal bioavailability changes based on changes in soil parameters, such as pH and OM, and the complexity of the processes that modulate metal bioavailability.

  19. Bioavailability of organically bound Fe to model phytoplankton of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Hassler, C. S.; Schoemann, V.

    2009-10-01

    Iron (Fe) is known to be mostly bound to organic ligands and to limit primary productivity in the Southern Ocean. It is thus important to investigate the bioavailability of organically bound Fe. In this study, we used four phytoplankton species of the Southern Ocean (Phaeocystis sp., Chaetoceros sp., Fragilariopsis kerguelensis and Thalassiosira antarctica Comber) to measure the influence of various organic ligands on Fe solubility and bioavailability. Short-term uptake Fe:C ratios were inversely related to the surface area to volume ratios of the phytoplankton. The ratio of extracellular to intracellular Fe is used to discuss the relative importance of diffusive supply and uptake to control Fe bioavailability. The effect of excess organic ligands on Fe bioavailability cannot be solely explained by their effect on Fe solubility. For most strains studied, the bioavailability of Fe can be enhanced relative to inorganic Fe in the presence of porphyrin, catecholate siderophore and saccharides whereas it was decreased in presence of hydroxamate siderophore and organic amine. For Thalassiosira, iron bioavailability was not affected by the presence of porphyrin, catecholate siderophore and saccharides. The enhancement of Fe bioavailability in presence of saccharides is presented as the result from both the formation of bioavailable (or chemically labile) organic form of Fe and the stabilisation of Fe within the dissolved phase. Given the ubiquitous presence of saccharides in the ocean, these compounds might represent an important factor to control the basal level of soluble and bioavailable Fe. Results show that the use of model phytoplankton is promising to improve mechanistic understanding of Fe bioavailability and primary productivity in HNLC regions of the ocean.

  20. Thermolysis of polymeric [Ru(CO)4]infinity to metallic ruthenium: molecular shape of the precursor affects the nanoparticle shape.

    PubMed

    Li, Chunxiang; Leong, Weng Kee

    2008-10-21

    Pyrolysis of the organometallic polymer [Ru(CO) 4] infinity affords metallic ruthenium nanofibers. The molecular structure, especially the presence of metal-metal bonds, appears to direct the aggregation of the metal atom chains upon loss of the carbonyl ligands.

  1. Bioavailability study for the Paducah Gaseous Diffusion Plant

    SciTech Connect

    Phipps, T.L.; Kszos, L.A.

    1996-08-01

    The overall purpose of this plan is to assess the bioavailability of metals in the continuous and intermittent outfalls. The results may be used to determine alternative metal limits that more appropriately measure the portion of metal present necessary for toxicity to aquatic life. These limits must remain protective of in-stream aquatic life; thus, the highest concentration of metal in the water will be determined concurrently with an assessment of acute or chronic toxicity on laboratory tests. Using the method developed by the Kentucky Division of Water (KDOW), biomonitoring results and chemical data will be used to recommend alternative metal limits for the outfalls of concern. The data will be used to meet the objectives of the study: (1) evaluate the toxicity of continuous outfalls and intermittent outfalls at Paducah Gaseous Diffusion Plant; (2) determine the mean ratio of dissolved to Total Recoverable metal for Cd, Cr, Cu, Pb, Ni, and Zn in the continuous and intermittent outfalls; (3) determine whether the concentration of total recoverable metal discharged causes toxicity to fathead minnows and /or Ceriodaphnia; and (4) determine alternative metal limits for each metal of concern (Cd, Cr, Cu, Pb, Ni, and Zn).

  2. Bioavailability enhancement studies of amoxicillin with Nigella

    PubMed Central

    Ali, Babar; Amin, Saima; Ahmad, Javed; Ali, Abuzer; Ali, Mohd; Mir, Showkat R.

    2012-01-01

    Background & objectives: Nigella sativa Linn. is extensively used in the Indian diasporas as spice, which may interact with co-administered drugs and affect their intestinal availability. The purpose of this study was to investigate the effect of Nigella on bioavailability of amoxicillin in animal model. Methods: Everted rat intestinal sacs were used for in vitro experiment to study the transfer of amoxicillin across the gut. Amoxicillin (6 mg/ml) was co-infused with 3 and 6 mg of methanol and hexane extract of Nigella seeds separately. The amount of amoxicillin that traversed the gut was followed spectrophotometrically at 273 nm. For in vivo studies Wistar albino rats were used. Amoxicillin (25 mg/kg, po) was co-administered with hexane extract of Nigella seeds (25 mg/kg, po). The amount of amoxicillin in rat plasma was determined by UPLC-MS/MS method. Results: The in vitro studies both with methanol and hexane extracts of Nigella increased the permeation of amoxicillin significantly (P<0.001) as compared to control. Permeation was also found to be significantly higher for the hexane extract (P<0.001) in comparison to methanol extract at the same dose levels. In vivo experiments revealed that Cmax of amoxicillin in rat plasma when administered orally alone and in combination with hexane extract increased correspondingly from 4138.251 ± 156.93 to 5995.045 ± 196.28 ng/ml while as AUC0→t increased from 8890.40 ± 143.33 to 13483.46 ± 152.45 ng/ml.h. Interpretation & conclusions: Nigella enhanced amoxicillin availability in both in vivo and in vitro studies. As the increase in bioavailability is attributed, in part, to enhanced diffusivity across intestine, our study indicated that Nigella increased intestinal absorption of amoxicillin. PMID:22664507

  3. Climate change driven plant-metal-microbe interactions.

    PubMed

    Rajkumar, Mani; Prasad, Majeti Narasimha Vara; Swaminathan, Sandhya; Freitas, Helena

    2013-03-01

    Various biotic and abiotic stress factors affect the growth and productivity of crop plants. Particularly, the climatic and/or heavy metal stress influence various processes including growth, physiology, biochemistry, and yield of crops. Climatic changes particularly the elevated atmospheric CO₂ enhance the biomass production and metal accumulation in plants and help plants to support greater microbial populations and/or protect the microorganisms against the impacts of heavy metals. Besides, the indirect effects of climatic change (e.g., changes in the function and structure of plant roots and diversity and activity of rhizosphere microbes) would lead to altered metal bioavailability in soils and concomitantly affect plant growth. However, the effects of warming, drought or combined climatic stress on plant growth and metal accumulation vary substantially across physico-chemico-biological properties of the environment (e.g., soil pH, heavy metal type and its bio-available concentrations, microbial diversity, and interactive effects of climatic factors) and plant used. Overall, direct and/or indirect effects of climate change on heavy metal mobility in soils may further hinder the ability of plants to adapt and make them more susceptible to stress. Here, we review and discuss how the climatic parameters including atmospheric CO₂, temperature and drought influence the plant-metal interaction in polluted soils. Other aspects including the effects of climate change and heavy metals on plant-microbe interaction, heavy metal phytoremediation and safety of food and feed are also discussed. This review shows that predicting how plant-metal interaction responds to altering climatic change is critical to select suitable crop plants that would be able to produce more yields and tolerate multi-stress conditions without accumulating toxic heavy metals for future food security.

  4. Bioavailability and toxicity of dietborne copper and zinc to fish

    USGS Publications Warehouse

    Clearwater, Susan J.; Farag, Aida M.; Meyer, J.S.

    2002-01-01

    To date, most researchers have used dietborne metal concentrations rather than daily doses to define metal exposure and this has resulted in contradictory data within and between fish species. It has also resulted in the impression that high concentrations of dietborne Cu and Zn (e.g.>900 mg kg−1 dry diet) are relatively non-toxic to fish. We re-analyzed existing data using rations and dietborne metal concentrations and used daily dose, species and life stage to define the toxicity of dietborne Cu and Zn to fish. Partly because of insufficient information we were unable to find consistent relationships between metal toxicity in laboratory-prepared diets and any other factor including, supplemented metal compound (e.g. CuSO4 or CuCl2), duration of metal exposure, diet type (i.e. practical, purified or live diets), or water quality (flow rates, temperature, hardness, pH, alkalinity). For laboratory-prepared diets, dietborne Cu toxicity occurred at daily doses of >1 mg kg−1 body weight d−1 for channel catfish (Ictalurus punctatus), 1–15 mg kg−1 body weight d−1 (depending on life stage) for Atlantic salmon (Salmo salar) and 35–45 mg kg−1 body weight d−1 for rainbow trout (Oncorhynchus mykiss). We found that dietborne Zn toxicity has not yet been demonstrated in rainbow trout or turbot (Scophthalmus maximus) probably because these species have been exposed to relatively low doses of metal (<90 mg kg−1 body weight d−1) and effects on growth and reproduction have not been analyzed. However, daily doses of 9–12 mg Zn kg−1 body weight d−1 in laboratory-prepared diets were toxic to three other species, carp Cyprinus carpio, Nile tilapia Oreochromis niloticus, and guppy Poecilia reticulata. Limited research indicates that biological incorporation of Cu or Zn into a natural diet can either increase or decrease metal bioavailability, and the relationship between bioavailability and toxicity remains unclear. We have resolved the contradictory data

  5. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).

    PubMed

    Liu, Hongyu; Probst, Anne; Liao, Bohan

    2005-03-01

    , and rice and capsicum had high Cd concentration in the edible parts. However, the toxic element concentrations in maize, sorghum, Adzuki bean, soybean and mung bean remained lower than the threshold levels. The bio-accumulation factors (BAFs) of crops were in the order: Cd>Zn>Cu>Pb>As. BAF was typically lower in the edible seeds or fruits than in stems and leaves. The accumulation effect strongly depends on the crop's physiological properties, the mobility, of the metals, and the availability of metals in soils but not entirely on the total element concentrations in the soils. Even so, the estimated daily intake amount of Cu, Zn, Cd, and Pb from the crops grown in the affected three sites and arsenic at SZY and GYB exceeded the RDA (Recommended dietary allowance) levels. Subsequently, the crops grown in Chenzhou Pb/Zn mine waste affected area might have a hazardous effect on the consumer's health. This area still needs effective measures to cure the As, Cd, Pb, Zn and Cu contamination.

  6. Zinc bioavailability in pork loin

    SciTech Connect

    Hortin, A.E.; Bechtel, P.J. Baker, D.H. )

    1991-03-15

    Pork loins were uniformly trimmed and divided into three groups: raw, roasted and braised. Following cooking, the loins were freeze dried and then ground to a fine granular consistency. Zinc levels of 51, 60 and 63 mg/kg dry matter (DM) were contained in the raw, roasted and braised products, respectively. The chick bioavailability (BV) assay employed a Zn-deficient soy isolate basal diet that was supplemented with 0, 5 or 10 mg Zn/kg from ZnSO{sub 4}{center dot}H{sub 2}O to produce a standard straight-line response in tibia Zn as a function of supplemental Zn intake. Experimental Zn sources were also added to the basal diet to provide 10 mg Zn/kg. Standard curve methodology indicated that Zn BV was unaffected by cooking. Roasted pork lion had a Zn BV of 184% relative to ZnSO{sub 4}{center dot}H{sub 2}O. Addition of 0.40% L-cysteine to the diet containing 10 mg Zn/kg from ZnSO{sub 4}{center dot}H{sub 2}O increased Zn BV to 175%. Results with histidine as a Zn-enhancing factor were variable. It is apparent that pork loin is an excellent source of bioavailable Zn, and SH-containing compounds such as cysteine and glutathione that are present in meat may contribute to enhanced gut absorption of meat-source Zn.

  7. Influence of hardness on the bioavailability of silver to a freshwater snail after waterborne exposure to silver nitrate and silver nanoparticles.

    PubMed

    Stoiber, Tasha; Croteau, Marie-Noële; Römer, Isabella; Tejamaya, Mila; Lead, Jamie R; Luoma, Samuel N

    2015-01-01

    The release of Ag nanoparticles (AgNPs) into the aquatic environment is likely, but the influence of water chemistry on their impacts and fate remains unclear. Here, we characterize the bioavailability of Ag from AgNO(3) and from AgNPs capped with polyvinylpyrrolidone (PVP AgNP) and thiolated polyethylene glycol (PEG AgNP) in the freshwater snail, Lymnaea stagnalis, after short waterborne exposures. Results showed that water hardness, AgNP capping agents, and metal speciation affected the uptake rate of Ag from AgNPs. Comparison of the results from organisms of similar weight showed that water hardness affected the uptake of Ag from AgNPs, but not that from AgNO(3). Transformation (dissolution and aggregation) of the AgNPs was also influenced by water hardness and the capping agent. Bioavailability of Ag from AgNPs was, in turn, correlated to these physical changes. Water hardness increased the aggregation of AgNPs, especially for PEG AgNPs, reducing the bioavailability of Ag from PEG AgNPs to a greater degree than from PVP AgNPs. Higher dissolved Ag concentrations were measured for the PVP AgNPs (15%) compared to PEG AgNPs (3%) in moderately hard water, enhancing Ag bioavailability of the former. Multiple drivers of bioavailability yielded differences in Ag influx between very hard and deionized water where the uptake rate constants (k(uw), l g(-1) d(-1) ± SE) varied from 3.1 ± 0.7 to 0.2 ± 0.01 for PEG AgNPs and from 2.3 ± 0.02 to 1.3 ± 0.01 for PVP AgNPs. Modeling bioavailability of Ag from NPs revealed that Ag influx into L. stagnalis comprised uptake from the NPs themselves and from newly dissolved Ag.

  8. Bioavailability and biodistribution of nanodelivered lutein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of the study was to evaluate the ability of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) to enhance lutein bioavailability. The bioavailability of free lutein and PLGA-NP lutein in rats was assessed by determining plasma pharmacokinetics and deposition in selected tissues. Lutein ...

  9. Microstructures and Mechanical Properties of Weld Metal and Heat-Affected Zone of Electron Beam-Welded Joints of HG785D Steel

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Han, Jianmin; Tan, Caiwang; Yang, Zhiyong; Wang, Junqiang

    2016-12-01

    Vacuum electron beam welding (EBW) process was employed to butt weld 10-mm-thick HG785D high-strength steels. The penetration into the steel was adjusted by beam current. Microstructures at weld metal and heat-affected zone (HAZ) regions were comparatively observed. Mechanical properties of the EBWed joints including Vickers hardness, tensile and Charpy impact tests were evaluated. The results indicated that microstructures at the weld metal consisted of coarse lath martensite and a small amount of acicular martensite, while that in the HAZ was tempered sorbite and martensite. The grain size in the weld metal was found to be larger than that in the HAZ, and its proportion in weld metal was higher. The hardness in the weld metal was higher than the HAZ and base metal. The tensile strength and impact toughness in the HAZ was higher than that in the weld metal. All the behaviors were related to microstructure evolution caused by higher cooling rates and state of base metal. The fracture surfaces of tensile and impact tests on the optimized joint were characterized by uniform and ductile dimples. The results differed significantly from that obtained using arc welding process.

  10. Hydrolysis of soybean protein improves iron bioavailability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Iron is an important trace metal element in human body. Iron deficiency affects human health, especially pregnant women and children. Soybean protein is a popular food in Asia and can contain a high amount of iron (145.70±0.74 ug/g); however, it is usually reported as an inhibitor of iron absorption...

  11. The Nutraceutical Bioavailability Classification Scheme: Classifying Nutraceuticals According to Factors Limiting their Oral Bioavailability.

    PubMed

    McClements, David Julian; Li, Fang; Xiao, Hang

    2015-01-01

    The oral bioavailability of a health-promoting dietary component (nutraceutical) may be limited by various physicochemical and physiological phenomena: liberation from food matrices, solubility in gastrointestinal fluids, interaction with gastrointestinal components, chemical degradation or metabolism, and epithelium cell permeability. Nutraceutical bioavailability can therefore be improved by designing food matrices that control their bioaccessibility (B*), absorption (A*), and transformation (T*) within the gastrointestinal tract (GIT). This article reviews the major factors influencing the gastrointestinal fate of nutraceuticals, and then uses this information to develop a new scheme to classify the major factors limiting nutraceutical bioavailability: the nutraceutical bioavailability classification scheme (NuBACS). This new scheme is analogous to the biopharmaceutical classification scheme (BCS) used by the pharmaceutical industry to classify drug bioavailability, but it contains additional factors important for understanding nutraceutical bioavailability in foods. The article also highlights potential strategies for increasing the oral bioavailability of nutraceuticals based on their NuBACS designation (B*A*T*).

  12. Mechanisms of Metal Resistance and Homeostasis in Haloarchaea

    PubMed Central

    Srivastava, Pallavee; Kowshik, Meenal

    2013-01-01

    Haloarchaea are the predominant microflora of hypersaline econiches such as solar salterns, soda lakes, and estuaries where the salinity ranges from 35 to 400 ppt. Econiches like estuaries and solar crystallizer ponds may contain high concentrations of metals since they serve as ecological sinks for metal pollution and also as effective traps for river borne metals. The availability of metals in these econiches is determined by the type of metal complexes formed and the solubility of the metal species at such high salinity. Haloarchaea have developed specialized mechanisms for the uptake of metals required for various key physiological processes and are not readily available at high salinity, beside evolving resistance mechanisms for metals with high solubility. The present paper seeks to give an overview of the main molecular mechanisms involved in metal tolerance in haloarchaea and focuses on factors such as salinity and metal speciation that affect the bioavailability of metals to haloarchaea. Global transcriptomic analysis during metal stress in these organisms will help in determining the various factors differentially regulated and essential for metal physiology. PMID:23533331

  13. Intestinal transport as a potential determinant of drug bioavailability.

    PubMed

    Nauli, Andromeda M; Nauli, Surya M

    2013-08-01

    Orally administered drugs are generally absorbed by the small intestine and transported either to the lymphatic system or to the hepatic portal system. In general, lipid soluble drugs and vitamins are transported by the small intestine to the lymphatics, and water-soluble drugs are transported to the hepatic portal system. By avoiding the early hepatic first pass effect, the lymphatic transport system may increase drug bioavailability. In addition to its transport systems, the small intestine may affect drug bioavailability through drug uptake, intestinal first pass effect, recruitment of drugs by chylomicrons, formation and secretion of chylomicrons, and enterohepatic circulation. All of these factors should be considered when formulating orally administered lipophilic drugs. Our data also suggest that Caco-2 cells may serve as a valuable in vitro model to study the intestinal transport of orally administered drugs.

  14. Accumulation and bioavailability of dietary carotenoids in vegetable crops.

    PubMed

    Kopsell, Dean A; Kopsell, David E

    2006-10-01

    Carotenoids are lipid-soluble pigments found in many vegetable crops that are reported to have the health benefits of cancer and eye disease reduction when consumed in the diet. Research shows that environmental and genetic factors can significantly influence carotenoid concentrations in vegetable crops, and that changing cultural management strategies could be advantageous, resulting in increased vegetable carotenoid concentrations. Improvements in vegetable carotenoid levels have been achieved using traditional breeding methods and molecular transformations to stimulate biosynthetic pathways. Postharvest and processing activities can alter carotenoid chemistry, and ultimately affect bioavailability. Bioavailability data emphasize the importance of carotenoid enhancement in vegetable crops and the need to characterize potential changes in carotenoid composition during cultivation, storage and processing before consumer purchase.

  15. Enhancing bioavailability through thermal processing.

    PubMed

    Keen, Justin M; McGinity, James W; Williams, Robert O

    2013-06-25

    Formulation intervention, through the application of processing technologies, is a requirement for enabling therapy for the vast majority of drugs. Without these enabling technologies, poorly soluble drugs may not achieve therapeutic concentrations in the blood or tissue of interest. Conversely, freely soluble and/or rapidly cleared drugs may require frequent dosing resulting in highly cyclic tissue concentrations. During the last several years, thermal processing techniques, such as melt mixing, spray congealing, sintering, and hot-melt extrusion, have evolved rapidly and several new technologies, specifically dry powder coating, injection molding, and KinetiSol(®) dispersing, have been adapted to the pharmaceutical arena. An examination of the contemporary literature is reported in this review to summarize the variety and utility of thermal processing technologies employed for solubility enhancement and controlled release. In particular, the impact of these processing technologies on bioavailability, considered in terms of both rate and extent, has been reviewed.

  16. Photo-transformation of pedogenic humic acid and consequences for Cd(II), Cu(II) and Pb(II) speciation and bioavailability to green microalga.

    PubMed

    Worms, Isabelle A M; Adenmatten, David; Miéville, Pascal; Traber, Jacqueline; Slaveykova, Vera I

    2015-11-01

    Humic substances (HS) play key role in toxic metal binding and protecting aquatic microorganisms from metal-induced stress. Any environmental changes that could alter HS concentration and reactivity can be expected to modify metal complexation and thus affect metal speciation and bioavailability to microalgae. The present study explores the influence of increased solar irradiance on the chemical structures and molecular weight of Elliott soil humic acid (EHA) and the associated consequences for Cd(II), Cu(II) and Pb(II) complexation and intracellular metal content in microalga. The results demonstrate that high radiance doses induce an oxidation of EHA with a formation of low molecular weight acids, an increase of -OH and -COOH group abundance, and a drop in EHA hydrodynamic size and molecular weight. The photo-induced structural changes are accompanied with a release of metal from M-EHA complexes and narrowing their size distribution, which in turn results in an increase of the intracellular Cd, Cu and Pb contents in microalga Chlamydomonas reinhardtii in agreement with the measured free metal ions concentrations.

  17. Bioavailability of adsorbed and coprecipitated Cu, Ni, Pb, and Cd on iron and iron/aluminum hydroxide to Phragmites australis.

    PubMed

    Wang, He; Jia, Yongfeng

    2017-01-01

    The bioavailability of heavy metals strongly depends on their speciation in the environment. Adsorption (ADS) and coprecipitation (CPT) on amorphous metal hydroxides are important processes, controlling the fates of heavy metals in an aqueous environment. This work studied the bioavailability of Cu, Cd, Ni, and Pb adsorbed on and/or coprecipitated with amorphous iron and iron/aluminum mixed hydroxides to the wetland plant Phragmites australis. After a 13-day treatment, there was an apparent uptake of the heavy metals by the plant, and the amount of metal bioaccumulation was measurably different for different association forms (ADS vs. CPT). The bioaccumulation of Cd associated with Fe0.5Al0.5(OH)3 was greater than that with Fe(OH)3; the adsorbed metals were found to be more bioavailable than the coprecipitated forms for most of the treatments while the aging treatment significantly reduced the bioaccumulation of ADS metals. In the single metal treatment, root metal concentrations in the Fe(OH)3 ADS system followed the order Ni (68 mg kg(-1)) > Cu (32 mg kg(-1)) > Cd (28 mg kg(-1)) > Pb (9 mg kg(-1)), while the CPT system followed the order of Cu (30 mg kg(-1)) > Ni (22 mg kg(-1)) > Pb (9 mg kg(-1)) > Cd (7 mg kg(-1)). The order of metal accumulation in a combined metal treatment was similar to that for single metal treatments, but observed Ni concentration declines by 22 and 71 % and Cu and Cd concentrations increase by 30 and 50 % (for CPT and ADS treatments, respectively), while Pb concentrations increased by 30~50 % in both of them. When treated with low-molecular-weight organic acids (LMWOAs), metal desorption, indicative of metal oxide bonding strength and metal bioavailability, was consistent with metal accumulation in the plant.

  18. Effect of media composition on bioavailability and toxicity of silver and silver nanoparticles in fish intestinal cells (RTgutGC).

    PubMed

    Minghetti, Matteo; Schirmer, Kristin

    2016-12-01

    To understand conditions affecting bioavailability and toxicity of citrate-coated silver nanoparticles (cit-AgNP) and dissolved silver at the luminal enterocyte interface, we exposed rainbow trout (Oncorhynchus mykiss) gut cells (RTgutGC) in media of contrasting composition: two amino acid-containing media, one of which was supplemented with proteins, as can be expected during digestion; and two protein and amino acid-free media contrasting low and high chloride content, as can be expected in the lumen of fish adapting to freshwater or seawater, respectively. Dose-response curves were generated measuring cell metabolic activity, membrane and lysosome integrity over a period of 72 hours. Then, nontoxic doses were applied and total silver accumulation, metallothionein and glutathione reductase mRNA levels were determined. The presence of proteins stabilized cit-AgNP keeping them in suspension. Conversely, in protein-free media, cit-AgNP agglomerated and settled, resulting in higher cellular accumulation of silver and toxicity. Chloride concentrations in exposure media modulated the toxicity of AgNO3 but not of cit-AgNP. Moreover, while amino acid-containing media are protective against AgNO3, likely due to the formation of thiolate complexes, they are only partially protective against cit-AgNP. Viability assays indicated that lysosomes are targets of cit-AgNP, supporting the hypothesis that cit-AgNP exert toxicity intracellularly. Metallothionein, a sensor of metal bioavailability, was induced by cit-AgNP in high chloride medium but not in low chloride medium, indicating that chloride might have a role in mobilizing silver from intercellular vesicles. Overall, this study shows that AgNP bioavailability and toxicity in the intestine is linked to its luminal content.

  19. Relative contribution of food and water to 27 metals and metalloids accumulated by caged Hyalella azteca in two rivers affected by metal mining.

    PubMed

    Borgmann, U; Couillard, Y; Grapentine, L C

    2007-02-01

    Hyalella were caged at three sites in each of the two rivers for 17 days. Food added to the cages consisted of plant and detrital material collected from the same, or other, sites. Concentrations of some metals in Hyalella (e.g., Cd and Cu), but not others (e.g., Se), appeared to reach steady-state within 5 days in one of the rivers. Metal accumulation was minimal by day 5 in the other river, possibly due to the very low temperatures in this river for the first part of the exposure period. Both analysis of variance and analysis of covariance, using site as a categorical variable and metal in food as either a categorical or continuous variable, indicated that Cd, Cu and Se were the only metals for which concentration in food had a significant effect on concentration in Hyalella. Nevertheless, water was still a major source for these metals as well. Other metals which varied by over fivefold in food but for which concentration in food had no effect on concentration in Hyalella included Ag, As, Bi, Sb, U and Zn. Concentrations of the remaining metals varied less than fourfold in food, making it difficult to determine if these were accumulated from food.

  20. Organic acids enhance bioavailability of tetracycline in water to Escherichia coli for uptake and expression of antibiotic resistance.

    PubMed

    Zhang, Yingjie; Boyd, Stephen A; Teppen, Brian J; Tiedje, James M; Li, Hui

    2014-11-15

    Tetracyclines are a large class of antimicrobials used most extensively in livestock feeding operations. A large portion of tetracyclines administered to livestock is excreted in manure and urine which is collected in waste lagoons. Subsequent land application of these wastes introduces tetracyclines into the soil environment, where they could exert selective pressure for the development of antibiotic resistance genes in bacteria. Tetracyclines form metal-complexes in natural waters, which could reduce their bioavailability for bacterial uptake. We hypothesized that many naturally-occurring organic acids could effectively compete with tetracyclines as ligands for metal cations, hence altering the bioavailability of tetracyclines to bacteria in a manner that could enhance the selective pressure. In this study, we investigated the influence of acetic acid, succinic acid, malonic acid, oxalic acid and citric acid on tetracycline uptake from water by Escherichia coli bioreporter construct containing a tetracycline resistance gene which induces the emission of green fluorescence when activated. The presence of the added organic acid ligands altered tetracycline speciation in a manner that enhanced tetracycline uptake by E. coli. Increased bacterial uptake of tetracycline and concomitant enhanced antibiotic resistance response were quantified, and shown to be positively related to the degree of organic acid ligand complexation of metal cations in the order of citric acid > oxalic acid > malonic acid > succinic acid > acetic acid. The magnitude of the bioresponse increased with increasing aqueous organic acid concentration. Apparent positive relation between intracellular tetracycline concentration and zwitterionic tetracycline species in aqueous solution indicates that (net) neutral tetracycline is the species which most readily enters E. coli cells. Understanding how naturally-occurring organic acid ligands affect tetracycline speciation in solution, and how speciation

  1. Strategies to Overcome Heparins’ Low Oral Bioavailability

    PubMed Central

    Neves, Ana Rita; Correia-da-Silva, Marta; Sousa, Emília; Pinto, Madalena

    2016-01-01

    Even after a century, heparin is still the most effective anticoagulant available with few side effects. The poor oral absorption of heparins triggered the search for strategies to achieve oral bioavailability since this route has evident advantages over parenteral administration. Several approaches emerged, such as conjugation of heparins with bile acids and lipids, formulation with penetration enhancers, and encapsulation of heparins in micro and nanoparticles. Some of these strategies appear to have potential as good delivery systems to overcome heparin’s low oral bioavailability. Nevertheless, none have reached the market yet. Overall, this review aims to provide insights regarding the oral bioavailability of heparin. PMID:27367704

  2. Screening and monitoring of metal contamination in soils of environmental disaster areas: available techniques and needs

    NASA Astrophysics Data System (ADS)

    Twardowska, Irena; Janta-Koszuta, Krystyna; Stefaniak, Sebastian; Kyziol, Joanna

    2004-12-01

    The monitoring of metals in the environment is well advanced technically and analytically, though the sustainable development requirements induce the need of new methods of metal assessment in the terrestrial and aquatic environment. The current metal monitoring in soil is based on the total content that does not allow for assessment of their environmental mobility and bioavailability. The new techniques should enable metal partitioning with respect to susceptibility to migrate and exert the toxic effect on the target organisms. This statement is exemplified in the screening survey for metals of the area impacted by the catastrophic flood of 1997 in the Odra River valley in Poland. Metals enrichment of soils due to river sediments deposition, as well as their mobility in soils of the affected area were assessed in view of potential risk to the receptors. Sampling cells positioning by GPS and the assessment of the post-flood changes in metal spatial distribution with use of the Geographical Information System (GIS) were most helpful, while the sequential extraction analytical procedure for evaluation of binding strength and major chemical forms of metals was conducted manually and thus was very laborious. Automation of metal partitioning, and bioavailable forms assessment by DGT technique would have given the most valuable information and reduce the time needed for the manual analysis.

  3. Sources and accumulation of trace metals in sediments and the asiatic clam, corbicula fluminea in two South Carolina watersheds. Final report

    SciTech Connect

    Pickett, J.R.

    1992-01-01

    A survey of trace element concentrations in the benthic bivalve, Corbicula fluminea, was conducted on the Santee-Cooper River Basin, S.C. from 1989-1991 as part of a nonpoint source water quality assessment. Trace metal concentrations in clam tissues were examined in relation to temporal and spatial variations in river water and sediment. It was found that C. fluminea was a suitable bio-indicator for monitoring trace metal inputs within the basin. Solute concentrations of Cd, Cu and Zn underwent appreciable accumulation as demonstrated by strong solute vs. tissue correlations and high bioconcentration factors. Conversely, the bioavailability of trace elements to C. fluminea was not necessarily related to sediment concentrations, as correlations were not observed between trace elements in sediment and clam tissue. The differences in the bioavailability of metals observed between the watersheds was likely a function of physicochemical factors affecting the partitioning of metals between the water and sediment compartments.

  4. Bioavailability of ranitidine in healthy Mexican volunteers: effect of food.

    PubMed

    Juárez-Olguín, H; Flores, J; Pérez, G; Hernández, G; Flores, C; Guillé, A; Camacho, A; Toledo, A; Carrasco, M; Lares, I

    2002-01-01

    Is well known that food can affect the bioavailability of several drugs, its impact is major for those drugs that have to act near of drug absorption. Documentation about alterations of ranitidine bioavailability by effect of food is poor. The purpose of this work was to evaluate the effect of food over the bioavailability of ranitidine. Twenty healthy Mexican volunteers were included for the study. The study was made in two stages, in the first one the volunteers had 12 hour fast and took a 300 mg of oral dose of ranitidine (without food, WOF) and blood samples were drawn. Two weeks later, the volunteers took a normal diet just before ranitidine intake (with food, WF). The area under the curve (AUC) was 30% greater in WOF, Cmax was 921.5 ng/ml (WF) vs. 1685.2 (WOF), and t1/2 was 2.70 +/- 1.38 (WF) h vs 3.66 +/- 1.34 (WOF). The AUC, Cmax and t1/2 were statistically different. It is evident that there are differences in the drug disposition due to the presence of food, then, it is possible that the efficacy of ranitidine as inhibitor of gastric secretion being limited by food.

  5. Hologram QSAR model for the prediction of human oral bioavailability.

    PubMed

    Moda, Tiago L; Montanari, Carlos A; Andricopulo, Adriano D

    2007-12-15

    A drug intended for use in humans should have an ideal balance of pharmacokinetics and safety, as well as potency and selectivity. Unfavorable pharmacokinetics can negatively affect the clinical development of many otherwise promising drug candidates. A variety of in silico ADME (absorption, distribution, metabolism, and excretion) models are receiving increased attention due to a better appreciation that pharmacokinetic properties should be considered in early phases of the drug discovery process. Human oral bioavailability is an important pharmacokinetic property, which is directly related to the amount of drug available in the systemic circulation to exert pharmacological and therapeutic effects. In the present work, hologram quantitative structure-activity relationships (HQSAR) were performed on a training set of 250 structurally diverse molecules with known human oral bioavailability. The most significant HQSAR model (q(2)=0.70, r(2)=0.93) was obtained using atoms, bond, connection, and chirality as fragment distinction. The predictive ability of the model was evaluated by an external test set containing 52 molecules not included in the training set, and the predicted values were in good agreement with the experimental values. The HQSAR model should be useful for the design of new drug candidates having increased bioavailability as well as in the process of chemical library design, virtual screening, and high-throughput screening.

  6. 21 CFR 320.38 - Retention of bioavailability samples.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Retention of bioavailability samples. 320.38... (CONTINUED) DRUGS FOR HUMAN USE BIOAVAILABILITY AND BIOEQUIVALENCE REQUIREMENTS Procedures for Determining the Bioavailability or Bioequivalence of Drug Products § 320.38 Retention of bioavailability...

  7. Bioavailability of cefuroxime axetil formulations.

    PubMed

    Donn, K H; James, N C; Powell, J R

    1994-06-01

    Cefuroxime axetil tablets have proved effective for the treatment of a variety of community-acquired infections. A suspension formulation has been developed for use in children. Two studies have been conducted to determine if the cefuroxime axetil formulations are bioequivalent. In the initial randomized, two-period crossover study, 24 healthy men received 250-mg doses of suspension and tablet formulations of cefuroxime axetil every 12 h after eating for seven doses. Each treatment period was separated by 4 days. Comparisons of serum and urine pharmacokinetic parameters indicated that the suspension and tablet formulations of cefuroxime axetil are not bioequivalent. Following the initial bioequivalency study, 0.1 % sodium lauryl sulfate (SLS) was added to the suspension to assure the homogeneity of the granules during the manufacturing process. In the subsequent randomized, three-period crossover study, 24 healthy men received single 250-mg doses of three cefuroxime axetil formulations: suspension without SLS, suspension with SLS, and tablet. Again each treatment period was separated by 4 days. Pharmacokinetic analyses demonstrated that while the suspension with SLS and suspension without SLS are bioequivalent, bioequivalence between the suspension with SLS and the tablet was not observed. Thus, the addition of the SLS surfactant to the suspension did not alter the bioavailability of the formulation.

  8. Towards bioavailability-based soil criteria: past, present and future perspectives.

    PubMed

    Naidu, Ravi; Channey, Rufus; McConnell, Stuart; Johnston, Niall; Semple, Kirk T; McGrath, Steve; Dries, Victor; Nathanail, Paul; Harmsen, Joop; Pruszinski, Andrew; MacMillan, Janet; Palanisami, Thavamani

    2015-06-01

    Bioavailability has been used as a key indicator in chemical risk assessment yet poorly quantified risk factor. Worldwide, the framework used to assess potentially contaminated sites is similar, and the decisions are based on threshold contaminant concentration. The uncertainty in the definition and measurement of bioavailability had limited its application to environment risk assessment and remediation. Last ten years have seen major developments in bioavailability research and acceptance. The use of bioavailability in the decision making process as one of the key variables has led to a gradual shift towards a more sophisticated risk-based approach. Now a days, many decision makers and regulatory organisations 'more readily accept' this concept. Bioavailability should be the underlying basis for risk assessment and setting remediation goals of those contaminated sites that pose risk to environmental and human health. This paper summarises the potential application of contaminant bioavailability and bioaccessibility to the assessment of sites affected by different contaminants, and the potential for this to be the underlying basis for sustainable risk assessment and remediation in Europe, North America and Australia over the coming decade.

  9. Bioavailability enhancement by addition of surfactant and surfactant-like compounds

    SciTech Connect

    Strong-Gunderson, J.M.; Palumbo, A.V.

    1995-12-31

    The bioavailability and microbial degradation of contaminant compounds (e.g., toluene and naphthalene) were enhanced by adding synthetic surfactants, biosurfactants, and nutrients with surfactant like properties. In addition to enhanced contaminant degradation, these surfactant compounds have the potential to change the availability of natural organic matter (NOM), and thus may affect overall site bioremediation. Two bacterial bioreporter strains that are induced by toluene or naphthalene were used to directly measure contaminant bioavailability. A cell-free biosurfactant product, Tween-80, and an oleophilic fertilizer were added to aqueous suspensions and soil slurries containing toluene or naphthalene. The addition of these surfactant compounds at or below the critical micelle concentration (CMC) enhanced bioavailability as measured by increased levels of bioluminescence. Bioluminescence data were coupled with gas chromatographic analyses. The addition of Tween-80 increased not only the bioavailability of the contaminants but also, in a separate assay, the bioavailability of recalcitrant NOM. The enhanced NOM bioavailability was inferred from measurements of biomass by optical density increases and plate counts. Thus, adding surfactant compounds for enhanced contaminant degradation has the potential to introduce additional competition for nutrients and microbial metabolism, a significant area of concern for in situ site remediation.

  10. Bioavailability of atrazine, pyrene and benzo[a]pyrene in European river waters

    USGS Publications Warehouse

    Akkanen, J.; Penttinen, S.; Haitzer, M.; Kukkonen, J.V.K.

    2001-01-01

    Thirteen river waters and one humic lake water were characterized. The effects of dissolved organic matter (DOM) on the bioavailability of atrazine, pyrene and benzo[a]pyrene (B[a]P) was evaluated. Binding of the chemicals by DOM was analyzed with the equilibrium dialysis technique. For each of the water samples, 24 h bioconcentration factors (BCFs) of the chemicals were measured in Daphnia magna. The relationship between DOM and other water characteristics (including conductivity, water hardness and pH), and bioavailability of the chemicals was studied by performing several statistical analyses, including multiple regression analyses, to determine how much of the variation of BCF values could be explained by the quantity and quality of DOM. The bioavailability of atrazine was not affected by DOM or any other water characteristics. Although equilibrium dialysis showed binding of pyrene to DOM, the bioavailability of pyrene was not significantly affected by DOM. The bioavailability of B[a]P was significantly affected by both the quality and quantity of DOM. Multiple regression analyses, using the quality (ABS270 and HbA%) and quantity of DOM as variables, explainedup to 70% of the variation in BCF of B[a]P in the waters studied. ?? 2001 Elsevier Science Ltd. All rights reserved.

  11. Impact of excipient interactions on drug bioavailability from solid dosage forms.

    PubMed

    Panakanti, Ravikiran; Narang, Ajit S

    2012-10-01

    Excipients are generally pharmacologically inert, but can interact with drugs in the dosage form and the physiological factors at the site of absorption to affect the bioavailability of a drug product. A general mechanistic understanding of the basis of these interactions is essential to design robust drug products. This paper focuses on drug-excipient interactions in solid dosage forms that impact drug bioavailability, the drug substance and drug product properties affected by excipients, and the impact of excipients on physiologic processes. The extent to which drug bioavailability is affected by these interactions would vary on a case-by-case basis depending upon factors such as the potency and dose of the drug, therapeutic window, site of absorption, rate limiting factor in drug absorption (e.g., permeability or solubility limited), or whether drug metabolism, efflux, complexation, or degradation at the site of absorption play a role in determining its bioavailability. Nonetheless, a mechanistic understanding of drug-excipient interactions and their impact on drug release and absorption can help develop formulations that exhibit optimum drug bioavailability.

  12. Monitoring bioavailable phosphorus in lotic systems: a polyphasic approach based on cyanobacteria.

    PubMed

    Muñoz-Martín, M Ángeles; Martínez-Rosell, Aitor; Perona, Elvira; Fernández-Piñas, Francisca; Mateo, Pilar

    2014-03-15

    Conventional assays to measure phosphorus in freshwater systems are sometimes not sufficient to quantify the actual bioavailable P for aquatic biota since some inorganic or organic P species may not be detected by chemical methods, and their bioavailability can be affected by a range of environmental factors. This situation could lead regulatory agencies to be unable to detect imminent ecosystem-degrading phenomena such as cyanobacterial blooms. It could also be an obstacle in studying the ecophysiological requirements of freshwater communities. P bioavailability in five rivers located in central Spain was analysed by a polyphasic approach (combinations of different marker types) based on cyanobacteria. This approach included a parallel study with the use of a self-luminescent P-cyanobacterial bioreporter based on a phosphatase alkaline promoter, determination of in situ alkaline phosphatase activities from cyanobacteria found at sampling sites, and the characterisation of cyanobacterial morphological features related to P bioavailability (hairs, polyphosphate granules and calyptras). An inverse relationship was found between values of bioavailable P, measured by the bioreporter and phosphatase activities. Cyanobacteria from sampling sites with low bioavailable P showed high phosphatase activity and vice versa, although some differences in values of this activity were observed in different cyanobacteria found at the same place, in relation to different growth strategies. Morphological characteristics associated with P limitation or P enrichment also varied between sampling locations. Cyanobacteria collected from sampling sites with reduced P bioavailability, measured by bioreporter and phosphatase activity, had a lower abundance of polyphosphate granules; those cyanobacteria capable of developing hairs or calyptras showed a greater abundance of these structures. Conversely, polyphosphate granules in cyanobacteria increased as P bioavailability increased as measured

  13. Heavy metals effects on forage crops yields and estimation of elements accumulation in plants as affected by soil.

    PubMed

    Grytsyuk, N; Arapis, G; Perepelyatnikova, L; Ivanova, T; Vynograds'ka, V

    2006-02-01

    Heavy metals (Cu, Cd, Pb, Zn) effect on the productivity of forage crops (clover and perennial cereal grasses) and their accumulation in plants, depending on the concentration of these elements in a soil, has been studied in micro-field experiments on three types of soil. The principle objective was to determine regularities of heavy metals migration in a soil-plant system aiming the estimation of permissible levels of heavy metals content in soils with the following elaboration of methods, which regulate the toxicants transfer to plants. Methods of field experiments, agrochemical and atomic absorption analysis were used. Results were statistically treated by Statistica 6.0, S-Plus 6. Experimental results have shown that the intensity of heavy metals accumulation in plants depends on the type of the soil, the species of plants, the physicochemical properties of heavy metals and their content in the soil. Logarithmic interdependency of heavy metals concentration in soils and their accumulation in plants is suggested. However, the strong correlation between the different heavy metals concentrations in the various soils and the yield of crops was not observed. Toxicants accumulation in crops decreased in time.

  14. Metal speciation and immobilization reactions affecting the true efficiency of artificial wetlands to treat acid mine drainage. Research report

    SciTech Connect

    Karathanasis, A.D.; Thompson, Y.L.

    1990-08-01

    The ability of constructed wetlands to lower total Al, Cu, Fe, Mn, and Zn concentrations and organically complex the metals in acid mine drainage (AMD) was investigated under greenhouse and field conditions. In the greenhouse study, Typha plants grown in six different substrates received simulated acid mine drainage of low metal load for five months. Most effluents, especially those from ground flows, showed significant decreases in acidity and metal concentrations. The pine needle and hay substrates most effectively reduced acidity and total Al levels. The metal concentration and acidity of a very high metal load AMD were also reduced substantially during the first six months of treatment with a wetland which was constructed by the U.S. Forest Service in McCreary County, KY and used mushroom compost as a substrate. After 8 months of operation, however, and during periods of high flow rates (> 10 gallons/min) the efficiency of the wetland was drastically reduced, apparently due to reduced residence time, insufficient size and metal overloading. The metals in Fe, Mn, and Zn showed the highest tendency for residual retention, while Al and especially Cu showed high affinity for organic retention. Exchangeable and sorbed forms were present in very small concentrations and in many cases were almost negligible.

  15. Heavy metal contamination of agricultural soils affected by mining activities around the Ganxi River in Chenzhou, Southern China.

    PubMed

    Ma, Li; Sun, Jing; Yang, Zhaoguang; Wang, Lin

    2015-12-01

    Heavy metal contamination attracted a wide spread attention due to their strong toxicity and persistence. The Ganxi River, located in Chenzhou City, Southern China, has been severely polluted by lead/zinc ore mining activities. This work investigated the heavy metal pollution in agricultural soils around the Ganxi River. The total concentrations of heavy metals were determined by inductively coupled plasma-mass spectrometry. The potential risk associated with the heavy metals in soil was assessed by Nemerow comprehensive index and potential ecological risk index. In both methods, the study area was rated as very high risk. Multivariate statistical methods including Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis were employed to evaluate the relationships between heavy metals, as well as the correlation between heavy metals and pH, to identify the metal sources. Three distinct clusters have been observed by hierarchical cluster analysis. In principal component analysis, a total of two components were extracted to explain over 90% of the total variance, both of which were associated with anthropogenic sources.

  16. The effect of acidification on the bioavailability and electrochemical lability of zinc in seawater

    NASA Astrophysics Data System (ADS)

    Kim, Ja-Myung; Baars, Oliver; Morel, François M. M.

    2016-11-01

    A poorly studied but potentially important consequence of the CO2-induced acidification of the surface ocean is a possible change in the bioavailability of trace metals, which play a critical role in the productivity and population dynamics of marine ecosystems. We report laboratory and field experiments designed to compare quantitatively the effects of acidification on the bioavailability of Zn, a metal essential to the growth of phytoplankton and on the extent of its complexation by model and natural ligands. We observed a good correspondence between the effects of pH on the rate of Zn uptake by a model diatom and the chemical lability of Zn measured by anodic stripping voltammetry (ASV). In model laboratory systems, the chemical lability and the bioavailability of Zn could either increase or decrease at low pH depending on the mix of complexing ligands. In a sample of coastal surface water, we observed similar increases in the ASV-labile and bioavailable Zn concentrations upon acidification, a result contrary to previous observations. These results, which can likely be generalized to other bioactive trace metals, mutatis mutandis, demonstrate the intricacy of the effects of ocean acidification on the chemistry and the ecology of surface seawater. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  17. [Application potential of siderophore-producing rhizobacteria in phytoremediation of heavy metals-contaminated soils: a review].

    PubMed

    Wang, Ying-Li; Lin, Qing-Qi; Li, Yu; Yang, Xiu-Hong; Wang, Shi-Zhong; Qiu, Rong-Liang

    2013-07-01

    Siderophore-producing rhizobacteria (SPR) are a group of plant growth-promoting rhizobacteria, being able to play an important role in assisting the phytoremediation of heavy metals-contaminated soils. Based on the comprehensive analysis of related researches at home and abroad, this paper elaborated the functions of SPR in alleviating the heavy metals stress and toxicity to plants and the mechanisms of SPR in improving the heavy metals bioavailability in soil, and indicated that SPR had good application potential in promoting the plant growth in heavy metals-contaminated soils and reinforcing the heavy metals accumulation in plants. The contradictory phenomena of SPR in increasing or decreasing heavy metals accumulation in plants, which existed in current researches, were also analyzed. Aiming at the deficiencies in current researches, it was suggested that in the future researches, the mechanisms of the interactions between SPR and plants, especially hyperaccumulators, should be further studied, the key factors affecting the heavy metals complexation and mobilization in soil by siderophores should also be further clarified, the effects of siderophores on the heavy metals bioavailability and its subsequent influence on the heavy metals uptake by plants should be comprehensively considered, and the measures for improving the colonization of SPR in heavy metals-contaminated soil should be explored.

  18. Adsorption of acid-extractable organics from oil sands process-affected water onto biomass-based biochar: Metal content matters.

    PubMed

    Bhuiyan, Tazul I; Tak, Jin K; Sessarego, Sebastian; Harfield, Don; Hill, Josephine M

    2017-02-01

    The impact of biochar properties on acid-extractable organics (AEO) adsorption from oil sands process-affected water (OSPW) was studied. Biochar from wheat straw with the highest ash content (14%) had the highest adsorption capacity (0.59 mg/g) followed by biochar from pulp mill sludge, switchgrass, mountain pine, hemp shives, and aspen wood. The adsorption capacity had no obvious trend with surface area, total pore volume, bulk polarity and aromaticity. The large impact of metal content was consistent with the carboxylates (i.e., naphthenate species) in the OSPW binding to the metals (mainly Al and Fe) on the carbon substrate. Although the capacity of biochar is still approximately two orders of magnitude lower than that of a commercial activated carbon, confirming the property (i.e., metal content) that most influenced AEO adsorption, may allow biochar to become competitive with activated carbon after normalizing for cost, especially if this cost includes environmental impacts.

  19. Metals, Parasites, and Environmental Conditions Affecting Breeding Populations of Spotted Salamanders (Ambystoma maculatum) in Northern Arkansas, USA.

    PubMed

    DeMali, Heather M; Trauth, Stanley E; Bouldin, Jennifer L

    2016-06-01

    The spotted salamander (Ambystoma maculatum) is indigenous to northern Arkansas, and several breeding sites are known to exist in the region. Spotted salamanders (n = 17) were collected and examined for parasites and only three females harbored nematodes (Physaloptera spp.). Chronic aquatic bioassays were conducted using water collected from eight breeding ponds during different hydroperiod events. No lethal or sublethal effects were measured in Ceriodaphnia dubia; however, decreased growth and survival were seen in Pimephales promelas. Aqueous, sediment, and salamander hepatic samples were analyzed for As, Cd, Cu, Pb, and Ni. Metal analysis revealed possible increased metal exposure following precipitation, with greatest metal concentrations measured in sediment samples. Hepatic metal concentrations were similar in parasitized and non-parasitized individuals, and greatest Pb concentrations were measured following normal precipitation events. Determining environmental stressors of amphibians, especially during their breeding and subsequent larval life stage, is imperative to improve species conservation.

  20. Influence of compost addition on lead and arsenic bioavailability in reclaimed orchard soil assessed using Porcellio scaber bioaccumulation test.

    PubMed

    Udovic, M; McBride, M B

    2012-02-29

    Long-term application of lead arsenate in orchards has led to a significant accumulation of Pb and As in the topsoil. Reclamation of old orchards for agricultural purposes entails the exposure of humans to Pb and As, which can be reduced by adequate remediation actions. In this study, we assessed the remediation efficiency of compost addition, commonly used as a sustainable agricultural practice, in decreasing the human exposure Pb and As by direct ingestion. The remediation was evaluated based on Pb and As bioavailability, assessed by means of a selective non-exhaustive chemical extraction (modified Morgan extraction, MME), with a physiologically based extraction test (PBET) for the assessment of Pb and As bioavailability in ingested soils and with a novel in vivo bioaccumulation test with isopods (Porcellio scaber). All the tests showed that compost addition consistently reduced Pb, but increased As potential bioavailability. The bioaccumulation test with P. scaber was sensitive to changes in Pb and As bioavailability in test soils. However, the results indicate that the bioavailability of As could be under- or overestimated using solely chemical extraction tests. Indirect assessment of trace metal bioavailability with bioaccumulation in isopods can be used as complementary source of data to the existing in vitro chemical extraction test approach for the estimation of human exposure to trace elements in polluted and remediated soil. This is the first report on the use of As accumulation in P. scaber as a tool for the assessment of As bioavailability in contaminated orchard soil.

  1. Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables

    PubMed Central

    Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health. PMID:25276818

  2. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables.

    PubMed

    Waseem, Amir; Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid; Murtaza, Ghulam

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health.

  3. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review.

    PubMed

    Liu, Shao-Heng; Zeng, Guang-Ming; Niu, Qiu-Ya; Liu, Yang; Zhou, Lu; Jiang, Lu-Hua; Tan, Xiao-Fei; Xu, Piao; Zhang, Chen; Cheng, Min

    2017-01-01

    In recent years, knowledge in regard to bioremediation of combined pollution of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by bacteria and fungi has been widely developed. This paper reviews the species of bacteria and fungi which can tackle with various types of PAHs and heavy metals entering into environment simultaneously or successively. Microbial activity, pollutants bioavailability and environmental factors (e.g. pH, temperature, low molecular weight organic acids and humic acids) can all affect the bioremediation of PAHs and heavy metals. Moreover, this paper summarizes the remediation mechanisms of PAHs and heavy metals by microbes via elucidating the interaction mechanisms of heavy metals with heavy metals, PAHs/PAHs metabolites with PAHs and PAHs with heavy metals. Based on the above reviews, this paper also discusses the potential research needs for this field.

  4. Evaluation of Crack Arrest Fracture Toughness of Parent Plate, Weld Metal and Heat Affected Zone of BIS 812 EMA Ship Plate Steel

    DTIC Science & Technology

    1993-10-01

    34- EVALUATION OF CRACK ARREST FRACTURE TOUGHNESS OF PARENT PLATE, WELD METAL 0 AND HEAT AFFECTED ZONE OF BIS 812 EMA SHIP PLATE STEEL IA BURCH MRL-TR...had a deleterious effect on the crack arrest properties of this particular steel . Tests on each of these regions revealed that, far the combination of...fracture toughness assessment is not a requirement for qualification for this steel , crack arrest fracture toughness, Kj, can be used to • 0 characterise the