Science.gov

Sample records for affect metal bioavailability

  1. Have the bioavailabilities of trace metals to a suite of biomonitors changed over three decades in SW England estuaries historically affected by mining?

    PubMed

    Rainbow, P S; Kriefman, S; Smith, B D; Luoma, S N

    2011-03-15

    Many estuaries of southwest England were heavily contaminated with toxic metals associated with the mining of copper and other metals, particularly between 1850 and 1900. The question remains whether the passage of time has brought remediation to these estuaries. In 2003 and 2006 we revisited sites in 5 metal-contaminated estuaries sampled in the 1970s and 1980s - Restronguet Creek, Gannel, West Looe, East Looe and Tavy. We evaluate changes in metal contamination in sediments and in metal bioavailabilities in sediments and water to local organisms employed as biomonitors. We find that the decline in contamination in these estuaries is complex. Differences in bioavailable contamination in the water column were detectable, as were significant detectable changes in at least some estuaries in bioavailable metal contamination originating from sediments. However, in the 100 years since mining activities declined, bioavailable contamination has not declined to the regional baseline in any estuary affected by the mine wastes. The greatest decline in contamination occurred in the one instance (East Looe) where a previous industrial source of (Ag) contamination was considered. We used the macroalgae Fucus vesiculosus and Ascophyllum nodosum as biomonitors of dissolved metal bioavailabilities and the deposit feeders Nereis diversicolor and Scrobicularia plana as biomonitors of bioavailable metal in sediments. We found no systematic decrease in the atypically high Ag, Cu, Pb and Zn concentrations in the estuarine sediments over a 26 year period. Accumulated metal (Ag, As, Cu, Pb, and Zn) concentrations in the deposit feeders are similarly still atypically high in at least one estuary for each metal, and there is no consistent evidence for general decreases in sediment metal bioavailabilities over time. We conclude that the legacy of mining in sheltered estuaries of southwest England is the ongoing presence of sediments rich in metals bioavailable to deposit feeders, while

  2. Microbial reporters of metal bioavailability

    PubMed Central

    Magrisso, Sagi; Erel, Yigal; Belkin, Shimshon

    2008-01-01

    Summary When attempting to assess the extent and the implications of environmental pollution, it is often essential to quantify not only the total concentration of the studied contaminant but also its bioavailable fraction: higher bioavailability, often correlated with increased mobility, signifies enhanced risk but may also facilitate bioremediation. Genetically engineered microorganisms, tailored to respond by a quantifiable signal to the presence of the target chemical(s), may serve as powerful tools for bioavailability assessment. This review summarizes the current knowledge on such microbial bioreporters designed to assay metal bioavailability. Numerous bacterial metal‐sensor strains have been developed over the past 15 years, displaying very high detection sensitivities for a broad spectrum of environmentally significant metal targets. These constructs are based on the use of a relatively small number of gene promoters as the sensing elements, and an even smaller selection of molecular reporter systems; they comprise a potentially useful panel of tools for simple and cost‐effective determination of the bioavailability of heavy metals in the environment, and for the quantification of the non‐bioavailable fraction of the pollutant. In spite of their inherent advantages, however, these tools have not yet been put to actual use in the evaluation of metal bioavailability in a real environmental remediation scheme. For this to happen, acceptance by regulatory authorities is essential, as is a standardization of assay conditions. PMID:21261850

  3. Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine spillage at Aznalcóllar (Spain).

    PubMed

    Clemente, Rafael; Walker, David J; Roig, Asunción; Bernal, M Pilar

    2003-06-01

    A field experiment, lasting 14 months, was carried out in order to assess the effect of organic amendment and lime addition on the bioavailability of heavy metals in contaminated soils. The experiment took place in a soil affected by acid, highly toxic pyritic waste from the Aznalcóllar mine (Seville, Spain) in April 1998. The following treatments were applied (3 plots per treatment): cow manure, a mature compost, lime (to plots having pH < 4), and control without amendment. During the study two crops of Brassica juncea were grown, with two additions of each organic amendment. Throughout the study, the evolution of soil pH, total and available (DTPA-extractable) heavy metals content (Zn, Cu, Mn, Fe, Pb and Cd), electrical conductivity (EC), soluble sulphates and plant growth and heavy metal uptake were followed. The study indicates that: (1) soil acidification, due to the oxidation of metallic sulphides in the soil, increased heavy metal bioavailability; (2) liming succeeded in controlling the soil acidification; and (3) the organic materials generally promoted fixation of heavy metals in non-available soil fractions, with Cu bioavailability being particularly affected by the organic treatments. PMID:12889610

  4. Assessing bioavailability levels of metals in effluent-affected rivers: effect of Fe(III) and chelating agents on the distribution of metal speciation.

    PubMed

    Han, Shuping; Naito, Wataru; Masunaga, Shigeki

    2016-01-01

    To assess the effects of Fe(III) and anthropogenic ligands on the bioavailability of Ni, Cu, Zn, and Pb, concentrations of bioavailable metals were measured by the DGT (diffusive gradients in thin films) method in some urban rivers, and were compared with concentrations calculated by a chemical equilibrium model (WHAM 7.0). Assuming that dissolved Fe(III) (<0.45 μm membrane filtered) was in equilibrium with colloidal iron oxide, the WHAM 7.0 model estimated that bioavailable concentrations of Ni, Cu, and Zn were slightly higher than the corresponding values estimated assuming that dissolved Fe(III) was absent. In contrast, lower levels of free Pb were predicted by the WHAM 7.0 model when dissolved Fe(III) was included. Estimates showed that most of the dissolved Pb was present as colloidal iron-Pb complex. Ethylene-diamine-tetra-acetic acid (EDTA) concentrations at sampling sites were predicted from the relationship between EDTA and the calculated bioavailable concentration of Zn. When both colloidal iron and predicted EDTA concentrations were included in the WHAM 7.0 calculations, dissolved metals showed a strong tendency to form EDTA complexes, in the order Ni > Cu > Zn > Pb. With the inclusion of EDTA, bioavailable concentrations of Ni, Cu, and Zn predicted by WHAM 7.0 were different from those predicted considering only humic substances and colloidal iron. PMID:27533864

  5. Bioavailability of Metal Ions and Evolutionary Adaptation

    PubMed Central

    Hong Enriquez, Rolando P.; Do, Trang N.

    2012-01-01

    The evolution of life on earth has been a long process that began nearly 3.5 × 109 years ago. In their initial moments, evolution was mainly influenced by anaerobic environments; with the rise of O2 and the corresponding change in bioavailability of metal ions, new mechanisms of survival were created. Here we review the relationships between ancient atmospheric conditions, metal ion bioavailability and adaptation of metals homeostasis during early evolution. A general picture linking geochemistry, biochemistry and homeostasis is supported by the reviewed literature and is further illustrated in this report using simple database searches. PMID:25371266

  6. Bioavailability of metals in soils and sedimentes affected by old mining actitvities. The study case of the Portman bay (SE, Spain)

    NASA Astrophysics Data System (ADS)

    Martinez-Sanchez, Maria Jose; Agudo, Ines; Banegas, Ascension; Garcia-Lorenzo, Maria Luz; Gonzalez-Ciudad, Eva; Perez-Espinosa, Victor; Martinez-Lopez, Salvadora; Martinez, Lucia; Perz-Sirvent, Carmen

    2010-05-01

    A study on metal (Zn, Pb, Cd, Cu and As) mobilization and analysis of the health risk represented by ingestion from contaminated sediments in Portman Bay (SE Spain) was carried out. This zone has suffered a great impact from mining activity, since million tons of mine tailings were dumped into the bay for a long period, giving as a result the filling of the bay with them. The long-term deposition of metals in soils and sediments can lead to their accumulation and transport, while their toxicity depends on the mobility and bioavailability of a significant fraction of the metals. The ingestion of contaminated soil particles by grazing animals or young children may well represent a special exposure pathway for Pb, Cd and other hazardous metals. The aim of this study was to determine the bioaccessibility of Zn, Pb, Cd, Cu and As ,and the extent to which bioaccessibility is influenced by mineralogy in materials from this mining site as an indicator of the potential risk that metals pose to both environmental and human health. General analytical determinations (pH, particle size, organic matter, equivalent calcium carbonate content and mineralogical composition) were carried out to characterize the samples. The mineralogical composition was studied by X-ray diffraction (XRD), using a Philips PW3040 diffractometer with Cu-Kα. To determine the total metal content, the samples were digested in a Milestone ETHOS PLUS microwave, Zn, Pb, Cu and Cd contents were determined by electrothermal atomization atomic absorption spectrometry, while As was analysed by HG- AFS using an automated continuous flow hydride generation spectrometer. To assess bioaccessibility, the gastric solution was prepared according to the Standard Operating Procedure (SOP) developed by the Solubility/Bioavailability Research Consortium (SBRC). The mineralogical composition, corresponds to materials which have suffered a supergenic oxidation process which has been influenced by the presence of sea water

  7. Toxicity, bioavailability and metal speciation.

    PubMed

    Jonnalagadda, S B; Rao, P V

    1993-11-01

    methylmercury, although most of the environmental Hg to which they are exposed is inorganic. The methylmercury in fish arises from the bacterial methylation of inorganic Hg. Methylmercury in the human diet is almost completely absorbed into the bloodstream. The nervous system is the principal target tissue affected by methylmercury in adult human beings, while kidney is the critical organ following the ingestion of Hg(II) salts. PMID:7905798

  8. EFFECTS OF HUMIC SUBSTANCES ON ATTENUATION OF METALS: BIOAVAILABILITY AND MOBILITY IN SOIL

    EPA Science Inventory

    Humic substances play vastly important roles in metal behavior in a wide variety of environments. They can affect the mobility and bioavailability of metals by binding and sequestration thereby decreasing the mobility of a metal. They can also transport metals into solution or ...

  9. Bioavailability of heavy metals, germanium and rare earth elements at Davidschacht dump-field in mine affected area of Freiberg (Saxony)

    NASA Astrophysics Data System (ADS)

    Midula, Pavol; Wiche, Oliver

    2016-04-01

    Bioavailability research presents an essential tool, in modern phytoremediation and phytomining technologies, allowing the estimation of plant available fractions of elements in soils. However, up to date, sufficient interdisciplinary knowledge on the biogeochemically impacted behavior of specific target elements, in particular Ge and REEs in mining affected soils and their uptake into strategically used plants is lacking. This presented work is focused on a correlation study between the concentrations of selected heavy metals, Ge and REEs in soils formed on the top of the dump-field of Davidschacht and the corresponding their concentrations in 12 vascular plant species. The mine-dump of Davidschacht, situated in the Freiberg (Saxony, Germany) municipality area was chosen as the study area, which has been considered to be a high contaminated enclave, due to the mining history of the region. In total 12 sampling sites with differing composition of plant species were selected. At each sampling site soil samples from a soil depth of 0 - 10 cm and samples of plant material (shoots) were taken. The soil samples were analysed for total concentration of elements, pH (H2O) and consequently analysed by 4-step sequential extraction (SE) to determine fractions of elements that are mobile (fraction 1), acid soluble (pH 5) (fraction 2), bound to organic and oxidizable matter (fraction 3) and bound to amorphic oxides (fraction 4). The plant material was decomposed by hydrofluoric acid in order to extract the elements. Concentrations of elements in soil extracts and digestion solutions were analysed by ICP-MS. For all species bioconcentration factor (BCF) was calculated of the total concentration of elements in order to investigate the bioaccumulation potential. Arsenic (As), cadmium (Cd) and lead (Pb) were chosen as the representative heavy metals. Within the REEs neodymium (Nd) and cerium (Ce) were selected as representatives for all REEs, since Nd and Ce correlated significant

  10. Bioavailability of heavy metals, germanium and rare earth elements at Davidschacht dump-field in mine affected area of Freiberg (Saxony)

    NASA Astrophysics Data System (ADS)

    Midula, Pavol; Wiche, Oliver

    2016-04-01

    Bioavailability research presents an essential tool, in modern phytoremediation and phytomining technologies, allowing the estimation of plant available fractions of elements in soils. However, up to date, sufficient interdisciplinary knowledge on the biogeochemically impacted behavior of specific target elements, in particular Ge and REEs in mining affected soils and their uptake into strategically used plants is lacking. This presented work is focused on a correlation study between the concentrations of selected heavy metals, Ge and REEs in soils formed on the top of the dump-field of Davidschacht and the corresponding their concentrations in 12 vascular plant species. The mine-dump of Davidschacht, situated in the Freiberg (Saxony, Germany) municipality area was chosen as the study area, which has been considered to be a high contaminated enclave, due to the mining history of the region. In total 12 sampling sites with differing composition of plant species were selected. At each sampling site soil samples from a soil depth of 0 - 10 cm and samples of plant material (shoots) were taken. The soil samples were analysed for total concentration of elements, pH (H2O) and consequently analysed by 4-step sequential extraction (SE) to determine fractions of elements that are mobile (fraction 1), acid soluble (pH 5) (fraction 2), bound to organic and oxidizable matter (fraction 3) and bound to amorphic oxides (fraction 4). The plant material was decomposed by hydrofluoric acid in order to extract the elements. Concentrations of elements in soil extracts and digestion solutions were analysed by ICP-MS. For all species bioconcentration factor (BCF) was calculated of the total concentration of elements in order to investigate the bioaccumulation potential. Arsenic (As), cadmium (Cd) and lead (Pb) were chosen as the representative heavy metals. Within the REEs neodymium (Nd) and cerium (Ce) were selected as representatives for all REEs, since Nd and Ce correlated significant

  11. Trace metal speciation and bioavailability in anaerobic digestion: A review.

    PubMed

    Thanh, Pham Minh; Ketheesan, Balachandran; Yan, Zhou; Stuckey, David

    2016-01-01

    Trace metals are essential for the growth of anaerobic microorganisms, however, in practice they are often added to anaerobic digesters in excessive amounts, which can lead to inhibition. The concept of bioavailability of metals in anaerobic digestion has been poorly understood in the past, and a lack of deep understanding of the relationship between trace metal speciation and bioavailability can result in ineffective metal dosing strategies for anaerobic digesters. Sequential extraction schemes are useful for fractionating trace metals into their different forms, and metal sulfides can serve as a store and source for trace metals during anaerobic digestion, while natural/synthetic chelating agents (soluble microbial products-SMPs, extracellular polysaccharides-EPS, and EDTA/NTA) are capable of controlling trace metal bioavailability. Nevertheless, more work is needed to: investigate the speciation and bioavailability of Ca, Mg, Mn, W, and Se; compare the bioavailability of different forms of trace metals e.g. carbonates, sulfides, phosphates to different anaerobic trophic groups; determine what factors influence metal sulfide dissolution; investigate whether chelating agents can increase trace metal bioavailability; develop and adapt specialized analytical techniques, and; determine how trace metal dynamics change in an anaerobic membrane bioreactor (AnMBR). PMID:26707985

  12. Hemicellulose does not affect iron bioavailability in chicks.

    PubMed

    Fly, A D; Czarnecki-Maulden, G L; Fahey, G C; Titgemeyer, E C

    1996-01-01

    Two iron repletion experiments using hemoglobin as a response criterion were conducted to assess effects of hemicelluloses on iron bioavailability to chicks. In Experiment 1, iron bioavailability from intact fiber sources was determined by adding tomato pomace (14.6% hemicelluloses), soybean hulls (20.6% hemicelluloses), beet pulp (21.5% hemicelluloses), orchard grass (24.1% hemicelluloses) and corn fiber (55.2% hemicelluloses) to a casein dextrose basal diet providing 0.4-4.1% hemicelluloses to the diet. Test foods were analyzed for iron, total dietary fiber, neutral detergent residue, neutral detergent fiber, acid detergent fiber, acid detergent lignin, pectins and uronic acids. Hemicelluloses were determined by the difference of neutral detergent residue minus acid detergent fiber. Iron bioavailability was determined by the standard curve method to be (percent relative to ferrous sulfate using hemoglobin as the response criterion) as follows: tomato pomace, 82.0; soybean hulls, 94.0; beet pulp, 26.5; orchard grass, 68.9; corn fiber, 69.4. Iron bioavailability was not related to hemicellulose content of test foods or diets. In Experiment 2, the effect of psyllium husk (a fiber source that contains predominantly hemicelluloses) on iron bioavailability from ferrous sulfate was assessed. Bioavailability was determined by the slope ratio method where treatments consisted of graded levels of ferrous sulfate in the presence and absence of 5% dietary psyllium. Although iron intrinsic to psyllium was unavailable, bioavailability of ferrous sulfate iron was not affected (P > 0.05) by the presence of psyllium. Thus, there was no clear effect of hemicelluloses on iron bioavailability. However, some feeds that contained high levels of hemicelluloses had low intrinsic iron bioavailabilities, suggesting that other dietary factors are primarily responsible for determining iron bioavailability from these feed components. PMID:8558316

  13. Influence of biochar amendments on marine sediment trace metal bioavailability

    NASA Astrophysics Data System (ADS)

    Gehrke, G. E.; Hsu-Kim, H.

    2014-12-01

    Biochar has become a desirable material for use in agricultural application to enhance soil quality and in-situ soil and sediment remediation to immobilize organic contaminants. We investigated the effects of biochar sediment amendments on the bioavailability of a suite of inorganic trace metals (Cr, Co, Ni, Cu, Zn, Pb) in contaminated sediments from multiple sites in Elizabeth River, VA. We incubated sediments in microcosms with a variety of water column redox and salinity conditions and compared sediments amended with two types of woody biochar to sediments amended with charcoal activated carbon and unamended sediments. We leached sediments in artificial gut fluid mimic of the benthic invertebrate Arenicola marina as a measure of bioavailability of the trace metals analyzed. In unamended anaerobic sediments, the gut fluid mimic leachable fraction of each trace metal is 1-4% of the total sediment concentration for each metal. Initial results indicate that in anaerobic microcosms, woody biochar sediment amendments (added to 5% dry wt) decrease the gut fluid mimic leachable fraction by 30-90% for all trace metals analyzed, and have comparable performance to charcoal activated carbon amendments. However, in microcosms without controlled redox conditions, woody biochar amendments increase the bioavailable fraction of Ni and Cu by up to 80%, while decreasing the bioavailable fraction of Co, Zn, and Pb by approximately 50%; charcoal activated carbon amendments decreased the bioavailability of all trace metals analyzed by approximately 20%. In microcosms without an overlying water column, biochar and activated carbon amendments had no significant effects on trace metal bioavailability. This research demonstrates that biochar can effectively decrease the bioavailability of trace metals in marine sediments, but its efficiency is metal-specific, and environmental conditions impact biochar performance.

  14. From conceptual model to remediation: bioavailability, a key to clean up heavy metal contaminated soils.

    NASA Astrophysics Data System (ADS)

    Petruzzelli, Gianniantonio; Pedron, Francesca; Pezzarossa, Beatrice

    2013-04-01

    Processes of metal bioavailability in the soil To know the bioavailability processes at site specific levels is essential to understand in detail the risks associated with pollution, and to support the decision-making process, i.e. description of the conceptual model and choice of clean up technologies. It is particularly important to assess how chemical, physical and biological processes in the soil affect the reactions leading to adsorption, precipitation or release of contaminants. The measurement of bioavailability One of the main difficulties in the practical application of the bioavailability concept in soil remediation is the lack of consensus on the method to be used to measure bioavailability. The best strategy is to apply a series of tests to assess bioavailability, since no applicable method is universally valid under all conditions. As an example, bioavailability tests for phytotechnology application should consider two distinct aspects: a physico-chemical driven solubilization process and a physiologically driven uptake process. Soil and plant characteristics strongly influence bioavailability. Bioavailability as a tool in remediation strategies Bioavailability can be used at all stages in remediation strategies: development of the conceptual model, evaluation of risk assessment, and selection of the best technology, considering different scenarios and including different environmental objectives. Two different strategies can be followed: the reduction and the increase of bioavailability. Procedures that reduce bioavailability aim to prevent the movement of pollutants from the soil to the living organisms, essentially by: i) removal of the labile phase of the contaminant, i.e. the fraction which is intrinsic to the processes of bioavailability (phytostabilization); ii) conversion of the labile fraction into a stable fraction (precipitation or adsorption); iii) increase of the resistance to mass transfer of the contaminants (inertization). Procedures

  15. Heavy metals in soils from Baia Mare mining impacted area (Romania) and their bioavailability

    NASA Astrophysics Data System (ADS)

    Roba, Carmen; Baciu, Calin; Rosu, Cristina; Pistea, Ioana; Ozunu, Alexandru

    2015-04-01

    Keywords: heavy metals, soil contamination, bioavailability, Romania The fate of various metals, including chromium, nickel, copper, manganese, mercury, cadmium, and lead, and metalloids, like arsenic, antimony, and selenium, in the natural environment is of great concern, particularly in the vicinity of former mining sites, dumps, tailings piles, and impoundments, but also in urban areas and industrial centres. Most of the studies focused on the heavy metal pollution in mining areas present only the total amounts of metals in soils. The bioavailable concentration of metals in soil may be a better predictor for environmental impact of historical and current dispersion of metals. Assessment of the metal bioavailability and bioaccessibility is critical in understanding the possible effects on soil biota. The bioavailability of metals in soil and their retention in the solid phase of soil is affected by different parameters like pH, metal amount, cation-exchange capacity, content of organic matter, or soil mineralogy. The main objectives of the present study were to determine the total fraction and the bioavailable fraction of Cu, Cd, Pb and Zn from soil in a well-known mining region in Romania, and to evaluate the influence of soil pH on the metal bioavailability in soil. The heavy metal contents and their bioavailability were monitored in a total of 50 soil samples, collected during June and July 2014 from private gardens of the inhabitants from Baia-Mare area. The main mining activities developed in the area consisted of non-ferrous sulphidic ores extraction and processing, aiming to obtain concentrates of lead, copper, zinc and precious metals. After 2006, the metallurgical industry has considerably reduced its activity by closing or diminishing its production capacity. The analysed soil samples proved to have high levels of Pb (50 - 830 mg/kg), Cu (40 - 600 mg/kg), Zn (100 - 700 mg/kg) and Cd (up to 10 mg/kg). The metal abundance in the total fraction is

  16. BIOAVAILABILITY OF METALS IN ENVIRONMENTAL MEDIA

    EPA Science Inventory

    Heavy metal and organic chemical contamination of soils is a worldwide problem posing a risk to humans and more directly, soil organisms. Due to widespread metal contamination, it is necessary to characterize soils suspected of metal contamination and determine if the metal le...

  17. Estimation of bioavailability of metals from drilling mud barite.

    PubMed

    Neff, Jerry M

    2008-04-01

    Drilling mud and associated drill cuttings are the largest volume wastes associated with drilling of oil and gas wells and often are discharged to the ocean from offshore drilling platforms. Barite (BaSO4) often is added as a weighting agent to drilling muds to counteract pressure in the geologic formations being drilled, preventing a blowout. Some commercial drilling mud barites contain elevated (compared to marine sediments) concentrations of several metals. The metals, if bioavailable, may harm the local marine ecosystem. The bioavailable fraction of metals is the fraction that dissolves from the nearly insoluble, solid barite into seawater or sediment porewater. Barite-seawater and barite-porewater distribution coefficients (Kd) were calculated for determining the predicted environmental concentration (PEC; the bioavailable fraction) of metals from drilling mud barite in the water column and sediments, respectively. Values for Kdbarite-seawater and Kdbarite-porewater were calculated for barium, cadmium, chromium, copper, mercury, lead, and zinc in different grades of barite. Log Kdbarite-seawater values were higher (solubility was lower) for metals in the produced water plume than log Kdbarite-porewater values for metals in sediments. The most soluble metals were cadmium and zinc and the least soluble were mercury and copper. Log Kd values can be used with data on concentrations of metals in barite and of barite in the drilling mud-cuttings plume and in bottom sediments to calculate PECseawater and PECsediment. PMID:17994916

  18. Bioavailability of Sodium and Trace Metals under Direct and Indirect Effects of Compost in Urban Soils.

    PubMed

    Kargar, Maryam; Clark, O Grant; Hendershot, William H; Jutras, Pierre; Prasher, Shiv O

    2016-05-01

    The contamination of urban soil with sodium (Na) and trace metals can be one of the major concerns for groundwater contamination and street tree health. The bioavailability of Na, copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) in urban soil amended with 0, 5, and 10% w/w compost was evaluated at none, medium, and high contamination levels of soil mixtures. The relationship between soil properties, compost addition, contamination level and metal uptake by barley ( L.) was determined using multivariate linear regression and path analysis. The results indicated the direct negative effect of compost on metal absorption possibly through specific complexation for Cu, Zn, Cd, and Pb. Compost can also affect the absorption of Na and Cd indirectly by means of cation exchange capacity (CEC) and pH. The degree of soil contamination with metals can affect the competition of cations for the complexing sites of the soil mixtures and, therefore, can induce changes in metal availability for plants. Compost addition to the soil also increased nutrient availability, except for ammonium (NH) and nitrate (NO). We concluded that in the short term, the addition of compost significantly reduced metal bioavailability and improved nutrient availability. However, more studies are required to monitor the long-term ability of the compost to reduce Na and trace metal bioavailability in urban soil. PMID:27136168

  19. Pharmacological activity of metal binding agents that alter copper bioavailability

    PubMed Central

    Helsel, Marian E.

    2015-01-01

    Iron, copper and zinc are required nutrients for many organisms but also potent toxins if misappropriated. An overload of any of these metals can be cytotoxic and ultimately lead to organ failure, whereas deficiencies can result in anemia, weakened immune system function, and other medical conditions. Cellular metal imbalances have been implicated in neurodegenerative diseases, cancer and infection. It is therefore critical for living organisms to maintain careful control of both the total levels and subcellular distributions of these metals to maintain healthy function. This perspective explores several strategies envisioned to alter the bioavailability of metal ions by using synthetic metal-binding agents targeted for diseases where misappropriated metal ions are suspected of exacerbating cellular damage. Specifically, we discuss chemical properties that influence the pharmacological outcome of a subset of metal-binding agents known as ionophores, and review several examples that have shown multiple pharmacological activities in metal-related diseases, with a specific focus on copper. PMID:25797044

  20. Assessing the Effects of Bioturbation on Metal Bioavailability in Contaminated Sediments by Diffusive Gradients in Thin Films (DGT).

    PubMed

    Amato, Elvio D; Simpson, Stuart L; Remaili, Timothy M; Spadaro, David A; Jarolimek, Chad V; Jolley, Dianne F

    2016-03-15

    The burrowing and feeding activities of benthic organisms can alter metal speciation in sediments and affect an organisms' exposure to metals. Recently, the performance of the in situ technique of diffusive gradients in thin films (DGT) for predicting metal bioavailability has been investigated in response to the increasing demand of considering contaminant bioavailability in sediment quality assessments. In this study, we test the ability of the DGT technique for predicting the metal bioavailability in clean and contaminated sediments that are being subjected to varying degrees of sediments disturbance: low bioturbation (bivalve Tellina deltoidalis alone) and high bioturbation (bivalve and actively burrowing amphipod, Victoriopisa australiensis). Significant release of DGT-labile Cd, Ni, Pb, and Zn, but lower Cu and Fe, occurred in the pore and overlying waters of sediments exposed to high bioturbation conditions, resulting in higher bioaccumulation of zinc in bivalves. Strong relationships were found between bioaccumulation of Pb and Zn and time-integrated DGT-metal fluxes, whereas poor relationships were obtained using total or dilute-acid extractable metal concentrations. This results demonstrate that DGT is a useful tool for assessing metal bioavailability in sediments and can provide useful predictions of metal bioavailable to benthic organisms in dynamic sediment environments. PMID:26848961

  1. Factors affecting sequestration and bioavailability of phenanthrene in soils

    SciTech Connect

    White, J.C.; Kelsey, J.W.; Hatzinger, P.B.; Alexander, M.

    1997-10-01

    A study was conducted to determine factors affecting the sequestration and changes in bioavailability as phenanthrene persists in soils. Phenanthrene became sequestered in seven soils differing appreciably in organic matter and clay content as measured by earthworm uptake, bacterial mineralization, or extractability. Phenanthrene also became sequestered as it aged in soil aggregates of various sizes as measured by decline in availability to a bacterium, a mild extractant, or both. Wetting and drying a soil during aging reduced the amount of phenanthrene recovered by a mild extractant and the rate and extent of bacterial mineralization of the hydrocarbon. After biodegradation of phenanthrene added to the soil, more of the compound remained if it had been aged than if it had not been aged. Wetting and drying the soil during aging further increased the amount of phenanthrene remaining after biodegradation. The rate and extent of bacterial mineralization of phenanthrene were less in leached than in unleached soil. Aging/sequestration is thus markedly affected by soil properties and environmental factors.

  2. Mineralogy affects geoavailability, bioaccessibility and bioavailability of zinc

    PubMed Central

    Molina, Ramon M.; Schaider, Laurel A.; Donaghey, Thomas C.; Shine, James P.; Brain, Joseph D.

    2013-01-01

    We correlated mineralogical and particle characteristics of Zn-containing particles with Zn geoavailability, bioaccessibility, and bioavailability following gavage and intranasal (IN) administration in rats. We compared samples of Zn/Pb mine waste and five pulverized pure-phase Zn minerals (<38 μm). Particles were neutron-activated to produce radioactive 65Zn. We assessed geoavailability using sequential extractions and bioaccessibility using in vitro extraction tests simulating various pH and biological conditions. Zn in vivo bioavailability and in vitro bioaccessibility decreased as follows: mine waste > hydrozincite > hemimorphite > zincite ≈ smithsonite ≫ sphalerite. We found significant correlations among geoavailability, bioaccessibility and bioavailability. In particular, Zn bioavailability post-gavage and post-IN was significantly correlated with bioaccessibility in simulated phagolysosomal fluid and gastric fluid. These data indicate that solid phase speciation influences biological uptake of Zn and that in vitro tests can be used to predict Zn bioavailability in exposure assessment and effective remediation design. PMID:23933126

  3. Bioavailability and bioaccumulation of metal-based engineered nanomaterials in aquatic environments: concepts and processes: chapter 5

    USGS Publications Warehouse

    Luoma, Samuel N.; Khan, Farhan R.; Croteau, Marie-Noële

    2014-01-01

    Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me-ENMs via water, ingestion, and incidental surface exposure. Both metal released from the Me-ENM and uptake of the nanoparticle itself contribute to bioaccumulation. Some mechanisms of toxicity and some of the metrics describing exposure may differ from metals alone. Bioavailability is driven by complex interaction of particle attributes, environmental transformations, and biological traits. Characterization of Me-ENMs is an essential part of understanding bioavailability and requires novel methodologies. The relative importance of the array of processes that could affect Me-ENM bioavailability remains poorly known, but new approaches and models are developing rapidly. Enough is known, however, to conclude that traditional approaches to exposure assessment for metals would not be adequate to assess risks from Me-ENMs.

  4. Bioavailability assessment of essential and toxic metals in edible nuts and seeds.

    PubMed

    Moreda-Piñeiro, Jorge; Herbello-Hermelo, Paloma; Domínguez-González, Raquel; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2016-08-15

    Bioavailability of essential and toxic metals in edible nuts and seeds has been assessed by using an in vitro dialyzability approach. The samples studied included walnuts, Brazil nuts, Macadamia nuts, pecans, hazelnuts, chestnuts, cashews, peanuts, pistachios and seeds (almond, pine, pumpkin and sunflower). Metals were measured by inductively coupled plasma-mass spectrometry in dialyzates and also in samples after a microwave assisted acid digestion pre-treatment. Low dialyzability percentages were found for Al, Fe and Hg; moderate percentages were found for Ba, Ca, Cd, Co, Cu, K, Li, Mg, Mn, Mo, P, Pb, Se, Sr, Tl and Zn; and high dialyzability ratios were found for As, Cr and Ni. The highest dialyzability percentages were found in raw chestnuts and raw hazelnuts. Metal dialyzability was found to be negatively affected by fat content. Positive correlation was found between carbohydrate content and metal dialyzability ratios. Protein and dietary fibre content did not influence metal bioavailability. Predicted dialyzability for some metals based on fat and protein content could also be established. PMID:27006225

  5. Proceedings: ISEA Bioavailability Symposium, Durham, North Carolina Use of InVitro Bioaccessibility/Relative Bioavailability Estimates for Metals in Regulatory Settings: What is Needed?

    EPA Science Inventory

    Oral ingestion of soil and dust is a key pathway for human exposures to metal and metalloid contaminants. It is widely recognized that the site-specific bioavailability of metals in soil and dust may be reduced relative to the metal bioavailability in media such as water and food...

  6. Mineral surfaces and bioavailability of heavy metals: A molecular-scale perspective

    PubMed Central

    Brown, Gordon E.; Foster, Andrea L.; Ostergren, John D.

    1999-01-01

    There is a continual influx of heavy metal contaminants and pollutants into the biosphere from both natural and anthropogenic sources. A complex variety of abiotic and biotic processes affects their speciation and distribution, including adsorption onto and desorption from mineral surfaces, incorporation in precipitates or coprecipitates, release through the dissolution of minerals, and interactions with plants and microbes. Some of these processes can effectively isolate heavy metals from the biosphere, whereas others cause their release or transformation to different species that may be more (or less) bioavailable and/or toxic to organisms. Here we focus on abiotic adsorption and precipitation or coprecipitation processes involving the common heavy metal contaminant lead and the metalloids arsenic and selenium in mine tailings and contaminated soils. We have used extremely intense x-rays from synchrotron sources and a structure-sensitive method known as x-ray absorption fine structure (XAFS) spectroscopy to determine the molecular-level speciation of these elements at concentrations of 50 to several thousand ppm in the contaminated environmental samples as well as in synthetic sorption samples. Our XAFS studies of As and Pb in the mine tailings show that up to 50% of these contaminants in the samples studied may be present as adsorbed species on mineral surfaces, which makes them potentially more bioavailable than when present in sparingly soluble solid phases. Our XAFS studies of Se(VI) sorption on Fe2+-containing sulfates show that this element undergoes redox reactions that transform it into less bioavailable and less toxic species. This type of information on molecular-level speciation of heavy metal and metalloid contaminants in various environmental settings is needed to prioritize remediation efforts and to assess their potential hazard to humans and other organisms. PMID:10097048

  7. Assessing metal bioavailability from cytosolic metal concentrations in natural populations of aquatic insects

    SciTech Connect

    Cain, D.J.; Luoma, S.N.; Hornberger, M.I.

    1995-12-31

    Metals occur in a variety of forms in aquatic insects. Some of these forms may be irrelevant to effects of metals on the animal, and might actually obscure links between tissue residues, metal bioavailability and toxicity (e.g. metals sorbed to external body parts, or associated with unpurged gut contents). Cytosolic metal may be a sensitive indicator of metal bioavailability and toxicity. The authors determined cytosolic metal concentrations in natural populations of the caddisfly (Trichoptera) Hydropsyche occidentalis. Cytosolic metal concentrations were compared to whole-body and sediment metal concentrations. Samples were collected along a contamination gradient over a 380 km reach of the Clark Fork River, Montana, in August of 1992 and 1993. Concentrations of cytosolic Cd, Cu, and Pb correlated with concentrations of these metals in the whole body within years. Cytosolic metals also correlated with levels of sediment contamination except at the most contaminated sites where metal concentrations in the cytosol were lower relative to sediments. The availability of Pb appeared to be low since the cytosolic Pb fraction represented less than 6% of the total Pb body burden. The cytosol contained appreciably higher proportions of the total Cd and Cu body burden than Pb. The cytosolic fraction of Cd and Cu also increased significantly between 1992 and 1993. This change reflected an increase in Cd and Cu exposure in 1993, apparently due to the mobilization of metals during higher river flows that year. The shift in cytosolic metal fractions demonstrates the dynamic nature of metal partitioning in animals in nature. These shifts can be influenced by hydrologic and geochemical conditions, as well as biological processes.

  8. Assessment of metal enrichment and their bioavailability in sediment and bioaccumulation by mangrove plant pneumatophores in a tropical (Zuari) estuary, west coast of India.

    PubMed

    Noronha-D'Mello, Cheryl A; Nayak, G N

    2016-09-15

    Sediment collected from the estuarine mangroves of the Zuari estuary and Cumbharjua canal were analyzed to assess the concentration, contamination and bioavailability of metals. Mangrove pneumatophores were also analyzed to understand the metal bioaccumulation in mangrove plants. The results indicated the variation of metal concentrations in sediment along the estuary was attributed to changing hydrodynamic conditions, type of sediment and metal sources. Further, speciation studies revealed that Fe, Cr, Co, Ni, Cu and Zn were mainly of lithogenic origin and less bioavailable while high Mn content in the sediment raised concerns over its potential mobility, bioavailability and subsequent toxicity. The mangrove plants exhibited difference in metal accumulation due to variations in sediment parameters and metal availability, in addition to difference in plant species and tissue physiology that affect metal uptake. Moreover, the mangrove plants reflected the quality of the underlying sediment and can be used as a potential bio-indicator tool. PMID:27325605

  9. Assessing the oral bioavailability of metals in soil in terrestrial animals

    SciTech Connect

    Tier, A.J. La; Schoof, R.A.; Pastorok, R.A.

    1995-12-31

    The oral bioavailability of metals in soil is controlled by the mineral form of the metals, and by the physical and chemical characteristics of the soil matrix that limit metal dissolution in the gastrointestinal tract. Although soil metal bioavailability may be generally reduced compared to the bioavailability of metals in water or diet, anatomic and physiological characteristics of individual receptor species are expected to cause substantial variations in bioavailability among species. For example, the short gastrointestinal transit times in carnivores may minimize metal dissolution, while the longer transit times in ruminants may allow more time for metals to dissolve in the gastrointestinal tract. The actual extent of metal dissolution in these species will also be very dependent on the stomach pH, so that a higher pH in a species with a longer transit time might result in similar absorption rates as those observed in a species with a lower stomach pH and shorter transit times. Pertinent anatomical and physiological features of typical terrestrial receptor species will be summarized and evaluated. Recently published (and unpublished) data on the bioavailability of arsenic, cadmium and lead in soil in various animal species will be used to illustrate the differences among species. Important design factors to consider in evaluating bioavailability studies, such as age of the animals and method of administration of soil will be addressed.

  10. DISTRIBUTION OF PARAMETERS DETERMINING BIOAVAILABILITY OF METALS IN EUROPEAN SOILS

    EPA Science Inventory

    As part of a program to develop a predictive model of bioavailability and toxicity of copper in soils to terrestrial organisms, 19 soils from 9 countries of the EU were collected and analyzed for use in bioavailability tests. However, it is desired that the model be of use on a ...

  11. Interactions between active pharmaceutical ingredients and excipients affecting bioavailability: impact on bioequivalence.

    PubMed

    García-Arieta, Alfredo

    2014-12-18

    The aim of the present paper is to illustrate the impact that excipients may have on the bioavailability of drugs and to review existing US-FDA, WHO and EMA regulatory guidelines on this topic. The first examples illustrate that small amounts of sorbitol (7, 50 or 60mg) affect the bioavailability of risperidone, a class I drug, oral solution, in contrast to what is stated in the US-FDA guidance. Another example suggests, in contrast to what is stated in the US-FDA BCS biowaivers guideline, that a small amount of sodium lauryl sulphate (SLS) (3.64mg) affects the bioavailability of risperidone tablets, although the reference product also includes SLS in an amount within the normal range for that type of dosage form. These factors are considered sufficient to ensure that excipients do not affect bioavailability according to the WHO guideline. The alternative criterion, defined in the WHO guideline and used in the FIP BCS biowaivers monographs, that asserts that excipients present in generic products of the ICH countries do not affect bioavailability if used in normal amounts, is shown to be incorrect with an example of alendronate (a class III drug) tablets, where 4mg of SLS increases bioavailability more than 5-fold, although a generic product in the USA contains SLS. Finally, another example illustrates that a 2mg difference in SLS may affect bioavailability of a generic product of a class II drug, even if SLS is contained in the comparator product, and in all cases its amount was within the normal range. Therefore, waivers of in vivo bioequivalence studies (e.g., BCS biowaivers, waivers of certain dosage forms in solution at the time of administration and variations in the excipient composition) should be assessed more cautiously. PMID:25236823

  12. Targeted Removal of Bioavailable Metal as a Detoxification Strategy for Carbon Nanotubes

    PubMed Central

    Liu, Xinyuan; Guo, Lin; Morris, Daniel; Kane, Agnes B.; Hurt, Robert H.

    2008-01-01

    There is substantial evidence for toxicity and/or carcinogenicity upon inhalation of pure transition metals in fine particulate form. Carbon nanotube catalyst residues may trigger similar metal-mediated toxicity, but only if the metal is bioavailable and not fully encapsulated within fluid-protective carbon shells. Recent studies have documented the presence of bioavailable iron and nickel in a variety of commercial as-produced and vendor “purified” nanotubes, and the present article examines techniques to avoid or remove this bioavailable metal. First, data are presented on the mechanisms potentially responsible for free metal in “purified” samples, including kinetic limitations during metal dissolution, the re-deposition or adsorption of metal on nanotube outer surfaces, and carbon shell damage during last-step oxidation or one-pot purification. Optimized acid treatment protocols are presented for targeting the free metal, considering the effects of acid strength, composition, time, and conditions for post-treatment water washing. Finally, after optimized acid treatment, it is shown that the remaining, non-bioavailable (encapsulated) metal persists in a stable and biologically unavailable form up to two months in an in vitro biopersistence assay, suggesting that simple removal of bioavailable (free) metal is a promising strategy for reducing nanotube health risks. PMID:19255622

  13. Accounting for metal bioavailability in assessing water quality: A step change?

    PubMed

    Merrington, Graham; Peters, Adam; Schlekat, Christian E

    2016-02-01

    Bioavailability of metals to aquatic organisms can be considered to be a combination of the physicochemical factors governing metal behavior and the specific pathophysiological characteristics of the organism's biological receptor. Effectively this means that a measure of bioavailability will reflect the exposures that organisms in the water column actually "experience". This is important because it has long been established that measures of total metal in waters have limited relevance to potential environmental risk. The concept of accounting for bioavailability in regard to deriving and implementing environmental water quality standards is not new, but the regulatory reality has lagged behind the development of scientific evidence supporting the concept. Practical and technical reasons help to explain this situation. For example, concerns remain from regulators and the regulated that the efforts required to change existing systems of metal environmental protection that have been in place for over 35 yr are so great as not to be commensurate with likely benefits. However, more regulatory jurisdictions are now considering accounting for metal bioavailability in assessments of water quality as a means to support evidence-based decision-making. In the past decade, both the US Environmental Protection Agency and the European Commission have established bioavailability-based standards for metals, including Cu and Ni. These actions have shifted the debate toward identifying harmonized approaches for determining when knowledge is adequate to establish bioavailability-based approaches and how to implement them. PMID:26808908

  14. Assessment of heavy metals bioavailability and toxicity toward Vibrio fischeri in sediment of the Huelva estuary.

    PubMed

    Rosado, Daniel; Usero, José; Morillo, José

    2016-06-01

    Relationship between toxicity and bioavailable metals in sediments from the Huelva estuary and its littoral of influence was analyzed. Toxicity was assessed with Microtox(®) bioassay using a marine luminescent bacterium: Vibrio fischeri. Bioavailable metals were considered as both, acid extractable fraction of BCR procedure and the sum of exchangeable and bound to carbonates fractions of Tessier sequential extraction. A bioavailable metals index was calculated to integrate results in a single figure. Toxicity and bioavailable metals showed a similar pattern. Higher levels were found in the estuary than in the littoral (140 TU/g). In Huelva estuary, highest levels were found in the Tinto estuary (5725 TU/g), followed by the Odiel estuary (5100 TU/g) and the Padre Santo Canal (2500 TU/g). Results in this area were well over than those in nearby estuaries. Furthermore, they are similar to or even higher than those in other polluted sediments around the world. Bioavailable metal index showed a stronger correlation with acid extractable fraction of BCR (R(2) = 0.704) than that for the sum of exchangeable and bound to carbonates fractions of Tessier (R(2) = 0.661). These results suggest that bioavailable metals are an important source of sediment toxicity in the Huelva estuary and its littoral of influence, an area with one of the highest mortality risks of Spain. PMID:27002282

  15. Climate change effects on enchytraeid performance in metal-polluted soils explained from changes in metal bioavailability and bioaccumulation.

    PubMed

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2015-10-01

    Climate change may alter physical, chemical and biological properties of ecosystems, affecting organisms but also the fate of chemical pollutants. This study aimed to find out how changes in climate conditions (air temperature, soil moisture content) affect the toxicity of metal-polluted soils to the soft-bodied soil organism Enchytraeus crypticus, linking enchytraeid performance with changes in soil available and body metal concentrations. Bioassays with E. crypticus were performed under different combinations of air temperature (20 and 25 °C) and soil moisture content (50% and 30% of the soil water holding capacity, WHC) in dilution series of three metal-polluted soils (mine tailing, forest and watercourse). After 21 d exposure, enchytraeid reproduction was determined, and soil available (extracted with 0.01 M CaCl2) and body Cd, Cu, Pb and Zn concentrations in surviving adults were determined. In general, Cd, Pb and Zn availability decreased upon incubation under the different climate scenarios. In the watercourse soil, with initially higher available metal concentrations (678 µg Cd kg(-1), 807 µg Pb kg(-1) and 31,020 µg Zn kg(-1)), decreases were greatest at 50% WHC probably due to metal immobilization as carbonates. Enchytraeid reproduction was negatively affected by higher available metal concentrations, with reductions up to 98% in the watercourse soil compared to the control soil at 30% WHC. Bioaccumulation of Cd, Pb and Zn was higher when drier conditions were combined with the higher temperature of 25 °C. Changes in metal bioavailability and bioaccumulation explained the toxicity of soil polluted by metal mine wastes to enchytraeids under changing environmental conditions. PMID:26162961

  16. Reduction of bioavailability and leachability of heavy metals during vermicomposting of water hyacinth.

    PubMed

    Singh, Jiwan; Kalamdhad, Ajay S

    2013-12-01

    Vermicomposting of water hyacinth is a good alternative for the treatment of water hyacinth (Eichhornia crassipes) and subsequentially, beneficial for agriculture purposes. The bioavailability and leachability of heavy metals (Zn, Cu, Mn, Fe, Ni, Pb, Cd, and Cr) were evaluated during vermicomposting of E. crassipes employing Eisenia fetida earthworm. Five different proportions (trials 1, 2, 3, 4, and 5) of cattle manure, water hyacinth, and sawdust were prepared for the vermicomposting process. Results show that very poor biomass growth of earthworms was observed in the highest proportion of water hyacinth (trial 1). The water soluble, diethylenetriaminepentaacetic acid (DTPA) extractable, and leachable heavy metals concentration (percentage of total heavy metals) were reduced significantly in all trials except trial 1. The total concentration of some metals was low but its water soluble and DTPA extractable fractions were similar or more than other metals which were present in higher concentration. This study revealed that the toxicity of metals depends on bioavailable fraction rather than total metal concentration. Bioavailable fraction of metals may be toxic for plants and soil microorganisms. The vermicomposting of water hyacinth by E. fetida was very effective for reduction of bioavailability and leachability of selected heavy metals. Leachability test confirmed that prepared vermicompost is not hazardous for soil, plants, and human health. The feasibility of earthworms to mitigate the metal toxicity and to enhance the nutrient profile in water hyacinth vermicompost might be useful in sustainable land renovation practices at low-input basis. PMID:23757026

  17. Induced metal redistribution and bioavailability enhancement in contaminated river sediment during in situ biogeochemical remediation.

    PubMed

    Liu, Tongzhou; Zhang, Zhen; Mao, Yanqing; Yan, Dickson Y S

    2016-04-01

    In situ sediment remediation using Ca(NO3)2 or CaO2 for odor mitigation and acid volatile sulfide (AVS) and organic pollutant (such as TPH and PAHs) removal was reported in many studies and fieldwork. Yet, the associated effects on metal mobilization and potential distortion in bioavailability were not well documented. In this study, contaminated river sediment was treated by Ca(NO3)2 and CaO2 in bench studies. Through the investigation of AVS removal, organic matter removal, the changes in sediment oxidation-reduction potential (ORP), microbial activity, and other indigenous parameters, the effects on metal bioavailability, bioaccessibility, and fraction redistribution in sediment were evaluated. The major mechanisms for sediment treated by Ca(NO3)2 and CaO2 are biostimulation with indigenous denitrifying bacteria and chemical oxidation, respectively. After applying Ca(NO3)2 and CaO2, the decreases of metal concentrations in the treated sediment were insignificant within a 35-day incubation period. However, the [SEMtot-AVS]/f OC increased near to the effective boundary of toxicity (100 μmol g(-1) organic carbon (OC)), indicating that both bioavailability and bioaccessibility of metals (Cu, Zn, and Ni) to benthic organisms are enhanced after remediation. Metals were found redistributed from relatively stable fractions (oxidizable and residual fractions) to weakly bound fractions (exchangeable and reducible fractions), and the results are in line with the enhanced metal bioavailability. Compared with Ca(NO3)2, CaO2 led to higher enhancement in metal bioavailability and bioaccessibility, and more significant metal redistribution, probably due to its stronger chemical reactive capacity to AVS and sediment organic matter. The reactions in CaO2-treated sediment would probably shift from physicochemical to biochemical heterotrophic oxidation for sediment organic matter degradation. Therefore, further investigation on the long-term metal redistribution and associated

  18. Bioavailability of heavy metals in soils: definitions and practical implementation--a critical review.

    PubMed

    Kim, Rog-Young; Yoon, Jeong-Ki; Kim, Tae-Seung; Yang, Jae E; Owens, Gary; Kim, Kwon-Rae

    2015-12-01

    Worldwide regulatory frameworks for the assessment and remediation of contaminated soils have moved towards a risk-based approach, taking contaminant bioavailability into consideration. However, there is much debate on the precise definition of bioavailability and on the standardization of methods for the measurement of bioavailability so that it can be reliably applied as a tool for risk assessment. Therefore, in this paper, we reviewed the existing definitions of heavy metal bioavailability in relation to plant uptake (phytoavailability), in order to better understand both the conceptual and operational aspects of bioavailability. The related concepts of specific and non-specific adsorption, as well as complex formation and organic ligand affinity were also intensively discussed to explain the variations of heavy metal solubility and mobility in soils. Further, the most frequently used methods to measure bioavailable metal soil fractions based on both chemical extractions and mechanistic geochemical models were reviewed. For relatively highly mobile metals (Cd, Ni, and Zn), a neutral salt solution such as 0.01 M CaCl2 or 1 M NH4NO3 was recommended, whereas a strong acid or chelating solution such as 0.43 M HNO3 or 0.05 M DTPA was recommended for strongly soil-adsorbed and less mobile metals (Cu, Cr, and Pb). While methods which assessed the free metal ion activity in the pore water such as DGT and DMT or WHAM/Model VI, NICA-Donnan model, and TBLM are advantageous for providing a more direct measure of bioavailability, few of these models have to date been properly validated. PMID:25841357

  19. Influence of organic matter transformations on the bioavailability of heavy metals in a sludge based compost.

    PubMed

    Ingelmo, Florencio; Molina, Maria José; Soriano, Maria Desamparados; Gallardo, Antonio; Lapeña, Leonor

    2012-03-01

    The agricultural use of anaerobically digested sewage sludge (ADSS) as stable, mature compost implies knowing its total content in heavy metals and their bioavailability. This depends not only on the initial characteristics of the composted substrates but also on the organic matter transformations during composting which may influence the chemical form of the metals and their bioavailability. The objective of this work was to examine the relationships between the changes in the organic matter content and humus fractions, and the bioavailability of heavy metals. A detailed sampling at 0, 14, 84, and 140 days of the composting process was performed to measure C contents in humic acids (HAs), fulvic acids, (FAs) and humin, the total content of Zn, Pb, Cu, Ni, and Cd, and also their distribution into mobile and mobilisable (MB), and low bioavailability (LB) forms. Significant changes of C contents in HA, FA, and Humin, and in the FA/HA, HA/Humin and C(humus)/TOC ratios were observed during composting. The MB and LB fractions of each metal also varied significantly during composting. The MB fraction increased for Zn, Cu, Ni, and Cd, and the LB fraction increased for Pb. Stepwise linear regressions and quadratic curve estimation conducted on the MB and LB fractions of each metal as dependent on the measured organic variables suggested that Zn bioavailability was mainly associated to percentage of C in FAs. Bioavailability of Cu, Ni and Cd during composting was associated to humin and HAs. Pb concentration increased in the LB form, and its variations followed a quadratic function with the C(humus)/TOC ratio. Our results suggest that the composting process renders the metals in more available forms. The main forms of metal binding in the sludge and their availability in the final compost may be better described when metal fractionation obtained in sequential extraction and humus fractionation during composting are considered together. PMID:21570172

  20. Influences of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments

    USGS Publications Warehouse

    Lee, B.-G.

    2000-01-01

    Understanding how animals are exposed to the large repository of metal pollutants in aquatic sediments is complicated and is important in regulatory decisions. Experiments with four types of invertebrates showed that feeding behavior and dietary uptake control bioaccumulation of cadmium, silver, nickel, and zinc. Metal concentrations in animal tissue correlated with metal concentrations extracted from sediments, but not with metal in porewater, across a range of reactive sulfide concentrations, from 0.5 to 30 micromoles per gram. These results contradict the notion that metal bioavailability in sediments is controlled by geochemical equilibration of metals between porewater and reactive sulfides, a proposed basis for regulatory criteria for metals.

  1. Influences of Dietary Uptake and Reactive Sulfides on Metal Bioavailability from Aquatic Sediments

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-Gweon; Griscom, Sarah B.; Lee, Jung-Suk; Choi, Heesun J.; Koh, Chul-Hwan; Luoma, Samuel N.; Fisher, Nicholas S.

    2000-01-01

    Understanding how animals are exposed to the large repository of metal pollutants in aquatic sediments is complicated and is important in regulatory decisions. Experiments with four types of invertebrates showed that feeding behavior and dietary uptake control bioaccumulation of cadmium, silver, nickel, and zinc. Metal concentrations in animal tissue correlated with metal concentrations extracted from sediments, but not with metal in porewater, across a range of reactive sulfide concentrations, from 0.5 to 30 micromoles per gram. These results contradict the notion that metal bioavailability in sediments is controlled by geochemical equilibration of metals between porewater and reactive sulfides, a proposed basis for regulatory criteria for metals.

  2. Spatial and temporal variability in metal bioavailability and toxicity of sediment from Hamilton Harbour, Lake Ontario

    SciTech Connect

    Krantzberg, G. )

    1994-10-01

    Trace metals in sediment from nearshore urban and industrialized centers of the Great Lakes are frequently at concentrations well above geological background values. Total metal content in sediment, however, is a weak predictor of sediment toxicity. This study examined the bioavailability of metals from Hamilton Harbor in Lake Ontario and considered variability in metal forms on a temporal basis. Sediment from regions within Hamilton Harbor is highly contaminated with metals; nevertheless, not all metal-contaminated sites were toxic to test organisms. Most sediment did elicit sublethal and/or lethal responses in bioassay organisms. Metal bioavailability, as measured by weak acid extractions, metal bioaccumulation by fathead minnows, and sediment toxicity, was greater in sediment collected in the fall as compared to sediment collected in the spring. Results of analyses of tissue residues in test organisms and the reduced toxicity observed in sediment collected from some stations in the spring as compared to the fall implicate trace metals and sediment oxygen demand as contributing to sediment toxicity. The suitability for colonization by benthic invertebrates of sediment in some areas of Hamilton Harbor appears to be limited by both contaminants and high sediment oxygen demand. Improving the oxygen regime of the harbor should result in improvements in the benthic invertebrate community directly, by providing a suitable oxygen regime for organisms less tolerant of temporal anoxia, and indirectly by decreasing metal bioavailability, possibly through the co-precipitation of trace metals with iron and manganese hydroxides.

  3. BIOAVAILABILITY OF METALS IN CONTAMINATED SOIL AND DUST

    EPA Science Inventory

    Due to widespread metal contamination, it is necessary to characterize soils suspected of metal contamination and determine if the metal levels in these soils pose a hazard. Metal toxicity is often not directly related to the total concentration of metals present due to a numb...

  4. Distribution and bioavailability of metals in subsidence land in a coal mine China.

    PubMed

    Zhang, Yan; Feng, Qiyan; Meng, Qingjun; Lu, Ping; Meng, Lei

    2012-12-01

    Land subsidence in coal mine would change the type of soil so that it influences the distribution and bioavailability of metals. The results show that the total metal concentration was in the range from 0.41 ± 0.26 mg/kg (Cd) to 94.16 ± 12.06 mg/kg (Zn) and Cd was the serious pollution metal. In spatial, the concentration of most metals (except Sb) was highest in perennial waterlogged zone while was lowest in no waterlogged zone, which implied that the perennial waterlogged zone was a sink of metals in coal mine area. However, the bio-available fraction of metals was lowest in perennial waterlogged zone. PMID:23001423

  5. Comparison of partial extraction reagents for assessing potential bioavailability of heavy metals in sediments.

    PubMed

    Brady, James P; Kinaev, Irina; Goonetilleke, Ashantha; Ayoko, Godwin A

    2016-05-15

    Assessment of heavy metal bioavailability in sediments is complex because of the number of partial extraction methods available for the assessment and the general lack of certified reference materials. This study evaluates five different extraction methodologies to ascertain the relative strengths and weaknesses of each method. The results are then compared to previously published work to ascertain the most effective partial extraction technique, which was established to dilute (0.75-1M) nitric acid solutions. These results imply that single reagent; weak acid extractions provide a better assessment of potentially bioavailable metals than the chelating agents used in sequential extraction methods. PMID:27036084

  6. Bioavailability of Cd, Zn and Hg in Soil to Nine Recombinant Luminescent Metal Sensor Bacteria

    PubMed Central

    Bondarenko, Olesja; Rõlova, Taisia; Kahru, Anne; Ivask, Angela

    2008-01-01

    A set of nine recombinant heavy metal-specific luminescent bacterial sensors belonging to Gram-negative (Escherichia and Pseudomonas) and Gram-positive (Staphylococcus and Bacillus) genera and containing various types of recombinant metal-response genetic elements was characterized for heavy metal bioavailability studies. All nine strains were induced by Hg and Cd and five strains also by Zn. As a lowest limit, the sensors were detecting 0.03 μg·L-1 of Hg, 2 μg·L-1 of Cd and 400 μg·L-1 of Zn. Limit of determination of the sensors depended mostly on metal-response element, whereas the toxicity of those metals towards the sensor bacteria was mostly dependent on the type of the host bacterium, with Gram-positive strains being more sensitive than Gram-negative ones. The set of sensors was used to evaluate bioavailability of Hg, Cd and Zn in spiked soils. The bioavailable fraction of Cd and Zn in soil suspension assay (2.6 – 5.1% and 0.32 – 0.61%, of the total Cd and Zn, respectively) was almost comparable for all the sensors, whereas the bioavailability of Hg was about 10-fold higher for Gram-negative sensor cells (30.5% of total Hg), compared to Gram-positive ones (3.2% of the total Hg). For Zn, the bioavailable fraction in soil-water suspensions and respective extracts was comparable (0.37 versus 0.33% of the total Zn). However, in the case of Cd, for all the sensors used and for Hg concerning only Gram-negative sensor strains, the bioavailable fraction in soil-water suspensions exceeded the water-extracted fraction about 14-fold, indicating that upon direct contact, an additional fraction of Cd and Hg was mobilized by those sensor bacteria. Thus, for robust bioavailability studies of heavy metals in soils any type of genetic metal-response elements could be used for the construction of the sensor strains. However, Gram-positive and Gram-negative senor strains should be used in parallel as the bioavailability of heavy metals to those bacterial groups may be

  7. Heavy metal bioavailability and chelate mobilization efficiency in an assisted phytoextraction process.

    PubMed

    Cao, Alessia; Cappai, Giovanna; Carucci, Alessandra; Lai, Tiziana

    2008-04-01

    The heavy metal bioavailable fraction of a soil is a core parameter to verify the potential risks of contaminant exposure to organisms or plants. The purpose of the present work is to identify the bioavailable metal fraction in soils treated with chelates. This fraction was evaluated directly by analyzing metal concentrations in soil solution and indirectly using sequential extraction procedures. The metal bioavailable fraction was compared with metal accumulated in plant leaves, grown in both untreated and chelate-treated reactors. In order to verify the effect of the readily and slowly biodegradable chelates [S,S]-ethylenediaminedisuccinic acid (EDDS), methylglycine diacetic acid (MGDA), and ethylenediaminetetraacetic acid (EDTA) on metal speciation in soils, a simulation of chelate treatment was made and metal concentrations in different soil compartments before and after the simulation were compared. Lead concentration in the soil solution was positively correlated with metal concentration in the test plants. The soluble fraction showed the best correlation with metal concentration in soil solution. The simulation of the chelate treatment demonstrated that EDTA and EDDS were able to extract part of the organic- and sulfide-bound fraction, which are less available to plants. PMID:18253843

  8. TOTAL DISSOLVED AND BIOAVAILABLE METALS AT LAKE TEXOMA MARINAS

    EPA Science Inventory

    Dissolved metals in water and total metals in sediments have been measured at marina areas in Lake Texoma during June 1999 to October 2001, and October 2001, respectively. The metals most often found in the highest concentrations in marina water were Na and Ca, followed by Mg an...

  9. On the bioavailability of trace metals in surface sediments: a combined geochemical and biological approach.

    PubMed

    Roosa, Stéphanie; Prygiel, Emilie; Lesven, Ludovic; Wattiez, Ruddy; Gillan, David; Ferrari, Benoît J D; Criquet, Justine; Billon, Gabriel

    2016-06-01

    The bioavailability of metals was estimated in three river sediments (Sensée, Scarpe, and Deûle Rivers) impacted by different levels of Cu, Cd, Pb, and Zn (Northern France). For that, a combination of geochemistry and biological responses (bacteria and chironomids) was used. The results obtained illustrate the complexity of the notion of "bioavailability." Indeed, geochemical indexes suggested a low toxicity, even in surface sediments with high concentrations of total metals and a predicted severe effect levels for the organisms. This was also suggested by the abundance of total bacteria as determined by DAPI counts, with high bacterial cell numbers even in contaminated areas. However, a fraction of metals may be bioavailable as it was shown for chironomid larvae which were able to accumulate an important quantity of metals in surface sediments within just a few days.We concluded that (1) the best approach to estimate bioavailability in the selected sediments is a combination of geochemical and biological approaches and that (2) the sediments in the Deûle and Scarpe Rivers are highly contaminated and may impact bacterial populations but also benthic invertebrates. PMID:26884242

  10. Fate, behavior, and bioavailability of metal and metal oxide nanomaterials in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Bertsch, P. M.; Unrine, J. M.; Judy, J.; Tsyusko, O.

    2012-12-01

    Despite the benefits that are currently being manifested and those transformative breakthroughs that will undoubtedly result from advances in nanotechnology, concerns surrounding the potential negative impacts to the environment and human health and welfare continue to emerge. Information on the transport and fate of manufactured nanomaterials (MNMs) in the environment and on their potential effects to human and ecological receptors is emerging at an increasing rate. Notwithstanding these developments, the research enterprise focused on the environmental implications of nanotechnology is in its infancy and few unifying principles have yet to emerge. This lack of unanimity is related to many factors including, the vast diversity in chemical composition, size, shape, and surface chemical properties of MNMs, as well as the range of receptor species and cell lines investigated. Additionally, the large variation in exposure methodologies employed by various investigators as well as the discrepancies in the amount and quality of characterization data collected to support specific conclusions, provide major challenges for developing unifying concepts and principles. As the utilization of MNMs for a large variety of applications is currently in an exponential growth phase, there is great urgency to develop information that can be used to identify priority areas for assessing risks to humans and the environment, as well as in developing potential mitigation strategies. We have been investigating the fate, behavior, and potential impacts of MNMs released into terrestrial ecosystems by examining the bioavailability and toxicity as well as the trophic transfer of a range of metal and metal oxide nanoparticles (Ag, Au, Cu, TiO2, ZnO, CeO2) to microorganisms, detritivores, and plants. Interdisciplinary studies include the characterization of the nanoparticles and aged nanoparticles in complex media, the distribution of nanoparticles in biological tissues, nanoparticle toxicity

  11. The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils.

    PubMed

    Walker, David J; Clemente, Rafael; Roig, Asuncion; Bernal, M Pilar

    2003-01-01

    Two heavy metal contaminated calcareous soils from the Mediterranean region of Spain were studied. One soil, from the province of Murcia, was characterised by very high total levels of Pb (1572 mg kg(-1)) and Zn (2602 mg kg(-1)), whilst the second, from Valencia, had elevated concentrations of Cu (72 mg kg(-1)) and Pb (190 mg kg(-1)). The effects of two contrasting organic amendments (fresh manure and mature compost) and the chelate ethylenediaminetetraacetic acid (EDTA) on soil fractionation of Cu, Fe, Mn, Pb and Zn, their uptake by plants and plant growth were determined. For Murcia soil, Brassica juncea (L.) Czern. was grown first, followed by radish (Raphanus sativus L.). For Valencia soil, Beta maritima L. was followed by radish. Bioavailability of metals was expressed in terms of concentrations extractable with 0.1 M CaCl2 or diethylenetriaminepentaacetic acid (DTPA). In the Murcia soil, heavy metal bioavailability was decreased more greatly by manure than by the highly-humified compost. EDTA (2 mmol kg(-1) soil) had only a limited effect on metal uptake by plants. The metal-solubilising effect of EDTA was shorter-lived in the less contaminated, more highly calcareous Valencia soil. When correlation coefficients were calculated for plant tissue and bioavailable metals, the clearest relationships were for Beta maritima and radish. PMID:12531318

  12. Bioavailability and Natural Pollution of Heavy Metals in Bahia de Magdalena, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Lee, W.; O'Shea, B.

    2012-12-01

    In the pristine environment of Bahia de Magdalena, Baja California, elevated concentrations of heavy metals have been reported in the biota within the bay, such as sea grasses, blue crabs, and marine turtles. While the hypothesized source of these metals has emphasized anthropogenic inputs from a local fish cannery, geologic enrichment of metals from natural ophiolite formations in the Puerto Magdalena region may be an increasingly feasible source. Total (XRF) chromium and nickel concentrations (max 4,450 ppm and 2,396 ppm, respectively) in rock and soil are orders of magnitude higher than average concentrations in the crust and the beach sands directly impacted by waste discharge from the cannery (mean Cr, 55ppm and mean Ni 17ppm at cannery). Bioavailable (HNO3 acid extracted) metals differ between rock and soil versus cannery-impacted sites. Most notably, Ni is very bioavailable (mean 70% total Ni extracted) in pristine ophiolite areas, but almost completely unavailable at cannery-impacted sites. In contrast, Zn is slightly more bioavailable at the impacted cannery site (mean 55% Zn extracted) than the ophiolite rocks (mean 45% Zn extracted). In addition, these results suggest that while metals, such as Cu, Fe, and Mn, have been previously studied in the biota of the bay, other heavy metals such as Ni and Cr should be included in future biological studies within Bahia de Magdalena.

  13. Assessment of metal bioavailability in the vineyard soil-grapevine system using different extraction methods.

    PubMed

    Vázquez Vázquez, Francisco A; Pérez Cid, Benita; Río Segade, Susana

    2016-10-01

    This study was focused on the assessment of single and sequential extraction methods to predict the bioavailability of metals in the vineyard soil-grapevine system. The modified BCR sequential extraction method and two single-step extraction methods based on the use of EDTA and acetic acid were applied to differently amended vineyard soils. The variety effect was studied on the uptake of metals by leaves and grapes. Most of the elements studied (Ca, Mg, Cu, Fe, Mn, Zn and Pb) were weakly mobilized from vineyard soils, with the exception of Cu and Mn. The determination of total metal content in leaves and grapes showed a different accumulation pattern in the two parts of the vine. A significant relationship was observed, for all the elements studied except for Fe, between the content bioavailable in the soil and the accumulated in both leaves and grapes (R=0.602-0.775, p<0.01). PMID:27132841

  14. Effects of acid-volatile sulfide on metal bioavailability and toxicity to midge (Chironomus tentans) larvae in black shale sediments.

    PubMed

    Ogendi, George M; Brumbaugh, William G; Hannigan, Robyn E; Farris, Jerry L

    2007-02-01

    Metal bioavailability and toxicity to aquatic organisms are greatly affected by variables such as pH, hardness, organic matter, and sediment acid-volatile sulfide (AVS). Sediment AVS, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides, has been studied intensely in recent years. Few studies, however, have determined the spatial variability of AVS and its interaction with simultaneously extracted metals (SEM) in sediments containing elevated concentrations of metals resulting from natural geochemical processes, such as weathering of black shales. We collected four sediment samples from each of four headwater bedrock streams in northcentral Arkansa (USA; three black shale-draining streams and one limestone-draining stream). We conducted 10-d acute whole-sediment toxicity tests using the midge Chironomus tentans and performed analyses for AVS, total metals, SEMs, and organic carbon. Most of the sediments from shale-draining streams had similar total metal and SEM concentrations but considerable differences in organic carbon and AVS. Zinc was the leading contributor to the SEM molar sum, averaging between 68 and 74%, whereas lead and cadmium contributed less than 3%. The AVS concentration was very low in all but two samples from one of the shale streams, and the sum of the SEM concentrations was in molar excess of AVS for all shale stream sediments. No significant differences in mean AVS concentrations between sediments collected from shale-draining or limestone-draining sites were noted (p > 0.05). Midge survival and growth in black shale-derived sediments were significantly less (p < 0.001) than that of limestone-derived sediments. On the whole, either SEM alone or SEM-AVS explained the total variation in midge survival and growth about equally well. However, survival and growth were significantly greater (p < 0.05) in the two sediment samples that contained measurable AVS compared with the two sediments from the

  15. Effects of acid-volatile sulfide on metal bioavailability and toxicity to midge (Chironomus tentans) larvae in black shale sediments

    USGS Publications Warehouse

    Ogendi, G.M.; Brumbaugh, W.G.; Hannigan, R.E.; Farris, J.L.

    2007-01-01

    Metal bioavailability and toxicity to aquatic organisms are greatly affected by variables such as pH, hardness, organic matter, and sediment acid-volatile sulfide (AVS). Sediment AVS, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides, has been studied intensely in recent years. Few studies, however, have determined the spatial variability of AVS and its interaction with simultaneously extracted metals (SEM) in sediments containing elevated concentrations of metals resulting from natural geochemical processes, such as weathering of black shales. We collected four sediment samples from each of four headwater bedrock streams in northcentral Arkansa (USA; three black shale-draining streams and one limestone-draining stream). We conducted 10-d acute whole-sediment toxicity tests using the midge Chironomus tentans and performed analyses for AVS, total metals, SEMs, and organic carbon. Most of the sediments from shale-draining streams had similar total metal and SEM concentrations but considerable differences in organic carbon and AVS. Zinc was the leading contributor to the SEM molar sum, averaging between 68 and 74%, whereas lead and cadmium contributed less than 3%. The AVS concentration was very low in all but two samples from one of the shale streams, and the sum of the SEM concentrations was in molar excess of AVS for all shale stream sediments. No significant differences in mean AVS concentrations between sediments collected from shale-draining or limestone-draining sites were noted (p > 0.05). Midge survival and growth in black shale-derived sediments were significantly less (p < 0.001) than that of limestone-derived sediments. On the whole, either SEM alone or SEM-AVS explained the total variation in midge survival and growth about equally well. However, survival and growth were significantly greater (p < 0.05) in the two sediment samples that contained measurable AVS compared with the two sediments from the

  16. The role of organic matter on metal toxicity and bio-availability.

    PubMed

    Calace, Nicoletta; Petronio, Bianca Maria

    2004-01-01

    A short review concerning the role of organic matter on metal toxicity and bio-availability in aqueous systems is carried out. The complexity of the issue derives both from the high number of natural and anthropogenic organic compounds and from the variability of their structures. In fact, the binding capacity and affinity is dependent on the number and type of ligands, on their position in the structures, on the ligand/metal ratio. It is also necessary to develop analytical protocol in order to carry out speciation studies of organic carbon and of metals bound to organic compounds, and at the same time to characterise the nature of the complexes. PMID:15347196

  17. THE IMPORTANCE OF BIOAVAILABILITY IN REMEDIATION OF METAL CONTAMINATED SOILS

    EPA Science Inventory

    Reduction in exposure to soil metal contamination has typically been accomplished by soil removal and off site disposal, by covering, or by diluting with uncontaminated soil. Cost, logistical concerns, and regulatory requirements associated with excavation and disposal or ex-situ...

  18. Metal Immobilization Influence On Bioavailability And Remediation For Urban Environments

    EPA Science Inventory

    Immobilization of soil contaminants, such as lead, via phosphate amendments to alter the chemical environment of metals into highly insoluble forms is a well established process. The literature has documented numerous examples of highly contaminated Pb sites at shooting ranges, b...

  19. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; Ivey, C.D.; Ingersoll, C.G.; Moran, P.W.

    2008-01-01

    We studied the bioavailability and toxicity of copper, zinc, arsenic, cadmium, and lead in sediments from Lake Roosevelt (LR), a reservoir on the Columbia River in Washington, USA that receives inputs of metals from an upstream smelter facility. We characterized chronic sediment toxicity, metal bioaccumulation, and metal concentrations in sediment and pore water from eight study sites: one site upstream in the Columbia River, six sites in the reservoir, and a reference site in an uncontaminated tributary. Total recoverable metal concentrations in LR sediments generally decreased from upstream to downstream in the study area, but sediments from two sites in the reservoir had metal concentrations much lower than adjacent reservoir sites and similar to the reference site, apparently due to erosion of uncontaminated bank soils. Concentrations of acid-volatile sulfide in LR sediments were too low to provide strong controls on metal bioavailability, and selective sediment extractions indicated that metals in most LR sediments were primarily associated with iron and manganese oxides. Oligochaetes (Lumbriculus variegatus) accumulated greatest concentrations of copper from the river sediment, and greatest concentrations of arsenic, cadmium, and lead from reservoir sediments. Chronic toxic effects on amphipods (Hyalella azteca; reduced survival) and midge larvae (Chironomus dilutus; reduced growth) in whole-sediment exposures were generally consistent with predictions of metal toxicity based on empirical and equilibrium partitioning-based sediment quality guidelines. Elevated metal concentrations in pore waters of some LR sediments suggested that metals released from iron and manganese oxides under anoxic conditions contributed to metal bioaccumulation and toxicity. Results of both chemical and biological assays indicate that metals in sediments from both riverine and reservoir habitats of Lake Roosevelt are available to benthic invertebrates. These findings will be used as

  20. Novel and nontraditional use of stable isotope tracers to study metal bioavailability from natural particles.

    PubMed

    Croteau, Marie-Noële; Cain, Daniel J; Fuller, Christopher C

    2013-04-01

    We devised a novel tracing approach that involves enriching test organisms with a stable metal isotope of low natural abundance prior to characterizing metal bioavailability from natural inorganic particles. In addition to circumventing uncertainties associated with labeling natural particles and distinguishing background metals, the proposed "reverse labeling" technique overcomes many drawbacks inherent to using radioisotope tracers. Specifically, we chronically exposed freshwater snails ( Lymnaea stagnalis ) to synthetic water spiked with Cu that was 99.4% (65)Cu to increase the relative abundance of (65)Cu in the snail's tissues from ~32% to >80%. The isotopically enriched snails were then exposed to benthic algae mixed with Cu-bearing Fe-Al particles collected from the Animas River (Colorado), an acid mine drainage impacted river. We used (63)Cu to trace Cu uptake from the natural particles and inferred their bioavailability from calculation of Cu assimilation into tissues. Cu assimilation from these particles was 44%, indicating that 44% of the particulate Cu was absorbed by the invertebrate. This demonstrates that inorganic particulate Cu can be bioavailable. The reverse labeling approach shows great potential in various scientific areas such as environmental contamination and nutrition for addressing questions involving uptake of an element that naturally has multiple isotopes. PMID:23458345

  1. [Influence of Dissimilatory Iron Reduction on the Speciation and Bioavailability of Heavy Metals in Soil].

    PubMed

    Si, You-bin; Wang, Juan

    2015-09-01

    Fe(III) dissimilatory reduction by microbes is an important process of producing energy in the oxidation of organic compounds under anaerobic condition with Fe(III) as the terminal electron acceptor and Fe(II) as the reduction product. This process is of great significance in element biogeochemical cycle. Iron respiration has been described as one of the most ancient forms of microbial metabolism on the earth, which is bound up with material cycle in water, soil and sediments. Dissimilatory iron reduction plays important roles in heavy metal form transformation and the remediation of heavy metal and radionuclide contaminated soils. In this paper, we summarized the research progress of iron reduction in the natural environment, and discussed the influence and the mechanism of dissimilatory iron reduction on the speciation and bioavailability of heavy metals in soil. The effects of dissimilatory iron reduction on the speciation of heavy metals may be attributed to oxidation and reduction, methytation and immobilization of heavy metals in relation to their bioavailability in soils. The mechanisms of Fe(III) dissimilatory reduction on heavy metal form transformation contain biological and chemical interactions, but the mode of interaction remains to be further investigated. PMID:26717720

  2. Metals in sediments: bioavailability and toxicity in a tropical reservoir used for public water supply.

    PubMed

    Cardoso-Silva, Sheila; Da Silva, Daniel Clemente Vieira Rego; Lage, Fernanda; de Paiva, Teresa Cristina Brazil; Moschini-Carlos, Viviane; Rosa, André Henrique; Pompêo, Marcelo

    2016-05-01

    Sediments may be a repository of contaminants in freshwater ecosystems. One way to assess the quality of this compartment, in terms of potentially bioavailable metals, is by the analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM). In order to investigate the bioavailability, toxicity, and compartmentalization of different metals (Cd, Cr, Cu, Ni, Pb, Zn), sampling of surface sediments was performed at nine stations along the Paiva Castro reservoir (São Paulo, Brazil). The metals were analyzed using atomic absorption spectroscopy. Sediment organic matter (OM), organic carbon (OC), and grain size were also measured. The parameters pH, EH, temperature, and dissolved oxygen were determined at the sediment-water interface. Chronic and acute toxicological tests were performed with sediments from the area where water was extracted for the public water supply. Low levels of OM, associated with loss of stratification in the water column, explained the relatively low AVS values. The molar ratio ∑[SEM]-[AVS]/fOC was less than 130 mmol/kg(-1) for all the sampling stations, indicating that the metals were not bioavailable. With the exception of Cd, metal levels were in accordance with background concentrations and the threshold effect level (TEL) established by the Canadian Council of Ministers of the Environment. The ecotoxicological tests confirmed the absence of toxic effects to biota. Application of principal component analysis indicated the presence of four compartments along the reservoir: (1) a riverine zone, potentially threatened by contamination with Cd; (2) an intermediate zone; (3) a limnic area; and (4) the area where water was taken for the public water supply. PMID:27117444

  3. Bioavailability of heavy metals in strongly acidic soils treated with exceptional quality biosolids

    SciTech Connect

    Basta, N.T.; Sloan, J.J.

    1999-03-01

    New federal regulations may increase application of exceptional quality (EQ) biosolids to acidic soils, and information on the effect of this practice on bioavailability of heavy metal is limited. The objective of this study was to compare bioavailability of heavy metal in soil treated with nonalkaline or alkaline EQ biosolids with limestone-treated soils. Three acidic soils (pH 3.7--4.3) were treated with three amounts of lime-stabilized biosolids (LS), anaerobic-digested biosolids (AN), or agricultural limestone (L), and incubated at 25 C. Soil solution Cd, Zn, and other chemical constituents were measured at 1, 30, 90, and 180 d incubation. Soil solution Cd and Zn were AN > LS {ge} L, C. Soil solution Cd and Zn increased with AN applied but decreased wit h LS applied. The high application of LS had soil solution Zn dramatically decreased at soil pH > 5.5 and >5.1, respectively. Soil solution Cd and Zn increases were AN > LS with incubation time. Biosolids treatments increased heavy metal in Ca(NO{sub 3}){sub 2} and NaOAc fractions. Except for Cd, most metal from biosolids were in EDTA and HNO{sub 3} fractions. Heavy metal bioavailability, measured using lettuce (Latuca sativa L.), was AN > LS {ge} L, C. Although state regulations prohibiting application of nonalkaline EQ biosolids to acidic soil is a prudent practice, application of EQ alkaline biosolids that achieves soil pH > 5 minimizes risk from soil solution Cd and Zn and plant uptake of heavy metal.

  4. Bioavailability of Metals in Sediments of the Dogger Bank (Central North Sea): A Mesocosm Study

    NASA Astrophysics Data System (ADS)

    Langston, W. J.; Burt, G. R.; Pope, N. D.

    1999-05-01

    There are conflicting arguments surrounding the nature and origins of metal enrichment in sediments from the Dogger Bank (central North Sea) and much speculation as to its biological significance. To help resolve this controversy, a mesocosm approach was evaluated to test whether metal loadings in sediments from the Dogger Bank region display enhanced bioavailability, relative to reference sites off south-west England. This involved the combination of physicochemical characterization of sediments (including porewaters) with bioaccumulation studies, using sediment cores seeded with benthic organisms (bivalves Spisula solida and Venus striatula, the gastropod Turritella communis and the polychaete Melinna palmata). There was little evidence of As, Cu, Hg or Pb bioaccumulation from Dogger cores. In contrast, all species accumulated Cd; Ag concentrations rose by up to fourfold in most bioindicators; and Ni, Cr and Mn burdens also increased, occasionally by as much as 10-fold. Variable, but generally smaller increases in Fe and Zn were observed. Physiological variations in metal bioaccumulation processes, including the ability to regulate essential elements, were responsible for species differences in response—a feature which may contribute to uncertainty in the interpretation and comparison of biomonitoring data. Mesocosm results nevertheless complement earlier field reports of unexpectedly enriched levels of certain metals (notably Cd) in biota from this part of the central North Sea. Characterization of sediments provided some physicochemical explanations for enhanced metal uptake in biota and helped, partly, to define bioavailable and anthropogenic fractions. Thus, whilst total sediment-metal concentrations were not exceptional in Dogger samples, for some metals there was a significant proportion in non-refractory (readily extractable) form, together with relatively high concentrations in interstitial waters—both presumably available for assimilation

  5. Assessment of metal contamination, bioavailability, toxicity and bioaccumulation in extreme metallic environments (Iberian Pyrite Belt) using Corbicula fluminea.

    PubMed

    Bonnail, E; Sarmiento, A M; DelValls, T A; Nieto, J M; Riba, I

    2016-02-15

    The Iberian Pyrite Belt (SW Iberian Peninsula) has intense mining activity. Currently, its fluvial networks receive extremely acid lixiviate residue discharges that are rich in sulphates and metals in solution (acid mine drainage, AMD) from abandoned mines. In the current study, the sediment and water quality were analysed in three different areas of the Odiel River to assess the risk associated with the metal content and its speciation and bioavailability. Furthermore, sediment contact bioassays were performed using the freshwater clam Corbicula fluminea to determine its adequacy as a biomonitoring tool in relation to theoretical risk indexes and regulatory thresholds. Reburial activity and mortality were used as the toxic responses of clams when exposed to contaminated sediment. The results showed coherence between the water and sediment chemical contamination for most of the metals. The reburial activity was correlated with the metal toxicity, but no clam mortality was registered. The bioaccumulation of the studied metals in the clam did not have a significant correlation with the bioavailable fraction of the metal content in the environment, which could be related to a potential different speciation in this singular environment. The bioaccumulation responses were negative for As, Cd and Zn in highly contaminated environments and were characterized as severe, considerable and low potential environmental risks, respectively. The results show that C. fluminea is a good biomonitor of Cu and Pb. PMID:26774961

  6. Metal bioavailability in freshwater sediment samples and their influence on ecological status of river basins.

    PubMed

    Roig, Neus; Sierra, Jordi; Moreno-Garrido, Ignacio; Nieto, Elena; Gallego, Elena Pérez; Schuhmacher, Marta; Blasco, Julián

    2016-01-01

    The general aim of this work has been to check the ecological impact of metals on the Ebro river basin. In order to evaluate this, metal behavior considering water, sediment as well as metal bioaccumulation in fish has been studied. Total concentrations of metals, as well as the potentially bioavailable fraction of metals in sediment has also been analyzed by the application of the sequential extraction method (BCR method). In order to evaluate the influence of metal pollution on the river ecological status, according to the Water Framework Directive (WFD), diverse biological indices such as macroinvertebrates (IBMWP), diatoms (IPS) and macrophytes (IVAM), have been considered from an integrated point of view. Considering both water and sediment, metals which contributed in higher extend to the reduction of biological quality have been demonstrated to be Pb and Zn, as they presented a negative influence on macroinvertebrates, diatoms and macrophytes communities. As and Cr that seemed to have a significant influence on macroinvertebrates and diatoms too, while Ni negatively influenced only diatom communities. This study also demonstrated that monitoring programs only based on total metal determination in water are inefficient, as metals present even at undetectable concentrations in water are strongly accumulated in fish. Moreover, the high concentrations of Hg found in sediments indicated that this river basin may present pollution problems regarded to this metal, as demonstrated by the high Hg levels found in fish. PMID:26148425

  7. Anatomical, physiological and experimental factors affecting the bioavailability of sc administered large biotherapeutics

    PubMed Central

    Fathallah, Anas M.; Balu-Iyer, Sathy V.

    2014-01-01

    Subcutaneous route of administration is highly desirable for protein therapeutics. It improves patient compliance and quality of life1,2, while reducing healthcare cost2. Recent evidence also suggests that sc administration of protein therapeutics can increase tolerability to some treatments such as intravenous immunoglobulin therapy (IVIG) by administering it subcutaneously (subcutaneous immunoglobulin therapy SCIG), which will reduce fluctuation in plasma drug concentration3. Furthermore, sc administration may reduce the risk of systemic infections associated with iv infusion1,2. This route, however, has its challenges especially for large multi-domain proteins. Poor bioavailability and poor scalability from preclinical models are often cited. This commentary will discuss barriers to sc absorption as well as physiological and experimental factors that could affect pharmacokinetics of subcutaneously administered large protein therapeutics in preclinical models. A mechanistic pharmacokinetic model is proposed as a potential tool to address the issue of scalability of sc pharmacokinetic from preclinical models to humans PMID:25411114

  8. [Advance in the bioavailability monitoring of heavy metal based on microbial whole-cell sensor].

    PubMed

    Hou, Qi-Hui; Ma, An-Shou; Zhuang, Xiu-Liang; Zhuang, Guo-Qiang

    2013-01-01

    Microbial whole-cell biosensor is an excellent tool to assess the bioavailability of heavy metal in soil and water. However, the traditional physicochemical instruments are applied to detect the total metal. Furthermore, microbial whole-cell biosensor is simple, rapid and economical in manipulating, and is thus a highly qualified candidate for emergency detection of pollution incidents. The biological component of microbial whole-cell biosensor mostly consists of metalloregulatory proteins and reporter genes. In detail, metalloregulatory proteins mainly include the MerR family, ArsR family and RS family, and reporter genes mainly include gfp, lux and luc. Metalloregulatory protein and reporter gene are related to the sensitivity, specificity and properties in monitoring. The bioavailability of heavy metals is alterable under different conditions, influenced by pH, chelate and detection methods and so on. Increasing the accumulation of intracellular heavy metal, modifying the metalloregulatory proteins and optimizing the detecting conditions are important for improving the sensitivity, specificity and accuracy of the microbial whole-cell biosensor. The future direction of microbial whole-cell biosensor is to realize the monitoring of pollutions in situ and on line. PMID:23487961

  9. Bioavailability of biologically sequestered cadmium and the implications of metal detoxification

    USGS Publications Warehouse

    Wallace, W.G.; Lopez, G.R.

    1997-01-01

    The deposit-feeding oligochaete Limnodrilus hoffmeisteri possesses metallothionein-like proteins and metal-rich granules for storing and detoxifying cadmium (Cd). In this study we investigated the bioavailability of Cd sequestered within this oligochaete by conducting feeding experiments with 109Cd-labeled oligochaetes and the omnivorous grass shrimp Palaemonetes pugio. We also make predictions on Cd trophic transfer based on oligochaete subcellular Cd distributions and absorption efficiencies of Cd by shrimp Cytosol [including metallothionein-like proteins and other proteins) and a debris fraction (including metal-rich granules and tissue fragments) isolated from homogenized 109Cd-labeled oligochaetes were embedded in gelatin and fed to shrimp. The 109Cd absorption efficiencies of shrimp fed these subcellular fractions were 84.8 and 48.6%, respectively, and were significantly different (p < 0.001), indicating that 109Cd bound in these fractions was not equally available to a predator. Mass balance equations demonstrate that shrimp fed whole worms absorb 61.5% of the ingested 109Cd, an absorption efficiency similar to that obtained experimentally (57.1%). Furthermore, the majority of the absorbed 109Cd comes from the fraction containing metallothionein-like proteins (i.e. cytosol). 109Cd absorbed from the debris fraction probably comes from the digestion of tissue fragments, rather than metal-rich granules. The ecological significance of these findings is that prey detoxification mechanisms may mediate the bioreduction or bioaccumulation of toxic metals along fond chains by altering metal bioavailability. Another important finding is that trophic transfer of metal can be predicted based on the subcellular metal distribution of prey.

  10. Temporal trends and bioavailability assessment of heavy metals in the sediments of Deception Bay, Queensland, Australia.

    PubMed

    Brady, James P; Ayoko, Godwin A; Martens, Wayde N; Goonetilleke, Ashantha

    2014-12-15

    Thirteen sites in Deception Bay, Queensland, Australia were sampled three times over a period of 7 months and assessed for contamination by a range of heavy metals, primarily As, Cd, Cr, Cu, Pb and Hg. Fraction analysis, enrichment factors and Principal Components Analysis-Absolute Principal Component Scores (PCA-APCS) analysis were conducted in order to identify the potential bioavailability of these elements of concern and their sources. Hg and Te were identified as the elements of highest enrichment in Deception Bay while marine sediments, shipping and antifouling agents were identified as the sources of the Weak Acid Extractable Metals (WE-M), with antifouling agents showing long residence time for mercury contamination. This has significant implications for the future of monitoring and regulation of heavy metal contamination within Deception Bay. PMID:25440195

  11. Orally Bioavailable Metal Chelators and Radical Scavengers: Multifunctional Antioxidants for the Coadjutant Treatment of Neurodegenerative Diseases.

    PubMed

    Kawada, Hiroyoshi; Kador, Peter F

    2015-11-25

    Neurodegenerative diseases are associated with oxidative stress that is induced by the presence of reactive oxygen species and the abnormal cellular accumulation of transition metals. Here, a new series of orally bioavailable multifunctional antioxidants (MFAO-2s) possessing a 2-diacetylamino-5-hydroxypyrimidine moiety is described. These MFAO-2s demonstrate both free radical and metal attenuating properties that are similar to the original published MFAO-1s that are based on 1-N,N'-dimethylsulfamoyl-1-4-(2-pyrimidyl)piperazine. Oral bioavailability studies in C57BL/6 mice demonstrate that the MFAO-2s accumulate in the brain at significantly higher levels than the MFAO-1s while achieving similar neural retina levels. The MFAO-2s protect human neuroblastoma and retinal pigmented epithelial cells against hydroxyl radicals in a dose-dependent manner by maintaining cell viability and intracellular glutathione levels. The MFAO-2s outperform clioquinol, a metal attenuator that has been investigated for the treatment of Alzheimer's disease. PMID:26068053

  12. Increased bioavailability of metals in two contrasting agricultural soils treated with waste wood-derived biochar and ash.

    PubMed

    Lucchini, P; Quilliam, R S; Deluca, T H; Vamerali, T; Jones, D L

    2014-03-01

    Recycled waste wood is being increasingly used for energy production; however, organic and metal contaminants in by-products produced from the combustion/pyrolysis residue may pose a significant environmental risk if they are disposed of to land. Here we conducted a study to evaluate if highly polluted biochar (from pyrolysis) and ash (from incineration) derived from Cu-based preservative-treated wood led to different metal (e.g., Cu, As, Ni, Cd, Pb, and Zn) bioavailability and accumulation in sunflower (Helianthus annuus L.). In a pot experiment, biochar at a common rate of 2 % w/w, corresponding to ∼50 t ha(-1), and an equivalent pre-combustion dose of wood ash (0.2 % w/w) were added to a Eutric Cambisol (pH 6.02) and a Haplic Podzol (pH 4.95), respectively. Both amendments initially raised soil pH, although this effect was relatively short-term, with pH returning close to the unamended control within about 7 weeks. The addition of both amendments resulted in an exceedance of soil Cu statutory limit, together with a significant increase of Cu and plant nutrient (e.g., K) bioavailability. The metal-sorbing capacity of the biochar, and the temporary increase in soil pH caused by adding the ash and biochar were insufficient to offset the amount of free metal released into solution. Sunflower plants were negatively affected by the addition of metal-treated wood-derived biochar and led to elevated concentration of metals in plant tissue, and reduced above- and below-ground biomass, while sunflower did not grow at all in the Haplic Podzol. Biochar and ash derived from wood treated with Cu-based preservatives can lead to extremely high Cu concentrations in soil and negatively affect plant growth. Identifying sources of contaminated wood in waste stream feedstocks is crucial before large-scale application of biochar or wood ash to soil is considered. PMID:24217969

  13. Improving the relationship between soil characteristics and metal bioavailability by using reactive fractions of soil parameters in calcareous soils.

    PubMed

    de Santiago-Martín, Ana; van Oort, Folkert; González, Concepción; Quintana, José R; Lafuente, Antonio L; Lamy, Isabelle

    2015-01-01

    The contribution of the nature instead of the total content of soil parameters relevant to metal bioavailability in lettuce was tested using a series of low-polluted Mediterranean agricultural calcareous soils offering natural gradients in the content and composition of carbonate, organic, and oxide fractions. Two datasets were compared by canonical ordination based on redundancy analysis: total concentrations (TC dataset) of main soil parameters (constituents, phases, or elements) involved in metal retention and bioavailability; and chemically defined reactive fractions of these parameters (RF dataset). The metal bioavailability patterns were satisfactorily explained only when the RF dataset was used, and the results showed that the proportion of crystalline Fe oxides, dissolved organic C, diethylene-triamine-pentaacetic acid (DTPA)-extractable Cu and Zn, and a labile organic pool accounted for 76% of the variance. In addition, 2 multipollution scenarios by metal spiking were tested that showed better relationships with the RF dataset than with the TC dataset (up to 17% more) and new reactive fractions involved. For Mediterranean calcareous soils, the use of reactive pools of soil parameters rather than their total contents improved the relationships between soil constituents and metal bioavailability. Such pool determinations should be systematically included in studies dealing with bioavailability or risk assessment. PMID:25318656

  14. Influence of acid volatile sulfide and metal concentrations on metal bioavailability to marine invertebrates in contaminated sediments

    USGS Publications Warehouse

    Lee, B.-G.; Lee, J.-S.; Luoma, S.N.; Choi, H.J.; Koh, C.-H.

    2000-01-01

    allowed use of metal concentrations typical of nature and evaluation of processes important to chronic metal exposure. A vertical sediment column similar to that often found in nature was used to facilitate realistic biological behavior. Results showed that AVS or porewater (PW) metals controlled bioaccumulation in only 2 of 15 metal-animal combinations. Bioaccumulation of all three metals by the bivalves was related significantly to metal concentrations extracted from sediments (SEM) but not to [SEM - AVS] or PW metals. SEM predominantly influenced bioaccumulation of Ni and Zn in N. arenaceodentata, but Cd bioaccumulation followed PW Cd concentrations. SEM controlled tissue concentrations of all three metals in H. filiformis and S. missionensis, with minor influences from metal-sulfide chemistry. Significant bioaccumulation occurred when SEM was only a small fraction of AVS in several treatments. Three factors appeared to contribute to the differences between these bioaccumulation results and the results from toxicity tests reported previously: differences in experimental design, dietary uptake, and biological attributes of the species, including mode and depth of feeding.Microcosms were used to simulate environmentally realistic metal, acid volatile sulfide (AVS), and geochemical gradients in sediments to evaluate effects of metal bioavailability. The 18-d study involved five test species: two bivalves and three polychaetes. Two series of experiments were designed to evaluate the effects of metal concentration and AVS on bioaccumulation, respectively. The metals of interest were cadmium, nickel, and zinc. Results showed that the concentrations of pore-water Cd, Ni, and Zn were controlled by the concentration of AVS. Organisms bioaccumulated significant amounts of metals from the sediments when the simultaneously extracted metal was only a small fraction of the AVS. Bioavailability increased linearly with the sediment metal concentration irrespective of AVS or pore-w

  15. Effects of lime on bioavailability and leachability of heavy metals during agitated pile composting of water hyacinth.

    PubMed

    Singh, Jiwan; Kalamdhad, Ajay S

    2013-06-01

    In the present study composting of water hyacinth was done with cattle manure and saw dust (6:3:1) ratio and effects of addition of lime (1%, 2% and 3%) on heavy metal bioavailability and leachability was evaluated during 30 days of composting period. The changes in temperature, pH, electrical conductivity (EC), organic matter and extractable heavy metal contents were measured. Results showed that the total concentration of heavy metals was increased during the composting process. Due to addition of lime initial pH of the compost was raised effectively, caused a decrease in water soluble, diethylene triamine pentracetic acid (DTPA) and toxicity characteristics leaching procedure (TCLP) extractable metal contents in the final compost. Water soluble metals (Ni, Pb and Cd) and DTPA extractable metals (Pb and Cd) were not detected during water soluble fraction. Addition of lime significantly reduced the bioavailability and leachability of heavy metals during water hyacinth composting process. PMID:23612174

  16. Changes in metal bioavailability in soil and their accumulation in plants during a two years' aided phytostabilization experiment

    NASA Astrophysics Data System (ADS)

    Krzyżak, Jacek; Płaza, Grażyna; Pogrzeba, Marta

    2013-04-01

    Aided phytostabilization is quite a promising method to solve the main problems of metal polluted soils. This method is based on the use of soil additives, which limit metal bioavailability and help in creation of a dense plant cover on the soil surface. The aim of the study was to evaluate the effect of aided phytostabilization on lead, cadmium, zinc and arsenic bioavailability and their accumulation in plant tissues during a two years' pilot-scale (plot) experiment. For the study two plots were established: (i) a control plot with heavy metal contaminated soil and (ii) an experimental one, where contaminated soil was amended with lignite and lime to reduce metal bioavailability. Both plots were vegetated with grass Festuca arundinacea. Application of lignite and lime increased pH and organic matter content in soil. After amendment application the bioavailable metal concentration significantly decreased, maintaining at the same level during the whole experiment. Cadmium and arsenic bioavailable forms were reduced by about 70 %, whereas in the case of zinc a 60 % decrease in bioavailable forms was observed. Diminishing of heavy metal accumulation in tall fescue, grown on amended soil, was also observed. It was was three-fold lower for lead, zinc and arsenic and two-fold lower for cadmium, in comparison to the control plot. Moreover, on the surface of the stabilized soil a dense plant cover was created, with total biomass production over four-fold higher than on the control plot. The in situ aided phytostabilization approach to contaminated soil, proposed in this study, showed that it could be a sustainable option for degraded soil management.

  17. Metals other than uranium affected microbial community composition in a historical uranium-mining site.

    PubMed

    Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten

    2015-12-01

    To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination. PMID:26122566

  18. Trace metal bioavailability in sediments from a reference site, Ribeira Bay, Brazil.

    PubMed

    Chiappetta, Janine M M; Machado, Wilson; Santos, Joana M; Lessa, Josane A

    2016-05-15

    Surface sediments were collected near potential contamination sources impacting Ribeira Bay (Brazil), a system considered as a 'reference site' for trace metals. Physicochemical properties (pH and Eh), grain size and concentrations of total organic carbon (TOC), total phosphorus (TP), acid-volatile sulfides (AVS) and simultaneously-extracted metals (Fe, Mn, Cd, Cu, Ni, Pb and Zn) were analyzed. Although relatively low metal concentrations were found, correlations of Zn and Ni with high TP levels suggested an association with sewage inputs, while other metals presented associations with specific geochemical carriers (TOC, Fe and Mn compounds). AVS levels exceeding those of the sums of Cd, Cu, Ni, Pb and Zn (ΣSEM) by at least one order of magnitude and TOC-normalized differences between ΣSEM and AVS ((ΣSEM-AVS)/fOC) near to or below than -200μmolgOC(-1) indicated that there were sufficient AVS and TOC levels to control trace metal bioavailability in sediment pore water. PMID:26992748

  19. Bioavailability assessment of toxic metals using the technique "acid-volatile sulfide (AVS)-simultaneously extracted metals (SEM)" in marine sediments collected in Todos os Santos Bay, Brazil.

    PubMed

    Silva, Jucelino B; Nascimento, Rodrigo A; de Oliva, Sergio T; de Oliveira, Olívia M C; Ferreira, Sergio L C

    2015-10-01

    This paper reports the bioavailability of the metals (cadmium, copper, zinc, lead, and nickel) in sediment samples collected in seven stations from the São Paulo Estuary, Todos os Santos Bay, Brazil. The bioavailability was determined by employing the technique "acid-volatile sulfide (AVS) and simultaneously extracted metal (SEM)". The elements cadmium, copper, lead, and zinc were determined using differential pulse anodic stripping voltammetry (DPASV), while nickel was quantified utilizing electrothermal atomic absorption spectrometry (ET AAS). The accuracy of these methods was confirmed using a certified reference material of estuarine sediment (NIST 1646). The sulfide was quantified using potentiometry with selective electrode and the organic matter determination employing an indirect volumetric method using potassium dichromate and iron(II) sulfate solutions. The bioavailability of the metals was estimated by relationship between the concentration of AVS and the sum of the concentrations of the simultaneously extracted metals (ΣSEM), considering a significant toxicity when (ΣSEM)/(AVS) is higher than 1. The bioavailability values in the seven stations studied varied from 0.93 to 1.31 (June, 2014) and from 0.34 to 0.58 (September, 2014). These results demonstrated a critical condition of toxicity (bioavailability >1) in six of the seven sediment samples collected during the rainy season (June, 2014). In the other period (September, 2014), the bioavailability was always lower than 1 for all sediment samples collected in the seven stations. The individual values of the concentrations of the five metals were compared with the parameters PEL (probable effects level) and TEL (threshold effects level), which are commonly employed for characterization of ecological risk in environmental systems. This comparison revealed that all metals have concentrations lower than the PEL and only zinc and lead in some stations have contents higher than the TEL. The

  20. Toxicity and bioavailability of heavy metal mixtures in natural and synthetic sediments

    SciTech Connect

    Frugis, M.; Clements, W.H.

    1994-12-31

    Toxicity tests were conducted to compare differences in bioavailability of a metal mixture (zinc, copper, cadmium and lead) in natural and synthetic sediments to Chironomus tentans and Ceriodaphnia dubia. Preliminary tests were conducted with sediment collected at five stations from the Arkansas River (Leadville, CO) and one from the La Cache Poudre River (Fort Collins, CO). After seven days of exposure, mortality on C. tentans in sediment from the most contaminated station (AR3) was significantly different from the reference station (PDR). Bioaccumulation in these insects showed significant correlation with abiotic factors: particle size, organic matter, total carbon and cation exchange capacity. During a second experiment, particle size and carbon contents of synthetic sediment were modified to reflect composition of natural sediment. Two types of artificial sediments were spiked with 0X, 0.085X, 0.175X and 0.35X of metal mixture measured in AR3. After ten days, mortality of C. tentans in the 0.35X and AR3 treatments were similar. In a final experiment, synthetic and natural sediments were spiked at 0X, 0.175X, 0.35X, and 0.70X. Again, mortality of contents in 0.35X and AR3 were not significantly different. A 48hrs-acute test conducted with C. dubia showed that interstitial water from AR3 and AR5 stations had higher toxicity than other stations. In addition, toxicity of interstitial water from synthetic sediment was greater than from spiked natural sediment or sediments collected from the Arkansas River. These results indicate that heavy metals are more bioavailable in synthetic sediments than in natural substrates.

  1. Graphical determination of metal bioavailability to soil invertebrates utilizing the Langmuir sorption model

    SciTech Connect

    Donkin, S.G.

    1997-09-01

    A new method of performing soil toxicity tests with free-living nematodes exposed to several metals and soil types has been adapted to the Langmuir sorption model in an attempt at bridging the gap between physico-chemical and biological data gathered in the complex soil matrix. Pseudo-Langmuir sorption isotherms have been developed using nematode toxic responses (lethality, in this case) in place of measured solvated metal, in order to more accurately model bioavailability. This method allows the graphical determination of Langmuir coefficients describing maximum sorption capacities and sorption affinities of various metal-soil combinations in the context of real biological responses of indigenous organisms. Results from nematode mortality tests with zinc, cadmium, copper, and lead in four soil types and water were used for isotherm construction. The level of agreement between these results and available literature data on metal sorption behavior in soils suggests that biologically relevant data may be successfully fitted to sorption models such as the Langmuir. This would allow for accurate prediction of soil contaminant concentrations which have minimal effect on indigenous invertebrates.

  2. Heavy metal pollution in Tianjin, China—its bioavailability prediction and mitigation practice

    NASA Astrophysics Data System (ADS)

    Sun, Hongwen; Wang, Ting; Zhang, Yanfeng; Jiang, Chunxiao; Wang, Jing

    2010-05-01

    Irrigation of sewage water has been applied for agriculture production in Tianjin for over 50 years, for Tianjin is a city lacking water resource. Based on the result of an extensive investigation on heavy metals in the farmland of Tianjin in 2005, 21 samples (including soil and lettuce) were collected from most the polluted areas along the three sewage rivers. Nine of the 21 soil samples exceeded the National Soil Quality Standard for cadmium (0.6 mg/kg) and 7 exceeded the standard for mercury (1.0 mg/kg). However, the heavy metal contents in lettuce did not correlate the heavy metal concentrations in soil. The bioavailability changed with soil properties. The part extracted by diethylene-triaminepentaacetic acid (DTPA) and another mixed extraction solvent, M3, were used to predict the bioavailability of heavy metals. The solvent extraction gave good prediction on Cd absorbance in lettuce, with correlative coefficient larger than 0.9. However, it failed for Hg. This may be because Hg is relatively volatile, and the absorption patterns are complex for Hg. To set up a mitigation method for heavy metal pollution in farm land, friendly to agricultural production, in-situ fixing strategy was adopted. Bacillus subtilis and Candida tropicalis were induced by ultraviolet (UV) radiation and HNO2 treatment to get mutated strains that can tolerate and accumulate higher level of cadmium. A strain of B38 from B. subtilis showed the highest Cd tolerance, and was used for further experiment. Though B38 could accumulate Cd from water solution, but it did not fix Cd in soil. This is due to that the amended microorganisms could not propagate well in the polluted soil. Novogro, which is produced from the waste of an enzyme factory, was selected out from several materials to amend together with B38. After the co-amendment of Novogro and B38, the DTPA extractable Cd decreased by 72%, and B38 could propagate efficiently as indicated by DGGE test. Applying conditions, such as amendment

  3. Bioavailability and toxicity of heavy metals in a heavily polluted river, in PRD, China.

    PubMed

    Li, Feng; Wen, Y-M; Zhu, P-T

    2008-07-01

    The research is designed to explore the SEM-AVS concept as a tool to assess bioavailability and toxicity of heavy metals in heavily polluted river sediments. The value of AVS and SEM is in a high level and only a few benthic invertebrate are found. Abundance of benthic invertebrate has significant correlation with SEM/AVS (r= -0.913, p<0.01) and SEM-AVS (r= -0.725, p<0.05). The analytical results of MDS (Non-matric Multi-dimensional Scaling) analysis indicate the benthic community structures of seven among nine stations where the SigmaSEM(5)-AVS<0 are similar. The two facts indicate the SEM-AVS concept also is useful to heavily polluted river sediments. PMID:18354814

  4. Freshwater molluscs as indicators of bioavailability and toxicity of metals in surface-water systems

    SciTech Connect

    Elder, J.F.; Collins, J.J. )

    1991-01-01

    Freshwater molluscs--snails and bivalves--have been used frequently as bioindicator organisms. With increasing needs for research on contaminant effects in freshwater ecosystems, this kind of biomonitoring is likely to develop further in the future. Molluscs can be used effectively for studies of both organic and inorganic contaminants; this review focuses on studies involving bioaccumulation and toxicity of metals. Two important advantages of snails and bivalves over most other freshwater organisms for biomonitoring research are their large size and limited mobility. In addition, they are abundant in many types of freshwater environments and are relatively easy to collect and identify. At metal concentrations that are within ranges common to natural waters, they are generally effective bioaccumulators of metals. Biomonitoring studies with freshwater molluscs have covered a wide diversity of species, metals, and environments. The principal generalization that can be drawn from this research is that bioaccumulation and toxicity are extremely situation dependent; hence, it is difficult to extrapolate results from any particular study to other situations where the biological species or environmental conditions are different. Even within one species, individual characteristics such as size, life stage, sex, and genotype can have significant effects on responses to contaminants. The bioavailability of the metal is highly variable and depends on pH, presence of organic ligands, water hardness, and numerous other controlling factors. Despite this variability, past studies provide some general principles that can facilitate planning of research with freshwater snails and bivalves as metal bioindicators. These principles may also be useful in understanding and managing freshwater ecosystems.

  5. Investigation of Metal Bioavailability and Microbial Metal Utilization in Methane Seep Ecosystems through Integration of Geochemical and Biological Datasets

    NASA Astrophysics Data System (ADS)

    Glass, J. B.; Gadh, V.; Steele, J. A.; Adkins, J. F.; Orphan, V. J.

    2012-12-01

    Methane hydrate seeps are important sources of greenhouse gases and host unique microbial communities that couple anaerobic oxidation of methane and sulfate reduction. Microbial enzymes that catalyze the reactions driving these anaerobic metabolisms require transition metals such as Fe, Ni, Co, Zn, and Mo as essential cofactors. These metals are expected to be drawn down to low concentrations by precipitation as sulfide phases in the highly sulfidic porewaters at methane seep ecosystems. However, in situ concentrations of biologically-important metals in sulfidic methane seep pore fluids and the relative importance of different metals for anaerobic methanotrophic archaea (ANME) vs. sulfate reducing bacteria (SRB) are unknown. We are integrating geochemical and metagenomic datasets with nano-scale maps of cellular metal distributions to gain insights into metal bioavailability and utilization in methane seep ecosystems. We have measured porewater profiles of dissolved metals (V, Ni, Cu, Co, Fe, Mn, Zn, Mo and W) from three habitat types at Hydrate Ridge, offshore Oregon: Calyptogena clam beds, microbial mats and sites with low methane flux. Highly sulfidic sediment porewaters beneath microbial mats contained the lowest metal concentrations, suggesting that microbes inhabiting these environments may be limited by metal scarcity. Cobalt occurred at particularly low abundances (≤5 nM in all cores and frequently at sub-nanomolar levels). We also analyzed the taxonomic distribution of ABC (ATP-binding cassette) metal transporters in metagenomes from environmentally-enriched consortia of ANME-2 and SRB from Eel River Basin methane seeps. Our findings suggest that both ANME and SRB possess genes encoding ABC transporters with high affinity for Fe, Ni, Co, Zn and Mo. Combined with our geochemical data, these results imply that ANME-SRB consortia in highly sulfidic environments have specialized mechanisms that allow them to acquire metal micronutrients

  6. Bioavailable trace metals in micro-tidal Thambraparani estuary, Gulf of Mannar, SE coast of India

    NASA Astrophysics Data System (ADS)

    Jayaprakash, M.; Viswam, Arya; Gopal, V.; Muthuswamy, S.; Kalaivanan, P.; Giridharan, L.; Jonathan, M. P.

    2014-06-01

    Thirty surface sediment samples from two different seasons pre-monsoon (PRM), post-monsoon (POM) were analyzed for texture, carbonates, organic matter (OM) and leachable trace metals (LTMs) (Fe, Mn, Cr, Cu, Ni, Pb, Zn, Cd) from the micro-tidal estuary of Thambraparani river located in Gulf of Mannar, SE coast of India. Finer fractions (mud: 3-87%) and OM (2.6-8.0%) dominate the region and the concentration pattern of LTMs indicate that mostly all the metals are concentrated in the POM season than PRM. Correlation analysis indicates that LTMs are also bound with the OM, mud and are bound with Fe-Mn oxides. Pb concentration (14-103 μg g-1) exceeds the sediment quality guideline value indicating its anthropogenic origin. Low flow condition exists in the estuarine region due to the control over fresh water inflow in the upstream side and the higher concentration of metals [avg. (μg g-1) Cr 10; Cu 11; Zn 28] is due to the precipitation from estuarine water to the sediments and is also bioavailable to the marine biota in the region.

  7. Bioavailability of Heavy Metals in different land use in Drenica region, Kosovo

    NASA Astrophysics Data System (ADS)

    Zogaj, Muhamet; Düring, Rolf-Alexander; Kamberi, Muhamet; Paçarizi, Musa

    2013-04-01

    The assessment of land contamination with heavy metals requires analysis of both, total and bioavailable form. The aim of this paper is to show the level of heavy metals and their mobility in agricultural lands and meadows. To do so, two layers (topsoil and subsoil) are used. According to random method, 66 samples have been taken (27 in plough layer, 27 samples in subsoil of agricultural lands and 6 samples in topsoil, and 6 samples in subsoil of meadows). The total content and mobility of Ni, Zn, Cu, Cr, Cd and Pb has been determined after the extraction with Aqua Regia, EDTA and NH4NO3 respectively. The results have shown that 75 % of Ni values and about 3 % of Cr values extracted with Aqua Regia have exceeded the limit of values, concerning EU standards, into the two layers and both land use types. Other metals have shown lower values than the limit set by EU standards. The statistical analysis has shown that only the total form of Pb has shown statistical differences between the layers and the land use types in significance level of p<0,001. Even though there have not been statistical differences to the total form of heavy metals (besides Pb), Zn, Cd, Cu and Pb extracted with EDTA have shown statistical differences in significance level p<0,001 and p<0,05 among the layers and land use types. However, metals extracted with NH4NO3 have not shown statistical differences. We can conclude that the layers and the system of land use have shown impact in the amount of Zn, Cd, Cu and Pb extracted with EDTA, but not in their total form (except Pb) and that of leaching form (extracted with NH4NO3).

  8. Assessment of metal toxicity and bioavailability in metallophyte leaf litters and metalliferous soils using Eisenia fetida in a microcosm study.

    PubMed

    Nirola, Ramkrishna; Megharaj, Mallavarapu; Venkateswarlu, Kadiyala; Aryal, Rupak; Correll, Ray; Naidu, Ravi

    2016-07-01

    The leaf litters of tree species, Acacia pycnantha (Ap) and Eucalyptus camaldulensis (Ec), predominantly growing at an abandoned copper (Cu) mine and mine soils including controls, were assessed for determining the metal toxicity and bioavailability using earthworm species Eisenia fetida, in a microcosm. Significant reduction in body weight as well as mortality were observed when the worms were introduced into mine soil or its combination with mine Ap litter. Virtually, there were no juveniles when the worms were fed on substratum that contained mine soil or mine leaf litter. The extent of bioaccumulation was dependent on water-soluble fraction of a metal in soil. The accumulation of cadmium, lead and copper in worm tissue was significantly more in treatments that received mine soil with or without mine leaf litter. However, the tissue concentration of zinc did not differ much in earthworms irrespective of its exposure to control or contaminated samples. Mine leaf litter from Ec, a known Cu hyperaccumulator, was more hospitable to earthworm survival and juvenile than that of Ap litter. Validation of the data on bioaccumulation of metals indicated that the mine leaf litter significantly contributed to metal bioavailability. However, it was primarily the metal concentration in mine soil that was responsible for earthworm toxicity and bioavailability. Our data also indicate that detrivores like earthworm is greatly responsible for heavy metal transfer from mines into the ecosystem. PMID:27057994

  9. SUPPLEMENTAL DIETARY INULIN AFFECTS BIOAVAILABILITY OF IRON PRESENT IN CORN AND SOYBEAN MEAL TO YOUNG PIGS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Iron deficiency represents one of the most common global nutritional disorders in humans. Our objective was to determine whether and how supplemental inulin improved bioavailability of iron intrinsically present in a corn-soybean meal based diet to young pigs for hemoglobin synthesis. In Experimen...

  10. Effects of freshwater leaching on potential bioavailability of heavy metals in tidal flat soils.

    PubMed

    Li, Hui; Lu, Jun; Li, Qu-Sheng; He, Bao-Yan; Mei, Xiu-Qin; Yu, Dan-Ping; Xu, Zhi-Min; Guo, Shi-Hong; Chen, Hui-Jun

    2016-02-01

    Leaching experiments were conducted to investigate the effects of desalination levels and sediment depths on potential bioavailability of heavy metal (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in tidal flat soils. The data showed that both the desalination levels (p < 0.001) and soil depths (p < 0.001) had significant effects on the concentrations of acid-volatile sulfide (AVS). AVS concentrations generally exhibited increasing trends with an increase in depth and decreasing trends with enhanced desalination levels. The desalination levels had significant (p < 0.05) effects on the concentrations of simultaneously extracted metal (SEM; Cd, Cr, Cu, Fe, Mn, Pb, and Zn). Moreover, the concentrations of SEM (Cd, Cr, Cu, Fe, Mn, Pb, and Zn) generally tended to decrease with an increase in the desalination level. The desalination treatment significantly reduced the ratios of SEM/AVS compared with control. However, the ratios of SEM/AVS increased with enhanced desalination levels in treatments. Results reveal that low desalination treatment is better for reducing toxicity to benthic organisms than high desalination treatment. Since these reclaimed tidal flats with low desalinisation are suitable for saline water aquaculture, transforming the present land use of reclaimed tidal flats from fresh water aquaculture into saline water aquaculture may reduce health risk of heavy metals remained in sediments. These results will also contribute to our understanding of the dynamic behavior of heavy metals in the reclamation of tidal flats during leaching and the role of the ratio of SEM/AVS predictions on assessing the ecological risks of reclaimed tidal flats. PMID:25750033

  11. Speciation and bioavailability of some heavy metals in agricultural soils used for cultivating various vegetables in Bedugul, Bali

    NASA Astrophysics Data System (ADS)

    Siaka, I. Made; Utama, I. Made Supartha; Manuaba, I. B. Putra; Adnyana, I. Made; Sahara, Emmy

    2016-03-01

    This paper discusses the speciation and bioavailability of some heavy metals in agricultural soils used to cultivate various vegetables in Bedugul, Bali. Vegetables grown on contaminated soils where agrochemicals were applied uncontrolled could contain a number of heavy metals. This could occur in the vegetables produced from agricultural soils of Bedugul as the farmers applied agrochemicals excessively. In considering the metals transport to the vegetables, a speciation and bioavailability methods were necessary to be studied. Wet digestion and sequential extraction techniques were employed to the sample prior to the metals measurement by AAS. The results showed that the average concentrations of Pb, Cu, Cd, Cr, and Zn in the soils were 38.531, 132.126, 7.689, 15.952, and 147.275 mg/kg, respectively. The highest concentrations of Pb and Zn were found in the soil for cultivating lettuce, Cd and Cr in the soil for tomato, and Cu in the soil for potatoes. It was found that the speciation of Pb, Cu, Cd, and Cr were predominantly bound to Fe-Mn oxides fraction, while Zn was mostly associated with the EFLE (easily, freely, leachable, and exchangeable) fractions. The highest bioavailability among the metals in the studied soils was Cr, while the lowest was Cu.

  12. Bioavailability of trace metals in brownfield soils in an urban area in the UK.

    PubMed

    Thums, Catherine R; Farago, Margaret E; Thornton, Iain

    2008-12-01

    Thirty-two brownfield sites from the city of Wolverhampton were selected from those with a former industrial use, wasteland or areas adjacent to industrial processes. Samples (<2 mm powdered soil fraction) were analysed, using inductively coupled plasma-atomic emission spectrometry (ICP-AES) for 20 elements. Loss on ignition and pH were also determined. A five-step chemical sequential extraction technique was carried out. Single leach extraction with 0.12 M hydrochloric acid of Pb, Cu and Zn in soil was determined as a first approximation of the bioavailability in the human stomach. Some of the sites were found to have high concentrations of the potentially toxic elements Pb, Zn, Cu and Ni. The partitioning of metals showed a high variability, however a number of trends were determined. The majority of Zn was partitioned into the least chemically stable phases (steps 1, 2 and 3). The majority of Cu was associated with the organic phase (step 4) and the majority of Ni was fractionated into the residue phase (step 5). The majority of Pb was associated with the residue fraction (step 5) followed by Fe-Mn oxide fraction (step 3). The variability reflects the heterogeneous and complex nature of metal speciation in urban soils with varied historic histories. There was a strong inverse linear relationship between the metals Ni, Zn and Pb in the readily exchangeable phase (step 1) and soil pH, significant at P < 0.01 level. There was a significant increase (P < 0.05) in the partitioning of Cu, Ni and Zn into step 4 (the organic phase) in soils with a higher organic carbon content (estimated by loss on ignition). Copper was highly partitioned into step 4 as it has a strong association with organics in soil but this phase was not important for the partitioning of Ni or Zn. The fractionation of Ni, Cu and Zn increased significantly in step 3 when the total metal concentration increases (P < 0.01). The Fe-Mn oxide fraction becomes more important in soils elevated in these

  13. Soil sterilization affects aging-related sequestration and bioavailability of p,p'-DDE and anthracene to earthworms.

    PubMed

    Slizovskiy, Ilya B; Kelsey, Jason W

    2010-10-01

    Laboratory experiments investigated the effects of soil sterilization and compound aging on the bioaccumulation of spiked p,p'-DDE and anthracene by Eisenia fetida and Lumbricus terrestris. Declines in bioavailability occurred as pollutant residence time in both sterile and non-sterile soils increased from 3 to 203 d. Accumulation was generally higher in sterile soils during initial periods of aging (from 3-103 d). By 203 d, however, bioavailability of the compounds was unaffected by sterilization. Gamma irradiation and autoclaving may have altered bioavailability by inducing changes in the chemistry of soil organic matter (SOM). The results support a dual-mode partitioning sorption model in which the SOM components associated with short-term sorption (the 'soft' or 'rubbery' phases) are more affected than are the components associated with long-term sorption (the 'glassy' or microcrystalline phases). Risk assessments based on data from experiments in which sterile soil was used could overestimate exposure and bioaccumulation of pollutants. PMID:20708831

  14. Concentration and partitioning of metals in intertidal biofilms: implications for metal bioavailability to shorebirds.

    PubMed

    McCormick, Jodine; St Clair, C Toby; Bendell, L I

    2014-03-01

    We compared zinc, copper and cadmium concentrations and the operationally defined geochemical partitioning of the three metals in sediments enriched with biofilm versus sediments without obvious biofilm present (reference) sampled from five locations within the Fraser River Delta, British Columbia, Canada. Two-way ANOVA's with site and biofilm (enriched or reference) as the two factors were applied to determine if metal concentrations or the partitioning of the metal was dependent on the two factors. Sediment enriched in biofilm contained greater amounts of aqua regia extracted zinc and copper and tended to have greater amounts of reducible cadmium as compared to reference sediments. By contrast, reference sediments had greater concentrations of easily reducible copper suggesting differences in speciation between the two sediment types. Greater concentrations of reducible cadmium within biofilm may provide a route of contaminant exposure to shorebirds whose diet is dependent on biofilm. PMID:24381098

  15. Concentration and solubility of flavanones in orange beverages affect their bioavailability in humans.

    PubMed

    Vallejo, Fernando; Larrosa, Mar; Escudero, Elisa; Zafrilla, María P; Cerdá, Begoña; Boza, Julio; García-Conesa, María Teresa; Espín, Juan Carlos; Tomás-Barberán, Francisco A

    2010-05-26

    Orange juice is a very rich source of dietary flavanones. The effect of flavanone concentration and solubility of orange beverages on their bioavailability has been studied in a crossover study with 10 healthy volunteers. Five different beverages with different flavanone concentrations were evaluated. Commercial orange juices (29.2-70.3 mg of flavanones/100 mL) were compared with experimental orange beverages in which the flavanone concentration was enhanced (110.2 mg/100 mL). Hesperetin and naringenin glucuronides and sulfates were detected and quantified in plasma and urine. The study shows that the solubility of the flavanones, and particularly that of hesperidin, in the juice is a key factor for the bioavailability as flavanone excretion and the C(max) in plasma correlate well with the soluble flavanone concentration in the juice, whereas it has no correlation with the total flavanone intake. In addition, a large interindividual variation was observed, this being consistent for each individual after the intake of the different beverages, suggesting that flavanone bioavailability is also dependent on the occurrence of specific microbiota that is able to remove the rutinosides from the juice glycosides, which results in aglycones that are then absorbed from the gut. PMID:20441150

  16. A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing

    PubMed Central

    2009-01-01

    Background Recombinant whole-cell sensors have already proven useful in the assessment of the bioavailability of environmental pollutants like heavy metals and organic compounds. In this work 19 recombinant bacterial strains representing various Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli, Pseudomonas fluorescens) bacteria were constructed to express the luminescence encoding genes luxCDABE (from Photorhabdus luminescens) as a response to bioavailable heavy metals ("lights-on" metal sensors containing metal-response elements, 13 strains) or in a constitutive manner ("lights-off" constructs, 6 strains). Results The bioluminescence of all 13 "lights-on" metal sensor strains was expressed as a function of the sub-toxic metal concentrations enabling the quantitative determination of metals bioavailable for these strains. Five sensor strains, constructed for detecting copper and mercury, proved to be target metal specific, whereas eight other sensor strains were simultaneously induced by Cd2+, Hg2+, Zn2+and Pb2+. The lowest limits of determination of the "lights-on" sensor strains for the metals tested in this study were (μg l-1): 0.002 of CH3HgCl, 0.03 of HgCl2, 1.8 of CdCl2, 33 of Pb(NO3)2, 1626 of ZnSO4, 24 of CuSO4 and 340 of AgNO3. In general, the sensitivity of the "lights-on" sensor strains was mostly dependent on the metal-response element used while the selection of host bacterium played a relatively minor role. In contrast, toxicity of metals to the "lights-off" strains was only dependent on the bacterial host so that Gram-positive strains were remarkably more sensitive than Gram-negative ones. Conclusion The constructed battery of 19 recombinant luminescent bacterial strains exhibits several novel aspects as it contains i) metal sensor strains with similar metal-response elements in different host bacteria; ii) metal sensor strains with metal-response elements in different copies and iii) a "lights

  17. Advances In Assessing Bioavailability Of Metal(Loid)s In Contaminated Soils

    EPA Science Inventory

    The term bioavailability has many different meanings across various disciplines of toxicology and pharmacology. Often bioavailability is concerned with human health aspects such as in the case of lead (Pb) ingestion by children. However, some of the most contaminated sites are ...

  18. Advances in Assessing Bioavailability of Metal(loid)s in Contaminated Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The term bioavailability has many different meanings across various disciplines of toxicology and pharmacology. Often bioavailability is concerned with human health aspects such in the case of lead (Pb) ingestion by children. However, some of the most contaminated sites are found in non-public acc...

  19. Bioavailability of metals in fly ash and their bioaccumulation in naturally occurring vegetation: a pilot scale study.

    PubMed

    Maiti, Subodh Kumar; Nandhini, S

    2006-05-01

    A pilot scale study was conducted to find out the different forms of metals if fly ash (FA) and bioaccumulation of these metals in the naturally growing vegetation on FA dumps. The total, acid extractable, bioavailable and water soluble fraction of metals of Fe, Cu, Mn, Zn, Ni, Co and Pb, and their bioaccumulation coefficients (BAC) on naturally growing vegetation were determined. FA samples had a neutral pH, low electrical conductivity, low organic C and trace amounts of N and P. The relative abundance of total metals in FA were found in the order Fe >Mn >Zn >Ni >Co>Cu. The concentration of bioavailable (DTPA) metals depend on the type and nature of coal used in thermal power stations. In the water the extract solution, only Fe and Zn were found above detection limits. After one year only four species of naturally occurring herbaceous vegetation were found growing and Cynodon dactylon (grass) covered almost entire surface of the FA. Iron accumulated to the greatest extent in vegetation followed by Mn, Zn, Cu, Pb, Ni and Co. The sequence of BAC for different metals were Fe (202)>Mn(90)>Zn (63)>Pb(49)>Ni(41)>Cu(24). The experimental study revealed that Cynodon grass could be used for remediation of fly ash without any amendments, as this grass species act as metal excluder type. PMID:16779594

  20. Metal bioavailability and speciation in a wetland tailings repository amended with biosolids compost, wood ash, and sulfate.

    PubMed

    DeVolder, Pam S; Brown, Sally L; Hesterberg, Dean; Pandya, Kumi

    2003-01-01

    Lead poisoning of waterfowl from direct ingestion of wetland mine tailings has been reported at the Coeur d'Alene River basin in Idaho. A greenhouse study was conducted to evaluate the effects of surface applications of amendments on lead bioavailability in the tailings. Treatments included sediment only, and sediment with three different surface amendments: (i) biosolids compost plus wood ash, (ii) compost + wood ash + a low SO4(2-) addition as K2SO4, and (iii) compost + wood ash + a high SO4(2-) addition. Measured variables included growth and tissue Pb, Zn, and Cd concentration of arrowhead (Sagittaria latifolia Willd.) and cattail (Typha latifolia L.) and soil pH, redox potential (Eh), pore water Pb, Pb speciation by X-ray absorption spectroscopy, and in vitro Pb bioavailability. The compost + ash amendment alleviated phytotoxicity for both plant species. Bioavailability of Pb as measured by a rapid in vitro extract decreased by 24 to 34% (over control) in the tailings directly below the amendment layer in the compost + SO4 treatments. The ratio of acid volatile sulfide (AVS) to simultaneously extracted metals (SEM) also indicated a reduction in Pb bioavailability (1:40 control, 1:20 compost, 1:8 compost + low SO4, and 1:3 compost + high SO4). Extended X-ray adsorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopy data indicated that lead sulfide was greater after 99 d in the treatments that included additions of sulfate. These results indicated that, under reducing conditions, surface amendments of compost + wood ash (with or without sulfate) decreased the bioavailability of Pb in metal-contaminated mine tailings. PMID:12809286

  1. The poor bioavailability of elemental iron in corn masa flour is not affected by disodium EDTA.

    PubMed

    Walter, Tomas; Pizarro, Fernando; Boy, Erick; Abrams, Steven A

    2004-02-01

    The most sustainable way to eradicate iron deficiency is through food fortification. Elemental iron powders are commonly utilized as fortificants due to their low cost and few sensory problems. However, their bioavailability is unknown. Our goals were to measure the bioavailability of elemental iron in Mexican style corn masa flour tortillas and to evaluate the effects of Na(2)EDTA. We used a stable isotope of H(2)-reduced iron powder, with and without Na(2)EDTA in tortillas prepared with corn masa flour. Two groups of 5- to 7-y-old children (n = 12/group) were fed tortillas to which was added 3 mg/100 g of H(2)-reduced (58)Fe with a mean particle size of 15 micro m. In one group, Na(2)EDTA was incorporated at a ratio of 1:2 mol/mol. The next day, (57)Fe ascorbate was given as a reference dose. After 14 d, blood samples were analyzed for isotopic enrichment. When normalized to 40% absorption of the reference dose, the geometric mean (+/-range 1 SD) bioavailability of reduced iron in tortilla was 3.8% (2.7-5.3). The addition of Na(2)EDTA, tended to increase it (P = 0.18) to 5.1% (2.8-9.2). This observed low absorption was compounded by the use of iron isotopes with smaller particle size (mean diameter 15 micro m) than typical of commercial elemental iron powder (<45 micro m). We conclude that H(2)-reduced iron powder is an ineffective fortificant in corn tortillas. PMID:14747675

  2. Novel and non-traditional use of stable isotope tracers to study metal bioavailability from natural particles

    USGS Publications Warehouse

    Croteau, Marie-Noële; Cain, Daniel J.; Fuller, Christopher C.

    2013-01-01

    We devised a novel tracing approach that involves enriching test organisms with a stable metal isotope of low natural abundance prior to characterizing metal bioavailability from natural inorganic particles. In addition to circumventing uncertainties associated with labeling natural particles and distinguishing background metals, the proposed "reverse labeling" technique overcomes many drawbacks inherent to using radioisotope tracers. Specifically, we chronically exposed freshwater snails (Lymnaea stagnalis) to synthetic water spiked with Cu that was 99.4% 65Cu to increase the relative abundance of 65Cu in the snail’s tissues from 32% to >80%. The isotopically enriched snails were then exposed to benthic algae mixed with Cu-bearing Fe–Al particles collected from the Animas River (Colorado), an acid mine drainage impacted river. We used 63Cu to trace Cu uptake from the natural particles and inferred their bioavailability from calculation of Cu assimilation into tissues. Cu assimilation from these particles was 44%, indicating that 44% of the particulate Cu was absorbed by the invertebrate. This demonstrates that inorganic particulate Cu can be bioavailable. The reverse labeling approach shows great potential in various scientific areas such as environmental contamination and nutrition for addressing questions involving uptake of an element that naturally has multiple isotopes.

  3. The influence of seasonality (dry and rainy) on the bioavailability and bioconcentration of metals in an estuarine zone

    NASA Astrophysics Data System (ADS)

    Milazzo, Alexandre Dacorso Daltro; Silva, Ana Carina Matos; Oliveira, Daiane Aparecida Francisco de; Cruz, Manoel Jerônimo Moreira da

    2014-08-01

    Knowledge on the concentration of metallic elements is important to certify the quality of ecosystems. Such behaviors in estuarine environments are dependent of factors such as rainfall and temperature of the water, interfering directly on the metal concentrations in biotic and abiotic components. This study observed the role that seasonality (dry and rainy) had on the bioavailability of metals (Fe, Zn, Mn, Cu, Ni, and Al) in surface water and sediment, and bioconcentration in oysters (Cassostrea rhizophorae) in the mangrove area of the São Paulo river estuary, Todos os Santos Bay. The metals concentration in three matrices analyzed varied between the periods studied. The values of physicochemical parameters also had significant variations. High levels of Zn and Cu were found in mollusks. The highest concentrations of metals analyzed were Al in waters, Fe in sediments and Zn in mollusks. These results showed that seasonality interferes directly in the physicochemical parameters analyzed (pH, dissolved oxygen, temperature, salinity and Eh), as well as on the bioavailability of metals in both water and sediment, influencing directly on the concentrations found in mollusks.

  4. Assessing the bioavailability and risk from metal-contaminated soils and dusts

    EPA Science Inventory

    Exposure to contaminated soil and dust is an important pathway in human health risk assessment. Physical and chemical characteristics, as well as biological factors, determine the bioaccessibility/bioavailability of soil and dust contaminants. Within a single sample, contaminat...

  5. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals.

    PubMed

    Devi, Parmila; Saroha, Anil K

    2014-06-01

    The risk analysis was performed to study the bioavailability and eco-toxicity of heavy metals in biochar obtained from pyrolysis of sludge of pulp and paper mill effluent treatment plant. The sludge was pyrolyzed at different temperatures (200-700°C) and the resultant biochar were analyzed for fractionation of heavy metals by sequential extraction procedure. It was observed that all the heavy metals get enriched in biochar matrix after pyrolysis, but the bioavailability and eco-toxicity of the heavy metals in biochar were significantly reduced as the mobile and bioavailable heavy metal fractions were transformed into the relatively stable fractions. Moreover, it was observed that the leaching potential of heavy metals decreased after pyrolysis and the best results were obtained for biochar pyrolyzed at 700°C. PMID:24762760

  6. Analysis of bioavailable Ge in agricultural and mining-affected-soils in Freiberg area (Saxony, Germany)

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Székely, Balázs; Kummer, Nicolai-Alexeji; Heinemann, Ute; Heilmeier, Hermann

    2014-05-01

    Germanium (Ge) concentrations in different soil fraction were investigated using a sequential selective dissolution analysis and a rhizosphere-based single-step extraction method for the identification of Ge-bearing soil fractions and prediction of bioavailability of Ge in soil to plants. About 50 soil samples were collected from various soil depths (horizons A and B) and study sites with different types of land use (dry and moist grassland, arable land, mine dumps) in Freiberg area (Saxony, Germany). Ge has been extracted in six soil fractions: mobile fraction, organic matter and sulfides, Mn- and Fe-oxides (amorphous and crystalline), and kaolinite and phytoliths, and residual fraction. The rhizosphere-based method included a 7-day-long extraction sequence with various organic acids like citric acid, malic acid and acetic acid. For the residue the aforementioned sequential extraction has been applied. The Ge-content of the samples have been measured with ICP-MS using rhodium internal standard and two different soil standards. Total Ge concentrations were found to be in the range of 1.6 to 5.5 ppm with highest concentrations on the tailing site in the mining area of Altenberg. The mean Ge concentration in agriculturally used soils was 2.6 ± 0.67 ppm, whereas the maximum values reach 2.9 ± 0.64 ppm and 3.2 ± 0.67 ppm in Himmelsfürst and in a grassland by the Mulde river, respectively. With respect to the fractions, the vast majority of Ge is contained in the last three fractions, indicating that the bioavailable Ge is typically low in the samples. On the other hand at the soil horizons A at the aforementioned two sites characterised by high total Ge, together with that of Reiche Zeche mine dump have also the highest concentrations of Ge in the first three fractions, reaching levels of 1.74 and 0.98 ppm which account for approximately 40% of the total Ge content. Ge concentrations of soil samples extracted with 0.01 or 0.1 M citric acid and malic acid were

  7. Integrating bioavailability approaches into waste rock evaluations

    USGS Publications Warehouse

    Ranville, James F.; Blumenstein, E. P.; Adams, Michael J.; Choate, LaDonna M.; Smith, Kathleen S.; Wildeman, Thomas R.

    2006-01-01

    The presence of toxic metals in soils affected by mining, industry, agriculture and urbanization, presents problems to human health, the establishment and maintenance of plant and animal habitats, and the rehabilitation of affected areas. A key to managing these problems is predicting the fraction of metal in a given soil that will be biologically labile, and potentially harmful ('bioavailable'). The molecular form of metals and metalloids, particularly the uncomplexed (free) form, controls their bioavailability and toxicity in solution. One computational approach for determining bioavailability, the biotic ligand model (BLM), takes into account not only metal complexation by ligands in solution, but also competitive binding of hardness cations (Ca 2+,Mg 2+,) and metal ions to biological receptor sites. The more direct approach to assess bioavailability is to explicitly measure the response of an organism to a contaminant. A number of microbial enzyme tests have been developed to assess the impact of pollution in a rapid and procedurally simple way. These different approaches in making bioavailability predictions may have value in setting landuse priorities, remediation goals, and habitat reclamation strategies.

  8. Assessment of relative bioavailability of heavy metals in soil using in vivo mouse model and its implication for risk assessment compared with bioaccessibility using in vitro assay.

    PubMed

    Kang, Yuan; Pan, Weijian; Liang, Siyun; Li, Ning; Zeng, Lixuan; Zhang, Qiuyun; Luo, Jiwen

    2016-10-01

    There is limited study to simultaneously determine the relative bioavailability of heavy metals such as Cd, Pb, Cu, Cr(VI), and Ni in soil samples. In the present study, the bioaccessibility of heavy metals using in vitro assay was compared with the relative bioavailability of heavy metals using in vivo mouse model. The bioaccessibility of heavy metals ranged from 9.05 ± 0.97 % (Cr) to 42.8 ± 3.52 % (Cd). The uptake profile of heavy metals in soil and solution samples in mouse revealed that the uptake kinetics could be fitted to a two-compartment model. The relative bioavailability of heavy meals ranged from 34.8 ± 7.0 % (Ni) to 131 ± 20.3 % (Cu). Poor correlation between bioaccessibility and relative bioavailability of heavy metals was observed (r (2) = 0.11, p > 0.05). The relative bioavailability of heavy metals was significantly higher than the bioaccessibility of heavy metals (p < 0.05). The present study indicated that the in vitro digestion method should be carefully employed in risk assessment. PMID:26603169

  9. Chemical versus Enzymatic Digestion of Contaminated Estuarine Sediment: Relative Importance of Iron and Manganese Oxides in Controlling Trace Metal Bioavailability

    NASA Astrophysics Data System (ADS)

    Turner, A.; Olsen, Y. S.

    2000-12-01

    Chemical and enzymatic reagents have been employed to determine available concentrations of Fe, Mn, Cu and Zn in contaminated estuarine sediment. Gastric and intestinal enzymes (pepsin, pH 2, and trypsin, pH 7·6, respectively) removed significantly more metal than was water-soluble or exchangeable (by seawater or ammonium acetate), while gastro-intestinal fluid of the demersal teleost, Pleuronectes platessa L. (plaice), employed to operationally define a bioavailable fraction of contaminants, generally solubilized more metal than the model enzymes. Manganese was considerably more available than Fe under these conditions and it is suggested that the principal mechanism of contaminant release is via surface complexation and reductive solubilization of Mn oxides, a process which is enhanced under conditions of low pH. Of the chemical reagents tested, acetic acid best represents the fraction of Mn (as well as Cu and Zn) which is available under gastro-intestinal conditions, suggesting that the reducing tendency of acetate is similar to that of the ligands encountered in the natural digestive environment. Although the precise enzymatic and non-enzymatic composition of plaice gastro-intestinal fluid may be different to that encountered in more representative, filter-feeding or burrowing organisms, a general implication of this study is that contaminants associated with Mn oxides are significantly more bioavailable than those associated with Fe oxides, and that contaminant bioavailability may be largely dictated by the oxidic composition of contaminated sediment.

  10. Effects of soil water content and organic matter addition on the speciation and bioavailability of heavy metals.

    PubMed

    Hernandez-Soriano, Maria C; Jimenez-Lopez, Jose C

    2012-04-15

    The mobility and bioavailability of cadmium, copper, lead and zinc were evaluated in three soils amended with different organic materials for two moisture regimes. Agricultural and reclamation activities impose fresh inputs of organic matter on soil while intensive irrigation and rainstorm increase soil waterlogging incidence. Moreover, scarcity of irrigation water has prompted the use of greywater, which contain variable concentrations of organic compounds such as anionic surfactants. Soils added with hay, maize straw or peat at 1% w/w were irrigated, at field capacity (FC) or saturated (S), with an aqueous solution of the anionic surfactant Aerosol 22 (A22), corresponding to an addition of 200 mgC/kgsoil/day. Soil solution was extracted after one month and analysed for total soluble metals, dissolved soil organic matter and UV absorbance at 254 nm. Speciation analyses were performed with WHAM VI for Cd, Cu, Pb, and Zn. For selected scenarios, metal uptake by barley was determined. Metal mobility increased for all treatments and soils (Pb>Cu>Cd≥Zn) compared to control assays. The increase was significantly correlated (p<0.05) with soil organic matter solubilisation for Cd (R=0.68), Cu (R=0.73) and Zn (R=0.86). Otherwise, Pb release was related to aluminium solubilisation (R=0.75), which suggests that Pb was originally co-precipitated with Al-DOC complexes in the solid phase. The effect of A22 in metal bioavailability, determined as free ion activities (FIA), was mainly controlled by soil moisture regime. For soil 3, metal bioavailability was up to 20 times lower for soil amended with hay, peat or maize compared to soil treated only with A22. When soil was treated with A22 at FC barley yield significantly decreased (p<0.05) for the increase of Pb (R=0.71) and Zn (R=0.79) concentrations in shoot, while for saturated conditions such uptake was up to 3 times lower. Overall, metal bioavailability was controlled by solubilisation of soil organic matter and formation

  11. Soy protein isolate does not affect ellagitannin bioavailability and urolithin formation when mixed with pomegranate juice in humans.

    PubMed

    Yang, Jieping; Lee, Rupo; Henning, Susanne M; Thames, Gail; Hsu, Mark; ManLam, Hei; Heber, David; Li, Zhaoping

    2016-03-01

    We investigated the effect of mixing soy protein isolate and pomegranate juice (PJ) on the bioavailability and metabolism of ellagitannins (ETs) in healthy volunteers. Eighteen healthy volunteers consumed PJ alone or PJ premixed with soy protein isolate (PJSP). The concentration of plasma ellagic acid (EA) and urine urolithins was measured. There was no significant difference in plasma EA over a 6-h period between the two interventions. While the maximum concentration of plasma EA after PJSP consumption was slightly but significantly lower than after PJ consumption, EA remained in the plasma longer with an elimination half-life t1/2E at 1.36±0.59 versus 1.06±0.47h for PJSP and PJ consumption, respectively. Urinary urolithin A, B and C was not significantly different between the two interventions. In conclusion, premixing soy protein isolate and PJ did not affect the bioavailability or the metabolism of pomegranate ETs in healthy volunteers. PMID:26471685

  12. Green manure plants for remediation of soils polluted by metals and metalloids: ecotoxicity and human bioavailability assessment.

    PubMed

    Foucault, Y; Lévêque, T; Xiong, T; Schreck, E; Austruy, A; Shahid, M; Dumat, C

    2013-10-01

    Borage, white mustard and phacelia, green manure plants currently used in agriculture to improve soil properties were cultivated for 10 wk on various polluted soils with metal(loid) concentrations representative of urban brownfields or polluted kitchen gardens. Metal(loid) bioavailability and ecotoxicity were measured in relation to soil characteristics before and after treatment. All the plants efficiently grow on the various polluted soils. But borage and mustard only are able to modify the soil characteristics and metal(loid) impact: soil respiration increased while ecotoxicity, bioaccessible lead and total metal(loid) quantities in soils can be decreased respectively by phytostabilization and phytoextraction mechanisms. These two plants could therefore be used for urban polluted soil refunctionalization. However, plant efficiency to improve soil quality strongly depends on soil characteristics. PMID:23968553

  13. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies

    PubMed Central

    Olaniran, Ademola O.; Balgobind, Adhika; Pillay, Balakrishna

    2013-01-01

    Co-contamination of the environment with toxic chlorinated organic and heavy metal pollutants is one of the major problems facing industrialized nations today. Heavy metals may inhibit biodegradation of chlorinated organics by interacting with enzymes directly involved in biodegradation or those involved in general metabolism. Predictions of metal toxicity effects on organic pollutant biodegradation in co-contaminated soil and water environments is difficult since heavy metals may be present in a variety of chemical and physical forms. Recent advances in bioremediation of co-contaminated environments have focussed on the use of metal-resistant bacteria (cell and gene bioaugmentation), treatment amendments, clay minerals and chelating agents to reduce bioavailable heavy metal concentrations. Phytoremediation has also shown promise as an emerging alternative clean-up technology for co-contaminated environments. However, despite various investigations, in both aerobic and anaerobic systems, demonstrating that metal toxicity hampers the biodegradation of the organic component, a paucity of information exists in this area of research. Therefore, in this review, we discuss the problems associated with the degradation of chlorinated organics in co-contaminated environments, owing to metal toxicity and shed light on possible improvement strategies for effective bioremediation of sites co-contaminated with chlorinated organic compounds and heavy metals. PMID:23676353

  14. An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Li, Wei; Yang, Zhongfang; Chen, Yang; Shao, Wenjing; Ji, Junfeng

    2015-07-01

    It is well known that carbonates inhibit heavy metals transferring from soil to plants, yet the mechanism is poorly understood. Based on the Yangtze River delta area, we investigated bioaccumulation of Ni and Cd in winter wheat as affected by the presence of carbonates in soil. This study aimed to determine the mechanism through which soil carbonates restrict transport and plant uptake of heavy metals in the wheat cropping system. The results indicate that soil carbonates critically influenced heavy metal transfer from soil to plants and presented a tipping point. Wheat grains harvested from carbonates-depleted (due to severe leaching) soils showed Ni and Cd concentrations 2-3 times higher than those of the wheat grains from carbonates-containing soils. Correspondingly, the incidence of Ni or Cd contamination in the wheat grain samples increased by about three times. With the carbonate concentration >1% in soil, uptake and bioaccumulation of Ni and Cd by winter wheat was independent with the soil pH and carbonate content. The findings suggest that soil carbonates play a critical role in heavy metal transfer from soil to plants, implying that monitoring soil carbonate may be necessary in addition to soil pH for the evaluating soil quality and food safety.

  15. An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability

    PubMed Central

    Wang, Cheng; Li, Wei; Yang, Zhongfang; Chen, Yang; Shao, Wenjing; Ji, Junfeng

    2015-01-01

    It is well known that carbonates inhibit heavy metals transferring from soil to plants, yet the mechanism is poorly understood. Based on the Yangtze River delta area, we investigated bioaccumulation of Ni and Cd in winter wheat as affected by the presence of carbonates in soil. This study aimed to determine the mechanism through which soil carbonates restrict transport and plant uptake of heavy metals in the wheat cropping system. The results indicate that soil carbonates critically influenced heavy metal transfer from soil to plants and presented a tipping point. Wheat grains harvested from carbonates-depleted (due to severe leaching) soils showed Ni and Cd concentrations 2–3 times higher than those of the wheat grains from carbonates-containing soils. Correspondingly, the incidence of Ni or Cd contamination in the wheat grain samples increased by about three times. With the carbonate concentration >1% in soil, uptake and bioaccumulation of Ni and Cd by winter wheat was independent with the soil pH and carbonate content. The findings suggest that soil carbonates play a critical role in heavy metal transfer from soil to plants, implying that monitoring soil carbonate may be necessary in addition to soil pH for the evaluating soil quality and food safety. PMID:26227091

  16. An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability.

    PubMed

    Wang, Cheng; Li, Wei; Yang, Zhongfang; Chen, Yang; Shao, Wenjing; Ji, Junfeng

    2015-01-01

    It is well known that carbonates inhibit heavy metals transferring from soil to plants, yet the mechanism is poorly understood. Based on the Yangtze River delta area, we investigated bioaccumulation of Ni and Cd in winter wheat as affected by the presence of carbonates in soil. This study aimed to determine the mechanism through which soil carbonates restrict transport and plant uptake of heavy metals in the wheat cropping system. The results indicate that soil carbonates critically influenced heavy metal transfer from soil to plants and presented a tipping point. Wheat grains harvested from carbonates-depleted (due to severe leaching) soils showed Ni and Cd concentrations 2-3 times higher than those of the wheat grains from carbonates-containing soils. Correspondingly, the incidence of Ni or Cd contamination in the wheat grain samples increased by about three times. With the carbonate concentration >1% in soil, uptake and bioaccumulation of Ni and Cd by winter wheat was independent with the soil pH and carbonate content. The findings suggest that soil carbonates play a critical role in heavy metal transfer from soil to plants, implying that monitoring soil carbonate may be necessary in addition to soil pH for the evaluating soil quality and food safety. PMID:26227091

  17. Statistical evaluation of biogeochemical variables affecting spatiotemporal distributions of multiple free metal ion concentrationsin an urban estuary

    EPA Science Inventory

    Free metal ion concentrations have been recognized as a better indicator of metal bioavailability in aquatic environments than total dissolved metal concentrations. However, our understanding of the determinants of free ion concentrations, especially in a metal mixture, is limite...

  18. Metal bioavailability and bioaccumulation in the polychaete Nereis (Alitta) virens (Sars): The effects of site-specific sediment characteristics.

    PubMed

    Pini, J M; Richir, J; Watson, G J

    2015-06-30

    The present study investigates the relationships between copper (Cu) and zinc (Zn) concentrations in sediment, pore water and their bioaccumulation in the polychaete Nereis (Alitta) virens, as well as the importance of site-specific sediment characteristics in that process. Sediment, pore water and N. virens were sampled from seven sites with different pollution histories along the English Channel coast. Results showed that site-specific metal levels and sediment characteristics were important in determining the bioavailability of metals to worms. Significant correlations were found between Cu in the sediment and in the pore water and between Zn in the pore water and in N. virens. Zn from the pore water was thus more readily available from a dissolved source to N. virens than Cu. Data also showed that metal concentrations in N. virens were lower than those found in other closely related polychaetes, indicating that it may regulate tissue concentrations of Cu and Zn. PMID:25935802

  19. Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract.

    PubMed

    Intawongse, Marisa; Dean, John R

    2006-01-01

    Lettuce, spinach, radish and carrot were grown on compost that had previously been contaminated at different concentrations of Cd, Cu, Mn, Pb and Zn. Control plants of each vegetable were also grown on unadulterated compost. The experiment was carried out under greenhouse conditions. Mature plants were harvested and their roots and leaves collected. Soil samples from each growing pot and plant materials were acid digested and analysed to determine total metal concentration. Flame-Atomic Absorption Spectroscopy (FAAS) was employed to determine metal concentrations in soil and plant samples (Mn and Zn), while Cd, Cu and Pb in plant materials were analysed by Differential Pulse Anodic Stripping Voltammetry (DP-ASV). Soil (BCR 146R and GBW 07310) and plant (tea leaves, INCT-TL-1) certified reference materials were used to assess accuracy and precision. The edible part of plants, i.e. the leaves of lettuce and spinach and the roots of radish and carrot, were also extracted using an in vitro gastrointestinal (GI) extraction to assess metal bioavailability. The results showed that the uptake of Cd, Cu, Mn and Zn by plants corresponded to the increasing level of soil contamination, while the uptake of Pb was low. Soil-to-plant transfer factor (TF) values decreased from Mn > Zn > Cd > Cu > Pb. Moreover, it was observed from this investigation that individual plant types greatly differ in their metal uptake, e.g. spinach accumulated a high content of Mn and Zn, while relatively lower concentrations were found for Cu and Pb in their tissues. From the in vitro gastrointestinal (GI) study, results indicate that metal bioavailability varied widely from element to element and according to different plant types. The greatest extent of metal releasing was found in lettuce (Mn, 63.7%), radish (Cu, 62.5%), radish (Cd, 54.9%), radish (Mn, 45.8%) and in lettuce (Zn, 45.2%). PMID:16393813

  20. Pollution control and metal resource recovery for low grade automobile shredder residue: a mechanism, bioavailability and risk assessment.

    PubMed

    Singh, Jiwan; Lee, Byeong-Kyu

    2015-04-01

    Automobile shredder residue (ASR) is considered as hazardous waste in Japan and European countries due to presence of heavy metals. This study was carried on the extraction characteristics of heavy metals (Mn, Fe, Ni, and Cr) from automobile shredder residue (ASR). The effects of pH, temperature, particle size, and liquid/solid ratio (L/S) on the extraction of heavy metals were investigated. The recovery rate of Mn, Fe, Ni, and Cr increased with increasing extraction temperature and L/S ratio. The lowest pH 2, the highest L/S ratio, and the smallest particle size showed the highest recovery of heavy metals from ASR. The highest recovery rates were in the following order: Mn > Ni > Cr > Fe. Reduction of mobility factor for the heavy metals was observed in all the size fractions after the recovery. The results of the kinetic analysis for various experimental conditions supported that the reaction rate of the recovery process followed a second order reaction model (R(2) ⩾ 0.95). The high availability of water-soluble fractions of Mn, Fe, Ni, and Cr from the low grade ASR could be potential hazards to the environment. Bioavailability and toxicity risk of heavy metals reduced significantly with pH 2 of distilled water. However, water is a cost-effective extracting agent for the recovery of heavy metals and it could be useful for reducing the toxicity of ASR. PMID:25690411

  1. [Distribution and bioavailability of seven heavy metals in mangrove wetland sediments in Dongzhai Harbor, Hainan Island, China].

    PubMed

    Ji, Yi-nuo; Zhao, Zhi-zhong; Wu, Dan; Fu, Xiao-nuo

    2016-02-01

    In this study, total and available contents of seven typical heavy metals (Cr, Ni, Cu, Zn, As, Cd and Pb) were determined in mangrove wetland sediments in Dongzhai Harbor, and the distribution characteristics and bioavailability of these heavy metals in sediment were analyzed. The results showed that all the metals contents in this area were higher than in mangrove wetlands in Yalong Bay and Sanya Bay, but lower than the average level in mangrove wetlands in South China and other areas in the world, which was at a moderate to low level. The contents of heavy metals in surface layer of sediment significantly differed among barren shoal, the edge and inside of forest. All the metals were obviously accompanyingly deposited in the columnar sediments, which indicated a strong homogeneous source. The available contents of seven heavy metals in the surface sediments were extracted by EDTA, which had the order of Cu>Cr>Zn>Ni>As>Pb>Cd. All the maximum ratios of available to total content of elements appeared in surface or -middle to upper layers, except Ni. There was significant positive correlation between available and total contents of target metals. PMID:27396135

  2. Cooking enhances but the degree of ripeness does not affect provitamin A carotenoid bioavailability from bananas in Mongolian gerbils.

    PubMed

    Bresnahan, Kara A; Arscott, Sara A; Khanna, Harjeet; Arinaitwe, Geofrey; Dale, James; Tushemereirwe, Wilberforce; Mondloch, Stephanie; Tanumihardjo, Jacob P; De Moura, Fabiana F; Tanumihardjo, Sherry A

    2012-12-01

    Banana is a staple crop in many regions where vitamin A deficiency is prevalent, making it a target for provitamin A biofortification. However, matrix effects may limit provitamin A bioavailability from bananas. The retinol bioefficacies of unripe and ripe bananas (study 1A), unripe high-provitamin A bananas (study 1B), and raw and cooked bananas (study 2) were determined in retinol-depleted Mongolian gerbils (n = 97/study) using positive and negative controls. After feeding a retinol-deficient diet for 6 and 4 wk in studies 1 and 2, respectively, customized diets containing 60, 30, or 15% banana were fed for 17 and 13 d, respectively. In study 1A, the hepatic retinol of the 60% ripe Cavendish group (0.52 ± 0.13 μmol retinol/liver) differed from baseline (0.65 ± 0.15 μmol retinol/liver) and was higher than the negative control group (0.39 ± 0.16 μmol retinol/liver; P < 0.0065). In study 1B, no groups differed from baseline (0.65 ± 0.15 μmol retinol/liver; P = 0.20). In study 2, the 60% raw Butobe group (0.68 ± 0.17 μmol retinol/liver) differed from the 60% cooked Butobe group (0.87 ± 0.24 μmol retinol/liver); neither group differed from baseline (0.80 ± 0.27 μmol retinol/liver; P < 0.0001). Total liver retinol was higher in the groups fed cooked bananas than in those fed raw (P = 0.0027). Body weights did not differ even though gerbils ate more green, ripe, and raw bananas than cooked, suggesting a greater indigestible component. In conclusion, thermal processing, but not ripening, improves the retinol bioefficacy of bananas. Food matrix modification affects carotenoid bioavailability from provitamin A biofortification targets. PMID:23096010

  3. Construction of a self-luminescent cyanobacterial bioreporter that detects a broad range of bioavailable heavy metals in aquatic environments

    PubMed Central

    Martín-Betancor, Keila; Rodea-Palomares, Ismael; Muñoz-Martín, M. A.; Leganés, Francisco; Fernández-Piñas, Francisca

    2015-01-01

    A self-luminescent bioreporter strain of the unicellular cyanobacterium Synechococcus sp. PCC 7942 was constructed by fusing the promoter region of the smt locus (encoding the transcriptional repressor SmtB and the metallothionein SmtA) to luxCDABE from Photorhabdus luminescens; the sensor smtB gene controlling the expression of smtA was cloned in the same vector. The bioreporter performance was tested with a range of heavy metals and was shown to respond linearly to divalent Zn, Cd, Cu, Co, Hg, and monovalent Ag. Chemical modeling was used to link bioreporter response with metal speciation and bioavailability. Limits of Detection (LODs), Maximum Permissive Concentrations (MPCs) and dynamic ranges for each metal were calculated in terms of free ion concentrations. The ranges of detection varied from 11 to 72 pM for Hg2+ (the ion to which the bioreporter was most sensitive) to 1.54–5.35 μM for Cd2+ with an order of decreasing sensitivity as follows: Hg2+ >> Cu2+ >> Ag+ > Co2+ ≥ Zn2+ > Cd2+. However, the maximum induction factor reached 75-fold in the case of Zn2+ and 56-fold in the case of Cd2+, implying that Zn2+ is the preferred metal in vivo for the SmtB sensor, followed by Cd2+, Ag+ and Cu2+ (around 45–50-fold induction), Hg2+ (30-fold) and finally Co2+ (20-fold). The bioreporter performance was tested in real environmental samples with different water matrix complexity artificially contaminated with increasing concentrations of Zn, Cd, Ag, and Cu, confirming its validity as a sensor of free heavy metal cations bioavailability in aquatic environments. PMID:25806029

  4. Construction of a self-luminescent cyanobacterial bioreporter that detects a broad range of bioavailable heavy metals in aquatic environments.

    PubMed

    Martín-Betancor, Keila; Rodea-Palomares, Ismael; Muñoz-Martín, M A; Leganés, Francisco; Fernández-Piñas, Francisca

    2015-01-01

    A self-luminescent bioreporter strain of the unicellular cyanobacterium Synechococcus sp. PCC 7942 was constructed by fusing the promoter region of the smt locus (encoding the transcriptional repressor SmtB and the metallothionein SmtA) to luxCDABE from Photorhabdus luminescens; the sensor smtB gene controlling the expression of smtA was cloned in the same vector. The bioreporter performance was tested with a range of heavy metals and was shown to respond linearly to divalent Zn, Cd, Cu, Co, Hg, and monovalent Ag. Chemical modeling was used to link bioreporter response with metal speciation and bioavailability. Limits of Detection (LODs), Maximum Permissive Concentrations (MPCs) and dynamic ranges for each metal were calculated in terms of free ion concentrations. The ranges of detection varied from 11 to 72 pM for Hg(2+) (the ion to which the bioreporter was most sensitive) to 1.54-5.35 μM for Cd(2+) with an order of decreasing sensitivity as follows: Hg(2+) > Cu(2+) > Ag(+) > Co(2+) ≥ Zn(2+) > Cd(2+). However, the maximum induction factor reached 75-fold in the case of Zn(2+) and 56-fold in the case of Cd(2+), implying that Zn(2+) is the preferred metal in vivo for the SmtB sensor, followed by Cd(2+), Ag(+) and Cu(2+) (around 45-50-fold induction), Hg(2+) (30-fold) and finally Co(2+) (20-fold). The bioreporter performance was tested in real environmental samples with different water matrix complexity artificially contaminated with increasing concentrations of Zn, Cd, Ag, and Cu, confirming its validity as a sensor of free heavy metal cations bioavailability in aquatic environments. PMID:25806029

  5. Sediment analysis does not provide a good measure of heavy metal bioavailability to Cerastoderma glaucum (Mollusca: Bivalvia) in confined coastal ecosystems

    SciTech Connect

    Arjonilla, M.; Gomez-Parra, A. ); Forja, J.M. )

    1994-06-01

    Sediments are considered a sink for metals entering the marine environment, especially in coastal areas. Once in the sediment layer, metals are distributed amongst all different phases of the sediment, governed by physicochemical conditions. One fraction is immobilized due to its incorporation into weakly reactive phases of the sediment; Another fraction may remain weakly bound to organic or mineral phases as sorbed, precipitated, or coprecipitated and complexed forms and can be assimilated by detritivorous and suspension-feeding benthic organisms. Many selective procedures have been suggested for metal extraction from sediments in order to estimate concentrations of fractions which are directly or indirectly available to the biota. The absence of a chemical treatment adequate for accurate quantification of metal bioavailability is well-known. Nevertheless, a good correlation between metal content in some organisms and in the sediment after a specific extraction treatment has sometimes been found so sediments are frequently used as indicators in pollution studies. In this paper, concentrations of heavy metals (Fe, Mn, Cu, Ph and Cd) in the cockle Cerastoderma glaucum, and in sediments at the same sampling locations are compared. C. glaucum is a suspension and deposit feeder, inhabiting a wide range of salinities. The study sampled 8 saltponds in the south of Cadiz Bay, located along a gradient of contamination produced by urban and industrial sewage effluents. The study sought to identify areas with different relative risk from metal pollution, in terms of biological effects and effects on water quality due to natural resuspension of sediments or to human relocation of sediments. C. glaucum was selected because of its wide distribution in the Bay, and also because it has no commercial value. This second fact means that its distribution and growth is not directly affected by man. 19 refs., 4 figs., 1 tab.

  6. Bioavailability and concentration of heavy metals in the sediments and leaves of grey mangrove, Avicennia marina (Forsk.) Vierh, in Sirik Azini Creek, Iran.

    PubMed

    Parvaresh, Hossein; Abedi, Zahra; Farshchi, Parvin; Karami, Mahmood; Khorasani, Nematullah; Karbassi, Abdolreza

    2011-11-01

    The concentration and bioavailability of Ni, Cu, Cd, Zn, and Pb in the sediments and leaves of grey mangrove, Avicennia marina, were studied throughout Sirik Azini creek (Iran) with a view to determine heavy metals bioavailability, and two methods were used. Results show that Zn and Ni had the highest concentrations in the sediments, while Cd and Cu were found to have the lowest concentrations in the sediments. Compared to the mean concentrations of heavy metals in sedimentary rock (shales), Zn and Cu showed lower concentration, possibly indicating that the origin of these heavy metals is natural. A geo-accumulation index (Igeo) was used to determine the degree of contamination in the sediments. Igeo values for Zn, Cu, Pb, and Ni showed that there is no pollution from these metals in the study area. As heavy metal concentrations in leaves were higher than the bioavailable fraction of metals in sediments, it follows that bioconcentration factors (leaf/bioavailable sediment) for some metals were higher than 1. PMID:21053092

  7. Bioavailability of nanoscale metal oxides TiO(2), CeO(2), and ZnO to fish.

    PubMed

    Johnston, Blair D; Scown, Tessa M; Moger, Julian; Cumberland, Susan A; Baalousha, Mohamed; Linge, Kathryn; van Aerle, Ronny; Jarvis, Kym; Lead, Jamie R; Tyler, Charles R

    2010-02-01

    Nanoparticles (NPs) are reported to be a potential environmental health hazard. For organisms living in the aquatic environment, there is uncertainty on exposure because of a lack of understanding and data regarding the fate, behavior, and bioavailability of the nanomaterials in the water column. This paper reports on a series of integrative biological and physicochemical studies on the uptake of unmodified commercial nanoscale metal oxides, zinc oxide (ZnO), cerium dioxide (CeO(2)), and titanium dioxide (TiO(2)), from the water and diet to determine their potential ecotoxicological impacts on fish as a function of concentration. Particle characterizations were performed and tissue concentrations were measured by a wide range of analytical methods. Definitive uptake from the water column and localization of TiO(2) NPs in gills was demonstrated for the first time by use of coherent anti-Stokes Raman scattering (CARS) microscopy. Significant uptake of nanomaterials was found only for cerium in the liver of zebrafish exposed via the water and ionic titanium in the gut of trout exposed via the diet. For the aqueous exposures undertaken, formation of large NP aggregates (up to 3 mum) occurred and it is likely that this resulted in limited bioavailability of the unmodified metal oxide NPs in fish. PMID:20050652

  8. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum).

    PubMed

    Hossain, Mustafa K; Strezov, Vladimir; Chan, K Yin; Nelson, Peter F

    2010-02-01

    This work presents agronomic values of a biochar produced from wastewater sludge through pyrolysis at a temperature of 550 degrees C. In order to investigate and quantify effects of wastewater sludge biochar on soil quality, growth, yield and bioavailability of metals in cherry tomatoes, pot experiments were carried out in a temperature controlled environment and under four different treatments consisting of control soil, soil with biochar; soil with biochar and fertiliser, and soil with fertiliser only. The soil used was chromosol and the applied wastewater sludge biochar was 10tha(-1). The results showed that the application of biochar improves the production of cherry tomatoes by 64% above the control soil conditions. The ability of biochar to increase the yield was attributed to the combined effect of increased nutrient availability (P and N) and improved soil chemical conditions upon amendment. The yield of cherry tomato production was found to be at its maximum when biochar was applied in combination with the fertiliser. Application of biochar was also found to significantly increase the soil electrical conductivity as well as phosphorus and nitrogen contents. Bioavailability of metals present in the biochar was found to be below the Australian maximum permitted concentrations for food. PMID:20110103

  9. Assessment of different methods to estimate heavy metal bioavailability in 30 contrasting Spanish and New Zealand soils

    NASA Astrophysics Data System (ADS)

    Soriano-Disla, J. M.; Speir, T. W.; Gómez, I.; Clucas, L. M.; McLaren, R. G.; Navarro-Pedreño, J.

    2009-04-01

    The accumulation of heavy metals in soil from different sources (atmospheric deposition, agricultural practices, urban-industrial activities, etc.) is of a great environmental concern because of metal persistence and toxicity. In this sense, there is a consensus in the literature that the estimation of the bioavailable heavy metals in soil is a preferable tool to determine potential risks from soil contamination than the total contents. However, controversy exists around the definition of an accurate and universal bioavailability estimator that is useful for soils with different properties, since many factors control this parameter. Thus, the main objective of this work was to compare the effectiveness of different methods to predict heavy metals plant uptake from soils with different properties and heavy metal contents. For the development of the present work, 30 contrasting soils from New Zealand and Spain were selected. Apart from the analysis of the basic soil properties, different methods to estimate heavy metal bioavailability were performed: total heavy metals, DTPA-extractable soil metals, diffusive gradient technique (DGT), and total heavy metals in soil solution. In these soils, a bioassay using wheat (Triticum aestivum) was carried out in a constant environment room for 25 days (12 hours photoperiod, day and night temperature of 20°C and 15°C respectively). After this time, the plants were divided in roots and shoots and heavy metal content was analysed in each part. Simple correlations were performed comparing the phytoavailable contents with the bioavailability estimated by the different methods. As expected, higher heavy metal concentrations were found in roots compared with shoots. Comparing the theoretical available heavy metals estimated by the different methods with the root and shoot uptake, better correlations were found with the root contents, thus, the discussion is based in the comparisons with the uptake by this part of the plant

  10. Characterization of metal kinetics and bioavailability using diffusive gradients in thin films technique in sediments of Taihu Lake, China.

    PubMed

    Lei, Kun; Han, Xuejiao; Zhao, Jian; Qiao, Fei; Li, Zicheng; Yu, Tao

    2016-06-01

    For an improved understanding of the metal behavior between the sediment and overlaying water of Taihu Lake, the technique of diffusive gradients in thin films (DGT) was used to characterize the DGT measured concentration in sediments and release kinetics of Cr, Ni, Cu, Zn, Cd and Pb in representative lake parts. Spatially, the DGT-measured concentration of heavy metals showed that Zn, Cu, Ni, Cr, and Pb had higher concentrations in the northern lake than in the eastern Lake Taihu. The order of the release flux for the studied metals from sediments to overlaying water was Zn>Cu>Ni, Cr>Pb>Cd (p<0.05). DGT devices were deployed over a series of time (0.5, 1, 2, 4, 8, 12, 24 and 48 h) in sediment cores from the two typical lake parts (northwest algae dominant area and southeast macrophyte dominant area) to explore the dynamics in the sediment/DGT system, and the best fitted regression model was selected to characterize the release of metals in the two lake parts. The fitted results showed that the equilibration time of the metal release was approximately 24h and Zn had a higher release capacity than other metals. Further analyses indicated that significant correlation existed between the DGT-measured metal concentrations in sediments and metal concentrations in lake organisms (r=0.943 and 0.996 for zoobenthos and coilia ectenes, p<0.05), suggesting that DGT technique is more effective to predict the metal bioavailability in lake sediments. PMID:26938153

  11. Bioavailability and toxicity of trace metals to the cladoceran Daphnia magna in relation to cadmium exposure history

    NASA Astrophysics Data System (ADS)

    Guan, Rui

    The cladoceran Daphnia magna is widely used in freshwater bioassessments and ecological risk assessments. This study designed a series of experiments employing radiotracer methodology to quantify the trace metals (mainly Cd and Zn) biokinetics in D. magna under different environmental and biological conditions and to investigate the influences of different Cd exposure histories on the bioavailability and toxicity of trace metals to D. magna. A bioenergetic-based kinetic model was finally applied in predicting the Cd accumulation dynamics in D. magna and the model validity under non-steady state was assessed. Cd assimilation was found in this study to be influenced by the food characteristics (e.g., metal concentration in food particles), the metal exposure history of the animals, and the genetic characteristics. Some of these influences could be interpreted by the capacity and/or competition of those metal binding sites within the digestive tract and/or the detoxifying proteins metallothionein (MT). My study demonstrated a significant induction of MT in response to Cd exposure and it was the dominant fraction in sequestering the internal nonessential trace metals in D. magna. The ratio of Cd body burden to MT might better predict the Cd toxicity on the digestion systems of D. magna than the Cd tissue burden alone within one-generational exposure to Cd. It was found that metal elimination (rate constant and contribution of different release routes) was independent of the food concentration and the dietary metal concentration, implying that the elimination may not be metabolically controlled. The incorporation of the bioenergetic-based kinetic model, especially under non-steady state, is invaluable in helping to understand the fate of trace metals in aquatic systems and potential environmental risks. The dependence of biokinetic parameters on environmental factors rather than on genotypes implies a great potential of using biokinetics in inter-laboratory comparisons.

  12. Response of benthic foraminifera to organic matter quantity and quality and bioavailable concentrations of metals in Aveiro Lagoon (Portugal).

    PubMed

    Martins, Maria Virgínia Alves; Silva, Frederico; Laut, Lazaro L M; Frontalini, Fabrizio; Clemente, Iara M M M; Miranda, Paulo; Figueira, Rubens; Sousa, Silvia H M; Dias, João M Alveirinho

    2015-01-01

    This work analyses the distribution of living benthic foraminiferal assemblages of surface sediments in different intertidal areas of Ria de Aveiro (Portugal), a polihaline and anthropized coastal lagoon. The relationships among foraminiferal assemblages in association with environmental parameters (temperature, salinity, Eh and pH), grain size, the quantity and quality of organic matter (enrichment in carbohydrates, proteins and lipids), pollution caused by metals, and mineralogical data are studied in an attempt to identify indicators of adaptability to environmental stress. In particular, concentrations of selected metals in the surficial sediment are investigated to assess environmental pollution levels that are further synthetically parameterised by the Pollution Load Index (PLI). The PLI variations allowed the identification of five main polluted areas. Concentrations of metals were also analysed in three extracted phases to evaluate their possible mobility, bioavailability and toxicity in the surficial sediment. Polluted sediment in the form of both organic matter and metals can be found in the most confined zones. Whereas enrichment in organic matter and related biopolymers causes an increase in foraminifera density, pollution by metals leads to a decline in foraminiferal abundance and diversity in those zones. The first situation may be justified by the existence of opportunistic species (with high reproduction rate) that can live in low oxic conditions. The second is explained by the sensitivity of some species to pressure caused by metals. The quality of the organic matter found in these places and the option of a different food source should also explain the tolerance of several species to pollution caused by metals, despite their low reproductive rate in the most polluted areas. In this study, species that are sensitive and tolerant to organic matter and metal enrichment are identified, as is the differential sensitivity/tolerance of some species to

  13. Response of Benthic Foraminifera to Organic Matter Quantity and Quality and Bioavailable Concentrations of Metals in Aveiro Lagoon (Portugal)

    PubMed Central

    Martins, Maria Virgínia Alves; Silva, Frederico; Laut, Lazaro L. M.; Frontalini, Fabrizio; Clemente, Iara M. M. M.; Miranda, Paulo; Figueira, Rubens; Sousa, Silvia H. M.; Dias, João M. Alveirinho

    2015-01-01

    This work analyses the distribution of living benthic foraminiferal assemblages of surface sediments in different intertidal areas of Ria de Aveiro (Portugal), a polihaline and anthropized coastal lagoon. The relationships among foraminiferal assemblages in association with environmental parameters (temperature, salinity, Eh and pH), grain size, the quantity and quality of organic matter (enrichment in carbohydrates, proteins and lipids), pollution caused by metals, and mineralogical data are studied in an attempt to identify indicators of adaptability to environmental stress. In particular, concentrations of selected metals in the surficial sediment are investigated to assess environmental pollution levels that are further synthetically parameterised by the Pollution Load Index (PLI). The PLI variations allowed the identification of five main polluted areas. Concentrations of metals were also analysed in three extracted phases to evaluate their possible mobility, bioavailability and toxicity in the surficial sediment. Polluted sediment in the form of both organic matter and metals can be found in the most confined zones. Whereas enrichment in organic matter and related biopolymers causes an increase in foraminifera density, pollution by metals leads to a decline in foraminiferal abundance and diversity in those zones. The first situation may be justified by the existence of opportunistic species (with high reproduction rate) that can live in low oxic conditions. The second is explained by the sensitivity of some species to pressure caused by metals. The quality of the organic matter found in these places and the option of a different food source should also explain the tolerance of several species to pollution caused by metals, despite their low reproductive rate in the most polluted areas. In this study, species that are sensitive and tolerant to organic matter and metal enrichment are identified, as is the differential sensitivity/tolerance of some species to

  14. How physical alteration of technic materials affects mobility and phytoavailabilty of metals in urban soils?

    PubMed

    El Khalil, Hicham; Schwartz, Christophe; El Hamiani, Ouafae; Sirguey, Catherine; Kubiniok, Jochen; Boularbah, Ali

    2016-06-01

    One fundamental characteristic distinguishing urban soils from natural soils is the presence of technic materials or artefacts underlining the influence of human activity. These technic materials have different nature (organic or inorganic) and origins. They contribute to the enrichment of the soil solution by metallic trace elements. The present study aims to determine the effect of physical alteration of the technic coarse fraction on the bioavailability of metallic trace elements in urban Technosols. In general, results show that physical alteration increases the metallic trace elements water extractible concentrations of technic materials. The ability of lettuce to accumulate metallic trace elements, even at low concentrations, underlines the capacity of technic materials to contaminate the anthropised soil solution by bioavailable metals. The highest metal levels, accumulated by the various organs of the lettuce (leaves and roots), were measured in plants grown in presence of metallic particles mixtures. This indicates that the majority of metallic trace elements released by this technic constituent is bioavailable and explains the low plant biomass obtained. The abundant part of metallic trace elements released by the other technic constituents (building materials, bones, wood, plastic and fabric-paper) remains less bioavailable. Under anthropised soil conditions, technic materials have a significant effect on the metallic trace elements behavior. They impact the flow of these metallic elements in Technosols, which can increase their bioavailability and, therefore, the contamination of the food chain. PMID:26999750

  15. EFFECT OF SOIL PROPERTIES ON THE TOXICITY AND BIOAVAILABILITY OF METALS

    EPA Science Inventory

    Heavy metal and organic chemical contamination of soils is a worldwide problem posing a risk to humans and more directly, soil organisms. Due to widespread metal contamination, it is necessary to characterize soils suspected of metal contamination and determine if the metal le...

  16. Assessment of trace metal bioavailability in garden soils and health risks via consumption of vegetables in the vicinity of Tongling mining area, China.

    PubMed

    Xu, Decong; Zhou, Ping; Zhan, Jing; Gao, Yi; Dou, Changming; Sun, Qingye

    2013-04-01

    Environmental pollution due to mining activities has been reported in many countries. In this study, 283 vegetable and 44 corresponding garden soil samples were collected in the vicinity of the Tongling mining area, China. The aim was to evaluate the bioavailability of trace metals (Cu, Zn, Pb and Cd) to vegetables by comparing different methods (trace metals in DTPA, EDTA, HCl, NH(4)NO(3), NH(4)OAC aqueous solutions and total metals in garden soils), and assess the potential health risks of trace metals to the local population via vegetable consumption. The results showed that the mean values of total Cu and Cd in the soil samples exceeded the Grade II national standard in China. Average concentrations of Cd and Pb in some vegetable samples were higher than the maximum permissible concentration in China. The transfer factors for trace metals in different vegetables showed a trend of Cd>Zn>Cu> Pb. Asteraceae vegetables had stronger metal uptake than Liliaceae. The total target hazard quotient (THQ) value was greater than 1, suggesting that trace metals in vegetables could present some potential health risks. The effectiveness of the studied methods for estimating soil metal bioavailability was generally dependent on the particular metal and vegetable species. Overall, 1.0M NH(4)OAC provided the best estimate of Cd and Zn bioavailability in multi-elemental contaminated soils. None of the studied soil metal extraction methods appeared suitable for measuring Cu or Pb bioavailability, especially for Pb, which showed almost no correlation between metal concentration in soil and vegetables. PMID:23332794

  17. Acute toxicity of the cationic surfactant C12-benzalkonium in different bioassays: how test design affects bioavailability and effect concentrations.

    PubMed

    Chen, Yi; Geurts, Marc; Sjollema, Sascha B; Kramer, Nynke I; Hermens, Joop L M; Droge, Steven T J

    2014-03-01

    Using an ion-exchange-based solid-phase microextraction (SPME) method, the freely dissolved concentrations of C12-benzalkonium were measured in different toxicity assays, including 1) immobilization of Daphnia magna in the presence or absence of dissolved humic acid; 2) mortality of Lumbriculus variegatus in the presence or absence of a suspension of Organisation for Economic Co-Operation and Development (OECD) sediment; 3) photosystem II inhibition of green algae Chlorella vulgaris; and 4) viability of in vitro rainbow trout gill cell line (RTgill-W1) in the presence or absence of serum proteins. Furthermore, the loss from chemical adsorption to the different test vessels used in these tests was also determined. The C12-benzalkonium sorption isotherms to the different sorbent phases were established as well. Our results show that the freely dissolved concentration is a better indicator of the actual exposure concentration than the nominal or total concentration in most test assays. Daphnia was the most sensitive species to C12-benzalkonium. The acute Daphnia and Lumbriculus tests both showed no enhanced toxicity from possible ingestion of sorbed C12-benzalkonium in comparison with water-only exposure, which is in accordance with the equilibrium partitioning theory. Moreover, the present study demonstrates that commonly used sorbent phases can strongly affect bioavailability and observed effect concentrations for C12-benzalkonium. Even stronger effects of decreased actual exposure concentrations resulting from sorption to test vessels, cells, and sorbent phases can be expected for more hydrophobic cationic surfactants. PMID:24273010

  18. Copper binding affinity of rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis) gills: Implications for assessing bioavailable metal

    SciTech Connect

    MacRae, R.K.; Smith, D.E.; Swoboda-Colberg, N.; Meyer, J.S.; Bergman, H.L. . Dept. of Zoology and Physiology)

    1999-06-01

    In this study, the authors determined the conditional stability constant (log K[prime]) of copper for the gills of rainbow trout (Oncorhynchus mykiss; RBT) and brook trout (Salvelinus fontinalis; BT). Using toxicity-based complexation bioassays, which measure the effect of competing organic ligands on copper toxicity, the RBT gill copper log K[prime] range was 6.4 to 7.2. Using a Scatchard analysis of gill Cu accumulation, the RBT log K[prime] was 7.50 and the BT log K[prime] was 7.25. The close agreement in RBT log K[prime] values between these two methods suggests that measurement of gill copper accumulation is an acceptable alternative for determining a toxicity-based gill copper binding affinity. The results also suggest that there is either a single gill copper binding component or, more realistically, multiple components with similar binding properties that function collectively to define a single toxicologically relevant copper conditional stability constant. These results suggest analytical approaches to measuring bioavailable metal concentrations, such as geochemical modeling where biological ligands are included in speciation calculations, may adequately simulate complex biological ligands. A method to convert gill copper accumulation to a bioavailable water criterion is also discussed.

  19. Distribution, bioavailability, and leachability of heavy metals in soil particle size fractions of urban soils (northeastern China).

    PubMed

    Yutong, Zong; Qing, Xiao; Shenggao, Lu

    2016-07-01

    This study examines the distribution, mobility, and potential environmental risks of heavy metals in various particle size fractions of urban soils. Representative urban topsoils (ten) collected from Anshan, Liaoning (northeastern China), were separated into six particle size fractions and their heavy metal contents (Cr, Cu, Cd, Pb, and Zn) were determined. The bioaccessibility and leachability of heavy metals in particle size fractions were evaluated using the toxicity characteristic leaching procedure (TCLP) and ethylenediaminetetraacetic acid (EDTA) extraction, respectively. The results indicated that the contents of five heavy metals (Cd, Cr, Cu, Pb and Zn) in the size fractions increased with the decrease of particle size. The clay fraction of <2 μm had the highest content of heavy metals, indicating that the clay fraction was polluted by heavy metals more seriously than the other size fractions in urban topsoils. Cr also concentrated in the coarse fraction of 2000-1000 μm, indicating a lithogenic contribution. However, the dominant size fraction responsible for heavy metal accumulation appeared to belong to particle fraction of 50-2 μm. The lowest distribution factors (DFs) of heavy metals were recorded in the 2000- to 1000-μm size fraction, while the highest in the clay fraction. The DFs of heavy metals in the clay fraction followed Zn (3.22) > Cu (2.84) > Pb (2.61) > Cr (2.19) > Cd (2.05). The enrichment factor suggested that the enrichment degree of heavy metal increased with the decrease of the particle size, especially for Cd and Zn. The TCLP- and EDTA-extractable concentrations of heavy metals in the clay fraction were relatively higher than those in coarse particles. Cd bioavailability was higher in the clay fraction than in other fractions or whole soils. In contrast, Cr exhibits similar bioaccessibilities in the six size fractions of soils. The results suggested that fine particles were the main sources of potentially toxic

  20. Probabilistic approaches to accounting for data variability in the practical application of bioavailability in predicting aquatic risks from metals.

    PubMed

    Ciffroy, Philippe; Charlatchka, Rayna; Ferreira, Daniel; Marang, Laura

    2013-07-01

    The biotic ligand model (BLM) theoretically enables the derivation of environmental quality standards that are based on true bioavailable fractions of metals. Several physicochemical variables (especially pH, major cations, dissolved organic carbon, and dissolved metal concentrations) must, however, be assigned to run the BLM, but they are highly variable in time and space in natural systems. This article describes probabilistic approaches for integrating such variability during the derivation of risk indexes. To describe each variable using a probability density function (PDF), several methods were combined to 1) treat censored data (i.e., data below the limit of detection), 2) incorporate the uncertainty of the solid-to-liquid partitioning of metals, and 3) detect outliers. From a probabilistic perspective, 2 alternative approaches that are based on log-normal and Γ distributions were tested to estimate the probability of the predicted environmental concentration (PEC) exceeding the predicted non-effect concentration (PNEC), i.e., p(PEC/PNEC>1). The probabilistic approach was tested on 4 real-case studies based on Cu-related data collected from stations on the Loire and Moselle rivers. The approach described in this article is based on BLM tools that are freely available for end-users (i.e., the Bio-Met software) and on accessible statistical data treatments. This approach could be used by stakeholders who are involved in risk assessments of metals for improving site-specific studies. PMID:23505250

  1. A structural equation model of soil metal bioavailability to earthworms: confronting causal theory and observations using a laboratory exposure to field-contaminated soils.

    PubMed

    Beaumelle, Léa; Vile, Denis; Lamy, Isabelle; Vandenbulcke, Franck; Gimbert, Frédéric; Hedde, Mickaël

    2016-11-01

    Structural equation models (SEM) are increasingly used in ecology as multivariate analysis that can represent theoretical variables and address complex sets of hypotheses. Here we demonstrate the interest of SEM in ecotoxicology, more precisely to test the three-step concept of metal bioavailability to earthworms. The SEM modeled the three-step causal chain between environmental availability, environmental bioavailability and toxicological bioavailability. In the model, each step is an unmeasured (latent) variable reflected by several observed variables. In an exposure experiment designed specifically to test this SEM for Cd, Pb and Zn, Aporrectodea caliginosa was exposed to 31 agricultural field-contaminated soils. Chemical and biological measurements used included CaC12-extractable metal concentrations in soils, free ion concentration in soil solution as predicted by a geochemical model, dissolved metal concentration as predicted by a semi-mechanistic model, internal metal concentrations in total earthworms and in subcellular fractions, and several biomarkers. The observations verified the causal definition of Cd and Pb bioavailability in the SEM, but not for Zn. Several indicators consistently reflected the hypothetical causal definition and could thus be pertinent measurements of Cd and Pb bioavailability to earthworm in field-contaminated soils. SEM highlights that the metals present in the soil solution and easily extractable are not the main source of available metals for earthworms. This study further highlights SEM as a powerful tool that can handle natural ecosystem complexity, thus participating to the paradigm change in ecotoxicology from a bottom-up to a top-down approach. PMID:27378153

  2. IMPROVED RISK ASSESSMENT AND REMEDIATION OF SOIL METALS BASED ON BIOAVAILABILITY MEASUREMENTS

    EPA Science Inventory

    Heavy metals in soils can comprise risk through plant uptake or soil ingestion. Recent research results and progress in understandings of risks and methods for soil metal remediation will be presented. Beneficial use of composts/bosolids plus limestone to remediate metal killed e...

  3. EFFECT OF SOIL MODIFYING FACTORS ON THE BIOAVAILABILITY AND TOXICITY OF METAL CONTAMINATED SOILS

    EPA Science Inventory

    Heavy metal and organic chemical contamination of soils is a worldwide problem posing a risk to humans and more directly, soil organisms. Metal toxicity is often not directly related to the total concentration of metals present due to a number of modifying factors that depend,...

  4. In situ remediation of metal-contaminated soils with organic amendments: role of humic acids in copper bioavailability.

    PubMed

    Soler-Rovira, Pedro; Madejón, Engracia; Madejón, Paula; Plaza, César

    2010-05-01

    The purposes of this study were to determine the Cu(II) binding behavior of humic acids (HAs) isolated from biosolid compost (BI), leonardite (LE), a metal-contaminated soil, and the soil remediated with either BI or LE in relation to their structural properties, and to explore the role exerted by the HA fractions in controlling soil Cu(II) bioavailability. Potentiometric titrations at pH 5 and ionic strength 0.1M and the Langmuir model were used to obtain the Cu(II) complexing capacity of the HAs examined and the conditional stability constant of the Cu(II)-HA complexes. The Cu(II) complexing capacity increased as the content of acidic ligands, especially COOH groups, aromaticity, and humification degree increased, following the order BI-HAbioavailability in metal-contaminated soils remediated with BI and LE, although soil organic matter and the HA fraction may also be important factors. In particular, binding sites formed by N-, S-, and O-containing acidic functional moieties in HAs may play an important role in the Cu(II) behavior. PMID:20303567

  5. Mobility and bio-availability of heavy metals in anthropogenically contaminated alluvial (deluvial) meadow soils (EUTRIC FLUVISOLS)

    NASA Astrophysics Data System (ADS)

    Dinev, Nikolai; Hristova, Mariana; Tzolova, Venera

    2015-04-01

    The total content of heavy metals is not sufficient to assess the pollution and the risk for environment as it does not provide information for the type and solubility of heavy metals' compounds in soils. The purpose was to study and determine the mobility of heavy metals in anthropogenically contaminated alluvial (delluvial) meadow soils spread around the non-ferrous plant near the town of Asenovgrad in view of risk assessment for environment pollution. Soil samples from monitoring network (1x1 km) was used. The sequential extraction procedure described by Zein and Brummer (1989) was applied. Results showed that the easily mobilizable cadmium compounds predominate in both contaminated and not contaminated soils. The stable form of copper (associated with silicate minerals, carbonates or amorphous and crystalline oxide compounds) predominates only in non polluted soils and reviles the risk of the environment contamination. Lead spreads and accumulates as highly soluble (mobile) compounds and between 72.3 and 99.6 percent of the total lead is bioavailable in soils. The procedure is very suitable for studying the mobility of technogenic lead and copper in alluvial soils with neutral medium reaction and in particular at the high levels of cadmium contamination. In soils with alkaline reaction - polluted and unpolluted the error of analysis increases for all studied elements.

  6. Bioavailability and Chronic Toxicity of Metal Sulfide Minerals to Benthic Marine Invertebrates: Implications for Deep Sea Exploration, Mining and Tailings Disposal.

    PubMed

    Simpson, Stuart L; Spadaro, David A

    2016-04-01

    The exploration and proposed mining of sulfide massive deposits in deep-sea environments and increased use deep-sea tailings placement (DSTP) in coastal zones has highlighted the need to better understand the fate and effects of mine-derived materials in marine environments. Metal sulfide ores contain high concentrations of metal(loid)s, of which a large portion exist in highly mineralized or sulfidised forms and are predicted to exhibit low bioavailability. In this study, sediments were spiked with a range of natural sulfide minerals (including chalcopyrite, chalcocite, galena, sphalerite) to assess the bioavailability and toxicity to benthic invertebrates (bivalve survival and amphipod survival and reproduction). The metal sulfide phases were considerably less bioavailable than metal contaminants introduced to sediment in dissolved forms, or in urban estuarine sediments contaminated with mixtures of metal(loid)s. Compared to total concentrations, the dilute-acid extractable metal(loid) (AEM) concentrations, which are intended to represent the more oxidized and labile forms, were more effective for predicting the toxicity of the sulfide mineral contaminated sediments. The study indicates that sediment quality guidelines based on AEM concentrations provide a useful tool for assessing and monitoring the risk posed by sediments impacted by mine-derived materials in marine environments. PMID:26937684

  7. Bioavailability and assessment of heavy metal pollution in sediment cores off the Mejerda River Delta (Gulf of Tunis): How useful is a multiproxy approach?

    PubMed

    Helali, Mohamed Amine; Oueslati, Walid; Zaaboub, Noureddine; Added, Ayed; Aleya, Lotfi

    2016-04-15

    Three core samples were taken from zones offshore from the Mejerda River Delta (Tunisia) and analyzed for major and trace elements to assess their relationships with organic matter, monosulfides and carbonates, as well as for pollution and bioavailability. Chemical speciation, ∑ SEM/AVS, the enrichment factor (EF) and the geo-accumulation index (I-geo) were used. Iron, cadmium, lead and zinc - the most frequently mined metals in the Mejerda catchment - were found as contaminants in the offshore areas. Estimations of trace element accumulation using the EF and the I-geo index show that lead, and to a lesser extent zinc, are the most polluting metals off the Mejerda outlet. According to their bioavailability, these metals are also the most toxic. Only cadmium is heavily present in delta sediment (EF>100) though deeply sequestrated (100% bound to the residual fraction) and thus presents no toxicity. PMID:26902687

  8. Consideration of the bioavailability of metal/metalloid species in freshwaters: experiences regarding the implementation of biotic ligand model-based approaches in risk assessment frameworks.

    PubMed

    Rüdel, Heinz; Díaz Muñiz, Cristina; Garelick, Hemda; Kandile, Nadia G; Miller, Bradley W; Pantoja Munoz, Leonardo; Peijnenburg, Willie J G M; Purchase, Diane; Shevah, Yehuda; van Sprang, Patrick; Vijver, Martina; Vink, Jos P M

    2015-05-01

    After the scientific development of biotic ligand models (BLMs) in recent decades, these models are now considered suitable for implementation in regulatory risk assessment of metals in freshwater bodies. The BLM approach has been described in many peer-reviewed publications, and the original complex BLMs have been applied in prospective risk assessment reports for metals and metal compounds. BLMs are now also recommended as suitable concepts for the site-specific evaluation of monitoring data in the context of the European Water Framework Directive. However, the use is hampered by the data requirements for the original BLMs (about 10 water parameters). Recently, several user-friendly BLM-based bioavailability software tools for assessing the aquatic toxicity of relevant metals (mainly copper, nickel, and zinc) became available. These tools only need a basic set of commonly determined water parameters as input (i.e., pH, hardness, dissolved organic matter, and dissolved metal concentration). Such tools seem appropriate to foster the implementation of routine site-specific water quality assessments. This work aims to review the existing bioavailability-based regulatory approaches and the application of available BLM-based bioavailability tools for this purpose. Advantages and possible drawbacks of these tools (e.g., feasibility, boundaries of validity) are discussed, and recommendations for further implementation are given. PMID:25750051

  9. TRACE ELEMENT CHEMISTRY IN RESIDUAL-TREATED SOIL: KEY CONCEPTS AND METAL BIOAVAILABILITY

    EPA Science Inventory

    Trace element solubility and availability in land-applied residuals is governed by fundamental chemical reactions between metal constituents, soil, and residual components. Iron, aluminum, and manganese oxides; organic matter; and phosphates, carbonates, and sulfides are importan...

  10. Direct observation of heavy metal-mineral association from the Clark Fork River Superfund Complex: Implications for metal transport and bioavailability

    USGS Publications Warehouse

    Hochella, M.F., Jr.; Moore, J.N.; Putnis, C.V.; Putnis, A.; Kasama, T.; Eberl, D.D.

    2005-01-01

    Two sets of samples from riverbeds and adjacent floodplains, separated by 80 river kilometers, were collected from the Clark Fork River Superfund Complex, Montana, (the largest Superfund site in the United States), and studied primarily with transmission electron microscopy (TEM) with several supporting techniques to determine heavy metal-mineral association. Seven of the eight samples studied were strongly influenced by material that once resided in mining and smelting dumps and impoundments; this material was transported downstream sometime during the last century and a half from the Butte/Anaconda areas. The eighth sample was from a deeper floodplain level and dates to premining days. The TEM observations afford a direct look, down to the nanometer level, at secondary mineral formation as a result of the breakdown of sulfides and silicates in the acid environment of this massive mine-drainage system. In the shallow, oxic floodplain sediments, heavy metals of concern in this system (As, Cu, Pb, and Zn) are taken up by the formation of sulfates (particularly Pb in jarosite), as well as hydrous metal oxides (As, Cu, Pb, and Zn in and on ferrihydrite, and a possibly new vernadite-like mineral). The oxides are long-lived in these systems, as they were also found in the anoxic riverbeds. Metals are also taken up by the formation of sulfides in sulfate-reducing environments as observed in the formation of nanoclusters of chalcopyrite and sphalerite. In all samples, clays make up between 5 and 20% of the sediment and carry significant amounts of Cu and Zn. The hydrous oxides, secondary sulfides, and clays provide several routes for metal transport downstream over long distances. Besides the potential bioavailability of heavy metals exchanged on and off the hydrous metal oxides and clays, nanometer-sized sulfides may also be highly reactive in the presence of biologic systems. Copyright ?? 2005 Elsevier Ltd.

  11. Bioanalytical effect-balance model to determine the bioavailability of organic contaminants in sediments affected by black and natural carbon.

    PubMed

    Bräunig, Jennifer; Tang, Janet Y M; Warne, Michael St J; Escher, Beate I

    2016-08-01

    In sediments several binding phases dictate the fate and bioavailability of organic contaminants. Black carbon (BC) has a high sorptive capacity for organic contaminants and can limit their bioavailability, while the fraction bound to organic carbon (OC) is considered to be readily desorbable and bioavailable. We investigated the bioavailability and mixture toxicity of sediment-associated contaminants by combining different extraction techniques with in vitro bioanalytical tools. Sediments from a harbour with high fraction of BC, and sediments from remote, agricultural and urban areas with lower BC were treated with exhaustive solvent extraction, Tenax extraction and passive sampling to estimate total, bioaccessible and bioavailable fractions, respectively. The extracts were characterized with cell-based bioassays that measure dioxin-like activity (AhR-CAFLUX) and the adaptive stress response to oxidative stress (AREc32). Resulting bioanalytical equivalents, which are effect-scaled concentrations, were applied in an effect-balance model, consistent with a mass balance-partitioning model for single chemicals. Sediments containing BC had most of the bioactivity associated to the BC fraction, while the OC fraction played a role for sediments with lower BC. As effect-based sediment-water distribution ratios demonstrated, most of the bioactivity in the AhR-CAFLUX was attributable to hydrophobic chemicals while more hydrophilic chemicals activated AREc32, even though bioanalytical equivalents in the aqueous phase remained negligible. This approach can be used to understand the fate and effects of mixtures of diverse organic contaminants in sediments that would not be possible if single chemicals were targeted by chemical analysis; and make informed risk-based decisions concerning the management of contaminated sediments. PMID:27176940

  12. Mechanisms of divalent metal toxicity in affective disorders.

    PubMed

    Menon, Archita Venugopal; Chang, JuOae; Kim, Jonghan

    2016-01-01

    Metals are required for proper brain development and play an important role in a number of neurobiological functions. The divalent metal transporter 1 (DMT1) is a major metal transporter involved in the absorption and metabolism of several essential metals like iron and manganese. However, non-essential divalent metals are also transported through this transporter. Therefore, altered expression of DMT1 can modify the absorption of toxic metals and metal-induced toxicity. An accumulating body of evidence has suggested that increased metal stores in the brain are associated with elevated oxidative stress promoted by the ability of metals to catalyze redox reactions, resulting in abnormal neurobehavioral function and the progression of neurodegenerative diseases. Metal overload has also been implicated in impaired emotional behavior, although the underlying mechanisms are not well understood with limited information. The current review focuses on psychiatric dysfunction associated with imbalanced metabolism of metals that are transported by DMT1. The investigations with respect to the toxic effects of metal overload on behavior and their underlying mechanisms of toxicity could provide several new therapeutic targets to treat metal-associated affective disorders. PMID:26551072

  13. Seasonal bioavailability of sediment-associated heavy metals along the Mississippi river floodplain.

    PubMed

    Grabowski, L A; Houpis, J L; Woods, W I; Johnson, K A

    2001-11-01

    A value of simultaneously extracted metal to acid-volatile sulfide (SEM-AVS) can provide important information regarding metal availability in anaerobic sediment. SEM and AVS concentrations were obtained by the cold-acid purge-and-trap technique during spring and summer at six locations along the Mississippi River floodplain. SEM-AVS values and AVS concentrations did not vary significantly between locations during both seasons. AVS concentrations were significantly greater during summer than spring, resulting in significantly lower SEM-AVS values in summer. Total SEM concentrations did not significantly vary between seasons or specific locations. SEM-AVS values were greater than one at each location during both seasons. Sediment metal toxicity was predicted to be absent for benthic organisms along the river floodplain. PMID:11680760

  14. Heavy metal accumulation in the mole, Talpa europea, and earthworms as an indicator of metal bioavailability in terrestrial environments

    SciTech Connect

    Ma, W.

    1987-12-01

    Bioaccumulation studies in animals can supply valuable information to supplement the data obtained by chemical analysis of pollutants in abiotic samples. With respect to the terrestrial ecosystem, suitable indicator species in the decomposer subsystem can be identified on the basis of functional characteristics and trophic level. Investigations on metal behavior at the first trophic level, done in lumbricid earthworms showed that the potential for bioaccumulation depends on the degree of contamination as well as on the metal-binding capacity of the soil. The present study was performed to investigate metal behavior at a higher trophic level, and the mole (Talpa europea) was chosen a representative of the terrestrial decomposer subsystem. As earthworms are the preferred food of moles, they provide the major source of ingested metals to these animals. The food chain involving earthworms and moles provides an example of a critical pathway for potentially toxic non-essential metals such as cadmium and lead.

  15. Partitioning, bioavailability and origin of heavy metals from the Nador Lagoon sediments (Morocco) as a basis for their management

    NASA Astrophysics Data System (ADS)

    González, I.; Águila, E.; Galán, E.

    2007-08-01

    Nador Lagoon sediments show low trace element concentrations, and, in relation to the lagoon geochemical baseline, only some anomalies for As, Cd, Cu and Pb in the NW of the lagoon deserve to be outstanding. The distribution of major, minor and trace elements in the lagoon allows a breakdown in four zones. Between “Beni Ensar” and “Atelouane” (zone A), a quite confined zone rich in organic matter and S, the most important trace-element anomalies (As, Cd, Co, Cu, Mn, Pb, Zn) were found, mainly around industry and old mining activities. In the surrounding of the city of Nador (zone B), the anomalies correspond to Mn, Cu and Zn. The coastal barrier and Kebdana channel (zone C) show moderately concentrations of Cd, Cr and Ni at specific sites. The less polluted area is the SE of the lagoon (zone D), with no outstanding anomaly. In lagoon sediments, metal bioavailability is very low. The metal partitioning patterns show that Cu, Pb and Zn present a low availability because they are bounded to the residual, non-mobile phases of the sediments. Only in some sites, the fraction was associated with organic matter, which could be liberated easily. Arsenic is concentrated in both the residual phases and the organic matter, the latter being more available. Cadmium is mainly concentrated in some samples in the interchangeable fraction, which could be considered as a potentially toxic element because it is easily released. Concerning the origin of these trace elements, those found in zone A correspond mostly to a natural source by weathering of mount Gourougou volcanic rocks (As, Co, Cu, Pb and Zn), and to an anthropogenic origin (Cd) owing to the presence of industry and old mines. In zone B, contributions of Cu and Zn enter the lagoon through soil weathering and river-borne, and as anthropogenic pollution from urban wastes. In zone C the most important pollutant is Cd deduced to be of anthropogenic origin from the close industry and intensive agriculture area. In spite

  16. Heavy Metal Contaminated Soils in Riverside Park, Milwaukee, WI: Character, Bioavailability, and Distribution

    NASA Astrophysics Data System (ADS)

    Dansand, J. J.; Knudsen, A. C.

    2007-12-01

    Prior to being breached in 1990, the North Avenue Dam on the Milwaukee River had created a 2.5-mile impoundment for over 150 years. Upstream urban runoff and industrial pollution resulted in the deposition of heavy metal rich sediments in the slow moving waters of the impoundment. After the dam removal, the river returned to a more natural flowpath and as the river narrowed, newly exposed riverbed was annexed as part of Riverside Park, enabling ecological recovery efforts on the river and riparian zones. However, these newly exposed soils are enriched with heavy metal contaminants, most notably, Pb, Zn, Cd, Cu, and Ni, concentrated by the impoundment. The current study has analyzed the location and concentrations of these trace metals, as well as their mobility and availability. This study is being conducted in conjunction with the Urban Ecology Center, a nonprofit environmental organization located in Riverside Park that is dedicated to serving the local community and urban youth while restoring and protecting the natural areas along the Milwaukee River. Analyses have included determination of general soil parameters such as particle size, organic content, and point of zero charge analyses. Beyond bulk chemical analysis, we have conducted selective sequential extractions to estimate the chemical speciation of these elements, which showed that approximately 30 percent of contaminants are highly available. Additionally, the soils have been analyzed with an Electron Microprobe to directly observe phase relationships of metals in the soils. Microprobe and other analyses have shown that heavy metals are associated with a variety of phases, including Mn and Fe oxy-hydroxides, and vary in concentration and phase relationships with depth and distance from the river. Finally, a field-portable x-ray fluorescence spectrometer (pXRF), coupled with GPS data, is being used to create a geochemical map of heavy metal distributions throughout the park.

  17. Freshwater molluscs as indicators of bioavailability and toxicity of metals in surface-water systems

    USGS Publications Warehouse

    Elder, John F.; Collins, Jerilyn J.

    1991-01-01

    During the past several decades, studies from a variety of locations have demonstrated widespread occurrence of metals in surface waters at concentrations significantly higher than background levels. Elevated concentrations are not limited to certain water types or polluted areas; they appear in all types of systems and in all geographic areas. It is clear that metals enter the aquatic systems from diverse sources, both point and nonpoint, and they can be readily transported from one system to another. Transport routes include atmospheric, terrestrial, subterranean, aquatic, and biological pathways (Elder 1988; Salomons and Forstner 1984).

  18. Assessing the impact of organic and inorganic amendments on the toxicity and bioavailability of a metal-contaminated soil to the earthworm Eisenia andrei.

    PubMed

    González, Verónica; Díez-Ortiz, María; Simón, Mariano; van Gestel, Cornelis A M

    2013-11-01

    Metal-contaminated soil, from the El Arteal mining district (SE Spain), was remediated with organic (6% compost) and inorganic amendments (8% marble sludge) to reduce the mobility of metals and to modify its potential environmental impact. Different measures of metal bioavailability (chemical analysis; survival, growth, reproduction and bioaccumulation in the earthworm Eisenia andrei), were tested in order to evaluate the efficacy of organic and inorganic amendments as immobilizing agents in reducing metal (bio)availability in the contaminated soil. The inorganic amendment reduced water and CaCl2-extractable concentrations of Cd, Pb, and Zn, while the organic amendment increased these concentrations compared to the untreated soil. The inorganic treatment did not significantly reduce toxicity for the earthworm E. andrei after 28 days exposure. The organic amendment however, made the metal-contaminated soil more toxic to the earthworms, with all earthworms dying in undiluted soil and completely inhibiting reproduction at concentrations higher than 25%. This may be due to increased available metal concentrations and higher electrical conductivity in the compost-amended soil. No effects of organic and inorganic treatments on metal bioaccumulation in the earthworms were found and metal concentrations in the earthworms increased with increasing total soil concentrations. PMID:23677751

  19. Assessing the bioavailability and risk from metal contaminated soils and dusts#

    EPA Science Inventory

    Exposure to contaminated soil and dust is an important pathway in human and ecological risk assessment and often is the "risk-driver" for metal contaminated soil. Site-specific soil physical and chemical characteristics, as well as biological factors, determine the bioavailabilit...

  20. Metal bioavailability and toxicity to fish in low-alkalinity lakes - a critical-review

    USGS Publications Warehouse

    Spry, D.J.; Wiener, J.G.

    1991-01-01

    Fish in low-alkalinity lakes having ph of 6.0-6.5 Or less often have higher body or tissue burdens of mercury, cadmium, and lead than do fish in nearby lakes with higher ph. The greater bioaccumulation of these metals in such waters seems to result partly from the greater aqueous abundances of biologically available forms (ch3hg+, cd2+, and pb2+) at low ph. In addition, the low concentrations of aqueous calcium in low-alkalinity lakes increase the permeability of biological membranes to these metals, which in fish may cause greater uptake from both water and food. Fish exposed to aqueous inorganic aluminum in the laboratory and field accumulate the metal in and on the epithelial cells of the gills; however, there is little accumulation of aluminum in the blood or internal organs. In low-ph water, both sublethal and lethal toxicity of aluminum has been clearly demonstrated in both laboratory and field studies at environmental concentrations. In contrast, recently measured aqueous concentrations of total mercury, methylmercury, cadmium, and lead in low-alkalinity lakes are much lower than the aqueous concentrations known to cause acute or chronic toxicity in fish, although the vast majority of toxicological research has involved waters with much higher ionic strength than that in low-alkalinity lakes. Additional work with fish is needed to better assess (1) the toxicity of aqueous metals in low-alkalinity waters, and (2) the toxicological significance of dietary methylmercury and cadmium.

  1. Metal distribution and bioavailability in surface sediments from the Huaihe River, Anhui, China.

    PubMed

    Wang, Jie; Liu, Guijian; Lu, Lanlan; Liu, Houqi

    2016-01-01

    This study presents the total concentrations and chemical fractionations of metals (Cu, Pb, Zn, Ni, Fe, and Mn) in 54 surface sediment samples collected from the Huaihe River (Anhui Province) in eastern China. Compared with the average shale values, Zn and Pb exhibited the most substantial anthropogenic enrichment, especially in Fengtai and Huainan areas, the main industrial districts along the Huaihe River (Anhui Province). Low levels of Cu and Ni were observed in the sediments. Based on risk assessment code (RAC), the metals associated with weak acid soluble (F1) in the Huaihe River sediments followed the order: Mn > Zn > Cu > Pb > Ni > Fe. Manganese presented the most potential for releasing into the aqueous environment and can easily enter the food chain. Copper, zinc, nickel, and iron were found dominant in the residual fraction, implying that these four metals were strongly bound to the sediments. Lead showed a different partitioning pattern from that of other metals studied, with a large percentage in Fe-Mn oxide fraction, indicating that slight redox potential changes may make significant influence on the removability of Pb. Moreover, Cu in oxidizable (F3) and residual (F4) fractions presented high positive correlation with organic matter, which can explain the high percentage of Cu in these two fractions. PMID:26627208

  2. Distribution of pesticides, PAHs, PCBs, and bioavailable metals in depositional sediments of the lower Missouri River, USA

    USGS Publications Warehouse

    Echols, K.R.; Brumbaugh, W.G.; Orazio, C.E.; May, T.W.; Poulton, B.C.; Peterman, P.H.

    2008-01-01

    The lower Missouri River was studied to determine the distribution of selected persistent organic pollutants and bioavailable metals in depositional sediments. Nineteen sites between Omaha, Nebraska and Jefferson City, Missouri were sampled. This stretch of the river receives point-source and non-point-source inputs from industrial, urban, and agricultural activities. As part of an ecological assessment of the river, concentrations of 29 legacy organochlorine pesticides (OC pesticides), including chlordanes, DDTs, and hexachlorocyclohexanes; a select list of current-use pesticides, including trifluralin, diazinon, chlorpyrifos, and permethrin, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), divalent metals (copper, nickel, zinc, cadmium, and lead), and polybrominated diphenyl ethers (PBDEs) were determined. Concentrations (dry weight basis) of OC pesticides in the sediments were less than 1 ng/g, with the exception of the backwater sediment collected from the mouth of the Blue River in the Kansas City metropolitan area, which contained up to 20 ng/g total chlordane, 8.1 ng/g p,p???-DDE, 1.5 ng/g lindane, 4.8 ng/g dieldrin, and 3 ng/g endrin. Concentrations of chlorpyrifos and permethrin ranged from less than 1 ng/g to 5.5 ng/g and 44 ng/g, respectively. Concentrations of PCBs ranged from less than 11 ng/g to 250 ng/g, with the Blue River and Sibley sediments containing 100 and 250 ng/g total PCBs, respectively. Concentrations of total PAHs at 17 of the 19 sites ranged from 250 to 700 ng/g, whereas the Riverfront and Blue River sites in Kansas City contained 1100 ng/g and nearly 4000 ng/g, respectively. Concentrations of the metals did not vary significantly among most sites; however, the Blue River site contained elevated concentrations of zinc (104 ??g/g), cadmium (0.7 ??g/g), and lead (34 ??g/g) compared to the other sites. The moderately high concentrations of acid-volatile sulfide in the sediments suggest a low potential for metal

  3. Bioavailable metals in tourist beaches of Richards Bay, Kwazulu-Natal, South Africa.

    PubMed

    Vetrimurugan, E; Jonathan, M P; Roy, Priyadarsi D; Shruti, V C; Ndwandwe, O M

    2016-04-15

    Acid Leachable Trace Metal (ALTMs) concentrations in tourist beaches of Richards Bay, Kwazulu-Natal, South Africa were assessed. 53 surface sediment samples were collected from five different beaches (Kwambonambi Long Beach; Nhlabane Beach; Five Mile Beach; Alkanstrand Beach and Port Durnford Beach). The results of ALTMs (Fe, Mn, Cr, Cu, Ni, Co, Pb, Cd, Zn, As, Hg) suggest that they are enriched naturally and with some local industrial sources for (avg. in μgg(-1)) Fe (3530-7219), Mn (46-107.11), Cd (0.43-1.00) and Zn (48-103.98). Statistical results indicate that metal concentrations were from natural origin attributed to leaching, weathering process and industrial sources. Comparative studies of metal concentrations with sediment quality guidelines and ecotoxicological values indicate that there is no adverse biological effect. Enrichment factor and geoaccumulation indices results indicate moderate enhancement of Fe (Igeo class 1 in FMB), Cd (EF>50; Igeo classes 2-4) and Zn (Igeo classes 1 & 2). PMID:26853593

  4. Bioavailability of metals and toxicity identification of the sediment pore waters from Plow Shop Pond, Fort Devens, Massachusetts

    SciTech Connect

    Jop, K.; Putt, A.; Shepherd, S.; Askew, A.; Bleiler, J.; Reed, S.; George, C.

    1995-12-31

    Plow Shop Pond is a shallow, 30-acre pond located at Fort Devens, Massachusetts. An ecological risk assessment was conducted at Plow Shop Pond as part of a remedial investigation. Preliminary analysis revealed high concentrations of arsenic, copper, chromium, lead, and mercury in the sediment. Therefore, a laboratory testing program was incorporated into this investigation to assess the toxicity of sediments to aquatic organisms. The screening testing program included short-term chronic exposure of Ceriodaphnia dubia to pore waters, 10-day exposures of Chironomus tentans and Hyalella azteca to bulk sediments and a bioaccumulation study with Lumbriculus variegatus. Survival and reproduction of C. dubia, growth of amphipods and reproduction of oligochaetes appeared to indicate sediment toxicity at some sites within the pond. Although high concentrations of arsenic, copper, mercury and lead were detected in the whole sediments and pore waters, the response could not be correlated to a particular element. Also, relatively low bioaccumulation of methyl mercury and high uptake of inorganic mercury was established for three sediment samples. To characterize and identify the source of toxicity, a toxicity identification evaluation program using sediments collected at several locations was performed. The pore water from these samples was used for fractionation coupled with a 10-day test using H. azteca. Survival and growth were evaluated as endpoints during the exposures. Partitioning of metals and their bioavailability was influenced primarily by organic carbon and AVS concentration. At least two constituents were responsible for the toxicity.

  5. Metallic nanoparticles: microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation.

    PubMed

    Pereira, Luciana; Mehboob, Farrakh; Stams, Alfons J M; Mota, Manuel M; Rijnaarts, Huub H M; Alves, M Madalena

    2015-03-01

    The impact of nanotechnology in all areas of science and technology is evident. The expanding availability of a variety of nanostructures with properties in the nanometer size range has sparked widespread interest in their use in biotechnological systems, including the field of environmental remediation. Nanomaterials can be used as catalysts, adsorbents, membranes, water disinfectants and additives to increase catalytic activity and capability due to their high specific surface areas and nanosize effects. Thus, nanomaterials appear promising for new effective environmental technologies. Definitely, nanotechnology applications for site remediation and wastewater treatment are currently in research and development stages, and new innovations are underway. The synthesis of metallic nanoparticles has been intensively developed not only due to its fundamental scientific interest but also for many technological applications. The use of microorganisms in the synthesis of nanoparticles is a relatively new eco-friendly and promising area of research with considerable potential for expansion. On the other hand, chemical synthesis occurs generally under extreme conditions (e.g. pH, temperature) and also chemicals used may have associated environmental and human health impacts. This review is an overview of current research worldwide on the use of microorganisms during the biosynthesis of metallic nanoparticles and their unique properties that make them good candidates for many applications, including in biotechnology. PMID:23937251

  6. Assessment of trace metals contamination level, bioavailability and toxicity in sediments from Dakar coast and Saint Louis estuary in Senegal, West Africa.

    PubMed

    Diop, Cheikh; Dewaelé, Dorothée; Cazier, Fabrice; Diouf, Amadou; Ouddane, Baghdad

    2015-11-01

    Trace metals have the potential to associate with sediments that have been recognised as significant source of contamination for the benthic environment. The current study aims assessing the trace metals contamination level in sediments from Dakar coast and Saint Louis estuary, and to examine their bioavailability to predict potential toxicity of sediments. Surface sediment samples were collected between June 2012 and January 2013 in three sampling periods from eight stations. Trace metals were analysed using inductively coupled plasma-optical emission spectrometer. Geoaccumulation indexes (Igeo) showed strong pollution by Cd, Cr, Cu and Pb confirmed by enrichment factor (EF) suggesting that these metals derived from anthropogenic sources. Toxicity indexes exceeded one in several sites suggesting the potential effects on sediment-dwelling organisms, which may constitute a risk to populations' health. However, seasonal variability of metal bioavailability was noted, revealing the best period to monitor metal contamination. From an ecotoxicological point of view, concentrations of Cd, Cr, Cu and Pb were above the effects range low threshold limit of the sediment quality guidelines for adverse biological effects. In addition, with Pb concentrations above the effect range medium values in some sites, biological effects may occur. PMID:25592460

  7. Factors Affecting Liquid-Metal Embrittlement in C-103

    NASA Technical Reports Server (NTRS)

    Mclemore, R.; Lampson, F. K.

    1982-01-01

    Results of a study of weld cracks on Space Shuttle control thrustors point toward better understanding of cracking problem in columbium metal, which has also plagued nonaerospace users. Although liquid-metal embrittlement is known to be cause of problem, factors affecting growth and severity of cracks are not well understood. New results tie crack growth to type of contaminants present, grain size and level of stress present while welding is done.

  8. Toxicity and bioavailability of metals in the Missouri River adjacent to a lead refinery

    USGS Publications Warehouse

    Chapman, Duane C.; Allert, Ann L.; Fairchild, James F.; May, Thomas W.; Schmitt, Christopher J.; Callahan, Edward V.

    2001-01-01

    This study is an evaluation of the potential environmental impacts of contaminated groundwater from the ASARCO metals refining facility adjacent to the Missouri River in Omaha, Nebraska. Surface waters, sediments, and sediment pore waters were collected from the Burt-Izard drain, which transects the facility, and from the Missouri River adjacent to the facility. Groundwater was also collected from the facility. Waters and sediments were analyzed for inorganic contaminants, and the toxicity of the waters was evaluated with the Ceriodaphnia dubia 7-day test. Concentrations of several elemental contaminants were highly elevated in the groundwater, but not in river sediment pore waters. Lead concentrations were moderately elevated in whole sediment at one site, but lead concentrations in pore waters were low due to apparent sequestration by acid-volatile sulfides. The groundwater sample was highly toxic to C. dubia, causing 100% mortality. Even at the lowest groundwater concentration tested (6.25%) C. dubia survival was reduced; however, at that concentration, reproduction was not significantly different from upstream porewater reference samples. Sediment pore waters were not toxic, except reproduction in pore water collected from one downstream site was somewhat reduced. The decrease in reproduction could not be attributed to measured elemental contaminants.

  9. Ability of 3 extraction methods (BCR, Tessier and protease K) to estimate bioavailable metals in sediments from Huelva estuary (Southwestern Spain).

    PubMed

    Rosado, Daniel; Usero, José; Morillo, José

    2016-01-15

    The bioavailable fraction of metals (Zn, Cu, Cd, Mn, Pb, Ni, Fe, and Cr) in sediments of the Huelva estuary and its littoral of influence has been estimated carrying out the most popular methods of sequential extraction (BCR and Tessier) and a biomimetic approach (protease K extraction). Results were compared to enrichment factors found in Arenicola marina. The linear correlation coefficients (R(2)) obtained between the fraction mobilized by the first step of the BCR sequential extraction, by the sum of the first and second steps of the Tessier sequential extraction, and by protease K, and enrichment factors in A. marina, are at their highest for protease K extraction (0.709), followed by BCR first step (0.507) and the sum of the first and second steps of Tessier (0.465). This observation suggests that protease K represents the bioavailable fraction more reliably than traditional methods (BCR and Tessier), which have a similar ability. PMID:26656803

  10. Metal Toxicity Affects Fungal and Bacterial Activities in Soil Differently

    PubMed Central

    Rajapaksha, R. M. C. P.; Tobor-Kapłon, M. A; Bååth, E.

    2004-01-01

    Although the toxic effect of heavy metals on soil microorganism activity is well known, little is known about the effects on different organism groups. The influence of heavy metal addition on total, bacterial, and fungal activities was therefore studied for up to 60 days in a laboratory experiment using forest soil contaminated with different concentrations of Zn or Cu. The effects of the metals differed between the different activity measurements. During the first week after metal addition, the total activity (respiration rate) decreased by 30% at the highest level of contamination and then remained stable during the 60 days of incubation. The bacterial activity (thymidine incorporation rate) decreased during the first days with the level of metal contamination, resulting in a 90% decrease at the highest level of contamination. Bacterial activity then slowly recovered to values similar to those of the control soil. The recovery was faster when soil pH, which had decreased due to metal addition, was restored to control values by liming. Fungal activity (acetate-in-ergosterol incorporation rate) initially increased with the level of metal contamination, being up to 3 and 7 times higher than that in the control samples during the first week at the highest levels of Zn and Cu addition, respectively. The positive effect of metal addition on fungal activity then decreased, but fungal activity was still higher in contaminated than in control soil after 35 days. This is the first direct evidence that fungal and bacterial activities in soil are differently affected by heavy metals. The different responses of bacteria and fungi to heavy metals were reflected in an increase in the relative fungal/bacterial ratio (estimated using phospholipid fatty acid analysis) with increased metal load. PMID:15128558

  11. Metal toxicity affects fungal and bacterial activities in soil differently.

    PubMed

    Rajapaksha, R M C P; Tobor-Kapłon, M A; Bååth, E

    2004-05-01

    Although the toxic effect of heavy metals on soil microorganism activity is well known, little is known about the effects on different organism groups. The influence of heavy metal addition on total, bacterial, and fungal activities was therefore studied for up to 60 days in a laboratory experiment using forest soil contaminated with different concentrations of Zn or Cu. The effects of the metals differed between the different activity measurements. During the first week after metal addition, the total activity (respiration rate) decreased by 30% at the highest level of contamination and then remained stable during the 60 days of incubation. The bacterial activity (thymidine incorporation rate) decreased during the first days with the level of metal contamination, resulting in a 90% decrease at the highest level of contamination. Bacterial activity then slowly recovered to values similar to those of the control soil. The recovery was faster when soil pH, which had decreased due to metal addition, was restored to control values by liming. Fungal activity (acetate-in-ergosterol incorporation rate) initially increased with the level of metal contamination, being up to 3 and 7 times higher than that in the control samples during the first week at the highest levels of Zn and Cu addition, respectively. The positive effect of metal addition on fungal activity then decreased, but fungal activity was still higher in contaminated than in control soil after 35 days. This is the first direct evidence that fungal and bacterial activities in soil are differently affected by heavy metals. The different responses of bacteria and fungi to heavy metals were reflected in an increase in the relative fungal/bacterial ratio (estimated using phospholipid fatty acid analysis) with increased metal load. PMID:15128558

  12. How Environment Affects Galaxy Metallicity: Lessons from the Illustris Simulation

    NASA Astrophysics Data System (ADS)

    Genel, S.

    2016-06-01

    Recent studies have found higher galaxy metallicities in richer environments. It is not yet clear, however, whether metallicity-environment dependencies are merely an indirect consequence of environmentally dependent formation histories, or of environment related processes directly affecting metallicity. Here, we present a detailed study of metallicity-environment correlations in a cosmological hydrodynamical simulation, in particular the Illustris simulation. Illustris galaxies display similar relations to those observed. Utilizing our knowledge of simulated formation histories, and leveraging the large simulation volume, we construct galaxy samples of satellites and centrals that are matched in formation histories. This allows us to find that ˜1/3 of the metallicity-environment correlation is due to different formation histories in different environments. This is a combined effect of satellites (in particular, in denser environments) having on average lower z=0 star formation rates (SFRs), and of their older stellar ages, even at a given z=0 SFR. Most of the difference, ˜2/3, however, is caused by the higher concentration of star-forming disks of satellite galaxies, as this biases their SFR-weighted metallicities toward their inner, more metal-rich parts. With a newly defined quantity, the `radially averaged' metallicity, which captures the metallicity profile but is independent of the SFR profile, the metallicities of satellites and centrals become environmentally independent once they are matched in formation history. This effect may also explain most of the differences between metallicities of galaxies in different large-scale environmental densities. A prediction for observations is that those differences become smaller as smaller apertures are considered.

  13. Bioavailability of heavy metals in water and sediments from a typical Mediterranean Bay (Málaga Bay, Region of Andalucía, Southern Spain).

    PubMed

    Alonso Castillo, M L; Sánchez Trujillo, I; Vereda Alonso, E; García de Torres, A; Cano Pavón, J M

    2013-11-15

    Concentrations of heavy metals were measured in sediment and water from Málaga Bay (South Spain). In the later twentieth century, cities such as Málaga, have suffered the impact of mass summer tourism. The ancient industrial activities, and the actual urbanization and coastal development, recreation and tourism, wastewaters treatment facilities, have been sources of marine pollution. In sediments, Ni was the most disturbing metal because Ni concentrations exceeded the effects range low (ERL), concentration at which toxicity could start to be observed in 85% of the samples analyzed. The metal bioavailability decreased in the order: Cd>Ni>Pb>Cu>Cr. In the sea water samples, Cd and Pb were the most disturbing metals because they exceeded the continuous criteria concentration (CCC) of US EPA in a 22.5% and 10.0% of the samples, respectively. Statistical analyses (ANOVA, PCA, CA) were performed. PMID:24054786

  14. Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass.

    PubMed

    Munier-Lamy, C; Deneux-Mustin, S; Mustin, C; Merlet, D; Berthelin, J; Leyval, C

    2007-01-01

    The aim of this study was to investigate the influence of plant species, especially of their rhizosphere soil, and of inoculation with an arbuscular mycorrhizal (AM) fungus on the bioavailability of selenium and its transfer in soil-plant systems. A pot experiment was performed with a loamy clay soil and four plant species: maize, lettuce, radish and ryegrass, the last one being inoculated or not with an arbuscular mycorrhizal fungus (Glomus mosseae). Plant biomass and Se concentration in shoots and roots were estimated at harvest. Se bioavailability in rhizosphere and unplanted soil was evaluated using sequential extractions. Plant biomass and selenium uptake varied with plant species. The quantity of rhizosphere soil also differed between plants and was not proportional to plant biomass. The highest plant biomass, Se concentration in plants, and soil to plant transfer factor were obtained with radish. The lowest Se transfer factors were obtained with ryegrass. For the latter, mycorrhizal inoculation did not significantly affect plant growth, but reduced selenium transfer from soil to plant by 30%. In unplanted soil after 65 days aging, more than 90% of added Se was water-extractable. On the contrary, Se concentration in water extracts of rhizosphere soil represented less than 1% and 20% of added Se for ryegrass and maize, respectively. No correlation was found between the water-extractable fraction and Se concentration in plants. The speciation of selenium in the water extracts indicated that selenate was reduced, may be under organic forms, in the rhizosphere soil. PMID:17544553

  15. Charge properties of peptides derived from casein affect their bioavailability and cytoprotection against H2O2-induced oxidative stress.

    PubMed

    Wang, Bo; Xie, Ningning; Li, Bo

    2016-04-01

    The effects of charge properties of casein peptides on absorption stability, antioxidant activity, and cytoprotection were evaluated. Alcalase hydrolysates of casein were separated into 4 fractions by cation-exchange chromatography according to charge properties. After simulated digestion and Caco-2 cell transmembrane transport, we determined the total antioxidant capacity (Trolox equivalent antioxidative capacity and oxygen radical antioxidant activity) and nitrogen content of peptide fractions to estimate available antioxidant efficacy and bioavailability (BA) of peptides. Results showed that negatively charged peptide fractions had greater BA and antioxidant activities after digestion and absorption. The peptide permeates were used to test the cytoprotective effect against H2O2-induced oxidative damage in HepG-2 cells. All peptide permeates increased cell viability, elevated catalase activity, and decreased superoxide dismutase activity. However, negatively charged peptide fractions preserved cell viability to a greater degree. Therefore, the negatively charged peptides from casein may be potential antioxidants and could be used as ingredients in functional foods and dietary supplements. PMID:26851854

  16. Measuring bioavailable metals using diffusive gradients in thin films (DGT) and transplanted seaweed (Fucus vesiculosus), blue mussels (Mytilus edulis) and sea snails (Littorina saxatilis) suspended from monitoring buoys near a former lead-zinc mine in West Greenland.

    PubMed

    Søndergaard, Jens; Bach, Lis; Gustavson, Kim

    2014-01-15

    Measuring loads of bioavailable metals is important for environmental assessment near mines and other industrial sources. In this study, a setup of monitoring buoys was tested to assess loads of bioavailable metals near a former Pb-Zn mine in West Greenland using transplanted seaweed, mussels and sea snails. In addition, passive DGT samplers were installed. After a 9-day deployment period, concentrations of especially Pb, Zn and Fe in the species were all markedly elevated at the monitoring sites closest to the mine. Lead concentrations in all three species and the DGT-Pb results showed a significant linear correlation. Zinc and Fe concentrations were less correlated indicating that the mechanisms for Zn and Fe accumulation in the three species are more complex. The results show that there is still a significant load of metals from the mine and that such buoys can be an adequate method to assess present loads of bioavailable metals. PMID:24253021

  17. Bioavailable concentrations of germanium and rare earth elements in soil as affected by low molecular weight organic acids and root exudates

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Székely, Balázs; Kummer, Nicolai-Alexeji; Heinemann, Ute; Tesch, Silke; Heilmeier, Hermann

    2014-05-01

    , lanthan, neodymium, gadolinium and erbium in the rhizosphere and therefore the enhancement of bioavailability of the mentioned elements to plants. Based on the suction cup experiment we conclude that in vertical soil profile the bioavailable germanium is heavily affected by the activity of exudates, as the complexation processes of germanium take place at the root zone and below affected by the interplay of the infiltration of citric acid solutions and the actually produced exudates. These studies have been carried out in the framework of the PhytoGerm project, financed by the Federal Ministry of Education and Research, Germany. BS contributed as an Alexander von Humboldt Research Fellow. The authors are grateful to students and laboratory assistants contributing in the field work and sample preparation.

  18. The Freundlich adsorption isotherm constants and prediction of phosphorus bioavailability as affected by different phosphorus sources in two Kansas soils.

    PubMed

    Shafqat, Mustafa N; Pierzynski, Gary M

    2014-03-01

    Phosphorus (P) adsorption onto soil constituents influences P bioavailability from both agronomic and environmental perspectives. In this study, the P availability from different P sources along with utility of Freundlich adsorption coefficients on the predictability of various crop growth parameters were assessed. Two soils were amended with 150mgPkg(-1) each from six different P sources comprised of manures from two types of ruminants animals, three types of monogastric animals, and inorganic P fertilizer. Corn (Zea mays) was grown and harvested seven times under greenhouse conditions to remove P from the P amended treatments. The application of all P sources reduced the value of Freundlich K and increased the value of Freundlich 1/n and equilibrium P concentration (EPC0) in both soils compared to the un-amended control before cropping. The swine (Sus scrofa) manure (HM) resulted in significant smaller values of Freundlich K and larger values of 1/n in the P deficient Eram-Lebo soil compared to other P sources while, the opposite was true for the turkey (Meleagris gallopava) litter (TL) in the Ulysses soil. The corn biomass, tissue P concentration and P uptake were significantly influenced by all P sources during the first harvest and the total P uptake during seven harvests in both soils compared to the control treatment. Both Freundlich coefficients had strong relationships with the aforementioned corn parameters in the P deficient Eram-Lebo soil while, strength of the association was weak or missing in the Ulysses soil which had optimum levels of antecedent P. PMID:24238913

  19. Integrating hierarchical bioavailability and population distribution into potential eco-risk assessment of heavy metals in road dust: A case study in Xiandao District, Changsha city, China.

    PubMed

    Huang, Jinhui; Li, Fei; Zeng, Guangming; Liu, Wenchu; Huang, Xiaolong; Xiao, Zhihua; Wu, Haipeng; Gu, Yanling; Li, Xue; He, Xiaoxiao; He, Yan

    2016-01-15

    Modified eco-risk assessment method (MEAM) integrated with the hierarchical bioavailability determined by the fraction detection of Cd, Pb, Zn, Cu, Cr in road dust samples and the local population distribution derived from the local land use map, was proposed to make the hierarchical eco-risk management strategy in Xiandao District (XDD), China. The geo-accumulation index (Igeo), the original potential eco-risk index (Er(i)) and the modified eco-risk assessment index (MEAI) were used to identify the priority pollutant. Compared with the Hunan soil background values, evaluated metal concentrations were found to different extent. The results of mean Igeo, Er(i) and bioavailability of studied metals revealed the following orders: Cd>Pb ≈ Zn>Cu ≈ Cr, Cd>Pb>Cu>Cr>Zn and Cd>Zn>Cu ≈ Pb>Cr, respectively. Therefore, Cd was regarded as the priority pollutant. To identify the priority areas taking into account cost consideration, the hierarchical risk map based on the results of the modified eco-risk assessment index with overlay of the population density map was needed and made. The west and partly south areas of XDD were under higher eco-risk generally. Moreover, the whole XDD area was divided into 4 area categories with different management priorities based on the possibility of occurrence of eco-risk, and the hierarchical risk management strategy associated with protecting local population was suggested to facilitate allocation of funds for risk management. PMID:26473699

  20. The impact of sediment bioturbation by secondary organisms on metal bioavailability, bioaccumulation and toxicity to target organisms in benthic bioassays: Implications for sediment quality assessment.

    PubMed

    Remaili, Timothy M; Simpson, Stuart L; Amato, Elvio D; Spadaro, David A; Jarolimek, Chad V; Jolley, Dianne F

    2016-01-01

    Bioturbation alters the properties of sediments and modifies contaminant bioavailability to benthic organisms. These naturally occurring disturbances are seldom considered during the assessment of sediment quality. We investigated how the presence (High bioturbation) and absence (Low bioturbation) of a strongly bioturbating amphipod within three different sediments influenced metal bioavailability, survival and bioaccumulation of metals to the bivalve Tellina deltoidalis. The concentrations of dissolved copper decreased and manganese increased with increased bioturbation. For copper a strong correlation was observed between increased bivalve survival (53-100%) and dissolved concentrations in the overlying water. Increased bioturbation intensity resulted in greater tissue concentrations for chromium and zinc in some test sediments. Overall, the results highlight the strong influence that the natural bioturbation activities from one organism may have on the risk contaminants pose to other organisms within the local environment. The characterisation of field-based exposure conditions concerning the biotic or abiotic resuspension of sediments and the rate of attenuation of released contaminants through dilution or readsorption may enable laboratory-based bioassay designs to be adapted to better match those of the assessed environment. PMID:26589100

  1. Urban legacies and soil management affect the concentration and speciation of trace metals in Los Angeles community garden soils.

    PubMed

    Clarke, Lorraine Weller; Jenerette, G Darrel; Bain, Daniel J

    2015-02-01

    Heavy metals in urban soils can compromise human health, especially in urban gardens, where gardeners may ingest contaminated dust or crops. To identify patterns of urban garden metal contamination, we measured concentrations and bioavailability of Pb, As, and Cd in soils associated with twelve community gardens in Los Angeles County, CA. This included sequential extractions to partition metals among exchangeable, reducible, organic, or residual fractions. Proximity to road increased all metal concentrations, suggesting vehicle emissions sources. Reducible Pb increased with neighborhood age, suggesting leaded paint as a likely pollutant source. Exchangeable Cd and As both increased with road proximity. Only cultivated soils showed an increase in exchangeable As with road proximity, potentially due to reducing humic acid interactions while Cd bioavailability was mitigated by organic matter. Understanding the geochemical phases and metal bioavailability allows incorporation of contamination patterns into urban planning. PMID:25437835

  2. The role of acid-volatile sulfide and interstitial water metal concentrations in determining bioavailability of cadmium and nickel from contaminated sediments to the marine polychaete Neanthes arenaceodentata

    SciTech Connect

    Pesch, C.E.; Hansen, D.J.; Boothman, W.S. . Environmental Research Lab.); Berry, W.J. ); Mahony, J.D. . Chemistry Dept.)

    1995-01-01

    This study investigated the influence of acid-volatile sulfide (AVS) and interstitial water (IW) metal concentrations on bioavailability and toxicity of Cd and Ni to an infaunal sediment-ingesting marine worm, Neanthes Arenaceodentata. Ten-d exposures were conducted with sediments, contaminated primarily with Cd and Ni, from Foundry Cove (Hudson River, NY), and with uncontaminated sediments spiked with Cd or Ni. Molar ratios of simultaneously extracted metal (SEM)/AVS ranged from < 0.02 to 44 for Cd-spiked, 0.02 to 241 for Ni-spiked, and <0.06 to 125 for Foundry Cove sediments. In all experiments, significant mortality was not observed when SEM/AVS ratios were <1.0 and interstitial water toxic units (IWTU) were <1.0. In the Cd and Ni-spiked experiments, when SEM/AVS ratios or IWTUs were >1.0, sediments were either lethal or worms did not burrow. Mortality of worms in Foundry Cove sediments was [le] 20%, and worms burrowed in all these sediments. However, IW contained <1.0 TU (Ni + Cd) in all Foundry Cove sediments except one (IWTU = 1.69). Metal concentrations in worms generally increased with increases in sediment metal concentration, SEM/AVS molar ratio, and IW metal concentration. The presence of metal in worms from sediments from SEM/AVS ratios <1.0 may be evidence of release of Cd or Ni from oxidized metal sulfide (a result of burrowing), uptake of metal from ingested sediment, or adsorption to body surfaces. These results support the hypothesis that when the concentration of AVS in sediments exceeds that of divalent metals sediments will not be acutely toxic. However, a greater number of sediments was correctly predicted to be nontoxic when interstitial water metal concentration of <1.0 TU was used.

  3. Effect of bioavailability on the fate of hydrophobic organic compounds and metal in treatment of young landfill leachate by membrane bioreactor.

    PubMed

    Zolfaghari, M; Droguia, P; Brar, S K; Buelna, G; Dubé, R

    2016-10-01

    Complex dissolved organic matter (DOM) present in landfill leachate provides reliable media for adsorption of highly hydrophobic contaminants, such as Di 2-ethyl hexyl phthalate (DEHP). In this research, the feasibility of submerged membrane bioreactor (SMBR) for treatment of landfill leachate (LFL) was determined. Later, the operating conditions were optimized for removal of DEHP, COD, NH4(+) and PO4(3-), and finally the effect of bioavailability was examined by introduction of different concentrations of humic acid into the influent. The result revealed that presence of complex agglomerated organic compounds increased the removal efficiency of DEHP and COD, even though DEHP biodegradation rate in sludge dramatically decreased (from 58.8% to 12.8%). MBR retention of different metals in the absence and in the presence of recalcitrant DOM was also studied. Like DEHP, ternary interaction between metals, DOM, and sludge play a pivotal role in their removal efficiency and their concentration in sludge. PMID:27448320

  4. Relevant role of dissolved humic matter in phosphorus bioavailability in natural and agronomical ecosystems through the formation of Humic-(Metal)-Phosphate complexes

    NASA Astrophysics Data System (ADS)

    Baigorri, Roberto; Urrutia, Óscar; Erro, Javier; Pazos-Pérez, Nicolás; María García-Mina, José

    2016-04-01

    Natural Organic Matter (NOM) and the NOM fraction present in soil solution (dissolved organic matter: DOM) are currently considered as fundamental actors in soil fertility and crop mineral nutrition. Indeed, decreases in crop yields as well as soil erosion are closely related to low values of NOM and, in fact, the use of organic amendments as both soil improvers and plant growth enhancers is very usual in countries with soils poor in NOM. This role of NOM (and DOM) seems to be associated with the presence of bio-transformed organic molecules (humic substances) with high cation chelating-complexing ability. In fact, bioavailable micronutrients with metallic character in soil solutions of alkaline and calcareous soils are forming stable complexes with DOM. This beneficial action of DOM also concerns other plant nutrients such as inorganic phosphate (Pi). Among the different mechanisms involved in the beneficial action of DOM on P bioavailability, the possible formation of poly-nuclear complexes including stable chemical bonds between negative binding sites in humic substances and Pi through metal bridges in soil solution might be relevant, especially in acidic soils. In fact, several studies have proven that these complexes can be obtained in the laboratory and are very efficient in prevent Pi soil fixation and improve Pi root uptake. However, clear experimental evidence about their presence in soil solutions of natural and agronomical soil ecosystems has not published yet. We present here experimental results supporting the real presence of stable Pi-metal-Humic (PMH) complexes in the soil solution of several acidic soils. The study is based on the physico-chemical characterization (31P-NMR, FTIR, TEM-EDAX, ICP-OES) of the DOM fraction isolated by ultrafiltration from the soil solution of several representative acidic soils. In average, more than 60 % of Pi was found in the soil solution humic fraction forming stable humic-metal (Fe, Al) complexes.

  5. Bioavailability, Intracellular Mobilization of Nickel, and HIF-1α Activation in Human Lung Epithelial Cells Exposed to Metallic Nickel and Nickel Oxide Nanoparticles

    PubMed Central

    Liu, Xinyuan; Smith, Ashley; McNeil, Kevin; Weston, Paula; Zhitkovich, Anatoly; Hurt, Robert; Kane, Agnes B.

    2011-01-01

    Micron-sized particles of poorly soluble nickel compounds, but not metallic nickel, are established human and rodent carcinogens. In contrast, little is known about the toxic effects of a growing number of Ni-containing materials in the nano-sized range. Here, we performed physicochemical characterization of NiO and metallic Ni nanoparticles and examined their metal ion bioavailability and toxicological properties in human lung epithelial cells. Cellular uptake of metallic Ni and NiO nanoparticles, but not metallic Ni microparticles, was associated with the release of Ni(II) ions after 24–48 h as determined by Newport Green fluorescence. Similar to soluble NiCl2, NiO nanoparticles induced stabilization and nuclear translocation of hypoxia-inducible factor 1α (HIF-1α) transcription factor followed by upregulation of its target NRDG1 (Cap43). In contrast to no response to metallic Ni microparticles, nickel nanoparticles caused a rapid and prolonged activation of the HIF-1α pathway that was stronger than that induced by soluble Ni (II). Soluble NiCl2 and NiO nanoparticles were equally toxic to H460 human lung epithelial cells and primary human bronchial epithelial cells; metallic Ni nanoparticles showed lower toxicity and Ni microparticles were nontoxic. Cytotoxicity induced by all forms of Ni occurred concomitant with activation of an apoptotic response, as determined by dose- and time-dependent cleavage of caspases and poly (ADP-ribose) polymerase. Our results show that metallic Ni nanoparticles, in contrast to micron-sized Ni particles, activate a toxicity pathway characteristic of carcinogenic Ni compounds. Moderate cytotoxicity and sustained activation of the HIF-1α pathway by metallic Ni nanoparticles could promote cell transformation and tumor progression. PMID:21828359

  6. Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. Czern. (var. Vaibhav) grown on tannery waste contaminated soil.

    PubMed

    Gupta, Amit K; Sinha, Sarita

    2007-10-01

    Various single extractant (DTPA, EDTA, NH(4)NO(3), CaCl(2), and NaNO(3)) was used to evaluate the bioavailability of heavy metals from tannery wastewater contaminated soil and translocation of metals to the plant of Brassica juncea L. Czern. (var. Vaibhav). The extraction capacity of the metals was found in the order: EDTA>DTPA>NH(4)NO(3)>CaCl(2)>NaNO(3). Cluster analysis between different extractants showed close relationship between DTPA, CaCl(2), NH(4)NO(3) except EDTA and NaNO(3), which showed dispersed relationship. Principal components analysis (PCA) applied to metals extracted with EDTA showed different grouping of metals (i) Na, Co, Pb, Ni and (ii) K, Mn, Zn, Cr, in the loading plot which showed similar availability from contaminated soil. PCA applied on metals accumulation data in the plants also exhibited different grouping of variables (i) Cu, Co, Ni, Cd and (ii) Mn, Zn, Pb, Fe showed almost similar accumulation pattern in the plants. The data displayed positive loading for Mn and negative loading for Cr with PC(2). Cd and Zn have shown high loadings in PC(1) and PC(2), respectively. The translocation of most of the tested metals (Pb, Mn, Cd, Ni, Fe) in the shoot of the plant was found better except Cr, Cu, Co and K. The correlation analysis between different extractable metals and metal accumulation in the shoot of the plant showed significant positive correlation with Pb and Cr. Overall, extraction capacity and cluster analysis augmented that EDTA was found suitable extractant for tannery wastewater contaminated soil to B. juncea. PMID:17475401

  7. Distribution and ecotoxicology of bioavailable metals and As in surface sediments of Paraguaçu estuary, Todos os Santos Bay, Brazil.

    PubMed

    Pereira, Taís de S; Moreira, Ícaro T A; de Oliveira, Olívia M C; Rios, Mariana C; Filho, Wilton A C S; de Almeida, Marcos; de Carvalho, Gilson Correia

    2015-10-15

    Surface sediments collected in the intertidal zone of Paraguaçu estuary in July, 2013, were analyzed for organic matter, nitrogen, phosphorus, grain size fractions and partial concentrations of 16 metals. The USEPA 3051A method and ICP-OES and CV-AAS techniques were chosen to metal analysis. Pollution indices (EF, Igeo and PIN) and a comparison with sediment quality guidelines (UET, ERL, ERM, TEL and PEL of NOAA) were conducted in order to evaluate the potential metal impacts over the area. Principal Component Analysis (PCA) and Pearson correlation results showed the importance of organic matter content and the fine-grained fraction of sediments on the control of the bioavailable metals distribution. The Paraguaçu estuary already has anthropogenic enrichment relative to the background level, especially for Mn, whose values exceeded almost 30 times the background at one site (Mn: 1197.30 mg kg(-1)). However, metal levels are still below the reference values with the exception of Hg at one site (Hg: 0.25 mg kg(-1), exceeded TEL and ERL). PMID:26194406

  8. COMPETITIVE INFLUENCE OF PHOSPHORUS AND CALCIUM ON PB IN-VITRO BIOAVAILABILITY

    EPA Science Inventory

    The bioavailability of a metal is heavily related to the speciation of the particular metal. Further, the complexity of examining metal bioavailability is compounded by the presence of competitive ions. Thus, equally contaminated soils with varying concentrations of competitive e...

  9. Bioavailability of zinc oxide added to corn tortilla is similar to that of zinc sulfate and is not affected by simultaneous addition of iron

    PubMed Central

    Rosado, Jorge L.; Díaz, Margarita; Muñoz, Elsa; Westcott, Jamie L.; González, Karla E.; Krebs, Nancy F.; Caamaño, María C.; Hambidge, Michael

    2013-01-01

    Background Corn tortilla is the staple food of Mexico and its fortification with zinc, iron, and other micronutrients is intended to reduce micronutrient deficiencies. However, no studies have been performed to determine the relative amount of zinc absorbed from the fortified product and whether zinc absorption is affected by the simultaneous addition of iron. Objective To compare zinc absorption from corn tortilla fortified with zinc oxide versus zinc sulfate and to determine the effect of simultaneous addition of two doses of iron on zinc bioavailability. Methods A randomized, double-blind, crossover design was carried out in two phases. In the first phase, 10 adult women received corn tortillas with either 20 mg/kg of zinc oxide added, 20 mg/kg of zinc sulfate added, or no zinc added. In the second phase, 10 adult women received corn tortilla with 20 mg/kg of zinc oxide added and either with no iron added or with iron added at one of two different levels. Zinc absorption was measured by the stable isotope method. Results The mean (± SEM) fractional zinc absorption from unfortified tortilla, tortilla fortified with zinc oxide, and tortilla fortified with zinc sulfate did not differ among treatments: 0.35 ± 0.07, 0.36 ± 0.05, and 0.37 ± 0.07, respectively. The three treatment groups with 0, 30, and 60 mg/kg of added iron had similar fractional zinc absorption (0.32 ± 0.04, 0.33 ± 0.02, and 0.32 ± 0.05, respectively) and similar amounts of zinc absorbed (4.8 ± 0.7, 4.5 ± 0.3, and 4.8 ± 0.7 mg/day, respectively). Conclusions Since zinc oxide is more stable and less expensive and was absorbed equally as well as zinc sulfate, we suggest its use for corn tortilla fortification. Simultaneous addition of zinc and iron to corn tortilla does not modify zinc bioavailability at iron doses of 30 and 60 mg/kg of corn flour. PMID:23424892

  10. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil.

    PubMed

    Xu, Ping; Sun, Cai-Xia; Ye, Xue-Zhu; Xiao, Wen-Dan; Zhang, Qi; Wang, Qiang

    2016-10-01

    Biochar derived from various materials has been investigated with regard to its ability to decrease the bioavailability of heavy metals in contaminated soils, and thus reduce their potential to enter the food chain. However, little attention has been given to the adsorption capacity of untreated crop straws, which are commonly used as a biochar feedstock, especially in soils. Hence, this study was conducted to investigate the effect of crop straws on heavy metal immobilization and subsequent heavy metal uptake by maize and ryegrass in a soil artificially polluted by Cd and Pb. Bamboo biochar, rice straw, and wheat straw were mixed into soil four weeks before the experiment, enabling them to reach equilibrium at 2% (w/w), 1% (w/w), and 1% (w/w), respectively. The results showed that soil pH for both species was significantly increased by all treatments, except when wheat straw was used for ryegrass cultivation. Soil organic carbon was only improved in the rice straw treatment and the soil alkali-hydrolyzable N content was significantly decreased with all of the amendments, which may have contributed to the lack of an effect on plant biomass. Soil available Cd was significantly lower in the rice straw treatment than in the control soil, while Pb levels clearly decreased in wheat straw treatment. The Cd concentration in shoots of maize was reduced by 50.9%, 69.5%, and 66.9% with biochar, rice straw, and wheat straw, respectively. In addition, shoot Cd accumulation was decreased by 47.3%, 67.1%, and 66.4%, respectively. Shoot Pb concentration and accumulation were only reduced with the rice straw treatment for both species. However, metal uptake in plant roots was more complex, with increased metal concentrations also detected. Overall, the direct application of crop straw could be considered a feasible way to immobilize selected metals in soil, once the long-term effects are confirmed. PMID:27285283

  11. Metals in Particulate Pollutants Affect Peak Expiratory Flow of Schoolchildren

    PubMed Central

    Hong, Yun-Chul; Hwang, Seung-Sik; Kim, Jin Hee; Lee, Kyoung-Ho; Lee, Hyun-Jung; Lee, Kwan-Hee; Yu, Seung-Do; Kim, Dae-Seon

    2007-01-01

    Background The contribution of the metal components of particulate pollutants to acute respiratory effects has not been adequately evaluated. Moreover, little is known about the effects of genetic polymorphisms of xenobiotic metabolism on pulmonary function. Objectives This study was conducted to assess lung function decrement associated with metal components in particulate pollutants and genetic polymorphisms of glutathione S-transferase M1 and T1. Methods We studied 43 schoolchildren who were in the 3rd to 6th grades. Each student measured peak expiratory flow rate three times a day for 42 days. Particulate air concentrations were monitored every day, and the concentrations of iron, manganese, lead, zinc, and aluminum in the particles were measured. Glutathione S-transferase M1 and T1 genetic polymorphisms were determined using DNA extracted from participant buccal washings. We used a mixed linear regression model to estimate the association between peak expiratory flow rate and particulate air pollutants. Results We found significant reduction in the peak expiratory flow rate after the children’s exposure to particulate pollutants. The effect was shown most significantly 1 day after exposure to the ambient particles. Manganese and lead in the particles also reduced the peak expiratory flow rate. Genetic polymorphisms of glutathione S-transferase M1 and T1 did not significantly affect peak expiratory flow rate. Conclusions This study demonstrated that particulate pollutants and metals such as manganese and lead in the particles are associated with a decrement of peak expiratory flow rate. These effects were robust even with consideration of genetic polymorphisms of glutathione S-transferase. PMID:17431494

  12. Influence of chloride and metals on silver bioavailability to Atlantic salmon (Salmo salar) and Rainbow trout (Oncorhynchus mykiss) yolk-sac fry.

    PubMed

    Bury, Nicolas R; Hogstrand, Christer

    2002-07-01

    The effects of differing water chloride concentrations (0-10 mM) or competing metals [Cu(II), Cd(II), Zn(II), Pb(II), Co(II) (1-10,000 nM)] on Ag(I) uptake in yolk-sac fry of two salmonid species, the Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss), were studied. None of the metals tested were strong competitors of Atlantic salmon yolk-sac fry whole body Ag(I) influx. Inhibition of Ag(I) influx was only seen with a 100-fold excess of Cu(II) or Cd(II) or a 1000-fold excess of Pb(II) or Co(II). At these concentrations, the degree of competition appears to be directly proportional to the conditional stability constant of the competing metal to the gill (metal-gill log K). The range of [Cl-] allowed an assessment of Ag+, AgCl(aq), and AgCl2- bioavailability. The pattern of Ag(I) uptake was similar for each fish species. At <1 mM Cl-, where the [Ag+] dominates, the Ag(I) accumulation rate was constant. Above 1 mM Cl-, where the [AgCl(aq)] is dominant and the [AgCl2-] increases, there was a decline in Ag(I) uptake rate. However, even when very little Ag+ was present (i.e., at 10 mM Cl-) Ag(I) accumulated, albeit at a lower rate. This was suggestive of passive influx by AgCl(aq) and indicated little or no entry of negatively charged silver chloride complexes. The decline in Ag(I) uptake above 1 mM Cl- demonstrated that, if Ag(I) was present as both Ag+ and AgCl(aq), salmonid Ag(I) accumulation was dominated by Ag+ uptake. Therefore, the order of bioavailability of the Ag(I) species was determined as Ag+ > AgCl(aq) > AgCl2-. PMID:12144263

  13. Impact of metals on the biodegradation of organic pollutants.

    PubMed Central

    Sandrin, Todd R; Maier, Raina M

    2003-01-01

    Forty percent of hazardous waste sites in the United States are co-contaminated with organic and metal pollutants. Data from both aerobic and anaerobic systems demonstrate that biodegradation of the organic component can be reduced by metal toxicity. Metal bioavailability, determined primarily by medium composition/soil type and pH, governs the extent to which metals affect biodegradation. Failure to consider bioavailability rather than total metal likely accounts for much of the enormous variability among reports of inhibitory concentrations of metals. Metals appear to affect organic biodegradation through impacting both the physiology and ecology of organic degrading microorganisms. Recent approaches to increasing organic biodegradation in the presence of metals involve reduction of metal bioavailability and include the use of metal-resistant bacteria, treatment additives, and clay minerals. The addition of divalent cations and adjustment of pH are additional strategies currently under investigation. PMID:12826480

  14. Role of Brassica juncea (L.) Czern. (var. Vaibhav) in the phytoextraction of Ni from soil amended with fly ash: selection of extractant for metal bioavailability.

    PubMed

    Gupta, Amit K; Sinha, Sarita

    2006-08-21

    A pot experiment was carried out to study the potential of the plant of Brassica juncea for the phytoextraction of metal from fly ash amended soil and to study correlation between different pool of metals (total, DTPA, CaCl(2) and NH(4)NO(3)) and metal accumulated in the plant in order to assess better extractant for plant available metals. The results of total metal analysis in the soil revealed the presence of Cr, which was found below detection limit (BDL) in the plants. The fly ash (FA) amendments and soil samples were extracted with different extractants and the level of metal vary from one extractant to another. The regression analysis between total and extractable metals showed better regression for all the tested metals except Mn (R(2)=0.001) in DTPA extraction. Correlation coefficient between metal accumulation by the plant tissues and different pool of metals showed better correlation with DTPA in case of Fe, Zn and Ni, whereas, Cu was significantly correlated with NH(4)NO(3) and other metals (Pb, Mn) with CaCl(2). The soil analysis results revealed that the mobility and plant availability of metals (Fe, Mn, Zn, Ni) within the profiles of amended soils was influenced by the change in pH, however, Pb and Cu was not affected. The metal accumulation in total plant tissues was found in the order of Fe>Ni>Zn>Mn>Cu>Pb and its translocation was found more in upper part. The plants grown on soil amended with 25%FA have shown significant increase in plant biomass, shoot and plant height, whereas, no significant effect was observed in root length. The cluster analysis showed 10%FA behave differently on the basis of physico-chemical properties and metal behavior. Thus, it may be concluded that B. juncea can be used for phytoextraction of metals, especially Ni in fly ash amendment soil. PMID:16434138

  15. Prebiotics and calcium bioavailability.

    PubMed

    Cashman, Kevin

    2003-03-01

    A prebiotic substance has been defined as a non-digestible food ingredient that beneficially affects the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon. Therefore, compared to probiotics, which introduce exogenous bacteria into the colonic microflora, a prebiotic aims at stimulating the growth of one or a limited number of the potentially health-promoting indigenous micro-organisms, thus modulating the composition of the natural ecosystem. In recent years, increasing attention has been focussed on the possible beneficial effects of prebiotics, such as enhanced resistance to invading pathogens, improved bowel function, anti-colon cancer properties, lipid lowering action, improved calcium bioavailability, amongst others. The objective of this review is to critically assess the available data on the effects of prebiotics on calcium bioavailability, and place it in the context of human physiology and, when possible, explain the underlying cellular and molecular mechanisms. The review will also try to highlight future areas of research that may help in the evaluation of prebiotics as potential ingredients for functional foods aimed at enhancing calcium bioavailability and protecting against osteoporosis. PMID:12691259

  16. Assessment of mobility and bio-availability of heavy metals in dry depositions of Asian dust and implications for environmental risk.

    PubMed

    Lee, Pyeong-Koo; Choi, Byoung-Young; Kang, Min-Ju

    2015-01-01

    We assess the potential mobility and bio-availability of selected metals (As, Cd, Co, Cr, Cu, Ni, Mo, Pb, S, Zn, and Zr) in the dry depositions of Asian and non-Asian dust from the city of Daejeon, Korea. For this study, we applied Pb isotopes, total extraction and chemical sequential extraction methods to the dry depositions. In addition, microscopic analysis was performed using X-ray diffraction (XRD) and focused ion beam (FIB)-scanning electron microscopy (SEM-EDS). FIB-SEM cross-section observations and Pb isotope data showed a black carbon is an important carrier of associated heavy metals originating from China. A five-step sequential extraction performed on the dry depositions showed that S and Cd are the most abundant elements in the water-soluble and cation-exchangeable fraction. In addition, Zn and Pb appeared predominantly in the carbonate and reducible fractions. On the other hand, Cu, Mo and, to a lesser degree, As were significantly associated with the organic fraction, while Co, Ni, Cr and Zr were bound to the residual fraction. These results showed that S, Cd, Zn and Pb, which were highly concentrated in potentially mobile fractions, have potential environmental risk because potential changes in redox state and pH may remobilize these metals. In addition, the estimated remobilization concentrations of these metals were significant. Thus, this study shows that frequent and careful monitoring of S, Cd, Z, Pb and, to a lesser degree, Cu, Mo and As is very important for assessing environmental risk in Korea. PMID:25454202

  17. Physicochemical Factors that Affect Metal and Metal Oxide Nanoparticle Passage Across Epithelial Barriers

    PubMed Central

    Elder, Alison; Vidyasagar, Sadasivan; DeLouise, Lisa

    2014-01-01

    The diversity of nanomaterials in terms of size, shape, and surface chemistry poses a challenge to those who are trying to characterize the human health and environmental risks associated with incidental and unintentional exposures. There are numerous products that are already commercially available that contain solid metal and metal oxide nanoparticles, either embedded in a matrix or in solution. Exposure assessments for these products are often incomplete or difficult due to technological challenges associated with detection and quantitation of nanoparticles in gaseous or liquid carriers. The main focus of recent research has been on hazard identification. However, risk is a product of hazard and exposure, and one significant knowledge gap is that of the target organ dose following in vivo exposures. In order to reach target organs, nanoparticles must first breech the protective barriers of the respiratory tract, gastrointestinal tract, or skin. The fate of those nanoparticles that reach physiological barriers is in large part determined by the properties of the particles and the barriers themselves. This article reviews the physiological properties of the lung, gut, and skin epithelia, the physicochemical properties of metal and metal oxide nanoparticles that are likely to affect their ability to breech epithelial barriers, and what is known about their fate following in vivo exposures. PMID:20049809

  18. Acid Volatile Sulfides (avs) and the Bioavailability of Trace Metals in the Channel of the SÃO Francisco River, Sepetiba Bay - de Janeiro-Brazil

    NASA Astrophysics Data System (ADS)

    Monte, Christiane; Rodrigues, Ana Paula; Marinho, Matheus; Quaresma, Tássia; Machado, Wilson

    2014-05-01

    Sepetiba Bay has 430 Km2 of internal and 2,500 Km2 area of the drainage basin (Lacerda et al., 2007), located 60 km west of the city of Rio de Janeiro. Sepetiba Bay has 430 Km2 of internal and 2,500 Km2 area of the drainage basin (Lacerda et al., 2007), located 60 km west of the city of Rio de Janeiro.The San Francisco channel comes from the Guandu River and empties into Sepetiba Bay and is the main contributor of freshwater to the estuarine system. The Guandu River system/channel of San Francisco receives contribution of domestic and industrial effluents, which go largely to Sepetiba Bay. This work aimed to evaluate the .This work aimed to evaluate the ratio SEM/AVS as a way of predicting bioavailability trace metals from industrial sewage, mainly, in the estuarine system of Sepetiba. This model is based on the property of some Divalent metal cations (Cd, Cu, Ni, Pb and Zn), by presenting a low solubility constant, are removed from the soluble fraction by precipitation, forming secondary metal sulfides. Were held four transects, made up of three points each, the coast line to the center of the Bay. The surface sediment was collected with a van Veen sampler type ,packed in glass jars and kept frozen until analysis.The determination of SEM/AVS followed the methodology described by Allen et al. (1991). The variation between sulfide 159.88 ± 0.05 µmol/g on 12 points. The metals that entered the sum of simultaneous extraction were: Cd, Cu, Ni, Pb and Zn ranging from: 6.47 ± 0.11 µmol/g on sum.The means (± standard deviation) ratio SEM/AVS per transect were: 1.04 ± 1.20 (transect 1); 0.48 ± 0.53 (transect 2); 1.26 ± 1.32 (transect 3) and 0.18 ± 0.14 (transect 4). Only transects 1 and 3 had higher results than 1 , meaning that there are more divalent metal sulfides in the environment. This means that only the sulfides would not be capable of complex and may reflect the potential bioavailability of these in the aquatic environment. There is no statistical

  19. Mimicked in-situ stabilization of metals in a cropped soil: Bioavailability and chemical form of zinc

    SciTech Connect

    Chlopecka, A.; Adriano, D.C.

    1996-11-01

    Agricultural lime, natural zeolite (clinoptilolite), hydroxyapatite, and an iron oxide waste byproduct (Fe-rich, a trademark name of E.I. du Pont de Nemours) were added to an artificially contaminated Applying silt loam soil to stabilize and limit the uptake of Zn by crops. A greenhouse pot study involves spiking the soil with flue dust FD at 0, 150, 300, 600, 1200, and 2400 mg of Zn kg{sup -1}. As much as 40% of the total Zn occurred in an exchangeable form, the form considered most bioavailable to plants, when the pH of the FD-spiked soil was below 6.0. The ameliorants (lime, zeolite, apatite, and Fe-rich) decreased the concentration of the exchangeable form of Zn at each level of FD in soil; however, the largest decrease occurred with the lowest dose. Maize (Zea mays), barley (Hordeum vulgare), and radish (Raphanus sativus) were growth to determine the effects of Zn on the plant growth and its uptake. The addition of ameliorants to soil enhanced the growth and yield of maize and barley, but only Fe-rich enhanced the growth of radish at all FD rates. Lime, zeolite, and apatite significantly reduced the Zn concentration in tissues of the 3-week-old maize, in mature maize tissues (roots, young leaves, old leaves, stems, grain), and in barley. The largest reduction (over 80%) in Zn uptake by all crops was effected by Fe-rich, which is consistent with the greatest reduction in soil-exchangeable Zn by this ameliorant. 44 refs., 4 figs., 7 tabs.

  20. Heavy metals and toxic organic pollutants in MSW-composts: Research results on phytoavailability, bioavailability, fate, etc

    SciTech Connect

    Ryan, J.A.; Chaney, R.L.

    1994-01-01

    The paper is a review and interpretation of research which has been conducted to determine the fate, transport, and potential effects of heavy metals and toxic organic compounds in Municipal Solid Waste (MSW)-composts and sewage sludges. Evaluation of research findings identified a number of pathways by which these contaminants can be transferred from MSW-compost or compost-amended soils to humans, livestock, or wildlife. The pathways consider direct ingestion of compost or compost-amended soil by livestock and children, plant uptake by food or feed crops, and exposure to dust, vapor, and water to which metals and organics have migrated.

  1. COMPETITIVE INFLUENCE OF PHOSPHORUS AND CALCIUM ON PB IN-VITRO BIOAVAILABILITY (S11-SCHECKEL101231-POSTER)

    EPA Science Inventory

    The bioavailability of a metal is heavily related to the speciation of the particular metal. Further, the complexity of examining metal bioavailability is compounded by the presence of competitive ions. Thus, equally contaminated soils with varying concentrations of competitive e...

  2. Do metallic ports in tissue expanders affect postmastectomy radiation delivery?

    SciTech Connect

    Damast, Shari; Beal, Kathryn . E-mail: bealk@mskcc.org; Ballangrud, Ase; Losasso, Thomas J.; Cordeiro, Peter G.; Disa, Joseph J.; Hong, Linda; McCormick, Beryl L.

    2006-09-01

    Purpose: Postmastectomy radiation therapy (PMRT) is often delivered to patients with permanent breast implants. On occasion, patients are irradiated with a tissue expander (TE) in place before their permanent implant exchange. Because of concern of potential under-dosing in these patients, we examined the dosimetric effects of the Magna-Site (Santa Barbara, CA) metallic port that is present in certain TEs. Methods and Materials: We performed ex vivo film dosimetry with single 6-MV and 15-MV photon beams on a water phantom containing a Magna-Site disc in two orientations. Additionally, using in vivo films, we measured the exit dose from 1 patient's TE-reconstructed breast during chest wall treatment with 15-MV tangent beams. Finally, we placed thermoluminescent dosimeters (TLDs) on 6 patients with TEs who received PMRT delivered with 15-MV tangent beams. Results: Phantom film dosimetry revealed decreased transmission in the region of the Magna-Site, particularly with the magnet in the parallel orientation (at 22 mm: 78% transmission with 6 MV, 84% transmission with 15 MV). The transmission measured by in vivo films during single beam treatment concurred with ex vivo results. TLD data showed acceptable variation in median dose to the skin (86-101% prescription dose). Conclusion: Because of potential dosimetric effects of the Magna-Site, it is preferable to treat PMRT patients with permanent implants. However, it is not unreasonable to treat with a TE because the volume of tissue affected by attenuation from the Magna-Site is small. In this scenario, we recommend using 15 MV photons with compensating bolus.

  3. HEAVY METALS AND TOXIC ORGANIC POLLUTANTS IN MSW-COMPOSTS: RESEARCH RESULTS ON PHYTOAVAILABILITY, BIOAVAILABILITY, FATE, ETC.

    EPA Science Inventory

    This paper is a review and interpretation of research which as been conducted to determine the fate transport, and potential effects of heavy metals and toxic organic compounds in MSW-composts and sewage sludges. valuation of research findings identified a number of Pathways by w...

  4. Metal ions affecting the gastrointestinal system including the liver.

    PubMed

    Naughton, Declan P; Nepusz, Tamás; Petroczi, Andrea

    2011-01-01

    In the present context, metal ions can be categorized into several classes including those that are essential for life and those that have no known biological function and thus can be considered only as potentially hazardous. Many complexities arise with regard to metal toxicity and there is a paucity of studies relating to many metals which are frequent components of the diet. For many people ingestion of mineral supplements is considered a risk-free health choice despite growing evidence to the contrary. Numerous approaches have been developed to assess risk associated with ingestion of metal ions. These include straightforward estimation of safe limits such as oral reference dose which are often based on data derived from animal experiments. More convoluted approaches such as the Target Hazard Quotient involve assessment of hazard with frequent exposure over long durations such as a lifetime. The latter calculation also affords facile consideration of the effects of many metals together. In many cases, rigorous data are unavailable, hence, large factors of uncertainty are employed to relate risk to humans. Owing to the nature of metal toxicity, data pertaining to the gastrointestinal tract and liver are often acquired from diseases of metal homeostasis or episodes of considerable metal overload. Whilst these studies provide evidence for mechanisms of metal-induced toxicity such as enhancing oxidative stress, extrapolation of these results to healthy individuals or patients with chronic inflammatory diseases is not straightforward. In summary, the diverse nature of metals and their effects on human tissues along with a paucity of studies on the full range of their effects, warrant further in-depth studies on the association of metals to ageing, chronic inflammatory diseases, and cancer. PMID:21473378

  5. EDTA-enhanced phytoremediation of contaminated calcareous soils: heavy metal bioavailability, extractability, and uptake by maize and sesbania.

    PubMed

    Suthar, Vishandas; Memon, Kazi Suleman; Mahmood-ul-Hassan, Muhammad

    2014-06-01

    Natural and chemically enhanced phytoextraction potentials of maize (Zea mays L.) and sesbania (Sesbania aculeata Willd.) were explored by growing them on two soils contaminated with heavy metals. The soils, Gujranwala (fine, loamy, mixed, hyperthermic Udic Haplustalf) and Pacca (fine, mixed, hyperthermic Ustollic Camborthid), were amended with varying amounts of ethylenediaminetetraacetic acid (EDTA) chelating agent, at 0, 1.25, 2.5, and 5.0 mM kg(-1) soil to enhance metal solubility. The EDTA was applied in two split applications at 46 and 60 days after sowing (DAS). The plants were harvested at 75 DAS. Addition of EDTA significantly increased the lead (Pb) and cadmium (Cd) concentrations in roots and shoots, uptake, bioconcentration factor, and phytoextraction rate over the control. Furthermore, addition of EDTA also significantly increased the soluble fractions of Pb and Cd in soil over the controls; the maximum increase of Pb and Cd was 13.1-fold and 3.1-fold, respectively, with addition of 5.0 mM EDTA kg(-1)soil. Similarly, the maximum Pb and Cd root and shoot concentrations, translocation, bioconcentration, and phytoextraction efficiency were observed at 5.0 mM EDTA kg(-1) soil. The results suggest that both crops can successfully be used for phytoremediation of metal-contaminated calcareous soils. PMID:24515546

  6. Compost amendment of Cu-Zn minespoil reduces toxic bioavailable heavy metal concentrations and promotes establishment and biomass production of Bromus carinatus (Hook and Arn.).

    PubMed

    O'Dell, Ryan; Silk, Wendy; Green, Peter; Claassen, Victor

    2007-07-01

    A series of lab and greenhouse studies were undertaken to understand how Cu and Zn toxicity influences Bromus carinatus (Hook and Arn.) growth, to what degree an organic amendment (yard waste compost) may reduce Cu and Zn bioavailability in Cu-Zn minespoil and promote plant growth in combination with fertilizer, and how the vertical distribution of compost in the minespoil influences rooting depth. Root Cu and Zn toxicity thresholds were determined to be 1 mgL(-1) and 10 mgL(-1) in solution, respectively. The compost amendment had exceptionally high Cu and Zn binding capacities (0.17 and 0.08 g metal g C(-1), for Cu and Zn, respectively) that were attributed to high compost humic and fulvic acid concentrations. Maximum plant biomass was achieved when minespoil was amended with compost and fertilizer in combination. Fertilizer alone had no effect on plant growth. Mixing compost into the minespoil was essential to promote adequate rooting depth. PMID:17240016

  7. Biologics formulation factors affecting metal leachables from stainless steel.

    PubMed

    Zhou, Shuxia; Schöneich, Christian; Singh, Satish K

    2011-03-01

    An area of increasing concern and scientific scrutiny is the potential contamination of drug products by leachables entering the product during manufacturing and storage. These contaminants may either have a direct safety impact on the patients or act indirectly through the alteration of the physicochemical properties of the product. In the case of biotherapeutics, trace amounts of metal contaminants can arise from various sources, but mainly from contact with stainless steel (ss). The effect of the various factors, buffer species, solution fill volume per unit contact surface area, metal chelators, and pH, on metal leachables from contact with ss over time were investigated individually. Three major metal leachables, iron, chromium, and nickel, were monitored by inductively coupled plasma-mass spectrometry because they are the major components of 316L ss. Iron was primarily used to evaluate the effect of each factor since it is the most abundant. It was observed that each studied factor exhibited its own effect on metal leachables from contact with ss. The effect of buffer species and pH exhibited temperature dependence over the studied temperature range. The metal leachables decreased with the increased fill volume (mL) per unit contact ss surface area (cm(2)) but a plateau was achieved at approximately 3 mL/cm(2). Metal chelators produced the strongest effect in facilitating metal leaching. In order to minimize the metal leachables and optimize biological product stability, each formulation factor must be evaluated for its impact, to balance its risk and benefit in achieving the target drug product shelf life. PMID:21360314

  8. How fulvic acid affects heavy metal uptake on the muscovite (001) surface

    NASA Astrophysics Data System (ADS)

    Lee, S.; Fenter, P.; Park, C.; Sturchio, N. C.; Nagy, K.

    2009-12-01

    Understanding the molecular-scale reactions at mineral-solution interfaces is crucial for developing predictive models to assess the transport and bioavailability of dissolved heavy metals in the surface environment. We investigated the vertical distribution of divalent heavy metals (Cu, Zn, Sr, Hg, and Pb) adsorbed at the muscovite (001)-solution interface in the absence and presence of fulvic acid (FA) using interface-specific specular X-ray reflectivity combined with element-specific resonant anomalous X-ray reflectivity with a sub-angstrom resolution. The experimental solutions were prepared using 1-10 mmol/kg metal nitrates with or without 100 mg/kg Elliott Soil Fulvic Acid II or Suwannee River Fulvic Acid from the International Humic Substances Society at pH 2-5.5. Reflectivity data were measured at the Advanced Photon Source, Argonne National Laboratory. In the absence of FA, the results show a complex picture in which there are three distinct adsorbed species that coexist at the interface: classical inner- and outer-sphere complexes plus a third OS fraction that is more broadly distributed at heights farther from the surface than the other species. Systematic trends in cation adsorption show that these three species are correlated and that their partitioning can be explained by thermodynamic equilibrium among these three species which is controlled mainly by cation hydration energy. The presence of dissolved FA modifies heavy metal uptake by two different mechanisms: it can form complexes with metal cations in solution and adsorb on muscovite as metal-organic complexes when the metal has a relatively high affinity for organic matter. In this case, the adsorbed metal cation shows a characteristic broad distribution within the entire film, resulting in formation of a more electron-dense and thicker organic film on muscovite compared to that without metals. Metals with lower organophilicity show that the enhanced metal uptake occurs mainly within the outer

  9. Bioavailability of xenobiotics in the soil environment.

    PubMed

    Katayama, Arata; Bhula, Raj; Burns, G Richard; Carazo, Elizabeth; Felsot, Allan; Hamilton, Denis; Harris, Caroline; Kim, Yong-Hwa; Kleter, Gijs; Koedel, Werner; Linders, Jan; Peijnenburg, J G M Willie; Sabljic, Aleksandar; Stephenson, R Gerald; Racke, D Kenneth; Rubin, Baruch; Tanaka, Keiji; Unsworth, John; Wauchope, R Donald

    2010-01-01

    It is often presumed that all chemicals in soil are available to microorganisms, plant roots, and soil fauna via dermal exposure. Subsequent bioaccumulation through the food chain may then result in exposure to higher organisms. Using the presumption of total availability, national governments reduce environmental threshold levels of regulated chemicals by increasing guideline safety margins. However, evidence shows that chemical residues in the soil environment are not always bioavailable. Hence, actual chemical exposure levels of biota are much less than concentrations present in soil would suggest. Because "bioavailability" conveys meaning that combines implications of chemical sol persistency, efficacy, and toxicity, insights on the magnitude of a chemicals soil bioavailability is valuable. however, soil bioavailability of chemicals is a complex topic, and is affected by chemical properties, soil properties, species exposed, climate, and interaction processes. In this review, the state-of-art scientific basis for bioavailability is addressed. Key points covered include: definition, factors affecting bioavailability, equations governing key transport and distributive kinetics, and primary methods for estimating bioavailability. Primary transport mechanisms in living organisms, critical to an understanding of bioavailability, also presage the review. Transport of lipophilic chemicals occurs mainly by passive diffusion for all microorganisms, plants, and soil fauna. Therefore, the distribution of a chemical between organisms and soil (bioavailable proportion) follows partition equilibrium theory. However, a chemical's bioavailability does not always follow partition equilibrium theory because of other interactions with soil, such as soil sorption, hysteretic desorption, effects of surfactants in pore water, formation of "bound residue", etc. Bioassays for estimating chemical bioavailability have been introduced with several targeted endpoints: microbial

  10. Animal versus human oral drug bioavailability: Do they correlate?

    PubMed Central

    Musther, Helen; Olivares-Morales, Andrés; Hatley, Oliver J.D.; Liu, Bo; Rostami Hodjegan, Amin

    2014-01-01

    Oral bioavailability is a key consideration in development of drug products, and the use of preclinical species in predicting bioavailability in human has long been debated. In order to clarify whether any correlation between human and animal bioavailability exist, an extensive analysis of the published literature data was conducted. Due to the complex nature of bioavailability calculations inclusion criteria were applied to ensure integrity of the data. A database of 184 compounds was assembled. Linear regression for the reported compounds indicated no strong or predictive correlations to human data for all species, individually and combined. The lack of correlation in this extended dataset highlights that animal bioavailability is not quantitatively predictive of bioavailability in human. Although qualitative (high/low bioavailability) indications might be possible, models taking into account species-specific factors that may affect bioavailability are recommended for developing quantitative prediction. PMID:23988844

  11. The utility of acid volatile sulfide and simultaneously extracted metals concentrations as an indicator of metal bioavailability and toxicity in estuarine sediments

    SciTech Connect

    Summers, K.; Windom, H.; Weisberg, S.

    1995-12-31

    As part of the Environmental Monitoring and Assessment Program, surficial sediment samples (upper 2 cm) were collected from over 1,000 estuarine sites along the Mid-Atlantic and Gulf of Mexico coastlines from 1990--1994. In addition, sediment samples from approximately 30 sites within the New York/New Jersey Harbor complex were collected in 1993. Acid volatile sulfide concentrations (AVS), simultaneously extracted metals (SEM), sediment toxicity bioassays, and benthic community compositions were determined for each of these sites. The present effort examined the hypotheses that: (1) the ratio of AVS to SEM is an indicator of metal availability and sediment toxicity and (2) that correction of other sources of mortality (organic contamination, narcosis, hypoxia, etc.) further strengthens this ratio relationship. Examination of highly metal contaminated sites in the New York/New Jersey harbor area, selected metal contaminated regions in the Mid-Atlantic and Gulf estuaries, as well as reference regions (uncontaminated zones) did not support these hypotheses. In fact, significant/or benthic community composition shifts that could not be attributed to other sources were observed in regions characterized by the alternate hypothesis. Normalized metal concentrations based on available aluminum appeared to be more closely related indicator of observed toxicity of benthic community attributes than AVS ratios.

  12. Bioavailability of Promethazine during Spaceflight

    NASA Technical Reports Server (NTRS)

    Boyd, Jason L.; Wang, Zuwei; Putcha, Lakshmi

    2009-01-01

    Promethazine (PMZ) is the choice anti-motion sickness medication for treating space motion sickness (SMS) during flight. The side effects associated with PMZ include dizziness, drowsiness, sedation, and impaired psychomotor performance which could impact crew performance and mission operations. Early anecdotal reports from crewmembers indicate that these central nervous system side effects of PMZ are absent or greatly attenuated in microgravity, potentially due to changes in pharmacokinetics (PK) and pharmacodynamics in microgravity. These changes could also affect the therapeutic effectiveness of drugs in general and PMZ, in particular. In this investigation, we examined bioavailability and associated pharmacokinetics of PMZ in astronauts during and after space flight. Methods. Nine astronauts received, per their preference, PMZ (25 or 50 mg as intramuscular injection, oral tablet, or rectal suppository) on flight day one for the treatment of SMS and subsequently collected saliva samples and completed sleepiness scores for 72 h post dose. Thirty days after the astronauts returned to Earth, they repeated the protocol. Bioavailability and PK parameters were calculated and compared between flight and ground. Results. Maximum concentration (Cmax) was lower and time to reach Cmax (tmax) was longer in flight than on the ground. Area under the curve (AUC), a measure of bioavailability, was lower and biological half-life (t1/2) was longer in flight than on the ground. Conclusion. Results indicate that bioavailability of PMZ is reduced during spaceflight. Number of samples, sampling method, and sampling schedule significantly affected PK parameter estimates.

  13. Storage mediums affect metal concentration in woodlice (Isopoda).

    PubMed

    Hendrickx, Frederik; Maelfait, Jean-Pierre; De Mayera, Ann; Tack, Filip M G; Verloo, Marc G

    2003-01-01

    Terrestrial invertebrates are becoming widely established as tools to assess heavy metal pollution at contaminated sites. A practical and time saving method to sample terrestrial invertebrates consist of pitfall traps, often filled with a 4% formaldehyde solution and some detergent. The reliability of metal concentrations based on organisms captured and stored in this solution might however be questioned and we therefore tested the effect of formaldehyde on Zn, Cu, Cd and Pb concentration experimentally in three isopod species. Our results showed that in many cases, significant decreases in Cu concentrations compared to animals stored in a freezer were observed that could be as high as 40%, while Zn, Cd and Pb concentrations increased. A regression analysis of individual dry weight on individual size revealed that formaldehyde decreases the dry weight substantially and in that way causes increased measurements of Zn, Cd and Pb concentrations. We conclude that pitfall traps with formaldehyde should better not be used to collect animals in which concentrations of heavy metals or other toxic substances will be determined. PMID:12475065

  14. Increased calcium bioavailability in mice fed genetically engineered plants lacking calcium oxalate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioavailable calcium affects bone formation and calcification. Here we investigate how a single gene mutation altering calcium partitioning in the model forage crop Medicago truncatula affects calcium bioavailability. Previously, the cod5 M. truncatula mutant was identified which contains identical ...

  15. Influence of discharge and urbanization on the concentration, speciation, and bioavailability of trace metals in the Raritan River, New Jersey. Final report

    SciTech Connect

    McLaughlin, F.B.; Ashley, G.M.; Renwick, W.H.

    1988-01-01

    The Raritan River and its tributaries are a vital drinking water and recreational resource in central New Jersey. These waters also serve as disposal media for municipal and industrial wastes and urban stormwater runoff. Rapid development over the last several decades has intensified the pressures on the quality and use of Raritan waters. The concentration and speciation of ten trace metals (Ag, As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Zn) were investigated in the Raritan Basin. From September 1985 to April 1987, one hundred twenty depth-integrated samples were collected at four locations and analyzed by Direct-Current Plasma Atomic Emission Spectrometry for concentrations of dissolved, particulate-associated, total, and suspended sediment trace metals. The concentrations of trace metals readily available, potentially available, and not available to aquatic and terrestrial biota are also reported. Discharge is the most important factor influencing the concentration and speciation of trace metals in the Raritan River and its tributaries. Seasonal variations affect speciation patterns, but have a minor impact on concentration and availability to biota. The sub-basin draining a more-urbanized area in the Raritan Basin appeared to have elevated concentrations and increased biological availability of trace metals relative to less-urbanized basins.

  16. Statistical evaluation of biogeochemical variables affecting spatiotemporal distributions of multiple free metal ion concentrations in an urban estuary.

    PubMed

    Dong, Zhao; Lewis, Christopher G; Burgess, Robert M; Coull, Brent; Shine, James P

    2016-05-01

    Free metal ion concentrations have been recognized as a better indicator of metal bioavailability in aquatic environments than total dissolved metal concentrations. However, our understanding of the determinants of free ion concentrations, especially in a metal mixture, is limited, due to underexplored techniques for measuring multiple free metal ions simultaneously. In this work, we performed statistical analyses on a large dataset containing repeated measurements of free ion concentrations of Cu, Zn, Pb, Ni, and Cd, the most commonly measured metals in seawater, at five inshore locations in Boston Harbor, previously collected using an in-situ equilibrium-based multi-metal free ion sampler, the 'Gellyfish'. We examined correlations among these five metals by season, and evaluated effects of 10 biogeochemical variables on free ion concentrations over time and location through multivariate regressions. We also explored potential clustering among the five metals through a principal component analysis. We found significant correlations among metals, with varying patterns over season. Our regression results suggest that instead of dissolved metals, pH, salinity, temperature and rainfall were the most significant determinants of free metal ion concentrations. For example, a one-unit decrease in pH was associated with a 2.2 (Cd) to 99 (Cu) times increase in free ion concentrations. This work is among the first to reveal key contributors to spatiotemporal variations in free ion concentrations, and demonstrated the usefulness of the Gellyfish sampler in routine sampling of free ions within metal mixtures and in generating data for statistical analyses. PMID:26901477

  17. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species.

    PubMed

    Nawab, Javed; Khan, Sardar; Shah, Mohammad Tahir; Khan, Kifayatullah; Huang, Qing; Ali, Roshan

    2015-01-01

    Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p < 0.01) higher in mine affected soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg(-1), respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals. PMID:26079739

  18. Chronic ingestion of cadmium and lead alters the bioavailability of essential and heavy metals, gene expression pathways and genotoxicity in mouse intestine.

    PubMed

    Breton, Jérôme; Le Clère, Kelly; Daniel, Catherine; Sauty, Mathieu; Nakab, Lauren; Chassat, Thierry; Dewulf, Joëlle; Penet, Sylvie; Carnoy, Christophe; Thomas, Patrick; Pot, Bruno; Nesslany, Fabrice; Foligné, Benoît

    2013-10-01

    Chronic ingestion of environmental heavy metals such as lead (Pb) and cadmium (Cd) causes various well-documented pathologies in specific target organs following their intestinal absorption and subsequent accumulation. However, little is known about the direct impact of the non-absorbed heavy metals on the small intestine and the colon homeostasis. The aim of our study was to compare the specific bioaccumulation and retention of Cd and Pb and their effect on the essential metal balance in primary organs, with those occurring specifically in the gastrointestinal tract of mice. Various doses of Cd (5, 20 and 100 mg l(-1)) and Pb (100 and 500 mg l(-1)) chloride salts were provided in drinking water for subchronic to chronic exposures (4, 8 and 12 weeks). In contrast to a clear dose- and time-dependent accumulation in target organs, results showed that intestines are poor accumulators for Cd and Pb. Notwithstanding, changes in gene expression of representative intestinal markers revealed that the transport-, oxidative- and inflammatory status of the gut epithelium of the duodenum, ileum and colon were specifically affected by both heavy metal species. Additionally, in vivo comet assay used to evaluate the impact of heavy metals on DNA damage showed clear genotoxic activities of Cd, on both the upper and distal parts of the gastrointestinal tract. Altogether, these results outline the resilience of the gut which balances the various effects of chronic Cd and Pb in the intestinal mucosa. Collectively, it provides useful information for the risk assessment of heavy metals in gut homeostasis and further disease's susceptibility. PMID:23503628

  19. Bioavailability of metals in stream food webs and hazards to brook trout (Salvelinus fontinalis) in the upper Animas River watershed, Colorado

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; May, T.W.; Church, S.E.; Kimball, B.A.

    2001-01-01

    The water quality, habitats, and biota of streams in the upper Animas River watershed of Colorado, USA, are affected by metal contamination associated with acid drainage. We determined metal concentrations in components of the food web of the Animas River and its tributaries - periphyton (aufwuchs), benthic invertebrates, and livers of brook trout (Salvelinus fontinalis) - and evaluated pathways of metal exposure and hazards of metal toxicity to stream biota. Concentrations of the toxic metals cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in periphyton, benthic invertebrates, and trout livers from one or more sites in the upper Animas River were significantly greater than those from reference sites. Periphyton from sites downstream from mixing zones of acid and neutral waters had elevated concentrations of aluminum (Al) and iron (Fe) reflecting deposition of colloidal Fe and Al oxides, and reduced algal biomass. Metal concentrations in benthic invertebrates reflected differences in feeding habits and body size among taxa, with greatest concentrations of Zn, Cu, and Cd in the small mayfly Rhithrogena, which feeds on periphyton, and greatest concentrations of Pb in the small stonefly Zapada, a detritivore. Concentrations of Zn and Pb decreased across each trophic linkage, whereas concentrations of Cu and Cd were similar across several trophic levels, suggesting that Cu and Cd were more efficiently transferred via dietary exposure. Concentrations of Cu in invertebrates and trout livers were more closely associated with impacts on trout populations and invertebrate communities than were concentrations of Zn, Cd, or Pb. Copper concentrations in livers of brook trout from the upper Animas River were substantially greater than background concentrations and approached levels associated with reduced brook trout populations in field studies and with toxic effects on other salmonids in laboratory studies. These results indicate that bioaccumulation and transfer of

  20. Bioavailability of metals in stream food webs and hazards to brook trout (Salvelinus fontinalis) in the upper Animas River watershed, Colorado.

    PubMed

    Besser, J M; Brumbaugh, W G; May, T W; Church, S E; Kimball, B A

    2001-01-01

    The water quality, habitats, and biota of streams in the upper Animas River watershed of Colorado, USA, are affected by metal contamination associated with acid drainage. We determined metal concentrations in components of the food web of the Animas River and its tributaries-periphyton (aufwuchs), benthic invertebrates, and livers of brook trout (Salvelinus fontinalis)-and evaluated pathways of metal exposure and hazards of metal toxicity to stream biota. Concentrations of the toxic metals cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in periphyton, benthic invertebrates, and trout livers from one or more sites in the upper Animas River were significantly greater than those from reference sites. Periphyton from sites downstream from mixing zones of acid and neutral waters had elevated concentrations of aluminum (Al) and iron (Fe) reflecting deposition of colloidal Fe and Al oxides, and reduced algal biomass. Metal concentrations in benthic invertebrates reflected differences in feeding habits and body size among taxa, with greatest concentrations of Zn, Cu, and Cd in the small mayfly Rhithrogena, which feeds on periphyton, and greatest concentrations of Pb in the small stonefly Zapada, a detritivore. Concentrations of Zn and Pb decreased across each trophic linkage, whereas concentrations of Cu and Cd were similar across several trophic levels, suggesting that Cu and Cd were more efficiently transferred via dietary exposure. Concentrations of Cu in invertebrates and trout livers were more closely associated with impacts on trout populations and invertebrate communities than were concentrations of Zn, Cd, or Pb. Copper concentrations in livers of brook trout from the upper Animas River were substantially greater than background concentrations and approached levels associated with reduced brook trout populations in field studies and with toxic effects on other salmonids in laboratory studies. These results indicate that bioaccumulation and transfer of metals in

  1. Metal ion-tetracycline interactions in biological fluids. 2. Potentiometric study of magnesium complexes with tetracycline, oxytetracycline, doxycycline, and minocycline, and discussion of their possible influence on the bioavailability of these antibiotics in blood plasma.

    PubMed

    Berthon, G; Brion, M; Lambs, L

    1983-08-01

    The formation constants of the various complexes formed by magnesium with four tetracycline derivatives, namely, tetracycline itself, oxytetracycline, doxycycline, and minocycline, were determined by potentiometry over large pH ranges under experimental conditions pertaining to blood plasma (37 degrees C, NaCl 0.15 mol dm-3). The results were used, together with those previously obtained on the complexation of these tetracyclines with proton and calcium, to assess the influence of the two alkali earth metal ions on the bioavailability of these drugs in blood plasma. Accordingly, simulations of the distribution of the four tetracyclines into their different proton and metal complex species were calculated. The distributions confirm that, in combination with the protein-bound fraction of the tetracyclines, the metal-bound fraction represents more than 99% of these drugs in plasma, the extent of their free fraction commonly being less than 1%. PMID:6619838

  2. Development of an all-metal thick film cost affective metallization system for solar cells

    NASA Technical Reports Server (NTRS)

    Ross, B.

    1981-01-01

    An economical thick film solar cell contact for high volume production of low cost silicon solar array modules was investigated. All metal screenable pastes using base metals were studied. Solar cells with junction depths varying by a factor of 3.3, with and without a deposited oxide coating were used. Cells were screened and fired by a two step firing process. Adhesion and metallurgical results are unsatisfactory. No electrical information is obtained due to inadequate contact adhesion.

  3. Heavy Metal Concentrations in Soils and Factors Affecting Metal Uptake by Plants in the Vicinity of a Korean Cu-W Mine

    PubMed Central

    Jung, Myung Chae

    2008-01-01

    Heavy metal concentrations were measured in soils and plants in and around a copper-tungsten mine in southeast Korea to investigate the influence of past base metal mining on the surface environment. The results of chemical analysis indicate that the heavy metals in soils decreased with distance from the source, controlled mainly by water movement and topography. The metal concentrations measured in plant species generally decreased in the order; spring onions > soybean leaves > perilla leaves ≈ red pepper > corn grains ≈ jujube grains, although this pattern varied moderately between different elements. The results agree with other reports that metal concentrations in leaves are usually much higher than those in grain. Factors influencing the bioavailability of metals and their occurrences in crops were found as soil pH, cation exchange capacity, organic matter content, soil texture, and interaction among the target elements. It is concluded that total metal concentrations in soils are the main controls on their contents in plants. Soil pH was also an important factor. A stepwise linear multiple regression analysis was also conducted to identify the dominant factors influencing metal uptake by plants. Metal concentrations in plants were also estimated by computer-aided statistical methods.

  4. ASSESSING SOIL ARSENIC BIOAVAILABILITY IN THE LABORATORY MOUSE

    EPA Science Inventory

    Variation among soils in the bioavailability of arsenic can be a critical determinant of the risk posed by exposure to these soils. Although in vitro techniques can provide vital data on aspects of bioavailability of metals and metalloids from soils, these results must be valida...

  5. Sediment Metal Concentration Survey Along the Mine-Affected Molonglo River, NSW, Australia.

    PubMed

    Wadige, Chamani P M Marasinghe; Taylor, Anne M; Krikowa, Frank; Maher, William A

    2016-04-01

    Metal concentrations were measured in sediments of the mine-affected Molonglo River to determine current metal concentrations and distribution along the river. Compared with an uncontaminated site at 6.5 km upstream of the Captains Flat mine, sediments collected from the river at ≤12.5 km distance below the mine had a significantly higher percentage of finely divided silt and clay with higher concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn). The measured metal concentrations in the mine affected sites of the river were in the following order: Zn = 697-6818 > Pb = 23-1796 > Cu = 10-628 > Cd = 0.13-8.7 µg/g dry mass. The highest recorded metal concentrations were Cd at 48, Cu at 45, Pb at 240, and Zn at 81 times higher than the background concentrations of these metals in the river sediments. A clear sediment metal-contamination gradient from the mine site to 63 km downstream was established for Cd, Cu, Pb, and Zn in the river sediments. Compared with sediment metal concentrations before a major flood in 2010, only Zn concentrations increased. For all of the mine-affected sites studied, Cd and Zn concentrations exceeded the (ANZECC/ARMCANZ, Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council/Agriculture and Resource Management Council of Australia and New Zealand, 2000) interim sediment-quality guidelines low values for Cd (1.5 µg/g dry mass) and the high value for Zn (410 µg/g dry mass). Existing metal loads in the riverbed sediments may still be adversely affecting the river infauna. PMID:26795293

  6. Metal concentrations in soil paste extracts as affected by extraction ratio.

    PubMed

    Tack, Filip M G; Dezillie, Nic; Verloo, Marc G

    2002-04-01

    Saturated paste extracts are sometimes used to estimate metal levels in the soil solution. To assess the significance of heavy-metal concentrations measured in saturation extracts, soil paste extracts were prepared with distilled water in amounts ranging from 60-200% of the moisture content at saturation. Trace metals behaved as if a small pool consistently was dissolved independent of the extraction ratio applied. Metal concentrations in the solution hence were not buffered by the solid phase, but the observed behaviour would allow the estimation of metal concentrations in the soil solution as a function of moisture content. The behaviour of iron and manganese suggested that some microbial reduction occurred. The intensity increased with increasing extraction ratio but not to the extent of affecting dissolution of trace elements. PMID:12805950

  7. EFFECTS OF DIFFERENT FORMS OF ORGANIC CARBON ON THE PARTITIONING AND BIOAVAILABILITY OF NONPHENYL

    EPA Science Inventory

    Oxygenated nonpolar organic contaminants (NOCs) are underrepresented in studies of the partitioning and bioavailability of NOCs, including nonylphenol. In this investigation, we evaluated the toxicity, partitioning, and bioavailability of nonylphenol as affected by different form...

  8. Relative Bioavailability and Bioaccessability and Speciation of Arsenic in Contaminated Soils

    EPA Science Inventory

    Background: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessment...

  9. How Environment Affects Galaxy Metallicity through Stripping and Formation History: Lessons from the Illustris Simulation

    NASA Astrophysics Data System (ADS)

    Genel, Shy

    2016-05-01

    Recent studies have found higher galaxy metallicities in richer environments. It is not yet clear, however, whether metallicity-environment dependencies are merely an indirect consequence of environmentally dependent formation histories, or of environmentally related processes directly affecting metallicity. Here, we present a first detailed study of metallicity-environment correlations in a cosmological hydrodynamical simulation, in particular, we focus on the Illustris simulation. Illustris galaxies display similar relations to those observed. Utilizing our knowledge of simulated formation histories, and leveraging the large simulation volume, we construct galaxy samples of satellites and centrals with matching formation histories. This allows us to find that ∼ 1/3 of the metallicity-environment correlation is due to different formation histories in different environments. This is a combined effect of satellites (in particular, in denser environments) having on average lower z = 0 star formation rates (SFRs), and of their older stellar ages, even at a given z = 0 SFR. Most of the difference, ∼ 2/3, however, is caused by the higher concentration of star-forming disks of satellite galaxies, as this biases their SFR-weighted metallicities toward their inner, more metal-rich parts. With a newly defined quantity, the “radially averaged” metallicity, which captures the metallicity profile but is independent of the SFR profile, the metallicities of satellites and centrals become environmentally independent once they are matched in formation history. We find that circumgalactic metallicity (defined as rapidly inflowing gas around the virial radius), while sensitive to environment, has no measurable effect on the metallicity of the star-forming gas inside the galaxies.

  10. CORRELATING METAL SPECIATION IN SOILS

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  11. Use of chemical methods to assess Cd and Pb bioavailability to the snail Cantareus aspersus: a first attempt taking into account soil characteristics.

    PubMed

    Pauget, B; Gimbert, F; Coeurdassier, M; Scheifler, R; de Vaufleury, A

    2011-09-15

    Bioavailability is a key parameter in conditioning contaminant transfer to biota. However, in risk assessment of terrestrial contamination, insufficient attention is being paid to the influence of soil type on trace metal bioavailability. This paper addresses the influence of soil properties on the chemical availability of cadmium (Cd) and lead (Pb) (CaCl(2) extraction and ionic activity) and bioavailability (accumulation kinetics) to the land snail Cantareus aspersus. Snails were exposed to nine contaminated soils differing by a single characteristic (pH or organic matter content or clay content) for 28 days. Toxicokinetic models were applied to determine metal uptake and excretion rates in snails and multivariate regression was used to relate uptake parameters to soil properties. The results showed that alkalinisation of soil and an increase of the organic matter content decreased Pb and Cd bioavailability to snails whereas kaolin clay had no significant influence. The CaCl(2)-extractable concentrations tended to overestimate the effects of pH when used to explain metal uptake rate. We conclude that factors other than those controlling the extractable fraction affect metal bioavailability to snails, confirming the requirement of biota measurements in risk assessment procedures. PMID:21813240

  12. Assessments of chromium (and other metals) in vegetables and potential bio-accumulations in humans living in areas affected by tannery wastes.

    PubMed

    Chen, Hualin; Arocena, Joselito M; Li, Jianbing; Thring, Ronald W; Zhou, Jiangmin

    2014-10-01

    Chromium (Cr) commonly enters the food chain through uptake by vegetables. However, accurate prediction of plant uptake of Cr (and other metals) still remains a challenge. In this study, we evaluated 5 indices of availability for Cr (and other metals) to identify reliable predictors of metal transfer from soils to garlic, onion, bokchoy, radish and celery grown in soils impacted by tannery wastes. The potential bio-accumulation of Cr in humans was calculated from the Cr content of vegetable predicted by the best bio-availability index, amounts of vegetable consumed and recommended daily doses for Cr. Our results show that soil total Cr is the best predictor of Cr transfer from soils to onion (Cr in onion=8.51+0.005 Total Cr) while Cr extractable by Synthetic Precipitation Leaching Procedure at pH 5 correlates very well with Cr uptake by bokchoy (Cr bokchoy=5.86+7.32 SPLP-5 Cr) and garlic (Cr garlic=7.63+2.36 SPLP-5 Cr). The uptake of Cr by radish and celery could not be reliably estimated by any of the 5 indices of availability tested in this study. Potential bio-accumulation of Cr in humans (BA-Cr) increases from soils with low Cr (BA-Cr=11.5) to soil with high total Cr (BA-Cr=31.3). Due to numerous soil factors affecting the behavior of Cr in soils and the physiological differences among vegetables, we suggest that the prediction of the transfer of Cr (and other metals) from soils to plants should be specific to site, metal and vegetable. Potential bio-accumulation of Cr in humans can be derived from a transfer function of Cr from soils to plants and the human consumption of vegetables. PMID:25048934

  13. Accumulation of cadmium by freshwater benthic organisms is affected by the presence of other metals

    SciTech Connect

    Stewart, A.R.; Malley, D.F. |

    1994-12-31

    The effect of a suite of metals (Cu, Zn, Pb and Ni) on Cd accumulation by a rooted macrophyte and a freshwater mussel was examined in a mesocosm experiment during the summer of 1992. Cd was added alone to treatment 1 and together with the metal suite (at three dosage levels) to treatments 2, 3 and 4. Each treatment was represented by two mesocosms. The limnocorrals were sampled at three times over the summer (t = 0, 40 and 80 days). The metal suite increased the residence time of Cd in the water column and caused a reduction in the adsorption of Cd onto sediment particles. Cd contents in plant roots were significantly higher in treatments with the metal suite and were found to increase with the dose of the metal suite. An overall reduction in the amount of metal-induced metallothionein (MT) in the mussel kidneys was found with the highest doses of the metal suite. These results suggest that the total metal complement affects the uptake of Cd in a dose-dependent fashion and should be considered when setting water or sediment quality guidelines.

  14. Trace Metals Affect Early Maternal Transfer of Immune Components in the Feral Pigeon.

    PubMed

    Chatelain, M; Gasparini, J; Haussy, C; Frantz, A

    2016-01-01

    Maternal early transfers of immune components influence eggs' hatching probability and nestlings' survival. They depend on females' own immunity and, because they are costly, on their physiological state. Therefore, trace metals, whether toxic and immunosuppressive (e.g., lead, cadmium, etc.) or necessary and immunostimulant (e.g., zinc, copper, iron, etc.), are likely to affect the amount of immune components transferred into the eggs. It may also vary with plumage eumelanin level, which is known to be linked to immunity, to transfer of antibodies, and to metal detoxification. In feral pigeons (Columba livia) injected with an antigen and experimentally exposed to lead and/or zinc (two highly abundant trace metals in urban areas), we measured specific antibody transfer and concentrations of two antimicrobial proteins (lysozyme and ovotransferrin) in eggs. As expected, lead had negative effects on specific antibody transfer, while zinc positively affected lysozyme egg concentrations. Moreover, eggs from lead-exposed females exhibited higher ovotransferrin concentrations; because it binds metal ions, ovotransferrin may enable egg detoxification and embryo protection. Finally, eggs' lysozyme concentrations increased with plumage darkness of females not exposed to zinc, while the relation was opposite among zinc-exposed females, suggesting that benefits and costs of plumage melanism depend on trace metal environmental levels. Overall, our study underlines the potential ecotoxicological effects of trace metals on maternal transfers of immune components and the role of plumage melanism in modulating these effects. PMID:27153130

  15. TOXICITY AND BIOACCUMULATION OF CADMIUM AND COPPER AS AFFECTED BY HUMIC ACID

    EPA Science Inventory

    Since humic substances are ubiquitous, but highly variable, components of the chemical matrix of freshwater ecosystems, and are assumed to affect the toxicity and bioavailability of metals, any attempt to derive water quality criteria or standards for metals must take into accoun...

  16. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy

    PubMed Central

    Rein, Maarit J.; Renouf, Mathieu; Cruz‐Hernandez, Cristina; Actis‐Goretta, Lucas; Thakkar, Sagar K.; da Silva Pinto, Marcia

    2013-01-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. PMID:22897361

  17. Temporal assessment of copper speciation, bioavailability and toxicity in UK freshwaters using chemical equilibrium and biotic ligand models: Implications for compliance with copper environmental quality standards.

    PubMed

    Lathouri, Maria; Korre, Anna

    2015-12-15

    Although significant progress has been made in understanding how environmental factors modify the speciation, bioavailability and toxicity of metals such as copper in aquatic environments, the current methods used to establish water quality standards do not necessarily consider the different geological and geochemical characteristics of a given site and the factors that affect copper fate, bioavailability potential and toxicity. In addition, the temporal variation in the concentration and bioavailable metal fraction is also important in freshwater systems. The work presented in this paper illustrates the temporal and seasonal variability of a range of water quality parameters, and Cu speciation, bioavailability and toxicity at four freshwaters sites in the UK. Rivers Coquet, Cree, Lower Clyde and Eden (Kent) were selected to cover a broad range of different geochemical environments and site characteristics. The monitoring data used covered a period of around six years at almost monthly intervals. Chemical equilibrium modelling was used to study temporal variations in Cu speciation and was combined with acute toxicity modelling to assess Cu bioavailability for two aquatic species, Daphnia magna and Daphnia pulex. The estimated copper bioavailability, toxicity levels and the corresponding ecosystem risks were analysed in relation to key water quality parameters (alkalinity, pH and DOC). Although copper concentrations did not vary much during the sampling period or between the seasons at the different sites; copper bioavailability varied markedly. In addition, through the chronic-Cu BLM-based on the voluntary risk assessment approach, the potential environmental risk in terms of the chronic toxicity was assessed. A much higher likelihood of toxicity effects was found during the cold period at all sites. It is suggested that besides the metal (copper) concentration in the surface water environment, the variability and seasonality of other important water quality

  18. Influence of aging on copper bioavailability in soils.

    PubMed

    Lock, Koen; Janssen, Colin R

    2003-05-01

    Because of long-term chemical processes, metal bioavailability in field soils decreases with time. Metal toxicity may, therefore, be overestimated if toxicity data with freshly spiked soils are used to derive soil quality criteria, a current practice. In the present study, effects of the long-term processes, called aging, on copper partitioning and ecotoxicity are investigated. Twenty-five field soils contaminated by copper runoff from bronze statues and 25 uncontaminated control soils sampled at 5-m distance from these statues were collected in Flanders (Belgium). The soils were selected so that parameters affecting copper bioavailability (pH, cation-exchange capacity, organic matter content, etc.) varied considerably. To assess the effect of aging on copper toxicity, control soils were spiked at total copper concentrations comparable to those of historically contaminated soils. Pore-water copper concentrations and 0.01 M CaCl2-extracted copper concentrations were significantly higher in freshly spiked soils compared to contaminated field soils. However, this could be a pH effect, because pH decreased after spiking. Acute toxicity to Enchytraeus albidus (14 d) as well as chronic toxicity to Folsomia candida (28-d reproduction) and Trifolium pratense (14-d growth) indicated a dose-response relationship between copper toxicity and pore-water copper concentration or the CaCl2-extracted copper fraction. PMID:12729229

  19. Trace metal accumulation in soil and their phytoavailability as affected by greenhouse types in north China.

    PubMed

    Yang, Lanqin; Huang, Biao; Mao, Mingcui; Yao, Lipeng; Hickethier, Martina; Hu, Wenyou

    2015-05-01

    Long-term heavy organic fertilizer application has linked greenhouse vegetable production (GVP) with trace metal contamination in north China. Given that trace metals release from fertilizers and their availability may be affected by discrepant environmental conditions, especially temperature under different greenhouses, this study investigated Cd, Cu, Pb, and Zn accumulation and contamination extent in soil as well as their phytoavailability under two major greenhouses in Tongshan, north China, namely solar greenhouse (SG) and round-arched plastic greenhouse (RAPG), to evaluate their presumed difference. The results showed significant Cd, Cu, Pb, and Zn accumulation in GVP soil by comparing with those in open-field soil, but their accumulation extent and rates were generally greater in SG than those in RAPG. This may be related to more release of trace metals to soil due to the acceleration of decomposition and humification process of organic fertilizers under higher soil temperature in SG relative to that in RAPG. Overall, soil in both greenhouses was generally less polluted or moderately polluted by the study metals. Similarly, decreased soil pH and elevated soil available metals in SG caused higher trace metals in leaf vegetables in SG than those in RAPG, although there was no obvious risk via vegetable consumption under both greenhouses. Lower soil pH may be predominantly ascribed to more intensive farming practices in SG while elevated soil available metals may be attributed to more release of dissolved organic matter-metal complexes from soil under higher temperature in SG. The data provided in this study may assist in developing reasonable and sustainable fertilization strategies to abate trace metal contamination in both greenhouses. PMID:25422117

  20. Factors affecting the impact toughness of low carbon bainitic weld metal

    SciTech Connect

    Blackburn, J.M.; Vassilaros, M.; Fox, A.

    1996-12-31

    Welds were produced using the GMA and GTA welding processes with 100% argon and 95% argon-5% CO{sub 2} shielding gases. This resulted in different microstructures and varying levels of strength, chemistry and toughness. The factors affecting CVN impact toughness were determined. The resulting toughness was dependent upon the strength, carbon content, the average size and amount of non-metallic inclusions, and metallurgical structure. Improvement in toughness occurred with decreasing strength, carbon content, inclusion size, volume fraction of inclusions, and amount of as deposited columnar structure. When these factors were minimized, the low carbon bainitic weld metal exhibited toughness behavior similar to that of tempered martensite.

  1. Human Folate Bioavailability

    PubMed Central

    Ohrvik, Veronica E.; Witthoft, Cornelia M.

    2011-01-01

    The vitamin folate is recognized as beneficial health-wise in the prevention of neural tube defects, anemia, cardiovascular diseases, poor cognitive performance, and some forms of cancer. However, suboptimal dietary folate intake has been reported in a number of countries. Several national health authorities have therefore introduced mandatory food fortification with synthetic folic acid, which is considered a convenient fortificant, being cost-efficient in production, more stable than natural food folate, and superior in terms of bioavailability and bioefficacy. Other countries have decided against fortification due to the ambiguous role of synthetic folic acid regarding promotion of subclinical cancers and other adverse health effects. This paper reviews recent studies on folate bioavailability after intervention with folate from food. Our conclusions were that limited folate bioavailability data are available for vegetables, fruits, cereal products, and fortified foods, and that it is difficult to evaluate the bioavailability of food folate or whether intervention with food folate improves folate status. We recommend revising the classical approach of using folic acid as a reference dose for estimating the plasma kinetics and relative bioavailability of food folate. PMID:22254106

  2. Hydrological regime and salinity alter the bioavailability of Cu and Zn in wetlands.

    PubMed

    Speelmans, M; Lock, K; Vanthuyne, D R J; Hendrickx, F; Du Laing, G; Tack, F M G; Janssen, C R

    2010-05-01

    In the context of the European Water Framework Directive, controlled flooding of lowlands is considered as a potential water management strategy to minimise the risk of flooding of inhabited areas. However, due to historical pollution and overbank sedimentation, metal levels are elevated in most wetlands, which can cause adverse effects on the ecosystem's dynamics. Additionally, salinity affects the bioavailability of metals present or imported into these systems. The effect of different flooding regimes and salinity exposure scenarios (fresh- and brackish water conditions) on Cu and Zn accumulation in the oligochaete Tubifex tubifex (Müller, 1774) was examined. Metal mobility was closely linked to redox potential, which is directly related to the prevalent hydrological regime. Flooded, and thus more reduced, conditions minimized the availability of metals, while oxidation of the substrates during a drier period was associated with a rapid increase of metal availability and accumulation in the oligochaetes. PMID:19913966

  3. Bioavailability and generic prescribing.

    PubMed

    Mindel, J S

    1976-01-01

    Although oral drug bioinequivalence has been attributed to a number of causes (excipients, dosage form, variation in dissolution time, and aging) less is known about bioavailability problems of topical medications in ophthalmology. Factors that can alter drug absorption from solutions (pH, partition coefficient, container impurities, contact time, etc.) are noted, and cases in which bioavailability problems should be considered as causes of therapeutic failure are discussed. Various attitudes representing pharmaceutical companies, the federal government, pharmacists, consumers and physicians toward the related problems of bioinequivalence and generic prescribing are examined. Techniques for in vivo and in vitro drug testing and for establishing uniform conditions of drug manufacture and storage can contribute to identification and minimization of bioavailability problems. A rational program based on a combination of such techniques could, ultimately, lead to establishment of the terms "generic equivalency" and "therapeutic equivalency" as synonymous. PMID:13505

  4. Accumulation of heavy metals in sunflower and sorghum plants affected by the Guadiamar spill.

    PubMed

    Murillo, J M; Marañón, T; Cabrera, F; López, R

    1999-12-01

    The collapse of a pyrite-mining, tailing dam on 25 April 1998 contaminated approximately 2000 ha of croplands along the Agrio and Guadiamar river valleys in southern Spain. This paper reports the accumulation of chemical elements in soil and in two crops--sunflower and sorghum--affected by the spill. Total concentrations of As, Bi, Cd, Cu, Mn, Pb, Sb, Tl and Zn in spill-affected soils were greater than in adjacent, unaffected soils. Leaves of spill-affected crop plants had higher nutrient (K, Ca and Mg for sunflower and N and K for sorghum) concentrations than controls, indicating a 'fertilising' effect caused by the sludge. Seeds of spill-affected sunflower plants did accumulate more As, Cd, Cu and Zn than controls, but values were below toxic levels. Leaves of sorghum plants accumulated more As, Bi, Cd, Mn, Pb, Tl and Zn than controls, but these values were also below toxic levels for livestock consumption. In general, none of the heavy metals studied in both crops reached either phytotoxic or toxic levels for humans or livestock. Nevertheless, a continuous monitoring of heavy metal accumulation in soil and plants must be established in the spill-affected area. PMID:10635586

  5. Municipal sludge metal contamination of old-field ecosystems: Do liming and tilling affect remediation

    SciTech Connect

    Benninger-Truax, M.; Taylor, D.H. . Dept. of Zoology)

    1993-10-01

    Mechanisms of ecosystem recovery following 11 years of sewage sludge disposal were addressed by examining the effects of tilling and/or liming on soil chemistry and the heavy metal (Cd, Cu, Pb, and Zn) concentrations in soil, earthworms, vegetation, spiders, and crickets. In 1989 and 1990, subplots in each of three former 0.1-ha, long-term treatments (sludge, fertilizer, and control) were either unmanipulated or manipulated via tilling and/or liming. Liming significantly increased the pH of soil from the long-term sludge and fertilizer plots, and the combination of tilling and liming affected the heavy metal concentrations in earthworms, as lower concentrations of Cd, Cu, Pb, and Zn were found in earthworms collected from subplots that had been both tilled and limed. However, most observed significant differences in heavy metal concentrations reflected the long-term treatments, as heavy metal concentrations tended to be greater in the soil and biota collected from sludge-treated plots. Thus, heavy metals remained in the soil in forms available to the biota, regardless of the cessation of sludge application or subplot manipulations (liming and/or tilling) for two years following cessation of sludge application.

  6. Arsenic Bioavailability, Bioaccessibility, And Speciation

    EPA Science Inventory

    The term bioavailability has many different meanings across various disciplines. Often bioavailability is concerned with human health aspects such as the case of urban children interacting with contaminated soil. The still utilized approach to base risk assessment on total meta...

  7. SLUDGE ORGANICS BIOAVAILABILITY

    EPA Science Inventory

    Concern over the bioavailability of toxic organics that can occur in municipal sludges threatens routine land application of sludge. vailable data, however, show that concentrations of priority organics in normal sludges are low. ludges applied at agronomic rates yield chemical c...

  8. CORRELATING METAL SPECIATION IN SOILS TO RISK

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  9. Multi-laminated metal hydroxide nanocontainers for oral-specific delivery for bioavailability improvement and treatment of inflammatory paw edema in mice.

    PubMed

    Kankala, Ranjith Kumar; Kuthati, Yaswanth; Sie, Huei-Wun; Shih, Hung-Yuan; Lue, Sheng-I; Kankala, Shravankumar; Jeng, Chien-Chung; Deng, Jin-Pei; Weng, Ching-Feng; Liu, Chen-Lun; Lee, Chia-Hung

    2015-11-15

    Multiple layers of pH-sensitive enteric copolymers were coated over layered double hydroxide (LDH) nanoparticles for controllable drug release and improved solubility of hydrophobic drugs. The nano-sized LDH carriers significantly improved the accessibility of sulfasalazine molecules that have positively charged frameworks. In addition, the successful encapsulation of negatively charged enteric copolymers was achieved via electrostatic attractions. The multi-layered enteric polymer coating could potentially protect nanoparticle dissolution at gastric pH and accelerate the dissolution velocity, which would improve the drug bioavailability in the colon. Next, biological studies of this formulation indicated a highly protective effect from the scavenging of superoxide free radicals and diethyl maleate (DEM) induced lipid peroxidation, which are major cell signalling pathways for inflammation. The histological view of the liver and kidney sections revealed that the nanoformulation is safe and highly biocompatible. The animal studies conducted via paw inflammation induced by complete Freund's adjuvant (CFA) revealed that enteric-coated LDH-sulfasalazine nanoparticles provided a sustained release that maintained the sulfasalazine concentrations in a therapeutic window. Therefore, this nanoformulation exhibited preferential efficacy in reducing the CFA-induced inflammation especially at day 4. PMID:26225492

  10. Sediment properties influencing the bioavailability of uranium to Chironomus dilutus larvae in spiked field sediments.

    PubMed

    Crawford, Sarah E; Liber, Karsten

    2016-04-01

    The partitioning of metals between dissolved and solid phases directly affects metal bioavailability to benthic invertebrates and is influenced by metal-binding properties of sediment phases. Little research has been done examining the effects of sediment properties on the bioavailability of uranium (U) to freshwater benthic invertebrates. In the present study, 18 field sediments with a wide range of properties (total organic carbon, fine fraction, cation exchange capacity, and iron content) were amended with the same concentrations of U to characterize the effects of these sediment properties on U bioavailability to freshwater midge, Chironomus dilutus. Bioaccumulation of U by C. dilutus larvae varied by over an order of magnitude when exposed to sediments spiked with 50 mg U kg(-1) d.w. (5-69 mg U kg(-1) d.w.) and 500 mg U kg(-1) d.w. (20-452 mg U kg(-1) d.w.), depending on the type of sediment. Variance in U bioaccumulation was best explained by differences in the cation exchange capacity, fine fraction (≤50 μm particle size), and Fe content of U-spiked sediment, with generated regression equations predicting observed bioaccumulation within a factor of two. The presented regression equations offer an easy-to-apply method for accounting for the influence of sediment properties on U bioavailability in freshwater sediment, with fine fraction being the single most practical variable. This research strongly supports that risk assessments and guidelines for U-contaminated sediments should not ignore the influence of sediment properties that can result in substantial differences in the bioaccumulation of U in benthic invertebrates. PMID:26802266

  11. Relative Bioavailability and Bioaccessibility and Speciation of Arsenic in Contaminated Soils

    PubMed Central

    Scheckel, Kirk G.; Nelson, Clay M.; Seales, Paul E.; Lee, Grace E.; Hughes, Michael F.; Miller, Bradley W.; Yeow, Aaron; Gilmore, Thomas; Serda, Sophia M.; Harper, Sharon; Thomas, David J.

    2011-01-01

    Background: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessments and remediation goals, convenient, rapid, reliable, and inexpensive tools are needed to determine soil As bioavailability. Objectives: We evaluated inexpensive methods for assessing As bioavailability in soil as a means to improve human exposure estimates and potentially reduce remediation costs. Methods: Nine soils from residential sites affected by mining or smelting activity and two National Institute of Standards and Technology standard reference materials were evaluated for As bioavailability, bioaccessibility, and speciation. Arsenic bioavailability was determined using an in vivo mouse model, and As bioaccessibility was determined using the Solubility/Bioavailability Research Consortium in vitro assay. Arsenic speciation in soil and selected soil physicochemical properties were also evaluated to determine whether these parameters could be used as predictors of As bioavailability and bioaccessibility. Results: In the mouse assay, we compared bioavailabilities of As in soils with that for sodium arsenate. Relative bioavailabilities (RBAs) of soil As ranged from 11% to 53% (mean, 33%). In vitro soil As bioaccessibility values were strongly correlated with soil As RBAs (R2 = 0.92). Among physicochemical properties, combined concentrations of iron and aluminum accounted for 80% and 62% of the variability in estimates of RBA and bioaccessibility, respectively. Conclusion: The multifaceted approach described here yielded congruent estimates of As bioavailability and evidence of interrelations among physicochemical properties and bioavailability estimates. PMID:21749965

  12. A novel pollution index based on the bioavailability of elements: a study on Anzali wetland bed sediments.

    PubMed

    Zamani Hargalani, Fariba; Karbassi, Abdolreza; Monavari, Seyed Masoud; Abroomand Azar, Parviz

    2014-04-01

    In this research, we study on the distribution of several elements in bed sediments of Anzali wetland. Anzali, one of the most important international wetlands, is located on the southern coast of the Caspian Sea in Iran. This wetland receives discharges of domestic, agricultural, and industrial wastewater, which affect the distribution of elements. Our contribution in this study is threefold. First, we measured the total concentration of metals as well as their chemical partitioning and bioavailability in the sediments. Second, we calculated anthropogenic portions of metals in the sediment of this area. The results reveal anthropogenic portion of metals as Mo > Mn > Cd > As > Zn > Hg > Co > Sn > Cu > V > Ag > Ni > Pb > Fe > Cr > Al, respectively. We evaluated the intensity of pollution by using an enrichment factor, the geo-accumulation index and the pollution index. All these indices do not take into consideration the bioavailability of the elements. As our third and most important contribution, we introduced a new formula that takes into account the bioavailability of different elements. In comparison with aforementioned pollution indices, our newly introduced pollution index has a higher Pearson correlation with anthropogenic portion of metals. This high-correlation coefficient shows that our proposed pollution index is an effective indicator for determining the level of pollution, while other indices preserve their own merits. PMID:24317631

  13. Phase measurements of erythrocytes affected by metal ions with quantitative interferometric microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Shouyu; Yan, Keding; Shan, Yanke; Xu, Mingfei; Liu, Fei; Xue, Liang

    2015-12-01

    Erythrocyte morphology is an important factor in disease diagnosis, however, traditional setups as microscopes and cytometers cannot provide enough quantitative information of cellular morphology for in-depth statistics and analysis. In order to capture variations of erythrocytes affected by metal ions, quantitative interferometric microscopy (QIM) is applied to monitor their morphology changes. Combined with phase retrieval and cell recognition, erythrocyte phase images, as well as phase area and volume, can be accurately and automatically obtained. The research proves that QIM is an effective tool in cellular observation and measurement.

  14. Correlation between structural diversity and catabolic versatility of metal-affected bacteria in soil

    NASA Astrophysics Data System (ADS)

    Wenderoth, D. F.; Reber, H. H.; Timmis, K. N.

    2003-04-01

    Application of sewage sludge to an agricultural field resulted in contamination of metal. Metal affects on the the structural diversity and the catabolic versatility of bacteria capable of growing in the absence of growing factors were studied six years after sludge application. The number of strain clusters as estimated by amplified ribosomal restriction analysis (ADRDA) was reduced by 39% when comparing isolates from the control and the most contaminated soil. Concomittantly, the average number of aromatic acids utilized per isolate from among 21 substrates tested decreased from 12.28 to 5.23. This loss in catabolic versatility was greater in Gram-negative (68%) than in Gram-positive bacteria (49%). Due to bioenergetic reasons discussed, it is supposed that the catabolic versatility between Gram-negative and Gram-positive bacteria and the greater loss of this property in the former may explain why, in metal contaminated soils, Grtam-negatives are selected at the expense of Gram-positive bacteria.

  15. Solubilization of manganese and trace metals in soils affected by acid mine runoff.

    PubMed

    Green, C H; Heil, D M; Cardon, G E; Butters, G L; Kelly, E F

    2003-01-01

    Manganese solubility has become a primary concern in the soils and water supplies in the Alamosa River basin, Colorado due to both crop toxicity problems and concentrations that exceed water quality standards. Some of the land in this region has received inputs of acid and trace metals as a result of irrigation with water affected by acid mine drainage and naturally occurring acid mineral seeps. The release of Mn, Zn, Ni, and Cu following saturation with water was studied in four soils from the Alamosa River basin. Redox potentials decreased to values adequate for dissolution of Mn oxides within 24 h following saturation. Soluble Mn concentrations were increased to levels exceeding water quality standards within 84 h. Soluble concentrations of Zn and Ni correlated positively with Mn following reduction for all four soils studied. The correlation between Cu and Mn was significant for only one of the soils studied. The soluble concentrations of Zn and Ni were greater than predicted based on the content of each of these metals in the Mn oxide fraction only. Increases in total electrolyte concentration during reduction indicate that this may be the result of displacement of exchangeable metals by Mn following reductive dissolution of Mn oxides. PMID:12931888

  16. Creep deformation and rupture behavior of 2.25Cr-1Mo steel weldments and its constituents (base metal, weld metal and simulated heat affected zones)

    SciTech Connect

    Laha, K.; Chandravathi, K.S.; Rao, K.B.S.; Mannan, S.L.

    1995-12-31

    Microstructure across a weldment base metal through transformed heat-affected zone (HAZ) to cast weld metal. HAZ of 2.25Cr-1Mo weldment consists of coarse-grain bainite, fine-grain bainite and intercritical region. These HAZ microstructures were simulated by isothermal heat-treatments. Creep tests were carried out on base metal, weld metal, weldment and the simulated HAZ structures. Creep deformation and fracture behavior of 2.25Cr-1Mo weldments has been assessed based on the properties of its constituents. Coarse-grain bainite with low ductility and intercritical structure with low strength are the critical components of HAZ determining performance of the weldments.

  17. In vitro analysis of the bioavailability of six metals via the gastro-intestinal tract of the rainbow trout (Oncorhynchus mykiss).

    PubMed

    Ojo, Adeola A; Wood, Chris M

    2007-06-01

    An in vitro gut sac technique was used to compare the uptake rates of essential (copper, zinc and nickel) and non-essential metals (silver, cadmium and lead) at 50 micromol L(-1) each (a typical nutritive level in solution in chyme) in the luminal saline in four sections of the gastro-intestinal tract (stomach, anterior, mid and posterior intestines) of the freshwater rainbow trout. Cu, Zn, Cd and Ag exhibited similar regional patterns: on an area-specific basis, uptake rates for these metals were highest in the anterior intestine, lowest in the stomach, and approximately equal in the mid and posterior intestinal segments. When these rates were converted to a whole animal basis, the predominance of the anterior intestine increased because of its greater area, while the contribution of the stomach rose slightly to approach those of the mid and posterior intestines. However, for Pb and Ni, area-specific and whole organism transport rates were greatest in the mid (Pb) and posterior (Ni) intestines. Surprisingly, total transport rates did not differ appreciably among the essential and non-essential metals, varying only from 0.025 (Ag) to 0.050 nmol g(-1)h(-1) (Ni), suggesting that a single rate constant can be applied for risk assessment purposes. These rates were generally comparable to previously reported uptake rates from waterborne exposures conducted at concentrations 1-4 orders of magnitude lower, indicating that both routes are likely important, and that gut transporters operate with much lower affinity than gill transporters. Except for Ni, more metal was bound to mucus and/or trapped in the mucosal epithelium than was transported into the blood space in every compartment except the anterior intestine, where net transport predominated. Overall, mucus binding was a significant predictor of net transport rate for every metal except Cd, and the strongest relationship was seen for Pb. PMID:17448547

  18. Surface coating affects behavior of metallic nanoparticles in a biological environment

    PubMed Central

    Jurašin, Darija Domazet; Ćurlin, Marija; Capjak, Ivona; Crnković, Tea; Lovrić, Marija; Babič, Michal; Horák, Daniel; Gajović, Srećko

    2016-01-01

    Summary Silver (AgNPs) and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs) are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW), biological cell culture medium without addition of protein (BM), and BM supplemented with common serum protein (BMP). The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl) and blood plasma (BlPl), revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible. PMID:26977382

  19. Surface coating affects behavior of metallic nanoparticles in a biological environment.

    PubMed

    Jurašin, Darija Domazet; Ćurlin, Marija; Capjak, Ivona; Crnković, Tea; Lovrić, Marija; Babič, Michal; Horák, Daniel; Vinković Vrček, Ivana; Gajović, Srećko

    2016-01-01

    Silver (AgNPs) and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs) are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW), biological cell culture medium without addition of protein (BM), and BM supplemented with common serum protein (BMP). The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl) and blood plasma (BlPl), revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible. PMID:26977382

  20. Atmospheric Deposition of Heavy Metals in Soil Affected by Different Soil Uses of Southern Spain

    NASA Astrophysics Data System (ADS)

    Acosta, J. A.; Faz, A.; Martínez-Martínez, S.; Bech, J.

    2009-04-01

    Heavy metals are a natural constituent of rocks, sediments and soils. However, the heavy metal content of top soils is also dependent on other sources than weathering of the indigenous minerals; input from atmospheric deposition seems to be an important pathway. Atmospheric deposition is defined as the process by which atmospheric pollutants are transferred to terrestrial and aquatic surfaces and is commonly classified as either dry or wet. The interest in atmospheric deposition has increased over the past decade due to concerns about the effects of deposited materials on the environment. Dry deposition provides a significant mechanism for the removal of particles from the atmosphere and is an important pathway for the loading of heavy metals into the soil ecosystem. Within the last decade, an intensive effort has been made to determine the atmospheric heavy metal deposition in both urban and rural areas. The main objective of this study was to identification of atmospheric heavy metals deposition in soil affected by different soil uses. Study area is located in Murcia Province (southeast of Spain), in the surroundings of Murcia City. The climate is typically semiarid Mediterranean with an annual average temperature of 18°C and precipitation of 350 mm. In order to determine heavy metals atmospheric deposition a sampling at different depths (0-1 cm, 1-5 cm, 5-15 cm and 15-30 cm) was carried out in 7 sites including agricultural soils, two industrial areas and natural sites. The samples were taken to the laboratory where, dried, passed through a 2 mm sieve, and grinded. For the determination of the moisture the samples were weighed and oven dried at 105 °C for 24 h. The total amounts of metals (Pb, Cu, Pb, Zn, Cd, Mn, Ni and Cr) were determined by digesting the samples with nitric/perchoric acids and measuring with ICP-MS. Results showed that zinc contamination in some samples of industrial areas was detected, even this contamination reaches 30 cm depth; thus it is

  1. Sludge organics bioavailability

    SciTech Connect

    Eiceman, G.E.; Bellin, C.A.; Ryan, J.A.; O'Connor, G.A.

    1991-01-01

    Concern over the bioavailability of toxic organics that can occur in municipal sludges threatens routine land application of sludge. Available data, however, show that concentrations of priority organics in normal sludges are low. Sludges applied at agronomic rates yield chemical concentrations in soil-sludge mixtures 50 to 100 fold lower. Plant uptake at these pollutant concentrations (and at much higher concentrations) is minimal. Chemicals are either (1) accumulated at extremely low levels (PCBs), (2) possibly accumulated, but then rapidly metabolized within plants to extremely low levels (DEHP), or (3) likely degraded so rapidly in soil that only minor contamination occurs (PCP and 2,4-DNP).

  2. Bioavailability of zinc, copper, and manganese from infant diets

    SciTech Connect

    Bell, J.G.

    1987-01-01

    A series of trace element absorption experiments were performed using the Sprague-Dawley suckling rat put and infant rhesis monkey (Macaca mulatta) with extrinsic radiolabeling to assess the bioavailability of Zn, Cu, and Mn from infant diets and to examine specific factors that affect absorption of these essential nutrients. Bioavailability of Cu as assessed by 6 h liver uptake (% of /sup 64/Cu dose) was highest from human milk and cow milk based formula and significantly lower from cow milk and soy based formula. Copper bioavailability from infant cereal products as assessed by whole body uptake (% of /sup 64/Cu dose) in d 20 rats, 9 h postintubation, was low compared to the bioavailability from cow milk or human milk alone. /sup 65/Zn uptake in d 20 rats, 9 h postintubation, was significantly lower from cereals fed alone or in combination with cow or human milk as compared to the uptake from the milks fed alone. Zn bioavailability varied among cereal diets, (lowest from cereals containing phytate and highest from cereal/fruit products). Mn bioavailability from infant diets was assessed using a modified suckling rat pup model. Bioavailability (24 h whole body retention of /sup 54/Mn) was high from all milks and commercial formulas tested.

  3. Metal particulate matter components affect gene expression and beat frequency of neonatal rat ventricular myocytes.

    PubMed

    Graff, Donald W; Cascio, Wayne E; Brackhan, Joseph A; Devlin, Robert B

    2004-05-01

    Soluble particulate matter (PM) components (e.g., metals) have the potential to be absorbed into the bloodstream and transported to the heart where they might induce the expression of inflammatory cytokines and remodel electrical properties. We exposed cultured rat ventricular myocytes to similar concentrations of two metals [zinc (Zn) and vanadium (V)] found commonly in PM and measured changes in spontaneous beat rate. We found statistically significant reductions in spontaneous beat rate after both short-term (4-hr) and long-term (24-hr) exposures, with a more substantial effect seen with Zn. We also measured the expression of genes associated with inflammation and a number of sarcolemmal proteins associated with electrical impulse conduction. Exposure to Zn or V (6.25-50 microM) for 6 hr produced significant increases in IL-6, IL-1 alpha, heat shock protein 70, and connexin 43 (Cx43). After 24 hr exposure, Zn induced significant changes in the gene expression of Kv4.2 and KvLQt (potassium channel proteins), the alpha 1 subunit of the L-type calcium channel, and Cx43, as well as IL-6 and IL-1 alpha. In contrast, V produced a greater effect on Cx43 and affected only one ion channel (KvLQT1). These results show that exposure of rat cardiac myocytes to noncytotoxic concentrations of Zn and V alter spontaneous beat rate as well as the expression of ion channels and sarcolemmal proteins relevant to electrical remodeling and slowing of spontaneous beat rate, with Zn producing a more profound effect. As such, these data suggest that the cardiac effects of PM are largely determined by the relative metal composition of particles. PMID:15159208

  4. Age affects not only metabolome but also metal toxicity in Scenedesmus quadricauda cultures.

    PubMed

    Kováčik, Jozef; Klejdus, Bořivoj; Babula, Petr; Hedbavny, Josef

    2016-04-01

    Responses of Scenedesmus quadricauda grown in vitro and differing in age (old culture-13 months, young culture-1 month) to short-term cadmium (Cd) or nickel (Ni) excess (24h) were compared. Higher age of the culture led to lower amount of chlorophylls, ascorbic acid and glutathione but higher signal of ROS. Surprisingly, sucrose was detected using DART-Orbitrap MS in both old and young culture and subsequent quantification confirmed its higher amount (ca. 3-times) in the old culture. Cd affected viability and ROS amount more negatively than Ni that could arise from excessive Cd uptake which was also higher in all treatments than in respective Ni counterparts. Surprisingly, nitric oxide was not extensively different in response to age or metals. Strong induction of phytochelatin 2 is certainly Cd-specific response while Ni also elevated ascorbate content. Krebs cycle acids were more accumulated in the young culture but they were rather elevated in the old culture (citric acid under Ni excess). We conclude that organic solid 'Milieu Bristol' medium we tested is suitable for long-term storage of unicellular green algae (also successfully tested for Coccomyxa sp. and Parachlorella sp.) and the impact of age on metal uptake may be useful for bioremediation purposes. PMID:26687303

  5. Toxic metal interactions affect the bioaccumulation and dietary intake of macro- and micro-nutrients.

    PubMed

    Khan, Anwarzeb; Khan, Sardar; Alam, Mehboob; Khan, Muhammad Amjad; Aamir, Muhammad; Qamar, Zahir; Ur Rehman, Zahir; Perveen, Sajida

    2016-03-01

    The present study was conducted to evaluate the effects of heavy metals (cadmium (Cd), lead (Pb) and Cd-Pb mix) on bioaccumulation of different nutrients. Three plant species including potato, tomato and lettuce were grown in pots containing soil contaminated with Cd, Pb and Cd-Pb mix at four different levels. The edible portions of each plant were analysed for Cd, Pb and different macro- and micro-nutrients including protein, vitamin C, nitrogen (N), phosphorous (P), potassium (K), iron (Fe), manganese (Mn), calcium (Ca) and magnesium (Mg). Results indicated significant variations in selected elemental concentrations in all the three plants grown in different treatments. The projected daily dietary intake values of selected metals were significant (P < 0.001) for Fe, Mn, Ca and Mg but not significant for protein, vitamin C, N and P. The elemental contribution to Recommended Dietary Allowance (RDA) was significant for Mn. Similarly, Fe and Mg also showed substantial contribution to RDA, while Ca, N, P, K, protein and vitamin C showed the minimal contribution for different age groups. This study suggests that vegetables cultivated on Cd and Pb contaminated soil may significantly affect their quality, and the consumption of such vegetables may result in substantial negative effects on nutritional composition of the consumer body. Long term and continuous use of contaminated vegetables may result in malnutrition. PMID:26714294

  6. Plants defective in calcium oxalate crystal formation have more bioavailable calcium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioavailable calcium affects bone formation and calcification. Here we investigate how a single gene mutation altering calcium partitioning in the forage crop Medicago truncatula affects calcium bioavailability. Previously, the cod5 Medicago mutant was identified which contains wild-type amounts o...

  7. Micronutrient bioavailability research priorities.

    PubMed

    Casgrain, Amélie; Collings, Rachel; Harvey, Linda J; Boza, Julio J; Fairweather-Tait, Susan J

    2010-05-01

    A micronutrient bioavailability workshop, which involved international experts and members of the scientific community and the food industry, with interactive breakout sessions based on synectics principles, was organized by the International Life Sciences Institute Europe Addition of Nutrients to Food Task Force and the European Commission Network of Excellence European Micronutrient Recommendations Aligned. After presentations by experts, a series of "challenge statements" was discussed. The aim was to address topical issues, in particular those that linked bioavailability with the derivation of micronutrient requirements and dietary recommendations, to identify gaps in knowledge and to consider research priorities. Several generic research priorities were identified, including improving the quality of dietary surveys/food composition tables, the need for more metabolic studies that use stable isotopes and high-quality longer-term interventions, and the development of multifactorial mathematical models. Among the common recurrent factors identified as important were polymorphisms/genotype, consideration of the whole diet, chemical form of the micronutrient, and the determination of physiologic requirements. The involvement of all participants in the structured discussions ensured a broad overview of current knowledge, state-of-the-art research, and consideration of priorities for future research. PMID:20200267

  8. Understanding the bioavailability and sequestration of different metal cations in the presence of a biodegradable chelant S,S-EDDS in biological fluids and natural waters.

    PubMed

    Bretti, Clemente; Cigala, Rosalia Maria; De Stefano, Concetta; Lando, Gabriele; Sammartano, Silvio

    2016-05-01

    Ethylenediamine-N,N'-disuccinic acid is a biodegradable alternative to EDTA, therefore its use for the sequestration of Ca(2+), Sn(2+), Cu(2+), Zn(2+) and Fe(3+) is analyzed. New data on its binding ability towards these cations were obtained with potentiometric, voltammetric and calorimetric measurements at different ionic strengths and at T = 298.15 K. Real multi-component fluids, namely fresh water, urine, sea water, saliva and blood plasma were chosen as case studies to evaluate the sequestering ability of EDDS in comparison with EDTA. Speciation diagrams were drawn in selected conditions, considering all interactions among the "natural" components of the fluid and those studied in this work, EDDS and EDTA (cL = 1 mmol dm(-3)) as sequestering agents and the cited metal cations (cM ∼ 10(-5) mol dm(-3)). The comparison of the sequestering ability of EDDS and EDTA is done using pM and pL0.5. In blood plasma the plasma mobilizing index was adopted. It was found that EDDS is a good alternative to EDTA, which tends to bind Ca(2+) and Mg(2+) more than EDDS. In particular, EDTA cannot be used as a sequestrant for Sn(2+) when cCa > cEDTA. EDDS is more efficient than EDTA at pH < 8, particularly in urine, where carbonate is absent. In sea water, the sequestering ability of EDDS towards Fe(3+) is higher than that of EDTA. In blood plasma, the PMI of EDDS towards Cu(2+) is higher than that of EDTA. Thermodynamic information, in terms of ΔH and ΔS, for the protonation and metal complex formation reactions are reported. PMID:26921587

  9. Factors Affecting the Capture Efficiency of a Fume Extraction Torch for Gas Metal Arc Welding.

    PubMed

    Bonthoux, Francis

    2016-07-01

    Welding fumes are classified as Group 2B 'possibly carcinogenic' and this prompts to the implementation of local exhaust ventilation (LEV). The fume extraction torch with LEV integrated into the tool is the most attractive solution but its capture efficiency is often disappointing in practice. This study assesses the main parameters affecting fume capture efficiency namely the extraction flow rate, the positioning of the suction openings on the torch, the angle of inclination of the torch to the workpiece during welding, the metal transfer modes, and the welding deposition rate. The theoretical velocity induced by suction, estimated from the extraction flow rate and the position of the suction openings, is the main parameter affecting effectiveness of the device. This is the design parameter and its value should never be <0.25 m s(-1) The angle of the torch relative to the workpiece also has a great deal of influence. To improve efficiency, work station layouts need to favour positions where the torch is held with angles closer to perpendicular (<15°). Welding with high deposition rates (>1.1g s(-1)) and spray transfer leads to low capture efficiency if induced velocities are <0.5 m s(-1) The results of the study can be used in the design of integrated on-torch extraction systems and provide information for fixing system objectives. PMID:27074798

  10. Factors Affecting the Capture Efficiency of a Fume Extraction Torch for Gas Metal Arc Welding

    PubMed Central

    Bonthoux, Francis

    2016-01-01

    Welding fumes are classified as Group 2B ‘possibly carcinogenic’ and this prompts to the implementation of local exhaust ventilation (LEV). The fume extraction torch with LEV integrated into the tool is the most attractive solution but its capture efficiency is often disappointing in practice. This study assesses the main parameters affecting fume capture efficiency namely the extraction flow rate, the positioning of the suction openings on the torch, the angle of inclination of the torch to the workpiece during welding, the metal transfer modes, and the welding deposition rate. The theoretical velocity induced by suction, estimated from the extraction flow rate and the position of the suction openings, is the main parameter affecting effectiveness of the device. This is the design parameter and its value should never be <0.25 m s−1. The angle of the torch relative to the workpiece also has a great deal of influence. To improve efficiency, work station layouts need to favour positions where the torch is held with angles closer to perpendicular (<15°). Welding with high deposition rates (>1.1g s−1) and spray transfer leads to low capture efficiency if induced velocities are <0.5 m s−1. The results of the study can be used in the design of integrated on-torch extraction systems and provide information for fixing system objectives. PMID:27074798

  11. EFFECT OF SOIL PROPERTIES ON LEAD BIOAVAILABILITY AND TOXCITY TO EARTHWORMS

    EPA Science Inventory

    Soil properties are important factors modifying metal bioavailability to ecological receptors. Twenty-one soils with a wide range of soil properties were amended with a single concentration of Pb (2000 mg/kg) to determine the effects of soil properties on Pb bioavailability and ...

  12. The Content and Bioavailability of Mineral Nutrients of Selected Wild and Traditional Edible Plants as Affected by Household Preparation Methods Practiced by Local Community in Benishangul Gumuz Regional State, Ethiopia.

    PubMed

    Hailu, Andinet Abera; Addis, Getachew

    2016-01-01

    Edible parts of some wild and traditional vegetables used by the Gumuz community, namely, Portulaca quadrifida, Dioscorea abyssinica, Abelmoschus esculentus, and Oxytenanthera abyssinica, were evaluated for their minerals composition and bioavailability. Mineral elements, namely, Ca, Fe, Zn, and Cu, were analyzed using Shimadzu atomic absorption spectrophotometer. Effects of household processing practices on the levels of mineral elements were evaluated and the bioavailability was predicted using antinutrient-mineral molar ratios. Fe, Zn, Ca, Cu, P, Na, and K level in raw edible portions ranged in (0.64 ± 0.02-27.0 ± 6.24), (0.46 ± 0.02-0.85 ± 0.02), (24.49 ± 1.2-131.7 ± 8.3), (0.11 ± 0.01-0.46 ± 0.04), (39.13 ± 0.34-57.27 ± 0.94), (7.34 ± 0.42-20.42 ± 1.31), and (184.4 ± 1.31-816.3 ± 11.731) mg/100 g FW, respectively. Although statistically significant losses in minerals as a result of household preparation practices were observed, the amount of nutrients retained could be valuable especially in communities that have limited alternative sources of these micronutrients. The predicted minerals' bioavailability shows adequacy in terms of calcium and zinc but not iron. PMID:26981523

  13. The Content and Bioavailability of Mineral Nutrients of Selected Wild and Traditional Edible Plants as Affected by Household Preparation Methods Practiced by Local Community in Benishangul Gumuz Regional State, Ethiopia

    PubMed Central

    Hailu, Andinet Abera; Addis, Getachew

    2016-01-01

    Edible parts of some wild and traditional vegetables used by the Gumuz community, namely, Portulaca quadrifida, Dioscorea abyssinica, Abelmoschus esculentus, and Oxytenanthera abyssinica, were evaluated for their minerals composition and bioavailability. Mineral elements, namely, Ca, Fe, Zn, and Cu, were analyzed using Shimadzu atomic absorption spectrophotometer. Effects of household processing practices on the levels of mineral elements were evaluated and the bioavailability was predicted using antinutrient-mineral molar ratios. Fe, Zn, Ca, Cu, P, Na, and K level in raw edible portions ranged in (0.64 ± 0.02–27.0 ± 6.24), (0.46 ± 0.02–0.85 ± 0.02), (24.49 ± 1.2–131.7 ± 8.3), (0.11 ± 0.01–0.46 ± 0.04), (39.13 ± 0.34–57.27 ± 0.94), (7.34 ± 0.42–20.42 ± 1.31), and (184.4 ± 1.31–816.3 ± 11.731) mg/100 g FW, respectively. Although statistically significant losses in minerals as a result of household preparation practices were observed, the amount of nutrients retained could be valuable especially in communities that have limited alternative sources of these micronutrients. The predicted minerals' bioavailability shows adequacy in terms of calcium and zinc but not iron. PMID:26981523

  14. Strong metal-support interaction between mononuclear and polynuclear transition metal complexes and oxide supports which dramatically affects catalytic activity

    SciTech Connect

    Hucul, D.A.; Brenner, A.

    1981-03-05

    The interaction of carbonyl complexes with catalyst supports, primarily ..gamma..-alumina, has been studied by temperature-programmed decomposition. In all cases, including cluster complexes and complexes of noble metals, after heating to 600/sup 0/C in flowing He the catalysts are significantly oxidized due to a redox reaction between surface hydroxyl groups and the initially zero-valent metal. Contrary reports are probably incorrect and likely reflect the insensitivity of the experimental techniques used. For all but the most thermally unstable complexes, the oxidation occurs during the latter stages of decarbonylation indicating that there is no significant accumulation of bare zero-valent metal. Hence, decomposition does not in general provide a direct route to supported metals and, contrary to some claims, molecular cluster complexes cannot necessarily be used as precursors to supported metal clusters. Further, knowledge of this redox reaction is critical for understanding patterns of activity and for the development of improved catalysts.

  15. Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri.

    PubMed

    Muehe, E Marie; Weigold, Pascal; Adaktylou, Irini J; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas; Behrens, Sebastian

    2015-03-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a "native" and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, "Candidatus Chloracidobacterium") of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  16. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    PubMed Central

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  17. Effect of organic amendments and mineral fertilizer on zinc bioavailability, plant content and translocation

    NASA Astrophysics Data System (ADS)

    Chami, Ziad Al; Cavoski, Ivana; Mondelli, Donato; Miano, Teodoro

    2013-04-01

    treatments seem to not affect Zn bioavailability in the soil. In conclusion, compost was effective in binding heavy metals, reducing plant uptakes as well as translocation to aerial parts, ameliorating also plant tolerance and growth.

  18. Influence of hardness on the bioavailability of silver to a freshwater snail after waterborne exposure to silver nitrate and silver nanoparticles

    USGS Publications Warehouse

    Stoiber, Tasha L.; Croteau, Marie-Noele; Romer, Isabella; Tejamaya, Mila; Lead, Jamie R.; Luoma, Samuel N.

    2015-01-01

    The release of Ag nanoparticles (AgNPs) into the aquatic environment is likely, but the influence of water chemistry on their impacts and fate remains unclear. Here, we characterize the bioavailability of Ag from AgNO3 and from AgNPs capped with polyvinylpyrrolidone (PVP AgNP) and thiolated polyethylene glycol (PEG AgNP) in the freshwater snail, Lymnaea stagnalis, after short waterborne exposures. Results showed that water hardness, AgNP capping agents, and metal speciation affected the uptake rate of Ag from AgNPs. Comparison of the results from organisms of similar weight showed that water hardness affected the uptake of Ag from AgNPs, but not that from AgNO3. Transformation (dissolution and aggregation) of the AgNPs was also influenced by water hardness and the capping agent. Bioavailability of Ag from AgNPs was, in turn, correlated to these physical changes. Water hardness increased the aggregation of AgNPs, especially for PEG AgNPs, reducing the bioavailability of Ag from PEG AgNPs to a greater degree than from PVP AgNPs. Higher dissolved Ag concentrations were measured for the PVP AgNPs (15%) compared to PEG AgNPs (3%) in moderately hard water, enhancing Ag bioavailability of the former. Multiple drivers of bioavailability yielded differences in Ag influx between very hard and deionized water where the uptake rate constants (kuw, l g-1 d-1 ± SE) varied from 3.1 ± 0.7 to 0.2 ± 0.01 for PEG AgNPs and from 2.3 ± 0.02 to 1.3 ± 0.01 for PVP AgNPs. Modeling bioavailability of Ag from NPs revealed that Ag influx into L. stagnalis comprised uptake from the NPs themselves and from newly dissolved Ag.

  19. Potassium Intake, Bioavailability, Hypertension, and Glucose Control

    PubMed Central

    Stone, Michael S.; Martyn, Lisa; Weaver, Connie M.

    2016-01-01

    Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+) ATPase pump. Approximately 90% of potassium consumed (60–100 mEq) is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN) is the leading cause of cardiovascular disease (CVD) and a major financial burden ($50.6 billion) to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics) may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health. PMID:27455317

  20. Potassium Intake, Bioavailability, Hypertension, and Glucose Control.

    PubMed

    Stone, Michael S; Martyn, Lisa; Weaver, Connie M

    2016-01-01

    Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+) ATPase pump. Approximately 90% of potassium consumed (60-100 mEq) is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN) is the leading cause of cardiovascular disease (CVD) and a major financial burden ($50.6 billion) to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics) may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health. PMID:27455317

  1. Bioavailability: implications for science/cleanup policy

    SciTech Connect

    Denit, Jeffery; Planicka, J. Gregory

    1998-12-01

    This paper examines the role of bioavailability in risk assessment and cleanup decisions. Bioavailability refers to how chemicals ''behave'' and their ''availability'' to interact with living organisms. Bioavailability has significant implications for exposure risks, cleanup goals, and site costs. Risk to human health and the environment is directly tied to the bioavailability of the chemicals of concern.

  2. Metal toxicity differently affects the Iris pseudacorus-arbuscular mycorrhiza fungi symbiosis in terrestrial and semi-aquatic habitats.

    PubMed

    Wężowicz, K; Turnau, K; Anielska, T; Zhebrak, I; Gołuszka, K; Błaszkowski, J; Rozpądek, P

    2015-12-01

    Phytoremediation offers an environmental friendly alternative to conventional cleanup techniques. In this study, mycorrhizal fungi isolated from the roots of Mentha longifolia grown in the basin of the Centuria River (S Poland) were used. Iris pseudacorus was grown in substratum from an industrial waste, enriched in Pb, Fe, Zn, and Cd in a terrestrial and water-logged habitat. Plant yield and photosynthetic performance was the highest in the aquatic environment; however, the presence of toxic metals (TM) negatively affected photosystem II (PSII) photochemistry as shown by the JIP test. Fungi colonization and Cd accumulation within plant tissues was decreased. In the terrestrial habitat, neither arbuscular mycorrhizal fungi (AMF) nor metal toxicity affected plant growth, although metal uptake, Cd in particular, as well as photosynthesis were affected. Inoculated plants accumulated significantly more Cd, and photosynthesis was downregulated. The results presented in this study clearly indicate that the I. pseudacorus-AMF symbiosis adapts itself to the presence of toxic metals in the environment, optimizing resource supply, energy fluxes, and possibly stress tolerance mechanisms. Plant/AMF consortia grown in terrestrial and water-logged habitats utilize different strategies to cope with metal toxicity. The use of AMF in improving the phytoremediation potential of I. pseudacorus needs, however, further research. PMID:26585452

  3. Heavy metals species affect fungal-bacterial synergism during the bioremediation of fluoranthene.

    PubMed

    Ma, Xiao-Kui; Ding, Ning; Peterson, Eric Charles; Daugulis, Andrew J

    2016-09-01

    The co-occurrence of polycyclic aromatic hydrocarbons (PAHs) with heavy metals (HMs) is very common in contaminated soils, but the influence of HMs on fungal-bacterial synergism during PAH bioremediation has not been investigated. The bioremediation of fluoranthene-contaminated sand using co-cultures of Acremonium sp. P0997 and Bacillus subtilis showed increases of 109.4 and 9.8 % in degradation compared to pure bacterial and fungal cultures, respectively, removing 64.1 ± 1.4 % fluoanthene in total. The presence of Cu(2+) reduced fluoranthene removal to 53.7 ± 1.7 %, while inhibiting bacterial growth, and reducing translocation of bacteria on fungal hyphae by 49.5 %, in terms of the bacterial translocation ratio. Cu(2+) reduced bacterial diffusion by 46.8 and 31.9 %, as reflected by D (a bulk random motility diffusional coefficient) and D eff (the effective one-dimensional diffusion coefficient) compared to the control without HM supplementation, respectively. However, Mn(2+) resulted in a 78.2 ± 1.9 % fluoranthene degradation, representing an increase of 21.9 %, while enhancing bacterial growth and bacterial translocation on fungal hyphae, showing a 12.0 % increase in translocation ratio, with no observable impact on D and D eff. Hence, the presence of HMs has been shown to affect fungal-bacterial synergism in PAH degradation, and this effect differs with HM species. PMID:27178182

  4. Study of Plant Cell Wall Polymers Affected by Metal Accumulation Using Stimulated Raman Scattering Microscopy

    SciTech Connect

    Ding, Shi-You

    2015-03-02

    This project aims to employ newly-developed chemical imaging techniques to measure, in real-time, the concentration, dynamics and spatial distribution of plant cell wall polymers during biomass growth with inoculation of transgenic symbiotic fungi, and to explore a new pathway of delivering detoxified metal to plant apoplast using transgenic symbiotic fungi, which will enhance metal accumulation from soil, and potentially these metals may in turn be used as catalysts to improve the efficiency of biomass conversion to biofuels. The proposed new pathway of biomass production will: 1) benefit metal and radionuclide contaminant mobility in subsurface environments, and 2) potentially improve biomass production and process for bioenergy

  5. Bioavailability of trace elements in surface sediments from Kongsfjorden, Svalbard.

    PubMed

    Grotti, Marco; Soggia, Francesco; Ianni, Carmela; Magi, Emanuele; Udisti, Roberto

    2013-12-15

    The bioavailability of trace elements in marine sediments from Kongsfjorden (Svalbard Islands, Norwegian Arctic) was assessed and discussed. Total concentrations of several elements were determined in two granulometric fractions and their bioavailability evaluated by both applying a sequential-selective extraction procedure and using a biomimetic approach based on proteolytic enzymes. Total concentration values and solid speciation patterns indicated overall that the anthropogenic impact of trace elements in the investigated area is negligible, although a minor enrichment with respect to crustal values was found for As, Cd, Cr, Ni, and V. Enrichment of trace elements in the <63-μm fraction compared to the coarser one was evident for As, Cd, Cr, and Ni. The evaluation of the bioavailable fractions showed that a large part of the total content of trace elements cannot enter the aquatic food chain and emphasised the risk of overestimating the environmental impact of heavy metals if the assessment is only based on total concentrations. PMID:24210011

  6. Arbuscular mycorrhizal fungal phylogenetic groups differ in affecting host plants along heavy metal levels.

    PubMed

    He, Lei; Yang, Haishui; Yu, Zhenxing; Tang, Jianjun; Xu, Ligen; Chen, Xin

    2014-10-01

    Arbuscular mycorrhizal fungi (AMF) are important components of soil microbial communities, and play important role in plant growth. However, the effects of AMF phylogenetic groups (Glomeraceae and non-Glomeraceae) on host plant under various heavy metal levels are not clear. Here we conducted a meta-analysis to compare symbiotic relationship between AMF phylogenetic groups (Glomeraceae and non-Glomeraceae) and host plant functional groups (herbs vs. trees, and non-legumes vs. legumes) at three heavy metal levels. In the meta-analysis, we calculate the effect size (ln(RR)) by taking the natural logarithm of the response ratio of inoculated to non-inoculated shoot biomass from each study. We found that the effect size of Glomeraceae increased, but the effect size of non-Glomeraceae decreased under high level of heavy metal compared to low level. According to the effect size, both Glomeraceae and non-Glomeraceae promoted host plant growth, but had different effects under various heavy metal levels. Glomeraceae provided more benefit to host plants than non-Glomeraceae did under heavy metal condition, while non-Glomeraceae provided more benefit to host plants than Glomeraceae did under no heavy metal. AMF phylogenetic groups also differed in promoting plant functional groups under various heavy metal levels. Interacting with Glomeraceae, herbs and legumes grew better than trees and non-legumes did under high heavy metal level, while trees and legumes grew better than herbs and non-legumes did under medium heavy metal level. Interacting with non-Glomeraceae, herbs and legumes grew better than trees and non-legumes did under no heavy metal. We suggested that the combination of legume with Glomeraceae could be a useful way in the remediation of heavy metal polluted environment. PMID:25288547

  7. [Bioavailability of cadmium associated with oxides in sediment: effects of species of mineral, association form and aging on bioavailability].

    PubMed

    Wang, He; Jia, Yong-feng; Liu, Li; Wang, Shu-ying

    2009-10-15

    The bioavailability of heavy metals in sediments is largely controlled by their speciation. Effects of different Cd speciation associated with metal hydroxide on Cd bioavailability were studied. Iron and aluminum hydroxides were chosen as representatives of the oxides commonly present in sediments. In cultivar system, Hoagland solution was used as nutrition supply, and metal hydroxide associated with Cd as the only source of contamination and Phragmites australis was induced to study Cd bioaccumulation. After 13 d cultivation, Cd was uptaken and accumulated in P. australis, with different bioaccumulation from 9.1 to 37.8 mg x kg(-1) in root; and 0 to 10.0 mg x kg(-1) in shoot. Hereinto, the P. australis cultivated in Fe0.5Al0.5(OH)3 medium was found to have accumulated the largest amount of Cd in root, followed by those in Fe(OH)3 and aged Fe0.5Al0.5(OH)3, the lowest root concentration of Cd was observed in the plants cultivated in aged Fe(OH)3. Desorption order of Cd by organic acid was consistent with the Cd accumulation in P. australis. Thus, coprecipitation treatment decreases the bioavailability of Cd; association of aluminum hydroxide with Cd is poor due to its physicochemical property; aging treatment significantly restrict the accumulation of adsorbed Cd; desorption by organic acid verify the discrepancy in bioavailability of different speciation of Cd. PMID:19968130

  8. Trace metal distribution in pristine permafrost-affected soils of the Lena River delta and its hinterland, northern Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Antcibor, I.; Eschenbach, A.; Zubrzycki, S.; Kutzbach, L.; Bolshiyanov, D.; Pfeiffer, E.-M.

    2014-01-01

    Soils are an important compartment of ecosystems and have the ability to buffer and immobilize substances of natural and anthropogenic origin to prevent their movement to other environment compartments. Predicted climatic changes together with other anthropogenic influences on Arctic terrestrial environments may affect biogeochemical processes enhancing leaching and migration of trace elements in permafrost-affected soils. This is especially important since Arctic ecosystems are considered to be highly sensitive to climatic changes as well as to chemical contamination. This study characterises background levels of trace metals in permafrost-affected soils of the Lena River delta and its hinterland in northern Siberia (73.5-69.5° N), representing a remote region far from evident anthropogenic trace metal sources. Investigations on the element content of iron (Fe), arsenic (As), manganese (Mn), zinc (Zn), nickel (Ni), copper (Cu), lead (Pb), cadmium (Cd), cobalt (Co), and mercury (Hg) in different soil types developed in different geological parent materials have been carried out. The highest median concentrations of Fe and Mn were observed in soils belonging to ice-rich permafrost sediments formed during the Pleistocene (ice-complex) while the highest median values of Ni, Pb and Zn were found in soils of both the ice-complex and the Holocene estuarine terrace of the Lena River delta region, as well as in the southernmost study unit of the hinterland area. Detailed observations of trace metal distribution on the micro scale showed that organic matter content, soil texture and iron-oxide contents influenced by cryogenic processes, temperature, and hydrological regimes are the most important factors determining the metal abundance in permafrost-affected soils. The observed range of trace element background concentrations was similar to trace metal levels reported for other pristine northern areas.

  9. Current Status of Trace Metal Pollution in Soils Affected by Industrial Activities

    PubMed Central

    Kabir, Ehsanul; Ray, Sharmila; Kim, Ki-Hyun; Yoon, Hye-On; Jeon, Eui-Chan; Kim, Yoon Shin; Cho, Yong-Sung; Yun, Seong-Taek; Brown, Richard J. C.

    2012-01-01

    There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (Igeo), calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution. PMID:22645468

  10. Factors affecting metal concentrations in the upper sediment layer of intertidal reedbeds along the river Scheldt.

    PubMed

    Du Laing, Gijs; Vandecasteele, Bart; De Grauwe, Pieter; Moors, Wouter; Lesage, Els; Meers, Erik; Tack, Filip M G; Verloo, Marc G

    2007-05-01

    Factors that play a role in determining metal accumulation in sediments of 26 intertidal marshes which are mainly vegetated by reed plants (Phragmites australis) were assessed along the Scheldt estuary (Belgium and The Netherlands). In the upper 20 cm sediment layer, several physico-chemical properties (clay, silt and sand content, organic matter, carbonate and chloride content, pH and conductivity) and aqua regia extractable metals (Cd, Cr, Cu, Ni, Pb, Zn) were determined. The sediments were significantly contaminated with trace metals. The Cd concentrations often exceeded the Flemish soil remediation thresholds for nature areas, whereas Cr, Cu and Zn levels indicated moderate contamination. Pb concentrations occasionally were high, whereas Ni concentrations leaned towards background values. Organic matter was the single most important predictor variable for total metal contents in regression models, except for Cr. Additional significant predictor variables were clay or chloride content, depending on the metal. Observed metal concentrations at sites within a range of a few km from specific point-sources of metals (e.g. shipyards, industrial areas with metallurgic activities, affluents, major motorways) were somewhat higher than predicted by the models, whereas they were lower than predicted at sites which are regularly subjected to flooding by water of high salinity. The ratio between observed and predicted concentrations seems to be a valuable tool for the identification of areas which are specifically impacted by point sources. PMID:17492090

  11. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils.

    PubMed

    Adamo, Paola; Iavazzo, Pietro; Albanese, Stefano; Agrelli, Diana; De Vivo, Benedetto; Lima, Annamaria

    2014-12-01

    Soil pollution in agricultural lands poses a serious threat to food safety, and suggests the need for consolidated methods providing advisory indications for soil management and crop production. In this work, the three-step extraction procedure developed by the EU Measurement and Testing Programme and two soil-to-plant transfer factors (relative to total and bioavailable concentration of elements in soil) were applied on polluted agricultural soils from southern Italy to obtain information on the retention mechanisms of metals in soils and on their level of translocation to edible vegetables. The study was carried out in the Sarno river plain of Campania, an area affected by severe environmental degradation potentially impacting the health of those consuming locally produced vegetables. Soil samples were collected in 36 locations along the two main rivers flowing into the plain. In 11 sites, lettuce plants were collected at the normal stage of consumption. According to Italian environmental law governing residential soils, and on the basis of soil background reference values for the study area, we found diffuse pollution by Be, Sn and Tl, of geogenic origin, Cr and Cu from anthropogenic sources such as tanneries and intensive agriculture, and more limited pollution by Pb, Zn and V. It was found that metals polluting soils as a result of human activities were mainly associated to residual, oxidizable and reducible phases, relatively immobile and only potentially bioavailable to plants. By contrast, the essential elements Zn and Cu showed a tendency to become more readily mobile and bioavailable as their total content in soil increased and were more easily transported to the edible parts of lettuce than other pollutants. According to our results, current soil pollution in the studied area does not affect the proportion of metals taken up by lettuce plants and there is a limited health risk incurred. PMID:25217740

  12. Trace metal distribution in pristine permafrost-affected soils of the Lena River Delta and its Hinterland, Northern Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Antcibor, I.; Zubrzycki, S.; Eschenbach, A.; Kutzbach, L.; Bol'shiyanov, D.; Pfeiffer, E.-M.

    2013-02-01

    Soils are an important compartment of ecosystems and have the ability to immobilize chemicals preventing their movement to other environment compartments. Predicted climatic changes together with other anthropogenic influences on Arctic terrestrial environments may affect biogeochemical processes enhancing leaching and migration of trace elements in permafrost-affected soils. This is especially important since the Arctic ecosystems are considered to be very sensitive to climatic changes as well as to chemical contamination. This study characterizes background levels of trace metals in permafrost-affected soils of the Lena River Delta and its hinterland in northern Siberia (73.5° N-69.5° N) representing a remote region far from evident anthropogenic trace metal sources. Investigations on total element contents of iron (Fe), arsenic (As), manganese (Mn), zinc (Zn), nickel (Ni), copper (Cu), lead (Pb), cadmium (Cd), cobalt (Co) and mercury (Hg) in different soil types developed in different geological parent materials have been carried out. The highest concentrations of the majority of the measured elements were observed in soils belonging to ice-rich permafrost sediments formed during the Pleistocene (ice-complex) in the Lena River Delta region. Correlation analyses of trace metal concentrations and soil chemical and physical properties at a Holocene estuarine terrace and two modern floodplain levels in the southern-central Lena River Delta (Samoylov Island) showed that the main factors controlling the trace metal distribution in these soils are organic matter content, soil texture and contents of iron and manganese-oxides. Principal Component Analysis (PCA) revealed that soil oxides play a significant role in trace metal distribution in both top and bottom horizons. Occurrence of organic matter contributes to Cd binding in top soils and Cu binding in bottom horizons. Observed ranges of the background concentrations of the majority of trace elements were similar to

  13. Flood-related contamination in catchments affected by historical metal mining: an unexpected and emerging hazard of climate change.

    PubMed

    Foulds, S A; Brewer, P A; Macklin, M G; Haresign, W; Betson, R E; Rassner, S M E

    2014-04-01

    Floods in catchments affected by historical metal mining result in the remobilisation of large quantities of contaminated sediment from floodplain soils and old mine workings. This poses a significant threat to agricultural production and is preventing many European river catchments achieving a 'good chemical and ecological status', as demanded by the Water Framework Directive. Analysis of overbank sediment following widespread flooding in west Wales in June 2012 showed that flood sediments were contaminated above guideline pollution thresholds, in some samples by a factor of 82. Most significantly, silage produced from flood affected fields was found to contain up to 1900 mg kg(-1) of sediment associated Pb, which caused cattle poisoning and mortality. As a consequence of climate related increases in flooding this problem is likely to continue and intensify. Management of contaminated catchments requires a geomorphological approach to understand the spatial and temporal cycling of metals through the fluvial system. PMID:24463253

  14. Factors affecting the mobilization of DOC and metals in a peat soil under a warmer scenario

    NASA Astrophysics Data System (ADS)

    Carrera, Noela; Barreal, María. Esther; Briones, María. Jesús I.

    2010-05-01

    Most climate change models predict an increase of temperature of 3-5°C in Southern Europe by the end of this century (IPCC 2007). However, changes in summer precipitations are more uncertain, and although a decrease in rainfall inputs is forecasted by most models, the magnitude of this effect has not been assessed properly (Rowell & Jones 2006). Peatland areas are very sensitive to climate change. In Galicia they survive in upland areas where cold temperatures and continuous moisture supply allow their presence. Besides abiotic factors, alterations in soil fauna activities can also affect peat turnover. Among them, enchytraeids are usually the most numerous invertebrate group in these systems and both temperature and moisture content regulate their abundances and vertical distribution. Previous studies have demonstrated that changes in their populations associated to increasing temperatures can significantly affect metal mobilization, namely iron and aluminium, together with an important decline in the acidity of the soil solution, which possibly eliminates one of the critical mechanisms restricting DOC release (Carrera et al., 2009). In this study we investigated whether changes in water content of the peat soil and soil invertebrate activities associated to increasing temperatures could alter the mobilization rates of Fe and Al and in turn, DOC. 72 undisturbed soil cores (6 cm diameter x 10 cm deep) with their associated vegetation were taken from a blanket bog in Galicia (NW Spain). Back at the laboratory they were sliced horizontally into two layers, (0-5cm and 5-10cm) which were defaunated by means of a wet extraction. Thereafter, the two soil layers derived from the same core were introduced in each microcosm by placing them in their original position but separated by a 1 mm nylon mesh to allow the vertical movements of the organisms. Half of the experimental units were adjusted to the used moisture values observed in the field (80% SWC, H1), whereas in the

  15. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts.

    PubMed

    Gusiatin, Zygmunt Mariusz; Kulikowska, Dorota

    2016-09-01

    This study investigated how amendment with sewage sludge compost of different maturation times (3, 6, 12 months) affected metal (Cd, Cu, Ni, Pb, Zn) bioavailability, fractionation and redistribution in highly contaminated sandy clay soil. Metal transformations during long-term soil stabilization (35 months) were determined. In the contaminated soil, Cd, Ni and Zn were predominately in the exchangeable and reducible fractions, Pb in the reducible fraction and Cu in the reducible, exchangeable and oxidizable fractions. All composts decreased the bioavailability of Cd, Ni and Zn for up to 24 months, which indicates that cyclic amendment with compost is necessary. The bioavailability of Pb and Cu was not affected by compost amendment. Based on the reduced partition index (IR), metal stability in amended soil after 35 months of stabilization was in the following order: Cu > Ni = Pb > Zn > Cd. All composts were more effective in decreasing Cd, Ni and Zn bioavailability than in redistributing the metals, and increasing Cu redistribution more than that of Pb. Thus, sewage sludge compost of as little as 3 months maturation can be used for cyclic amendment of multi-metal-contaminated soil. PMID:26853755

  16. Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments

    SciTech Connect

    Cuypers, C.; Grotenhuis, T.; Joziasse, J.; Rulkens, W.

    2000-05-15

    Persulfate oxidation was validated as a method to predict polycyclic aromatic hydrocarbon (PAH) bioavailability in soils and sediments. It was demonstrated for 14 field contaminated soils and sediments that residual PAH concentrations after a short (3 h) persulfate oxidation correspond well to residual PAH concentrations after 21 days of biodegradation. Persulfate oxidation of samples that had first been subjected to biodegradation yielded only limited additional PAH oxidation. This implies that oxidation and biodegradation removed approximately the same PAH fraction. Persulfate oxidation thus provides a good and rapid method for the prediction of PAH bioavailability. Thermogravimetric analysis of oxidized and untreated samples showed that persulfate oxidation primarily affected expanded organic matter. The results indicate that this expanded organic matter contained mainly readily bioavailable PAHs.

  17. Hydrogen cracking in the heat affected zone of high strength steels - year 2, development of weld metal test

    SciTech Connect

    Graville, B.A.

    1997-03-01

    In previous work the notched bend test had been developed for evaluating the sensitivity of the heat affected zone (HAZ) of a weld to hydrogen cracking. In the present work the test was modified to allow the evaluation of weld metal. The test specimen uses a Charpy-V notch placed in the weld metal after welding and prior to loading in three point bending. The deflection to first load drop is used as the measure of sensitivity to cracking. The results showed that weld metal could readily be evaluated with the test discriminating among weld metals of different composition and hydrogen content. Finite element analysis was undertaken and showed that for the two weld metals tested, cracking occurred at the same local stress when the hydrogen content was the same despite differences in strength. A finite difference model was used to calculate the distribution of hydrogen as a function of aging time. Although the general trends were confirmed by the experimental measurements of hydrogen content, there was considerable scatter attributed to the small hydrogen volumes measured.

  18. Heavy metal balances of an Italian soil as affected by sewage sludge and Bordeaux mixture applications

    SciTech Connect

    Moolenaar, S.W.; Beltrami, P.

    1998-07-01

    Applications of sewage sludge and Bordeaux mixture (Bm) (a mixture of copper sulfate and lime) add heavy metals to the soil. At an experimental farm in the Cremona district (Italy), the authors measured current heavy metal contents in soil and their removal via harvested products. They also measured heavy metal adsorption by soil from this farm. With these data, projections were made of the long-term development of heavy metal (Cd, Cu, and Zn) contents in soil, crop removal, and leaching at different application rates of sewage sludge and Bm. These projections were compared with existing quality standards of the European Union (EU) and Italy with regard to soil and groundwater. The calculations reveal that the permitted annual application rates of sewage sludge and Bm are likely to result in exceedance of groundwater and soil standards. Sewage sludge applications, complying with the Italian legal limits, may pose problems for Cd, Cu, and Zn within 30, 70, and 100 yr, respectively. Furthermore, severe Cu pollution of integrated and especially organic (Bm only) vineyards is unavoidable with the currently allowed application rates of Bm. The results suggest that the current Italian soil protection policy as well as the EU policy are not conducive of a sustainable heavy metal management in agroecosystems.

  19. Stabilization/solidification of heavy metals in sludge ceramsite and leachability affected by oxide substances.

    PubMed

    Xu, Guoren; Zou, Jinlong; Li, Guibai

    2009-08-01

    To investigate stabilization of heavy metals in ceramsite made from wastewater treatment sludge (WWTS) and drinking water treatment sludge (DWTS), leaching tests were conducted to find out the effect of SiO2:Al2O3, acidic oxides (SiO2 and Al2O3), Fe2O3: CaO:MgO, and basic oxides (Fe2O3, CaO, and MgO) on the binding ability of heavy metals. Results show that as ratios of SiO2: Al2O3 decrease, leaching contents of Cu and Pb increase, while leaching contents of Cd and Cr first decrease and then increase; under the variation of Fe2O3:CaO:MgO (Fe2O3 contents decrease), leaching contents of Cd, Cu, and Pb increase, while leaching contents of Cr decrease. Acidic and basic oxide leaching results show that higher contents of Al2O3, Fe2O3, and MgO are advantageous to improve the stability of heavy metals, while the binding capacity for Cd, Cu, and Pb is significantly reduced at higher contents of SiO2 and CaO. The solidifying efficiencies of heavy metals are improved by crystallization, and the main compounds in ceramsite are crocoite, chrome oxide, cadmium silicate, and copper oxide. These results can be considered as a basic understanding for new technologies of stabilization of heavy metals in heavily polluted WWTS. PMID:19731695

  20. Interactions between mercury and phytoplankton: speciation, bioavailability, and internal handling.

    PubMed

    Le Faucheur, Séverine; Campbell, Peter G C; Fortin, Claude; Slaveykova, Vera I

    2014-06-01

    The present review describes and discusses key interactions between mercury (Hg) and phytoplankton to highlight the role of phytoplankton in the biogeochemical cycle of Hg and to understand direct or indirect Hg effects on phytoplankton. Phytoplankton are exposed to various Hg species in surface waters. Through Hg uptake, phytoplankton affect the concentration, speciation, and fate of Hg in aquatic systems. The mechanisms by which phytoplankton take up Hg are still not well known, but several studies have suggested that both facilitated transport and passive diffusion could be involved. Once internalized, Hg will impact several physiological processes, including photosynthesis. To counteract these negative effects, phytoplankton have developed several detoxification strategies, such as the reduction of Hg to elemental Hg or its sequestration by intracellular ligands. Based on the toxicological studies performed so far in the laboratory, Hg is unlikely to be toxic to phytoplankton when they are exposed to environmentally relevant Hg concentrations. However, this statement should be taken with caution because questions remain as to which Hg species control Hg bioavailability and about Hg uptake mechanisms. Finally, phytoplankton are primary producers, and accumulated Hg will be transferred to higher consumers. Phytoplankton are a key component in aquatic systems, and their interactions with Hg need to be further studied to fully comprehend the biogeochemical cycle of Hg and the impact of this ubiquitous metal on ecosystems. PMID:24127330

  1. Rice and Bean Targets for Biofortification Combined with High Carotenoid Content Crops Regulate Transcriptional Mechanisms Increasing Iron Bioavailability

    PubMed Central

    Dias, Desirrê Morais; de Castro Moreira, Maria Eliza; Gomes, Mariana Juste Contin; Lopes Toledo, Renata Celi; Nutti, Marilia Regini; Pinheiro Sant’Ana, Helena Maria; Martino, Hércia Stampini Duarte

    2015-01-01

    Iron deficiency affects thousands of people worldwide. Biofortification of staple food crops aims to support the reduction of this deficiency. This study evaluates the effect of combinations of common beans and rice, targets for biofortification, with high carotenoid content crops on the iron bioavailability, protein gene expression, and antioxidant effect. Iron bioavailability was measured by the depletion/repletion method. Seven groups were tested (n = 7): Pontal bean (PB); rice + Pontal bean (R + BP); Pontal bean + sweet potato (PB + SP); Pontal bean + pumpkin (PB + P); Pontal bean + rice + sweet potato (PB + R + P); Pontal bean + rice + sweet potato (PB + R + SP); positive control (Ferrous Sulfate). The evaluations included: hemoglobin gain, hemoglobin regeneration efficiency (HRE), gene expression of divalente metal transporter 1 (DMT-1), duodenal citocromo B (DcytB), ferroportin, hephaestin, transferrin and ferritin and total plasma antioxidant capacity (TAC). The test groups, except the PB, showed higher HRE (p < 0.05) than the control. Gene expression of DMT-1, DcytB and ferroportin increased (p < 0.05) in the groups fed with high content carotenoid crops (sweet potato or pumpkin). The PB group presented lower (p < 0.05) TAC than the other groups. The combination of rice and common beans, and those with high carotenoid content crops increased protein gene expression, increasing the iron bioavailability and antioxidant capacity. PMID:26610564

  2. Rice and Bean Targets for Biofortification Combined with High Carotenoid Content Crops Regulate Transcriptional Mechanisms Increasing Iron Bioavailability.

    PubMed

    Dias, Desirrê Morais; de Castro Moreira, Maria Eliza; Gomes, Mariana Juste Contin; Lopes Toledo, Renata Celi; Nutti, Marilia Regini; Pinheiro Sant'Ana, Helena Maria; Martino, Hércia Stampini Duarte

    2015-11-01

    Iron deficiency affects thousands of people worldwide. Biofortification of staple food crops aims to support the reduction of this deficiency. This study evaluates the effect of combinations of common beans and rice, targets for biofortification, with high carotenoid content crops on the iron bioavailability, protein gene expression, and antioxidant effect. Iron bioavailability was measured by the depletion/repletion method. Seven groups were tested (n = 7): Pontal bean (PB); rice + Pontal bean (R + BP); Pontal bean + sweet potato (PB + SP); Pontal bean + pumpkin (PB + P); Pontal bean + rice + sweet potato (PB + R + P); Pontal bean + rice + sweet potato (PB + R + SP); positive control (Ferrous Sulfate). The evaluations included: hemoglobin gain, hemoglobin regeneration efficiency (HRE), gene expression of divalente metal transporter 1 (DMT-1), duodenal citocromo B (DcytB), ferroportin, hephaestin, transferrin and ferritin and total plasma antioxidant capacity (TAC). The test groups, except the PB, showed higher HRE (p < 0.05) than the control. Gene expression of DMT-1, DcytB and ferroportin increased (p < 0.05) in the groups fed with high content carotenoid crops (sweet potato or pumpkin). The PB group presented lower (p < 0.05) TAC than the other groups. The combination of rice and common beans, and those with high carotenoid content crops increased protein gene expression, increasing the iron bioavailability and antioxidant capacity. PMID:26610564

  3. Bioavailability of Cd, Cr, and Zn to bivalves in south San Francisco Bay

    SciTech Connect

    Lee, B.G.; Luoma, S.N.; Geen, A. van

    1995-12-31

    The bioavailability of Cd, Cr, and Zn to benthic bivalves (Potamocorbular amurensis and Macoma balthica) is affected by the type of natural particles the animals ingest, and the concentration and speciation of dissolved metals. During a spring phytoplankton bloom in south San Francisco Bay dissolved Cd and Zn concentrations decreased to about half of pre-bloom concentrations. The concentrations of particulate Cd and Zn concentrations increased due to preferential uptake of these metals by phytoplankton. Assimilation of Cd was more efficient when clams ate pure phytoplankton (80% for M. balthica and 29% for P. amurensis) than when they were exposed to inorganic-dominated particles. M. balthica and P. amurensis assimilated 72% and 42% of Zn associated with the particles during the bloom. Assimilation of Cr was low (<6%) and particle type had little effect on its availability. Accumulation of Cd via the dissolved route was low in high salinity waters (15 ppt). Metal bioaccumulation in the bivalves was modeled using the experimentally determined physiological parameters. The results were compared to metal concentrations in clams from the Bay. The model suggested that the clams accumulated Cd and Zn at higher rates during the phytoplankton bloom, although dissolved metal concentrations in the water column were reduced.

  4. Factors affecting the strength of multipass low-alloy steel weld metal

    NASA Technical Reports Server (NTRS)

    Krantz, B. M.

    1972-01-01

    The mechanical properties of multipass high-strength steel weld metals depend upon several factors, among the most important being: (1) The interaction between the alloy composition and weld metal cooling rate which determines the as-deposited microstructure; and (2) the thermal effects of subsequent passes on each underlying pass which alter the original microstructure. The bulk properties of a multipass weld are therefore governed by both the initial microstructure of each weld pass and its subsequent thermal history. Data obtained for a high strength low alloy steel weld metal confirmed that a simple correlation exists between mechanical properties and welding conditions if the latter are in turn correlated as weld cooling rate.

  5. BIOSURFACES AND BIOAVAILABILITY: A NANOSCALE OVERVIEW

    EPA Science Inventory

    Environmentally, contaminant bioavailability is a key parameter in determining exposure assessment and ultimately risk assessment/risk management. Defining bioavailability requires knowledge of the contaminant spatial/temporal disposition and transportability and the thermodyna...

  6. Repeated annual paper mill and alkaline residuals application affects soil metal fractions.

    PubMed

    Gagnon, Bernard; Robichaud, Annie; Ziadi, Noura; Karam, Antoine

    2014-03-01

    The application of industrial residuals in agriculture may raise concerns about soil and crop metal accumulation. A complete study using a fractionation scheme would reveal build-up in metal pools occurring after material addition and predict the transformation of metals in soil between the different forms and potential metal release into the environment. An experimental study was conducted from 2000 to 2008 on a loamy soil at Yamachiche, Quebec, Canada, to evaluate the effects of repeated annual addition of combined paper mill biosolids when applied alone or with several liming by-products on soil Cu, Zn, and Cd fractions. Wet paper mill biosolids at 0, 30, 60, or 90 Mg ha and calcitic lime, lime mud, or wood ash, each at 3 Mg ha with 30 Mg paper mill biosolids ha, were surface applied after seeding. The soils were sampled after 6 (soybean [ (L.) Merr.]) and 9 [corn ( L.)] crop years and analyzed using the Tessier fractionation procedure. Results indicated that biosolids addition increased exchangeable Zn and Cd, carbonate-bound Cd, Fe-Mn oxide-bound Zn and Cd, organically bound Cu and Zn, and total Zn and Cd fractions but decreased Fe-Mn oxide-bound Cu in the uppermost 30-cm layer. With liming by-products, there was a shift from exchangeable to carbonate-bound forms. Even with very small metals addition, paper mill and liming materials increased the mobility of soil Zn and Cd after 9 yr of application, and this metal redistribution resulted into higher crop grain concentrations. PMID:25602653

  7. Creep properties of PWC-11 base metal and weldments as affected by heat treatment

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Moore, T. J.; Grobstein, T. L.

    1986-01-01

    In a preliminary study using single specimens for each condition, PWC-11 (a niobium-base alloy with a nominal composition of Nb-1%Zr-0.1%C) was creep tested at 1350 K and 40 MPa. Base metal specimens and specimens with transverse electron beam welds were tested with and without a 1000 hr, 1350 K aging treatment prior to testing. In the annealed condition (1 hr at 1755 K + 2 hr at 1475 K), the base metal exhibited superior creep strength compared to the nonaged condition, reaching 1 percent strain in 3480 hr. A 1000 hr, 1350 K aging treatment prior to creep testing had a severe detrimental effect on creep strength of the base metal and transverse electron beam weldments, reducing the time to attain 1 percent strain by an order of magnitude. Extrapolated temperature compensated creep rates indicate that the present heat of PWC-11 may be four times as creep resistant as similarly tested Nb-1%Zr. The extrapolated stress to achieve 1 percent creep strain in 7 yr at 1350 K is 2.7 MPa for annealed Nb-1%Zr and 12 MPa for annealed and aged PWC-11 base metal with and without a transverse electron beam weld.

  8. Heavy metals affect regulatory volume decrease (RVD) in nematocytes isolated from the jellyfish Pelagia noctiluca.

    PubMed

    Morabito, R; Marino, A; La Spada, G

    2013-06-01

    The environmental contamination caused by heavy metals raises the question of their effect on biological systems. Among bio-indicators useful to monitor the toxicological effects of these chemicals, Cnidarians offer a unique model. Cnidarians possess highly specialized stinging cells, termed nematocytes, which respond to hyposmotic solution with well established homeostatic parameters as an acute osmotic phase (OP), leading to cell swelling, and then a slower regulatory volume decrease (RVD) phase, causing cell shrinkage. Here we report the effect of 65% artificial sea water (ASW) containing heavy metals, such as Cd, La, Co, Cu and Zn (concentrations comprised between 100 and 0.1 μM) on both OP and RVD in nematocytes isolated from the jellyfish Pelagia noctiluca by 605 mM NaSCN plus 0.01 mM Ca(2+). The exposure of the cells to Co and La inhibited RVD but not OP. However, Cu, Cd and Zn prevented the OP in a dose-dependent manner and, hence, also the detection of RVD. These results suggest that, in isolated nematocytes, heavy metal pollutants impair RVD either directly or indirectly through interference with the OP, thus negating RVD. Although further studies need to clarify the exact mechanisms whereby heavy metals exert their toxicity, it is evident that nematocytes of Cnidarians could serve as a model for ecotoxicological investigations. PMID:23499922

  9. ENVIRONMENTAL RESEARCH BRIEF: SPATIAL HETEROGENEITY OF GEOCHEMICAL AND HYDROLOGIC PARAMETERS AFFECTING METAL TRANSPORT IN GROUND WATER

    EPA Science Inventory

    Reliable assessment of the hazards or risks arising from groundwater contamination and the design of effective means of rehabilitation of contaminated sites requires the capability to predict the movement and fate of dissolved solutes in groundwater. The modeling of metal transp...

  10. ENVIRONMENTAL RESEARCH BRIEF: SPATIAL HETEROGENEITY OF GEOCHEMICAL AND HYDROLOGIC PARAMETERS AFFECTING METAL TRANSPORT IN GROUNDWATER

    EPA Science Inventory

    Reliable assessment of the hazards or risks arising from groundwater contamination and the design of effective means of rehabilitation of contaminated sites requires the capability to predict the movement and fate of dissolved solutes in groundwater. he modeling of metal transpor...

  11. SOIL PHYSICOCHEMICAL PARAMETERS AFFECTING METAL AVAILABILITY IN SLUDGE-AMENDED SOILS

    EPA Science Inventory

    A series of laboratory studies was conducted to determine the effects of soil pH and redox potential onlevels of trace metals (Cu, Zn, Cd, Pb, Cr, Ni, and As) in selected chemical forms and their availability to plants. This research demonstrates the important effects of soil red...

  12. The second-shell metal ligands of human arginase affect coordination of the nucleophile and substrate.

    PubMed

    Stone, Everett M; Chantranupong, Lynne; Georgiou, George

    2010-12-14

    The active sites of eukaryotic arginase enzymes are strictly conserved, especially the first- and second-shell ligands that coordinate the two divalent metal cations that generate a hydroxide molecule for nucleophilic attack on the guanidinium carbon of l-arginine and the subsequent production of urea and l-ornithine. Here by using comprehensive pairwise saturation mutagenesis of the first- and second-shell metal ligands in human arginase I, we demonstrate that several metal binding ligands are actually quite tolerant to amino acid substitutions. Of >2800 double mutants of first- and second-shell residues analyzed, we found more than 80 unique amino acid substitutions, of which four were in first-shell residues. Remarkably, certain second-shell mutations could modulate the binding of both the nucleophilic water/hydroxide molecule and substrate or product ligands, resulting in activity greater than that of the wild-type enzyme. The data presented here constitute the first comprehensive saturation mutagenesis analysis of a metallohydrolase active site and reveal that the strict conservation of the second-shell metal binding residues in eukaryotic arginases does not reflect kinetic optimization of the enzyme during the course of evolution. PMID:21053939

  13. [Bioavailability and metabolism of flavonoids].

    PubMed

    Makarova, M N

    2011-01-01

    In the review the modern data about bioavailability and a metabolism of flavonoids is considered. The data about absorption flavonoids in a digestive path, participation of microorganisms in their hydrolysis, pharmacokinetic the data on the basic classes flavonoids: flavanes (flavan-3-ols), anthocyanes, flavones, flavonols and flavanones is cited. PMID:21842747

  14. [Bioavailability and metabolism of flavonoids].

    PubMed

    Makarova, N M

    2011-01-01

    Published data about bioavailability and metabolism of flavonoids are reviewed. Information concerning the absorption of flavonoids in a digestive path and the participation of microorganisms in their hydrolysis is summarized. Parameters of pharmacokinetics are presented for the main classes of flavonoids, including flavanes (flavan-3-ols), anthocyans, flavones, flavonols, and flavanones. PMID:21870774

  15. Evaluation of Metal Toxicity in Streams Affected by Abandoned Mine Lands, Upper Animas River Watershed, Colorado

    USGS Publications Warehouse

    Besser, John M.; Allert, Ann L.; Hardesty, Douglas K.; Ingersoll, Christopher G.; May, Thomas W.; Wang, Ning; Leib, Kenneth J.

    2001-01-01

    Acid drainage from abandoned mines and from naturally-acidic rocks and soil in the upper Animas River watershed of Colorado generates elevated concentrations of acidity and dissolved metals in stream waters and deposition of metal-contaminated particulates in streambed sediments, resulting in both toxicity and habitat degradation for stream biota. High concentrations of iron (Fe), aluminum (Al), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) occur in acid streams draining headwaters of the upper Animas River watershed, and high concentrations of some metals, especially Zn, persist in circumneutral reaches of the Animas River and Mineral Creek, downstream of mixing zones of acid tributaries. Seasonal variation of metal concentrations is reflected in variation in toxicity of stream water. Loadings of dissolved metals to the upper Animas River and tributaries are greatest during summer, during periods of high stream discharge from snowmelt and monsoonal rains, but adverse effects on stream biota may be greater during winter low-flow periods, when stream flows are dominated by inputs of groundwater and contain greatest concentrations of dissolved metals. Fine stream-bed sediments of the upper Animas River watershed also contain elevated concentrations of potentially toxic metals. Greatest sediment metal concentrations occur in the Animas River upstream from Silverton, where there are extensive deposits of mine and mill tailings, and in mixing zones in the Animas River and lower Mineral Creek, where precipitates of Fe and Al oxides also contain high concentrations of other metals. This report summarizes the findings of a series of toxicity studies in streams of the upper Animas River watershed, conducted on-site and in the laboratory between 1998 and 2000. The objectives of these studies were: (1) to determine the relative toxicity of stream water and fine stream-bed sediments to fish and invertebrates; (2) to determine the seasonal range of toxicity in stream

  16. Drug Bioavailability Data: (Un)Available.

    ERIC Educational Resources Information Center

    Capomacchia, Anthony C.; And Others

    1979-01-01

    The obtainability of drug bioavailability data from both brand-name and generic-drug manufacturers was studied to document the relative change in availability to pharmacy students of drug bioavailability data between 1978 and 1976 for drugs exhibiting bioavailability problems. The results indicate no major change. (JMD)

  17. Stability and heavy metal distribution of soil aggregates affected by application of apatite, lime, and charcoal.

    PubMed

    Cui, Hongbiao; Ma, Kaiqiang; Fan, Yuchao; Peng, Xinhua; Mao, Jingdong; Zhou, Dongmei; Zhang, Zhongbin; Zhou, Jing

    2016-06-01

    Only a few studies have been reported on the stability and heavy metal distribution of soil aggregates after soil treatments to reduce the availability of heavy metals. In this study, apatite (22.3 t ha(-1)), lime (4.45 t ha(-1)), and charcoal (66.8 t ha(-1)) were applied to a heavy metal-contaminated soil for 4 years. The stability and heavy metal distribution of soil aggregates were investigated by dry and wet sieving. No significant change in the dry mean weight diameter was observed in any treatments. Compared with the control, three-amendment treatments significantly increased the wet mean weight diameter, but only charcoal treatment significantly increased the wet aggregate stability. The soil treatments increased the content of soil organic carbon, and the fraction 0.25-2 mm contained the highest content of soil organic carbon. Amendments' application slightly increased soil total Cu and Cd, but decreased the concentrations of CaCl2 -extractable Cu and Cd except for the fraction <0.053 mm. The fractions >2 and 0.25-2 mm contained the highest concentrations of CaCl2-extractable Cu and Cd, accounted for about 74.5-86.8 % of CaCl2-extractable Cu and Cd in soil. The results indicated that amendments' application increased the wet soil aggregate stability and decreased the available Cu and Cd. The distribution of available heavy metals in wet soil aggregates was not controlled by soil aggregate stability, but possibly by soil organic carbon. PMID:26893180

  18. Factors affecting the bond strength of denture base and reline acrylic resins to base metal materials

    PubMed Central

    TANOUE, Naomi; MATSUDA, Yasuhiro; YANAGIDA, Hiroaki; MATSUMURA, Hideo; SAWASE, Takashi

    2013-01-01

    Objective The shear bond strengths of two hard chairside reline resin materials and an auto-polymerizing denture base resin material to cast Ti and a Co-Cr alloy treated using four conditioning methods were investigated. Material and Methods Disk specimens (diameter 10 mm and thickness 2.5 mm) were cast from pure Ti and Co-Cr alloy. The specimens were wet-ground to a final surface finish of 600 grit, air-dried, and treated with the following bonding systems: 1) air-abraded with 50-70-µm grain alumina (CON); 2) 1) + conditioned with a primer, including an acidic phosphonoacetate monomer (MHPA); 3) 1) + conditioned with a primer including a diphosphate monomer (MDP); 4) treated with a tribochemical system. Three resin materials were applied to each metal specimen. Shear bond strengths were determined before and after 10,000 thermocycles. Results The strengths decreased after thermocycling for all combinations. Among the resin materials assessed, the denture base material showed significantly (p<0.05) greater shear bond strengths than the two reline materials, except for the CON condition. After 10,000 thermocycles, the bond strengths of two reline materials decreased to less than 10 MPa for both metals. The bond strengths of the denture base material with MDP were sufficient: 34.56 MPa for cast Ti and 38.30 for Co-Cr alloy. Conclusion Bonding of reline resin materials to metals assessed was clinically insufficient, regardless of metal type, surface treatment, and resin composition. For the relining of metal denture frameworks, a denture base material should be used. PMID:24037070

  19. Oxidative damage of workers in secondary metal recovery plants affected by smoking status and joining the smelting work.

    PubMed

    Chia, Taipau; Hsu, Ching Yi; Chen, Hsiu Ling

    2008-04-01

    In Taiwan, secondary copper smelters and zinc recovery plants primarily utilize recovering metal from scrap and dross, and handles mostly fly ash and slag with high temperature to produce ZnO from the iron and steel industry. The materials may contain organic impurities, such as plastic and organic chloride chemicals, and amounts of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) are produced during the smelting process. Therefore, secondary metal recovery industries are major emission sources of PCDD/Fs, which may have been demonstrated to elicit oxidative stress and to involve the production of plasma malondialdehyde (MDA). Many studies have also indicated that the intake of antioxidants, smoking, age and exposure to environmental pollutants may be implicated to DNA damage or lipid peroxidation. This study therefore aims to elucidate the roles of occupational exposure like joining the smelting work, age, smoking and alcohol status, and antioxidant intake on oxidative damage in secondary metal recovery workers in Taiwan. 73 workers were recruited from 2 secondary metal recovery plants. The analysis of 8-hydroxydeoxyguanosine (8-OH-dG) in urine, DNA strand breakage (comet assay) and lipid peroxidation (MDA) in blood samples were completed for all of the workers. The results showed that the older subjects exhibited significantly lower levels of 8-OH-dG and MDA than younger subjects. Our investigation also showed that working departments were in related to plasma MDA and DNA strand breakage levels of nonsmokers, however, the observation become negligible in smokers. And it is implicated that cigarette type might affect 8-OH-dG levels in secondary metal recovery workers. Since, adding to results above, the MDA level in production workers was significantly higher than those in managerial departments, it is important for the employers to make efforts on improving occupational environments or serving protective equipments to protect workers

  20. Mining-caused changes to habitat structure affect amphibian and reptile population ecology more than metal pollution.

    PubMed

    Sasaki, Kiyoshi; Lesbarrères, David; Watson, Glen; Litzgus, Jacqueline

    2015-12-01

    Emissions from smelting not only contaminate water and soil with metals, but also induce extensive forest dieback and changes in resource availability and microclimate. The relative effects of such co-occurring stressors are often unknown, but this information is imperative in developing targeted restoration strategies. We assessed the role and relative effects of structural alterations of terrestrial habitat and metal pollution caused by century-long smelting operations on amphibian and reptile communities by collecting environmental and time- and area-standardized multivariate abundance data along three spatially replicated impact gradients. Overall, species richness, diversity, and abundance declined progressively with increasing levels of metals (As, Cu, and Ni) and soil temperature (T(s)) and decreasing canopy cover, amount of coarse woody debris (CWD), and relative humidity (RH). The composite habitat variable (which included canopy cover, CWD, T(s), and RH) was more strongly associated with most response metrics than the composite metal variable (As, Cu, and Ni), and canopy cover alone explained 19-74% of the variance. Moreover, species that use terrestrial habitat for specific behaviors (e.g., hibernation, dispersal), especially forest-dependent species, were more severely affected than largely aquatic species. These results suggest that structural alterations of terrestrial habitat and concomitant changes in the resource availability and microclimate have stronger effects than metal pollution per se. Furthermore, much of the variation in response metrics was explained by the joint action of several environmental variables, implying synergistic effects (e.g., exacerbation of metal toxicity by elevated temperatures in sites with reduced canopy cover). We thus argue that the restoration of terrestrial habitat conditions is a key to successful recovery of herpetofauna communities in smelting-altered landscapes. PMID:26910952

  1. Determination of elastoplastic mechanical properties of the weld and heat affected zone metals in tailor-welded blanks by nanoindentation test

    NASA Astrophysics Data System (ADS)

    Ma, Xiangdong; Guan, Yingping; Yang, Liu

    2015-09-01

    The elastoplastic mechanical properties of the weld and heat affected zone metals have comparatively major impact on the forming process of tailor-welded blanks. A few scholars investigated the elastoplastic mechanical properties of the weld and heat affected zone, but they only simply assumed that it was a uniform distribution elastoplastic material different from the base materials. Four types of tailor-welded blanks which consist of ST12 and 304 stainless steel plates are selected as the research objects, the elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals are obtained based on the nanoindentation tests, and the Erichsen cupping tests are conducted by combining numerical simulation with physical experiment. The nanoindentation tests results demonstrate that the elastoplastic mechanical properties of the weld and heat affected zone metals are not only different from the base materials, but also varying between the weld metals and the heat affected zone metals. Comparing the Erichsen cupping test resulted from numerical with that from experimental method, it is found that the numerical value of Erichsen cupping test which consider the elastoplastic mechanical properties of the weld and heat affected zone metals have a good agreement with the experimental result, and the relative error is only 4.8%. The proposed research provides good solutions for the inhomogeneous elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals, and improves the control performance of tailor-welded blanks forming accuracy.

  2. Interfacial phenomena affecting contaminant remediation with zero-valent iron metal

    SciTech Connect

    Tratnyek, P.G.; Johnson, T.; Schattauer, A.

    1995-12-31

    The purposes of this paper are to discuss the importance of oxygen (or anoxia) in organic contaminant degradation by granular iron metal, and to explore the various ways in which corrosion, precipitation, and mass transport effects on iron reactivity reflect interfacial phenomena. Studies illustrating the importance of zone-scale and grain-scale interfaces are summarized. The effect of O{sub 2} on dechlorination rates is also briefly discussed, along with possible reaction mechanisms.

  3. Trace metals in the brown mussel Perna perna from the coastal waters off Yemen (Gulf of Aden): how concentrations are affected by weight, sex, and seasonal cycle.

    PubMed

    Sokolowski, A; Bawazir, A S; Wolowicz, M

    2004-01-01

    The effects of seasonal cycle, sex of individuals, and changes of soft tissues weight on accumulated trace metal concentrations (Cd, Cu, Fe, Mn, Pb, Zn) were examined in the brown mussel Perna perna collected monthly from a natural rocky habitat in the coastal waters off Yemen, the Gulf of Aden, for a period of ten months. Basic hydrological parameters were recorded simultaneously. All metals analyzed displayed seasonal fluctuations with different temporal patterns and variable amplitudes. Similar seasonal cycles were observed for Cu, Mn, and Pb with an increase in accumulated concentration during the rainy period (NE monsoon), and a decrease thereafter. The concentrations of Cu, Mn, and partially Pb appeared to be related to environmental changes, the concentration of Pb possibly also being related to changes in body weight. Accumulated concentrations of Cu and Mn thus seem to reflect actual metal bioavailability in the ecosystem quite efficiently. The tissue levels of Fe and Cd changed inversely to fluctuations in body weight with additional variation due to monsoon-related environmental changes. The behaviors of Fe and Cd are therefore driven by seasonally changing body weight with a considerable contribution of external factors including fluctuations in hydrological conditions and metal exposure. The Zn concentrations tended to increase gradually throughout most of the year regardless of its concentration in the environment. Zinc is considered to be mainly regulated by physiological mechanisms in the mussel, making its accumulated metal concentration independent to some degree of environmental levels. Significant differences in trace metal concentrations between sexes (in favour of females) might have resulted from more intense formation of reproductive tissues and metal accumulation in sexual products of females during the prespawning and spawning periods. PMID:15025166

  4. Metal pollution in a contaminated bay: relationship between metal geochemical fractionation in sediments and accumulation in a polychaete.

    PubMed

    Fan, Wenhong; Xu, Zhizhen; Wang, Wen-Xiong

    2014-08-01

    Jinzhou Bay in Northern China has been seriously contaminated with metals due to the impacts of smelting activities. In this study, we investigated the relationship between metal accumulation in a deposit-feeding polychaete Neanthes japonica and metal concentration and geochemical fractionation (Cd, Cu, Pb, Zn and Ni) in sediments of Jinzhou Bay. Compared with the historical data, metals in the more mobile geochemical fraction (exchangeable and carbonate fractions) were gradually partitioned into the more stable fraction (Fe-Mn oxides) over time. Metal concentration and geochemical fractionation in sediment significantly affected metal bioavailability and accumulation in polychaetes, except for Ni. Metal accumulation in polychaetes was significantly influenced by Fe or Mn content, and to a lesser degree by organic matter. Prediction of metal bioaccumulation in polychaetes was greatly improved by normalizing metal concentrations to Mn content in sediment. The geochemical fractionation of metals in sediments including the exchangeable, organic matter and Fe-Mn oxides were important in controlling the sediment metal bioavailability to polychaetes. PMID:24811945

  5. Influence of dissolved organic nitrogen on Ni bioavailability in Prorocentrum donghaiense and Skeletonema costatum.

    PubMed

    Huang, Xu-Guang; Li, Hao; Huang, Bang-qin; Liu, Feng-Jiao

    2015-07-15

    Dissolved organic nitrogen (DON) is an important nutrient in the aquatic environment. This study examined the influence of DON addition on the adsorption, absorption, and distribution in macromolecular forms of environmentally deleterious trace metal (Ni) in Prorocentrum donghaiense and Skeletonema costatum over eight days. Ni adsorption and absorption of two species increased with the addition of urea, while Ni adsorption and absorption of two species in the presence of humic substances (HS) decreased. Meanwhile, Ni adsorption and absorption of P. donghaiense were higher than that of S. costatum. Furthermore, Ni contents in the protein fraction of the cells, both in P. donghaiense and S. costatum, were increased with both urea and HS addition. Thus, urea and HS input could impact Ni biogeochemistry and bioavailability, and then affect the biodynamics thereafter. PMID:25935806

  6. Bioavailability of the polyphenols: status and controversies.

    PubMed

    D'Archivio, Massimo; Filesi, Carmelina; Varì, Rosaria; Scazzocchio, Beatrice; Masella, Roberta

    2010-01-01

    The current interest in polyphenols has been driven primarily by epidemiological studies. However, to establish conclusive evidence for the effectiveness of dietary polyphenols in disease prevention, it is useful to better define the bioavailability of the polyphenols, so that their biological activity can be evaluated. The bioavailability appears to differ greatly among the various phenolic compounds, and the most abundant ones in our diet are not necessarily those that have the best bioavailability profile. In the present review, we focus on the factors influencing the bioavailability of the polyphenols. Moreover, a critical overview on the difficulties and the controversies of the studies on the bioavailability is discussed. PMID:20480022

  7. Bioavailability of the Polyphenols: Status and Controversies

    PubMed Central

    D’Archivio, Massimo; Filesi, Carmelina; Varì, Rosaria; Scazzocchio, Beatrice; Masella, Roberta

    2010-01-01

    The current interest in polyphenols has been driven primarily by epidemiological studies. However, to establish conclusive evidence for the effectiveness of dietary polyphenols in disease prevention, it is useful to better define the bioavailability of the polyphenols, so that their biological activity can be evaluated. The bioavailability appears to differ greatly among the various phenolic compounds, and the most abundant ones in our diet are not necessarily those that have the best bioavailability profile. In the present review, we focus on the factors influencing the bioavailability of the polyphenols. Moreover, a critical overview on the difficulties and the controversies of the studies on the bioavailability is discussed. PMID:20480022

  8. Variations in heavy metal contamination of stream water and groundwater affected by an abandoned lead-zinc mine in Korea.

    PubMed

    Lee, Jin-Yong; Choi, Jung-Chan; Lee, Kang-Kun

    2005-09-01

    This study evaluated variations in heavy metal contamination of stream waters and groundwaters affected by an abandoned lead-zinc mine, where a rockfill dam for water storage will be built 11 km downstream. For these purposes, a total of 10 rounds of stream and groundwater samplings and subsequent chemical analyses were performed during 2002-2003. Results of an exploratory investigation of stream waters in 2000 indicated substantial contamination with heavy metals including zinc (Zn), iron (Fe) and arsenic (As) for at least 6 km downstream from the mine. Stream waters near the mine showed metal contamination as high as arsenic (As) 8,923 microg L(-1), copper (Cu) 616 microg L(-1), cadmium (Cd) 223 microg L(-1) and lead (Pb) 10,590 microg L(-1), which greatly exceeded the Korean stream water guidelines. Remediation focused on the mine tailing piles largely improved the stream water qualities. However, there have still been quality problems for the waters containing relatively high concentrations of As (6-174 microg L(-1)), Cd (1-46 microg L(-1)) and Pb (2-26 microg L(-1)). Rainfall infiltration into the mine tailing piles resulted in an increase of heavy metals in the stream waters due to direct discharge of waste effluent, while dilution of the contaminated stream waters improved the water quality due to mixing with metal free rain waters. Levels of As, Cu and chromium (Cr) largely decreased after heavy rain but that of Pb was rather elevated. The stream waters were characterized by high concentrations of calcium (Ca) and sulfate (SO(4)), which were derived from dissolution and leaching of carbonate and sulfide minerals. It was observed that the proportions of Ca and SO(4) increased while those of bicarbonate (HCO(3)) and sodium and potassium (Na+K) decreased after a light rainfall event. Most interestingly, the reverse was generally detected for the groundwaters. The zinc, being the metal mined, was the most dominant heavy metal in the groundwaters (1758

  9. Does Choice of Head Size and Neck Geometry Affect Stem Migration in Modular Large-Diameter Metal-on-Metal Total Hip Arthroplasty? A Preliminary Analysis

    PubMed Central

    Georgiou, CS; Evangelou, KG; Theodorou, EG; Provatidis, CG; Megas, PD

    2012-01-01

    Due to their theoretical advantages, hip systems combining modular necks and large diameter femoral heads have gradually gained popularity. However, among others, concerns regarding changes in the load transfer patterns were raised. Recent stress analyses have indeed shown that the use of modular necks and big femoral heads causes significant changes in the strain distribution along the femur. Our original hypothesis was that these changes may affect early distal migration of a modular stem. We examined the effect of head diameter and neck geometry on migration at two years of follow-up in a case series of 116 patients (125 hips), who have undergone primary Metal-on-Metal total hip arthroplasty with the modular grit-blasted Profemur®E stem combined with large-diameter heads (>36 mm). We found that choice of neck geometry and head diameter has no effect on stem migration. A multivariate regression analysis including the potential confounding variables of the body mass index, bone quality, canal fill and stem positioning revealed only a negative correlation between subsidence and canal fill in midstem area. Statistical analysis, despite its limitations, did not confirm our hypothesis that choice of neck geometry and/or head diameter affects early distal migration of a modular stem. However, the importance of correct stem sizing was revealed. PMID:23284597

  10. Bioavailability of lead in oysters fed to young Japanese quail

    SciTech Connect

    Stone, C.L.; Spivey Fox, M.R.; Hogye, K.S.

    1981-12-01

    The presence of lead in atmospheric particulates, soil, and seawater reflects the input of both domestic and industrial wastes. Because bivalves can concentrate large quantities of heavy metals, particularly lead, consumption of their meat may be a potential risk. The relative bioavailability of lead physiologicaly incorporated into oyster meat was investigated. Day-old Japanese quail were fed purified diets with three levels of lead added as either lead acetate, freeze-dried lead-dosed oyster, or lead acetate plus freeze-dried control oyster for 2 weeks. Feeding lead from any source had little or no effect on body weight, hemoglobin, hematocrit, or percentage ash in the tibia. The concentration of lead in tibia at each level of dietary lead for each type of diet was different from those for all other levels of dietary lead. Slope-ratio analysis of the data showed that lead intrinsically incorporated into oyster meat was 69-75% as bioavailable as lead in lead acetate at levels between 25 and 100 ppm dietary lead. The combinations of (1) control oyster meat with lead acetate and (2) lead acetate with copper and zinc levels equal to those in oyster meat gave responses similar to those of the lead-dosed oyster groups. Although these data showed lower bioavailability of lead in oyster meat as compared with lead acetate, the intercept of the lines at 25 ppm dietary lead suggests that the relative bioavailability may be reserved at lower levels of lead intake.

  11. Do fattening process and biological parameters affect the accumulation of metals in Atlantic bluefin tuna?

    PubMed

    Milatou, Niki; Dassenakis, Manos; Megalofonou, Persefoni

    2015-01-01

    The objective of this study was to determine the current levels of heavy metals and trace elements in Atlantic bluefin tuna muscle tissues and how they are influenced by the fattening process and various life history parameters to ascertain whether the concentrations in muscle tissue exceed the maximum levels defined by the European Commission Decision and to evaluate the health risk posed by fish consumption. A total of 20 bluefin tuna reared in sea cages, ranging from 160 to 295 cm in length and from 80 to 540 kg in weight, were sampled from a bluefin tuna farm in the Ionian Sea. The condition factor K of each specimen was calculated and their age was estimated. Heavy metal and trace element (Hg, Zn, Fe and Cu) contents were determined in muscle tissue using cold vapour atomic absorption spectrometry and flame and graphite furnace atomic absorption spectrometry. The total Hg concentrations ranged from 0.28 to 1.28 mg kg(-1) w/w, Zn from 5.81 to 76.37 mg kg(-1) w/w, Fe from 12.14 to 39.58 mg kg(-1) w/w, and Cu from 0.36 to 0.94 mg kg(-1) w/w. Only 5% of the muscle samples of tuna contained Hg above the maximum level laid down by the European Commission Decision. Moreover, 15% of the muscle samples contained Zn above the maximum level, while Fe and Cu concentrations were within the acceptable tolerable guideline values. The reared bluefin tuna had lower concentrations of Hg than the wild ones from the Mediterranean Sea. Hg and Fe concentrations showed a positive relationship with size and age of bluefin tuna, whereas negative relationships were found for the concentrations of Zn and Cu. The estimated dietary intake values of the analysed metals were mostly below the derived guidelines. PMID:25906290

  12. Friction, Wear, and Surface Damage of Metals as Affected by Solid Surface Films

    NASA Technical Reports Server (NTRS)

    Bisson, Edmond E; Johnson, Robert L; Swikert, Max A; Godfrey, Douglas

    1956-01-01

    As predicted by friction theory, experiments showed that friction and surface damage of metals can be reduced by solid surface films. The ability of materials to form surface films that prevent welding was a very important factor in wear of dry and boundary lubricated surfaces. Films of graphitic carbon on cast irons, nio on nickel alloys, and feo and fe sub 3 o sub 4 on ferrous materials were found to be beneficial. Abrasive films such as fe sub 2 o sub 3 or moo sub 3 were definitely detrimental. It appears that the importance of oxide films to friction and wear processes has not been fully appreciated.

  13. Chemical assessment and fractionation of some heavy metals and arsenic in agricultural soils of the mining affected Drama plain, Macedonia, northern Greece.

    PubMed

    Sofianska, E; Michailidis, K

    2015-03-01

    The concentration and chemical fractionation of some heavy metals (Mn, Pb, Zn, Cu, Cd) and As in agricultural soils of the western Drama plain (northern Greece) were determined using inductively coupled plasma-mass spectrometry (ICP-MS) technique. Drama plain constitutes the recipient of the effluents from Xiropotamos stream, which passes through the abandoned "25 km Mn-mine" place. Results showed that soils were found to have elevated concentrations of potentially harmful elements which are mainly associated with Mn mineralization. Peak total concentrations (in mg kg(-1)) of 130,013 for Mn, 1996 for Pb, 2140 for Zn, 147 for Cu, 28 for Cd, and 1077 for As were found in sampling points close and along both sides of the Xiropotamos stream, as a result of downstream transfer and dispersion of Mn mine wastes via flooding episodes. Contaminated sites are important sources of pollution and may pose significant environmental hazards for terrestrial and aquatic ecosystems. The geochemical influence of the mine wastes as a source of soil pollution is substantially reduced in sites 200 m remote of the Xiropotamos stream course. The chemical partitioning patterns indicated that the potential for Mn, Pb, Zn, Cu, Cd, and As remobilization and bioavailability is low, as most of these elements were present in the residual and/or the more stable Mn- and Fe-hydroxide fractions. The partitioning in significant percent (14-25 %) of Cd with the weakly bound exchangeable/carbonate fraction indicated that this metal could be highly mobile as well as bioavailable in the studied contaminated soils and this could be concern to human health. PMID:25663406

  14. Factors affecting sorption of nitro explosives to biochar: pyrolysis temperature, surface treatment, competition, and dissolved metals.

    PubMed

    Oh, Seok-Young; Seo, Yong-Deuk

    2015-05-01

    The application of rice straw-derived biochar for removing nitro explosives, including 2,4-dinitrotoluene (DNT), 2,4,6-trinitrotoluene (TNT), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), from contaminated water was investigated through batch experiments. An increase in the pyrolysis temperature from 250 to 900°C in general led to higher pH, surface area, cation exchange capacity (CEC), point of zero charge, and C:O ratio of biochar. The maximum sorption capacity estimated by a mixed sorption-partition model increased when pyrolysis temperatures were elevated from 250 to 900°C, indicating that C content and aromaticity of biochar were strongly related to the sorption of nitro explosives to biochar. Surface treatment with acid or oxidant increased the sorption capacity of biochar for the two strong π-acceptor compounds (DNT and TNT) but not for RDX. However, the enhancement of sorption capacity was not directly related to increased surface area and CEC. Compared with single-sorption systems, coexistence of explosives or cationic metals resulted in decreased sorption of each explosive to biochar, suggesting that sorption of nitro explosives and cationic metals to electron-rich portions in biochar was competitive. Our results suggest that π-π electron donor acceptor interactions are main sorption mechanisms and that changing various conditions can enhance or reduce the sorption of nitro explosives to biochar. PMID:26024263

  15. Effect of cysteine and humic acids on bioavailability of Ag from Ag nanoparticles to a freshwater snail

    USGS Publications Warehouse

    Luoma, Samuel N.; Tasha Stoiber; Croteau, Marie-Noele; Isabelle Romer; Ruth Merrifeild; Jamie Lead

    2016-01-01

    Metal-based engineered nanoparticles (NPs) will undergo transformations that will affect their bioavailability, toxicity and ecological risk when released to the environment, including interactions with dissolved organic material. The purpose of this paper is to determine how interactions with two different types of organic material affect the bioavailability of silver nanoparticles (AgNPs). Silver uptake rates by the pond snail Lymnaea stagnalis were determined after exposure to 25 nmol l-1 of Ag as PVP AgNPs, PEG AgNPs or AgNO3, in the presence of either Suwannee River humic acid or cysteine, a high-affinity thiol-rich organic ligand. Total uptake rate of Ag from the two NPs was either increased or not strongly affected in the presence of 1 – 10 mg 1-1 humic acid. Humic substances contain relatively few strong ligands for Ag explaining their limited effects on Ag uptake rate. In contrast, Ag uptake rate was substantially reduced by cysteine. Three components of uptake from the AgNPs were quantified in the presence of cysteine using a biodynamic modeling approach: uptake of dissolved Ag released by the AgNPs, uptake of a polymer or large (>3kD) Ag-cysteine complex and uptake of the nanoparticle itself. Addition of 1:1 Ag:cysteine reduced concentrations of dissolved Ag, which contributed to, but did not fully explain the reductions in uptake. A bioavailable Ag-cysteine complex (> 3kD) appeared to be the dominant avenue of uptake from both PVP AgNPs and PEG AgNPs in the presence of cysteine. Quantifying the different avenues of uptake sets the stage for studies to assess toxicity unique to NPs.

  16. Influence of food on the bioavailability of drugs.

    PubMed

    Melander, A

    1978-01-01

    Food intake exerts a complex influence on the bioavailability of drugs. It may interfere not only with tablet disintegration, drug dissolution and drug transit through the gastrointestinal tract, but may also affect the metabolic transformation of drugs in the gastrointestinal wall and in the liver. Different food components can have different effects, and food may interact in opposite ways, even with drugs that are chemically related. Therefore, the net effect of food on drug bioavailability can be predicted only by direct clinical studies of the drug in question. As judged mainly from single meal, single dose studies, food intake enhances the bioavailability of several different drugs, such as propranolol, metoprolol, hydrallazine, hydrochlorothiazide, canrenone (from spironolactone), nitrofurantoin, erythromycin (stearate), dicoumarol, phenytoin and carbamazepine, but reduces that of drugs such as isoniazid, rifampicin, tetracycline, penicillin and ampicillin, while having no consistent effect on the bioavailability of metronidazole, oxazepam, melperone, propylthiouracil, sulphasomidine and sulphonylureas. For some drugs such as digoxin and paracetamol, the rate but not the extent of absorption is reduced. Food may enhance bioavailability even though, or rather because, the rate of gastric emptying is reduced; this is apparently the case with hydrochlorothiazide and nitrofurantoin. The food induced enhancement of bioavailability of propranolol, metoprolol and hydrallazine is probably due to reduced first pass metabolism of these drugs, while food induced improvement of drug dissolution may explain the enhanced bioavailability of carbamazepine, canrenone, dicoumarol and phenytoin. An increased gastrointestinal pH may be in part the cause of the food induced reduction of the bioavailability of drugs such as isoniazid and tetracycline. In addition to single meal effects, repeated intake of protein-rich meals enhance, while carbohydrate-rich meals reduce, the rate

  17. Absolute oral bioavailability of ciprofloxacin.

    PubMed

    Drusano, G L; Standiford, H C; Plaisance, K; Forrest, A; Leslie, J; Caldwell, J

    1986-09-01

    We evaluated the absolute bioavailability of ciprofloxacin, a new quinoline carboxylic acid, in 12 healthy male volunteers. Doses of 200 mg were given to each of the volunteers in a randomized, crossover manner 1 week apart orally and as a 10-min intravenous infusion. Half-lives (mean +/- standard deviation) for the intravenous and oral administration arms were 4.2 +/- 0.77 and 4.11 +/- 0.74 h, respectively. The serum clearance rate averaged 28.5 +/- 4.7 liters/h per 1.73 m2 for the intravenous administration arm. The renal clearance rate accounted for approximately 60% of the corresponding serum clearance rate and was 16.9 +/- 3.0 liters/h per 1.73 m2 for the intravenous arm and 17.0 +/- 2.86 liters/h per 1.73 m2 for the oral administration arm. Absorption was rapid, with peak concentrations in serum occurring at 0.71 +/- 0.15 h. Bioavailability, defined as the ratio of the area under the curve from 0 h to infinity for the oral to the intravenous dose, was 69 +/- 7%. We conclude that ciprofloxacin is rapidly absorbed and reliably bioavailable in these healthy volunteers. Further studies with ciprofloxacin should be undertaken in target patient populations under actual clinical circumstances. PMID:3777908

  18. Binding intensity and metal partitioning in soils affected by mining and smelting activities in Minas Gerais, Brazil.

    PubMed

    Lopes, G; Costa, E T S; Penido, E S; Sparks, D L; Guilherme, L R G

    2015-09-01

    Mining and smelting activities are potential sources of heavy metal contamination, which pose a threat to human health and ecological systems. This study investigated single and sequential extractions of Zn, Pb, and Cd in Brazilian soils affected by mining and smelting activities. Soils from a Zn mining area (soils A, B, C, D, E, and the control soil) and a tailing from a smelting area were collected in Minas Gerais state, Brazil. The samples were subjected to single (using Mehlich I solution) and sequential extractions. The risk assessment code (RAC), the redistribution index (U ts ), and the reduced partition index (I R ) have been applied to the sequential extraction data. Zinc and Cd, in soil samples from the mining area, were found mainly associated with carbonate forms. This same pattern did not occur for Pb. Moreover, the Fe-Mn oxides and residual fractions had important contributions for Zn and Pb in those soils. For the tailing, more than 70 % of Zn and Cd were released in the exchangeable fraction, showing a much higher mobility and availability of these metals at this site, which was also supported by results of RAC and I R . These differences in terms of mobility might be due to different chemical forms of the metals in the two sites, which are attributable to natural occurrence as well as ore processing. PMID:25940493

  19. 75 years after mining ends stream insect diversity is still affected by heavy metals.

    PubMed

    Lefcort, Hugh; Vancura, James; Lider, Edward L

    2010-11-01

    A century of heavy metal mining in the western United States has left a legacy of abandoned mines. While large operations have left a visible reminder, smaller one and two-man operations have been overgrown and largely forgotten. We revisited an area of northern Idaho that has not had active mining since at least 1932 and probably since 1910. At three sites along each of 10 mountain streams we sampled larval stream insects and correlated their community diversity to stream levels of arsenic, cadmium, lead, zinc, pH, temperature, oxygen content, and conductivity. Although the streams appear pristine, multivariate statistics indicated that cadmium and zinc levels were significantly correlated with fewer animals, fewer families, a smaller percentage of plecopterans (stoneflies), and lower Shannon H diversity values. After at least 75 years, abandoned mines appear to be still influencing stream communities. PMID:20680454

  20. Metal mobility in river and sea sediments affected by mine drainage (Sestri Levante, Italy)

    NASA Astrophysics Data System (ADS)

    Consani, Sirio; Capello, Marco; Cutroneo, Laura; Vagge, Greta; Zuccarelli, Andrea; Carbone, Cristina

    2016-04-01

    The Gromolo Torrent is a metal-polluted Apennine streamflow located near Sestri Levante (Liguria, Italy). It springs from the Monte Rocca Grande (850 m a.s.l.), and flows for 11.5 km through the Gromolo Valley before flowing into the Ligurian Sea. Inside the Gromolo basin is located the abandoned Fe-Cu mine of Libiola, which was the most important sulfide deposit of the Ligurian Apennines. In this mining site, extensive Acid Mine Drainage (AMD) processes are active, both inside the mine tunnels and in the sulfide rich waste-rock dumps; the solutions generated are characterised by low pH values and high amounts of dissolved SO42-, Fe, and other chemical elements such as Cu, Zn, Pb, Al, Co, and Ni. Moreover, exstensively precipitation of Fe and Cu-rich secondary minerals occurs both as soft crusts inside the mine adits and as loose suspensions associated with overland flow of mine drainage. AMD waters flowed into the uncontaminated Gromolo Torrent where abundant precipitation of amorphous Fe(III)-oxy-hydroxides occurred. The marine study area is characterised by the presence of the headland of Sestri Levante with two bays, the western one named "Baia delle Favole". The dynamics of the area is dominated by a permanent north-westward off-shore current flowing approximately along isobath, and an eastward counter-current along the north coast with a resulting drift of the coastal materials from the West to Est towards "Baia delle Favole". The bottom sediment are principally characterised by coarse materials, mostly consisting of fine sand, with a percentage of the fine sediment increasing inside the bay, where the dynamics is low. The aims of this work are to 1) evaluate the metal mobility of colloidal river precipitates for about 7 km up to its mouth in the Ligurian Sea; 2) verify the contamination state of the marine bottom sediments off the mouth of the Gromolo Torrent ("Baia delle Favole" of Sestri Levante), and 3) identify the main sources and diffusion ways of

  1. Use of Tunable Whole-Cell Bioreporters to Assess Bioavailable Cadmium and Remediation Performance in Soils

    PubMed Central

    Yoon, Youngdae; Kim, Sunghoon; Chae, Yooeun; Kang, Yerin; Lee, Youngshim; Jeong, Seung-Woo; An, Youn-Joo

    2016-01-01

    It is important to have tools to measure the bioavailability to assess the risks of pollutants because the bioavailability is defined as the portions of pollutants showing the biological effects on living organisms. This study described the construction of tunable Escherichia coli whole-cell bioreporter (WCB) using the promoter region of zinc-inducible operon and its application on contaminated soils. It was verified that this WCB system showed specific and sensitive responses to cadmium rather than zinc in the experimental conditions. It was inferred that Cd(II) associates stronger with ZntR, a regulatory protein of zinc-inducible operon, than other metal ions. Moreover, the expression of reporter genes, egfp and mcherry, were proportional to the concentration of cadmium, thereby being a quantitative sensor to monitor bioavailable cadmium. The capability to determine bioavailable cadmium was verified with Cd(II) amended LUFA soils, and then the applicability on environmental systems was investigated with field soils collected from smelter area in Korea before and after soil-washing. The total amount of cadmium was decreased after soil washing, while the bioavailability was increased. Consequently, it would be valuable to have tools to assess bioavailability and the effectiveness of soil remediation should be evaluated in the aspect of bioavailability as well as removal efficiency. PMID:27171374

  2. Contribution of trace metals in structuring in situ macroinvertebrate community composition along a salinity gradient

    SciTech Connect

    Peeters, E.T.H.M.; Gardeniers, J.J.P.; Koelmans, A.A.

    2000-04-01

    Macroinvertebrates were studied along a salinity gradient in the North Sea Canal, The Netherlands, to quantify the effect of trace metals (cadmium, copper, lead, zinc) on community composition. In addition, two methods for assessing metal bioavailability (normalizing metal concentrations on organic carbon and on the smallest sediment fraction) were compared. Factor analyses showed that normalizing trace metals resulted in an improved separation of trace metals from ecological factors (depth, organic carbon, granulometry, and chloride). The variation in the macroinvertebrate data was partitioned into four sources using partial canonical correspondence analysis, with the partitions being purely ecological factors, purely trace metals, mutual ecological factors and trace metals, and unexplained. Partial canonical correspondence analysis applied to total and normalized trace metal concentrations gave similar results in terms of unexplained variances. However, normalization on organic carbon resulted in the highest percentage of variation explained by purely ecological factors and purely trace metals. Accounting for bioavailability thus improves the identification of factors affecting the in situ community structure. Ecological factors explained 45.4% and trace metals 8.6% of the variation in the macroinvertebrate community composition in the ecosystem of the North Sea Canal. These contributions were significant, and it is concluded that trace metals significantly affected the community composition in an environment with multiple stressors. Variance partitioning is recommended for incorporation in further risk assessment studies.

  3. Cases of mercury exposure, bioavailability, and absorption.

    PubMed

    Gochfeld, Michael

    2003-09-01

    Mercury is a unique element that, unlike many metals, has no essential biological function. It is liquid at room temperature and is 13.6 times heavier than water. Its unique physical properties have been exploited for a variety of uses such as in mercury switches, thermostats, thermometers, and other instruments. Its ability to amalgamate with gold and silver are used in mining these precious metals and as a dental restorative. Its toxic properties have been exploited for medications, preservatives, antiseptics, and pesticides. For these reasons there have been many industrial uses of mercury, and occupational exposures of workers and industrial emissions and effluents contaminating air, water, soil, and ultimately food chains have long been a matter of great public health concern. This paper examines briefly six cases representing various forms of exposure to different species of mercury, and indicates the methodological issues in estimating exposure, bioavailability and absorption; these cases include Minamata disease in Japan, organic mercury poisoning in Iraq, methylmercury (MeHg) exposure in the Amazon, dimethylmercury (PMM) in the laboratory, an elemental mercury spill in Cajamarca, Peru, and a mercury-contaminated building in Hoboken, NJ, USA. Other scenarios that are not described include occupational exposure to mercury salts, mercurial preservatives in vaccines, cultural and ritualistic uses of mercury, and mercury in dental amalgams. PMID:12915150

  4. Metal contaminated biochar and wood ash negatively affect plant growth and soil quality after land application.

    PubMed

    Jones, D L; Quilliam, R S

    2014-07-15

    Pyrolysis or combustion of waste wood can provide a renewable source of energy and produce byproducts which can be recycled back to land. To be sustainable requires that these byproducts pose minimal threat to the environment or human health. Frequently, reclaimed waste wood is contaminated by preservative-treated timber containing high levels of heavy metals. We investigated the effect of feedstock contamination from copper-preservative treated wood on the behaviour of pyrolysis-derived biochar and combustion-derived ash in plant-soil systems. Biochar and wood ash were applied to soil at typical agronomic rates. The presence of preservative treated timber in the feedstock increased available soil Cu; however, critical Cu guidance limits were only exceeded at high rates of feedstock contamination. Negative effects on plant growth and soil quality were only seen at high levels of biochar contamination (>50% derived from preservative-treated wood). Negative effects of wood ash contamination were apparent at lower levels of contamination (>10% derived from preservative treated wood). Complete removal of preservative treated timber from wood recycling facilities is notoriously difficult and low levels of contamination are commonplace. We conclude that low levels of contamination from Cu-treated wood should pose minimal environmental risk to biochar and ash destined for land application. PMID:24915641

  5. Heat-affected zone and weld metal behavior of modern 9--10% Cr steels

    SciTech Connect

    Cerjak, H.; Letofsky, E.; Schuster, F.

    1996-12-31

    Basic investigations of the weldability of modern 9--10% Cr creep resistant steels for application in high efficiency and low emission thermal power generation plants were performed on a pipe P91 and a W-containing cast steel G-X 12 CrMoWVNbN 10 1 1. Gleeble simulation, representing the manual metal arc welding process, were applied to produce HAZ-simulated microstructures. They were exposed to different PWHT-treatments and tested using hardness tests, metallographic investigations, constant strain rate tests, creep tests and toughness tests. Primary attention was given to the softening effect in the HAZ and its influence on the creep resistance of the welded material. The decrease shown by the W-modified version seems to be less pronounced than that observed in the P91 material. The preheating temperature during welding can be selected through determination of the M{sub s}-transformation behavior of the base materials and the welding deposit.

  6. Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters.

    PubMed

    Yoon, Youngdae; Kang, Yerin; Chae, Yooeun; Kim, Sunghoon; Lee, Youngshim; Jeong, Seung-Woo; An, Youn-Joo

    2016-02-01

    We investigated the quantification of bioavailable arsenic in contaminated soils and evaluation of soil-washing processes in the aspect of bioavailability using a novel bacterial bioreporter developed in present study. The whole-cell bioreporter (WCB) was genetically engineered by fusing the promoter of nik operon from Escherichia coli and green fluorescent protein as a sensing domain and reporter domain. Among eight well-known hazardous heavy metals and metalloid, this system responded specifically to arsenic, thereby inferring association of As(III) with NikR inhibits the repression. Moreover, the response was proportional to the concentration of As(III), thereby it was capable to determine the amount of bioavailable arsenic quantitatively in contaminated soils. The bioavailable portion of arsenic was 5.9 (3.46-10.96) and 0.9 (0.27-1.74) % of total from amended and site soils, respectively, suggesting the bioavailability of arsenic in soils was related to the soil properties and duration of aging. On the other hand, only 1.37 (0.21-2.97) % of total arsenic was extracted into soil solutions and 19.88 (11.86-28.27) % of arsenic in soil solution was bioavailable. This result showed that the soluble arsenic is not all bioavailable and most of bioavailable arsenic in soils is water non-extractable. In addition, the bioavailable arsenic was increased after soil-washing while total amount was decreased, thereby suggesting the soil-washing processes release arsenic associated with soil materials to be bioavailable. Therefore, it would be valuable to have a tool to assess bioavailability and the bioavailability should be taken into consideration for soil remediation plans. PMID:26411448

  7. Evaluation of factors affecting the analysis of metals using laser-induced breakdown spectroscopy

    SciTech Connect

    Cremers, D.A.; Romero, D.J.

    1986-01-01

    Some of the main factors affecting the analysis of solid steel using laser-induced break-down spectroscopy (LIBS) have been investigated and are reported here. Pulses from an electro-optically Q-switched Nd:YAG laser were focused on steel samples to generate a high temperature plasma. The spectrally resolved plasma light was time resolved and detected using a photodiode array. The effects that changes in the lens-to-sample distance, laser pulse energy, and position of the imaging lens had on the LIBS analysis are described. These effects were minimized by ratioing the absolute element signals to adjacent Fe-lines. Calibration curves for Mn, Si, and Cr are presented and the accuracy and precision of LIBS analysis listed for several elements. 12 refs.

  8. Effects of biochar and Arbuscular mycorrhizae on bioavailability of potentially toxic elements in an aged contaminated soil.

    PubMed

    Qiao, Yuhui; Crowley, David; Wang, Kun; Zhang, Huiqi; Li, Huafen

    2015-11-01

    Biochar pyrolyzed from corn stalks at 300°C/500°C and arbuscular mycorrhizae (AMF) were examined independently and in combination as possible treatments for soil remediation contaminated with Cd, Cr, Ni, Cu, Pb, Zn after 35 years following land application of sewage sludge in the 1970s. The results showed that biochar significantly decreased the heavy metal concentrations and their bioavailability for plants, and both biochars had similar such effects. AMF inoculation of corn plants had little effect on heavy metal bioavailability in either control or biochar amended soil, and no interaction between biochar and AMF was observed. Changes in DTPA extractable metals following biochar addition to soil were correlated with metal uptake by plants, whereas pore water metal concentrations were not predictive indicators. This research demonstrates positive benefits from biochar application for contaminated soil remediation, but remain ambiguous with regard to the benefits of simultaneous AMF inoculation on reduction of heavy metal bioavailability. PMID:26319508

  9. Do weirs affect the physical and geochemical mobility of toxic metals in mining-impacted floodplain sediments?

    NASA Astrophysics Data System (ADS)

    Bulcock, Amelia; Coleman, Alexandra; Whitfield, Elizabeth; Andres Lopez-Tarazon, Jose; Byrne, Patrick; Whitfield, Greg

    2015-04-01

    Weirs are common river structures designed to modify river channel hydraulics and hydrology for purposes of navigation, flood defence, irrigation and hydrometry. By design, weirs constrain natural flow processes and affect sediment flux and river channel forms leading to homogenous river habitats and reduced biodiversity. The recent movement towards catchment-wide river restoration, driven by the EU Water Framework Directive, has recognised weirs as a barrier to good ecological status. However, the removal of weirs to achieve more 'natural' river channels and flow processes is inevitably followed by a period of adjustment to the new flow regime and sediment flux. This period of adjustment can have knock-on effects that may increase flood risk, sedimentation and erosion until the river reaches a state of geomorphological equilibrium. Many catchments in the UK contain a legacy of toxic metals in floodplain sediments due to historic metal mining activities. The consequences of weir removal in these catchments may be to introduce 'stored' mine wastes into the river system with severe implications for water quality and biodiversity. The purpose of this study is to investigate the potential impact of a weir on the physical and geochemical mobilisation of mine wastes in the formerly mined River Twymyn catchment, Wales. Our initial investigations have shown floodplain and riverbed sediments to be grossly contaminated (up to 15,500 mg/kg Pb) compared to soil from a pre-mining Holocene terrace (180 mg/kg Pb). Geomorphological investigations also suggest that weir removal will re-establish more dynamic river channel processes resulting in lateral migration of the channel and erosion of contaminated floodplain sediments. These data will be used as a baseline for more detailed investigations of the potential impact of weirs on the physical and geochemical mobilisation of contaminated sediments. We have two specific objectives. (1) Geomorphological assessments will use unmanned

  10. Dissolved organic matter kinetically controls mercury bioavailability to bacteria.

    PubMed

    Chiasson-Gould, Sophie A; Blais, Jules M; Poulain, Alexandre J

    2014-03-18

    Predicting the bioavailability of inorganic mercury (Hg) to bacteria that produce the potent bioaccumulative neurotoxin monomethylmercury remains one of the greatest challenges in predicting the environmental fate and transport of Hg. Dissolved organic matter (DOM) affects mercury methylation due to its influence on cell physiology (as a potential nutrient) and its influence on Hg(II) speciation in solution (as a complexing agent), therefore controlling Hg bioavailability. We assessed the role of DOM on Hg(II) bioavailability to a gram-negative bacterium bioreporter under oxic pseudo- and nonequilibrium conditions, using defined media and field samples spanning a wide range of DOM levels. Our results showed that Hg(II) was considerably more bioavailable under nonequilibrium conditions than when DOM was absent or when Hg(II) and DOM had reached pseudoequilibrium (24 h) prior to cell exposure. Under these enhanced uptake conditions, Hg(II) bioavailability followed a bell shaped curve as DOM concentrations increased, both for defined media and natural water samples, consistent with bioaccumulation results in a companion paper (this issue) observed for amphipods. Experiments also suggest that DOM may not only provide shuttle molecules facilitating Hg uptake, but also alter cell wall properties to facilitate the first steps toward Hg(II) internalization. We propose the existence of a short-lived yet critical time window (<24 h) during which DOM facilitates the entry of newly deposited Hg(II) into aquatic food webs, suggesting that the bulk of mercury incorporation in aquatic food webs would occur within hours following its deposition from the atmosphere. PMID:24524696

  11. Influence of hardness on the bioavailability of silver to a freshwater snail after waterborne exposure to silver nitrate and silver nanoparticles.

    PubMed

    Stoiber, Tasha; Croteau, Marie-Noële; Römer, Isabella; Tejamaya, Mila; Lead, Jamie R; Luoma, Samuel N

    2015-01-01

    The release of Ag nanoparticles (AgNPs) into the aquatic environment is likely, but the influence of water chemistry on their impacts and fate remains unclear. Here, we characterize the bioavailability of Ag from AgNO(3) and from AgNPs capped with polyvinylpyrrolidone (PVP AgNP) and thiolated polyethylene glycol (PEG AgNP) in the freshwater snail, Lymnaea stagnalis, after short waterborne exposures. Results showed that water hardness, AgNP capping agents, and metal speciation affected the uptake rate of Ag from AgNPs. Comparison of the results from organisms of similar weight showed that water hardness affected the uptake of Ag from AgNPs, but not that from AgNO(3). Transformation (dissolution and aggregation) of the AgNPs was also influenced by water hardness and the capping agent. Bioavailability of Ag from AgNPs was, in turn, correlated to these physical changes. Water hardness increased the aggregation of AgNPs, especially for PEG AgNPs, reducing the bioavailability of Ag from PEG AgNPs to a greater degree than from PVP AgNPs. Higher dissolved Ag concentrations were measured for the PVP AgNPs (15%) compared to PEG AgNPs (3%) in moderately hard water, enhancing Ag bioavailability of the former. Multiple drivers of bioavailability yielded differences in Ag influx between very hard and deionized water where the uptake rate constants (k(uw), l g(-1) d(-1) ± SE) varied from 3.1 ± 0.7 to 0.2 ± 0.01 for PEG AgNPs and from 2.3 ± 0.02 to 1.3 ± 0.01 for PVP AgNPs. Modeling bioavailability of Ag from NPs revealed that Ag influx into L. stagnalis comprised uptake from the NPs themselves and from newly dissolved Ag. PMID:25676617

  12. Concentrations and bioavailability of cadmium and lead in cocoa powder and related products.

    PubMed

    Mounicou, S; Szpunar, J; Andrey, D; Blake, C; Lobinski, R

    2003-04-01

    Concentrations and bioavailability of cadmium (Cd) and lead (Pb) were determined in cocoa powders and related products (beans, liquor, butter) of different geographical origins. Particular attention was paid to the fractionation of these metals, which was investigated by determining the metal fraction soluble in extractant solutions acting selectively with regard to the different classes of ligands. The targeted classes of Cd and Pb species included: water-soluble compounds, polypeptide and polysaccharide complexes, and compounds soluble in simulated gastrointestinal conditions. The bioavailability of Cd and Pb from cocoa powder, liquor and butter was evaluated using a sequential enzymolysis approach. The data obtained as a function of the geographical origin of the samples indicated strong differences not only in terms of the total Cd and Pb concentrations, but also with regard to the bioavailability of these metals. The Cd concentrations in the cocoa powders varied from 94 to 1833 microg kg(-1), of which 10-50% was potentially bioavailable. The bioavailability of Pb was generally below 10% and the concentrations measured in the cocoa powders were in the 11-769 microg kg(-1) range. Virtually all the Cd and most of Pb were found in the cocoa powder after the pressing of the liquor. PMID:12775476

  13. Bioavailability and Electroreactivity of Zinc Complexed to Strong and Weak Organic Ligands.

    PubMed

    Kim, Ja-Myung; Baars, Oliver; Morel, François M M

    2015-09-15

    Laboratory experiments have established the importance of complexation by organic ligands in determining the bioavailability of trace metals to marine phytoplankton, while electrochemical measurements with field samples have demonstrated that a large fraction of bioactive trace metals are complexed to strong organic ligands in seawater. Using the model organic ligands, EDTA and histidine, we show a quantitative correspondence between the bioavailability of Zn to the diatom Thalassiosira weissflogii, and its reduction at -1.2 V (vs Ag/AgCl) on a hanging mercury drop electrode. Equilibrium calculations and polarographic data indicate that Zn bound in inorganic complexes and the 1:1 Zn-histidine complex, but not in the 1:2 Zn-histidine complex or the Zn-EDTA complexes, is taken up by the organism and reduced at the electrode surface, confirming a previous report of the bioavailability of weak Zn complexes. Electrochemical measurements of Zn speciation in seawater do not generally reveal the presence of weak (and potentially bioavailable) complexes; but such measurements (particularly by Anodic Stripping Voltammetry) should nonetheless often provide good estimates of the bioavailable Zn concentrations. These results can likely be generalized to other bioactive divalent trace metals. PMID:26252068

  14. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops*

    PubMed Central

    Islam, Ejaz ul; Yang, Xiao-e; He, Zhen-li; Mahmood, Qaisar

    2007-01-01

    Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary

  15. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops.

    PubMed

    Islam, Ejaz ul; Yang, Xiao-e; He, Zhen-li; Mahmood, Qaisar

    2007-01-01

    Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary

  16. Bioavailability study for the Paducah Gaseous Diffusion Plant

    SciTech Connect

    Phipps, T.L.; Kszos, L.A.

    1996-08-01

    The overall purpose of this plan is to assess the bioavailability of metals in the continuous and intermittent outfalls. The results may be used to determine alternative metal limits that more appropriately measure the portion of metal present necessary for toxicity to aquatic life. These limits must remain protective of in-stream aquatic life; thus, the highest concentration of metal in the water will be determined concurrently with an assessment of acute or chronic toxicity on laboratory tests. Using the method developed by the Kentucky Division of Water (KDOW), biomonitoring results and chemical data will be used to recommend alternative metal limits for the outfalls of concern. The data will be used to meet the objectives of the study: (1) evaluate the toxicity of continuous outfalls and intermittent outfalls at Paducah Gaseous Diffusion Plant; (2) determine the mean ratio of dissolved to Total Recoverable metal for Cd, Cr, Cu, Pb, Ni, and Zn in the continuous and intermittent outfalls; (3) determine whether the concentration of total recoverable metal discharged causes toxicity to fathead minnows and /or Ceriodaphnia; and (4) determine alternative metal limits for each metal of concern (Cd, Cr, Cu, Pb, Ni, and Zn).

  17. Bioavailability and biodistribution of nanodelivered lutein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of the study was to evaluate the ability of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) to enhance lutein bioavailability. The bioavailability of free lutein and PLGA-NP lutein in rats was assessed by determining plasma pharmacokinetics and deposition in selected tissues. Lutein ...

  18. The Nutraceutical Bioavailability Classification Scheme: Classifying Nutraceuticals According to Factors Limiting their Oral Bioavailability.

    PubMed

    McClements, David Julian; Li, Fang; Xiao, Hang

    2015-01-01

    The oral bioavailability of a health-promoting dietary component (nutraceutical) may be limited by various physicochemical and physiological phenomena: liberation from food matrices, solubility in gastrointestinal fluids, interaction with gastrointestinal components, chemical degradation or metabolism, and epithelium cell permeability. Nutraceutical bioavailability can therefore be improved by designing food matrices that control their bioaccessibility (B*), absorption (A*), and transformation (T*) within the gastrointestinal tract (GIT). This article reviews the major factors influencing the gastrointestinal fate of nutraceuticals, and then uses this information to develop a new scheme to classify the major factors limiting nutraceutical bioavailability: the nutraceutical bioavailability classification scheme (NuBACS). This new scheme is analogous to the biopharmaceutical classification scheme (BCS) used by the pharmaceutical industry to classify drug bioavailability, but it contains additional factors important for understanding nutraceutical bioavailability in foods. The article also highlights potential strategies for increasing the oral bioavailability of nutraceuticals based on their NuBACS designation (B*A*T*). PMID:25705933

  19. Intestinal transport as a potential determinant of drug bioavailability.

    PubMed

    Nauli, Andromeda M; Nauli, Surya M

    2013-08-01

    Orally administered drugs are generally absorbed by the small intestine and transported either to the lymphatic system or to the hepatic portal system. In general, lipid soluble drugs and vitamins are transported by the small intestine to the lymphatics, and water-soluble drugs are transported to the hepatic portal system. By avoiding the early hepatic first pass effect, the lymphatic transport system may increase drug bioavailability. In addition to its transport systems, the small intestine may affect drug bioavailability through drug uptake, intestinal first pass effect, recruitment of drugs by chylomicrons, formation and secretion of chylomicrons, and enterohepatic circulation. All of these factors should be considered when formulating orally administered lipophilic drugs. Our data also suggest that Caco-2 cells may serve as a valuable in vitro model to study the intestinal transport of orally administered drugs. PMID:23343017

  20. METHODS FOR THE SPECIATION OF METALS IN SOILS: A REVIEW

    EPA Science Inventory

    The inability to determine metal species in soils hampers efforts to understand the mobility, bioavailability, and fate of contaminant metals in environmental systems, to assess health risks posed by them, and to develop methods to remediate metal contaminated sites. Fortunately,...

  1. Influence of ageing on lead bioavailability in soils: a swine study.

    PubMed

    Wijayawardena, M A Ayanka; Naidu, Ravi; Megharaj, Mallavarapu; Lamb, Dane; Thavamani, Palanisami; Kuchel, Tim

    2015-06-01

    Aging is a time-dependent process that causes metal bioavailability to decrease with time. The current study investigated the bioavailability change of Pb in four contrasting soils over a time period until the Pb relative bioavailability (RB) levels achieved a steady state to assess the extent of the following: firstly, bioavailability change in each soil and secondly, correlation of these changes with the soil properties. Relative bioavailability of soils spiked with 1500 mg Pb/kg were measured in swine that were fed these soils, throughout an aging period (56 days) to investigate relationships between soil properties and in vivo bioavailability of Pb. Spiked soils were used to minimize the effect of varying sources of Pb on RB. The RB of Pb in GTA, IWA, and MLA decreased from their initial Pb RB values until a steady state RB of 34, 45, and 59 % was reached, respectively, by the 56th day. In contrast, however, to these RB decreases, NTA soil indicated no change in RB over the whole aging period of the experiment. The lack of change in RB in the NTA soil over time was attributed to it achieving a steady state RB within a very short time due to its comparatively high sorptive capacity (K d = 112). PMID:25249050

  2. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).

    PubMed

    Liu, Hongyu; Probst, Anne; Liao, Bohan

    2005-03-01

    , and rice and capsicum had high Cd concentration in the edible parts. However, the toxic element concentrations in maize, sorghum, Adzuki bean, soybean and mung bean remained lower than the threshold levels. The bio-accumulation factors (BAFs) of crops were in the order: Cd>Zn>Cu>Pb>As. BAF was typically lower in the edible seeds or fruits than in stems and leaves. The accumulation effect strongly depends on the crop's physiological properties, the mobility, of the metals, and the availability of metals in soils but not entirely on the total element concentrations in the soils. Even so, the estimated daily intake amount of Cu, Zn, Cd, and Pb from the crops grown in the affected three sites and arsenic at SZY and GYB exceeded the RDA (Recommended dietary allowance) levels. Subsequently, the crops grown in Chenzhou Pb/Zn mine waste affected area might have a hazardous effect on the consumer's health. This area still needs effective measures to cure the As, Cd, Pb, Zn and Cu contamination. PMID:15740766

  3. Hydrolysis of soybean protein improves iron bioavailability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Iron is an important trace metal element in human body. Iron deficiency affects human health, especially pregnant women and children. Soybean protein is a popular food in Asia and can contain a high amount of iron (145.70±0.74 ug/g); however, it is usually reported as an inhibitor of iron absorption...

  4. Heavy metal in sediments and bioaccumulation in the bivalve Corbula gibba in a drilling discharge area.

    PubMed

    Mauri, Marina; Spagnoli, Federico; Marcaccio, Marco

    2004-01-01

    The longterm bioavailability of heavy metals in sediments of a Northern Adriatic Sea shelf area affected by drilling mud and cutting discharges was discussed. Levels of Mn, Cu, Cr, Zn and Pb in different geochemical phases of the sediment and in soft tissues of the bivalve Corbula gibba were recorded and the relationships between biological and geochemical metal investigated. Total metal content, acetic acid extractable-, exchangeable-, carbonate-, easily reducible-, moderately reducible-, oxidable- and residual-fractions were determined on sediment samples. Corbula gibba was collected from wet sediments at the same times and sites, and the soft-tissue metal contents were determined. Correlations show that the fractions with greatest bioavailability are the exchangeable and carbonate for Cr and the exchangeable, carbonate, easily and moderately reducible fractions for Zn. Data also show a possible bioavailability of Pb only from the residual fraction, consisting of very resistant matter of more recent anthropogenic origin. Near the platform, total Mn content in sediments and in C. gibba tissues show a strong correlation suggesting that this organism is sensitive to variations of the Mn-oxi-hydroxides superficial film. No relationships were found between biological and sediment-bound Cu, however the discharged muds did not cause Cu enrichment. The metal fraction determined by weak acetic acid extraction at no point seems related to metal levels in Corbula gibba. PMID:15141465

  5. Metal speciation in agricultural soils adjacent to the Irankuh Pb-Zn mining area, central Iran

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ahmad Reza; Roshani Rodsari, Parisa; Cohen, David R.; Emami, Adel; Dehghanzadeh Bafghi, Ali Akbar; Khodaian Ghegeni, Ziba

    2015-01-01

    Mining activities are a significant potential source of metal contamination of soils in surrounding areas, with particular concern for metals dispersed into agricultural area in forms that are bioavailable and which may affect human health. Soils in agricultural land adjacent to Pb-Zn mining operations in the southern part of the Irankuh Mountains contain elevated concentrations for a range of metals associated with the mineralization (including Pb, Zn and As). Total and partial geochemical extraction data from a suite of 137 soil samples is used to establish mineralogical controls on ore-related trace elements and help differentiate spatial patterns that can be related to the effects of mining on the agricultural land soils from general geological and environmental controls. Whereas the patterns for Pb, Zn and As are spatially related to the mining operations they display little correlation with the distribution of secondary Fe + Mn oxyhydroxides or carbonates, suggesting dispersion as dust and in forms with limited bioavailability.

  6. Metal partitioning in plant-substrate-water compartments under EDDS-assisted phytoextraction of pyrite waste with Brassica carinata A. Braun.

    PubMed

    Vamerali, T; Bandiera, M; Lucchini, P; Mosca, G

    2015-02-01

    Soil amendment with chelating agents can increase metal uptake and translocation in biomass species through increased metal bioavailability together with possible increases in metal leaching. In this study, we assessed the efficiency and environmental risk of the fast-degradable [S,S]-EDDS. Cu, Pb and Zn uptake in pot-cultivated Brassica carinata A. Braun, residual substrate metal bioavailability and leaching were investigated after one cycle of EDDS-assisted phytoextraction in mixed metal-contaminated pyrite waste, which is characterised by high Fe content. The chelator was supplied at doses of 2.5 and 5 mmol EDDS kg(-1) waste 1 week before harvest and 1 mmol EDDS kg(-1) waste repeated five times at 5- and 10-day intervals during the growing cycle. Here we demonstrate that EDDS generally increases shoot metal concentrations-especially of Cu-but only seldom improves removals because of markedly impaired growth. Considerable phytotoxicity and Cu leaching occurred under repeated EDDS treatments, although environmental risks may also arise from the single, close-to-harvest applications as Cu bioavailability in waste at plant harvest still remained very high (up to +67 % at 5 mmol EDDS kg(-1) vs. untreated controls). The residual bioavailability of Zn and Pb was instead generally reduced, perhaps due to shifts in cation exchange, whereas Fe mobility was not apparently affected. The amount of metals removed by plants represented a small fraction of the bioavailable pool (<1 %), and mobilised metals quickly reached deep layers in the substrate. We conclude that EDDS assistance can provide only some limited opportunities for improving phytoremediation of pyrite waste, major benefits being achieved by low doses to be traditionally applied shortly before harvest, with due attention to limiting groundwater pollution. PMID:24859698

  7. Photo-transformation of pedogenic humic acid and consequences for Cd(II), Cu(II) and Pb(II) speciation and bioavailability to green microalga.

    PubMed

    Worms, Isabelle A M; Adenmatten, David; Miéville, Pascal; Traber, Jacqueline; Slaveykova, Vera I

    2015-11-01

    Humic substances (HS) play key role in toxic metal binding and protecting aquatic microorganisms from metal-induced stress. Any environmental changes that could alter HS concentration and reactivity can be expected to modify metal complexation and thus affect metal speciation and bioavailability to microalgae. The present study explores the influence of increased solar irradiance on the chemical structures and molecular weight of Elliott soil humic acid (EHA) and the associated consequences for Cd(II), Cu(II) and Pb(II) complexation and intracellular metal content in microalga. The results demonstrate that high radiance doses induce an oxidation of EHA with a formation of low molecular weight acids, an increase of -OH and -COOH group abundance, and a drop in EHA hydrodynamic size and molecular weight. The photo-induced structural changes are accompanied with a release of metal from M-EHA complexes and narrowing their size distribution, which in turn results in an increase of the intracellular Cd, Cu and Pb contents in microalga Chlamydomonas reinhardtii in agreement with the measured free metal ions concentrations. PMID:25563161

  8. Towards bioavailability-based soil criteria: past, present and future perspectives.

    PubMed

    Naidu, Ravi; Channey, Rufus; McConnell, Stuart; Johnston, Niall; Semple, Kirk T; McGrath, Steve; Dries, Victor; Nathanail, Paul; Harmsen, Joop; Pruszinski, Andrew; MacMillan, Janet; Palanisami, Thavamani

    2015-06-01

    Bioavailability has been used as a key indicator in chemical risk assessment yet poorly quantified risk factor. Worldwide, the framework used to assess potentially contaminated sites is similar, and the decisions are based on threshold contaminant concentration. The uncertainty in the definition and measurement of bioavailability had limited its application to environment risk assessment and remediation. Last ten years have seen major developments in bioavailability research and acceptance. The use of bioavailability in the decision making process as one of the key variables has led to a gradual shift towards a more sophisticated risk-based approach. Now a days, many decision makers and regulatory organisations 'more readily accept' this concept. Bioavailability should be the underlying basis for risk assessment and setting remediation goals of those contaminated sites that pose risk to environmental and human health. This paper summarises the potential application of contaminant bioavailability and bioaccessibility to the assessment of sites affected by different contaminants, and the potential for this to be the underlying basis for sustainable risk assessment and remediation in Europe, North America and Australia over the coming decade. PMID:23519481

  9. Bioavailability enhancement by addition of surfactant and surfactant-like compounds

    SciTech Connect

    Strong-Gunderson, J.M.; Palumbo, A.V.

    1995-12-31

    The bioavailability and microbial degradation of contaminant compounds (e.g., toluene and naphthalene) were enhanced by adding synthetic surfactants, biosurfactants, and nutrients with surfactant like properties. In addition to enhanced contaminant degradation, these surfactant compounds have the potential to change the availability of natural organic matter (NOM), and thus may affect overall site bioremediation. Two bacterial bioreporter strains that are induced by toluene or naphthalene were used to directly measure contaminant bioavailability. A cell-free biosurfactant product, Tween-80, and an oleophilic fertilizer were added to aqueous suspensions and soil slurries containing toluene or naphthalene. The addition of these surfactant compounds at or below the critical micelle concentration (CMC) enhanced bioavailability as measured by increased levels of bioluminescence. Bioluminescence data were coupled with gas chromatographic analyses. The addition of Tween-80 increased not only the bioavailability of the contaminants but also, in a separate assay, the bioavailability of recalcitrant NOM. The enhanced NOM bioavailability was inferred from measurements of biomass by optical density increases and plate counts. Thus, adding surfactant compounds for enhanced contaminant degradation has the potential to introduce additional competition for nutrients and microbial metabolism, a significant area of concern for in situ site remediation.

  10. Encapsulation and micronization effectively improve orange beverage flavanone bioavailability in humans.

    PubMed

    Tomás-Navarro, María; Vallejo, Fernando; Borrego, Francisco; Tomás-Barberán, Francisco A

    2014-10-01

    The effect of hesperidin encapsulation and particle size reduction on hesperetin bioavailability was assessed after the intake of orange flavanone beverages. Hesperidin micronization (5.1 μm) increased flavanone's bioavailability 2-fold compared to conventional hesperidin (32.8 μm). Gum Arabic encapsulated hesperidin, with enhanced dispersion in water, also showed increased bioavailability despite having a higher particle size than conventional hesperidin (74.2 μm), showing that flavanone dispersion also enhances its bioavailability. The bioavailability of micronized hesperetin was also evaluated to overcome the need for gut microbiota rhamnosidase hydrolysis. When volunteers were stratified for their flavanone excretion capability, differences among treatments were better observed. The treatments used to increase solubility and decrease particle size to facilitate the interaction with intestinal cells and gut microbiota enhanced bioavailabilty especially in high (9.2 ± 1.5 mg) and medium (5.5 ± 0.3 mg) flavanone excretors. On the contrary, micronized hesperetin bioavailability was particularly high in the case of low excretors (4.3 ± 0.6 mg), showing that the low excretion in these volunteers should be associated with the lack of the appropriate microbiota to release hesperetin from hesperidin. Not all of the low excretors, however, reached the excretion levels of high excretors when hesperetin was supplied, suggesting that differences in intestinal transporters of the volunteers could also affect the flavanone excretion rates observed. PMID:25200135

  11. Lycopene bioavailability is associated with a combination of genetic variants.

    PubMed

    Borel, Patrick; Desmarchelier, Charles; Nowicki, Marion; Bott, Romain

    2015-06-01

    The intake of tomatoes and tomato products, which constitute the main dietary source of the red pigment lycopene (LYC), has been associated with a reduced risk of prostate cancer and cardiovascular disease, suggesting a protective role of this carotenoid. However, LYC bioavailability displays high interindividual variability. This variability may lead to varying biological effects following LYC consumption. Based on recent results obtained with two other carotenoids, we assumed that this variability was due, at least in part, to several single nucleotide polymorphisms (SNPs) in genes involved in LYC and lipid metabolism. Thus, we aimed at identifying a combination of SNPs significantly associated with the variability in LYC bioavailability. In a postprandial study, 33 healthy male volunteers consumed a test meal containing 100g tomato puree, which provided 9.7 mg all-trans LYC. LYC concentrations were measured in plasma chylomicrons (CM) isolated at regular time intervals over 8 h postprandially. For the study 1885 SNPs in 49 candidate genes, i.e., genes assumed to play a role in LYC bioavailability, were selected. Multivariate statistical analysis (partial least squares regression) was used to identify and validate the combination of SNPs most closely associated with postprandial CM LYC response. The postprandial CM LYC response to the meal was notably variable with a CV of 70%. A significant (P=0.037) and validated partial least squares regression model, which included 28 SNPs in 16 genes, explained 72% of the variance in the postprandial CM LYC response. The postprandial CM LYC response was also positively correlated to fasting plasma LYC concentrations (r=0.37, P<0.05). The ability to respond to LYC is explained, at least partly, by a combination of 28 SNPs in 16 genes. Interindividual variability in bioavailability apparently affects the long-term blood LYC status, which could ultimately modulate the biological response following LYC supplementation. PMID

  12. Bioavailability of atrazine, pyrene and benzo[a]pyrene in European river waters

    USGS Publications Warehouse

    Akkanen, J.; Penttinen, S.; Haitzer, M.; Kukkonen, J.V.K.

    2001-01-01

    Thirteen river waters and one humic lake water were characterized. The effects of dissolved organic matter (DOM) on the bioavailability of atrazine, pyrene and benzo[a]pyrene (B[a]P) was evaluated. Binding of the chemicals by DOM was analyzed with the equilibrium dialysis technique. For each of the water samples, 24 h bioconcentration factors (BCFs) of the chemicals were measured in Daphnia magna. The relationship between DOM and other water characteristics (including conductivity, water hardness and pH), and bioavailability of the chemicals was studied by performing several statistical analyses, including multiple regression analyses, to determine how much of the variation of BCF values could be explained by the quantity and quality of DOM. The bioavailability of atrazine was not affected by DOM or any other water characteristics. Although equilibrium dialysis showed binding of pyrene to DOM, the bioavailability of pyrene was not significantly affected by DOM. The bioavailability of B[a]P was significantly affected by both the quality and quantity of DOM. Multiple regression analyses, using the quality (ABS270 and HbA%) and quantity of DOM as variables, explainedup to 70% of the variation in BCF of B[a]P in the waters studied. ?? 2001 Elsevier Science Ltd. All rights reserved.

  13. BIOAVAILABILITY OF HALOACETATES IN HUMAN SUBJECTS

    EPA Science Inventory

    The objective of this project is to characterize the absorption, disposition and oral bioavailability of chlorinated and brominated haloacetates in human volunteers after consumption of drinking water containing a natural mixture of these compounds. We hypothesize that accurat...

  14. Bioavailability models for predicting copper toxicity to freshwater green microalgae as a function of water chemistry.

    PubMed

    De Schamphelaere, Karel A C; Janssen, Colin R

    2006-07-15

    We investigated whether an earlier-developed bioavailability model for predicting copper toxicity to growth rate of the freshwater alga Pseudokirchneriella subcapitata could be extrapolated to other species and toxicological effects (endpoints). Hardness and dissolved organic carbon did not significantly affect the toxicity of the free Cu2+ ion to P. subcapitata (earlier study) and Chlorella vulgaris(this study), but a higher pH resulted in an increased toxicity for both species. Regression analysis showed significant linear relationships between ECxpCu (= "effect concentration" that produces x% adverse effect, expressed as pCu = -log of the Cu2+ activity) and pH. By linking these regression models with a geochemical metal speciation model, dissolved copper concentrations that elicit a given adverse effect (EC(X)dissolved) can be predicted. Within the pH range investigated (5.5-8.7), slopes of the linear EC(X)pCu vs pH regression models varied between 1.301 and 1.472 depending on the species and the effect level (10% or 50%) considered. In a statistical sense these slopes were all significantly different from one another (p < 0.05), suggesting that this empirical regression model does not yet capture the full complexity of toxicological copper bioavailability to algae. However, we demonstrated that regression models with an "average" slope of 1.354 had predictive power very similar to those of regression models with species and effect-specific slopes. Additionally, the "average" regression model was further successfully validated for other species (Chlamydomonas reinhardtii and Scenedesmus quadricauda) and for different toxicological effects/endpoints (growth rate, biomass yield, and phosphorus uptake rate). For all these toxicity datasets effect concentrations of copper could be predicted with this "average" model by errors of less than a factor of 2 in 94-100% of the cases. The success of this "average" model suggests the possibility that the pH-based linear

  15. Mechanisms of Metal Resistance and Homeostasis in Haloarchaea

    PubMed Central

    Srivastava, Pallavee; Kowshik, Meenal

    2013-01-01

    Haloarchaea are the predominant microflora of hypersaline econiches such as solar salterns, soda lakes, and estuaries where the salinity ranges from 35 to 400 ppt. Econiches like estuaries and solar crystallizer ponds may contain high concentrations of metals since they serve as ecological sinks for metal pollution and also as effective traps for river borne metals. The availability of metals in these econiches is determined by the type of metal complexes formed and the solubility of the metal species at such high salinity. Haloarchaea have developed specialized mechanisms for the uptake of metals required for various key physiological processes and are not readily available at high salinity, beside evolving resistance mechanisms for metals with high solubility. The present paper seeks to give an overview of the main molecular mechanisms involved in metal tolerance in haloarchaea and focuses on factors such as salinity and metal speciation that affect the bioavailability of metals to haloarchaea. Global transcriptomic analysis during metal stress in these organisms will help in determining the various factors differentially regulated and essential for metal physiology. PMID:23533331

  16. Mechanisms of metal resistance and homeostasis in haloarchaea.

    PubMed

    Srivastava, Pallavee; Kowshik, Meenal

    2013-01-01

    Haloarchaea are the predominant microflora of hypersaline econiches such as solar salterns, soda lakes, and estuaries where the salinity ranges from 35 to 400 ppt. Econiches like estuaries and solar crystallizer ponds may contain high concentrations of metals since they serve as ecological sinks for metal pollution and also as effective traps for river borne metals. The availability of metals in these econiches is determined by the type of metal complexes formed and the solubility of the metal species at such high salinity. Haloarchaea have developed specialized mechanisms for the uptake of metals required for various key physiological processes and are not readily available at high salinity, beside evolving resistance mechanisms for metals with high solubility. The present paper seeks to give an overview of the main molecular mechanisms involved in metal tolerance in haloarchaea and focuses on factors such as salinity and metal speciation that affect the bioavailability of metals to haloarchaea. Global transcriptomic analysis during metal stress in these organisms will help in determining the various factors differentially regulated and essential for metal physiology. PMID:23533331

  17. Influence of Diagenesis on Bioavailable Phosphorus in Lake Mendota, USA

    NASA Astrophysics Data System (ADS)

    Hoffman, A.; Armstrong, D.; Lathrop, R.; Penn, M.

    2013-12-01

    Phosphorus (P) is a major driver of productivity in many freshwater systems and in excess P can cause a variety of deleterious effects. Lake Mendota, located in Madison, Wisconsin (USA), is a eutrophic calcareous lake that is influenced by both urban and agricultural sources. As measures have been implemented to control point and non-point source pollution, internal sources, including release by sediments, has become more important. We collected multiple sediment cores from seven depositional basins to determine how diagenesis is influencing the bioavailability of sediment P. Cores were sliced in 1-cm intervals and analyzed for total P (TP), various P fractions, total metals, and multiple stable isotopes. While the average amount of total P that was bioavailable was 64.8%, the range noted was 39.2% to 88.6%. Spatial differences existed among the cores when comparing TP and bioavailable P among the cores. Depth profiles elucidated temporal differences as occasional increases in TP with depth were noted. These increases were found to contain a higher percent of bioavailable P. This variation was explored to determine if it resulted from differences in source material, for example inorganic P formed by diagenesis of organic P (algal derived) rather than soil P from external inputs. Saturation index modeling using MINEQL+ suggests that phosphorus concentrations in Lake Mendota pore waters are influenced by precipitation of vivianite (Fe3(PO4)2●8H2O) and certain calcium phosphates. However, hydroxyl apatite (Ca5(PO4)3(OH)), was highly supersaturated, indicating that precipitation of hydroxyl apatite is hindered and not important in controlling phosphate concentrations in these sediments. Yet even more important than precipitation reactions, adsorption/desorption characteristics of P seem to play a major role in P bioavailability. Sediment 210Pb and 137Cs activity profiles indicate differences exist among sedimentation rates for the various depositional sites in Lake

  18. Bioavailability of intramuscularly administered tenoxicam.

    PubMed

    Stebler, T; Guentert, T W

    1993-08-01

    Bioavailability of intramuscularly administered tenoxicam relative to single oral and relative to intravenous doses was determined in two separate randomized crossover studies. Twelve healthy volunteers (12 males, age 20-30 years) received a rapid intravenous injection and a single intramuscular dose and 12 other subjects (11 males, 1 female, age 21-25 years) a single oral and a single intramuscular dose of 20 mg of tenoxicam on two different occasions. The wash-out period between the two consecutive treatments was 4 weeks. Plasma concentrations after dosing were determined by a specific HPLC method. Differences in tenoxicam concentration-time profiles after the different routes of administration were limited to the first 2 h after dosing. Later, plasma concentrations were almost superimposable within and across the two studies. The extent of absorption of intramuscularly administered tenoxicam was complete (mean +/- CV per cent: F(abs) 0.99 +/- 20 per cent) with no difference between the two extravascular administrations (F(rel) 0.95 +/- 10 per cent, intramuscular vs oral). After intramuscular administration tenoxicam was more rapidly absorbed compared to the oral dose (Tmax 0.71 h +/- 80 per cent vs 1.4 h +/- 62 per cent; p > 0.05). Peak concentrations after oral and intramuscular administration (Cmax 2.5 mg l-1 +/- 19 per cent vs 2.7 mg l-1 +/- 14 per cent; p < 0.05) were very similar. PMID:8218966

  19. Ultrathin Alumina Film Al-Sublattice Structure, Metal Island Nucleation at Terrace Point Defects, and How Hydroxylation Affects Wetting

    SciTech Connect

    Bogicevic, A.; Jennison, D.R.

    1999-08-09

    In this paper, we include for discussion three topics of current interest in metal oxide surface science. Using first principles density functional theory (DFT) [1] calculations, we have investigated: (1) the atomic-scale structure of experimentally-relevant ultrathin alumina films, (2) the role of common point defects in metal island nucleation on oxide terraces, and (3) the growth and morphology of metals on oxide surfaces which have high concentrations of a common impurity.

  20. Sources and accumulation of trace metals in sediments and the asiatic clam, corbicula fluminea in two South Carolina watersheds. Final report

    SciTech Connect

    Pickett, J.R.

    1992-01-01

    A survey of trace element concentrations in the benthic bivalve, Corbicula fluminea, was conducted on the Santee-Cooper River Basin, S.C. from 1989-1991 as part of a nonpoint source water quality assessment. Trace metal concentrations in clam tissues were examined in relation to temporal and spatial variations in river water and sediment. It was found that C. fluminea was a suitable bio-indicator for monitoring trace metal inputs within the basin. Solute concentrations of Cd, Cu and Zn underwent appreciable accumulation as demonstrated by strong solute vs. tissue correlations and high bioconcentration factors. Conversely, the bioavailability of trace elements to C. fluminea was not necessarily related to sediment concentrations, as correlations were not observed between trace elements in sediment and clam tissue. The differences in the bioavailability of metals observed between the watersheds was likely a function of physicochemical factors affecting the partitioning of metals between the water and sediment compartments.

  1. Geochemistry and bioavailability of mudflats and mangrove sediments and their effect on bioaccumulation in selected organisms within a tropical (Zuari) estuary, Goa, India.

    PubMed

    Dias, Heidy Q; Nayak, G N

    2016-04-15

    Metals are non-degradable in the aquatic environment and play a vital role in estuarine biogeochemistry but could also be detrimental to associated biota. A comparative evaluation of the trace metal concentrations (Fe, Mn, Zn, Cu, Ni, and Co) was carried out in the Zuari estuary, Goa during the post-monsoon season of 2013 at six locations, each representing three mangrove and three mudflat regions. In addition, fractionation of trace metals in sediments was performed to provide information on the mobility, distribution, bioavailability and toxicity. Special attention was paid to the marine mollusks viz. bivalves and gastropods that are extensively used as bio-indicators in coastal pollution. Considering the percentage of metals in the sequentially extracted fractions, the order of mobility from most to least bioavailable forms was Mn > Zn > Cu > Ni > Co > Fe. Mn maintained high bioavailability (average around 60%) in Fe-Mn oxide and carbonate bound forms indicating that Mn is readily available for biota uptake. The bioavailability of Fe was on an average of around 6% whereas other metals like Cu, Zn, Ni and Co were around 19% to 34%. When the bioavailable values were compared with standard Screening Quick Reference Table (SQUIRT), Zn showed higher toxicity level and bioavailability in the lower estuary. On the basis of calculated Bio Sediment Accumulation Factors (BSAF's), overall trend in bioaccumulation was in the order of Cu > Zn > Mn > Ni > Co > Fe. Metal Pollution Index (MPI) computed was higher for gastropods than bivalves. PMID:26920425

  2. Influence of compost addition on lead and arsenic bioavailability in reclaimed orchard soil assessed using Porcellio scaber bioaccumulation test.

    PubMed

    Udovic, M; McBride, M B

    2012-02-29

    Long-term application of lead arsenate in orchards has led to a significant accumulation of Pb and As in the topsoil. Reclamation of old orchards for agricultural purposes entails the exposure of humans to Pb and As, which can be reduced by adequate remediation actions. In this study, we assessed the remediation efficiency of compost addition, commonly used as a sustainable agricultural practice, in decreasing the human exposure Pb and As by direct ingestion. The remediation was evaluated based on Pb and As bioavailability, assessed by means of a selective non-exhaustive chemical extraction (modified Morgan extraction, MME), with a physiologically based extraction test (PBET) for the assessment of Pb and As bioavailability in ingested soils and with a novel in vivo bioaccumulation test with isopods (Porcellio scaber). All the tests showed that compost addition consistently reduced Pb, but increased As potential bioavailability. The bioaccumulation test with P. scaber was sensitive to changes in Pb and As bioavailability in test soils. However, the results indicate that the bioavailability of As could be under- or overestimated using solely chemical extraction tests. Indirect assessment of trace metal bioavailability with bioaccumulation in isopods can be used as complementary source of data to the existing in vitro chemical extraction test approach for the estimation of human exposure to trace elements in polluted and remediated soil. This is the first report on the use of As accumulation in P. scaber as a tool for the assessment of As bioavailability in contaminated orchard soil. PMID:22240057

  3. Inclusions and Microstructure of Ce-Added Weld Metal Coarse Grain Heat-Affected Zone in Twin-Wire Submerged-Arc Welding

    NASA Astrophysics Data System (ADS)

    Yu, S. F.; Yan, N.; Chen, Y.

    2016-04-01

    In high heat-input multi-pass twin-wire submerged-arc welding, weld metal of previous pass will be affected by the heat input of subsequent one and form coarse-grained heat-affected zone (CGHAZ). This study focused on the effects of welding thermal cycle on the inclusions and microstructure of Ce-alloyed weld metal CGHAZ. According to the study of inclusions and microstructure of weld metal CGHAZ, it was found that the composition and type of the inclusions did not change under the effect of welding thermal cycle. Although the inclusions were coarsened slightly, the promoting ability to acicular ferrite (AF) was not deprived after thermal cycling. There are three types of AF in weld metal CGHAZ, which include oxy-sulfides of Ce inclusions-promoted AF, home-position-precipitated AF, and sympathetic AF. Results showed more than 80% of microstructure was AF, which greatly benefited the mechanical properties of weld metal CGHAZ, even though granular bainite and M-A constituents were generated.

  4. Inclusions and Microstructure of Ce-Added Weld Metal Coarse Grain Heat-Affected Zone in Twin-Wire Submerged-Arc Welding

    NASA Astrophysics Data System (ADS)

    Yu, S. F.; Yan, N.; Chen, Y.

    2016-06-01

    In high heat-input multi-pass twin-wire submerged-arc welding, weld metal of previous pass will be affected by the heat input of subsequent one and form coarse-grained heat-affected zone (CGHAZ). This study focused on the effects of welding thermal cycle on the inclusions and microstructure of Ce-alloyed weld metal CGHAZ. According to the study of inclusions and microstructure of weld metal CGHAZ, it was found that the composition and type of the inclusions did not change under the effect of welding thermal cycle. Although the inclusions were coarsened slightly, the promoting ability to acicular ferrite (AF) was not deprived after thermal cycling. There are three types of AF in weld metal CGHAZ, which include oxy-sulfides of Ce inclusions-promoted AF, home-position-precipitated AF, and sympathetic AF. Results showed more than 80% of microstructure was AF, which greatly benefited the mechanical properties of weld metal CGHAZ, even though granular bainite and M-A constituents were generated.

  5. Concentrations of heavy metals and aquatic macrophytes of Govind Ballabh Pant Sagar an anthropogenic lake affected by coal mining effluent.

    PubMed

    Mishra, Virendra Kumar; Upadhyay, Alka Rani; Pandey, Sudhir Kumar; Tripathi, B D

    2008-06-01

    Five heavy metals Cu, Cd, Mn, Pb and Hg were found in high concentration from three sampling sites located in Asia's largest anthropogenic lake Govind Ballabh Pant GBP Sagar. Concentrations of these heavy metals were measured in Water, bottom sediment and in different parts of the aquatic macrophytes collected from the reservoir. Plants collected from the lake were Eichhornia crassipes, Azolla pinnata, Lemna minor, Spirodela polyrrhiza, Potamogeton pectinatus, Marsilea quadrifolia, Pistia stratiotes, Ipomea aquqtica, Potamogeton crispus, Hydrilla verticillata and Aponogeton natans. These plants have shown the high concentrations of Cu, Cd, Mn, Pb and Hg in their different parts due to bioaccumulation. In general plant roots exhibited higher concentrations of heavy metals than corresponding sediments. A comparison between different morphological tissues of the sampled plants revealed the metal concentration in following order roots > leaves. Analyses of bottom sediment indicated the higher concentrations of Cd, Mn, Cu and Pb. Strong positive correlations were obtained between the metals in water and in plants as well as between metal in sediment and in plants. Indicating the potential of these plants for pollution monitoring of these metals. PMID:17674134

  6. Heavy metal contamination of agricultural soils affected by mining activities around the Ganxi River in Chenzhou, Southern China.

    PubMed

    Ma, Li; Sun, Jing; Yang, Zhaoguang; Wang, Lin

    2015-12-01

    Heavy metal contamination attracted a wide spread attention due to their strong toxicity and persistence. The Ganxi River, located in Chenzhou City, Southern China, has been severely polluted by lead/zinc ore mining activities. This work investigated the heavy metal pollution in agricultural soils around the Ganxi River. The total concentrations of heavy metals were determined by inductively coupled plasma-mass spectrometry. The potential risk associated with the heavy metals in soil was assessed by Nemerow comprehensive index and potential ecological risk index. In both methods, the study area was rated as very high risk. Multivariate statistical methods including Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis were employed to evaluate the relationships between heavy metals, as well as the correlation between heavy metals and pH, to identify the metal sources. Three distinct clusters have been observed by hierarchical cluster analysis. In principal component analysis, a total of two components were extracted to explain over 90% of the total variance, both of which were associated with anthropogenic sources. PMID:26547321

  7. Arsenic and other heavy metals in soils from an arsenic-affected area of West Bengal, India.

    PubMed

    Roychowdhury, Tarit; Uchino, Tadashi; Tokunaga, Hiroshi; Ando, Masanori

    2002-11-01

    Domkal is one of the 19, out of 26 blocks in Murshidabad district where groundwater contains arsenic above 0.05 mg/l. Many millions of cubic meters of groundwater along with arsenic and other heavy metals are coming out from both the hand tubewells, used by the villagers for their daily needs and shallow big diameter tubewells, installed for agricultural irrigation and depositing on soil throughout the year. So there is a possibility of soil contamination which can moreover affect the food chain, cultivated in this area. A somewhat detailed study was carried out, in both micro- and macrolevel, to get an idea about the magnitude of soil contamination in this area. The mean concentrations (mg/kg) of As (5.31), Fe (6740), Cu (18.3), Pb (10.4), Ni (18.8), Mn (342), Zn (44.3), Se (0.53), Mg (534), V (44.6), Cr (33.1), Cd (0.37), Sb (0.29) and Hg (0.54) in fallow land soils are within the normal range. The mean As (10.7), Fe (7860) and Mg (733) concentrations (mg/kg) are only in higher side whereas Hg (0.17 mg/kg) is in lower side in agricultural land soils, compared to the fallow land soils. Arsenic concentrations (11.5 and 28.0 mg/kg respectively) are high in those agricultural land soils where irrigated groundwater contains high arsenic (0.082 and 0.17 mg/l respectively). The total arsenic withdrawn and mean arsenic deposition per land by the 19 shallow tubewells per year are 43.9 kg (mean: 2.31 kg, range: 0.53-5.88 kg) and 8.04 kg ha(-1) (range: 1.66-16.8 kg ha(-1)) respectively. For the macrolevel study, soil arsenic concentration decreases with increase of distance from the source and higher the water arsenic concentration, higher the soil arsenic at any distance. A proper watershed management is urgently required to save the contamination. PMID:12430648

  8. Quantifying Carbon Bioavailability in Northeast Siberian Soils

    NASA Astrophysics Data System (ADS)

    Heslop, J.; Chandra, S.; Sobczak, W. V.; Spektor, V.; Davydova, A.; Holmes, R. M.; Bulygina, E. B.; Schade, J. D.; Frey, K. E.; Bunn, A. G.; Walter Anthony, K.; Zimov, S. A.; Zimov, N.

    2010-12-01

    Soils in Northeast Siberia, particularly carbon-rich yedoma (Pleistocene permafrost) soils, have the potential to release large amounts of carbon dioxide and methane due to permafrost thaw and thermokarst activity. In order to quantify the amount of carbon release potential in these soils, it is important to understand carbon bioavailability for microbial consumption in the permafrost. In this study we measured amounts of bioavailable soil carbon across five locations in the Kolyma River Basin, NE Siberia. At each location, we sampled four horizons (top active layer, bottom active layer, Holocene optimum permafrost, and Pleistocene permafrost) and conducted soil extracts for each sample. Filtered and unfiltered extracts were used in biological oxygen demand experiments to determine the dissolved and particulate bioavailable carbon potential for consumption in the soil. Concentrations of bioavailable carbon were 102-608 mg C/kg dry soil for filtered extracts and 115-703 mg C/kg dry soil for unfiltered extracts. Concentrations of carbon respired per gram of dry soil were roughly equal for both the DOC and POC extracts (P<0.001), suggesting that bioavailable soil carbon is predominately in the dissolved form or the presence of an additional unknown limitation preventing organisms from utilizing carbon in the particulate form. Concentrations of bioavailable carbon were similar across the different sampling locations but differed among horizons. The top active layer (102-703 mg C/kg dry soil), Holocene optimum permafrost (193-481 mg C/kg dry soil), and Pleistocene permafrost (151-589 mg C/kg dry soil) horizons had the highest amounts of bioavailable carbon, and the bottom active layer (115-179 mg C/kg dry soil) horizon had the lowest amounts. For comparison, ice wedges had bioavailable carbon concentrations of 23.0 mg C/L and yedoma runoff from Duvyanni Yar had concentrations of 306 mg C/L. Pleistocene permafrost soils had similar concentrations of bioavailable carbon

  9. Bioavailability enhancers of herbal origin: an overview.

    PubMed

    Kesarwani, Kritika; Gupta, Rajiv; Mukerjee, Alok

    2013-04-01

    Recently, the use of herbal medicines has been increased all over the world due to their therapeutic effects and fewer adverse effects as compared to the modern medicines. However, many herbal drugs and herbal extracts despite of their impressive in-vitro findings demonstrates less or negligible in-vivo activity due to their poor lipid solubility or improper molecular size, resulting in poor absorption and hence poor bioavailability. Nowadays with the advancement in the technology, novel drug delivery systems open the door towards the development of enhancing bioavailability of herbal drug delivery systems. For last one decade many novel carriers such as liposomes, microspheres, nanoparticles, transferosomes, ethosomes, lipid based systems etc. have been reported for successful modified delivery of various herbal drugs. Many herbal compounds including quercetin, genistein, naringin, sinomenine, piperine, glycyrrhizin and nitrile glycoside have demonstrated capability to enhance the bioavailability. The objective of this review is to summarize various available novel drug delivery technologies which have been developed for delivery of drugs (herbal), and to achieve better therapeutic response. An attempt has also been made to compile a profile on bioavailability enhancers of herbal origin with the mechanism of action (wherever reported) and studies on improvement in drug bioavailability, exhibited particularly by natural compounds. PMID:23620848

  10. Bioavailability enhancers of herbal origin: An overview

    PubMed Central

    Kesarwani, Kritika; Gupta, Rajiv

    2013-01-01

    Recently, the use of herbal medicines has been increased all over the world due to their therapeutic effects and fewer adverse effects as compared to the modern medicines. However, many herbal drugs and herbal extracts despite of their impressive in-vitro findings demonstrates less or negligible in-vivo activity due to their poor lipid solubility or improper molecular size, resulting in poor absorption and hence poor bioavailability. Nowadays with the advancement in the technology, novel drug delivery systems open the door towards the development of enhancing bioavailability of herbal drug delivery systems. For last one decade many novel carriers such as liposomes, microspheres, nanoparticles, transferosomes, ethosomes, lipid based systems etc. have been reported for successful modified delivery of various herbal drugs. Many herbal compounds including quercetin, genistein, naringin, sinomenine, piperine, glycyrrhizin and nitrile glycoside have demonstrated capability to enhance the bioavailability. The objective of this review is to summarize various available novel drug delivery technologies which have been developed for delivery of drugs (herbal), and to achieve better therapeutic response. An attempt has also been made to compile a profile on bioavailability enhancers of herbal origin with the mechanism of action (wherever reported) and studies on improvement in drug bioavailability, exhibited particularly by natural compounds. PMID:23620848

  11. Metals, Parasites, and Environmental Conditions Affecting Breeding Populations of Spotted Salamanders (Ambystoma maculatum) in Northern Arkansas, USA.

    PubMed

    DeMali, Heather M; Trauth, Stanley E; Bouldin, Jennifer L

    2016-06-01

    The spotted salamander (Ambystoma maculatum) is indigenous to northern Arkansas, and several breeding sites are known to exist in the region. Spotted salamanders (n = 17) were collected and examined for parasites and only three females harbored nematodes (Physaloptera spp.). Chronic aquatic bioassays were conducted using water collected from eight breeding ponds during different hydroperiod events. No lethal or sublethal effects were measured in Ceriodaphnia dubia; however, decreased growth and survival were seen in Pimephales promelas. Aqueous, sediment, and salamander hepatic samples were analyzed for As, Cd, Cu, Pb, and Ni. Metal analysis revealed possible increased metal exposure following precipitation, with greatest metal concentrations measured in sediment samples. Hepatic metal concentrations were similar in parasitized and non-parasitized individuals, and greatest Pb concentrations were measured following normal precipitation events. Determining environmental stressors of amphibians, especially during their breeding and subsequent larval life stage, is imperative to improve species conservation. PMID:26886425

  12. BARIUM BIOAVAILABILITY AS THE CHLORIDE, SULFATE, OR CARBONATE SALT IN THE RAT

    EPA Science Inventory

    This study was conducted to determine how the bioavailability of a low concentration of barium (Ba) in drinking water is affected by anion speciation. Male Sprague Dawley rats weighing 250-300 grams were maintained on a diet of less than 1 mg Ba/kg of food for at least 1 month pr...

  13. Oral anticancer drugs: mechanisms of low bioavailability and strategies for improvement.

    PubMed

    Stuurman, Frederik E; Nuijen, Bastiaan; Beijnen, Jos H; Schellens, Jan H M

    2013-06-01

    The use of oral anticancer drugs has increased during the last decade, because of patient preference, lower costs, proven efficacy, lack of infusion-related inconveniences, and the opportunity to develop chronic treatment regimens. Oral administration of anticancer drugs is, however, often hampered by limited bioavailability of the drug, which is associated with a wide variability. Since most anticancer drugs have a narrow therapeutic window and are dosed at or close to the maximum tolerated dose, a wide variability in the bioavailability can have a negative impact on treatment outcome. This review discusses mechanisms of low bioavailability of oral anticancer drugs and strategies for improvement. The extent of oral bioavailability depends on many factors, including release of the drug from the pharmaceutical dosage form, a drug's stability in the gastrointestinal tract, factors affecting dissolution, the rate of passage through the gut wall, and the pre-systemic metabolism in the gut wall and liver. These factors are divided into pharmaceutical limitations, physiological endogenous limitations, and patient-specific limitations. There are several strategies to reduce or overcome these limitations. First, pharmaceutical adjustment of the formulation or the physicochemical characteristics of the drug can improve the dissolution rate and absorption. Second, pharmacological interventions by combining the drug with inhibitors of transporter proteins and/or pre-systemic metabolizing enzymes can overcome the physiological endogenous limitations. Third, chemical modification of a drug by synthesis of a derivative, salt form, or prodrug could enhance the bioavailability by improving the absorption and bypassing physiological endogenous limitations. Although the bioavailability can be enhanced by various strategies, the development of novel oral products with low solubility or cell membrane permeability remains cumbersome and is often unsuccessful. The main reasons are

  14. Effect of alcohol consumption on selenium (Se) bioavailability in rats

    SciTech Connect

    Cho, H.K.; Snook, J.T.; Yang, F.L.

    1986-03-01

    This study was done to determine the effects of alcohol ingestion on Se bioavailability in initially Se-depleted rats. Weanling male rats were fed a Se deficient (0.012 mg/kg) basal diet for 4 weeks and then for the subsequent 4 weeks were supplemented at 0.031 mg Se/kg or at 0.085 mg Se/kg of diet in the form of high Se yeast. During the Se repletion period alcohol replaced medium chain triglycerides in the diet at 3 levels: 0%, 10%, and 20% of calories. Dietary Se level significantly (P < .0001) affected urinary Se, fecal Se, Se absorption, Se balance, whole blood Se, whole blood glutathione peroxidase activity, and liver Se. In rats fed the higher Se diet total liver Se increased 50% when 20% rather than 0% alcohol was given. In rats fed the lower Se diet total liver Se decreased 12% as dietary alcohol increased from 0 to 20%. There was a significant (P < .0015) interaction between alcohol and Se level. All the other parameters for Se bioavailability were not affected by alcohol consumption. However, alcohol consumption significantly reduced growth rate at both Se levels.

  15. Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables

    PubMed Central

    Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health. PMID:25276818

  16. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables.

    PubMed

    Waseem, Amir; Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid; Murtaza, Ghulam

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health. PMID:25276818

  17. Bioavailability of Polyphenol Liposomes: A Challenge Ahead

    PubMed Central

    Mignet, Nathalie; Seguin, Johanne; Chabot, Guy G.

    2013-01-01

    Dietary polyphenols, including flavonoids, have long been recognized as a source of important molecules involved in the prevention of several diseases, including cancer. However, because of their poor bioavailability, polyphenols remain difficult to be employed clinically. Over the past few years, a renewed interest has been devoted to the use of liposomes as carriers aimed at increasing the bioavailability and, hence, the therapeutic benefits of polyphenols. In this paper, we review the causes of the poor bioavailability of polyphenols and concentrate on their liposomal formulations, which offer a means of improving their pharmacokinetics and pharmacodynamics. The problems linked to their development and their potential therapeutic advantages are reviewed. Future directions for liposomal polyphenol development are suggested. PMID:24300518

  18. Surprisingly contrasting metal distribution and fractionation patterns in copper smelter-affected tropical soils in forested and grassland areas (Mufulira, Zambian Copperbelt).

    PubMed

    Ettler, Vojtěch; Konečný, Ladislav; Kovářová, Lucie; Mihaljevič, Martin; Sebek, Ondřej; Kříbek, Bohdan; Majer, Vladimír; Veselovský, František; Penížek, Vít; Vaněk, Aleš; Nyambe, Imasiku

    2014-03-01

    Six soil profiles located near Mufulira (Zambian Copperbelt) were studied to evaluate and compare the extent of environmental pollution of Cu-ore mining and smelting in both forested and grassland areas. The highest metal concentrations were detected in the uppermost soil layers with the following maxima: Co 45.8 mg kg(-1), Cu 8,980 mg kg(-1), Pb 41.6 mg kg(-1), and Zn 97.0 mg kg(-1). Numerous anthropogenic metal-bearing particles were detected in the most polluted soil layers. The spherical smelter-derived particles were mainly composed of covellite (CuS) and chalcocite (Cu2S), while the angular mining-derived particles were mostly composed of chalcopyrite (CuFeS2). Additionally, Fe-Cu oxide particles predominantly corresponding to tenorite (CuO) and delafossite (Cu(1+)Fe(3+)O2), along with hydrated Fe-oxides corresponding to secondary weathering products, were detected. In contrast to smelter-affected soils in temperate climates, where forest soils are significantly more enriched in metals than tilled soils due to high canopy interception, our data indicate a higher proportion of metal-bearing anthropogenic particles and higher metal concentrations in soils from unforested sites. This phenomenon is probably related to the more frequent and intense bushfires in forested areas, leading to the mobilization of pollutants contained in the biomass-rich surface soils back into the atmosphere. PMID:24365587

  19. How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas?

    PubMed Central

    Lutts, Stanley; Lefèvre, Isabelle

    2015-01-01

    Background Many areas throughout the world are simultaneously contaminated by high concentrations of soluble salts and by high concentrations of heavy metals that constitute a serious threat to human health. The use of plants to extract or stabilize pollutants is an interesting alternative to classical expensive decontamination procedures. However, suitable plant species still need to be identified for reclamation of substrates presenting a high electrical conductivity. Scope Halophytic plant species are able to cope with several abiotic constraints occurring simultaneously in their natural environment. This review considers their putative interest for remediation of polluted soil in relation to their ability to sequester absorbed toxic ions in trichomes or vacuoles, to perform efficient osmotic adjustment and to limit the deleterious impact of oxidative stress. These physiological adaptations are considered in relation to the impact of salt on heavy metal bioavailabilty in two types of ecosystem: (1) salt marshes and mangroves, and (2) mine tailings in semi-arid areas. Conclusions Numerous halophytes exhibit a high level of heavy metal accumulation and external NaCl may directly influence heavy metal speciation and absorption rate. Maintenance of biomass production and plant water status makes some halophytes promising candidates for further management of heavy-metal-polluted areas in both saline and non-saline environments. PMID:25672360

  20. Accumulation of trace metals in sediments in a Mediterranean Lagoon: Usefulness of metal sediment fractionation and elutriate toxicity assessment.

    PubMed

    Zaaboub, Noureddine; Martins, Maria Virgínia Alves; Dhib, Amel; Béjaoui, Béchir; Galgani, François; El Bour, Monia; Aleya, Lotfi

    2015-12-01

    The authors investigated sediment quality in Bizerte Lagoon (Tunisia) focusing on geochemical characteristics, metal sediment fractionation and elutriate toxicity assessment. Nickel, Cu, Zn, Pb, Cr and Cd partitioning in sediments was studied; accumulation and bioavailability were elucidated using enrichment factors, sequential extractions, redox potential, acid volatile sulfide and biotest procedures in toxicity evaluation. Results revealed an accumulation for Pb and Zn, reaching 99 and 460 mg kg(-1) respectively. In addition, the acid volatile sulfide values were high in both eastern and western lagoon areas, thus affecting metal availability. Mean enrichment factor values for Pb and Zn were 4.8 and 4.9, respectively, with these elements as the main contributors to the lagoon's moderate enrichment level. Toxicity levels were influenced by accumulation of Zn in different surface sediment areas. Core sediments were investigated in areas with the highest metal concentrations; metal fractionation and biotest confirmed that Zn contributes to sediment toxicity. PMID:26412262

  1. Chemistry, stability and bioavailability of resveratrol.

    PubMed

    Francioso, Antonio; Mastromarino, Paola; Masci, Alessandra; d'Erme, Maria; Mosca, Luciana

    2014-05-01

    Resveratrol is a bioactive polyphenol found in many vegetables. It is well known for its multiple pharmacological activities, such as anti-inflammatory, antioxidant, antimicrobial, anticancer, neuroprotective and cardioprotective effects. In vitro evidence of resveratrol efficacy is widespread, however, many concerns regarding its effectiveness in vivo arise from its poor stability in vitro and bioavailability following oral ingestion. This review focuses on the in vitro stability, with special focus on the photochemical stability of resveratrol, and on the therapeutic perspectives of this molecule due to its low bioavailability. PMID:24329932

  2. Bioavailability of Plant-Derived Antioxidants

    PubMed Central

    Abourashed, Ehab A.

    2013-01-01

    Natural products with antioxidant properties have been extensively utilized in the pharmaceutical and food industry and have also been very popular as health-promoting herbal products. This review provides a summary of the literature published around the first decade of the 21st century regarding the oral bioavailability of carotenoids, polyphenols and sulfur compounds as the three major classes of plant-derived antioxidants. The reviewed original research includes more than 40 compounds belonging to the above mentioned classes of natural antioxidants. In addition, related reviews published during the same period have been cited. A brief introduction to general bioavailability-related definitions, procedures and considerations is also included. PMID:26784467

  3. Advances in Computationally Modeling Human Oral Bioavailability

    PubMed Central

    Wang, Junmei; Hou, Tingjun

    2015-01-01

    Although significant progress has been made in experimental high throughput screening (HTS) of ADME (absorption, distribution, metabolism, excretion) and pharmacokinetic properties, the ADME and Toxicity (ADME-Tox) in silico modeling is still indispensable in drug discovery as it can guide us to wisely select drug candidates prior to expensive ADME screenings and clinical trials. Compared to other ADME-Tox properties, human oral bioavailability (HOBA) is particularly important but extremely difficult to predict. In this paper, the advances in human oral bioavailability modeling will be reviewed. Moreover, our deep insight on how to construct more accurate and reliable HOBA QSAR and classification models will also discussed. PMID:25582307

  4. Advances in computationally modeling human oral bioavailability.

    PubMed

    Wang, Junmei; Hou, Tingjun

    2015-06-23

    Although significant progress has been made in experimental high throughput screening (HTS) of ADME (absorption, distribution, metabolism, excretion) and pharmacokinetic properties, the ADME and Toxicity (ADME-Tox) in silico modeling is still indispensable in drug discovery as it can guide us to wisely select drug candidates prior to expensive ADME screenings and clinical trials. Compared to other ADME-Tox properties, human oral bioavailability (HOBA) is particularly important but extremely difficult to predict. In this paper, the advances in human oral bioavailability modeling will be reviewed. Moreover, our deep insight on how to construct more accurate and reliable HOBA QSAR and classification models will also discussed. PMID:25582307

  5. Role of entrained droplet oil on the bioavailability of petroleum substances in aqueous exposures.

    PubMed

    Redman, A D

    2015-08-15

    Bioavailability of petroleum substances is a complex issue that is affected by substance composition, the physicochemical properties of the individual constituents, and the exposure preparation system. The present study applies mechanistic fate and effects models to characterize the role of droplet oil on dissolved exposure and predicted effects from both neat and weathered crude oils, and refined fuel oils. The main effect from droplet oil is input of additional dissolved hydrocarbons to the exposure system following preparation of the initial stock solution. Toxicity was characterized using toxic units (TU) and shows that replenishment of bioavailable hydrocarbons by droplets in toxicity tests with low droplet content (e.g., <1mg/L) is negligible, consistent with typical exposure conditions following open ocean oil spills. Further, the use of volumetric exposure metrics (e.g., mg/L) introduces considerable variability and the bioavailability-based metrics (e.g., TUs) provide a more consistent basis for understanding oil toxicity data. PMID:26072047

  6. Bioavailability of iron, vitamin A, zinc, and folic acid when added to condiments and seasonings.

    PubMed

    Degerud, Eirik M; Manger, Mari Skar; Strand, Tor A; Dierkes, Jutta

    2015-11-01

    Seasonings and condiments can be candidate vehicles for micronutrient fortification if consumed consistently and if dietary practices ensure bioavailability of the nutrient. In this review, we identify factors that may affect the bioavailability of iron, vitamin A, zinc, and folic acid when added to seasonings and condiments and evaluate their effects on micronutrient status. We take into consideration the chemical and physical properties of different forms of the micronutrients, the influence of the physical and chemical properties of foods and meals to which fortified seasonings and condiments are typically added, and interactions between micronutrients and the physiological and nutritional status of the target population. Bioavailable fortificants of iron have been developed for use in dry or fluid vehicles. For example, sodium iron ethylenediaminetetraacetic acid (NaFeEDTA) and ferrous sulfate with citric acid are options for iron fortification of fish and soy sauce. Furthermore, NaFeEDTA, microencapsulated ferrous fumarate, and micronized elemental iron are potential fortificants in curry powder and salt. Dry forms of retinyl acetate or palmitate are bioavailable fortificants of vitamin A in dry candidate vehicles, but there are no published studies of these fortificants in fluid vehicles. Studies of zinc and folic acid bioavailability in seasonings and condiments are also lacking. PMID:26469774

  7. Biogeochemical Controls of Uranium Bioavailability from the Dissolved Phase in Natural Freshwaters.

    PubMed

    Croteau, Marie-Noële; Fuller, Christopher C; Cain, Daniel J; Campbell, Kate M; Aiken, George

    2016-08-01

    To gain insights into the risks associated with uranium (U) mining and processing, we investigated the biogeochemical controls of U bioavailability in the model freshwater species Lymnaea stagnalis (Gastropoda). Bioavailability of dissolved U(VI) was characterized in controlled laboratory experiments over a range of water hardness, pH, and in the presence of complexing ligands in the form of dissolved natural organic matter (DOM). Results show that dissolved U is bioavailable under all the geochemical conditions tested. Uranium uptake rates follow first order kinetics over a range encompassing most environmental concentrations. Uranium uptake rates in L. stagnalis ultimately demonstrate saturation uptake kinetics when exposure concentrations exceed 100 nM, suggesting uptake via a finite number of carriers or ion channels. The lack of a relationship between U uptake rate constants and Ca uptake rates suggest that U does not exclusively use Ca membrane transporters. In general, U bioavailability decreases with increasing pH, increasing Ca and Mg concentrations, and when DOM is present. Competing ions did not affect U uptake rates. Speciation modeling that includes formation constants for U ternary complexes reveals that the aqueous concentration of dicarbonato U species (UO2(CO3)2(-2)) best predicts U bioavailability to L. stagnalis, challenging the free-ion activity model postulate. PMID:27385165

  8. Mouse Assay for Determination of Arsenic Bioavailability in Contaminated Soils

    EPA Science Inventory

    Background: Accurate assessment of human exposure estimates from arsenic-contaminated soils depends upon estimating arsenic (As) soil bioavailability. Development of bioavailability assays provides data needed for human health risk assessments and supports development and valida...

  9. The Influence of Multiwalled Carbon Nanotubes on Polycyclic Aromatic Hydrocarbon (PAH) Bioavailability and Toxicity to Soil Microbial Communities in Alfalfa Rhizosphere

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon nanotubes (CNTs) may affect bioavailability and toxicity of organic contaminants due to their adsorption properties. Recent studies have observed the influence of multiwalled carbon nanotubes (MWNTs) on the fate of polycyclic aromatic hydrocarbons (PAHs) and other organic contaminants. Greenh...

  10. Metal contamination in urban street sediment in Pisa (Italy) can affect the production of antioxidant metabolites in Taraxacum officinale Weber.

    PubMed

    Bretzel, Francesca; Benvenuti, Stefano; Pistelli, Laura

    2014-02-01

    Taraxacum officinale Weber (dandelion) is a very ubiquitous species, and it can grow in urban environments on metal-polluted sediments deposited in the gutters. This study represents a preliminary step to verify the presence of metals in sediments collected in urban streets in Pisa and to assess the alteration in dandelion metabolites in order to understand its adaptation to polluted environments. The soil and sediments were collected at three urban streets and analyzed for total and extractable Cr, Pb, Cu, Ni, and Zn. The total values of Pb and Zn in street sediments exceeded the limits for residential areas of soils. Zn was the most mobile of the metals analyzed. Floating cultivations trials were set up with dandelion seedlings and street sediments. The metals were analyzed in roots and leaves. Antioxidant power, anthocyanins, polyphenols, non-protein thiols (NP-TH) and chlorophylls were measured in dandelion leaves. The first two parameters (anthocyanins and antioxidant power) were higher in the polluted samples compared to the control; chlorophyll content was lower in the treated samples, whereas NP-TH showed no differences. NP-TH groups determined in roots were associated with the root content of Zn and Pb. These results indicate that dandelion can tolerate plant stress by altering its metabolite content. PMID:24062063

  11. Electro-migration of heavy metals in an aged electroplating contaminated soil affected by the coexisting hexavalent chromium.

    PubMed

    Zhang, Weihua; Zhuang, Luwen; Tong, Lizhi; Lo, Irene M C; Qiu, Rongliang

    2012-02-01

    Cr(VI) was often reported to oxidize soil organic matter at acidic environments due to its high ORP, probably thus changing cationic metal species bound to soil organic matter, and influencing their electro-migration patterns. However, such an effect on the electro-migration was not confirmed in most previous studies. Therefore, this study applied a fixed voltage direct current field on an aged electroplating contaminated clayed soil, with a special interest in the direct or indirect influence of Cr(VI) on the electro-migration of other coexisting metals. After 353 h electrokinetic process, 81% of Zn, 53% of Ni and 22% of Cu in the original soil were electro-migrated into the electrolyte, and most of the remaining concentrated near the cathode. The Cr(VI) oxidized some soil organic matter along its migration pathway, with a pronounced reaction occurred near the anode at low pHs. The resulting Cr(III) reversed its original movement, and migrated towards the cathode, leading to the occurrence of a second Cr concentration peak in the soil. Metal species analyses showed that the amount of metals bound to soil organic matter significantly decreased, while a substantial increase in the Cr species bound to Fe/Mn (hydro-)oxides was observed, suggesting an enhancement of cationic metal electro-migration by the reduction of Cr(VI) into Cr(III). However, the Cr(VI) may form some stable lead chromate precipitates, and in turn demobilize Pb in the soil, as the results showed a low Pb removal and an increase in its acid-extractable and residual fractions after electrokinetic remediation. PMID:22197017

  12. [Accumulation Characteristics and Evaluation of Heavy Metals in Soil-Crop System Affected by Wastewater Irrigation Around a Chemical Factory in Shenmu County].

    PubMed

    Qi, Yan-bing; Chu, Wan-lin; Pu, Jie; Liu, Meng-yun; Chang, Qing-rui

    2015-04-01

    Soil heavy metals Cu, Pb, Zn, and Cd, are regarded as "chemical time bombs" because of their propensity for accumulation in the soil and uptake by crops. This ultimately causes human toxicity in both the short and long-term, making farmland ecosystems dangerous to health. In this paper, accumulation and spatial variability of Cu, Zn, Pb and Cd in soil-crop system affected by wastewater irrigation around a chemical factor in northern Shaanxi province were analyzed. Results showed that wastewater irrigation around the chemical factory induced significant accumulation in soils compared with control areas. The average concentrations of available Cu and total Cu were 4.32 mg x kg(-1) and 38.4 mg x kg(-1), which were twice and 1.35 times higher than those of the control area, respectively. Soil Zn and Pb were slightly accumulated. Whereas soil Cd was significantly accumulated and was higher than the critical level of soil environmental quality (II), the available and total Cd concentrations were 0.248 mg x kg(-1) and 1.21 mg x kg(-1), which were 10 and 6.1 times higher than those of the control areas. No significant correlations were found between available and total heavy metals except between available Cd and total Cd. All the heavy metals were mainly accumulated in the top layer (0-10 cm). Spatially, soils and plants high in heavy metal concentration were distributed within the radius of about 100 m from the waste water outlet for Cu, Zn and Cd and about 200 m for Pb, and decreased exponentially with the distance from the factory. Affected by wastewater irrigation, contents of Cu, Pb and Cd in maize were 4.74, 0.129 and 0.036 mg x kg(-1) which were slightly higher than those in the control area. The content of Zn was similar to that in the control area. Affected by the vehicle exhaust, the over standard rate of Pb was 5.7% in maize. All the heavy metals did not show significant correlation between soil and crop, except Cd. The square correlation coefficients were 0

  13. Bioavailability of Cadmium in Inexpensive Jewelry

    PubMed Central

    Miller, Jennifer; Guinn, Daphne; Pearson, Janna

    2011-01-01

    Objectives: We evaluated the bioavailability of Cd in 86 components of 57 jewelry items found to contain high levels of Cd (> 10,000 ppm) by X-ray fluorescence (XRF), using extractions that simulate mouthing or swallowing of jewelry items. Methods: We screened jewelry for Cd content by XRF. Bioavailability was measured in two ways. Items were placed in saline solution at 37°C for 6 hr to simulate exposures from mouthing of jewelry items. Items were placed in dilute hydrochloric acid (HCl) at 37°C for 6–96 hr, simulating the worst-case scenario of a child swallowing a jewelry item. Damaged pieces of selected samples were also extracted by both methods to determine the effect of breaching the outer plating on bioavailability. Total Cd content of all items was determined by atomic absorption. Results: The 6-hr saline extraction yielded as much as 2,200 µg Cd, and 24-hr dilute HCl extraction yielded a maximum of > 20,000 µg Cd. Leaching of Cd in dilute HCl increased linearly over 6–96 hr, indicating potential for increasing harm the longer an item remains in the stomach. Damage to jewelry by breaching the outer plating generally, but not always, increased Cd release. Bioavailability did not correlate directly with Cd content. Conclusions: These results indicate the potential for dangerous Cd exposures to children who wear, mouth, or accidentally swallow high-Cd jewelry items. PMID:21377949

  14. Iron bioavailability to phytoplankton: an empirical approach

    PubMed Central

    Lis, Hagar; Shaked, Yeala; Kranzler, Chana; Keren, Nir; Morel, François M M

    2015-01-01

    Phytoplankton are often limited by iron in aquatic environments. Here we examine Fe bioavailability to phytoplankton by analyzing iron uptake from various Fe substrates by several species of phytoplankton grown under conditions of Fe limitation and comparing the measured uptake rate constants (Fe uptake rate/ substrate concentration). When unchelated iron, Fe′, buffered by an excess of the chelating agent EDTA is used as the Fe substrate, the uptake rate constants of all the eukaryotic phytoplankton species are tightly correlated and proportional to their respective surface areas (S.A.). The same is true when FeDFB is the substrate, but the corresponding uptake constants are one thousand times smaller than for Fe′. The uptake rate constants for the other substrates we examined fall mostly between the values for Fe′ and FeDFB for the same S.A. These two model substrates thus empirically define a bioavailability envelope with Fe′ at the upper and FeDFB at the lower limit of iron bioavailability. This envelope provides a convenient framework to compare the relative bioavailabilities of various Fe substrates to eukaryotic phytoplankton and the Fe uptake abilities of different phytoplankton species. Compared with eukaryotic species, cyanobacteria have similar uptake constants for Fe′ but lower ones for FeDFB. The unique relationship between the uptake rate constants and the S.A. of phytoplankton species suggests that the uptake rate constant of Fe-limited phytoplankton has reached a universal upper limit and provides insight into the underlying uptake mechanism. PMID:25350155

  15. Bioavailability and Bioequivalence in Drug Development.

    PubMed

    Chow, Shein-Chung

    2014-01-01

    Bioavailability is referred to as the extent and rate to which the active drug ingredient or active moiety from the drug product is absorbed and becomes available at the site of drug action. The relative bioavailability in terms of the rate and extent of drug absorption is considered predictive of clinical outcomes. In 1984, the United States Food and Drug Administration (FDA) was authorized to approve generic drug products under the Drug Price Competition and Patent Term Restoration Act based on evidence of average bioequivalence in drug absorption through the conduct of bioavailability and bioequivalence studies. This article provides an overview (from an American point of view) of definition of bioavailability and bioequivalence, Fundamental Bioequivalence Assumption, regulatory requirements, and process for bioequivalence assessment of generic drug products. Basic considerations including criteria, study design, power analysis for sample size determination, and the conduct of bioequivalence trial, and statistical methods are provided. Practical issues such as one size-fits-all criterion, drug interchangeability and scaled average criteria for assessment of highly variable drug products are also discussed. PMID:25215170

  16. Enhanced bioavailability of opiates after intratracheal administration

    SciTech Connect

    Findlay, J.W.A.; Jones, E.C.; McNulty, M.J.

    1986-03-01

    Several opiate analgesics have low oral bioavailabilities in the dog because of presystemic metabolism. Intratracheal administration may circumvent this first-pass effect. Three anesthetized beagles received 5-mg/kg doses of codeine phosphate intratracheally (i.t.), orally (p.o.) and intravenously (i.v.) in a crossover study. The following drugs were also studied in similar experiments: ethylmorphine hydrochloride (5 mg/kg), pholcodine bitartrate (10 mg/kg, hydrocodone bitartrate (4 mg/kg) and morphine sulfate (2.5 mg/kg). Plasma drug concentrations over the 24- to 48-hr periods after drug administrations were determined by radioimmunoassays. I.t. bioavailabilities (codeine (84%), ethylmorphine (100%), and morphine (87%)) of drugs with poor oral availabilities were all markedly higher than the corresponding oral values (14, 26, and 23%, respectively). I.t. bioavailabilities of pholcodine (93%) and hydrocodone (92%), which have good oral availabilities (74 and 79%, respectively), were also enhanced. In all cases, peak plasma concentrations occurred more rapidly after i.t. (0.08-0.17 hr) than after oral (0.5-2 hr) dosing and i.t. disposition often resembled i.v. kinetics. I.t. administration may be a valuable alternative dosing route, providing rapid onset of pharmacological activity for potent drugs with poor oral bioavailability.

  17. BIOAVAILABILITY OF CHEMICAL CONTAMINANTS IN AQUATIC SYSTEMS

    EPA Science Inventory

    Before a chemical can elicit toxicity, the animal must accumulate a dose at a target tissue of sufficient magnitude to produce a response. Bioavailability refers to the degree to which this accumulation occurs relative to the amount of chemical present in the environment, and is ...

  18. 21 CFR 320.38 - Retention of bioavailability samples.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) DRUGS FOR HUMAN USE BIOAVAILABILITY AND BIOEQUIVALENCE REQUIREMENTS Procedures for Determining the Bioavailability or Bioequivalence of Drug Products § 320.38 Retention of bioavailability samples... standard used to conduct an in vivo bioequivalence study comparing the test article to the...

  19. 21 CFR 320.38 - Retention of bioavailability samples.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) DRUGS FOR HUMAN USE BIOAVAILABILITY AND BIOEQUIVALENCE REQUIREMENTS Procedures for Determining the Bioavailability or Bioequivalence of Drug Products § 320.38 Retention of bioavailability samples... standard used to conduct an in vivo bioequivalence study comparing the test article to the...

  20. Comparison of the Bioavailability of Waste Laden Soils Using ''In Vivo'' ''In Vitro'' Analytical Methodology and Bioaccessibility of Radionuclides for Refinement of Exposure/Dose Estimates

    SciTech Connect

    P. J. Lioy; M. Gallo; P. Georgopoulos; R. Tate; B. Buckley

    1999-09-15

    The bioavailability of soil contaminants can be measured using in vitro or in vivo techniques. Since there was no standard method for intercomparison among laboratories, we compared two techniques for bioavailability estimation: in vitro dissolution and in vivo rat feeding model for a NIST-traceable soil material. Bioaccessibility was measured using a sequential soil extraction in synthetic analogues of human saliva, gastric and intestinal fluids. Bioavailability was measured in Sprague Dawley rats by determining metal levels in the major organs and urine, feces, and blood. Bioaccessibility was found to be a good indicator of relative metal bioavailability. Results are presented from bioaccessible experiments with Cesium in contaminated DOE soils, and total alpha and beta bioaccessibility. The results indicate that the modified methodology for bioaccessibility can be used for specific radionuclide analysis.

  1. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil.

    PubMed

    Biswas, Bhabananda; Sarkar, Binoy; Mandal, Asit; Naidu, Ravi

    2015-11-15

    Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad(®) 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC>unmodified bentonite>Arquad-bentonite). The MIOC variably increased the microbial count (10-43%) as well as activities (respiration 3-44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils. PMID:26022853

  2. Trace metal dynamics in floodplain soils of the river Elbe: a review.

    PubMed

    Schulz-Zunkel, Christiane; Krueger, Frank

    2009-01-01

    This paper reviews trace metal dynamics in floodplain soils using the Elbe floodplains in Germany as an example of extraordinary importance because of the pollution level of its sediments and soils. Trace metal dynamics are determined by processes of retention and release, which are influenced by a number of soil properties including pH value, redox potential, organic matter, type and amount of clay minerals, iron-, manganese- and aluminum-oxides. Today floodplains act as important sinks for contaminants but under changing hydraulic and geochemical conditions they may also act as sources for pollutants. In floodplains such changes may be extremes in flooding or dry periods that particularly lead to altered redox potentials and that in turn influence the pH value, the mineralization of organic matter as well as the charge of the pedogenic oxides. Such reactions may affect the bioavailability of trace metals in soils and it can be clearly seen that the bioavailability of metals is an important factor for estimating trace metal remobilization in floodplain soils. However as bioavailability is not a constant factor, there is still a lack of quantification of metal mobilization particularly on the basis of changing geochemical conditions. Moreover, mobile amounts of metals in the soil solution do not indicate to which extent remobilized metals will be transported to water bodies or plants and therefore potentially have toxicological effects. Consequently, floodplain areas still need to be taken into consideration when studying the role and behavior of sediments and soils for transporting pollutants within river systems, particularly concerning the Water Framework Directive. PMID:19465710

  3. Stabilizing Agents for Drug Nanocrystals: Effect on Bioavailability.

    PubMed

    Tuomela, Annika; Hirvonen, Jouni; Peltonen, Leena

    2016-01-01

    Drug nanocrystals are a versatile option for drug delivery purposes, and while the number of poorly soluble drug materials is all the time increasing, more research in this area is performed. Drug nanocrystals have a simple structure-a solid drug core is surrounded by a layer of stabilizing agent. However, despite the considerably simple structure, the selection of an appropriate stabilizer for a certain drug can be challenging. Mostly, the stabilizer selection is based purely on the requirement of physical stability, e.g., maintaining the nanosized particle size as long as possible after the formation of drug nanocrystals. However, it is also worth taking into account that stabilizer can affect the bioavailability in the final formulation via interactions with cells and cell layers. In addition, formation of nanocrystals is only one process step, and for the final formulation, more excipients are often added to the composition. The role of the stabilizers in the final formulation can be more than only stabilizing the nanocrystal particle size. A good example is the stabilizer's role as cryoprotectant during freeze drying. In this review, the stabilizing effect, role of stabilizers in final nanocrystalline formulations, challenges in reaching in vitro-in vivo correlation with nanocrystalline products, and stabilizers' effect on higher bioavailability are discussed. PMID:27213435

  4. Vanadium bioavailability in soils amended with blast furnace slag.

    PubMed

    Larsson, Maja A; Baken, Stijn; Smolders, Erik; Cubadda, Francesco; Gustafsson, Jon Petter

    2015-10-15

    Blast furnace (BF) slags are commonly applied as soil amendments and in road fill material. In Sweden they are also naturally high in vanadium. The aim of this study was to assess the vanadium bioavailability in BF slags when applied to soil. Two soils were amended with up to 29% BF slag (containing 800 mg V kg(-1)) and equilibrated outdoors for 10 months before conducting a barley shoot growth assay. Additional soil samples were spiked with dissolved vanadate(V) for which assays were conducted two weeks (freshly spiked) and 10 months (aged) after spiking. The BF slag vanadium was dominated by vanadium(III) as shown by V K-edge XANES spectroscopy. In contrast, results obtained by HPLC-ICP-MS showed that vanadium(V), the most toxic vanadium species, was predominant in the soil solution. Barley shoot growth was not affected by the BF slag additions. This was likely due to limited dissolution of vanadium from the BF slag, preventing an increase of dissolved vanadium above toxic thresholds. The difference in vanadium bioavailability among treatments was explained by the vanadium concentration in the soil solution. It was concluded that the vanadium in BF slag is sparingly available. These findings should be of importance in environmental risk assessment. PMID:25917693

  5. Stabilizing Agents for Drug Nanocrystals: Effect on Bioavailability

    PubMed Central

    Tuomela, Annika; Hirvonen, Jouni; Peltonen, Leena

    2016-01-01

    Drug nanocrystals are a versatile option for drug delivery purposes, and while the number of poorly soluble drug materials is all the time increasing, more research in this area is performed. Drug nanocrystals have a simple structure—a solid drug core is surrounded by a layer of stabilizing agent. However, despite the considerably simple structure, the selection of an appropriate stabilizer for a certain drug can be challenging. Mostly, the stabilizer selection is based purely on the requirement of physical stability, e.g., maintaining the nanosized particle size as long as possible after the formation of drug nanocrystals. However, it is also worth taking into account that stabilizer can affect the bioavailability in the final formulation via interactions with cells and cell layers. In addition, formation of nanocrystals is only one process step, and for the final formulation, more excipients are often added to the composition. The role of the stabilizers in the final formulation can be more than only stabilizing the nanocrystal particle size. A good example is the stabilizer’s role as cryoprotectant during freeze drying. In this review, the stabilizing effect, role of stabilizers in final nanocrystalline formulations, challenges in reaching in vitro–in vivo correlation with nanocrystalline products, and stabilizers’ effect on higher bioavailability are discussed. PMID:27213435

  6. Hepatic oxidative stress and metal subcellular partitioning are affected by selenium exposure in wild yellow perch (Perca flavescens).

    PubMed

    Ponton, Dominic E; Caron, Antoine; Hare, Landis; Campbell, Peter G C

    2016-07-01

    Yellow perch (Perca flavescens) collected from 11 lakes in the Canadian mining regions of Sudbury (Ontario) and Rouyn-Noranda (Quebec) display wide ranges in the concentrations of cadmium (Cd), nickel (Ni), selenium (Se), and thallium (Tl) in their livers. To determine if these trace elements, as well as copper (Cu) and zinc (Zn), are causing oxidative stress in these fish, we measured three biochemical indicators (glutathione (GSH), glutathione disulfide (GSSG) and thiobarbituric acid-reactive substances (TBARS)) in their livers. We observed that 44% of the yellow perch that we collected were at risk of cellular oxidative stress and lipid peroxidation. Considering all fish from all lakes, higher liver Se concentrations were coincident with both lower proportions of GSSG compared to GSH and lower concentrations of TBARS, suggesting that the essential trace-element Se acts as an antioxidant. Furthermore, fish suffering oxidative stress had higher proportions of Cd, Cu and Zn in potentially sensitive subcellular fractions (organelles and heat-denatured proteins) than did fish not suffering from stress. This result suggests that reactive oxygen species may oxidize metal-binding proteins and thereby reduce the capacity of fish to safely bind trace metals. High Cd concentrations in metal-sensitive subcellular fractions likely further exacerbate the negative effects of lower Se exposure. PMID:27131821

  7. Metal solubility as a function of pH in a contaminated, dredged sediment affected by oxidation.

    PubMed

    Tack, F M; Callewaert, O W; Verloo, M G

    1996-01-01

    The solubility as a function of pH for metals in a reduced dredged sediment, subjected to different redox conditions, was studied in a laboratory experiment. The redox conditions imposed simulated (i) the undisturbed sediment (flooded), (ii) a dredged material stored in a confined pond (aerated once and then flooded), (iii) an upland stored dredged material (drained and dried), and (iv) an upland stored sediment subjected to tillage (drained, dried and mixed). Minor differences in the solubility as a function of pH were observed between the treatments after two weeks. After three months, the solubility of Cd, Cu, Pb and Zn increased strongly in the oxidized sediments. Leachability of Fe decreased, while Mn, Ni and Co were mostly unaffected. Both short- and long-term mobility of metals (except Fe) is expected to be lowest when a reduced sediment remains in reduced conditions. Studying the solubility as a function of pH may provide additional information on the chemical association of metals in sediments. PMID:15091441

  8. Bioavailability of calcium and its absorption inhibitors in raw and cooked green leafy vegetables commonly consumed in India--an in vitro study.

    PubMed

    Amalraj, Augustine; Pius, Anitha

    2015-03-01

    The objectives of this research were to assess the bioavailability of calcium using equilibrium dialysis after simulated gastric digestion method in 20 commonly consumed green leafy vegetables (GLVs) from the typical Indian diet, provide data on the content of calcium absorption inhibitors, like oxalate, phytate, tannin and dietary fibres, and evaluate the inhibitory effect of these compounds on calcium bioavailability in raw and cooked GLVs. Cooking did not affect significantly calcium bioavailability in any GLVs. Sesbania grandiflora had a very high content of total oxalates, tannins and dietary fibers, which reduced calcium bioavailability. Calcium content was determined by atomic absorption spectroscopy, oxalate by titrimetry, phytate and tannin by colorimetric and dietary fibres by an enzymatic gravimetric method. Chenopodium album, Alternanthera philoxeroides and Centella asiatica, with lower total calcium content, had nearly twice as much bioavailable calcium than other GLVs, because of low fibres, oxalate, phytate and tannin content. PMID:25306367

  9. Bioavailability of zinc in marine systems through time

    NASA Astrophysics Data System (ADS)

    Scott, Clint; Planavsky, Noah J.; Dupont, Chris L.; Kendall, Brian; Gill, Benjamin C.; Robbins, Leslie J.; Husband, Kathryn F.; Arnold, Gail L.; Wing, Boswell A.; Poulton, Simon W.; Bekker, Andrey; Anbar, Ariel D.; Konhauser, Kurt O.; Lyons, Timothy W.

    2013-02-01

    The redox state of the oceans strongly influences the concentration of dissolved trace metals in sea water. Changes in the redox state of the oceans are thought to have limited the availability of some trace metals in the past, particularly during the Proterozoic eon, 2,500 to 542 million years ago. Of these trace metals, zinc (Zn) is of particular importance to eukaryotic organisms, because it is essential for a wide range of basic cellular functions. It has been suggested that during the Proterozoic, marine environments were broadly euxinic--that is, anoxic and sulphidic--which would have resulted in low Zn availability. Low Zn bioavailability could therefore be responsible for an observed delay in eukaryote diversification. Here we present a compilation of Zn abundance data from black shales deposited under euxinic conditions from the Precambrian time to the present. We show that these values track first-order trends in seawater Zn availability. Contrary to previous estimates, we find that Zn concentrations during the Proterozoic were similar to modern concentrations, supporting recent studies that call for limited euxinia at this time. Instead, we propose that predominantly anoxic and iron-rich deep oceans, combined with large hydrothermal fluxes of Zn, maintained high levels of dissolved Zn throughout the oceans. We thus suggest that the protracted diversification of eukaryotic Zn-binding proteins was not a result of Znbiolimitation.

  10. Online detection of waterborne bioavailable copper by valve daily rhythms in freshwater clam Corbicula fluminea.

    PubMed

    Jou, L J; Chen, W Y; Liao, C M

    2009-08-01

    Freshwater clam Corbicula fluminea, a surrogate species in metal toxicity testing, is a promising bioindicator of impairment in aquatic ecosystems. Little is known, however, about the relationship between clam valve daily rhythmic response and metal bioavailability related to a metal biological early warning system (BEWS) design. The purpose of this study was to link biotic ligand model (BLM)-based bioavailability and valve daily rhythm in C. fluminea to design a biomonitoring system for online in situ detection of waterborne copper (Cu). We integrated the Hill-based dose-time-response function and the fitted daily rhythm function of valve closure into a constructed programmatic mechanism. The functional presentation of the present dynamic system was completely demonstrated by employing a LabVIEW graphic control program in a personal computer. We used site-specific effect concentration causing 10% of total valve closure response (EC10) as the detection threshold to implement the proposed C. fluminea-based Cu BEWS. Here our results show that the proposed C. fluminea-based BEWS could be deliberately synthesized to online in situ transmit rapidly the information on waterborne bioavailable Cu levels under various aquatic environmental conditions through monitoring the valve daily rhythmic changes. We suggested that the developed C. fluminea-based dynamic biomonitoring system could assist in developing technically defensible site-specific water quality criteria to promote more efficient uses in water resources for protection of species health in aquatic environments. PMID:18607762

  11. Palaeo-pollution from mining activities in the Vosges Mountains: 1000 years and still bioavailable.

    PubMed

    Mariet, Anne-Lise; de Vaufleury, Annette; Bégeot, Carole; Walter-Simonnet, Anne-Véronique; Gimbert, Frédéric

    2016-07-01

    Mining and smelting activities have contaminated the environment with trace metals (TMs) at a worldwide scale for at least two millennia. A combination of chemical approaches and active biomonitoring was performed to analyse the environmental availability and bioavailability of TM palaeo-pollution in a former PbAg mining district in the Vosges Mountains, France. Along a soil TM contamination gradient that covered eight stations, including two archaeological mining sites, the toxicokinetics of six TMs (Pb, Cd, As, Ag, Co, Sb) in the snail Cantareus aspersus revealed that palaeo-pollution from the studied sites remains bioavailable. This study provides the first data on the accumulation kinetics of Ag and Co for C. aspersus. The environmental availability of the TMs was estimated with three chemical extraction methods (aqua regia, EDTA 50 mM, CaCl2 10 mM). Univariate regression analyses showed that EDTA extraction is the best method for estimating the bioavailability of Pb, As, Ag, Co and Sb to snails. None of the three extractants was efficient for Cd. A multivariate analysis of bioaccumulation data revealed that TM bioavailability and transfer were modulated by exposure sources (soil, humus and vegetation) rather than by soil physico-chemical characteristics. Hence, although the deposition of mining wastes dates back several centuries, these wastes still represent a source of contamination that must be considered to develop relevant site management and environmental risk assessment. PMID:27131817

  12. Organically complexed iron enhances bioavailability of antimony to maize (Zea mays) seedlings in organic soils.

    PubMed

    Ptak, Corey; McBride, Murray

    2015-12-01

    Antimony (Sb) is a metalloid belonging to group 15 of the periodic table. Chemical similarities between arsenic (As) and Sb produce concerns about potential health effects of Sb and enrichment in the environment. Antimony is found in oxic environments predominately as an oxyanionic species, antimonite (Sb[OH](6-)). As a result of its net negative charge, Sb[OH](6-) was not initially predicted to have strong interactions with natural organic matter. Oxyanionic species could bind the negatively charged organic matter via a ternary complexation mechanism, in which cationic metals mediate the strong association between organic matter functional groups and oxyanions. However, these interactions are poorly understood in how they influence the bioavailability of oxyanionic contaminants to plants. Iron (Fe) additions to organic soils have been found to increase the number of organically complexed Fe sites suitable for Sb exchange, resulting in a reduced bioavailable fraction of Sb. The bioavailability of Sb to maize seedlings as a function of organically complexed Fe was examined using a greenhouse study. A significant increase in plant tissue Sb was observed as organically complexed Fe increased, which was not predicted by methods commonly used to assess bioavailable Sb. Extraction of soils with organic acids common to the maize rhizosphere suggested that organic acid exudation can readily mobilize Sb bound by organic Fe complexes. PMID:26076768

  13. Sugars increase non-heme iron bioavailability in human epithelial intestinal and liver cells.

    PubMed

    Christides, Tatiana; Sharp, Paul

    2013-01-01

    Previous studies have suggested that sugars enhance iron bioavailability, possibly through either chelation or altering the oxidation state of the metal, however, results have been inconclusive. Sugar intake in the last 20 years has increased dramatically, and iron status disorders are significant public health problems worldwide; therefore understanding the nutritional implications of iron-sugar interactions is particularly relevant. In this study we measured the effects of sugars on non-heme iron bioavailability in human intestinal Caco-2 cells and HepG2 hepatoma cells using ferritin formation as a surrogate marker for iron uptake. The effect of sugars on iron oxidation state was examined by measuring ferrous iron formation in different sugar-iron solutions with a ferrozine-based assay. Fructose significantly increased iron-induced ferritin formation in both Caco-2 and HepG2 cells. In addition, high-fructose corn syrup (HFCS-55) increased Caco-2 cell iron-induced ferritin; these effects were negated by the addition of either tannic acid or phytic acid. Fructose combined with FeCl3 increased ferrozine-chelatable ferrous iron levels by approximately 300%. In conclusion, fructose increases iron bioavailability in human intestinal Caco-2 and HepG2 cells. Given the large amount of simple and rapidly digestible sugars in the modern diet their effects on iron bioavailability may have important patho-physiological consequences. Further studies are warranted to characterize these interactions. PMID:24340076

  14. Importance of suspended sediment (SPS) composition and grain size in the bioavailability of SPS-associated pyrene to Daphnia magna.

    PubMed

    Xia, Xinghui; Zhang, Xiaotian; Zhou, Dong; Bao, Yimeng; Li, Husheng; Zhai, Yawei

    2016-07-01

    Hydrophobic organic compounds (HOCs) tend to associate with suspended sediment (SPS) in aquatic environments; the composition and grain size of SPS will affect the bioavailability of SPS-associated HOCs. However, the bioavailability of HOCs sorbed on SPS with different compositions and grain sizes is not well understood. In this work, passive dosing devices were made to control the freely dissolved concentration of pyrene, a typical HOC, in the exposure systems. The effect of pyrene associated with amorphous organic carbon (AOC), black carbon (BC), and minerals of SPS with grain sizes of 0-50 μm and 50-100 μm on the immobilization and enzymatic activities of Daphnia magna was investigated to quantify the bioavailability of pyrene sorbed on SPS with different grain sizes and compositions. The results showed that the contribution of AOC-, BC-, and mineral-associated pyrene to the total bioavailability of SPS-associated pyrene was approximately 50%-60%, 10%-29%, and 20%-30%, respectively. The bioavailable fraction of pyrene sorbed on the three components of SPS was ordered as AOC (22.4%-67.3%) > minerals (20.1%-46.0%) > BC (9.11%-16.8%), and the bioavailable fraction sorbed on SPS of 50-100 μm grain size was higher than those of 0-50 μm grain size. This is because the SPS grain size will affect the ingestion of SPS and the SPS composition will affect the desorption of SPS-associated pyrene in Daphnia magna. According to the results obtained in this study, a model has been developed to calculate the bioavailability of HOCs to aquatic organisms in natural waters considering both SPS grain size and composition. PMID:27112726

  15. Aromatic plant production on metal contaminated soils.

    PubMed

    Zheljazkov, Valtcho D; Craker, Lyle E; Xing, Baoshan; Nielsen, Niels E; Wilcox, Andrew

    2008-06-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha(-1) for Cd, 660 g ha(-1) for Pb, 180 g ha(-1) for Cu, 350 g ha(-1) for Mn, and 205 g ha(-1) for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (<1 microm) particles, although there were larger particles (1-5 microm) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil. PMID:18353428

  16. METAL-COLLOID PARTITIONING IN ARTIFICIAL INTERSTITIAL WATERS OF MARINE SEDIMENTS: INFLUENCES OF SALINITY, PH AND COLLOIDAL ORGANIC CARBON CONCENTRATION

    EPA Science Inventory

    For decades, heavy metals have been deposited into marine sediments as a result of anthropogenic activities. Depending on their bioavailability, these metals may represent a risk to benthic organisms. Dissolved interstitial water metal concentrations have been shown to be better ...

  17. Elevated oxidative stress in skin of B6C3F1 mice affects dermal exposure to metal working fluid.

    PubMed

    Shvedova, A A; Kisin, E; Kisin, J; Castranova, V; Kommineni, C

    2000-09-01

    Metal working fluids (MWFs) are widely used in industry for metal cutting, drilling, shaping, lubricating, and milling. Potential for dermal exposure to MWFs exists for a large number of men and women via aerosols and splashing during the machining operations. It has been reported earlier that occupational exposure to MWFs causes allergic and irritant contact dermatitis. Previously, we showed that dermal exposure of female and male B6C3F1 mice to 5% MWFs for 3 months resulted in accumulation of mast cells and elevation of histamine in the skin. Topical exposure to MWF also resulted in elevated oxidative stress in the liver of both sexes and the testes in males. The goal of this study was to evaluate the interaction between oxidative stress in the skin and topical application of MWF. Oxidative stress in skin ofB6C3F1 mice of both sexes was generated by intradermal injection ofthe hydrogen peroxide (H2O2) -producing enzyme, glucose oxidase with polyethylene glycol (GOD+PEG). In mice given GOD+PEG, topical treatment with MWF (200 microl, 30%, for 1, 3, or 7 days) resulted in a mixed inflammatory cell response, accumulation of peroxidative products, and reduction of GSH content in the skin. Such changes were not observed with MWF treatment alone. These data indicate that oxidative stress can enhance dermal inflammation caused by occupational exposure to MWF. PMID:11693944

  18. Colloid formation and metal transport through two mixing zones affected by acid mine drainage near Silverton, Colorado

    USGS Publications Warehouse

    Schemel, L.E.; Kimball, B.A.; Bencala, K.E.

    2000-01-01

    Stream discharges and concentrations of dissolved and colloidal metals (Al, Ca, Cu, Fe, Mg, Mn, Pb, and Zn), SO4, and dissolved silica were measured to identify chemical transformations and determine mass transports through two mixing zones in the Animas River that receive the inflows from Cement and Mineral Creeks. The creeks were the dominant sources of Al, Cu, Fe, and Pb, whereas the upstream Animas River supplied about half of the Zn. With the exception of Fe, which was present in dissolved and colloidal forms, the metals were dissolved in the acidic, high-SO4 waters of Cement Creek (pH 3.8). Mixing of Cement Creek with the Animas River increased pH to near-neutral values and transformed Al and some additional Fe into colloids which also contained Cu and Pb. Aluminium and Fe colloids had already formed in the mildly acidic conditions in Mineral Creek (pH 6.6) upstream of the confluence with the Animas River. Colloidal Fe continued to form downstream of both mixing zones. The Fe- and Al-rich colloids were important for transport of Cu, Pb, and Zn, which appeared to have sorbed to them. Partitioning of Zn between dissolved and colloidal phases was dependent on pH and colloid concentration. Mass balances showed conservative transports for Ca, Mg, Mn, SO4, and dissolved silica through the two mixing zones and small losses (< 10%) of colloidal Al, Fe and Zn from the water column.

  19. Oral bioavailability of curcumin: problems and advancements.

    PubMed

    Liu, Weidong; Zhai, Yingjie; Heng, Xueyuan; Che, Feng Yuan; Chen, Wenjun; Sun, Dezhong; Zhai, Guangxi

    2016-09-01

    Curcumin is a natural compound of Curcuma longa L. and has shown many pharmacological activities such as anti-inflammatory, anti-oxidant in both preclinical and clinical studies. Moreover, curcumin has hepatoprotective, neuroprotective activities and protects against myocardial infarction. Particularly, curcumin has also demonstrated favorite anticancer efficacy. But limiting factors such as its extremely low oral bioavailability hampers its application as therapeutic agent. Therefore, many technologies have been developed and applied to overcome this limitation. This review described the main physicochemical properties of curcumin and summarized the recent studies in the design and development of oral delivery systems for curcumin to enhance the solubility and oral bioavailability, including liposomes, nanoparticles and polymeric micelles, phospholipid complexes, and microemulsions. PMID:26942997

  20. Bioavailability of tocotrienols: evidence in human studies

    PubMed Central

    2014-01-01

    As a minor component of vitamin E, tocotrienols were evident in exhibiting biological activities such as neuroprotection, radio-protection, anti-cancer, anti-inflammatory and lipid lowering properties which are not shared by tocopherols. However, available data on the therapeutic window of tocotrienols remains controversial. It is important to understand the absorption and bioavailability mechanisms before conducting in-depth investigations into the therapeutic efficacy of tocotrienols in humans. In this review, we updated current evidence on the bioavailability of tocotrienols from human studies. Available data from five studies suggested that tocotrienols may reach its target destination through an alternative pathway despite its low affinity for α-tocopherol transfer protein. This was evident when studies reported considerable amount of tocotrienols detected in HDL particles and adipose tissues after oral consumption. Besides, plasma concentrations of tocotrienols were shown to be higher when administered with food while self-emulsifying preparation of tocotrienols was shown to enhance the absorption of tocotrienols. Nevertheless, mixed results were observed based on the outcome from 24 clinical studies, focusing on the dosages, study populations and formulations used. This may be due to the variation of compositions and dosages of tocotrienols used, suggesting a need to understand the formulation of tocotrienols in the study design. Essentially, implementation of a control diet such as AHA Step 1 diet may influence the study outcomes, especially in hypercholesterolemic subjects when lipid profile might be modified due to synergistic interaction between tocotrienols and control diet. We also found that the bioavailability of tocotrienols were inconsistent in different target populations, from healthy subjects to smokers and diseased patients. In this review, the effect of dosage, composition and formulation of tocotrienols as well as study populations on the

  1. Speciation and microalgal bioavailability of inorganic silver

    SciTech Connect

    Reinfelder, J.R.; Chang, S.I.

    1999-06-01

    Silver accumulation in aquatic organisms is primarily attributed to the bioavailability of the free Ag ion (Ag{sup +}). Some reports suggest that AgCl(aq) is also available for biological uptake, but few studies of Ag bioavailability used the range of chloride concentrations over which AgCl{sup 0}(aq) is the dominant Ag species. None used environmentally realistic, low Ag concentrations. To assess the bioavailability of inorganic Ag species and the importance of the low polarity AgCl(aq) complex to biological uptake, the authors determined the octanol-water partition coefficient of Ag over a range of chloride concentrations representative of fresh to brackish waters and measured short-term Ag uptake rates in the euryhaline marine microalga Thalassiosira weissflogii exposed to a total silver concentration of 50 pM. Overall octanol-water partition coefficients (D{sub ow}) of inorganic silver ranged from 0.02 to 0.06. The K{sub ow} of AgCl(aq) calculated using D{sub ow} values measured at 0.5, 5, and 50 mM Cl{sup {minus}} and the K{sub ow} of Ag{sup +} (0.03, measured in the absence of Cl{sup {minus}}) was 0.09. Silver D{sub ow} and uptake rate constants in phytoplankton were highest at the Cl{sup {minus}} concentration where uncharged AgCl(aq) is the dominant silver species. Their results demonstrate that AgCl(aq) is the principal bioavailable species of inorganic silver in phytoplankton and suggest that direct uptake of AgCl(aq) is important to the overall accumulation of Ag in aquatic invertebrates.

  2. Sediment quality in Rio Guadiamar (SW, Spain) after a tailing dam collapse: contamination, toxicity and bioavailability.

    PubMed

    Riba, Inmaculada; Delvalls, T Angel; Reynoldson, Trefor B; Milani, Danielle

    2006-09-01

    An integrated assessment of sediment quality in the Guadiamar River after a mining spill was conducted. The concentration of different metals and other conventional parameters were measured in sediments located along the river. Four sediment toxicity tests (Hyalella azteca 28-day survival and growth test; Chironomus riparius 10-day survival and growth test; Hexagenia spp. 21-day survival and growth test; and Tubifex tubifex 28-day reproduction and survival test) were carried out to determine the effects associated with the accidental spill. The geochemical fractions of 6 metals (Fe, Mn, Zn, Cu, Pb, and Cd) were determined to establish the bioavailability of the metals. The relationship found in the concentrations of metals associated with the mobile fractions of the sediments in the sites studied is similar to the toxic mud from tailing pond and confirms that the toxic effects are associated with the metals Zn and Cd originating from the spill. PMID:16820209

  3. Benthic metal fluxes and sediment diagenesis in a water reservoir affected by acid mine drainage: A laboratory experiment and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Torres, E.; Ayora, C.; Jiménez-Arias, J. L.; García-Robledo, E.; Papaspyrou, S.; Corzo, A.

    2014-08-01

    Reservoirs are one of the primary water supply sources. Knowledge of the metal fluxes at the water-sediment interfaces of reservoirs is essential for predicting their ecological quality. Redox oscillations in the water column are promoted by stratification; turnover events may significantly alter metal cycling, especially in reservoirs impacted by acid mine drainage (AMD). To study this phenomenon, an experiment was performed under controlled laboratory conditions. Sediment cores from an AMD-affected reservoir were maintained in a tank with reservoir water for approximately two months and subjected to alternating oxic-hypoxic conditions. A detailed metal speciation in solid phases of the sediment was initially performed by sequential extraction, and pore water was analyzed at the end of each redox period. Tank water metals concentrations were systematically monitored throughout the experiment. The experimental results were then used to calibrate a diffusion-reaction model and quantify the reaction rates and sediment-water fluxes. Under oxic conditions, pH, Fe and As concentrations decreased in the tank due to schwertmannite precipitation, whereas the concentrations of Al, Zn, Cu, Ni, and Co increased due to Al(OH)3 and sulfide dissolution. The reverse trends occurred under hypoxic conditions. Under oxic conditions, the fluxes calculated by applying Fick’s first law to experimental concentration gradients contradicted the fluxes expected based on the evolution of the tank water. According to the reactive transport calculations, this discrepancy can be attributed to the coarse resolution of sediment sampling. The one-cm-thick slices failed to capture effectively the notably narrow (1-2 mm) concentration peaks of several elements in the shallow pore water resulting from sulfide and Al(OH)3 dissolution. The diffusion-reaction model, extended to the complete year, computed that between 25% and 50% of the trace metals and less than 10% of the Al that precipitated under

  4. Bioavailability and biodistribution of nanodelivered lutein.

    PubMed

    Kamil, Alison; Smith, Donald E; Blumberg, Jeffrey B; Astete, Carlos; Sabliov, Cristina; Oliver Chen, C-Y

    2016-02-01

    The aim of the study was to evaluate the ability of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) to enhance lutein bioavailability. The bioavailability of free lutein and PLGA-NP lutein in rats was assessed by determining plasma pharmacokinetics and deposition in selected tissues. Lutein uptake and secretion was also assessed in Caco-2 cells. Compared to free lutein, PLGA-NP increased the maximal plasma concentration (Cmax) and area under the time-concentration curve in rats by 54.5- and 77.6-fold, respectively, while promoting tissue accumulation in the mesenteric fat and spleen. In comparison with micellized lutein, PLGA-NP lutein improved the Cmax in rat plasma by 15.6-fold and in selected tissues by ⩾ 3.8-fold. In contrast, PLGA-NP lutein had a lower uptake and secretion of lutein in Caco-2 cells by 10.0- and 50.5-fold, respectively, compared to micellized lutein. In conclusion, delivery of lutein with polymeric NP may be an approach to improve the bioavailability of lutein in vivo. PMID:26304429

  5. Relative bioavailability of three cefixime formulations.

    PubMed

    Kees, F; Naber, K G; Sigl, G; Ungethüm, W; Grobecker, H

    1990-03-01

    Three galenic formulations of cefixime (tablet, syrup and dry suspension) containing 200 mg each were compared with respect to their relative bioavailability in twelve healthy volunteers. All three formulations showed reliable absorption. Mean peak plasma concentrations were reached after 3.3-3.5 h, mean terminal half lives were 2.9-3.1 h. 18-24% of the dose administered were recovered unchanged in the urine. Best bioavailability was obtained with the dry suspension (AUC0-infinity = 25.8 +/- 7.0 micrograms/ml h; Cmax = 3.4 +/- 0.9 microgram/ml), followed by the tablet (AUC0-infinity = 20.9 +/- 8.1 micrograms/ml h; Cmax = 3.0 +/- 1.0 micrograms/ml) and the syrup which is based on triglycerides (AUC0-infinity = 17.8 +/- 5.9 micrograms/ml h; Cmax = 2.4 +/- 0.7 micrograms/ml). The statistical analysis resulted in bioinequivalence between dry suspension and syrup. It is concluded that best bioavailability of cefixime after oral administration is guaranteed when taken in an "aqueous medium" either as dry suspension or as tablet with "plenty of liquid". PMID:2346538

  6. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana.

    PubMed

    Marusenko, Yevgeniy; Shipp, Jessie; Hamilton, George A; Morgan, Jennifer L L; Keebaugh, Michael; Hill, Hansina; Dutta, Arnab; Zhuo, Xiaoding; Upadhyay, Nabin; Hutchings, James; Herckes, Pierre; Anbar, Ariel D; Shock, Everett; Hartnett, Hilairy E

    2013-03-01

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3-67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. PMID:23262070

  7. Selenium bioavailability with reference to human nutrition

    SciTech Connect

    Young, V.R.; Nahapetian, A.; Janghorbani, M.

    1982-05-01

    Various aspects of selenium metabolism and nutrition in relation to the question of selenium bioavailability in foods and the diet of man are reviewed. Few published studies exist on selenium metabolism in human subjects, particularly those representative of healthy individuals in the United States. Animal studies reveal that various factors, including the source and chemical form of selenium in foods and feeds, influence selenium bioavailability. However, the quantitative significance of animal assay data for human nutrition is not known. The limited number of published studies in man suggest that the metabolic fate and physiological function of dietary selenite may differ from that of selenomethionine or of food selenium. However, much additional research will be required to establish an adequate picture of the significance of dietary selenium bioavailability in human nutrition and health. Based on initial human experiments carried out at the Massachusetts Institute of Technology, use of stable isotopes of selenium offers promising opportunities for closing the gap of knowledge that now exists concerning the role and significance of factors that determine how the selenium present in foods is used to meet the physiological requirements of the consumer.

  8. Rapid screening assay for calcium bioavailability studies

    SciTech Connect

    Luhrsen, K.R.; Hudepohl, G.R.; Smith, K.T.

    1986-03-01

    Calcium bioavailability has been studied by numerous techniques. The authors report here the use of the gamma emitting isotope of calcium (/sup 47/Ca) in a whole body retention assay system. In this system, calcium sources are administered by oral gavage and subsequent counts are determined and corrected for isotopic decay. Unlike iron and zinc retention curves, which exhibit a 2-3 day equilibration period, calcium reaches equilibration after 24 hours. Autoradiographic analysis of the femurs indicate that the newly absorbed calcium is rapidly distributed to the skeletal system. Moreover, the isotope is distributed along the entire bone. Comparisons of calcium bioavailability were made using intrinsic/extrinsic labeled milk from two species i.e. rat and goat as well as CaCO/sub 3/. In addition, extrinsic labeled cow milk was examined. In the rat, the extrinsic labeled calcium from milk was better absorbed than the intrinsic calcium. This was not the case in goat milk or the calcium carbonate which exhibited no significant differences. Chromatographic analysis of the labeled milk indicates a difference in distribution of the /sup 47/Ca. From these data, the authors recommend the use of this assay system in calcium bioavailability studies. The labeling studies and comparisons indicate caution should be used, however, in labeling techniques and species milk comparison.

  9. Assessment of toxic metals in groundwater and saliva in an arsenic affected area of West Bengal, India: A pilot scale study.

    PubMed

    Bhowmick, Subhamoy; Kundu, Amit Kumar; Adhikari, Jishnu; Chatterjee, Debankur; Iglesias, Monica; Nriagu, Jerome; Guha Mazumder, Debendra Nath; Shomar, Basem; Chatterjee, Debashis

    2015-10-01

    Communities in many parts of the world are unintentionally exposed to arsenic (As) and other toxic metals through ingestion of local drinking water and foods. The concentrations of individual toxic metals often exceed their guidelines in drinking water but the health risks associated with such multiple-metal exposures have yet to receive much attention. This study examines the co-occurrence of toxic metals in groundwater samples collected from As-rich areas of Nadia district, West Bengal, India. Arsenic in groundwater (range: 12-1064 µg L(-1); mean ± S.D: 329±294 µg L(-1)) was the most important contaminant with concentrations well above the WHO guideline of 10 µg L(-1). Another important toxic metal in the study area was manganese (Mn) with average concentration of 202±153 µg L(-1), range of 18-604 µg L(-1). The average concentrations (µg L(-1)) of other elements in groundwater were: Cr (5.6±5.9), Mo (3.5±2.1), Ni (8.3±8.7), Pb (2.9±1.3), Ba (119±43), Zn (56±40), Se (0.60±0.33), U (0.50±0.74). Saliva collected from the male participants of the area had mean concentrations of 6.3±7.0 µg As L(-1) (0.70-29 µg L(-1)), 5.4±5.5 µg Mn L(-1) (0.69-22 µg L(-1)), 2.6±3.1 µg Ni L(-1) (0.15-13 µg L(-1)), 0.78±1.0µg Cr L(-1) (metals beside As must be monitored in drinking water before implementation of any policies to provide safe water to the

  10. Bioavailability of chromium in soils and sediments at a former leather tannery site

    SciTech Connect

    Pacquin, P.R.; Di Toro, D.M.; De Rosa, L.; Maiello, J.; Kerrigan, J.

    1995-12-31

    Bioavailability is a fundamental consideration in the equilibrium partitioning method used by EPA to develop sediment quality criteria (SOC). Even so, the bioavailability of metals in soils and sediments is often overlooked in ecological risk assessments for Superfund sites. This paper summarizes field and laboratory data for chromium levels in biota, soil and sediment samples from an abandoned tannery site and presents a method for characterizing the bioavailable fraction of chromium in these media. Chromium levels in soils and sediments at the former tannery site are about 1,000 times higher than levels at control sites (30,000 ppm versus 30 ppm). The elevated chromium levels are due to previously released tannery wastes, which contain high levels of chromium as a result of the tanning process. In contrast to chromium levels in soils and sediments, levels in terrestrial biota (earthworms, vegetation, and meadow voles) and aquatic biota (minnows, crayfish and mayfly nymphs) at the site are only about 2 to 20 times higher than control area samples. Biota:Soil and Biota:Sediment Accumulation Factors (BSAFs, total chromium basis) for the site are about one to five percent of control area BSAFs. This difference indicates that chromium at the site is relatively non-bioavailable. Sequential extraction techniques were used to characterize the manner in which the chromium is bound to soil and sediment at the site. The extraction results are compared with the biota field data and it appears that the exchangeable chromium fraction is indicative of the bioavailable fraction. The implications of these results to a screening level ecological risk assessment are presented.

  11. Incorporating bioavailability into management limits for copper in sediments contaminated by antifouling paint used in aquaculture.

    PubMed

    Simpson, Stuart L; Spadaro, David A; O'Brien, Dom

    2013-11-01

    Although now well embedded within many risk-based sediment quality guideline (SQG) frameworks, contaminant bioavailability is still often overlooked in assessment and management of contaminated sediments. To optimise management limits for metal contaminated sediments, we assess the appropriateness of a range methods for modifying SQGs based on bioavailability considerations. The impairment of reproduction of the amphipod, Melita plumulosa, and harpacticoid copepod, Nitocra spinipes, was assessed for sediments contaminated with copper from antifouling paint, located below aquaculture cages. The measurement of dilute acid-extractable copper (AE-Cu) was found to provide the most useful means for monitoring the risks posed by sediment copper and setting management limits. Acid-volatile sulfide was found to be ineffective as a SQG-modifying factor as these organisms live mostly at the more oxidised sediment water interface. SQGs normalised to %-silt/organic carbon were effective, but the benefits gained were too small to justify this approach. The effectiveness of SQGs based on AE-Cu was attributed to a small portion of the total copper being present in potentially bioavailable forms (typically<10% of the total). Much of the non-bioavailable form of copper was likely present as paint flakes in the form of copper (I) oxide, the active ingredient of the antifoulant formulation. While the concentrations of paint-associated copper are very high in some sediments, as the transformation of this form of copper to AE-Cu appears slow, monitoring and management limits should assess the more bioavailable AE-Cu forms, and further efforts be made to limit the release of paint particles into the environment. PMID:24080008

  12. The content and toxicity of heavy metals in soils affected by aerial emissions from the Pechenganikel plant

    NASA Astrophysics Data System (ADS)

    Evdokimova, G. A.; Mozgova, N. P.; Korneikova, M. V.

    2014-05-01

    The zoning of the terrestrial ecosystems exposed to the aerial emissions from the Pechenganikel plant (Murmansk oblast) was performed; it was based on the state of the soil cover in 2012. The following parameters were determined: the pH, the contents of heavy metals (HMs) and exchangeable calcium and magnesium, the proportion between the organic and mineral soil components, and the state of the soil micro-biota. Three zones differing in the intensity of the soil pollution were distinguished: the zone of strong pollution (at a distance of 3 km from the source of the emission), the zone of medium pollution (16 km), and the zone of weak pollution (25-30 km to the southwest from the pollution source). In the last ten years, the soil pollution in the zone influenced by aerial emissions from the Pechenganikel plant has remained the same. The amount of bacteria and fungi in the air is directly related to that in the soil. The results obtained point to the bacterial pollution of the atmosphere nearby the industrial center. In the vicinity of the plant, gram-negative bacteria ( Gracilicutes) predominate in the air; in remote areas, gram-positive bacteria ( Fermicutes) are dominants. In the air nearby the industrial center, potentially pathogenic fungi ( Gongronella butleri and Alternaria alternata) were revealed.

  13. Contents and toxicity of heavy metals in soils of the zone affected by aerial emissions from the Severonikel Enterprise

    NASA Astrophysics Data System (ADS)

    Evdokimova, G. A.; Kalabin, G. V.; Mozgova, N. P.

    2011-02-01

    In 2009, the zoning of the terrestrial ecosystems in the area exposed to aerial emissions from the Severonikel Enterprise (Murmansk oblast) was performed on the basis of the parameters characterizing the state of the soils, including the contents of the main heavy metal pollutants and exchangeable calcium and magnesium, the soils' pH, the ratio of the organic to mineral soil components, and the state of the soils' microbiota. Three zones differing in the degree of the soil pollution were delimited. These were the zones of heavy, moderate, and weak pollution, which extended for up to 3, 25, and 50 km from the emission source in the prevailing wind direction. The data on the amount of bacterial and fungal biomass provided evidence of the profound degradation of the soils in the heavily polluted zone. In particular, the biomass of the soil microbiota, including its prokaryotic and eukaryotic components, was two to six times lower in this zone than in the background (control) area. The soils of the heavily polluted zone can be classified as strongly toxic for plants, and most of the soils of the moderately polluted zone also fall into the same category.

  14. Quality characteristics and lutein bioavailability from maize and vegetable-based health food.

    PubMed

    Ranganathan, Arunkumar; Sheshappa, Mamatha Bangera; Baskaran, Vallikannan

    2014-06-01

    Health food (ready-mix) was prepared from maize and vegetables a source of lutein (L) and zeaxanthin (Z) and studied for its quality characteristics (moisture sorption isotherm, sensory, microbiological, chemical composition, and storage stability) on storage at varying temperatures for 3 months and L+Z bioavailability in mice. Results revealed a decrease in the L+Z level (4.70, 9.24, and 13.85%) of ready-mix stored at 4, 27, and 37°C, respectively. Critical relative humidity and critical moisture content of the product was 64% and 12.24%, respectively. The product is well accepted and was not affected adversely during storage. L+Z bioavailability from ready-mix in mice was higher in plasma (29.4%), liver (58.7%), and eye (14.6%) than control (mice received diet with purified L). To conclude, L+Z in the ready-mix is stable and more bioavailable than control. These findings may help in understanding the importance of simple food processing to improve L bioavailability under its deficient condition among an elderly population. PMID:24670117

  15. Effects of riverine suspended particulate matter on post-dredging metal re-contamination across the sediment-water interface.

    PubMed

    Liu, Cheng; Fan, Chengxin; Shen, Qiushi; Shao, Shiguang; Zhang, Lei; Zhou, Qilin

    2016-02-01

    Environmental dredging is often used in river mouth areas to remove heavy metals. However, following dredging, high levels of metal-adsorbed suspended particulate matter (SPM) originating from polluted inflowing rivers might adversely affect the sediment-water interface (SWI). Here, we conducted a 360-day-long experiment investigating whether the riverine SPM adversely affects dredging outcome in a bay area of Lake Chaohu, China. We found that the heavy metal concentrations in the post-dredging surface sediment increased to pre-dredging levels for all metals studied (As, Cd, Cr, Cu, Ni, Pb, and Zn) after the addition of SPM. In addition, the increased concentrations were mostly detected in the relatively bioavailable non-residual fractions. Of the metals studied, the rate of increase was the greatest for Zn and Cd (482.98% and 261.07%, respectively), mostly in the weak acid extractable fraction. These results were probably due to certain characteristics of SPM (fine grain size, and high concentrations of organic matter and heavy metals) and the good oxic conditions of the SWI. Furthermore, As was the only metal for which we observed an increasing trend of diffusive flux across the SWI. However, the flux was still significantly lower than that measured before dredging. In conclusion, the quantity and character of riverine metal-adsorbed SPM affect metal re-contamination across the post-dredging SWI, and this information should be incorporated into the management schemes of dredging projects dedicated to reducing metal contamination in similar areas. PMID:26606187

  16. Alumina polymorphs affect the metal immobilization effect when beneficially using copper-bearing industrial sludge for ceramics.

    PubMed

    Tang, Yuanyuan; Lu, Xiuqing; Shih, Kaimin

    2014-12-01

    The feasibility of recycling copper-bearing industrial sludge as a part of ceramic raw materials was evaluated through thermal interaction of sludge with aluminum-rich precursors. To observe copper incorporation mechanism, mixtures of copper-bearing sludge with alumina polymorphs (γ-Al2O3 and α-Al2O3) were fired between 750 and 1250°C. Different copper-hosting phases were identified by X-ray diffraction, and CuAl2O4 was found to be the predominant phase throughout the reactions. The experimental results indicate different CuAl2O4 initiating temperatures for two alumina materials, and the optimal temperature for CuAl2O4 formation is around 1100°C. To monitor the stabilization effect, prolonged leaching tests were carried out to leach sintered products for up to 20d. The results clearly demonstrate a substantial decrease in copper leachability for products with higher CuAl2O4 content formed from both alumina precursors despite their different sintering behavior. Meanwhile, the leachability of aluminum was much lower than that of copper, and it decreased by more than fourfold through the formation of CuAl2O4 spinel in γ-Al2O3 system. This study clearly indicates spinel formation as the most crucial metal stabilization mechanism when sintering multiphase copper-bearing industrial sludge with aluminum-rich ceramic raw materials, and suggests a promising and reliable technique for reusing industrial sludge. PMID:25299935

  17. From Bioavailability Science to Regulation of Organic Chemicals.

    PubMed

    Ortega-Calvo, Jose-J; Harmsen, Joop; Parsons, John R; Semple, Kirk T; Aitken, Michael D; Ajao, Charmaine; Eadsforth, Charles; Galay-Burgos, Malyka; Naidu, Ravi; Oliver, Robin; Peijnenburg, Willie J G M; Römbke, Jörg; Streck, Georg; Versonnen, Bram

    2015-09-01

    The bioavailability of organic chemicals in soil and sediment is an important area of scientific investigation for environmental scientists, although this area of study remains only partially recognized by regulators and industries working in the environmental sector. Regulators have recently started to consider bioavailability within retrospective risk assessment frameworks for organic chemicals; by doing so, realistic decision-making with regard to polluted environments can be achieved, rather than relying on the traditional approach of using total-extractable concentrations. However, implementation remains difficult because scientific developments on bioavailability are not always translated into ready-to-use approaches for regulators. Similarly, bioavailability remains largely unexplored within prospective regulatory frameworks that address the approval and regulation of organic chemicals. This article discusses bioavailability concepts and methods, as well as possible pathways for the implementation of bioavailability into risk assessment and regulation; in addition, this article offers a simple, pragmatic and justifiable approach for use within retrospective and prospective risk assessment. PMID:26230485

  18. Understanding and managing oral bioavailability: physiological concepts and patents.

    PubMed

    Alam, Mohd A; Al-Jenoobi, Fahad I; Al-Mohizea, Abdullah M; Ali, Raisuddin

    2015-01-01

    Oral delivery of poorly bioavailable therapeuticals is challenging. The challenges are more serious when physiological factors of gut such as cytochrome P450, P-glycoprotein, permeability, pH triggered precipitation and degradation are responsible for poor bioavailability. P-Glycoprotein mediated multidrug resistance is on high agenda for anti-cancer drugs. The present article compiled different methodologies used to curb these challenges of bioavailability. The concepts of poor bioavailability are illustrated along with possible management. Numerous relevant patents for bioavailability enhancement are also highlighted. Though, there is no universal approach for bioavailability enhancement, the drug related challenges are managed by altering its physicochemical characteristics or employing formulation technology, while the effects of physiological factors are minimized by using efflux transport inhibitor or cytochrome P-450 inhibitor or prodrug or through formulation technologies (enteric coating or microenvironment of pH etc.). PMID:25230073

  19. Strategies to enhance the bioavailability of curcumin: a potential antitumor drug

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Chittigori, Joshna; Li, Lian; Samuelson, Lynne; Sandman, Daniel; Kumar, Jayant

    2012-02-01

    Curcumin is a polyphenol which has elicited considerable interest for its antioxidant and anti tumor properties. Although curcumin may be used as potential therapeutic drug, it is very sparingly soluble in water which makes it less bioavailable under physiological conditions. We report two approaches to make curcumin more bioavailable. The first approach involves fabricating colloidal dispersions of curcumin in the range of tens of nanometers. The second approach involves functionalization of curcumin with polyethylene glycol (PEG) to render it water dispersible or soluble. Since curcumin is a fluorescent molecule as well as a potential drug, its interactions with cells have been investigated using one and two photon confocal fluorescence imaging. We have also observed strong interaction between curcumin and metal ions, which may have physiological implications.

  20. Quantities of lead producing health effects in humans: sources and bioavailability.

    PubMed Central

    Mahaffey, K R

    1977-01-01

    Levels of lead ingestion and inhalation producing increased body burden of lead and clinical toxicity in adults and children are compared with usual levels of exposure. The magnitude of lead exposure from air, water, and food is estimated. Sources of high level exposure to lead are described; urban street dirt, house dust, and paint are particularly common sources of high concentrations of lead. The bioavailability of different lead compounds is reviewed as well as factors affecting susceptibility to lead. PMID:908307

  1. Assessment of metal loads in watersheds affected by acid mine drainage by using tracer injection and synoptic sampling: Cement Creek, Colorado, USA

    USGS Publications Warehouse

    Kimball, B.A.; Runkel, R.L.; Walton-Day, K.; Bencala, K.E.

    2002-01-01

    for the watershed to support remediation decisions, and quantifies processes affecting metal transport. Published by Elsevier Science Ltd.

  2. Bioavailability of Micronutrients from Plant Foods: An Update.

    PubMed

    Platel, Kalpana; Srinivasan, Krishnapura

    2016-07-26

    Deficiencies of iron, zinc, iodine and vitamin A are widespread in the developing countries, poor bioavailability of these micronutrients from plant-based foods being the major reason for their wide prevalence. Diets predominantly vegetarian are composed of components that enhance as well as inhibit mineral bioavailability, the latter being predominant. However, prudent cooking practices and use of ideal combinations of food components can significantly improve micronutrient bioavailability. Household processing such as heat treatment, sprouting, fermentation and malting have been evidenced to enhance the bioavailability of iron and β-carotene from plant foods. Food acidulants amchur and lime are also shown to enhance the bioavailability of not only iron and zinc, but also of β-carotene. Recently indentified newer enhancers of micronutrient bioaccessibility include sulphur compound-rich Allium spices-onion and garlic, which also possess antioxidant properties, β-carotene-rich vegetables-carrot and amaranth, and pungent spices-pepper (both red and black) as well as ginger. Information on the beneficial effect of these dietary compounds on micronutrient bioaccessibility is novel. These food components evidenced to improve the bioavailability of micronutrients are common ingredients of Indian culinary, and probably of other tropical countries. Fruits such as mango and papaya, when consumed in combination with milk, provide significantly higher amounts of bioavailable β-carotene. Awareness of the beneficial influence of these common dietary ingredients on the bioavailability of micronutrients would help in devising dietary strategies to improve the bioavailability of these vital nutrients. PMID:25748063

  3. The bioavailability of chemicals in soil for earthworms

    USGS Publications Warehouse

    Lanno, R.; Wells, J.; Conder, Jason M.; Bradham, K.; Basta, N.

    2004-01-01

    The bioavailability of chemicals to earthworms can be modified dramatically by soil physical/chemical characteristics, yet expressing exposure as total chemical concentrations does not address this problem. In order to understand the effects of modifying factors on bioavailability, one must measure and express chemical bioavailability to earthworms in a consistent, logical manner. This can be accomplished by direct biological measures of bioavailability (e.g., bioaccumulation, critical body residues), indirect biological measures of bioavailability (e.g., biomarkers, reproduction), or indirect chemical measures of bioavailability (e.g., chemical or solid-phase extracts of soil). If indirect chemical measures of bioavailability are to be used, they must be correlated with some biological response. Bioavailability can be incorporated into ecological risk assessment during risk analysis, primarily in the estimation of exposure. However, in order to be used in the site-specific ecological risk assessment of chemicals, effects concentrations must be developed from laboratory toxicity tests based on exposure estimates utilizing techniques that measure the bioavailable fraction of chemicals in soil, not total chemical concentrations. ?? 2003 Elsevier Inc. All rights reserved.

  4. Impact of stochastic fluctuations in the cell free layer on nitric oxide bioavailability

    PubMed Central

    Park, Sang-Woo; Intaglietta, Marcos; Tartakovsky, Daniel M.

    2015-01-01

    A plasma stratum (cell free layer or CFL) generated by flowing blood interposed between the red blood cell (RBC) core and the endothelium affects generation, consumption, and transport of nitric oxide (NO) in the microcirculation. CFL width is a principal factor modulating NO diffusion and vessel wall shears stress development, thus significantly affecting NO bioavailability. Since the CFL is bounded by the surface formed by the chaotically moving RBCs and the stationary but spatially non-uniform endothelial surface, its width fluctuates randomly in time and space. We analyze how these stochastic fluctuations affect NO transport in the CFL and NO bioavailability. We show that effects due to random boundaries do not average to zero and lead to an increase of NO bioavailability. Since endothelial production of NO is significantly enhanced by temporal variability of wall shear stress, we posit that stochastic shear stress stimulation of the endothelium yields the baseline continual production of NO by the endothelium. The proposed stochastic formulation captures the natural continuous and microscopic variability, whose amplitude is measurable and is of the scale of cellular dimensions. It provides a realistic model of NO generation and regulation. PMID:26578944

  5. A reexamination of krill oil bioavailability studies.

    PubMed

    Salem, Norman; Kuratko, Connye N

    2014-01-01

    It has proven difficult to compare the bioavailability of krill oil (KO) vs. fish oil (FO) due to several of the characteristics of KO. These include the lower concentration of the active ingredients, eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n3), in KO as well as differences in their ratio relative to FO as well as the red color due to astaxanthin. In addition, the lipid classes in which EPA and DHA are found are quite different with KO containing phospholipid, di- and tri-glycerides as well as non-esterified fatty acid forms and with FO being primarily triglycerides. No human study has yet been performed that matches the dose of EPA and DHA in a randomized, controlled trial with measures of bloodstream EPA and DHA content. However, several claims have been made suggesting greater bioavailability of KO vs. FO. These have largely been based on a statistical argument where a somewhat lower dose of KO has been used to result in a similar bloodstream level of EPA and/or DHA or their total. However, the magnitude of the dosage differential is shown to be too small to be expected to result in differing blood levels of the long chain n-3 PUFAs. Some studies which have claimed to provide equal doses of KO and FO have actually used differing amounts of the two major n-3 fatty acid constituents. It is concluded that there is at present no evidence for greater bioavailability of KO vs. FO and that more carefully controlled human trials must be performed to establish their relative efficacies after chronic administration. PMID:25156381

  6. Isoflavones: estrogenic activity, biological effect and bioavailability.

    PubMed

    Vitale, Daniela Cristina; Piazza, Cateno; Melilli, Barbara; Drago, Filippo; Salomone, Salvatore

    2013-03-01

    Isoflavones are phytoestrogens with potent estrogenic activity; genistein, daidzein and glycitein are the most active isoflavones found in soy beans. Phytoestrogens have similarity in structure with the human female hormone 17-β-estradiol, which can bind to both alpha and beta estrogen receptors, and mimic the action of estrogens on target organs, thereby exerting many health benefits when used in some hormone-dependent diseases. Numerous clinical studies claim benefits of genistein and daidzein in chemoprevention of breast and prostate cancer, cardiovascular disease and osteoporosis as well as in relieving postmenopausal symptoms. The ability of isoflavones to prevent cancer and other chronic diseases largely depends on pharmacokinetic properties of these compounds, in particular absorption and distribution to the target tissue. The chemical form in which isoflavones occur is important because it influences their bioavailability and, therefore, their biological activity. Glucose-conjugated isoflavones are highly polar, water-soluble compounds. They are hardly absorbed by the intestinal epithelium and have weaker biological activities than the corresponding aglycone. Different microbial families of colon can transform glycosylated isoflavones into aglycones. Clinical studies show important differences between the aglycone and conjugated forms of genistein and daidzein. The evaluation of isoflavone metabolism and bioavailability is crucial to understanding their biological effects. Lipid-based formulations such as drug incorporation into oils, emulsions and self-microemulsifying formulations have been introduced to increase bioavailability. Complexation with cyclodextrin also represent a valid method to improve the phys