Science.gov

Sample records for affect methane production

  1. Does Dietary Mitigation of Enteric Methane Production Affect Rumen Function and Animal Productivity in Dairy Cows?

    PubMed Central

    Veneman, Jolien B.; Muetzel, Stefan; Hart, Kenton J.; Faulkner, Catherine L.; Moorby, Jon M.; Perdok, Hink B.; Newbold, Charles J.

    2015-01-01

    It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/ g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations. PMID:26509835

  2. Does Dietary Mitigation of Enteric Methane Production Affect Rumen Function and Animal Productivity in Dairy Cows?

    PubMed

    Veneman, Jolien B; Muetzel, Stefan; Hart, Kenton J; Faulkner, Catherine L; Moorby, Jon M; Perdok, Hink B; Newbold, Charles J

    2015-01-01

    It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations. PMID:26509835

  3. Does Dietary Mitigation of Enteric Methane Production Affect Rumen Function and Animal Productivity in Dairy Cows?

    PubMed

    Veneman, Jolien B; Muetzel, Stefan; Hart, Kenton J; Faulkner, Catherine L; Moorby, Jon M; Perdok, Hink B; Newbold, Charles J

    2015-01-01

    It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations.

  4. How Does Poly(hydroxyalkanoate) Affect Methane Production from the Anaerobic Digestion of Waste-Activated Sludge?

    PubMed

    Wang, Dongbo; Zhao, Jianwei; Zeng, Guangming; Chen, Yinguang; Bond, Philip L; Li, Xiaoming

    2015-10-20

    Recent studies demonstrate that, besides being used for production of biodegradable plastics, poly(hydroxyalkanoate) (PHA) that is accumulated in heterotrophic microorganisms during wastewater treatment has another novel application direction, i.e., being utilized for enhancing methane yield during the anaerobic digestion of waste-activated sludge (WAS). To date, however, the underlying mechanism of how PHA affects methane production remains largely unknown, and this limits optimization and application of the strategy. This study therefore aims to fill this knowledge gap. Experimental results showed that with the increase of sludge PHA levels from 21 to 184 mg/g of volatile suspended solids (VSS) the methane yield linearly increased from 168.0 to 246.1 mL/g of VSS (R(2) = 0.9834). Compared with protein and carbohydrate (the main components of a cell), PHA exhibited a higher biochemical methane potential on a unit VSS basis. It was also found that the increased PHA not only enhanced cell disruption of PHA cells but also benefited the soluble protein conversion of both PHA- and non-PHA cells. Moreover, the reactor fed with higher PHA sludge showed greater sludge hydrolysis and acidification than those fed with the lower PHA sludges. Further investigations using fluorescence in situ hybridization and enzyme analysis revealed that the increased PHA enhanced the abundance of methanogenic Archaea and increased the activities of protease, acetate kinase, and coenzyme F420, which were consistent with the observed methane yield. This work provides insights into PHA-involved WAS digestion systems and may have important implications for future operation of wastewater treatment plants. PMID:26381110

  5. How Does Poly(hydroxyalkanoate) Affect Methane Production from the Anaerobic Digestion of Waste-Activated Sludge?

    PubMed

    Wang, Dongbo; Zhao, Jianwei; Zeng, Guangming; Chen, Yinguang; Bond, Philip L; Li, Xiaoming

    2015-10-20

    Recent studies demonstrate that, besides being used for production of biodegradable plastics, poly(hydroxyalkanoate) (PHA) that is accumulated in heterotrophic microorganisms during wastewater treatment has another novel application direction, i.e., being utilized for enhancing methane yield during the anaerobic digestion of waste-activated sludge (WAS). To date, however, the underlying mechanism of how PHA affects methane production remains largely unknown, and this limits optimization and application of the strategy. This study therefore aims to fill this knowledge gap. Experimental results showed that with the increase of sludge PHA levels from 21 to 184 mg/g of volatile suspended solids (VSS) the methane yield linearly increased from 168.0 to 246.1 mL/g of VSS (R(2) = 0.9834). Compared with protein and carbohydrate (the main components of a cell), PHA exhibited a higher biochemical methane potential on a unit VSS basis. It was also found that the increased PHA not only enhanced cell disruption of PHA cells but also benefited the soluble protein conversion of both PHA- and non-PHA cells. Moreover, the reactor fed with higher PHA sludge showed greater sludge hydrolysis and acidification than those fed with the lower PHA sludges. Further investigations using fluorescence in situ hybridization and enzyme analysis revealed that the increased PHA enhanced the abundance of methanogenic Archaea and increased the activities of protease, acetate kinase, and coenzyme F420, which were consistent with the observed methane yield. This work provides insights into PHA-involved WAS digestion systems and may have important implications for future operation of wastewater treatment plants.

  6. Methane production in Minnesota peatlands

    SciTech Connect

    Williams, R.T.; Crawford, R.L.

    1984-06-01

    Rates of methane production in Minnesota peats were studied. Surface (10- to 25-cm) peats produced an average of 228 nmol of CH/sub 4/ per g (dry weight) per h at 25/sup 0/C and ambient pH. Methanogenesis rates generally decreased with depth in ombrotrophic peats, but on occasion were observed to rise within deeper layers of certain fen peats. Methane production was temperature dependent, increasing with increasing temperature (4 to 30/sup 0/C), except in peats from deeper layers. Maximal methanogenesis from these deeper regions occurred at 12/sup 0/C. Methane production rates were also pH dependent. Two peats with pHs of 3.8 and 4.3 had an optimum rate of methane production at pH 6.0. The addition to peat of glucose and H/sub 2/-CO/sub 2/ stimulated methanogenesis, whereas the addition of acetate inhibited methanogenesis. Cysteine-sulfide, nitrogen-phosphorus-trace metals, and vitamins-yeast extract affected methane production very little. Various gases were found to be trapped or dissolved (or both) within peatland waters. Dissolved methane increased linearly to a depth of 210 cm. The accumulation of metabolic end products produced within peat bogs appears to be an important mechanism limiting turnover in peatland environments.

  7. Dietary inclusion of diallyl disulfide, yucca powder, calcium fumarate, an extruded linseed product, or medium-chain fatty acids does not affect methane production in lactating dairy cows.

    PubMed

    van Zijderveld, S M; Dijkstra, J; Perdok, H B; Newbold, J R; Gerrits, W J J

    2011-06-01

    Two similar experiments were conducted to assess the effect of diallyl disulfide (DADS), yucca powder (YP), calcium fumarate (CAFU), an extruded linseed product (UNSAT), or a mixture of capric and caprylic acid (MCFA) on methane production, energy balance, and dairy cow performance. In experiment 1, a control diet (CON1) and diets supplemented with 56 mg of DADS/kg of dry matter (DM), 3g of YP/kg of DM, or 25 g of CAFU/kg of DM were evaluated. In experiment 2, an inert saturated fat source in the control diet (CON2) was exchanged isolipidically for an extruded linseed source (100g/kg of DM; UNSAT) or a mixture of C8:0 and C10:0 (MCFA; 20.3g/kg of DM). In experiment 2, a higher inclusion level of DADS (200mg/kg of DM) was also tested. Both experiments were conducted using 40 lactating Holstein-Friesian dairy cows. Cows were adapted to the diet for 12 d and were subsequently kept in respiration chambers for 5 d to evaluate methane production, diet digestibility, energy balance, and animal performance. Feed intake was restricted to avoid confounding effects of possible differences in ad libitum feed intake on methane production. Feed intake was, on average, 17.5 and 16.6 kg of DM/d in experiments 1 and 2, respectively. None of the additives reduced methane production in vivo. Methane production in experiment 1 was 450, 453, 446, and 423 g/d for CON1 and the diets supplemented with DADS, YP, and CAFU, respectively. In experiment 2, methane production was 371, 394, 388, and 386 g/d for CON2 and the diets supplemented with UNSAT, MCFA, and DADS, respectively. No effects of the additives on energy balance or neutral detergent fiber digestibility were observed. The addition of MCFA increased milk fat content (5.38% vs. 4.82% for control) and fat digestibility (78.5% vs. 59.8% for control), but did not affect milk yield or other milk components. The other products did not affect milk yield or composition. Results from these experiments emphasize the need to confirm methane

  8. Rumen microorganisms, methane production, and microbial protein synthesis affected by mangosteen peel powder supplement in lactating dairy cows.

    PubMed

    Polyorach, Sineenart; Wanapat, Metha; Cherdthong, Anusorn; Kang, Sungchhang

    2016-03-01

    Four crossbred dairy cows (50 % Holstein-Friesian × 50 % Thai native), 404 ± 50.0 kg of body weight (4 years old) and 90 ± 5 day in milk with daily milk production of 9 ± 2.0 kg/day, were randomly assigned according to a 4 × 4 Latin square design to study the effect of mangosteen (Garcinia mangostana) peel powder (MSP) supplementation on rumen microorganisms, methane production, and microbial protein synthesis fed concentrate containing yeast fermented cassava chip protein (YEFECAP). The treatments were different levels of MSP supplementation at 0, 100, 200, and 300 g/head/day. Rice straw was used as a roughage source fed ad libitum, and concentrate containing YEFECAP at 200 g/kg concentrate was offered corresponding to concentrate-to-milk-yield ratio at 1:2. A quantitative real-time PCR approach was used to determine the population densities of ruminal microorganisms. The results revealed that supplementation of MSP did not affect on Fibrobactor succinogenes, Ruminococcus flavefaciens, and Ruminococcus albus (P > 0.05). However, total bacteria was linearly increased (P < 0.01) while methanogens and protozoal population were linearly decreased (P < 0.01) with increasing level of MSP supplementation. Increasing level of MSP supplement could decrease rumen methane production from 27.5 to 23.7 mmol/100 ml(3). Furthermore, cows that received MSP at 300 g/head/day had the highest microbial crude protein and efficiency of rumen microbial N synthesis (416.8 g/day and 16.2 g/kg organic matter truly digested in the rumen (OMDR), respectively). In conclusion, supplementation of MSP at 300 g/head/day with YEFECAP as a protein source in the concentrate mixture revealed an enhancement of rumen fermentation and methane reduction in lactating dairy cows.

  9. Methane photochemistry and methane production on Neptune

    NASA Astrophysics Data System (ADS)

    Romani, P. N.; Atreya, S. K.

    1988-06-01

    The Neptune stratosphere's methane photochemistry is presently studied by means of a numerical model in which the observed mixing ratio of methane prompts photolysis near the CH4 homopause. Haze generation by methane photochemistry has its basis in the formation of hydrocarbon ices and polyacetylenes; the hazes can furnish the requisite aerosol haze at the appropriate pressure levels required by observations of Neptune in the visible and near-IR. Comparisons of model predictions with Uranus data indicate a lower ratio of polyacetylene production to hydrocarbon ice, as well as a lower likelihood of UV postprocessing of the acetylene ice to polymers on Neptune, compared to Uranus.

  10. Methane photochemistry and methane production on Neptune

    NASA Technical Reports Server (NTRS)

    Romani, P. N.; Atreya, S. K.

    1988-01-01

    The Neptune stratosphere's methane photochemistry is presently studied by means of a numerical model in which the observed mixing ratio of methane prompts photolysis near the CH4 homopause. Haze generation by methane photochemistry has its basis in the formation of hydrocarbon ices and polyacetylenes; the hazes can furnish the requisite aerosol haze at the appropriate pressure levels required by observations of Neptune in the visible and near-IR. Comparisons of model predictions with Uranus data indicate a lower ratio of polyacetylene production to hydrocarbon ice, as well as a lower likelihood of UV postprocessing of the acetylene ice to polymers on Neptune, compared to Uranus.

  11. Methane photochemistry and methane production on Neptune

    SciTech Connect

    Romani, P.N.; Atreya, S.K.

    1988-06-01

    The Neptune stratosphere's methane photochemistry is presently studied by means of a numerical model in which the observed mixing ratio of methane prompts photolysis near the CH4 homopause. Haze generation by methane photochemistry has its basis in the formation of hydrocarbon ices and polyacetylenes; the hazes can furnish the requisite aerosol haze at the appropriate pressure levels required by observations of Neptune in the visible and near-IR. Comparisons of model predictions with Uranus data indicate a lower ratio of polyacetylene production to hydrocarbon ice, as well as a lower likelihood of UV postprocessing of the acetylene ice to polymers on Neptune, compared to Uranus. 65 references.

  12. Coalbed methane production case histories

    SciTech Connect

    Not Available

    1981-02-01

    The production of methane gas from coal and coal-bearing rocks is one of the prime objectives of the Department of Energy's Methane Recovery from Coalbeds Project. This report contains brief description of wells that are presently producing gas from coal or coal-bearing rocks. Data from three gob gas production areas in Illinois, an in-mine horizontal borehole degasification, and eleven vertical boreholes are presented. Production charts and electric logs of the producing zones are included for some of the wells. Additional information on dry gas production from the San Juan Basin, Colorado/New Mexico and the Greater Green River Coal Region, Colorado/Wyoming is also included.

  13. Methane production in terrestrial arthropods

    SciTech Connect

    Hackstein, J.H.P.; Stumm, C.K. )

    1994-06-07

    The authors have screened more than 110 representatives of the different taxa of terrestrial arthropods for methane production in order to obtain additional information about the origins of biogenic methane. Methanogenic bacteria occur in the hindguts of nearly all tropical representatives of millipedes (Diplopoda), cockroaches (Blattaria), termites (Isoptera), and scarab beetles (Scarabaeidae), while such methanogens are absent from 66 other arthropod species investigated. Three types of symbiosis were found: in the first type, the arthropod's hindgut is colonized by free methanogenic bacteria; in the second type, methanogens are closely associated with chitinous structures formed by the host's hindgut; the third type is mediated by intestinal anaerobic protists with intracellular methanogens. Such symbiotic associations are likely to be a characteristic property of the particular taxon. Since these taxa represent many families with thousands of species, the world populations of methane-producing arthropods constitute an enormous biomass. The authors show that arthropod symbionts can contribute substantially to atmospheric methane.

  14. Methane production in terrestrial arthropods.

    PubMed

    Hackstein, J H; Stumm, C K

    1994-06-01

    We have screened more than 110 representatives of the different taxa of terrestrial arthropods for methane production in order to obtain additional information about the origins of biogenic methane. Methanogenic bacteria occur in the hindguts of nearly all tropical representatives of millipedes (Diplopoda), cockroaches (Blattaria), termites (Isoptera), and scarab beetles (Scarabaeidae), while such methanogens are absent from 66 other arthropod species investigated. Three types of symbiosis were found: in the first type, the arthropod's hindgut is colonized by free methanogenic bacteria; in the second type, methanogens are closely associated with chitinous structures formed by the host's hindgut; the third type is mediated by intestinal anaerobic protists with intracellular methanogens. Such symbiotic associations are likely to be a characteristic property of the particular taxon. Since these taxa represent many families with thousands of species, the world populations of methane-producing arthropods constitute an enormous biomass. We show that arthropod symbionts can contribute substantially to atmospheric methane.

  15. Methane production in terrestrial arthropods.

    PubMed Central

    Hackstein, J H; Stumm, C K

    1994-01-01

    We have screened more than 110 representatives of the different taxa of terrestrial arthropods for methane production in order to obtain additional information about the origins of biogenic methane. Methanogenic bacteria occur in the hindguts of nearly all tropical representatives of millipedes (Diplopoda), cockroaches (Blattaria), termites (Isoptera), and scarab beetles (Scarabaeidae), while such methanogens are absent from 66 other arthropod species investigated. Three types of symbiosis were found: in the first type, the arthropod's hindgut is colonized by free methanogenic bacteria; in the second type, methanogens are closely associated with chitinous structures formed by the host's hindgut; the third type is mediated by intestinal anaerobic protists with intracellular methanogens. Such symbiotic associations are likely to be a characteristic property of the particular taxon. Since these taxa represent many families with thousands of species, the world populations of methane-producing arthropods constitute an enormous biomass. We show that arthropod symbionts can contribute substantially to atmospheric methane. Images PMID:8202505

  16. Factors affecting methane emission from rice fields

    NASA Astrophysics Data System (ADS)

    Neue, H. U.; Wassmann, R.; Lantin, R. S.; Alberto, Ma C. R.; Aduna, J. B.; Javellana, A. M.

    Emission of CH 4 from ricefields is the result of anoxic bacterial methane production. Global estimates of annual CH 4 emission from ricefields is 100 Tg. CH 4 emission data from limited sites are tentative. It is essential that uncertainty in individual sources is reduced in order to develop feasible and effective mitigation options which do not negate gains in rice production and productivity. Field studies at the International Rice Research Institute show that soil and added organic matter are the sources for initial methane production. Addition of rice straw enhances methane production. Roots and root exudates of wetland rice plants appear to be the major carbon sources at ripening stage. The production and transport of CH 4 to the atmosphere depend on properties of the rice plant. Under the same spacing and fertilization, the traditional variety Dular emitted more CH 4 per day than did the new plant type IR65597. Upon flooding for land preparation anaerobic conditions result in significant amount of methane being formed. Drying the field at midtillering significantly reduced total CH 4 emissions. Large amounts of entrapped CH 4 escape to the atmosphere when floodwater recedes upon drying at harvest. Cultural practices may account for 20% of the overall seasonal CH 4 emissions.

  17. Archaebacterial Fuel Production: Methane from Biomass.

    ERIC Educational Resources Information Center

    Lennox, John E.; And Others

    1983-01-01

    Discusses microbial production of methane from biomass. Topics include methogens (bacteria producing methane), ecology of methanogenesis, methanogenesis in ruminant/nonruminant and other environments, role of methanogenesis in nature, and methane production in sewage treatment plants. Also discusses construction of methane digesters (and related…

  18. Influence of headspace pressure on methane production in Biochemical Methane Potential (BMP) tests.

    PubMed

    Valero, David; Montes, Jesús A; Rico, José Luis; Rico, Carlos

    2016-02-01

    The biochemical methane potential test is the most commonly applied method to determine methane production from organic wastes. One of the parameters measured is the volume of biogas produced which can be determined manometrically by keeping the volume constant and measuring increases in pressure. In the present study, the effect of pressure accumulation in the headspace of the reactors has been studied. Triplicate batch trials employing cocoa shell, waste coffee grounds and dairy manure as substrates have been performed under two headspace pressure conditions. The results obtained in the study showed that headspace overpressures higher than 600mbar affected methane production for waste coffee grounds. On the contrary, headspace overpressures within a range of 600-1000mbar did not affect methane production for cocoa shell and dairy manure. With the analyses performed in the present work it has not been possible to determine the reasons for the lower methane yield value obtained for the waste coffee grounds under high headspace pressures.

  19. Methane production from steam-exploded bamboo.

    PubMed

    Kobayashi, Fumihisa; Take, Harumi; Asada, Chikako; Nakamura, Yoshitoshi

    2004-01-01

    To convert unutilized plant biomass into a useful energy source, methane production from bamboo was investigated using a steam explosion pretreatment. Methane could not be produced from raw bamboo but methane production was enhanced by steam explosion. The maximum amount of methane produced, i.e., about 215 ml, was obtained from 1 g of exploded bamboo at a steam pressure of 3.53 MPa and a steaming time of 5 min. A negative correlation between the amount of methane produced and the amount of Klason lignin was observed in the methane fermentation of steam-exploded bamboo.

  20. Are methane production and cattle performance related?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methane is a product of fermentation of feed in ruminant animals. Approximately 2 -12% of the gross energy consumed by cattle is released through enteric methane production. There are three primary components that contribute to the enteric methane footprint of an animal. Those components are dry ...

  1. Measuring Methane Production from Ruminants.

    PubMed

    Hill, Julian; McSweeney, Chris; Wright, André-Denis G; Bishop-Hurley, Greg; Kalantar-Zadeh, Kourosh

    2016-01-01

    Radiative forcing of methane (CH4) is significantly higher than carbon dioxide (CO2) and its enteric production by ruminant livestock is one of the major sources of greenhouse gas emissions. CH4 is also an important marker of farming productivity, because it is associated with the conversion of feed to product in livestock. Consequently, measurement of enteric CH4 is emerging as an important research topic. In this review, we briefly describe the conversion of carbohydrate to CH4 by the bacterial community within gut, and highlight some of the key host-microbiome interactions. We then provide a picture of current progress in techniques for measuring enteric CH4, the context in which these technologies are used, and the challenges faced. We also discuss solutions to existing problems and new approaches currently in development.

  2. Measuring Methane Production from Ruminants.

    PubMed

    Hill, Julian; McSweeney, Chris; Wright, André-Denis G; Bishop-Hurley, Greg; Kalantar-Zadeh, Kourosh

    2016-01-01

    Radiative forcing of methane (CH4) is significantly higher than carbon dioxide (CO2) and its enteric production by ruminant livestock is one of the major sources of greenhouse gas emissions. CH4 is also an important marker of farming productivity, because it is associated with the conversion of feed to product in livestock. Consequently, measurement of enteric CH4 is emerging as an important research topic. In this review, we briefly describe the conversion of carbohydrate to CH4 by the bacterial community within gut, and highlight some of the key host-microbiome interactions. We then provide a picture of current progress in techniques for measuring enteric CH4, the context in which these technologies are used, and the challenges faced. We also discuss solutions to existing problems and new approaches currently in development. PMID:26603286

  3. Methodological factors affecting gas and methane production during in vitro rumen fermentation evaluated by meta-analysis approach.

    PubMed

    Maccarana, Laura; Cattani, Mirko; Tagliapietra, Franco; Schiavon, Stefano; Bailoni, Lucia; Mantovani, Roberto

    2016-01-01

    Effects of some methodological factors on in vitro measures of gas production (GP, mL/g DM), CH4 production (mL/g DM) and proportion (% CH4 on total GP) were investigated by meta-analysis. These factors were considered: pressure in the GP equipment (0 = constant; 1 = increasing), incubation time (0 = 24; 1 = ≥ 48 h), time of rumen fluid collection (0 = before feeding; 1 = after feeding of donor animals), donor species of rumen fluid (0 = sheep; 1 = bovine), presence of N in the buffer solution (0 = presence; 1 = absence), and ratio between amount of buffered rumen fluid and feed sample (BRF/FS; 0 = ≤ 130 mL/g DM; 1 = 130-140 mL/g DM; 2 = ≥ 140 mL/g DM). The NDF content of feed sample incubated (NDF) was considered as a continuous variable. From an initial database of 105 papers, 58 were discarded because one of the above-mentioned factors was not stated. After discarding 17 papers, the final dataset comprised 30 papers (339 observations). A preliminary mixed model analysis was carried out on experimental data considering the study as random factor. Variables adjusted for study effect were analyzed using a backward stepwise analysis including the above-mentioned variables. The analysis showed that the extension of incubation time and reduction of NDF increased GP and CH4 values. Values of GP and CH4 also increased when rumen fluid was collected after feeding compared to before feeding (+26.4 and +9.0 mL/g DM, for GP and CH4), from bovine compared to sheep (+32.8 and +5.2 mL/g DM, for GP and CH4), and when the buffer solution did not contain N (+24.7 and +6.7 mL/g DM for GP and CH4). The increase of BRF/FS ratio enhanced GP and CH4 production (+7.7 and +3.3 mL/g DM per each class of increase, respectively). In vitro techniques for measuring GP and CH4 production are mostly used as screening methods, thus a full standardization of such techniques is not feasible. However, a greater harmonization

  4. Abiotic production of methane in terrestrial planets.

    PubMed

    Guzmán-Marmolejo, Andrés; Segura, Antígona; Escobar-Briones, Elva

    2013-06-01

    On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×10(8) and 1.3×10(9) molecules cm(-2) s(-1) for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life.

  5. Structural control of coalbed methane production in Alabama

    USGS Publications Warehouse

    Pashin, J.C.; Groshong, R.H.

    1998-01-01

    Thin-skinned structures are distributed throughout the Alabama coalbed methane fields, and these structures affect the production of gas and water from coal-bearing strata. Extensional structures in Deerlick Creek and Cedar Cove fields include normal faults and hanging-wall rollovers, and area balancing indicates that these structures are detached in the Pottsville Formation. Compressional folds in Gurnee and Oak Grove fields, by comparison, are interpreted to be detachment folds formed above decollements at different stratigraphic levels. Patterns of gas and water production reflect the structural style of each field and further indicate that folding and faulting have affected the distribution of permeability and the overall success of coalbed methane operations. Area balancing can be an effective way to characterize coalbed methane reservoirs in structurally complex regions because it constrains structural geometry and can be used to determine the distribution of layer-parallel strain. Comparison of calculated requisite strain and borehole expansion data from calliper logs suggests that strain in coalbed methane reservoirs is predictable and can be expressed as fracturing and small-scale faulting. However, refined methodology is needed to analyze heterogeneous strain distributions in discrete bed segments. Understanding temporal variation of production patterns in areas where gas and water production are influenced by map-scale structure will further facilitate effective management of coalbed methane fields.Thin-skinned structures are distributed throughout the Alabama coalbed methane fields, and these structures affect the production of gas and water from coal-bearing strata. Extensional structures in Deerlick Creek and Cedar Cove fields include normal faults and hanging-wall rollovers, and area balancing indicates that these structures are detached in the Pottsville Formation. Compressional folds in Gurnee and Oak Grove fields, by comparison, are interpreted to

  6. Environmental factors affecting methane distribution and bacterial methane oxidation in the German Bight (North Sea)

    NASA Astrophysics Data System (ADS)

    Osudar, Roman; Matoušů, Anna; Alawi, Mashal; Wagner, Dirk; Bussmann, Ingeborg

    2015-07-01

    River estuaries are responsible for high rates of methane emissions to the atmosphere. The complexity and diversity of estuaries require detailed investigation of methane sources and sinks, as well as of their spatial and seasonal variations. The Elbe river estuary and the adjacent North Sea were chosen as the study site for this survey, which was conducted from October 2010 to June 2012. Using gas chromatography and radiotracer techniques, we measured methane concentrations and methane oxidation (MOX) rates along a 60 km long transect from Cuxhaven to Helgoland. Methane distribution was influenced by input from the methane-rich mouth of the Elbe and gradual dilution by methane-depleted sea water. Methane concentrations near the coast were on average 30 ± 13 nmol L-1, while in the open sea, they were 14 ± 6 nmol L-1. Interestingly, the highest methane concentrations were repeatedly detected near Cuxhaven, not in the Elbe River freshwater end-member as previously reported. Though, we did not find clear seasonality we observed temporal methane variations, which depended on temperature and presumably on water discharge from the Elbe River. The highest MOX rates generally coincided with the highest methane concentrations, and varied from 2.6 ± 2.7 near the coast to 0.417 ± 0.529 nmol L-1 d-1 in the open sea. Turnover times varied from 3 to >1000 days. MOX rates were strongly affected by methane concentration, temperature and salinity. We ruled out the supposition that MOX is not an important methane sink in most of the Elbe estuary and adjacent German Bight.

  7. Biochemically enhanced methane production from coal

    NASA Astrophysics Data System (ADS)

    Opara, Aleksandra

    For many years, biogas was connected mostly with the organic matter decomposition in shallow sediments (e.g., wetlands, landfill gas, etc.). Recently, it has been realized that biogenic methane production is ongoing in many hydrocarbon reservoirs. This research examined microbial methane and carbon dioxide generation from coal. As original contributions methane production from various coal materials was examined in classical and electro-biochemical bench-scale reactors using unique, developed facultative microbial consortia that generate methane under anaerobic conditions. Facultative methanogenic populations are important as all known methanogens are strict anaerobes and their application outside laboratory would be problematic. Additional testing examined the influence of environmental conditions, such as pH, salinity, and nutrient amendments on methane and carbon dioxide generation. In 44-day ex-situ bench-scale batch bioreactor tests, up to 300,000 and 250,000 ppm methane was generated from bituminous coal and bituminous coal waste respectively, a significant improvement over 20-40 ppm methane generated from control samples. Chemical degradation of complex hydrocarbons using environmentally benign reagents, prior to microbial biodegradation and methanogenesis, resulted in dissolution of up to 5% bituminous coal and bituminous coal waste and up to 25% lignite in samples tested. Research results confirm that coal waste may be a significant underutilized resource that could be converted to useful fuel. Rapid acidification of lignite samples resulted in low pH (below 4.0), regardless of chemical pretreatment applied, and did not generate significant methane amounts. These results confirmed the importance of monitoring and adjusting in situ and ex situ environmental conditions during methane production. A patented Electro-Biochemical Reactor technology was used to supply electrons and electron acceptor environments, but appeared to influence methane generation in a

  8. Optimization of microwave pretreatment conditions to maximize methane production and methane yield in mesophilic anaerobic sludge digestion.

    PubMed

    Park, W J; Ahn, J H

    2011-10-01

    The objective of this study was to find optimum microwave pretreatment conditions for methane production and methane yield in anaerobic sludge digestion. The sludge was pretreated using a laboratory-scale industrial microwave unit (2450 MHz frequency). Microwave temperature increase rate (TIR) (2.9-17.1 degrees C/min) and final temperature (FT) (52-108 degrees C) significantly affected solubilization, methane production, and methane yield. Solubilization degree (soluble chemical oxygen demand (COD)/total COD) in the pretreated sludge (3.3-14.7%) was clearly higher than that in the raw sludge (2.6%). Within the design boundaries, the optimum conditions for maximum methane production (2.02 L/L) were TIR = 9.1 degrees C/min and FT = 90 degrees C, and the optimum conditions for maximum methane yield (809 mL/g VS(removed)) were TIR 7.1 degrees C/min and FT = 92 degrees C.

  9. Influence of headspace pressure on methane production in Biochemical Methane Potential (BMP) tests.

    PubMed

    Valero, David; Montes, Jesús A; Rico, José Luis; Rico, Carlos

    2016-02-01

    The biochemical methane potential test is the most commonly applied method to determine methane production from organic wastes. One of the parameters measured is the volume of biogas produced which can be determined manometrically by keeping the volume constant and measuring increases in pressure. In the present study, the effect of pressure accumulation in the headspace of the reactors has been studied. Triplicate batch trials employing cocoa shell, waste coffee grounds and dairy manure as substrates have been performed under two headspace pressure conditions. The results obtained in the study showed that headspace overpressures higher than 600mbar affected methane production for waste coffee grounds. On the contrary, headspace overpressures within a range of 600-1000mbar did not affect methane production for cocoa shell and dairy manure. With the analyses performed in the present work it has not been possible to determine the reasons for the lower methane yield value obtained for the waste coffee grounds under high headspace pressures. PMID:26598214

  10. Methane transport and emissions from soil as affected by water table and vascular plants

    PubMed Central

    2013-01-01

    Background The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here we present a mesocosm experiment comparing eight plant species for their effects on internal transport and overall emissions of methane under contrasting hydrological conditions. To quantify how much methane was transported internally through plants (the chimney effect), we blocked diffusion from the soil surface with an agar seal. Results We found that graminoids caused higher methane emissions than forbs, although the emissions from mesocosms with different species were either lower than or comparable to those from control mesocosms with no plant (i.e. bare soil). Species with a relatively greater root volume and a larger biomass exhibited a larger chimney effect, though overall methane emissions were negatively related to plant biomass. Emissions were also reduced by lowering the water table. Conclusions We conclude that plant species (and functional groups) vary in the degree to which they transport methane to the atmosphere. However, a plant with a high capacity to transport methane does not necessarily emit more methane, as it may also cause more rhizosphere oxidation of methane. A shift in plant species composition from graminoids to forbs and/or from low to high productive species may lead to reduction of methane emissions. PMID:24010540

  11. Aerobic methane production in surface waters of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Finke, N.; Crespo-Medina, M.; Schweers, J.; Joye, S. B.

    2011-12-01

    Near surface water of the global oceans often show elevated methane concentrations compared to the water column below with concentrations in supersaturation in regard to the atmosphere (Lamontagne et al. 1973), resulting in a source of this potent greenhouse gas to the atmosphere. The mechanisms leading to methane supersaturation in surface waters remains unclear. Incubations with Trichodesmium-containing Pacific surface water suggested methylphosphonate as potential methane precursor under phosphate limiting conditions (Karl et al. 2008), whereas in phosphate rich Arctic surface waters, DMSP addition stimulated methane production (Damm et al. 2010). Surface waters of the Gulf of Mexico typically exhibit a methane maximum that is conincident with the deep chlorophyll maximum, below the depths where Trichodesmium is abundant. Addition of methylphosphonate, dimethylsulfoniopropionate (DMSP) or methane thiol (MeSH), the proposed methane precursor in DMSP conversion to methane, to oxic sea water did not affect methane production within the chlorophyll maximum at most stations, whereas methyl phosphonate addition stimulated methane production in the surface water and proposed deep Trichodesmium horizon. Pre-filtration of the water through a 10 μm sieve, which eliminated Trichodesmium, or through a 1.2 μm filter, which eliminated additional cyanobacteria such as Synechococcus, did not reduce methane production. Under dark oxic and dark anoxic conditions, however, methane production was reduced 5 and 7-20 fold, respectively, indicating that anerobic methane production in anoxic microniches is not responsible for the methane production. The reduction of methane production under dark conditions suggests that methane production is, in some yet unrecognized way, linked to phototrophic metabolism. Cyanobacteria are likely not responsible for the observed aerobic methane production in the surface waters of the Gulf of Mexico and while methylphosphonate is a potential

  12. Methane production by attached film

    DOEpatents

    Jewell, William J.

    1981-01-01

    A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

  13. Abiotic Production of Methane in Terrestrial Planets

    PubMed Central

    Guzmán-Marmolejo, Andrés; Escobar-Briones, Elva

    2013-01-01

    Abstract On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×108 and 1.3×109 molecules cm−2 s−1 for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life. Key Words: Serpentinization—Exoplanets—Biosignatures—Planetary atmospheres. Astrobiology 13, 550–559. PMID:23742231

  14. Production of Methane and Water from Crew Plastic Waste

    NASA Technical Reports Server (NTRS)

    Captain, Janine; Santiago, Eddie; Parrish, Clyde; Strayer, Richard F.; Garland, Jay L.

    2008-01-01

    Recycling is a technology that will be key to creating a self sustaining lunar outpost. The plastics used for food packaging provide a source of material that could be recycled to produce water and methane. The recycling of these plastics will require some additional resources that will affect the initial estimate of starting materials that will have to be transported from earth, mainly oxygen, energy and mass. These requirements will vary depending on the recycling conditions. The degredation products of these plastics will vary under different atmospheric conditions. An estimate of the the production rate of methane and water using typical ISRU processes along with the plastic recycling will be presented.

  15. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics.

    PubMed

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2016-04-01

    Methane production characteristics and chemical composition of 405 silages from 43 different crop species were examined using uniform laboratory methods, with the aim to characterise a wide range of crop feedstocks from energy crop rotations and to identify main parameters that influence biomass quality for biogas production. Methane formation was analysed from chopped and over 90 days ensiled crop biomass in batch anaerobic digestion tests without further pre-treatment. Lignin content of crop biomass was found to be the most significant explanatory variable for specific methane yields while the methane content and methane production rates were mainly affected by the content of nitrogen-free extracts and neutral detergent fibre, respectively. The accumulation of butyric acid and alcohols during the ensiling process had significant impact on specific methane yields and methane contents of crop silages. It is proposed that products of silage fermentation should be considered when evaluating crop silages for biogas production. PMID:26836846

  16. Sulfide and methane production in sewer sediments.

    PubMed

    Liu, Yiwen; Ni, Bing-Jie; Ganigué, Ramon; Werner, Ursula; Sharma, Keshab R; Yuan, Zhiguo

    2015-03-01

    Recent studies have demonstrated significant sulfide and methane production by sewer biofilms, particularly in rising mains. Sewer sediments in gravity sewers are also biologically active; however, their contribution to biological transformations in sewers is poorly understood at present. In this study, sediments collected from a gravity sewer were cultivated in a laboratory reactor fed with real wastewater for more than one year to obtain intact sediments. Batch test results show significant sulfide production with an average rate of 9.20 ± 0.39 g S/m(2)·d from the sediments, which is significantly higher than the areal rate of sewer biofilms. In contrast, the average methane production rate is 1.56 ± 0.14 g CH4/m(2)·d at 20 °C, which is comparable to the areal rate of sewer biofilms. These results clearly show that the contributions of sewer sediments to sulfide and methane production cannot be ignored when evaluating sewer emissions. Microsensor and pore water measurements of sulfide, sulfate and methane in the sediments, microbial profiling along the depth of the sediments and mathematical modelling reveal that sulfide production takes place near the sediment surface due to the limited penetration of sulfate. In comparison, methane production occurs in a much deeper zone below the surface likely due to the better penetration of soluble organic carbon. Modelling results illustrate the dependency of sulfide and methane productions on the bulk sulfate and soluble organic carbon concentrations can be well described with half-order kinetics.

  17. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate

    NASA Astrophysics Data System (ADS)

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-01

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d-1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.

  18. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate

    PubMed Central

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-01

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d−1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery. PMID:26791952

  19. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate.

    PubMed

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-01

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d(-1)) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery. PMID:26791952

  20. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate

    NASA Astrophysics Data System (ADS)

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-01

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d‑1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.

  1. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate.

    PubMed

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-21

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d(-1)) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.

  2. Investigations of Methane Production in Hypersaline Environments

    NASA Technical Reports Server (NTRS)

    Bebout, Brad M.

    2015-01-01

    The recent reports of methane in the atmosphere of Mars, as well as the findings of hypersaline paleo-environments on that planet, have underscored the need to evaluate the importance of biological (as opposed to geological) trace gas production and consumption. Methane in the atmosphere of Mars may be an indication of life but might also be a consequence of geologic activity and/or the thermal alteration of ancient organic matter. Hypersaline environments have now been reported to be extremely likely in several locations in our solar system, including: Mars, Europa, and Enceladus. Modern hypersaline microbial mat communities, (thought to be analogous to those present on the early Earth at a period of time when Mars was experiencing very similar environmental conditions), have been shown to produce methane. However, very little is known about the physical and/or biological controls imposed upon the rates at which methane, and other important trace gases, are produced and consumed in these environments. We describe here the results of our investigations of methane production in hypersaline environments, including field sites in Chile, Baja California Mexico, California, USA and the United Arab Emirates. We have measured high concentrations of methane in bubbles of gas produced both in the sediments underlying microbial mats, as well as in areas not colonized by microbial mats in the Guerrero Negro hypersaline ecosystem, Baja California Mexico, in Chile, and in salt ponds on the San Francisco Bay. The carbon isotopic (d13C) composition of the methane in the bubbles exhibited an extremely wide range of values, (ca. -75 per mille ca. -25 per mille). The hydrogen isotopic composition of the methane (d2H) ranged from -60 to -30per mille and -450 to -350per mille. These isotopic values are outside of the range of values normally considered to be biogenic, however incubations of the sediments in contact with these gas bubbles reveals that the methane is indeed being

  3. Methane production from marine microalgae Isochrysis galbana.

    PubMed

    Santos, Nathalia O; Oliveira, Suzana M; Alves, Larissa C; Cammarota, Magali C

    2014-04-01

    Methane production from marine microalgae Isochrysis galbana was assessed before and after mechanical and chemical pretreatments. Mechanical pretreatment resulted in a 61.7% increase in soluble Chemical Oxygen Demand. Different hydrolysis conditions were evaluated by varying temperature - T, sulfuric acid concentration - AC and biomass suspension concentration (measured as particulate COD - CODp) using an experimental design. The most significant interaction occurred between AC and T and the hydrolysis condition that showed the best result in the anaerobic digestion step was the condition at 40°C with addition of 0.2% (v/v) acid for 16h (9.27LCH4/kgVS). The low methane yields were attributed to inhibitory sodium concentrations for anaerobic digestion. Eliminating inhibitory sodium in the anaerobic digestion by biomass prewashing, there was a 71.5% increase in methane yield for biomass after acid hydrolysis, demonstrating the need for pretreatment and reduction in sodium concentration in the anaerobic digestion.

  4. Methane production in simulated hybrid bioreactor landfill.

    PubMed

    Xu, Qiyong; Jin, Xiao; Ma, Zeyu; Tao, Huchun; Ko, Jae Hac

    2014-09-01

    The aim of this work was to study a hybrid bioreactor landfill technology for landfill methane production from municipal solid waste. Two laboratory-scale columns were operated for about ten months to simulate an anaerobic and a hybrid landfill bioreactor, respectively. Leachate was recirculated into each column but aeration was conducted in the hybrid bioreactor during the first stage. Results showed that leachate pH in the anaerobic bioreactor maintained below 6.5, while in the hybrid bioreactor quickly increased from 5.6 to 7.0 due to the aeration. The temporary aeration resulted in lowering COD and BOD5 in the leachate. The volume of methane collected from the hybrid bioreactor was 400 times greater than that of the anaerobic bioreactor. Also, the methane production rate of the hybrid bioreactor was improved within a short period of time. After about 10 months' operation, the total methane production in the hybrid bioreactor was 212 L (16 L/kgwaste).

  5. Potential methane production and methane oxidation rates in peatland ecosystems of the Appalachian Mountains, United States

    SciTech Connect

    Yavitt, J.B.; Lang, G.E.; Downey, D.M. )

    1988-09-01

    Potential rates of methane production and carbon dioxide production were measured on 11 dates in 1986 in peat from six plant communities typical of moss-dominated peatlands in the Appalachian Mountains. Annual methane production ranged from 2.7 to 17.5 mol/sq m, and annual carbon dioxide production ranged from 30.6 to 79.0 mol/sq m. The wide range in methane production values among the communities found within a single peatland indicates that obtaining one production value for a peatland may not be appropriate. Low temperature constrained the potential for methane production in winter, while the chemical quality of the peat substrate appears to control methane production in the summer. Methane oxidation was measured throughout the peat profile to a depth of 30 cm. Values for methane oxidation ranged from 0.08 to 18.7 microM/hr among the six plant communities. Aerobic methane-oxidizing bacteria probably mediated most of the activity. On a daily basis during the summer, between 11 and 100% of the methane produced is susceptible to oxidation within the peat column. Pools of dissolved methane and dissolved carbon dioxide in pore waters were less than 0.2 and less than 1.0 mol/sq m, respectively, indicating that methane does not accumulate in the pore waters. Peatlands have been considered as an important source of biologically produced methane. Despite the high rates of methane production, the high rates of methane oxidation dampen the potential emission of methane to the atmosphere. 41 refs., 7 figs., 4 tabs.

  6. [Effect of temperature on methane production and oxidation in soils].

    PubMed

    Ding, Weixin; Cai, Zucong

    2003-04-01

    The influence of temperature and its mechanism on methane production and oxidation in soils were reviewed in this paper. Temperature can alter the soil ability to produce methane through changing types of dominant methanogens in archaeal community. Dominant methanogen is Methanosarcinaceae at higher temperature which can utilize both H2/CO2 and acetate as the precursor to produce methane, while Methanosaetaceae at lower temperature which only use acetate as the precursor and produce far less methane than do Methanosarcinaceae. Increasing soil temperature apparently raises soil ability to produce methane, which is called temperature effectiveness and expressed as Q10 with a range from 1.5 to 28 and an average of 4.1. There is an obviously positive correlation between temperature effectiveness (Q10) on methane production and substrate content. As compared to methane production, effect of temperature on methane oxidation is lower, which may be related to the strong affinity of methanotrophs for methane.

  7. Methane production by sheep and cattle in Australia

    NASA Astrophysics Data System (ADS)

    Minson, D. J.

    1993-02-01

    Using methane production rates from Australian feeds and local estimates of the quantity of feed eaten by different classes of animal, it was estimated that sheep and cattle in Australia produce 2.66 Tg methane in 1990. This value is 43% higher than previous estimates and indicates a need to reassess the methane production of ruminants in other countries.

  8. Relationships between methane production and emission to lacunal methane concentrations in rice

    NASA Astrophysics Data System (ADS)

    Byrd, G. T.; Fisher, F. M.; Sass, R. L.

    2000-03-01

    We measured lacunal methane concentrations in field-grown rice plants as a correlative to both methane production and emissions. Using a gas-tight syringe, 100-μL samples were withdrawn from plant lacunar spaces below the water level and diluted to provide enough volume for analysis by gas chromatography. Lacunal methane concentrations increased throughout the season and, for each sampling date, were usually significantly higher in the cultivars Mars and Cypress (high emitters) when compared with Lemont and Della (low emitters). The field site influenced lacunal methane concentrations, wherein greater lacunal methane concentrations corresponded with greater methane. Methane emission rates were positively correlated with plant lacunal methane concentrations for each cultivar, with an improvement in the relationship during the preheading season. With increases in methane production determined by emissions following field-induced anoxia, lacunal methane concentrations increased accordingly. Lacunal methane concentrations also clearly increased as plant biomass increased, but the relationship depended on field location, which also influenced emissions. Sampling lacunal methane concentrations of rice plants, although labor intensive, is quite flexible, using little field equipment, and may provide an effective alternative to large-scale flux measurements in areas not easily accessible.

  9. Identification of Methanogens and Controls on Methane Production in Incubations of Natural Methane Seep Sediments

    NASA Astrophysics Data System (ADS)

    Kevorkian, R.; Lloyd, K. G.

    2014-12-01

    Methane, the most abundant hydrocarbon in Earth's atmosphere, is produced in large quantities in sediments underlying the world's oceans. Very little of this methane makes it to surface sediments as it is consumed by Anaerobic Methanotrophs (ANME's) in consortia with Sulfate Reducing Bacteria (SRB). Less is known about which organisms are responsible for methane production in marine sediments, and whether that production is under thermodynamic control based on hydrogen concentrations. Although ANMEs have been found to be active in methanogenic sediments and incubations, it is currently unknown whether they are able to grow in methanogenic conditions. We demonstrated with bottle incubations of methane seep sediment taken from Cape Lookout Bight, NC, that hydrogen controls methane production. While sulfate was present the hydrogen concentration was maintained at below 2 nM. Only after the depletion of sulfate allowed hydrogen concentrations to rise above 5 nM did we see production of methane. The same sediments when spiked with methane gas demonstrated its complete removal while sulfate reduction occurred. Quantitative PCR shows that ANME-2 and ANME-1 increase in 16S copy number as methane increases. Total direct cell counts demonstrate a decline in cells with the decrease of sulfate until a recovery corresponding with production of methane. Our results strongly suggest that hydrogen concentrations influence what metabolic processes can occur in marine sediments, and that ANME-1 and ANME-2 are able to grow on the energy provided from methane production.

  10. CO Methanation for Synthetic Natural Gas Production.

    PubMed

    Kambolis, Anastasios; Schildhauer, Tilman J; Kröcher, Oliver

    2015-01-01

    Energy from woody biomass could supplement renewable energy production towards the replacement of fossil fuels. A multi-stage process involving gasification of wood and then catalytic transformation of the producer gas to synthetic natural gas (SNG) represents progress in this direction. SNG can be transported and distributed through the existing pipeline grid, which is advantageous from an economical point of view. Therefore, CO methanation is attracting a great deal of attention and much research effort is focusing on the understanding of the process steps and its further development. This short review summarizes recent efforts at Paul Scherrer Institute on the understanding of the reaction mechanism, the catalyst deactivation, and the development of catalytic materials with benign properties for CO methanation. PMID:26598405

  11. Polar methane production, hothouse climates, and climate change

    NASA Astrophysics Data System (ADS)

    Fricke, H. C.; Williams, C.; Yavitt, J. B.

    2009-12-01

    Although the role of carbon dioxide in producing and maintaining hothouse climates has been considered extensively, the role of methane is more uncertain. Because methane is a very effective greenhouse gas, investigations of methane production and the potential impact of this gas on Cenozoic climate are critical. Methane produced from polar wetlands of hothouse climates is particularly important to understand, as production was likely much higher when wetlands rather than permafrost covered these areas. In this study we focus on Arctic methane production during the Eocene. Carbon isotope ratios of fossil tooth dentine and of authigenic carbonates associated with wetland sediment range from +5 to +10 per mil, which indicated that significant amount of methane production took place, and that this methane was able to reach the atmosphere. Support for this hypothesis is provided by experiments in which litter of plants related to those found in the Eocene high Arctic (e.g. conifers) were incubated at temperatures similar to those estimated for the region at this time. Methane production was measured for these incubations, and the resulting ‘Eocene’ production rates, when scaled to the landscape level, represent a polar source of methane that may several times that of the present day global methane flux. Therefore polar methane production during the Eocene likely represents a significant and presently unaccounted for input of this gas to the early Cenozoic atmosphere. High rates of polar methane production such as that estimated for the Eocene may have had a major impact on Cenozoic climate. They could have resulted in the production of polar stratospheric clouds that preferentially warmed the poles, thus providing a mechanism for preferentially warming high-latitude regions during hothouse climate states. Equally important incubation experiments indicate that methane production in Eocene wetlands is strongly influenced by temperature. Therefore a wetland

  12. Thermophilic methane production from cattle waste.

    PubMed Central

    Varel, V H; Isaacson, H R; Bryant, M P

    1977-01-01

    Methane production from waste of cattle fed a finishing diet was investigated, using four 3-liter-working volume anaerobic digestors at 60 degrees C. At 55 degrees C a start-up culture, in which waste was the only source of bacteria, was generated within 8 days and readily adapted to 60 degrees C, where efficiency of methanogenesis was greater. Increasing the temperature from 60 to 65 degrees C tended to drastically lower efficiency. When feed concentrations of volatile solids (VS, organic matter) were increased in steps of 2% after holding for 1 months at a given concentration, the maximum concentrations for efficient fermentation were 8.2, 10.0, 11.6, and 11.6% for the retention times (RT) of 3, 6, 9, and 12 days, respectively. The VS destructions for these and lower feed concentrations were 31 to 37, 36 to 40, 47 to 49 and 51 to 53% for the 3-, 6-, 9-, and 12-day RT digestors, respectively, and the corresponding methane production rates were about 0.16, 0.18, 0.20, and 0.22 liters/day per g of VS in the feed. Gas contained 52 to 57% methane. At the above RT and feed concentrations, alkalinity rose to 5,000 to 7,700 mg of CaCo3 per liter (pH to 7.5 to 7.8), NH3 plus NH4+ to 64 to 90 mM, and total volatile acids to 850 to 2,050 mg/liter as acetate. The 3-day RT digestor was quite stable up to 8.2% feed VS and at this feed concentration produced methane at the very high rate of 4.5 liters/day per liter of digestor. Increasing the percentage of feed VS beyond those values indicated above resulted in greatly decreased organic matter destruction and methane production, variable decrease in pH, and increased alkalinity, ammonia, and total volatile acid concentrations, with propionate being the first to accumulate in large amounts. In a second experiment with another lot of waste, the results were similar. These studies indicate that loading rates can be much higher than those previously thought useful for maximizing methanogenesis from cattle waste. PMID:557954

  13. Microbial methane production in oxygenated water column of an oligotrophic lake.

    PubMed

    Grossart, Hans-Peter; Frindte, Katharina; Dziallas, Claudia; Eckert, Werner; Tang, Kam W

    2011-12-01

    The prevailing paradigm in aquatic science is that microbial methanogenesis happens primarily in anoxic environments. Here, we used multiple complementary approaches to show that microbial methane production could and did occur in the well-oxygenated water column of an oligotrophic lake (Lake Stechlin, Germany). Oversaturation of methane was repeatedly recorded in the well-oxygenated upper 10 m of the water column, and the methane maxima coincided with oxygen oversaturation at 6 m. Laboratory incubations of unamended epilimnetic lake water and inoculations of photoautotrophs with a lake-enrichment culture both led to methane production even in the presence of oxygen, and the production was not affected by the addition of inorganic phosphate or methylated compounds. Methane production was also detected by in-lake incubations of lake water, and the highest production rate was 1.8-2.4 nM⋅h(-1) at 6 m, which could explain 33-44% of the observed ambient methane accumulation in the same month. Temporal and spatial uncoupling between methanogenesis and methanotrophy was supported by field and laboratory measurements, which also helped explain the oversaturation of methane in the upper water column. Potentially methanogenic Archaea were detected in situ in the oxygenated, methane-rich epilimnion, and their attachment to photoautotrophs might allow for anaerobic growth and direct transfer of substrates for methane production. Specific PCR on mRNA of the methyl coenzyme M reductase A gene revealed active methanogenesis. Microbial methane production in oxygenated water represents a hitherto overlooked source of methane and can be important for carbon cycling in the aquatic environments and water to air methane flux.

  14. CFD Modeling of Methane Production from Hydrate-Bearing Reservoir

    SciTech Connect

    Gamwo, I.K.; Myshakin, E.M.; Warzinski, R.P.

    2007-04-01

    Methane hydrate is being examined as a next-generation energy resource to replace oil and natural gas. The U.S. Geological Survey estimates that methane hydrate may contain more organic carbon the the world's coal, oil, and natural gas combined. To assist in developing this unfamiliar resource, the National Energy Technology Laboratory has undertaken intensive research in understanding the fate of methane hydrate in geological reservoirs. This presentation reports preliminary computational fluid dynamics predictions of methane production from a subsurface reservoir.

  15. Potential for biohydrogen and methane production from olive pulp.

    PubMed

    Gavala, H N; Skiadas, I V; Ahring, B K; Lyberatos, G

    2005-01-01

    The present study investigates the potential for thermophilic biohydrogen and methane production from olive pulp, which is the semi-solid residue coming from the two-phase processing of olives. It focussed on: a) production of methane from the raw olive pulp, b) anaerobic bio-production of hydrogen from the olive pulp, and c) subsequent anaerobic treatment of the hydrogen-effluent with the simultaneous production of methane. Both continuous and batch experiments were performed. The hydrogen potential of the olive pulp amounted to 1.6 mmole H2 per g TS. The methane potential of the raw olive pulp and hydrogen-effluent was as high as 19 mmole CH4 per g TS. This suggests that olive pulp is an ideal substrate for methane production and it shows that biohydrogen production can be very efficiently coupled with a subsequent step for methane production.

  16. Detection and Production of Methane Hydrate

    SciTech Connect

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand processes

  17. A model for methane production in sewers.

    PubMed

    Chaosakul, Thitirat; Koottatep, Thammarat; Polprasert, Chongrak

    2014-09-19

    Most sewers in developing countries are combined sewers which receive stormwater and effluent from septic tanks or cesspools of households and buildings. Although the wastewater strength in these sewers is usually lower than those in developed countries, due to improper construction and maintenance, the hydraulic retention time (HRT) could be relatively long and resulting considerable greenhouse gas (GHG) production. This study proposed an empirical model to predict the quantity of methane production in gravity-flow sewers based on relevant parameters such as surface area to volume ratio (A/V) of sewer, hydraulic retention time (HRT) and wastewater temperature. The model was developed from field survey data of gravity-flow sewers located in a peri-urban area, central Thailand and validated with field data of a sewer system of the Gold Coast area, Queensland, Australia. Application of this model to improve construction and maintenance of gravity-flow sewers to minimize GHG production and reduce global warming is presented.

  18. Global Change Simulations Affect Potential Methane Oxidation in Upland Soils

    NASA Astrophysics Data System (ADS)

    Blankinship, J. C.; Hungate, B. A.

    2004-12-01

    Atmospheric concentrations of methane (CH4) are higher now than they have ever been during the past 420,000 years. However, concentrations have remained stable since 1999. Emissions associated with livestock husbandry are unlikely to have changed, so some combination of reduced production in wetlands, more efficient capture by landfills, or increased consumption by biological CH4 oxidation in upland soils may be responsible. Methane oxidizing bacteria are ubiquitous in upland soils and little is known about how these bacteria respond to anthropogenic global change, and how they will influence - or already are influencing - the radiative balance of the atmosphere. Might ongoing and future global changes increase biological CH4 oxidation? Soils were sampled from two field experiments to assess changes in rates of CH4 oxidation in response to global change simulations. Potential activities of CH4 oxidizing bacterial communities were measured through laboratory incubations under optimal temperature, soil moisture, and atmospheric CH4 concentrations (~18 ppm, or 10x ambient). The ongoing 6-year multifactorial Jasper Ridge Global Change Experiment (JRGCE) simulates warming, elevated precipitation, elevated atmospheric CO2, elevated atmospheric N deposition, and increased wildfire frequency in an annual grassland in a Mediterranean-type climate in central California. The ongoing 1-year multifactorial Merriam Climate Change Experiment (MCCE) simulates warming, elevated precipitation, and reduced precipitation in four different types of ecosystems along an elevational gradient in a semi-arid climate in northern Arizona. The high desert grassland, pinyon-juniper woodland, ponderosa pine forest, and mixed conifer forest ecosystems range in annual precipitation from 100 to 1000 mm yr-1, and from productivity being strongly water limited to strongly temperature limited. Among JRGCE soils, elevated atmospheric CO2 increased potential CH4 oxidation rates (p=0.052) and wildfire

  19. Eating beef: cattle, methane and food production.

    PubMed

    Wahlquist, Åsa K

    2013-01-01

    A number of prominent people have advocated eating less meat or becoming a vegetarian to reduce global warming, because cattle produce the greenhouse gas methane. This raises a number of questions including: what will happen to the grasslands that much of the world's cattle currently graze; how will alternate protein be produced, and what will the greenhouse consequences of that production be? It comes down to production systems. About 70 per cent of the world's agricultural land is grassland, and the only way to produce food from grasslands is to graze ruminants on it. If domesticated animals do not graze the grasslands, native or feral ruminants, which also produce methane, tend to move in. Feeding high quality grain to cattle is much less defensible. Replacing animal protein with plant proteins like soybeans necessitates more cropping land, water, fuel and chemicals being used. A more rational food system would raise cattle on grasslands but not feed them high quality grains. Instead more of the currently grown crop could be devoted to human consumption.

  20. Eating beef: cattle, methane and food production.

    PubMed

    Wahlquist, Åsa K

    2013-01-01

    A number of prominent people have advocated eating less meat or becoming a vegetarian to reduce global warming, because cattle produce the greenhouse gas methane. This raises a number of questions including: what will happen to the grasslands that much of the world's cattle currently graze; how will alternate protein be produced, and what will the greenhouse consequences of that production be? It comes down to production systems. About 70 per cent of the world's agricultural land is grassland, and the only way to produce food from grasslands is to graze ruminants on it. If domesticated animals do not graze the grasslands, native or feral ruminants, which also produce methane, tend to move in. Feeding high quality grain to cattle is much less defensible. Replacing animal protein with plant proteins like soybeans necessitates more cropping land, water, fuel and chemicals being used. A more rational food system would raise cattle on grasslands but not feed them high quality grains. Instead more of the currently grown crop could be devoted to human consumption. PMID:23353606

  1. Key factors influencing the potential of catch crops for methane production.

    PubMed

    Molinuevo-Salces, Beatriz; Fernández-Varela, Raquel; Uellendahl, Hinrich

    2014-08-01

    Catch crops are grown in crop rotation primarily for soil stabilization. The excess biomass of catch crops was investigated for its potential as feedstock for biogas production. Ten variables affecting catch crop growth and methane potential were evaluated. Field trials and methane potential were studied for 14 different catch crops species, with 19 samples harvested in 2010 and 36 harvested in 2011. Principal component analysis was applied to the data to identify the variables characterizing the potential for the different catch crops species for methane production. Two principal components explained up to 84.6% and 71.6% of the total variation for 2010 and 2011 samples, respectively. Specific methane yield, climate conditions (rainfall and temperature) and total nitrogen in the biomass were the variables classifying the different catch crops. Catch crops in the Brassicaceae and Graminaceae botanical families showed the highest methane yield. This study demonstrates the importance of the crop species when choosing a suitable catch crop for biogas production.

  2. Terrestrial plant methane production and emission.

    PubMed

    Bruhn, Dan; Møller, Ian M; Mikkelsen, Teis N; Ambus, Per

    2012-03-01

    In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH(4) ) generation in terrestrial plants and plant. Clearly, despite much uncertainty and skepticism, we conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH(4) production, i.e. cutting injuries, increasing temperature, ultraviolet radiation and reactive oxygen species. Further, we analyze rates of measured emission of aerobically produced CH(4) in pectin and in plant tissues from different studies and argue that pectin is very far from the sole contributing precursor. In consequence, scaling up of aerobic CH(4) emission needs to take into consideration other potential sources than pectin. Due to the large uncertainties related to effects of stimulating factors, genotypic responses and type of precursors, we conclude that current attempts for upscaling aerobic CH(4) into a global budget is inadequate. Thus it is too early to draw the line under the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH(4) precursors in plant material.

  3. Development of Sand Production Evaluation Apparatus for Methane Hydrate Development

    NASA Astrophysics Data System (ADS)

    Kakumoto, M.; Yoneda, J.; Tenma, N.; Katagiri, J.; Noda, S.

    2015-12-01

    As a part of a Japanese National hydrate research program (MH21, funded by METI), we performed a study on sand production mechanism during methane gas production. In 2013, the first methane hydrate offshore production test was conducted in Japan, and it was recognized in the production of about 20000m3/day of methane gas from methane hydrate bearing sand sediment in deep marine sediment. In methane hydrate development, depressurization method has been proposed for gas extraction. This method is a method to reduce the bottom hole pressure by submersible pump lowering water level in the production well, and gas and water is recovered by methane hydrate dissociation at the in situ. At that time, a phenomenon that sand flows into the wells is feared. In actually, sand production phenomenon occurred after 6 days from production start in offshore production test. A mechanism of sand production has not yet been resolved in case of methane hydrate development. Therefore, we developed large scale laboratory test apparatus for the purpose of elucidation of the mechanism of sand production phenomenon. In this presentation, we introduce basic performance of this apparatus, and usefulness is made mention by representative test results.

  4. Enhanced Microbial Pathways for Methane Production from Oil Shale

    SciTech Connect

    Paul Fallgren

    2009-02-15

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  5. Ecosystem and physiological controls over methane production in northern wetlands

    SciTech Connect

    Valentine, D.W.; Holland, E.A.; Schimel, D.S.

    1994-01-20

    Peat chemistry appears to exert primary control over methane production rates in the Canadian Northern Wetlands Study (NOWES) area. We determined laboratory methane production rate potentials in anaerobic slurries of samples collected from a transect of sites through the NOWES study area. We related methane production rates to indicators of resistance to microbial decay (peat C:N and lignin:N ratios) and experimentally manipulated substrate availability for methanogenesis using ethanol (EtOH) and plant litter. We also determined responses of methane production to pH and temperature. Methane production potentials declined along the gradient of sites from high rates in the coastal fens to low rates in the interior bogs and were generally highest in surface layers. Strong relationships between CH{sub 4} production potentials and peat chemistry suggested that methanogenesis was limited by fermentation rates. Methane production at ambient pH responded strongly to substrate additions in the circumneutral fens with narrow lignin:N and C:N ratios ({partial_derivative}CH{sub 4}/{partial_derivative}EtOH = 0.9-2.3 mg g{sup {minus}1}) and weakly in the acidic bogs with wide C:N and lignin:N ratios ({partial_derivative}CH{sub 4}/{partial_derivative}EtOH = -0.4-0.02 mg g{sup {minus}1}). Observed Q{sub 10} values ranged from 1.7 to 4.7 and generally increased with increasing substrate availability, suggesting that fermentation rates were limiting. Titration experiments generally demonstrated inhibition of methanogenesis by low pH. Our results suggest that the low rates of methane emission observed in interior bogs during NOWES likely resulted from pH and substrate quality limitation of the fermentation step in methane production and thus reflect intrinsically low methane production potentials. Low methane emission rates observed during NOWES will likely be observed in other northern wetland regions with similar vegetation chemistry. 57 refs., 5 figs., 4 tabs.

  6. Ecosystem and physiological controls over methane production in northern wetlands

    NASA Technical Reports Server (NTRS)

    Valentine, David W.; Holland, Elisabeth A.; Schimel, David S.

    1994-01-01

    Peat chemistry appears to exert primary control over methane production rates in the Canadian Northern Wetlands Study (NOWES) area. We determined laboratory methane production rate potentials in anaerobic slurries of samples collected from a transect of sites through the NOWES study area. We related methane production rates to indicators of resistance to microbial decay (peat C: N and lignin: N ratios) and experimentally manipulated substrate availability for methanogenesis using ethanol (EtOH) and plant litter. We also determined responses of methane production to pH and temperature. Methane production potentials declined along the gradient of sites from high rates in the coastal fens to low rates in the interior bogs and were generally highest in surface layers. Strong relationships between CH4 production potentials and peat chemistry suggested that methanogenesis was limited by fermentation rates. Methane production at ambient pH responded strongly to substrate additions in the circumneutral fens with narrow lignin: N and C: N ratios (delta CH4/delta EtOH = 0.9-2.3 mg/g) and weakly in the acidic bogs with wide C: N and lignin: N ratios (delta CH4/delta EtOH = -0.04-0.02 mg/g). Observed Q(sub 10) values ranged from 1.7 to 4.7 and generally increased with increasing substrate availability, suggesting that fermentation rates were limiting. Titration experiments generally demonstrated inhibition of methanogenesis by low pH. Our results suggest that the low rates of methane emission observed in interior bogs during NOWES likely resulted from pH and substrate quality limitation of the fermentation step in methane production and thus reflect intrinsically low methane production potentials. Low methane emission rates observed during NOWES will likely be observed in other northern wetland regions with similar vegetation chemistry.

  7. Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water

    SciTech Connect

    Song Jin

    2007-05-31

    Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

  8. Transcriptomic evidence for net methane oxidation and net methane production in putative ANaerobic MEthanotrophic (ANME) archaea

    NASA Astrophysics Data System (ADS)

    Lloyd, K. G.; Alperin, M. J.; Teske, A.

    2010-12-01

    Anaerobic methane oxidation regulates methane emissions in marine sediments and is thought to be mediated by uncultured methanogen-like archaea collectively labeled ANME (for ANaerobic MEthanotrophs). ANME archaea are often assumed to be obligate methanotrophs that are incapable of net methanogenesis, and are therefore used as proxies for anaerobic methane oxidation in many environments in spite of uncertainty regarding their metabolic capabilities. We tested this assumption by detecting and quantifying methanogenic gene transcription of ANME archaea across clearly differentiated zones of methane oxidation vs. methane production in sediments from the White Oak River estuary, NC. ANME-1 archaea (a group of putative obligate methanotrophs) consistently transcribe 16S rRNA and mRNA of methyl coenzyme M reductase (mcrA) the key gene for methanogenesis, up to 45 cm into methanogenic sediments. CARD-FISH shows that ANME-1 archaea exist as single rod-shaped cells or pairs of cells, and in very low numbers. Integrating normalized depth-distributions of 16S rDNA and rRNA (measured with qPCR and RT-qPCR, respectively) shows that 26-77 % of the rDNA proxy for ANME-1 cell numbers, and 18-74 % of the rRNA proxy for ANME-1 activity occurs within methane-producing sediments. mRNA transcripts of dissimilatory sulfite reductase (dsrAB) from sulfate reducing bacteria, the putative syntrophic partners of sulfate-dependent methane oxidation, were amplified consistently from methane-oxidizing sediments, and inconsistently from methane-producing sediments. These results change the perspective from ANME-1 archaea as obligate methane oxidizers to methanogens that are also capable of methane oxidation.

  9. Methane production from grape skins. Final technical report

    SciTech Connect

    Yunghans, W.N.

    1981-10-09

    Methane production from grape pomace was measured for a 50-day digestion period. Gas production was calculated to be 2400 ft/sup 3//10 d/ton at 53% methane content. Microorganisms particularly a fungus which grows on grape pomace and lignin was isolated. Lignin content of pomace was measured at approximately 60%. Lignin is slowly digested and may represent a residue which requires long term digestion. Research is continuing on isolation of anaerobic methane bacteria and codigestion of pomace with enzymes as cellulase and pectinase. The sewage sludge functioned adequately as a mixed source of organisms capable of digesting grape pomace. A sediment from stored grape juice produced significant amounts of methane and represents a nutrient substrate for additional studies on continuous flow methane production. 3 figs.

  10. Thermophilic methane production and oxidation in compost.

    PubMed

    Jäckel, Udo; Thummes, Kathrin; Kämpfer, Peter

    2005-04-01

    Methane cycling within compost heaps has not yet been investigated in detail. We show that thermophilic methane oxidation occurred after a lag phase of up to one day in 4-week old, 8-week old and mature (>10-week old) compost material. The potential rate of methane oxidation was between 2.6 and 4.1 micromol CH4(gdw)(-1)h(-1). Profiles of methane concentrations within heaps of different ages indicated that 46-98% of the methane produced was oxidised by methanotrophic bacteria. The population size of thermophilic methanotrophs was estimated at 10(9) cells (gdw)(-1), based on methane oxidation rates. A methanotroph (strain KTM-1) was isolated from the highest positive step of a serial dilution series. This strain belonged to the genus Methylocaldum, which contains thermotolerant and thermophilic methanotrophs. The closest relative organism on the basis of 16S rRNA gene sequence identity was M. szegediense (>99%), a species originally isolated from hot springs. The temperature optimum (45-55 degrees C) for methane oxidation within the compost material was identical to that of strain KTM-1, suggesting that this strain was well adapted to the conditions in the compost material. The temperatures measured in the upper layer (0-40 cm) of the compost heaps were also in this range, so we assume that these organisms are capable of effectively reducing the potential methane emissions from compost.

  11. Relationship between selection for feed efficiency and methane production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enteric methane is a product of fermentation in the gastro-intestinal tract of ruminants. A group of archaea bacteria collectively called “methanogens” are responsible for the synthesis of methane. In ruminants, the methanogens grow in the reticulum-rumen complex and in the cecum. Most of the met...

  12. Effects of Rumen Protozoa of Brahman Heifers and Nitrate on Fermentation and In vitro Methane Production

    PubMed Central

    Nguyen, S. H.; Li, L.; Hegarty, R. S.

    2016-01-01

    Two experiments were conducted assessing the effects of presence or absence of rumen protozoa and dietary nitrate addition on rumen fermentation characteristics and in vitro methane production in Brahman heifers. The first experiment assessed changes in rumen fermentation pattern and in vitro methane production post-refaunation and the second experiment investigated whether addition of nitrate to the incubation would give rise to methane mitigation additional to that contributed by defaunation. Ten Brahman heifers were progressively adapted to a diet containing 4.5% coconut oil distillate for 18 d and then all heifers were defaunated using sodium 1-(2-sulfonatooxyethoxy) dodecane (Empicol). After 15 d, the heifers were given a second dose of Empicol. Fifteen days after the second dosing, all heifers were allocated to defaunated or refaunated groups by stratified randomisation, and the experiment commenced (d 0). On d 0, an oral dose of rumen fluid collected from unrelated faunated cattle was used to inoculate 5 heifers and form a refaunated group so that the effects of re-establishment of protozoa on fermentation characteristics could be investigated. Samples of rumen fluid collected from each animal using oesophageal intubation before feeding on d 0, 7, 14, and 21 were incubated for in vitro methane production. On d 35, 2% nitrate (as NaNO3) was included in in vitro incubations to test for additivity of nitrate and absence of protozoa effects on fermentation and methane production. It was concluded that increasing protozoal numbers were associated with increased methane production in refaunated heifers 7, 14, and 21 d after refaunation. Methane production rate was significantly higher from refaunated heifers than from defaunated heifers 35 d after refaunation. Concentration and proportions of major volatile fatty acids, however, were not affected by protozoal treatments. There is scope for further reducing methane output through combining defaunation and dietary

  13. Effects of Rumen Protozoa of Brahman Heifers and Nitrate on Fermentation and In vitro Methane Production.

    PubMed

    Nguyen, S H; Li, L; Hegarty, R S

    2016-06-01

    Two experiments were conducted assessing the effects of presence or absence of rumen protozoa and dietary nitrate addition on rumen fermentation characteristics and in vitro methane production in Brahman heifers. The first experiment assessed changes in rumen fermentation pattern and in vitro methane production post-refaunation and the second experiment investigated whether addition of nitrate to the incubation would give rise to methane mitigation additional to that contributed by defaunation. Ten Brahman heifers were progressively adapted to a diet containing 4.5% coconut oil distillate for 18 d and then all heifers were defaunated using sodium 1-(2-sulfonatooxyethoxy) dodecane (Empicol). After 15 d, the heifers were given a second dose of Empicol. Fifteen days after the second dosing, all heifers were allocated to defaunated or refaunated groups by stratified randomisation, and the experiment commenced (d 0). On d 0, an oral dose of rumen fluid collected from unrelated faunated cattle was used to inoculate 5 heifers and form a refaunated group so that the effects of re-establishment of protozoa on fermentation characteristics could be investigated. Samples of rumen fluid collected from each animal using oesophageal intubation before feeding on d 0, 7, 14, and 21 were incubated for in vitro methane production. On d 35, 2% nitrate (as NaNO3) was included in in vitro incubations to test for additivity of nitrate and absence of protozoa effects on fermentation and methane production. It was concluded that increasing protozoal numbers were associated with increased methane production in refaunated heifers 7, 14, and 21 d after refaunation. Methane production rate was significantly higher from refaunated heifers than from defaunated heifers 35 d after refaunation. Concentration and proportions of major volatile fatty acids, however, were not affected by protozoal treatments. There is scope for further reducing methane output through combining defaunation and dietary

  14. Effects of Rumen Protozoa of Brahman Heifers and Nitrate on Fermentation and In vitro Methane Production.

    PubMed

    Nguyen, S H; Li, L; Hegarty, R S

    2016-06-01

    Two experiments were conducted assessing the effects of presence or absence of rumen protozoa and dietary nitrate addition on rumen fermentation characteristics and in vitro methane production in Brahman heifers. The first experiment assessed changes in rumen fermentation pattern and in vitro methane production post-refaunation and the second experiment investigated whether addition of nitrate to the incubation would give rise to methane mitigation additional to that contributed by defaunation. Ten Brahman heifers were progressively adapted to a diet containing 4.5% coconut oil distillate for 18 d and then all heifers were defaunated using sodium 1-(2-sulfonatooxyethoxy) dodecane (Empicol). After 15 d, the heifers were given a second dose of Empicol. Fifteen days after the second dosing, all heifers were allocated to defaunated or refaunated groups by stratified randomisation, and the experiment commenced (d 0). On d 0, an oral dose of rumen fluid collected from unrelated faunated cattle was used to inoculate 5 heifers and form a refaunated group so that the effects of re-establishment of protozoa on fermentation characteristics could be investigated. Samples of rumen fluid collected from each animal using oesophageal intubation before feeding on d 0, 7, 14, and 21 were incubated for in vitro methane production. On d 35, 2% nitrate (as NaNO3) was included in in vitro incubations to test for additivity of nitrate and absence of protozoa effects on fermentation and methane production. It was concluded that increasing protozoal numbers were associated with increased methane production in refaunated heifers 7, 14, and 21 d after refaunation. Methane production rate was significantly higher from refaunated heifers than from defaunated heifers 35 d after refaunation. Concentration and proportions of major volatile fatty acids, however, were not affected by protozoal treatments. There is scope for further reducing methane output through combining defaunation and dietary

  15. The effects of acid deposition on sulfate reduction and methane production in peatlands

    NASA Technical Reports Server (NTRS)

    Murray, Georgia L.; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Peatlands, as fens and bods, make up a large percentage of northern latitude terrestrial environments. They are organic rich and support an active community of anaerobic bacteria, such as methanogenic and sulfate-reducing bacteria. The end products of these microbial activities, methane and hydrogen sulfide, are important components in the global biogeochemical cycles of carbon and sulfur. Since these two bacterial groups compete for nutritional substrates, increases in sulfate deposition due to acid rain potentially can disrupt the balance between these processes leading to a decrease in methane production and emission. This is significant because methane is a potent greenhouse gas that effects the global heat balance. A section of Mire 239 in the Experimental Lakes Area, in Northwestern Ontario, was artificially acidified and rates of sulfate reduction and methane production were measured with depth. Preliminary results suggested that methane production was not affected immediately after acidification. However, concentrations of dissolved methane decreased and dissolved sulfide increased greatly after acidification and both took several days to recover. The exact mechanism for the decrease in methane was not determined. Analyses are under way which will be used to determine rates of sulfate reduction. These results will be available by Spring and will be discussed.

  16. Forest cockchafer larvae as methane production hotspots in soils and their importance for net soil methane fluxes

    NASA Astrophysics Data System (ADS)

    Görres, Carolyn-Monika; Kammann, Claudia; Murphy, Paul; Müller, Christoph

    2016-04-01

    Certain groups of soil invertebrates, namely scarab beetles and millipedes, are capable of emitting considerable amounts of methane due to methanogens inhabiting their gut system. It was already pointed out in the early 1990's, that these groups of invertebrates may represent a globally important source of methane. However, apart from termites, the importance of invertebrates for the soil methane budget is still unknown. Here, we present preliminary results of a laboratory soil incubation experiment elucidating the influence of forest cockchafer larvae (Melolontha hippocastani FABRICIUS) on soil methane cycling. In January/February 2016, two soils from two different management systems - one from a pine forest (extensive use) and one from a vegetable field (intensive use) - were incubated for 56 days either with or without beetle larvae. Net soil methane fluxes and larvae methane emissions together with their stable carbon isotope signatures were quantified at regular intervals to estimate gross methane production and gross methane oxidation in the soils. The results of this experiment will contribute to testing the hypothesis of whether methane production hotspots can significantly enhance the methane oxidation capacity of soils. Forest cockchafer larvae are only found in well-aerated sandy soils where one would usually not suspect relevant gross methane production. Thus, besides quantifying their contribution to net soil methane fluxes, they are also ideal organisms to study the effect of methane production hotspots on overall soil methane cycling. Funding support: Reintegration grant of the German Academic Exchange Service (DAAD) (#57185798).

  17. Abiotic Production of Methane in Terrestrial Planets full access

    NASA Astrophysics Data System (ADS)

    Guzmán-Marmolejo, Andrés; Segura, Antígona; Escobar-Briones, Elva

    2013-06-01

    On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×10^8 and 1.3×10^9 molecules cm^-2 s^-1 for rocky planets with 1 and 5 M, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M planets and 4.1 and 3.7 ppmv for 5 M planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life.

  18. Methane dynamics in a montane fen: Factors controlling production, accumulation and emissions

    NASA Astrophysics Data System (ADS)

    Mwakanyamale, K. E.; Yeung, H.; Strack, M.

    2014-12-01

    Characterization of methane dynamics in peatlands is essential to improve understanding of peatlands contribution to carbon balance and interaction with climate. Of the two peatland types, natural fens are known to be a larger contributor of methane emissions to the atmosphere than natural bogs. This study uses geophysical methods integrated with in-situ direct measurements and chamber fluxes to improve understanding of temporal and spatial variation in methane production, accumulation and emissions from natural montane fen in Alberta Canada. Meteorological data and peat cores (~150 cm) were collected to study factors affecting methane production, accumulation and emissions from the Sibbald Research Wetland, a montane fen in the Rocky Mountains in southern Alberta. Our results show a direct correlation between methane accumulation and degree of peat humification, substrate quality and porosity. Changes in temperature, pressure and water table position were shown to relate to ebullition events, with the highest number of ebullition events occurring from late August to early November. The geophysical results indicate a small spatial variation in free phase biogenic gas accumulation within the studied area. Diffusive methane fluxes were correlated to plant productivity on both daily and seasonal time scales with patterns varying between plots dominated by Juncus sp. and Carex spp. These results highlight the interacting ecological and physical controls on peatland methane dynamics.

  19. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Donn McGuire; Thomas Williams; Bjorn Paulsson; Alexander Goertz

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a drilling hazard by the oil and gas industry for years. Drilling engineers working in Russia, Canada and the USA have documented numerous problems, including drilling kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates as a potential energy source agree that the resource potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained from physical samples taken from actual hydrate-bearing rocks. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The project team drilled and continuously cored the Hot Ice No. 1 well on Anadarko-leased acreage beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and used for determining physical characteristics of hydrates and surrounding rock. After the well was logged, a 3D vertical seismic profile (VSP) was recorded to calibrate the shallow geologic section with seismic data and to investigate techniques to better resolve lateral subsurface variations of potential hydrate-bearing strata. Paulsson Geophysical Services, Inc. deployed their 80 level 3C clamped borehole seismic receiver array in the wellbore to record samples every 25 ft. Seismic vibrators were successively positioned at 1185 different surface positions in a circular pattern around the wellbore. This technique generated a 3D image of the subsurface. Correlations were

  20. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-07-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  1. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated and is

  2. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-06-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  3. Methane production and isotopic fingerprinting in ethanol fuel contaminated sites.

    PubMed

    Freitas, Juliana G; Fletcher, Barbara; Aravena, Ramon; Barker, James F

    2010-01-01

    Biodegradation of organic compounds in groundwater can be a significant source of methane in contaminated sites. Methane might accumulate in indoor spaces posing a hazard. The increasing use of ethanol as a gasoline additive is a concern with respect to methane production since it is easily biodegraded and has a high oxygen demand, favoring the development of anaerobic conditions. This study evaluated the use of stable carbon isotopes to distinguish the methane origin between gasoline and ethanol biodegradation, and assessed the occurrence of methane in ethanol fuel contaminated sites. Two microcosm tests were performed under anaerobic conditions: one test using ethanol and the other using toluene as the sole carbon source. The isotopic tool was then applied to seven field sites known to be impacted by ethanol fuels. In the microcosm tests, it was verified that methane from ethanol (δ¹³C = -11.1‰) is more enriched in ¹³C, with δ¹³C values ranging from -20‰ to -30‰, while the methane from toluene (δ¹³C = -28.5‰) had a carbon isotopic signature of -55‰. The field samples had δ¹³C values varying over a wide range (-10‰ to -80‰), and the δ¹³C values allowed the methane source to be clearly identified in five of the seven ethanol/gasoline sites. In the other two sites, methane appears to have been produced from both sources. Both gasoline and ethanol were sources of methane in potentially hazardous concentrations and methane could be produced from organic acids originating from ethanol along the groundwater flow system even after all the ethanol has been completed biodegraded.

  4. Deepwater extension of bacterial methane production, northern Gulf of Mexico

    SciTech Connect

    Wagner, B.E.; Sofer, Z. )

    1996-01-01

    Since 1980, it has been shown that microbially generated methane accounts for up to 80% of the gas resource and production from Plio-Pleistocene reservoirs in the offshore GOM shelf. These reservoirs and their source rocks were deposited in shelf-edge deltaic systems. This area of high sedimentation rate and relatively low geothermal gradient offers conditions favorable for generation and accumulation of bacterial gas. Oceanographic work in the GOM has documented occurrences of bacterial methane both in deepwater sediments and associated with cold seeps. More recently deepwater exploration drilling has discovered slope environment reservoir sands charged with potentially significant volumes of bacterial methane. The depositional setting for these reservoirs is distinctly different from the better defined shelf trend. The increasingly recognized occurrence of bacterial methane in the deepwater depositional environment generates significant implications regarding basic issues such as product prediction, resource volume estimates and evolving production technology. This presentation will briefly review the conditions favoring production of bacterial methane, discussing the formation of bacterial methane at both the shelf and in deepwater. Known trends in bacterial gas production from the GOM shelf will be reviewed. New data from recent deepwater exploration wells will be presented and the implications of bacterial gas production in the deepwater will be discussed.

  5. The methane production of poultry slaughtering residues and effects of pre-treatments on the methane production of poultry feather.

    PubMed

    Salminen, E; Einola, J; Rintala, J

    2003-09-01

    The biological methane production rate and yield of different poultry slaughtering residues were studied. Poultry offal, blood, and bonemeal were rich in proteins and lipids and showed high methane yields, 0.7-0.9, 0.5, and 0.6-0.7 m3 kg(-1) volatile solids(added), respectively (270-340, 100, and 150-170 m3 ton(-1) wet weight). Blood and bonemeal produced methane rapidly, whereas the methane production of offal was more delayed probably due to long-chain fatty acid inhibition. The length of delay depended on the source and concentration of inoculum and incubation temperature, sewage sludge at 35 degrees C having the shortest delay of a few days, while granular sludge did not produce methane within 94 days of incubation. Feather showed a somewhat lower methane yield, 0.21 m3 kg(-1) volatile solids(added) (50 m3 ton(-1) wet weight). Combined thermal (120 degrees C, 5 min) and enzymatic (commercial alkaline endopeptidase, 2-10 g l(-1)) pre-treatments increased its methane yield by 37 to 51%. Thermal (70-120 degrees C, 5-60 min), chemical (NaOH 2-10 g l(-1), 2-24 h), and enzymatic pre-treatments were less effective, with methane yield increasing by 5 to 32%. Based on the present results, anaerobic digestion of the studied poultry slaughtering residues appears a promising possibility because of the high methane yield and nitrogen content of these residues (8 to 14% N of total solids), whereas pre-treatments were shown to improve the methane production of feather.

  6. Energy from anaerobic methane production. [Sweden

    SciTech Connect

    Not Available

    1982-02-01

    Since 1970 Swedish researchers have been testing the ANAMET (anaerobic-aerobic-methane) process, which involves converting industrial wastewaters via an initial anaerobic microbiological step followed by an aerobic one. Recycling the biomass material in each step allows shorter hydraulic retention times without decreasing stability or solids reduction. Since the first ANAMET plants began operating at a Swedish sugar factory in 1972, 17 more plants have started up or are under construction. Moreover, the ANAMET process has engendered to offshoot BIOMET (biomass-methane) process, a thermophilic anaerobic scheme that can handle sugar-beet pulp as well as grass and other soft, fast-growing biomasses.

  7. Methane production from global biomass burning

    SciTech Connect

    Wei Min Hao; Ward, D.E.

    1993-11-20

    Emissions of methane from various sources of biomass burning are determined quantitatively for tropical, temperate, and boreal regions. About 85% of the total CH{sub 4} is emitted in the tropical area, which is mainly the result of shifting cultivation, fuelwood use, and deforestation. Methane emissions from biomass burning may have increased by at least 9% during the last decade because of increases in tropical deforestation and the use of fuelwood. Changes in land use practices and population growth in the tropics are possible causes of the increase of atmospheric CH{sub 4} concentration. 31 refs., 1 fig., 4 tabs.

  8. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom

  9. Coalbed methane production potential in U. S. basins

    SciTech Connect

    Byer, C.W.; Mroz, T.H.; Covatch, G.L.

    1987-07-01

    The major emphasis of the U.S. DOE's coalbed methane research has been on estimating the magnitude of the resource and developing systems for recovery. Methane resource estimates for 16 basins show that the greatest potential is in the Piceance, Northern Appalachian, Central Appalachian, Powder River, and Greater Green River coal basins. Small, high-potential target areas have been selected for in-depth analysis of the resource. Industry interest is greatest in the Warrior, San Juan, Piceance, Raton Mesa, and Northern and Central Appalachian basins. Production curves for several coalbed methane wells in these basins are included.

  10. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  11. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2004-11-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the

  12. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the

  13. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  14. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    PubMed

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio. PMID:25647030

  15. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    PubMed

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio.

  16. [Methanogens and manipulation of methane production in the rumen].

    PubMed

    Guo, Yan-qiu; Hu, Wei-lian; Liu, Jian-xin

    2005-02-01

    Methanogens belong to the kingdom of Euryarchaeota in the domain of Archaea. They are characterized by their ability to produce methane under anaerobic conditions. Methane production in the rumen represents a loss of energy for the host animal, and, in addition, methane eructated by ruminants may contribute to a greenhouse effect or global warming. Reduction or elimination of methanogenesis in the rumen has been touted as a way of improving animal production and may marginally benefit to control of anthropogenic release of methane. More and more scientists focus on ruminal methanogens and methanogenesis recently. Authors summarized the manipulation of methanogenesis in the rumen, including defaunation, feed formulation, adding electron acceptors and stimulation of acetogens. The characteristics of methanogenic Archaea and the recent knowledge of the methanogenesis in the rumen were also reviewed in this article.

  17. Kinetics of Methane Production from Swine Manure and Buffalo Manure.

    PubMed

    Sun, Chen; Cao, Weixing; Liu, Ronghou

    2015-10-01

    The degradation kinetics of swine and buffalo manure for methane production was investigated. Six kinetic models were employed to describe the corresponding experimental data. These models were evaluated by two statistical measurements, which were root mean square prediction error (RMSPE) and Akaike's information criterion (AIC). The results showed that the logistic and Fitzhugh models could predict the experimental data very well for the digestion of swine and buffalo manure, respectively. The predicted methane yield potential for swine and buffalo manure was 487.9 and 340.4 mL CH4/g volatile solid (VS), respectively, which was close to experimental values, when the digestion temperature was 36 ± 1 °C in the biochemical methane potential assays. Besides, the rate constant revealed that swine manure had a much faster methane production rate than buffalo manure.

  18. Raton basin coalbed methane production picking up in Colorado

    USGS Publications Warehouse

    Hemborg, H. Thomas

    1996-01-01

    Coalbed methane production in the Raton basin of south-central Colorado and northeast New Mexico has gone over pilot testing and entered the development stage which is expected to last several years. The development work is restricted to roughly a 25 mile by 15 mile wide `fairway' centered about 20 miles west of Trinidad, Colorado. At last count, 85 wells were producing nearly 17.5 MMcfd of coalbed methane from the basin's Raton and Vermejo formation coals.

  19. Effect of temperature on methane production from field-scale anaerobic digesters treating dairy manure.

    PubMed

    Arikan, Osman A; Mulbry, Walter; Lansing, Stephanie

    2015-09-01

    Temperature is a critical factor affecting anaerobic digestion because it influences both system heating requirements and methane production. Temperatures of 35-37°C are typically suggested for manure digestion. In temperate climates, digesters require a considerable amount of additional heat energy to maintain temperatures at these levels. In this study, the effects of lower digestion temperatures (22 and 28°C), on the methane production from dairy digesters were evaluated and compared with 35°C using duplicate replicates of field-scale (FS) digesters with a 17-day hydraulic retention time. After acclimation, the FS digesters were operated for 12weeks using solids-separated manure at an organic loading rate (OLR) of 1.4kgVSm(-3)d(-1) and then for 8weeks using separated manure amended with manure solids at an OLR of 2.6kgVSm(-3)d(-1). Methane production values of the FS digesters at 22 and 28°C were about 70% and 87%, respectively, of the values from FS digesters at 35°C. The results suggest that anaerobic digesters treating dairy manure at 28°C were nearly as efficient as digesters operated at 35°C, with 70% of total methane achievable at 22°C. These results are relevant to small farms interested in anaerobic digestion for methane reduction without heat recovery from generators or for methane recovery from covered lagoon digesters. PMID:26101200

  20. Effect of temperature on methane production from field-scale anaerobic digesters treating dairy manure.

    PubMed

    Arikan, Osman A; Mulbry, Walter; Lansing, Stephanie

    2015-09-01

    Temperature is a critical factor affecting anaerobic digestion because it influences both system heating requirements and methane production. Temperatures of 35-37°C are typically suggested for manure digestion. In temperate climates, digesters require a considerable amount of additional heat energy to maintain temperatures at these levels. In this study, the effects of lower digestion temperatures (22 and 28°C), on the methane production from dairy digesters were evaluated and compared with 35°C using duplicate replicates of field-scale (FS) digesters with a 17-day hydraulic retention time. After acclimation, the FS digesters were operated for 12weeks using solids-separated manure at an organic loading rate (OLR) of 1.4kgVSm(-3)d(-1) and then for 8weeks using separated manure amended with manure solids at an OLR of 2.6kgVSm(-3)d(-1). Methane production values of the FS digesters at 22 and 28°C were about 70% and 87%, respectively, of the values from FS digesters at 35°C. The results suggest that anaerobic digesters treating dairy manure at 28°C were nearly as efficient as digesters operated at 35°C, with 70% of total methane achievable at 22°C. These results are relevant to small farms interested in anaerobic digestion for methane reduction without heat recovery from generators or for methane recovery from covered lagoon digesters.

  1. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the revolutionary and new

  2. Topographic Variation and Methane Production in Siberian Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Eason, J.; Kuhn, M. A.; Dunn, S.; Spawn, S.; Schade, J. D.

    2014-12-01

    Understanding the fate of soil carbon when permafrost soils begin to thaw is critical for predicting the impact of permafrost thaw on global climate change. Microbial metabolism of soil carbon can produce carbon dioxide or methane, depending on soil conditions, and which pathway dominates has great significance for the strength of climate feedbacks since methane is a much more powerful greenhouse gas than carbon dioxide. In Arctic ecosystems, methane production from upland environments is not well understood and generally assumed to be low because conditions there are generally not favorable for methanogenesis. Small changes in topography, however, can lead to great heterogeneity in soil conditions at small scales that may lead to higher methane flux than generally recognized. In this study, we investigated patterns in methane, carbon dioxide, and oxygen concentrations in in surface waters of 15 small ponds in the Kolyma River watershed in Northeast Siberia. The ponds were distributed across a topographic gradient from upland tundra high in the landscape to low-lying ponds in the floodplain of the Kolyma River. In addition, we used chambers to measured methane fluxes from a variety of topographic depressions that ranged from pools to moss-dominated saturated soils lacking surface water, to dry soils dominated by sedges. Dissolved carbon dioxide concentrations in ponds showed no trend down the topographic gradient while methane concentrations decreased downslope. The decrease in methane production may be the result of a switch from green moss to brown moss, which may act as a host for methanotrophic bacteria. Ponds with green moss had significantly higher concentrations of methane than the ponds with brown moss. In addition, we found significantly higher methane fluxes from pools and saturated soils then from drier soils, which showed very low fluxes. These results suggest that upland tundra may be a significant source of methane, and that methane fluxes are driven

  3. Effect of temperature on methane production from field-scale anaerobic digesters treating dairy manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature is a critical factor affecting anaerobic digestion because it influences both system heating requirements and methane production. Temperatures of 35-37°C are typically suggested for manure digestion, yet in temperate climate digesters, require a considerable amount of additional heat en...

  4. Up with methane

    SciTech Connect

    Barlaz, M.A.; Milke, M.W.; Ham, R.K.

    1986-12-01

    Methane production from municipal refuse represents a rapidly developing source of energy which remains underutilized. Part of the problem is the small amount of methane which is typically collected relative to the refuse's methane generation potential. This study was undertaken to define the parameters which affect the onset of methane production and methane yields in sanitary landfills. Ultimately, we need to develop refuse disposal methods which enhance its methane production potential. Included in the study were tests of how introduction of old refuse, use of sterile cover soil, addition of acetate to refuse, and use of leachate, recycling and neutralization affect methane generation. A more thorough understanding of how the microbes present in refuse react to different variables is the first step in the development of techniques for stimulating methane production in sanitary landfills.

  5. Methane Production by Microbial Mats Under Low Sulfate Concentrations

    NASA Technical Reports Server (NTRS)

    Bebout, Brad M.; Hoehler, Tori M.; Thamdrup, Bo; Albert, Dan; Carpenter, Steven P.; Hogan, Mary; Turk, Kendra; DesMarais, David J.

    2003-01-01

    Cyanobacterial mats collected in hypersaline salterns were incubated in a greenhouse under low sulfate concentrations ([SO4]) and examined for their primary productivity and emissions of methane and other major carbon species. Atmospheric greenhouse warming by gases such as carbon dioxide and methane must have been greater during the Archean than today in order to account for a record of moderate to warm paleoclemates, despite a less luminous early sun. It has been suggested that decreased levels of oxygen and sulfate in Archean oceans could have significantly stimulated microbial methanogenesis relative to present marine rates, with a resultant increase in the relative importance of methane in maintaining the early greenhouse. We maintained modern microbial mats, models of ancient coastal marine communities, in artificial brine mixtures containing both modern [SO4=] (ca. 70 mM) and "Archean" [SO4] (less than 0.2 mM). At low [SO4], primary production in the mats was essentially unaffected, while rates of sulfate reduction decreased by a factor of three, and methane fluxes increased by up to ten-fold. However, remineralization by methanogenesis still amounted to less than 0.4 % of the total carbon released by the mats. The relatively low efficiency of conversion of photosynthate to methane is suggested to reflect the particular geometry and chemical microenvironment of hypersaline cyanobacterial mats. Therefore, such mats w-ere probably relatively weak net sources of methane throughout their 3.5 Ga history, even during periods of low- environmental levels oxygen and sulfate.

  6. Hydrogen production from methane using oxygen-permeable ceramic membranes

    NASA Astrophysics Data System (ADS)

    Faraji, Sedigheh

    CO and CO2 showed a higher CO and CO2 adsorption (for temperatures ranging from room temperature to 600°C) on BSCF compared to the SFC membrane. CO2 reforming reactions on BSCF and SFC dense membranes in a membrane reactor showed higher methane conversion and H2/CO ratio on BSCF than SFC in the presence of the Pt/CeZrO2 catalyst. This high conversion and H2/CO ratio could be ascribed to higher CO, CO2, and H2 adsorption on BSCF than SFC, resulting in higher steam and CO2 reforming on the BSCF. The Pt-Ni/CeZrO2 catalyst exhibits promising performance for hydrogen production. Platinum enhances the reducibility of Ni/Al2O 3 and Ni/CeZrO2 catalysts resulting in improved catalysts for H2 production at moderate temperatures. TPR and Raman studies show an alloy formation in the Pt-Ni/Al2O3 catalyst. Further work is required to study the interaction between Pt and Ni in the bimetallic Pt-Ni/CeZrO2 and Pt-Ni/Al2O3 catalysts. Although the Pt-Ni/Al2O3 catalyst shows high methane conversion in the presence of the BSCF membrane at 800°C, the activity of this catalyst is low at 600°C. Pt-Ni/CeZrO2 bimetallic catalyst demonstrates superior performance compared to Pt-Ni/Al2O3 catalyst at 600°C. The thinner BSCF membrane (2.2 mm) demonstrates a higher methane conversion and H2:CO ratio than the thicker BSCF membrane (2.6 mm) because membrane oxygen flux is inversely proportional to thickness. Varying the pH of the precursor solution during membrane preparation has no significant effect on the oxygen flux or the reaction. The CH 4:CO2 feed ratio significantly affects the hydrogen production over the BSCF membrane. Altering the CH4:CO2 ratio has a direct impact on the oxygen flux, which in turn can influence the reaction pathway. These studies suggest that the Pt-Ni/CeZrO2 catalyst might be suitable for low-temperature hydrocarbon conversion reactions over thin BSCF ceramic membranes. Most importantly, the BSCF membrane can reduce the apparent activation energy of the CO2 reforming

  7. Protease cell wall degradation of Chlorella vulgaris: effect on methane production.

    PubMed

    Mahdy, Ahmed; Mendez, Lara; Blanco, Saul; Ballesteros, Mercedes; González-Fernández, Cristina

    2014-11-01

    In order to optimize the enzymatic dosage and microalgae biomass loads subjected to enzymatic hydrolysis prior anaerobic digestion of Chlorella vulgaris, organic matter solubilisation and methane production were investigated. Experimental data using protease dosage of 0.585 AU g DW(-1) showed that increasing biomass loads up to 65 g L(-1) did not affect markedly the hydrolysis efficiency (51%). Enzymatically pretreated biomasses subjected to anaerobic digestion enhanced methane production by 50-70%. The attempt of decreasing the enzymatic dosages revealed diminished hydrolysis efficiency concomitantly with a decreased methane production enhancement. In agreement with the good results observed for organic matter conversion into biogas, total nitrogen mineralization was attained for enzymatically pretreated biomass. Despite the high protein content of the biomass and the biocatalyst used in the present study no ammonia inhibition was detected. PMID:25226058

  8. Protease cell wall degradation of Chlorella vulgaris: effect on methane production.

    PubMed

    Mahdy, Ahmed; Mendez, Lara; Blanco, Saul; Ballesteros, Mercedes; González-Fernández, Cristina

    2014-11-01

    In order to optimize the enzymatic dosage and microalgae biomass loads subjected to enzymatic hydrolysis prior anaerobic digestion of Chlorella vulgaris, organic matter solubilisation and methane production were investigated. Experimental data using protease dosage of 0.585 AU g DW(-1) showed that increasing biomass loads up to 65 g L(-1) did not affect markedly the hydrolysis efficiency (51%). Enzymatically pretreated biomasses subjected to anaerobic digestion enhanced methane production by 50-70%. The attempt of decreasing the enzymatic dosages revealed diminished hydrolysis efficiency concomitantly with a decreased methane production enhancement. In agreement with the good results observed for organic matter conversion into biogas, total nitrogen mineralization was attained for enzymatically pretreated biomass. Despite the high protein content of the biomass and the biocatalyst used in the present study no ammonia inhibition was detected.

  9. Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge.

    PubMed

    Nguyen, Minh Tuan; Mohd Yasin, Nazlina Haiza; Miyazaki, Toshiki; Maeda, Toshinari

    2014-12-01

    The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 μmol g(-1) dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production.

  10. Evidence for methane production by the marine algae Emiliania huxleyi

    NASA Astrophysics Data System (ADS)

    Lenhart, Katharina; Klintzsch, Thomas; Langer, Gerald; Nehrke, Gernot; Bunge, Michael; Schnell, Sylvia; Keppler, Frank

    2016-06-01

    Methane (CH4), an important greenhouse gas that affects radiation balance and consequently the earth's climate, still has uncertainties in its sinks and sources. The world's oceans are considered to be a source of CH4 to the atmosphere, although the biogeochemical processes involved in its formation are not fully understood. Several recent studies provided strong evidence of CH4 production in oxic marine and freshwaters, but its source is still a topic of debate. Studies of CH4 dynamics in surface waters of oceans and large lakes have concluded that pelagic CH4 supersaturation cannot be sustained either by lateral inputs from littoral or benthic inputs alone. However, regional and temporal oversaturation of surface waters occurs frequently. This comprises the observation of a CH4 oversaturating state within the surface mixed layer, sometimes also termed the "oceanic methane paradox". In this study we considered marine algae as a possible direct source of CH4. Therefore, the coccolithophore Emiliania huxleyi was grown under controlled laboratory conditions and supplemented with two 13C-labeled carbon substrates, namely bicarbonate and a position-specific 13C-labeled methionine (R-S-13CH3). The CH4 production was 0.7 µg particular organic carbon (POC) g-1 d-1, or 30 ng g-1 POC h-1. After supplementation of the cultures with the 13C-labeled substrate, the isotope label was observed in headspace CH4. Moreover, the absence of methanogenic archaea within the algal culture and the oxic conditions during CH4 formation suggest that the widespread marine algae Emiliania huxleyi might contribute to the observed spatially and temporally restricted CH4 oversaturation in ocean surface waters.

  11. Laboratory study of methane production from broiler-chicken litter

    SciTech Connect

    Shih, J.C.H.; Huang, J.J.H.

    1980-01-01

    North Carolina is one of the largest poultry-production states in the United States. Although a considerable amount of work has been done on methane production from livestock, brewery, and municipal wastes, little is known concerning poultry waste. Consequently, a laboratory study was conducted to delineate the potential for thermophilic (60/sup 0/C) methane generation from broiler litter. Broiler litter was chosen as the substrate for the following reasons: first, it is the most abundant waste of poultry production in North Carolina; second, wood chips which are used as the bedding material could be a potential source of carbon for methane biosynthesis; and third, it has a desirable nitrogen content of 3 to 4%, a level similar to that of the cattle waste..

  12. Microbial production and oxidation of methane in deep subsurface

    NASA Astrophysics Data System (ADS)

    Kotelnikova, Svetlana

    2002-10-01

    The goal of this review is to summarize present studies on microbial production and oxidation of methane in the deep subterranean environments. Methane is a long-living gas causing the "greenhouse" effect in the planet's atmosphere. Earlier, the deep "organic carbon poor" subsurface was not considered as a source of "biogenic" methane. Evidence of active methanogenesis and presence of viable methanogens including autotrophic organisms were obtained for some subsurface environments including water-flooded oil-fields, deep sandy aquifers, deep sea hydrothermal vents, the deep sediments and granitic groundwater at depths of 10 to 2000 m below sea level. As a rule, the deep subterranean microbial populations dwell at more or less oligotrophic conditions. Molecular hydrogen has been found in a variety of subsurface environments, where its concentrations were significantly higher than in the tested surface aquatic environments. Chemolithoautotrophic microorganisms from deep aquifers that could grow on hydrogen and carbon dioxide can act as primary producers of organic carbon, initiating heterotrophic food chains in the deep subterranean environments independent of photosynthesis. "Biogenic" methane has been found all over the world. On the basis of documented occurrences, gases in reservoirs and older sediments are similar and have the isotopic character of methane derived from CO 2 reduction. Groundwater representing the methanogenic end member are characterized by a relative depletion of dissolved organic carbon (DOC) in combination with an enrichment in 13C in inorganic carbon, which is consistent with the preferential reduction of 12CO 2 by autotrophic methanogens or acetogens. The isotopic composition of methane formed via CO 2 reduction is controlled by the δ13C of the original CO 2 substrate. Literature data shows that CH 4 as heavy as -40‰ or -50‰ can be produced by the microbial reduction of isotopically heavy CO 2. Produced methane may be oxidized

  13. Seasonal Production and Emission of Methane from Rice Fields, Final Report

    SciTech Connect

    Khalil, M. Aslam K.; Rasmussen,Reinhold A.

    2002-12-03

    B 139 - Methane (CH4) is a greenhouse gas regarded second only to carbon dioxide in its ability to cause global warming. Methane is important because of its relatively fast increase, and also because it is, per molecule, some 60 times more effective than carbon dioxide in causing global warming. The largest present anthropogenic sources of methane are rice fields, cattle and biomass burning. The global emissions from these sources are still not well known. In the middle 1980s there were few available data on methane emissions from rice fields leading to estimates of a global source between 100-280 Tg/yr. Extensive worldwide research during the last decade has shown that the global emissions from rice fields are more likely to be in the range of 30-80Tg/yr. While this work has led to a substantial reduction in the estimated emissions, the uncertainty is still quite large, and seriously affects our ability to include methane in integrated assessments for future climate change and environmental management.China dominated estimates of methane emissions from rice fields because it was, and is, the largest producer of rice, and major increases in rice production had taken place in the country over the last several decades. This report summarizes the work in Sichuan Province, China, in each of the following areas: the design of the experiment; the main results on methane emissions from rice fields, delineating the factors controlling emissions; production of methane in the soil; a survey of water management practices in sample of counties in Sichuan province; and results of ambient measurements including data from the background continental site. B139

  14. Anaerobic digestion of giant reed for methane production.

    PubMed

    Yang, Liangcheng; Li, Yebo

    2014-11-01

    As a fast growing plant, giant reed has good potential to be used as a feedstock for methane production via anaerobic digestion (AD). The effect of total solids (TS) content, an AD operating parameter, was studied. Results showed that increasing TS from 8% to 38% decreased methane yield, due to the inhibition of volatile fatty acids (VFAs) and total ammonia nitrogen (TAN); while the maximum volumetric methane production was obtained at 20-23% TS. Comparison of solid-state AD (SS-AD) at 20% TS and liquid AD (L-AD) at 8% TS was conducted at feedstock to effluent (F/E) ratios of 2.0, 3.5, and 5.0. The best performance was achieved at an F/E of 2.0, with methane yields of 129.7 and 150.8L-CH4/kg-VS for SS-AD and L-AD, respectively. Overall organic components were degraded by 17.7-28.5% and 24.0-26.6% in SS-AD and L-AD, respectively; among which cellulose showed the highest degradation rate and the highest contribution to methane production.

  15. Illumination enhances methane production from thermophilic anaerobic digestion.

    PubMed

    Tada, C; Tsukahara, K; Sawayama, S

    2006-07-01

    Incandescent lamp illumination enhanced methane production from a thermophilic anaerobic digestion reactor (55 degrees C) supplied with glucose. After 10 days of operation, the volume of methane produced from light reactors was approximately 2.5 times higher than that from dark reactors. A comparison of the carbon balance between light and dark conditions showed that methane produced from hydrogen and carbon dioxide in the light reactors was higher than that from the dark reactors. When hydrogen or acetate was fed into the reactors, methane production with added hydrogen was faster and higher under light conditions than under dark conditions. The use of blue light-emitting diodes also enhanced methane production over that under dark conditions. The 16S rRNA gene copy numbers for Methanothermobacter spp. in the light reactor and in the dark reactor were at the same level. The copy number for Methanosarcina spp. in the light reactors was approximately double than that in the dark reactors. These results suggest that blue light enhances the methanogenic activity of hydrogenotrophic methanogens.

  16. The effect of oilseeds in diets of lactating cows on milk production and methane emissions.

    PubMed

    Johnson, K A; Kincaid, R L; Westberg, H H; Gaskins, C T; Lamb, B K; Cronrath, J D

    2002-06-01

    Thirty-six lactating multiparous Holstein cows were assigned to diets that contained 2.3, 4.0, and 5.6% fat for an entire lactation to determine the effect of oilseeds on milk composition, production, and methane emissions. The diets were formulated so that whole cottonseeds and canola oilseeds provided equal amounts of added fat. Methane emissions were measured every 3 mo from two replicates of four cows per treatment using a room tracer approach. Dry matter intakes and yields of milk and FCM were greater for cows fed the diets containing oilseeds. Although the concentration of protein in milk was reduced, yields of both protein and fat tended to be increased by the addition of fat. Within the milk fat, the concentrations of C10, C12, C14:0, and C16:0 were reduced and concentrations of C18, C18:1, and trans-C18:1 were increased in response to dietary oilseeds. In serum, urea-N was increased by the dietary oilseeds. Supplementation of diets with oilseeds did not affect methane emissions but tended to increase the efficiency of milk produced per unit of methane emitted. A 1.7% addition of fat to the control diet from a combination of oilseed types increased yields of milk without reducing methane emission rates. The strategy of using unsaturated fats from oilseeds to substantially reduce methane emissions was ineffective, although yield of milk was increased.

  17. Evaluating biochemical methane production from brewer's spent yeast.

    PubMed

    Sosa-Hernández, Ornella; Parameswaran, Prathap; Alemán-Nava, Gibrán Sidney; Torres, César I; Parra-Saldívar, Roberto

    2016-09-01

    Anaerobic digestion treatment of brewer's spent yeast (SY) is a viable option for bioenergy capture. The biochemical methane potential (BMP) assay was performed with three different samples (SY1, SY2, and SY3) and SY1 dilutions (75, 50, and 25 % on a v/v basis). Gompertz-equation parameters denoted slow degradability of SY1 with methane production rates of 14.59-4.63 mL/day and lag phases of 10.72-19.7 days. Performance and kinetic parameters were obtained with the Gompertz equation and the first-order hydrolysis model with SY2 and SY3 diluted 25 % and SY1 50 %. A SY2 25 % gave a 17 % of TCOD conversion to methane as well as shorter lag phase (<1 day). Average estimated hydrolysis constant for SY was 0.0141 (±0.003) day(-1), and SY2 25 % was more appropriate for faster methane production. Methane capture and biogas composition were dependent upon the SY source, and co-digestion (or dilution) can be advantageous.

  18. Evaluating biochemical methane production from brewer's spent yeast.

    PubMed

    Sosa-Hernández, Ornella; Parameswaran, Prathap; Alemán-Nava, Gibrán Sidney; Torres, César I; Parra-Saldívar, Roberto

    2016-09-01

    Anaerobic digestion treatment of brewer's spent yeast (SY) is a viable option for bioenergy capture. The biochemical methane potential (BMP) assay was performed with three different samples (SY1, SY2, and SY3) and SY1 dilutions (75, 50, and 25 % on a v/v basis). Gompertz-equation parameters denoted slow degradability of SY1 with methane production rates of 14.59-4.63 mL/day and lag phases of 10.72-19.7 days. Performance and kinetic parameters were obtained with the Gompertz equation and the first-order hydrolysis model with SY2 and SY3 diluted 25 % and SY1 50 %. A SY2 25 % gave a 17 % of TCOD conversion to methane as well as shorter lag phase (<1 day). Average estimated hydrolysis constant for SY was 0.0141 (±0.003) day(-1), and SY2 25 % was more appropriate for faster methane production. Methane capture and biogas composition were dependent upon the SY source, and co-digestion (or dilution) can be advantageous. PMID:27276935

  19. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production.

    PubMed

    Hristov, Alexander N; Oh, Joonpyo; Giallongo, Fabio; Frederick, Tyler W; Harper, Michael T; Weeks, Holley L; Branco, Antonio F; Moate, Peter J; Deighton, Matthew H; Williams, S Richard O; Kindermann, Maik; Duval, Stephane

    2015-08-25

    A quarter of all anthropogenic methane emissions in the United States are from enteric fermentation, primarily from ruminant livestock. This study was undertaken to test the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission in lactating Holstein cows. An experiment was conducted using 48 cows in a randomized block design with a 2-wk covariate period and a 12-wk data collection period. Feed intake, milk production, and fiber digestibility were not affected by the inhibitor. Milk protein and lactose yields were increased by 3NOP. Rumen methane emission was linearly decreased by 3NOP, averaging about 30% lower than the control. Methane emission per unit of feed dry matter intake or per unit of energy-corrected milk were also about 30% less for the 3NOP-treated cows. On average, the body weight gain of 3NOP-treated cows was 80% greater than control cows during the 12-wk experiment. The experiment demonstrated that the methane inhibitor 3NOP, applied at 40 to 80 mg/kg feed dry matter, decreased methane emissions from high-producing dairy cows by 30% and increased body weight gain without negatively affecting feed intake or milk production and composition. The inhibitory effect persisted over 12 wk of treatment, thus offering an effective methane mitigation practice for the livestock industries. PMID:26229078

  20. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production.

    PubMed

    Hristov, Alexander N; Oh, Joonpyo; Giallongo, Fabio; Frederick, Tyler W; Harper, Michael T; Weeks, Holley L; Branco, Antonio F; Moate, Peter J; Deighton, Matthew H; Williams, S Richard O; Kindermann, Maik; Duval, Stephane

    2015-08-25

    A quarter of all anthropogenic methane emissions in the United States are from enteric fermentation, primarily from ruminant livestock. This study was undertaken to test the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission in lactating Holstein cows. An experiment was conducted using 48 cows in a randomized block design with a 2-wk covariate period and a 12-wk data collection period. Feed intake, milk production, and fiber digestibility were not affected by the inhibitor. Milk protein and lactose yields were increased by 3NOP. Rumen methane emission was linearly decreased by 3NOP, averaging about 30% lower than the control. Methane emission per unit of feed dry matter intake or per unit of energy-corrected milk were also about 30% less for the 3NOP-treated cows. On average, the body weight gain of 3NOP-treated cows was 80% greater than control cows during the 12-wk experiment. The experiment demonstrated that the methane inhibitor 3NOP, applied at 40 to 80 mg/kg feed dry matter, decreased methane emissions from high-producing dairy cows by 30% and increased body weight gain without negatively affecting feed intake or milk production and composition. The inhibitory effect persisted over 12 wk of treatment, thus offering an effective methane mitigation practice for the livestock industries.

  1. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production

    PubMed Central

    Hristov, Alexander N.; Oh, Joonpyo; Giallongo, Fabio; Frederick, Tyler W.; Harper, Michael T.; Weeks, Holley L.; Branco, Antonio F.; Moate, Peter J.; Deighton, Matthew H.; Williams, S. Richard O.; Kindermann, Maik; Duval, Stephane

    2015-01-01

    A quarter of all anthropogenic methane emissions in the United States are from enteric fermentation, primarily from ruminant livestock. This study was undertaken to test the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission in lactating Holstein cows. An experiment was conducted using 48 cows in a randomized block design with a 2-wk covariate period and a 12-wk data collection period. Feed intake, milk production, and fiber digestibility were not affected by the inhibitor. Milk protein and lactose yields were increased by 3NOP. Rumen methane emission was linearly decreased by 3NOP, averaging about 30% lower than the control. Methane emission per unit of feed dry matter intake or per unit of energy-corrected milk were also about 30% less for the 3NOP-treated cows. On average, the body weight gain of 3NOP-treated cows was 80% greater than control cows during the 12-wk experiment. The experiment demonstrated that the methane inhibitor 3NOP, applied at 40 to 80 mg/kg feed dry matter, decreased methane emissions from high-producing dairy cows by 30% and increased body weight gain without negatively affecting feed intake or milk production and composition. The inhibitory effect persisted over 12 wk of treatment, thus offering an effective methane mitigation practice for the livestock industries. PMID:26229078

  2. Modelling Methane Production and Sulfate Reduction in Anaerobic Granular Sludge Reactor with Ethanol as Electron Donor

    PubMed Central

    Sun, Jing; Dai, Xiaohu; Wang, Qilin; Pan, Yuting; Ni, Bing-Jie

    2016-01-01

    In this work, a mathematical model based on growth kinetics of microorganisms and substrates transportation through biofilms was developed to describe methane production and sulfate reduction with ethanol being a key electron donor. The model was calibrated and validated using experimental data from two case studies conducted in granule-based Upflow Anaerobic Sludge Blanket reactors. The results suggest that the developed model could satisfactorily describe methane and sulfide productions as well as ethanol and sulfate removals in both systems. The modeling results reveal a stratified distribution of methanogenic archaea, sulfate-reducing bacteria and fermentative bacteria in the anaerobic granular sludge and the relative abundances of these microorganisms vary with substrate concentrations. It also indicates sulfate-reducing bacteria can successfully outcompete fermentative bacteria for ethanol utilization when COD/SO42− ratio reaches 0.5. Model simulation suggests that an optimal granule diameter for the maximum methane production efficiency can be achieved while the sulfate reduction efficiency is not significantly affected by variation in granule size. It also indicates that the methane production and sulfate reduction can be affected by ethanol and sulfate loading rates, and the microbial community development stage in the reactor, which provided comprehensive insights into the system for its practical operation. PMID:27731395

  3. Modelling Methane Production and Sulfate Reduction in Anaerobic Granular Sludge Reactor with Ethanol as Electron Donor

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Dai, Xiaohu; Wang, Qilin; Pan, Yuting; Ni, Bing-Jie

    2016-10-01

    In this work, a mathematical model based on growth kinetics of microorganisms and substrates transportation through biofilms was developed to describe methane production and sulfate reduction with ethanol being a key electron donor. The model was calibrated and validated using experimental data from two case studies conducted in granule-based Upflow Anaerobic Sludge Blanket reactors. The results suggest that the developed model could satisfactorily describe methane and sulfide productions as well as ethanol and sulfate removals in both systems. The modeling results reveal a stratified distribution of methanogenic archaea, sulfate-reducing bacteria and fermentative bacteria in the anaerobic granular sludge and the relative abundances of these microorganisms vary with substrate concentrations. It also indicates sulfate-reducing bacteria can successfully outcompete fermentative bacteria for ethanol utilization when COD/SO42‑ ratio reaches 0.5. Model simulation suggests that an optimal granule diameter for the maximum methane production efficiency can be achieved while the sulfate reduction efficiency is not significantly affected by variation in granule size. It also indicates that the methane production and sulfate reduction can be affected by ethanol and sulfate loading rates, and the microbial community development stage in the reactor, which provided comprehensive insights into the system for its practical operation.

  4. Methane hydrate research at NETL: Research to make methane production from hydrates a reality

    SciTech Connect

    Taylor, C.E.; Link, D.D.; English, N.

    2007-03-01

    Research is underway at NETL to understand the physical properties of methane hydrates. Five key areas of research that need further investigation have been identified. These five areas, i.e. thermal properties of hydrates in sediments, kinetics of natural hydrate dissociation, hysteresis effects, permeability of sediments to gas flow and capillary pressures within sediments, and hydrate distribution at porous scale, are important to the production models that will be used for producing methane from hydrate deposits. NETL is using both laboratory experiments and computational modeling to address these five key areas. The laboratory and computational research reinforce each other by providing feedback. The laboratory results are used in the computational models and the results from the computational modeling is used to help direct future laboratory research. The data generated at NETL will be used to help fulfill The National Methane Hydrate R&D Program of a “long-term supply of natural gas by developing the knowledge and technology base to allow commercial production of methane from domestic hydrate deposits by the year 2015” as outlined on the NETL Website [NETL Website, 2005. http://www.netl.doe.gov/scngo/Natural%20Gas/hydrates/index.html]. Laboratory research is accomplished in one of the numerous high-pressure hydrate cells available ranging in size from 0.15 mL to 15 L in volume. A dedicated high-pressure view cell within the Raman spectrometer allows for monitoring the formation and dissociation of hydrates. Thermal conductivity of hydrates (synthetic and natural) at a certain temperature and pressure is performed in a NETL-designed cell. Computational modeling studies are investigating the kinetics of hydrate formation and dissociation, modeling methane hydrate reservoirs, molecular dynamics simulations of hydrate formation, dissociation, and thermal properties, and Monte Carlo simulations of hydrate formation and dissociation.

  5. High rate of methane leakage from natural gas production

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-10-01

    Natural gas production is growing as the United States seeks domestic sources of relatively clean energy. Natural gas combustion produces less carbon dioxide emissions than coal or oil for the amount of energy produced. However, one source of concern is that some natural gas leaks to the atmosphere from the extraction point, releasing methane, a potent greenhouse gas.

  6. Methane and hydrogen production by human intestinal anaerobic bacteria.

    PubMed

    McKay, L F; Holbrook, W P; Eastwood, M A

    1982-06-01

    The gas above liquid cultures of a variety of human intestinal anaerobic bacteria was sampled and analysed by headspace gas chromatography. Hydrogen production was greatest with strains of the genus Clostridium, intermediate with anaerobic cocci and least with Bacteroides sp. Very few strains produced methane although small amounts were detected with one strain of B. thetaiotaomicron, C. perfringens and C. histolyticum. There may be a relationship between these anaerobic bacteria and several gastrointestinal disorders in which there is a build up of hydrogen or methane in the intestines.

  7. Zero valent iron significantly enhances methane production from waste activated sludge by improving biochemical methane potential rather than hydrolysis rate.

    PubMed

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-02-05

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.

  8. Zero Valent Iron Significantly Enhances Methane Production from Waste Activated Sludge by Improving Biochemical Methane Potential Rather Than Hydrolysis Rate

    NASA Astrophysics Data System (ADS)

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-02-01

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.

  9. Sorghums for methane production. Annual report, April 1983-March 1984

    SciTech Connect

    Hiler, E.A.; Miller, F.R.; Monk, R.L.; McBee, G.G.; Creelman, R.A.

    1984-06-01

    The objective of this research is to develop an integrated system for methane production utilizing high-energy sorghum as the feedstock. Because of its wide geographic adaptability, its high gas-production potential, and the fact that it is already cultivated on over 15 million acres annually in the U.S., sorghum represents a significant potential energy resource that can be converted to methane by anaerobic digestion. This report provides specifics of research activities in the sorghums-for-methane program sponsored by Gas Research Institute and cofunded by Texas Agricultural Experiment Station. Researchers in the program include plant breeders, sorghum physiologists, agronomists, agricultural and systems engineers, and agricultural economists. Major research emphases are genetic manipulation, physiology and production systems, harvesting, storage, processing, and conversion systems; and economic and systems analyses. First-year results indicate that: (1) the proposed sorghum-methane system is in the realm of economic feasibility, and (2) research emphases in storage and high-efficiency conversion are critical to the economic implementation of the system. An innovative approach to combine the storage and conversion processes in a two-stage system is being investigated. Increased research emphasis is being placed on storage and conversion aspects of the system.

  10. Effects of rutin and buckwheat seeds on energy metabolism and methane production in dairy cows.

    PubMed

    Stoldt, Ann-Kathrin; Derno, Michael; Das, Gürbüz; Weitzel, Joachim M; Wolffram, Siegfried; Metges, Cornelia C

    2016-03-01

    Flavonoids are secondary plant metabolites with several health promoting effects. As dairy cows often suffer from metabolic imbalance and health problems, interest is growing in health improvements by plant substances such as flavonoids. Our group has recently shown that the flavonoids quercetin and rutin (a glucorhamnoside of quercetin) are bioavailable in cows when given via a duodenal fistula or orally, respectively, affect glucose metabolism, and have beneficial effects on liver health. Furthermore, flavonoids may reduce rumen methane production in vitro through their antibacterial properties. To test the hypothesis that rutin has effects on energy metabolism, methane production, and production performance in dairy cows, we fed rutin trihydrate at a dose of 100mg/kg of body weight to a group of 7 lactating dairy cows for 2 wk in a crossover design. In a second experiment, 2 cows were fed the same ration but were supplemented with buckwheat seeds (Fagopyrum tartaricum), providing rutin at a dose comparable to the first experiment. Two other cows receiving barley supplements were used as controls in a change-over mode. Blood samples were taken weekly and respiration measurements were performed at the end of each treatment. Supplementation of pure rutin, but not of rutin contained in buckwheat seeds, increased the plasma quercetin content. Methane production and milk yield and composition were not affected by rutin treatment in either form. Plasma glucose, β-hydroxybutyrate, and albumin were increased by pure rutin treatment, indicating a possible metabolic effect of rutin on energy metabolism of dairy cows. In addition, we did not show that in vivo ruminal methane production was reduced by rutin. In conclusion, we could not confirm earlier reports on in vitro methane reduction by rutin supplementation in dairy cows in established lactation.

  11. Methane production and consumption in grassland and boreal ecosystems

    NASA Technical Reports Server (NTRS)

    Schimel, David S.; Burke, Ingrid C.; Johnston, Carol; Pastor, John

    1994-01-01

    The objectives of the this project were to develop a mechanistic understanding of methane production and oxidation suitable for incorporation into spatially explicit models for spatial extrapolation. Field studies were undertaken in Minnesota, Canada, and Colorado to explore the process controls over the two microbial mediated methane transformations in a range of environments. Field measurements were done in conjunction with ongoing studies in Canada (the Canadian Northern Wetlands Projects: NOWES) and in Colorado (The Shortgrass Steppe Long Term Ecological Research Project: LTER). One of the central hypotheses of the proposal was that methane production should be substrate limited, as well as being controlled by physical variables influencing microbial activity (temperature, oxidation status, and pH). Laboratory studies of peats from Canada and Minnesota (Northern and Southern Boreal) were conducted with amendments of a methanogenic substrate at multiple temperatures and at multiple pHs (the latter by titrating samples). The studies showed control by substrate, pH, and temperature in order in anaerobic samples. Field and laboratory manipulations of natural plant litter, rather than an acetogenic substrate, showed similarly large effects. The studies concluded that substrate is an important control over methanogenesis, that substrate availability in the field is closely coupled to the chemistry of the dominant vegetation influencing its decomposition rate, that most methane is produced from recent plant litter, and that landscape changes in pH are an important control, highly correlated with vegetation.

  12. Methane production from agricultural residues - A short review

    NASA Astrophysics Data System (ADS)

    Chen, Y.-R.; Varel, V. H.; Hashimoto, A. G.

    1980-12-01

    This paper summarizes the methanogenesis process, the environmental requirement, kinetics, energy requirements, and methane production cost of methane fermentation systems. Available data of biodegradability of the residue and kinetic equations can be used to predict the methane production under different operating conditions. The optimum condition for fermenting beef cattle residue is operating at a thermophilic temperature (55 C) with an influent concentration of 80 g of VS/L. This produces yields of 3.96 L of CH4/L fermenter-day at 5 days retention time. It is apparent that the anaerobic fermentation process is technically feasible. However, only at plant sizes larger than 300 Mg TS/day will the anerobic fermentation system produce methane gas comparable to the current natural gas price. If the effluent can be used as a feed supplement for livestock, the anaerobic fermentation system for livestock residue will be economically feasible at a plant size between 3 and 6 Mg TS/day. This corresponds to beef cattle feedlots between 1000 and 2000 head.

  13. Methane production from agricultural residues - A short review

    SciTech Connect

    Chen, Y.R.; Varel, V.H.; Hashimoto, A.G.

    1980-12-01

    This paper summarizes the methanogenesis process, the environmental requirement, kinetics, energy requirements, and methane production cost of methane fermentation systems. Available data of biodegradability of the residue and kinetic equations can be used to predict the methane production under different operating conditions. The optimum condition for fermenting beef cattle residue is operating at a thermophilic temperature (55/sup 0/C) with an influent concentration of 80 g of VS/L. This produces yields of 3.96 L of CH4/L fermenter-day at 5 days retention time. It is apparent that the anaerobic fermentation process is technically feasible. However, only at plant sizes larger than 300 Mg TS/day will the anerobic fermentation system produce methane gas comparable to the current natural gas price. If the effluent can be used as a feed supplement for livestock, the anaerobic fermentation system for livestock residue will be economically feasible at a plant size between 3 and 6 Mg TS/day. This corresponds to beef cattle feedlots between 1000 and 2000 head.

  14. Does vegetation affect the methane oxidation efficiency of passive biosystems?

    PubMed

    Ndanga, Éliane M; Bradley, Robert L; Cabral, Alexandre R

    2015-04-01

    It is often reported in the technical literature that the presence of vegetation improves the methane oxidation efficiency of biosystems; however, the phenomena involved and biosystem performance results are still poorly documented, particularly in the field. This triggered a study to assess the importance of vegetation in methane oxidation efficiency (MOE). In this study, 4 large scale columns, each filled with sand, topsoil and a mixture of compost and topsoil were tested under controlled conditions in the laboratory and partially controlled conditions in the field. Four series of laboratory tests and two series of field tests were performed. 4 different plant covers were tested for each series: Trifolium repens L. (White clover), Phleum pratense L. (Timothy grass), a mixture of both, and bare soil as the control biosystem. The study results indicated that up to a loading equal to 100 g CH4/m(2)/d, the type of plant cover did not influence the oxidation rates, and the MOE was quite high (⩾ 95%) in all columns. Beyond this point, the oxidation rate continued to increase, reaching 253 and 179 g CH4/m(2)/d in laboratory and field tests respectively. In the end, the bare soil achieved as high or higher MOEs than vegetated biosystems. Despite the fact that the findings of this study cannot be generalized to other types of biosystems and plants and that the vegetation types tested were not fully grown, it was shown that for the short-term tests performed and the types of substrates and plants used herein, vegetation does not seem to be a key factor for enhancing biosystem performance. This key conclusion does not corroborate the conclusion of the relatively few studies published in the technical literature assessing the importance of vegetation in MOE.

  15. Can aquatic worms enhance methane production from waste activated sludge?

    PubMed

    Serrano, Antonio; Hendrickx, Tim L G; Elissen, Hellen H J; Laarhoven, Bob; Buisman, Cees J N; Temmink, Hardy

    2016-07-01

    Although literature suggests that aquatic worms can help to enhance the methane production from excess activated sludge, clear evidence for this is missing. Therefore, anaerobic digestion tests were performed at 20 and at 30°C with sludge from a high-loaded membrane bioreactor, the aquatic worm Lumbriculus variegatus, feces from these worms and with mixtures of these substrates. A significant synergistic effect of the worms or their feces on methane production from the high-loaded sludge or on its digestion rate was not observed. However, a positive effect on low-loaded activated sludge, which generally has a lower anaerobic biodegradability, cannot be excluded. The results furthermore showed that the high-loaded sludge provides an excellent feed for L. variegatus, which is promising for concepts where worm biomass is considered a resource for technical grade products such as coatings and glues.

  16. A methane production feasibility model for central anaerobic digesters

    NASA Astrophysics Data System (ADS)

    Sullivan, J. L.; Peters, N.; Ostrovski, C. M.

    1981-01-01

    A mathematical model was developed for prediction of the practicability of building and operating large centrally located anaerobic digesters for producing methane gas from animal manure. The assumptions were that the manure would be collected from the feedlots and that the product gas would be supplied to an existing pipeline. The model takes account of the farm locations and calculates transportation costs for various numbers of digesters. Digester sizes for each distribution and installation and operating costs are computed. Revenue was then determined on the basis of methane production and fertilizer value recovery. The utility of the model is shown through a study of farms in southwestern Ontario where many small feedlots exist. The results of the study indicate a gas production cost of roughly $0.18/cu m.

  17. Methane production from bicarbonate and acetate in an anoxic marine sediment

    NASA Technical Reports Server (NTRS)

    Crill, P. M.; Martens, C. S.

    1986-01-01

    Methane production from C-14 labeled bicarbonate and acetate was measured over the top 28 cm of anoxic Cape Lookout Bight sediments during the summer of 1983. The depth distribution and magnitude of summed radioisotopically determined rates compare well with previous measurements of total methane production and the sediment-water methane flux. Methane production from CO2 reduction and acetate fermentation accounts for greater than 80 percent of the total production rate and sediment-water flux. Methane production from bicarbonate was found to occur in all depth intervals sampled except those in the top 2 cm, whereas significant methane production from acetate only occurred at depths below 10 cm where sulfate was exhausted. Acetate provided 20 to 29 percent of the measured methane production integrated over the top 30 cm of the sediments.

  18. Mitigation of methane production from cattle by feeding cashew nut shell liquid.

    PubMed

    Shinkai, T; Enishi, O; Mitsumori, M; Higuchi, K; Kobayashi, Y; Takenaka, A; Nagashima, K; Mochizuki, M; Kobayashi, Y

    2012-09-01

    The effects of cashew nut shell liquid (CNSL) feeding on methane production and rumen fermentation were investigated by repeatedly using 3 Holstein nonlactating cows with rumen fistulas. The cows were fed a concentrate and hay diet (6:4 ratio) for 4 wk (control period) followed by the same diet with a CNSL-containing pellet for the next 3 wk (CNSL period). Two trials were conducted using CNSL pellets blended with only silica (trial 1) or with several other ingredients (trial 2). Each pellet type was fed to cows to allow CNSL intake at 4 g/100 kg of body weight per day. Methane production was measured in a respiration chamber system, and energy balance, nutrient digestibility, and rumen microbial changes were monitored. Methane production per unit of dry matter intake decreased by 38.3 and 19.3% in CNSL feeding trials 1 and 2, respectively. Energy loss as methane emission decreased from 9.7 to 6.1% (trial 1) and from 8.4 to 7.0% (trial 2) with CNSL feeding, whereas the loss to feces (trial 1) and heat production (trial 2) increased. Retained energy did not differ between the control and CNSL periods. Digestibility of dry matter and gross energy decreased with CNSL feeding in trial 1, but did not differ in trial 2. Feeding CNSL caused a decrease in acetate and total short-chain fatty acid levels and an increase in propionate proportion in both trials. Relative copy number of methyl coenzyme-M reductase subunit A gene and its expression decreased with CNSL feeding. The relative abundance of fibrolytic or formate-producing species such as Ruminococcus flavefaciens, Butyrivibrio fibrisolvens, and Treponema bryantii decreased, but species related to propionate production, including Prevotella ruminicolla, Selenomonas ruminantium, Anaerovibrio lipolytica, and Succinivibrio dextrinosolvens, increased. If used in a suitable formulation, CNSL acts as a potent methane-inhibiting and propionate-enhancing agent through the alteration of rumen microbiota without adversely

  19. Methane production in ruminants: Its effect on the doubly labeled water method

    SciTech Connect

    Midwood, A.J.; Haggarty, P.; McGaw, B.A.; Robinson, J.J. )

    1989-12-01

    The doubly labeled water (DLW) technique for measuring CO2 production (rCO2) in free-living animals requires an assessment of the elimination of both 2H and 18O from the body over a long period of time. To calculate rCO2, it is necessary to calculate water turnover (rH2O) from the 2H flux rate. In ruminant animals, the accuracy of this calculation is affected by the loss of 2H in methane. We have quantified the effect of methane production (rCH4) on the 2H flux rate, determined in four sheep given 2H2O. The methane produced was depleted in 2H relative to the urine. A relationship between the enrichment of the methane and urine was established. The ratio of urine to methane enrichment was found on average to be 0.6536, and this value was unaffected by the level of rCH4 but showed some dependence on the absolute concentration of 2H in urine. For this reason, the ratio value obtained from four sheep not given 2H2O was different, a mean of 0.6886 was measured, this ratio was unaffected by changes in the diet supplied to the animals. Computer modeling was used to illustrate the dependence of the isotopically derived value for rCO2 on not only rCH4 but also the magnitude of rCO2 itself. The effect of rCH4 on the DLW method can be predicted from the observed ratio of rCO2 to rCH4 and the value of 0.6536 obtained for the ratio of methane to urine enrichment. With the use of data from several studies at this Institute, a limited range of 10 to 20 was found for rCO2/rCH4 in animals fed at or above maintenance.

  20. Electrochemically assisted methane production in a biofilm reactor

    NASA Astrophysics Data System (ADS)

    Villano, Marianna; Monaco, Gianluca; Aulenta, Federico; Majone, Mauro

    Microbial electrolysis is a new technology for the production of value-added products, such as gaseous biofuels, from waste organic substrates. This study describes the performance of a methane-producing microbial electrolysis cell (MEC) operated at ambient temperature with a Geobacter sulfurreducens microbial bioanode and a methanogenic microbial biocathode. The cell was initially operated at a controlled cathode potential of -850 mV (vs. standard hydrogen electrode, SHE) in order to develop a methanogenic biofilm capable of reducing carbon dioxide to methane gas using abiotically produced hydrogen gas or directly the polarized electrode as electron donors. Subsequently, G. sulfurreducens was inoculated at the anode and the MEC was operated at a controlled anode potential of +500 mV, with acetate serving as electron donor. The rate of methane production at the cathode was found to be primarily limited by the acetate oxidation kinetics and in turn by G. sulfurreducens concentration at the anode of the MEC. Temperature had also a main impact on acetate oxidation kinetics, with an apparent activation energy of 58.1 kJ mol -1.

  1. Dynamics of methane production, sulfate reduction, and denitrification in a permanently waterlogged alder swamp

    SciTech Connect

    Westermann, P.; Ahring, B.K.

    1987-10-01

    The dynamics of sulfate reduction, methane production, and denitrification were investigated in a permanently waterlogged alder swamp. Molybdate, an inhibitor of sulfate reduction, stimulated methane production in soil slurries, thus suggesting competition for common substrates between sulfate-reducing and methane-producing bacteria. Acetate, hydrogen, and methanol were found to stimulate both sulfate reduction and methane production, while trimethylamine mainly stimulated methane production. Nitrate addition reduced both methane production and sulfate reduction, either as a consequence of competition of poisoning of the bacteria. Sulfate-reducing bacteria were only slightly limited by the availability of electron acceptors, while denitrifying bacteria were seriously limited by low nitrate concentrations. Arrhenius plots of the three processes revealed different responses to temperature changes in the slurries. Methane production was most sensitive to temperature changes, followed by denitrification and sulfate reduction. No significant differences between slope patterns were observed when comparing summer and winter measurements, indicating similar populations regarding temperature responses.

  2. Effect of azithromycin on enhancement of methane production from waste activated sludge.

    PubMed

    Nguyen, Minh Tuan; Maeda, Toshinari; Mohd Yusoff, Mohd Zulkhairi; Ogawa, Hiroaki I

    2014-07-01

    In the methane production from waste activated sludge (WAS), complex bacterial interactions in WAS have been known as a major contribution to methane production. Therefore, the influence of bacterial community changes toward methane production from WAS was investigated by an application of antibiotics as a simple means for it. In this study, azithromycin (Azm) as an antibiotic was mainly used to observe the effect on microbial changes that influence methane production from WAS. The results showed that at the end of fermentation, Azm enhanced methane production about twofold compared to control. Azm fostered the growth of acid-producing bacterial communities, which synthesized more precursors for methane formation. DGGE result showed that the hydrolysis as well as acetogenesis stage was improved by the dominant of B1, B2 and B3 strains, which are Clostridium species. In the presence of Azm, the total population of archaeal group was increased, resulting in higher methane productivity achievement.

  3. Short communication: Genetic study of methane production predicted from milk fat composition in dairy cows.

    PubMed

    van Engelen, S; Bovenhuis, H; Dijkstra, J; van Arendonk, J A M; Visker, M H P W

    2015-11-01

    Dairy cows produce enteric methane, a greenhouse gas with 25 times the global warming potential of CO2. Breeding could make a permanent, cumulative, and long-term contribution to methane reduction. Due to a lack of accurate, repeatable, individual methane measurements needed for breeding, indicators of methane production based on milk fatty acids have been proposed. The aim of the present study was to quantify the genetic variation for predicted methane yields. The milk fat composition of 1,905 first-lactation Dutch Holstein-Friesian cows was used to investigate 3 different predicted methane yields (g/kg of DMI): Methane1, Methane2, and Methane3. Methane1 was based on the milk fat proportions of C17:0anteiso, C18:1 rans-10+11, C18:1 cis-11, and C18:1 cis-13 (R(2)=0.73). Methane2 was based on C4:0, C18:0, C18:1 trans-10+11, and C18:1 cis-11 (R(2)=0.70). Methane3 was based on C4:0, C6:0, and C18:1 trans-10+11 (R(2)=0.63). Predicted methane yields were demonstrated to be heritable traits, with heritabilities between 0.12 and 0.44. Breeding can, thus, be used to decrease methane production predicted based on milk fatty acids. PMID:26364110

  4. Short communication: Genetic study of methane production predicted from milk fat composition in dairy cows.

    PubMed

    van Engelen, S; Bovenhuis, H; Dijkstra, J; van Arendonk, J A M; Visker, M H P W

    2015-11-01

    Dairy cows produce enteric methane, a greenhouse gas with 25 times the global warming potential of CO2. Breeding could make a permanent, cumulative, and long-term contribution to methane reduction. Due to a lack of accurate, repeatable, individual methane measurements needed for breeding, indicators of methane production based on milk fatty acids have been proposed. The aim of the present study was to quantify the genetic variation for predicted methane yields. The milk fat composition of 1,905 first-lactation Dutch Holstein-Friesian cows was used to investigate 3 different predicted methane yields (g/kg of DMI): Methane1, Methane2, and Methane3. Methane1 was based on the milk fat proportions of C17:0anteiso, C18:1 rans-10+11, C18:1 cis-11, and C18:1 cis-13 (R(2)=0.73). Methane2 was based on C4:0, C18:0, C18:1 trans-10+11, and C18:1 cis-11 (R(2)=0.70). Methane3 was based on C4:0, C6:0, and C18:1 trans-10+11 (R(2)=0.63). Predicted methane yields were demonstrated to be heritable traits, with heritabilities between 0.12 and 0.44. Breeding can, thus, be used to decrease methane production predicted based on milk fatty acids.

  5. Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection.

    PubMed

    Haas, Y de; Windig, J J; Calus, M P L; Dijkstra, J; Haan, M de; Bannink, A; Veerkamp, R F

    2011-12-01

    Mitigation of enteric methane (CH₄) emission in ruminants has become an important area of research because accumulation of CH₄ is linked to global warming. Nutritional and microbial opportunities to reduce CH₄ emissions have been extensively researched, but little is known about using natural variation to breed animals with lower CH₄ yield. Measuring CH₄ emission rates directly from animals is difficult and hinders direct selection on reduced CH₄ emission. However, improvements can be made through selection on associated traits (e.g., residual feed intake, RFI) or through selection on CH₄ predicted from feed intake and diet composition. The objective was to establish phenotypic and genetic variation in predicted CH₄ output, and to determine the potential of genetics to reduce methane emissions in dairy cattle. Experimental data were used and records on daily feed intake, weekly body weights, and weekly milk production were available from 548 heifers. Residual feed intake (MJ/d) is the difference between net energy intake and calculated net energy requirements for maintenance as a function of body weight and for fat- and protein-corrected milk production. Predicted methane emission (PME; g/d) is 6% of gross energy intake (Intergovernmental Panel on Climate Change methodology) corrected for energy content of methane (55.65 kJ/g). The estimated heritabilities for PME and RFI were 0.35 and 0.40, respectively. The positive genetic correlation between RFI and PME indicated that cows with lower RFI have lower PME (estimates ranging from 0.18 to 0.84). Hence, it is possible to decrease the methane production of a cow by selecting more-efficient cows, and the genetic variation suggests that reductions in the order of 11 to 26% in 10 yr are theoretically possible, and could be even higher in a genomic selection program. However, several uncertainties are discussed; for example, the lack of true methane measurements (and the key assumption that methane

  6. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production.

    PubMed

    Catlett, Jennie L; Ortiz, Alicia M; Buan, Nicole R

    2015-10-01

    Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron transport system by reducing the coenzyme M (2-mercaptoethane sulfonate) and coenzyme B (7-mercaptoheptanoylthreonine sulfonate) heterodisulfide, CoM-S-S-CoB, to regenerate the thiol-coenzymes for reuse. In Methanosarcina acetivorans, HdrABC expression caused an increased rate of methanogenesis and a decrease in metabolic efficiency on methylotrophic substrates. When acetate was the sole carbon and energy source, neither deletion nor overexpression of HdrABC had an effect on growth or methane production rates. These results suggest that in cells grown on methylated substrates, the cell compensates for energy losses due to expression of HdrABC with an increased rate of substrate turnover and that HdrABC lacks the appropriate electron donor in acetate-grown cells. PMID:26162885

  7. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production

    PubMed Central

    Catlett, Jennie L.; Ortiz, Alicia M.

    2015-01-01

    Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron transport system by reducing the coenzyme M (2-mercaptoethane sulfonate) and coenzyme B (7-mercaptoheptanoylthreonine sulfonate) heterodisulfide, CoM-S-S-CoB, to regenerate the thiol-coenzymes for reuse. In Methanosarcina acetivorans, HdrABC expression caused an increased rate of methanogenesis and a decrease in metabolic efficiency on methylotrophic substrates. When acetate was the sole carbon and energy source, neither deletion nor overexpression of HdrABC had an effect on growth or methane production rates. These results suggest that in cells grown on methylated substrates, the cell compensates for energy losses due to expression of HdrABC with an increased rate of substrate turnover and that HdrABC lacks the appropriate electron donor in acetate-grown cells. PMID:26162885

  8. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production.

    PubMed

    Catlett, Jennie L; Ortiz, Alicia M; Buan, Nicole R

    2015-10-01

    Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron transport system by reducing the coenzyme M (2-mercaptoethane sulfonate) and coenzyme B (7-mercaptoheptanoylthreonine sulfonate) heterodisulfide, CoM-S-S-CoB, to regenerate the thiol-coenzymes for reuse. In Methanosarcina acetivorans, HdrABC expression caused an increased rate of methanogenesis and a decrease in metabolic efficiency on methylotrophic substrates. When acetate was the sole carbon and energy source, neither deletion nor overexpression of HdrABC had an effect on growth or methane production rates. These results suggest that in cells grown on methylated substrates, the cell compensates for energy losses due to expression of HdrABC with an increased rate of substrate turnover and that HdrABC lacks the appropriate electron donor in acetate-grown cells.

  9. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Thomas E. Williams; Keith Millheim; Buddy King

    2003-12-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the US have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by maurer Technology, noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R and D in the area of onshore hydrate deposition. They plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. They also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. They are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. They hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, the goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

  10. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by Maurer Technology, Noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition. We plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. We also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. We are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. We hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, our goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

  11. Raton basin coalbed methane production picking up in Colorado

    SciTech Connect

    Hemborg, H.T.

    1996-11-11

    Coalbed methane production in the Raton basin of south-central Colorado and northeast New Mexico has advanced past pilot testing and is entering into a development stage that should stretch out over several years. At last count 85 wells were producing nearly 17.5 MMcfd of coalbed methane from the basin`s Raton and Vermejo formation coals (Early Paleocene to Latest Maastrichtian). This development work is currently restricted to roughly a 25 mile by 15 mile wide ``fairway`` centered about 20 miles west of Trinidad, Colo., in the headwater area of the Purgatoire River. The paper discusses the companies involved in the basin development, geology of the coal seam, and water disposal from coal seam dewatering.

  12. Extraction of soluble substances from organic solid municipal waste to increase methane production.

    PubMed

    Campuzano, Rosalinda; González-Martínez, Simón

    2015-02-01

    This work deals with the analysis of the methane production from Mexico City's urban organic wastes after separating soluble from suspended substances. Water was used to extract soluble substances under three different water to waste ratios and after three extraction procedures. Methane production was measured at 35 °C during 21 days using a commercial methane potential testing device. Results indicate that volatile solids extraction increases with dilution rate to a maximum of 40% at 20 °C and to 43% at 93 °C. The extracts methane production increases with the dilution rate as a result of enhanced dissolved solids extraction. The combined (extract and bagasse) methane production reached, in 6 days, 66% of the total methane produced in 21 days. The highest methane production rates were measured during the first six days.

  13. The influence of petroleum products on the methane fermentation process.

    PubMed

    Choromański, Paweł; Karwowska, Ewa; Łebkowska, Maria

    2016-01-15

    In this study the influence of the petroleum products: diesel fuel and spent engine oil on the sewage sludge digestion process and biogas production efficiency was investigated. Microbiological, chemical and enzymatic analyses were applied in the survey. It was revealed that the influence of the petroleum derivatives on the effectiveness of the methane fermentation of sewage sludge depends on the type of the petroleum product. Diesel fuel did not limit the biogas production and the methane concentration in the biogas, while spent engine oil significantly reduced the process efficacy. The changes in physical-chemical parameters, excluding COD, did not reflect the effect of the tested substances. The negative influence of petroleum products on individual bacterial groups was observed after 7 days of the process, while after 14 days probably some adaptive mechanisms appeared. The dehydrogenase activity assessment was the most relevant parameter to evaluate the effect of petroleum products contamination. Diesel fuel was probably used as a source of carbon and energy in the process, while the toxic influence was observed in case of spent engine oil.

  14. The influence of petroleum products on the methane fermentation process.

    PubMed

    Choromański, Paweł; Karwowska, Ewa; Łebkowska, Maria

    2016-01-15

    In this study the influence of the petroleum products: diesel fuel and spent engine oil on the sewage sludge digestion process and biogas production efficiency was investigated. Microbiological, chemical and enzymatic analyses were applied in the survey. It was revealed that the influence of the petroleum derivatives on the effectiveness of the methane fermentation of sewage sludge depends on the type of the petroleum product. Diesel fuel did not limit the biogas production and the methane concentration in the biogas, while spent engine oil significantly reduced the process efficacy. The changes in physical-chemical parameters, excluding COD, did not reflect the effect of the tested substances. The negative influence of petroleum products on individual bacterial groups was observed after 7 days of the process, while after 14 days probably some adaptive mechanisms appeared. The dehydrogenase activity assessment was the most relevant parameter to evaluate the effect of petroleum products contamination. Diesel fuel was probably used as a source of carbon and energy in the process, while the toxic influence was observed in case of spent engine oil. PMID:26378365

  15. Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: effects on methane production, rumen fermentation, and milk production.

    PubMed

    Beauchemin, K A; McGinn, S M; Benchaar, C; Holtshausen, L

    2009-05-01

    The objective of this study was to investigate the potential of reducing enteric methane production from dairy cows by incorporating into the diet various sources of long-chain FA varying in their degree of saturation and ruminal availability. The experiment was conducted as a crossover design with 16 lactating dairy cows maintained in 2 groups and fed 4 dietary treatments in four 28-d periods. Eight ruminally cannulated primiparous cows (96 +/- 18 d in milk) were assigned to group 1 and 8 multiparous cows (130 +/- 31 d in milk) were assigned to group 2. The dietary treatments were: 1) a commercial source of calcium salts of long-chain fatty acids (CTL), 2) crushed sunflower seeds (SS), 3) crushed flaxseed (FS), and 4) crushed canola seed (CS). The oilseeds added 3.1 to 4.2% fat to the diet (DM basis). All 3 oilseed treatments decreased methane production (g/d) by an average of 13%. When corrected for differences in dry matter intake (DMI), compared with CTL, methane production (g/kg of DM intake) was decreased by feeding FS (-18%) or CS (-16%) and was only numerically decreased (-10%) by feeding SS. However, compared with the CTL, feeding SS or FS lowered digestible DMI by 16 and 9%, respectively, because of lowered digestibility. Thus, only CS lowered methane per unit of digestible DM intake. Feeding SS and CS decreased rumen protozoal counts, but there were no treatment effects on mean ruminal pH or total volatile fatty acid concentration. Milk efficiency (3.5% fat corrected milk/DMI), milk yield, and component yield and concentrations were not affected by oilseed treatments. The study shows that adding sources of long-chain fatty acids to the diet in the form of processed oilseeds can be an effective means of reducing methane emissions. However, for some oilseeds such as SS or FS, the reduction in methane can be at the expense of diet digestibility. The use of crushed CS offers a means of mitigating methane without negatively affecting diet digestibility, and

  16. Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: effects on methane production, rumen fermentation, and milk production.

    PubMed

    Beauchemin, K A; McGinn, S M; Benchaar, C; Holtshausen, L

    2009-05-01

    The objective of this study was to investigate the potential of reducing enteric methane production from dairy cows by incorporating into the diet various sources of long-chain FA varying in their degree of saturation and ruminal availability. The experiment was conducted as a crossover design with 16 lactating dairy cows maintained in 2 groups and fed 4 dietary treatments in four 28-d periods. Eight ruminally cannulated primiparous cows (96 +/- 18 d in milk) were assigned to group 1 and 8 multiparous cows (130 +/- 31 d in milk) were assigned to group 2. The dietary treatments were: 1) a commercial source of calcium salts of long-chain fatty acids (CTL), 2) crushed sunflower seeds (SS), 3) crushed flaxseed (FS), and 4) crushed canola seed (CS). The oilseeds added 3.1 to 4.2% fat to the diet (DM basis). All 3 oilseed treatments decreased methane production (g/d) by an average of 13%. When corrected for differences in dry matter intake (DMI), compared with CTL, methane production (g/kg of DM intake) was decreased by feeding FS (-18%) or CS (-16%) and was only numerically decreased (-10%) by feeding SS. However, compared with the CTL, feeding SS or FS lowered digestible DMI by 16 and 9%, respectively, because of lowered digestibility. Thus, only CS lowered methane per unit of digestible DM intake. Feeding SS and CS decreased rumen protozoal counts, but there were no treatment effects on mean ruminal pH or total volatile fatty acid concentration. Milk efficiency (3.5% fat corrected milk/DMI), milk yield, and component yield and concentrations were not affected by oilseed treatments. The study shows that adding sources of long-chain fatty acids to the diet in the form of processed oilseeds can be an effective means of reducing methane emissions. However, for some oilseeds such as SS or FS, the reduction in methane can be at the expense of diet digestibility. The use of crushed CS offers a means of mitigating methane without negatively affecting diet digestibility, and

  17. Methane production and methanogen levels in steers that differ in residual gain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methane gas released by cattle is a product of fermentation in the digestive tract. The two primary sites of methane fermentation in ruminants are the reticulum-rumen complex, and the cecum. Methane release from cattle represents a 2 to 12% loss of the energy intake. Reducing the proportion of fe...

  18. Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?

    SciTech Connect

    Paull, C.K.; Ussler, W. III; Borowski, W.S.

    1993-09-01

    Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

  19. A two stage silo/digester for methane production from sweet sorghum

    SciTech Connect

    Egg, R.P.; Coble, C.G.; Hicks, D.D.

    1985-01-01

    A pilot scale silo/anaerobic digester was constructed to evaluate ensiling for storage of sweet sorghum used for methane production. Leachate from ensiled sweet sorghum was circulated through a packed bed anaerobic digester to produce methane. After 133 days of operation, methane was still being produced. Specific methane yield in the anaerobic filter was 0.27 m/sup 3//kg COD added and 0.34 m/sup 3//kg COD removed. COD removal was 79.6%.

  20. Control of Methane Production and Exchange in Northern Peatlands

    NASA Technical Reports Server (NTRS)

    Crill, Patrick

    1997-01-01

    This proposal has successfully supported studies that have developed unique long ten-n datasets of methane (CH4) emissions and carbon dioxide (CO2) exchange in order to quantify the controls on CH4 production and exchange especially the linkages to the carbon cycle in northern peatlands. The primary research site has been a small fen in southeastern New Hampshire where a unique multi-year data baseline of CH4 flux measurements was begun (with NASA funding) in 1989. The fen has also been instrumented for continuous hydrological and meteorological observations and year-round porewater sampling. Multiyear datasets of methane flux are very valuable and very rare. Datasets using the same sampling techniques at the same sites are the only way to assess the effect of the integrated ecosystem response to climatological variability. The research has had two basic objectives: 1. To quantify the effect of seasonal and interannual variability on CH4flux. 2. To examine process level controls on methane dynamics.

  1. Sugars proportionately affect artemisinin production.

    PubMed

    Wang, Y; Weathers, P J

    2007-07-01

    Little is known about the effect of sugars in controlling secondary metabolism. In this study, sugars alone or in combination with their analogs were used to investigate their role in the production of the antimalarial drug, artemisinin, in Artemisia annua L. seedlings. Compared to sucrose, a 200% increase in artemisinin by glucose was observed. Different ratios of fructose to glucose yielded artemisinin levels directly proportional to increases in relative glucose concentration. When the glucose analog, 3-O-methylglucose, was added with glucose, artemisinin production was dramatically decreased, but hexokinase activity was significantly increased compared to glucose alone. In contrast, neither mannose nor mannitol had any significant effect on artemisinin yield. In comparison with 30 g/l sucrose, artemisinin levels were significantly reduced by 80% in the presence of 27 g/l sucrose + 3 g/l palatinose, which cannot be transported into cells through the sucrose transporter. Together these results suggest that both monosaccharide and disaccharide sugars are likely acting not only as carbon sources but also as signals to affect the downstream production of artemisinin, and that the mechanism of these effects appears to be complex. PMID:17221224

  2. Enhancing methane production from waste activated sludge using a novel indigenous iron activated peroxidation pre-treatment process.

    PubMed

    Zhou, Xu; Wang, Qilin; Jiang, Guangming

    2015-04-01

    Methane production from anaerobic digestion of waste activated sludge (WAS) is limited by the slow hydrolysis rate and/or poor methane potential of WAS. This study presents a novel pre-treatment strategy based on indigenous iron (in WAS) activated peroxidation to enhance methane production from WAS. Pre-treatment of WAS for 30 min at 50mg H2O2/g total solids (dry weight) and pH 2.0 (iron concentration in WAS was 7 mg/g TS) substantially enhanced WAS solubilization. Biochemical methane potential tests demonstrated that methane production was improved by 10% at a digestion time of 16d after incorporating the indigenous iron activated peroxidation pre-treatment. Model-based analysis indicated that indigenous iron activated peroxidation pre-treatment improved the methane potential by 13%, whereas the hydrolysis rate was not significantly affected. The economic analysis showed that the proposed pre-treatment method can save the cost by $112,000 per year in a treatment plant with a population equivalent of 300,000.

  3. [Influence of substrate COD on methane production in single-chambered microbial electrolysis cell].

    PubMed

    Teng, Wen-Kai; Liu, Guang-Li; Luo, Hai-Ping; Zhang, Ren-Duo; Fu, Shi-Yu

    2015-03-01

    The chemical oxygen demand (COD) of substrate can affect the microbial activity of both anode and cathode biofilm in the single-chamber methanogenic microbial electrolysis cell (MEC). In order to investigate the effect of COD on the performance of MEC, a single chamber MEC was constructed with biocathode. With the change of initial concentration of COD (700, 1 000 and 1 350 mg x L(-1)), the methane production rate, COD removal and energy efficiency in the MEC were examined under different applied voltages. The results showed that the methane production rate and COD removal increased with the increasing COD. With the applied voltage changing from 0.3 to 0.7 V, the methane production rate increased at the COD of 700 mg x L(-1), while it increased at first and then decreased at the COD of 1000 mg x L(-1) and 1350 mg x L(-1). A similar trend was observed for the COD removal. The cathode potential reached the minimum (- 0.694 ± 0.001) V as the applied voltage was 0.5 V, which therefore facilitated the growth of methanogenic bacteria and improved the methane production rate and energy efficiency of the MEC. The maximum energy income was 0.44 kJ ± 0.09 kJ (1450 kJ x m(-3)) in the MEC, which was obtained at the initial COD of 1000 mg x L(-1) and the applied voltage of 0.5 V. Methanogenic MECs could be used for the treatment of wastewaters containing low organic concentrations to achieve positive energy production, which might provide a new method to recover energy from low-strength domestic wastewater.

  4. Biogasification of water hyacinth and sludge for methane production

    SciTech Connect

    Chynoweth, D.P.; Biljetina, R.; Srivastava, V.J.; Hayes, T.D.

    1985-01-01

    Research is in progress to determine the technical and economic feasibility of treatment of domestic sewage using primary settling and water hyacinth ponds and conversion of the organic products of this treatment (primary sludge and hyacinth) to substitute natural gas. This paper describes the status of the conversion component of this program which is centered on anaerobic digestion of hyacinth/sludge blends to methane. The results of several experiments conducted successfully in a large-scale experimental test unit located at the hyacinth treatment facility at Walt Disney are presented. 11 refs., 5 figs., 4 tabs.

  5. Enhanced methane production via repeated batch bioaugmentation pattern of enriched microbial consortia.

    PubMed

    Yang, Zhiman; Guo, Rongbo; Xu, Xiaohui; Wang, Lin; Dai, Meng

    2016-09-01

    Using batch and repeated batch cultivations, this study investigated the effects of bioaugmentation with enriched microbial consortia (named as EMC) on methane production from effluents of hydrogen-producing stage of potato slurry, as well as on the indigenous bacterial community. The results demonstrated that the improved methane production and shift of the indigenous bacterial community structure were dependent on the EMC/sludge ratio and bioaugmentation patterns. The methane yield and production rate in repeated batch bioaugmentation pattern of EMC were, respectively, average 15% and 10% higher than in one-time bioaugmentation pattern of EMC. DNA-sequencing approach showed that the enhanced methane production in the repeated batch bioaugmentation pattern of EMC mainly resulted from the enriched iron-reducing bacteria and the persistence of the introduced Syntrophomonas, which led to a rapid degradation of individual VFAs to methane. The findings contributed to understanding the correlation between the bioaugmentation of microbial consortia, community shift, and methane production.

  6. Enhanced methane production via repeated batch bioaugmentation pattern of enriched microbial consortia.

    PubMed

    Yang, Zhiman; Guo, Rongbo; Xu, Xiaohui; Wang, Lin; Dai, Meng

    2016-09-01

    Using batch and repeated batch cultivations, this study investigated the effects of bioaugmentation with enriched microbial consortia (named as EMC) on methane production from effluents of hydrogen-producing stage of potato slurry, as well as on the indigenous bacterial community. The results demonstrated that the improved methane production and shift of the indigenous bacterial community structure were dependent on the EMC/sludge ratio and bioaugmentation patterns. The methane yield and production rate in repeated batch bioaugmentation pattern of EMC were, respectively, average 15% and 10% higher than in one-time bioaugmentation pattern of EMC. DNA-sequencing approach showed that the enhanced methane production in the repeated batch bioaugmentation pattern of EMC mainly resulted from the enriched iron-reducing bacteria and the persistence of the introduced Syntrophomonas, which led to a rapid degradation of individual VFAs to methane. The findings contributed to understanding the correlation between the bioaugmentation of microbial consortia, community shift, and methane production. PMID:27262722

  7. Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge.

    PubMed

    Nguyen, Minh Tuan; Mohd Yasin, Nazlina Haiza; Miyazaki, Toshiki; Maeda, Toshinari

    2014-12-01

    The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 μmol g(-1) dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production. PMID:25277968

  8. A data-driven model for maximization of methane production in a wastewater treatment plant.

    PubMed

    Kusiak, Andrew; Wei, Xiupeng

    2012-01-01

    A data-driven approach for maximization of methane production in a wastewater treatment plant is presented. Industrial data collected on a daily basis was used to build the model. Temperature, total solids, volatile solids, detention time and pH value were selected as parameters for the model construction. First, a prediction model of methane production was built by a multi-layer perceptron neural network. Then a particle swarm optimization algorithm was used to maximize methane production based on the model developed in this research. The model resulted in a 5.5% increase in methane production.

  9. Modeling methane emissions by cattle production systems in Mexico

    NASA Astrophysics Data System (ADS)

    Castelan-Ortega, O. A.; Ku Vera, J.; Molina, L. T.

    2013-12-01

    Methane emissions from livestock is one of the largest sources of methane in Mexico. The purpose of the present paper is to provide a realistic estimate of the national inventory of methane produced by the enteric fermentation of cattle, based on an integrated simulation model, and to provide estimates of CH4 produced by cattle fed typical diets from the tropical and temperate climates of Mexico. The Mexican cattle population of 23.3 million heads was divided in two groups. The first group (7.8 million heads), represents cattle of the tropical climate regions. The second group (15.5 million heads), are the cattle in the temperate climate regions. This approach allows incorporating the effect of diet on CH4 production into the analysis because the quality of forages is lower in the tropics than in temperate regions. Cattle population in every group was subdivided into two categories: cows (COW) and other type of cattle (OTHE), which included calves, heifers, steers and bulls. The daily CH4 production by each category of animal along an average production cycle of 365 days was simulated, instead of using a default emission factor as in Tier 1 approach. Daily milk yield, live weight changes associated with the lactation, and dry matter intake, were simulated for the entire production cycle. The Moe and Tyrrell (1979) model was used to simulate CH4 production for the COW category, the linear model of Mills et al. (2003) for the OTHE category in temperate regions and the Kurihara et al. (1999) model for the OTHE category in the tropical regions as it has been developed for cattle fed tropical diets. All models were integrated with a cow submodel to form an Integrated Simulation Model (ISM). The AFRC (1993) equations and the lactation curve model of Morant and Gnanasakthy (1989) were used to construct the cow submodel. The ISM simulates on a daily basis the CH4 production, milk yield, live weight changes associated with lactation and dry matter intake. The total daily CH

  10. Effects of gas composition in headspace and bicarbonate concentrations in media on gas and methane production, degradability, and rumen fermentation using in vitro gas production techniques.

    PubMed

    Patra, Amlan Kumar; Yu, Zhongtang

    2013-07-01

    Headspace gas composition and bicarbonate concentrations in media can affect methane production and other characteristics of rumen fermentation in in vitro gas production systems, but these 2 important factors have not been evaluated systematically. In this study, these 2 factors were investigated with respect to gas and methane production, in vitro digestibility of feed substrate, and volatile fatty acid (VFA) profile using in vitro gas production techniques. Three headspace gas compositions (N2+ CO2+ H2 in the ratio of 90:5:5, CO2, and N2) with 2 substrate types (alfalfa hay only, and alfalfa hay and a concentrate mixture in a 50:50 ratio) in a 3×2 factorial design (experiment 1) and 3 headspace compositions (N2, N2 + CO2 in a 50:50 ratio, and CO2) with 3 bicarbonate concentrations (80, 100, and 120 mM) in a 3×3 factorial design (experiment 2) were evaluated. In experiment 1, total gas production (TGP) and net gas production (NGP) was the lowest for CO2, followed by N2, and then the gas mixture. Methane concentration in headspace gas after fermentation was greater for CO2 than for N2 and the gas mixture, whereas total methane production (TMP) and net methane production (NMP) were the greatest for CO2, followed by the gas mixture, and then N2. Headspace composition did not affect in vitro digestibility or the VFA profile, except molar percentages of propionate, which were greater for CO2 and N2 than for the gas mixture. Methane concentration in headspace gas, TGP, and NGP were affected by the interaction of headspace gas composition and substrate type. In experiment 2, increasing concentrations of CO2 in the headspace decreased TGP and NGP quadratically, but increased the concentrations of methane, NMP, and in vitro fiber digestibility linearly, and TMP quadratically. Fiber digestibility, TGP, and NGP increased linearly with increasing bicarbonate concentrations in the medium. Concentrations of methane and NMP were unaffected by bicarbonate concentration, but

  11. Evidence for methane production by marine algae (Emiliana huxleyi) and its implication for the methane paradox in oxic waters

    NASA Astrophysics Data System (ADS)

    Lenhart, K.; Klintzsch, T.; Langer, G.; Nehrke, G.; Bunge, M.; Schnell, S.; Keppler, F.

    2015-12-01

    Methane (CH4), an important greenhouse gas that affects radiation balance and consequently the earth's climate, still has uncertainties in its sinks and sources. The world's oceans are considered to be a source of CH4 to the atmosphere, although the biogeochemical processes involved in its formation are not fully understood. Several recent studies provided strong evidence of CH4 production in oxic marine and freshwaters but its source is still a topic of debate. Studies of CH4 dynamics in surface waters of oceans and large lakes have concluded that pelagic CH4 supersaturation cannot be sustained either by lateral inputs from littoral or benthic inputs alone. However, frequently regional and temporal oversaturation of surface waters occurs. This comprises the observation of a CH4 oversaturating state within the surface mixed layer, sometimes also termed the "oceanic methane paradox". In this study we considered marine algae as a possible direct source of CH4. Therefore, the coccolithophore Emiliania huxleyi was grown under controlled laboratory conditions and supplemented with two 13C-labelled carbon substrates, namely bicarbonate and a position-specific 13C-labelled methionine (R-S-13CH3). The CH4 production was 0.7 μg POC g-1 d-1, or 30 ng g-1 POC h-1. After supplementation of the cultures with the 13C labelled substrate, the isotope label was observed in headspace-CH4. Moreover, the absence of methanogenic archaea within the algal culture and the oxic conditions during CH4 formation suggest that marine algae such as Emiliania huxleyi contribute to the observed spatial and temporal restricted CH4 oversaturation in ocean surface waters.

  12. Equations of state of detonation products: ammonia and methane

    NASA Astrophysics Data System (ADS)

    Lang, John; Dattelbaum, Dana; Goodwin, Peter; Garcia, Daniel; Coe, Joshua; Leiding, Jeffery; Gibson, Lloyd; Bartram, Brian

    2015-06-01

    Ammonia (NH3) and methane (CH4) are two principal product gases resulting from explosives detonation, and the decomposition of other organic materials under shockwave loading (such as foams). Accurate thermodynamic descriptions of these gases are important for understanding the detonation performance of high explosives. However, shock compression data often do not exist for molecular species in the dense gas phase, and are limited in the fluid phase. Here, we present equation of state measurements of elevated initial density ammonia and methane gases dynamically compressed in gas-gun driven plate impact experiments. Pressure and density of the shocked gases on the principal Hugoniot were determined from direct particle velocity and shock wave velocity measurements recorded using optical velocimetry (Photonic Doppler velocimetry (PDV) and VISAR (velocity interferometer system for any reflector)). Streak spectroscopy and 5-color pyrometry were further used to measure the emission from the shocked gases, from which the temperatures of the shocked gases were estimated. Up to 0.07 GPa, ammonia was not observed to ionize, with temperature remaining below 7000 K. These results provide quantitative measurements of the Hugoniot locus for improving equations of state models of detonation products.

  13. Affective Productions of Mathematical Experience

    ERIC Educational Resources Information Center

    Walshaw, Margaret; Brown, Tony

    2012-01-01

    In underscoring the affective elements of mathematics experience, we work with contemporary readings of the work of Spinoza on the politics of affect, to understand what is included in the cognitive repertoire of the Subject. We draw on those resources to tell a pedagogical tale about the relation between cognition and affect in settings of…

  14. Impact of reduced water consumption on sulfide and methane production in rising main sewers.

    PubMed

    Sun, Jing; Hu, Shihu; Sharma, Keshab Raj; Bustamante, Heriberto; Yuan, Zhiguo

    2015-05-01

    Reduced water consumption (RWC), for water conservation purposes, is expected to change the wastewater composition and flow conditions in sewer networks and affect the in-sewer transformation processes. In this study, the impact of reduced water consumption on sulfide and methane production in rising main sewers was investigated. Two lab-scale rising main sewer systems fed with wastewater of different strength and flow rates were operated to mimic sewers under normal and RWC conditions (water consumption reduced by 40%). Sulfide concentration under the RWC condition increased by 0.7-8.0 mg-S/L, depending on the time of a day. Batch test results showed that the RWC did not change the sulfate-reducing activity of sewer biofilms, the increased sulfide production being mainly due to longer hydraulic retention time (HRT). pH in the RWC system was about 0.2 units lower than that in the normal system, indicating that more sulfide would be in molecular form under the RWC condition, which would result in increased sulfide emission to the atmosphere as confirmed by the model simulation. Model based analysis showed that the cost for chemical dosage for sulfide mitigation would increase significantly per unit volume of sewage, although the total cost would decrease due to a lower sewage flow. The dissolved methane concentration under the RWC condition was over two times higher than that under the normal flow condition and the total methane discharge was about 1.5 times higher, which would potentially result in higher greenhouse gas emissions. Batch tests showed that the methanogenic activity of sewer biofilms increased under the RWC condition, which along with the longer HRT, led to increased methane production.

  15. Basic Study on Production Well Integrity for Methane Hydrate Development

    NASA Astrophysics Data System (ADS)

    Kakumoto, M.; Yoneda, J.; Katagiri, J.; Tenma, N.; Aoki, K.

    2014-12-01

    Methane Hydrate (MH) exist as an ice-like crystal under low-temperature and high-pressure condition, and it has gathering attention as a non-conventional natural gas resource. Depressurization method is a method to reduce the bottom hole pressure by submersible pump lowering water level in the production well, and gas and water is recovered by MH dissociation at the in situ. During the depressurization operation, consolidation and deformation of sediment occurs because of increase of effective stress by depressurization and changes in the soil structure by MH dissociation. Then consolidation and deformation of sediment makes negative friction between the production well and sediment, and large stress is occur in casing. Therefore there is concern that it may cause compression failure and shear failure of the production well. For safe MH development, it is necessary to grasp the deformation and stress vicinity of the production well. At first, we conducted push-out test to get friction strength between the different materials simulated the well and sediment. And we have done numerical analysis for integrity using by these data. The results of numerical analysis showed that the large deformation of sediment occur around the depressurization zone, and for the well, the large tensile stress in the vertical direction occur the upper vicinity of the depressurization zone.This study was financially supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) planned by Ministry of Economy, Trade and Industry (METI). The authors thank the entire personnel related to MH21 Research Consortium.

  16. Chemistry of trace elements in coalbed methane product water.

    PubMed

    McBeth, Ian; Reddy, Katta J; Skinner, Quentin D

    2003-02-01

    Extraction of methane (natural gas) from coal deposits is facilitated by pumping of aquifer water. Coalbed methane (CBM) product water, produced from pumping ground water, is discharged into associated unlined holding ponds. The objective of this study was to examine the chemistry of trace elements in CBM product water at discharge points and in associated holding ponds across the Powder River Basin, Wyoming. Product water samples from discharge points and associated holding ponds were collected from the Cheyenne River (CHR), Belle Fourche River (BFR), and Little Powder River (LPR) watersheds during the summers of 1999 and 2000. Samples were analyzed for pH, Al (aluminum), As (arsenic), B (boron), Ba (barium), Cr (chromium), Cu (copper), F (fluoride), Fe (iron), Mn (manganese), Mo (molybdenum), Se (selenium), and Zn (zinc). Chemistry of trace element concentrations were modeled with the MINTEQA2 geochemical equilibrium model. Results of this study show that pH of product water for three watersheds increased in holding ponds. For example the pH of CBM product water increased from 7.21 to 8.26 for LPR watershed. Among three watersheds, the CBM product water exhibited relatively less change in trace element concentrations in CHR watershed holding ponds. Concentration of dissolved Al, Fe, As, Se, and F in product water increased in BFR watershed holding ponds. For example, concentration of dissolved Fe increased from 113 to 135 microg/L. Boron, Cu, and Zn concentrations of product water did not change in BFR watershed holding ponds. However, concentration of dissolved Ba, Mn, and Cr in product water decreased in BFR watershed holding ponds. For instance, Ba and Cr concentrations decreased from 445 to 386 microg/L and from 43.6 to 25.1 microg/L, respectively. In the LPR watershed, Al, Fe, As, Se, and F concentrations of product water increased substantially in holding ponds. For example, Fe concentration increased from 192 to 312 microg/L. However, concentration of

  17. Methane production from glycolate excreting algae as a new concept in the production of biofuels.

    PubMed

    Günther, Anja; Jakob, Torsten; Goss, Reimund; König, Swetlana; Spindler, Daniel; Räbiger, Norbert; John, Saskia; Heithoff, Susanne; Fresewinkel, Mark; Posten, Clemens; Wilhelm, Christian

    2012-10-01

    It is the aim of the present work to introduce a new concept for methane production by the interaction of a glycolate-excreting alga (Chlamydomonas reinhardtii) and methanogenic microbes operating in separate compartments within one photobioreactor. This approach requires a minimum number of metabolic steps to convert light energy to methane thereby reducing the energetic and financial costs of biomass formation, harvest and refinement. In this feasibility study it is shown that the physiological limitations for sustained glycolate production can be circumvented by the use of C. reinhardtii mutants whose carbon concentrating mechanisms or glycolate dehydrogenase are suppressed. The results also demonstrate that methanogenic microbes are able to thrive on glycolate as single carbon source for a long time period, delivering biogas composed of CO(2)/methane with only very minor contamination.

  18. Stimulation of commercial coal seam methane production aimed at improving mining technology

    NASA Astrophysics Data System (ADS)

    Shubina, E. A.; Lukyanov, V. G.

    2016-09-01

    The relevance of the current research is due to the urgent need to revise the existing normative bases and procedures involved in intensive development of coal-methane deposits and commercial production of coal seam methane. The article presents the analysis of data on coal production volume and amount of methane emitted into the atmosphere in Kuzbass. There is a need to develop the exploration techniques that would allow implementing pre-mining gas drainage of coal seams and provide the companies with the guidance on coal seam methane drainage in very gassy coal mines. Commercial production of methane should become an integral part of economy and energy balance of the Russian Federation, which, in its turn, would enhance environmental protection due to reducing methane emissions, the largest source of greenhouse effect.

  19. A process-based mathematical model on methane production with emission indices for control.

    PubMed

    Chakraborty, A; Bhattacharaya, D K

    2006-08-01

    In this paper, a process-based mathematical model is developed for the production of methane through biodegradation. It is a three-dimensional model given by ordinary differential equations. The results of the analysis of the model are interpreted through three emission indices, which are introduced for the first time. The estimation of either one or all of them can interpret the feasibility of the equilibrium and the long-term emission tendency of methane. The vulnerability of the methane production process with respect to soil temperature effects in methanogenic phase has been discussed and a feasible condition within a specified temperature range has defined for the nonvulnerability of the methane production process and also it has shown that under the same condition, zero-emission process of methane will be nonvulnerable with respect to the soil temperature effects in methanogenic phase. Lastly, condition for zero emission of methane is also obtained and it is interpreted through the emission indices.

  20. Effect of perchloroethylene (PCE) on methane and acetate production by a methanogenic consortium

    SciTech Connect

    Bereded-Samuel, Y.; Petersen, J.N.; Skeen, R.S.

    1996-12-31

    The effects of perchloroethylene (PCE) concentration in the range of 0-100 mg/L on methane and acetate production by a methanol-enriched methanogenic consortia were investigated at 17{degrees}C. The results indicate that PCE is more inhibitory to methanogenesis than to acetogenesis. At concentrations as low as 10 ppm, PCE affects the methanogenic activity of the consortium, and has completely inhibited this activity at 100 ppm. Conversely, PCE does not begin to inhibit acetogenic activity until the concentration is above 10 ppm, and has not completely inhibited it even at a PCE concentration of 100 ppm. 15 refs., 3 figs.

  1. Methane production in ruminants: its effect on the doubly labeled water method.

    PubMed

    Midwood, A J; Haggarty, P; McGaw, B A; Robinson, J J

    1989-12-01

    The doubly labeled water (DLW) technique for measuring CO2 production (rCO2) in free-living animals requires an assessment of the elimination of both 2H and 18O from the body over a long period of time. To calculate rCO2, it is necessary to calculate water turnover (rH2O) from the 2H flux rate. In ruminant animals, the accuracy of this calculation is affected by the loss of 2H in methane. We have quantified the effect of methane production (rCH4) on the 2H flux rate, determined in four sheep given 2H2O. The methane produced was depleted in 2H relative to the urine. A relationship between the enrichment of the methane and urine was established. The ratio of urine to methane enrichment was found on average to be 0.6536, and this value was unaffected by the level of rCH4 but showed some dependence on the absolute concentration of 2H in urine. For this reason, the ratio value obtained from four sheep not given 2H2O was different, a mean of 0.6886 was measured, this ratio was unaffected by changes in the diet supplied to the animals. Computer modeling was used to illustrate the dependence of the isotopically derived value for rCO2 on not only rCH4 but also the magnitude of rCO2 itself. The effect of rCH4 on the DLW method can be predicted from the observed ratio of rCO2 to rCH4 and the value of 0.6536 obtained for the ratio of methane to urine enrichment. With the use of data from several studies at this Institute, a limited range of 10 to 20 was found for rCO2/rCH4 in animals fed at or above maintenance.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Methane production during storage of anaerobically digested municipal organic waste.

    PubMed

    Hansen, Trine Lund; Sommer, Svend G; Gabriel, Søren; Christensen, Thomas H

    2006-01-01

    Anaerobic digestion of source-separated municipal organic waste is considered feasible in Denmark. The limited hydraulic retention in the biogas reactor (typically 15 d) does not allow full degradation of the organic waste. Storage of anaerobically digested municipal organic waste can therefore be a source of methane (CH4) emission that may contribute significantly to the potential global warming impact from the waste treatment system. This study provides a model for quantifying the CH4 production from stored co-digested municipal organic waste and estimates the production under typical Danish climatic conditions, thus quantifying the potential global warming impact from storage of the digested municipal organic waste before its use on agricultural land. Laboratory batch tests on CH4 production as well as temperature measurements in eight full-scale storage tanks provided data for developing a model estimating the CH4 production in storage tanks containing digested municipal organic waste. The temperatures measured in separate storage tanks on farms receiving digested slurry were linearly correlated with air temperature. In storage tanks receiving slurry directly from biogas reactors, significantly higher temperatures were measured due to the high temperatures of the effluent from the reactor. Storage tanks on Danish farms are typically emptied in April and have a constant inflow of digested material. During the warmest months the content of digested material is therefore low, which limits the yearly CH4 production from storage.

  3. Temperature regulates methane production through the function centralization of microbial community in anaerobic digestion.

    PubMed

    Lin, Qiang; De Vrieze, Jo; He, Guihua; Li, Xiangzhen; Li, Jiabao

    2016-09-01

    Temperature is crucial for the performance of anaerobic digestion process. In this study of anaerobic digestion of swine manure, the relationship between the microbial gene expression and methane production at different temperatures (25-55°C) was revealed through metatranscriptomic analysis. Daily methane production and total biogas production increased with temperature up to 50°C, but decreased at 55°C. The functional gene expression showed great variation at different temperatures. The function centralization (opposite to alpha-diversity), assessed by the least proportions of functional pathways contributing for at least 50% of total reads positively correlated to methane production. Temperature regulated methane production probably through reducing the diversity of functional pathways, but enhancing central functional pathways, so that most of cellular activities and resource were invested in methanogenesis and related pathways, enhancing the efficiency of conversion of substrates to methane. This research demonstrated the importance of function centralization for efficient system functioning.

  4. Enhancing methane production of Chlorella vulgaris via thermochemical pretreatments.

    PubMed

    Mendez, Lara; Mahdy, Ahmed; Timmers, Rudolphus A; Ballesteros, Mercedes; González-Fernández, Cristina

    2013-12-01

    To enhance the anaerobic digestion of Chlorella vulgaris, thermochemical pretreatments were conducted. All pretreatments markedly improved solubilisation of carbohydrates. Thermal treatments and thermal treatments combined with alkali resulted in 5-fold increase of soluble carbohydrates while thermal treatment with acid addition enhanced by 7-fold. On the other hand, proteins were only solubilized with thermo-alkaline conditions applied. Likewise, all the pretreatments tested improved methane production. Highest anaerobic digestion was accomplished by thermal treatment at 120°C for 40 min without any chemical addition. As a matter of fact, hydrolysis constant rate was doubled under this condition. According to the energetic analysis, energy input was higher than the extra energy gain at the solid concentration employed. Nevertheless, higher biomass organic load pretreatment may be an option to achieve positive energetic balances. PMID:24096280

  5. Haloalkaline Bioconversions for Methane Production from Microalgae Grown on Sunlight.

    PubMed

    Daelman, Matthijs R J; Sorokin, Dimitry; Kruse, Olaf; van Loosdrecht, Mark C M; Strous, Marc

    2016-06-01

    Microalgal biomass can be converted to biofuels to replace nonsustainable fossil fuels, but the widespread use of microalgal biofuels remains hampered by the high energetic and monetary costs related to carbon dioxide supply and downstream processing. Growing microalgae in mixed culture biofilms reduces energy demands for mixing, maintaining axenic conditions, and biomass concentration. Furthermore, maintaining a high pH improves carbon dioxide absorption rates and inorganic carbon solubility, thus overcoming the carbon limitation and increasing the volumetric productivity of the microalgal biomass. Digesting the microalgal biomass anaerobically at high pH results in biogas that is enriched in methane, while the dissolved carbon dioxide is recycled to the phototrophic reactor. All of the required haloalkaline conversions are known in nature. PMID:26968613

  6. Enhancing methane production of Chlorella vulgaris via thermochemical pretreatments.

    PubMed

    Mendez, Lara; Mahdy, Ahmed; Timmers, Rudolphus A; Ballesteros, Mercedes; González-Fernández, Cristina

    2013-12-01

    To enhance the anaerobic digestion of Chlorella vulgaris, thermochemical pretreatments were conducted. All pretreatments markedly improved solubilisation of carbohydrates. Thermal treatments and thermal treatments combined with alkali resulted in 5-fold increase of soluble carbohydrates while thermal treatment with acid addition enhanced by 7-fold. On the other hand, proteins were only solubilized with thermo-alkaline conditions applied. Likewise, all the pretreatments tested improved methane production. Highest anaerobic digestion was accomplished by thermal treatment at 120°C for 40 min without any chemical addition. As a matter of fact, hydrolysis constant rate was doubled under this condition. According to the energetic analysis, energy input was higher than the extra energy gain at the solid concentration employed. Nevertheless, higher biomass organic load pretreatment may be an option to achieve positive energetic balances.

  7. Butachlor inhibits production and oxidation of methane in tropical rice soils under flooded condition.

    PubMed

    Mohanty, S R; Nayak, D R; Babu, Y J; Adhya, T K

    2004-01-01

    In laboratory incubation experiments, application of a commercial formulation of the herbicide butachlor (N-butoxymethyl-2-chloro-2',6'-diethyl acetanilide) to three tropical rice soils, widely differing in their physicochemical characteristics, under flooded condition inhibited methane (CH4) production. The inhibitory effect was concentration dependent and most remarkable in the alluvial soil. Thus, following application of butachlor at 5, 10, 50 and 100 microg g(-1) soil, respectively, cumulative CH4 production in the alluvial soil was inhibited by 15%, 31%, 91% and 98% over unamended control. Since CH4 production was less pronounced in the sandy loam and acid sulfate soil, the impact of amendment with butchalor, albeit inhibitory, was less extensive than the alluvial soil. Inhibition of CH4 production in butachlor-amended alluvial soil was related to the prevention in the drop in redox potential as well as low methanogenic bacterial population especially at high concentrations of butachlor. CH4 oxidation was also inhibited in butachlor-amended alluvial soil with the inhibitory effect being more prevalent under flooded condition. Inhibition in CH4 oxidation was related to a reduction in the population of soluble methane monooxygenase producing methanotrophs. Results demonstrate that butachlor, a commonly used herbicide in rice cultivation, even at very low concentrations can affect CH4 production and its oxidation, thereby influencing the biogeochemical cycle of CH4 in flooded rice soils.

  8. Methane production and digestibility measurements in the grey kangaroo and sheep.

    PubMed

    Kempton, T J; Murray, R M; Leng, R A

    1976-07-01

    Three grey knagaroos and three sheep were given a diet of lucerne chaff and measurements were made of feed intake, digestibility coefficients, methane production rate and volatile fatty acid content of the "stomach" and caecum for each animal. The kangaroos had lower intakes of digestible dry matter and organic matter than the sheep; this was related to lower intakes of dry matter and lower apparent digestibility coefficients particularly of the crude fibre fraction. Methane production in the sheep (collected in respired air through a mask) was 0-81 litre/h; no methane was collected in the respired air from kangaroos. Anal release of methane in sheep and kangaroos indicated that some methane was produced in the hind gut of kangaroos and that all of this methane was lost via the anus. This finding was different to the sheep which apparently excreted 80-90% of the hind gut methane via the lungs. Thus in both sites of apparent high microbial growth in the gut of kangaroos methane production is negligible or lower than in the same sites in sheep. Possible explanations for the absence of measurable methane production in the kangaroo fore-stomachs are discussed. PMID:985222

  9. Methods for Detecting Microbial Methane Production and Consumption by Gas Chromatography

    PubMed Central

    Aldridge, Jared T.; Catlett, Jennie L.; Smith, Megan L.; Buan, Nicole R.

    2016-01-01

    Methane is an energy-dense fuel but is also a greenhouse gas 25 times more detrimental to the environment than CO2. Methane can be produced abiotically by serpentinization, chemically by Sabatier or Fisher-Tropsh chemistry, or biotically by microbes (Berndt et al., 1996; Horita and Berndt, 1999; Dry, 2002; Wolfe, 1982; Thauer, 1998; Metcalf et al., 2002). Methanogens are anaerobic archaea that grow by producing methane gas as a metabolic byproduct (Wolfe, 1982; Thauer, 1998). Our lab has developed and optimized three different gas chromatograph-utilizing assays to characterize methanogen metabolism (Catlett et al., 2015). Here we describe the end point and kinetic assays that can be used to measure methane production by methanogens or methane consumption by methanotrophic microbes. The protocols can be used for measuring methane production or consumption by microbial pure cultures or by enrichment cultures. PMID:27559541

  10. Methane production in sediments of small tundra ponds during winter

    NASA Astrophysics Data System (ADS)

    Macrae, M. L.; Fishback, L.; Bourbonniere, R. A.; Duguay, C. R.; Soliman, A. S.

    2011-12-01

    Shallow tundra ponds in the Churchill region of the Hudson Bay Lowlands (HBL) store large quantities of organic material in the form of sediments. Organic sediments in ponds and wetlands have been identified as a source of atmospheric methane (CH4) during the summer season in many landscapes. However, less is known about CH4 production and emission during the winter months, following the formation of an ice layer on the water surface. Unfrozen sediments may continue to produce methane (CH4) during this time, which may become trapped in the ponds beneath the ice layer. This occurrence has been identified in some regions through the sampling and analysis of CH4 bubbles frozen in lake ice. The goal of this project is to examine the potential for the production and trapping of CH4 in ponds beneath the pond ice (water/ice and sediment profiles) in the Churchill region of the HBL. Thermistor and gas sampling arrays were installed in the water and sediments of two ponds. Gas samples were collected at 1-4 week intervals at the sediment-water interface and at 0-15cm and 20-35 cm depth. Results show that sediments are indeed thawed for 3-4 months of the winter season, and deeper sediments remain within the range of 0 to -5 C whereas shallow sediment temperatures ranged between 10 and -10 C over an annual cycle. Laboratory experiments showed that little difference in CH4 production was observed at sediment temperatures between -2 and 5 C, whereas production was very low at -10 C. No significant differences in CH4 production rates were observed for different sediment depths in the laboratory. Field data collected between August 2010 and June 2011 showed consistent accumulation of CH4 in sediments following the formation of an ice layer on pond surfaces. However, CH4 concentrations in gas samplers decreased in February through April after sediments were frozen, but began to increase again (May-June) as sediments thawed and began to warm. Future work will include the examination

  11. Factors affecting the process of CO2 replacement of CH4 from methane hydrate in sediments - Constrained from experimental results

    NASA Astrophysics Data System (ADS)

    Lu, H.; Hu, G.; Vanderveen, J.; Liu, C.; Ratcliffe, C.; Ripmeester, J.

    2011-12-01

    CO2 replacement of CH4 from methane hydrate has been proposed as a method to produce gas from natural gas hydrate by taking advantage of both the production of natural gas and the sequestration of CO2. To examine the validity of this method DOE/Conoco-Philips is considering having a field test in Alaska. The reaction of CO2 replacing CH4 from methane hydrate has been confirmed to be thermodynamically feasible, but concern is always raised about the reaction kinetics. Some kinetic studies in the system of methane hydrate and liquid or gaseous CO2 have found that the reaction proceeds at a very low rate. Natural gas hydrate occurs in sediments with multi-components and complex structure, so matters will be even more complicated. Up to now, few investigations have been carried out concerning the factors affecting the reaction process of CO2 replacing CH4 from methane hydrate. Experiments were implemented with sands, which were recovered from Mallik 5L-38 well, Mackenzie Delta, Northwest Territory, Canada, sediment that previously contained hydrate although it had been dried completely before our experiments. The water-saturated sands were tightly charged into a plastic bottle (90 mm deep and 60 mm wide), and then this test specimen was sealed in a pressure cell. After methane hydrate was synthesized in the test specimen for 108 days under a pressure of 11 to 8 MPa and a temperature of 3 degrees Celsius, liquid CO2 was introduced into the pressure cell. The conditions under which CO2 was reacted with methane hydrate were ~5.3 MPa and 5 degrees Celsius. After reacting for 15 days, the test specimen was recovered. The test specimen was cut into ~10 mm thick discs, and sub-samples were further taken from each of the discs. In addition to the determination of hydrate saturation and the gas composition, Raman spectroscopic studies were carried out for the sub-samples obtained. The results revealed: 1) less CO2 replacement in the bottom disc of the test specimen as compared

  12. Optimizing anaerobic digestion by selection of the immobilizing surface for enhanced methane production.

    PubMed

    Adu-Gyamfi, Nicholas; Ravella, Sreenivas Rao; Hobbs, Phil J

    2012-09-01

    Maximizing methane production while maintaining an appreciable level of process stability is a crucial challenge in the anaerobic digestion industry. In this study, the role of six parameters: the type of immobilizing supports, loading rate, inoculum levels, C:N ratio, trace nutrients concentrations and mixing rate, on methane production were investigated under thermophilic conditions (55 ± 1°C) with synthetic substrate medium. The immobilizing supports were Silica gel, Sand, Molecular Sieve and Dowex Marathon beads. A Taguchi Design of Experiment (DOE) methodology was employed to determine the effects of different parameters using an L(16) orthogonal array. Overall, immobilizing supports influenced methane production substantially (contributing 61.3% of the observed variation in methane yield) followed by loading rate and inoculum which had comparable influence (17.9% and 17.7% respectively). Optimization improved methane production by 153% (from 183 to 463 ml CH(4)l(-1)d(-1)).

  13. Improved methane production from brown algae under high salinity by fed-batch acclimation.

    PubMed

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2015-01-01

    Here, a methanogenic microbial community was developed from marine sediments to have improved methane productivity from brown algae under high salinity. Fed-batch cultivation was conducted by adding dry seaweed at 1wt% total solid (TS) based on the liquid weight of the NaCl-containing sediment per round of cultivation. The methane production rate and level of salinity increased 8-fold and 1.6-fold, respectively, at the 10th round of cultivation. Moreover, the rate of methane production remained high, even at the 10th round of cultivation, with accumulation of salts derived from 10wt% TS of seaweed. The salinity of the 10th-round culture was equivalent to 5% NaCl. The improved methane production was attributed to enhanced acetoclastic methanogenesis because acetate became rapidly converted to methane during cultivation. The family Fusobacteriaceae and the genus Methanosaeta, the acetoclastic methanogen, predominated in bacteria and archaea, respectively, after the cultivation.

  14. Comparative methane emission by ratites: Differences in food intake and digesta retention level out methane production.

    PubMed

    Frei, Samuel; Hatt, Jean-Michel; Ortmann, Sylvia; Kreuzer, Michael; Clauss, Marcus

    2015-10-01

    Ratites differ in the anatomy of their digestive organs and their digesta excretion patterns. Ostriches (Struthio camelus) have large fermentation chambers and long digesta retention, emus (Dromaius novaehollandiae) have a short gut and short retention times, and rheas (Rhea americana) are intermediate. A recent study showed that ostriches produce as much methane (CH4) as expected for a similar-sized, non-ruminant mammalian herbivore. We hypothesized that emus and rheas produce less CH4 than ostriches. We individually measured, by chamber respirometry, the amount of O2 consumed as well as CO2 and CH4 emitted from six adult rheas (body mass 23.4±8.3 kg) and two adult emus (33.5 and 32.0 kg) during 23-hour periods on a pelleted lucerne diet. In contrast to previous studies, which classified emus as non-producers, we measured CH4 emissions at 7.39 and 6.25 L/day for emus and 2.87±0.82 L/day for rheas, which is close to values expected for similar-sized non-ruminant mammals for both species. O2 consumption was of a similar magnitude as reported previously. Across ratites, CH4 yield (L/kg dry matter intake) was positively correlated with mean retention time of food particles in the gut, similar to findings within ruminant species. In ratites, this relationship leads to similar body mass-specific CH4 production for a high intake/short retention and a low intake/long retention strategy. Therefore, when investigating CH4 production in herbivorous birds, it is advisable to consider various CH4 measures, not only yield or absolute daily amount alone. PMID:26123777

  15. Sulfate Reduction Relative to Methane Production in High-Rate Anaerobic Digestion: Technical Aspects

    PubMed Central

    Isa, Zaid; Grusenmeyer, Stéphane; Verstraete, Willy

    1986-01-01

    The effect of different substrates and different levels of sulfate and sulfide on methane production relative to sulfate reduction in high-rate anaerobic digestion was evaluated. Reactors could be acclimated so that sulfate up to a concentration of 5 g of sulfate S per liter did not significantly affect methanogenesis. Higher levels gave inhibition because of salt toxicity. Sulfate reduction was optimal at a relatively low level of sulfate, i.e., 0.5 g of sulfate S per liter, but was also not significantly affected by higher levels. Both acetoclastic and hydrogenotrophic methane-producing bacteria adapted to much higher levels of free H2S than the values reported in the literature (50% inhibition occurred only at free H2S levels of more than 1,000 mg/liter). High levels of free H2S affected the sulfate-reducing bacteria only slightly. Formate and acetate supported the sulfate-reducing bacteria very poorly. In the high-rate reactors studied, intensive H2S formation occurred only when H2 gas or an H2 precursor such as ethanol was supplied. PMID:16347018

  16. Comparison of soil acetate concentrations and methane production, transport, and emission in two rice cultivars

    NASA Astrophysics Data System (ADS)

    Sigren, L. K.; Byrd, G. T.; Fisher, F. M.; Sass, R. L.

    1997-03-01

    The amount of methane emitted from irrigated rice paddies is dependent on the variety of rice grown. In this study we examined two varieties of rice with differing methane emission rates to determine if the primary mechanism for these differences was related to transport processes or the rate of methane production. The cultivars used were Mars and Lemont, with 1994 seasonal emissions of 34 and 18 g m-2, respectively. Seasonal methane emission and soil acetate concentration data were measured weekly over two seasons in both varieties. In addition, gas transport through the two rice varieties was investigated in both field and laboratory experiments in 1995. We found no significant differences in gas transport between the two varieties. However, significant differences between the two varieties were detected in the soil acetate concentrations during the vegetative growth stage. Mars exhibited higher seasonal methane emissions and higher soil acetate concentrations than Lemont. This suggests that the intervarietal differences in methane emissions are the result of different soil substrate levels and hence different rates of methane production. The turnover time of soil acetate was found to be small, about 1 hour in the last half of the season. Calculations of methane oxidation, using two methods, support previous findings that the fraction of methane oxidized in the soil prior to emission increases from 10 to 30% before heading to 30-70% after heading.

  17. Comparison of methane production potential, biodegradability, and kinetics of different organic substrates.

    PubMed

    Li, Yeqing; Zhang, Ruihong; Liu, Guangqing; Chen, Chang; He, Yanfeng; Liu, Xiaoying

    2013-12-01

    The methane production potential, biodegradability, and kinetics of a wide range of organic substrates were determined using a unified and simple method. Results showed that feedstocks that contained high energy density and easily degradable substrates exhibited high methane production potential and biodegradability. Lignocellulosic biomass with high content of fibrous compositions had low methane yield and biodegradability. Feedstocks with high lignin content (≥ 15%, on a TS basis) had low first-order rate constant (0.05-0.06 1/d) compared to others. A negative linear correlation between lignin content and experimental methane yield (or biodegradability) was found for lignocellulosic and manure wastes. This could be used as a fast method to predict the methane production potential and biodegradability of fiber-rich substrates. The findings of this study provided a database for the conversion efficiency of different organic substrates and might be useful for applications of biomethane potential assay and anaerobic digestion in the future. PMID:24140354

  18. Free nitrous acid (FNA)-based pretreatment enhances methane production from waste activated sludge.

    PubMed

    Wang, Qilin; Ye, Liu; Jiang, Guangming; Jensen, Paul D; Batstone, Damien J; Yuan, Zhiguo

    2013-10-15

    Anaerobic digestion of waste activated sludge (WAS) is currently enjoying renewed interest due to the potential for methane production. However, methane production is often limited by the slow hydrolysis rate and/or poor methane potential of WAS. This study presents a novel pretreatment strategy based on free nitrous acid (FNA or HNO2) to enhance methane production from WAS. Pretreatment of WAS for 24 h at FNA concentrations up to 2.13 mg N/L substantially enhanced WAS solubilization, with the highest solubilization (0.16 mg chemical oxygen demand (COD)/mg volatile solids (VS), at 2.13 mg HNO2-N/L) being six times that without FNA pretreatment (0.025 mg COD/mg VS, at 0 mg HNO2-N/L). Biochemical methane potential tests demonstrated methane production increased with increased FNA concentration used in the pretreatment step. Model-based analysis indicated FNA pretreatment improved both hydrolysis rate and methane potential, with the highest improvement being approximately 50% (from 0.16 to 0.25 d(-1)) and 27% (from 201 to 255 L CH4/kg VS added), respectively, achieved at 1.78-2.13 mg HNO2-N/L. Further analysis indicated that increased hydrolysis rate and methane potential were related to an increase in rapidly biodegradable substrates, which increased with increased FNA dose, while the slowly biodegradable substrates remained relatively static.

  19. Effects of exogenous aerobic bacteria on methane production and biodegradation of municipal solid waste in bioreactors.

    PubMed

    Ge, Sai; Liu, Lei; Xue, Qiang; Yuan, Zhiming

    2016-09-01

    Landfill is the most common and efficient ways of municipal solid waste (MSW) disposal and the landfill biogas, mostly methane, is currently utilized to generate electricity and heat. The aim of this work is to study the effects and the role of exogenous aerobic bacteria mixture (EABM) on methane production and biodegradation of MSW in bioreactors. The results showed that the addition of EABM could effectively enhance hydrolysis and acidogenesis processes of MSW degradation, resulting in 63.95% reduction of volatile solid (VS), the highest methane production rate (89.83Lkg(-1) organic matter) ever recorded and a threefold increase in accumulative methane production (362.9L) than the control (127.1L). In addition, it is demonstrated that white-rot fungi (WRF) might further promote the methane production through highly decomposing lignin, but the lower pH value in leachate and longer acidogenesis duration may cause methane production reduced. The data demonstrated that methane production and biodegradation of MSW in bioreactors could be significantly enhanced by EABM via enhanced hydrolysis and acidogenesis processes, and the results are of great economic importance for the future design and management of landfill. PMID:26601890

  20. Effects of exogenous aerobic bacteria on methane production and biodegradation of municipal solid waste in bioreactors.

    PubMed

    Ge, Sai; Liu, Lei; Xue, Qiang; Yuan, Zhiming

    2016-09-01

    Landfill is the most common and efficient ways of municipal solid waste (MSW) disposal and the landfill biogas, mostly methane, is currently utilized to generate electricity and heat. The aim of this work is to study the effects and the role of exogenous aerobic bacteria mixture (EABM) on methane production and biodegradation of MSW in bioreactors. The results showed that the addition of EABM could effectively enhance hydrolysis and acidogenesis processes of MSW degradation, resulting in 63.95% reduction of volatile solid (VS), the highest methane production rate (89.83Lkg(-1) organic matter) ever recorded and a threefold increase in accumulative methane production (362.9L) than the control (127.1L). In addition, it is demonstrated that white-rot fungi (WRF) might further promote the methane production through highly decomposing lignin, but the lower pH value in leachate and longer acidogenesis duration may cause methane production reduced. The data demonstrated that methane production and biodegradation of MSW in bioreactors could be significantly enhanced by EABM via enhanced hydrolysis and acidogenesis processes, and the results are of great economic importance for the future design and management of landfill.

  1. Methane Production of Different Forages in In vitro Ruminal Fermentation

    PubMed Central

    Meale, S. J.; Chaves, A. V.; Baah, J.; McAllister, T. A.

    2012-01-01

    An in vitro rumen batch culture study was completed to compare effects of common grasses, leguminous shrubs and non-leguminous shrubs used for livestock grazing in Australia and Ghana on CH4 production and fermentation characteristics. Grass species included Andropodon gayanus, Brachiaria ruziziensis and Pennisetum purpureum. Leguminous shrub species included Cajanus cajan, Cratylia argentea, Gliricidia sepium, Leucaena leucocephala and Stylosanthes guianensis and non-leguminous shrub species included Annona senegalensis, Moringa oleifera, Securinega virosa and Vitellaria paradoxa. Leaves were harvested, dried at 55°C and ground through a 1 mm screen. Serum bottles containing 500 mg of forage, modified McDougall’s buffer and rumen fluid were incubated under anaerobic conditions at 39°C for 24 h. Samples of each forage type were removed after 0, 2, 6, 12 and 24 h of incubation for determination of cumulative gas production. Methane production, ammonia concentration and proportions of VFA were measured at 24 h. Concentration of aNDF (g/kg DM) ranged from 671 to 713 (grasses), 377 to 590 (leguminous shrubs) and 288 to 517 (non-leguminous shrubs). After 24 h of in vitro incubation, cumulative gas, CH4 production, ammonia concentration, proportion of propionate in VFA and IVDMD differed (p<0.05) within each forage type. B. ruziziensis and G. sepium produced the highest cumulative gas, IVDMD, total VFA, proportion of propionate in VFA and the lowest A:P ratios within their forage types. Consequently, these two species produced moderate CH4 emissions without compromising digestion. Grazing of these two species may be a strategy to reduce CH4 emissions however further assessment in in vivo trials and at different stages of maturity is recommended. PMID:25049482

  2. Methane Production and Transport within the Marsh Biome of Biosphere 2

    NASA Technical Reports Server (NTRS)

    Molnar, Jennifer; Goodridge, Kelven

    1997-01-01

    In recent decades, the concentration of methane in the earth's atmosphere increased 1-2% annually. It's rate of increases, combined with methane's effectiveness as a greenhouse gas, has led to an intensive research effort to determine the sources and sinks of the gas in the environment. Biosphere 2 offers a unique opportunity to contribute to the effort because it lacks a major photochemical sink present in the Earth's atmosphere. Researchers can therefore concentrate on biological processes involved in methane cycles. Wetlands are a large source of atmospheric methane, due to anoxic conditions in the sediments and the abundance of organic materials. In order to determine if these conditions in Biosphere 2 also promote methane production, this study looked for the fluxes of methane and methods of transport of the gas from from the water and sediments to the atmosphere in the Marsh Biome. Fluxes of methane from the sediments and waters were measured using static chambers, peepers, and leaf bags. Fluxes and vertical profiles of methane in the sediments show that substantial amounts of methane are being produced in the marsh and are being transported into the Biosphere 2 environment.

  3. Thermodynamic, transport, and flow properties of gaseous products resulting from combustion of methane-air-oxygen

    NASA Technical Reports Server (NTRS)

    Klich, G. F.

    1976-01-01

    Results of calculations to determine thermodynamic, transport, and flow properties of combustion product gases are presented. The product gases are those resulting from combustion of methane-air-oxygen and methane-oxygen mixtures. The oxygen content of products resulting from the combustion of methane-air-oxygen mixtures was similiar to that of air; however, the oxygen contained in products of methane-oxygen combustion ranged from 20 percent by volume to zero for stoichiometric combustion. Calculations were made for products of reactant mixtures with fuel percentages, by mass, of 7.5 to 20. Results are presented for specific mixtures for a range of pressures varying from 0.0001 to 1,000 atm and for temperatures ranging from 200 to 3,800 K.

  4. Methane production from coal by a single methanogen

    NASA Astrophysics Data System (ADS)

    Mayumi, Daisuke; Mochimaru, Hanako; Tamaki, Hideyuki; Yamamoto, Kyosuke; Yoshioka, Hideyoshi; Suzuki, Yuichiro; Kamagata, Yoichi; Sakata, Susumu

    2016-10-01

    Coal-bed methane is one of the largest unconventional natural gas resources. Although microbial activity may greatly contribute to coal-bed methane formation, it is unclear whether the complex aromatic organic compounds present in coal can be used for methanogenesis. We show that deep subsurface–derived Methermicoccus methanogens can produce methane from more than 30 types of methoxylated aromatic compounds (MACs) as well as from coals containing MACs. In contrast to known methanogenesis pathways involving one- and two-carbon compounds, this “methoxydotrophic” mode of methanogenesis couples O-demethylation, CO2 reduction, and possibly acetyl–coenzyme A metabolism. Because MACs derived from lignin may occur widely in subsurface sediments, methoxydotrophic methanogenesis would play an important role in the formation of natural gas not limited to coal-bed methane and in the global carbon cycle.

  5. Characteristics of the organic fraction of municipal solid waste and methane production: A review.

    PubMed

    Campuzano, Rosalinda; González-Martínez, Simón

    2016-08-01

    Anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) is a viable alternative for waste stabilization and energy recovery. Biogas production mainly depends on the type and amount of organic macromolecules. Based on results from different authors analysing OFMSW from different cities, this paper presents the importance of knowing the OFMSW composition to understand how anaerobic digestion can be used to produce methane. This analysis describes and discusses physical, chemical and bromatological characteristics of OFMSW reported by several authors from different countries and cities and their relationship to methane production. The main conclusion is that the differences are country and not city dependant. Cultural habits and OFMSW management systems do not allow a generalisation but the individual analysis for specific cities allow understanding the general characteristics for a better methane production. Not only are the OFMSW characteristics important but also the conditions under which the methane production tests were performed.

  6. The role of purine degradation in methane biosynthesis and energy production in Methanococcus vannielii

    SciTech Connect

    DeMoll, E.

    1990-10-22

    Research continues on the role of purine degradation in methane biosynthesis and energy production in Methanococcus vannielii. This report summarizes current progress of the research. Topics include: A survey of other methanogens for the purine degradation pathway; isolate and characterize the enzyme and products of formiminoglycine cleavage; ascertain the fate of glycine from the formiminoglycine cleavage; elucidate the route of incorporation of the formyl moiety of formiminoglycine into methane biosynthesis; determine the percent methane and amino acid synthesis from purine degradation; and related studies on xanthine dehydrogenase and pyrimidine degradation of M. Vannielii. (SM)

  7. Economic tools for realization of methane production project on Kuzbass coal deposits

    NASA Astrophysics Data System (ADS)

    Sharf, I.; Sokolova, M.; Kochetkova, O.; Dmitrieva, N.

    2016-09-01

    Environmental issues and, above all, issues related to the release of greenhouse gases into the atmosphere, such as coal bed methane, actualize the challenge of searching a variety of options for its disposal. The difference in the macroeconomic, industrial, geological and infrastructural features determine the need to choose the most cost-effective option for using of methane emitted from the coal deposits. Various economic ways to improve the profitability of production are viewed on the basis of the analysis of methane production project from Kuzbass coal deposits, Kemerovo region, Russia.

  8. The kinetics of methane production from co-digestion of cattle manure.

    PubMed

    Bakhov, Zh K; Korazbekova, K U; Lakhanova, K M

    2014-08-01

    In this article, the kinetics of methane production from co-digestion of liquid manure from cattle with the addition of winemaking waste, food waste and biowaste was investigated in order to describe and evaluate methanogenesis in terms of growth curve of methanogenic bacteria. Experiments were carried out in "Hohenheim"n biogas yield testing system at the temperature of 37 degrees C. The cumulative methane yield was 0.330 ± 0.038, 0.277 ± 0.041, 0.1480 ± 013 and 0.250 ± 0.025 m3 CH4 per kg oDM in normal condition, respectively in mono-digestion and co-digestion of liquid manure from cattle with winemaking, food and biowaste. The kinetic Gompertz parameters of methane production (P-potential yield of methane, R(m)-maximum methane production rate and λ-duration of lag phase) were analyzed. The highest potential methane yield (P) showed co-fermentation of liquid manure from cattle with biowaste 0.387 Nm3 (kg oDM)(-1), the highest methane production rate (R(m)) was 0.022 ± 0.003 Nm3 (kg oDM)(-1) day(-1) for mono-digestion of cattle slurry, the lowest 0.006 Nm3 (kg oDM)(-1) day(-1) was obtained during co-digestion with food waste. Duration of lag phase (λ) was within 10.17-14.60 days for all samples. Additional, the duration of digestion to produce 95% of the potential methane yield and efficient methane production was determined.

  9. Microbial diversity and dynamics during methane production from municipal solid waste

    SciTech Connect

    Bareither, Christopher A.; Wolfe, Georgia L.; McMahon, Katherine D.; Benson, Craig H.

    2013-10-15

    Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and

  10. Methane Detection for Oil and Gas Production Sites Using Portable Dual-Comb Spectrometry

    NASA Astrophysics Data System (ADS)

    Coburn, Sean; Wright, Robert; Cossel, Kevin C.; Truong, Gar-Wing; Baumann, Esther; Coddington, Ian; Newbury, Nathan R.; Alden, Caroline; Ghosh, Subhomoy; Prasad, Kuldeep; Rieker, Greg B.

    2016-06-01

    Considerable uncertainty exists regarding the contribution of oil and gas operations to anthropogenic emissions of atmospheric methane. Additionally, new proposed EPA regulations on volatile organic compound (VOC) emissions from oil and gas production facilities have been expanded to include methane, making this a topic of growing importance to the oil and gas industry as well as regulators. In order to gain a better understanding of emissions, reliable techniques that enable long-term monitoring of entire production facilities are needed. Recent advances in the development of compact and robust fiber frequency combs are enabling the use of this powerful spectroscopic tool outside of the laboratory. Here we characterize and demonstrate a dual comb spectrometer (DCS) system with the potential to locate and size methane leaks from oil and gas production sites over extended periods of time. The DCS operates over kilometer scale open paths, and the path integrated methane measurements will ultimately be coupled with an atmospheric inversion utilizing local meteorology and a high resolution fluid dynamics simulation to determine leak location and also derive a leak rate. High instrument precision is needed in order to accurately perform the measurement inversion on the highly varying methane background, thus the DCS system has been fully optimized for the detection of atmospheric methane in the methane absorption region around 180-184 THz.

  11. Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis

    PubMed Central

    2014-01-01

    In methanogenic microbial electrolysis cells (MMCs), CO2 is reduced to methane using a methanogenic biofilm on the cathode by either direct electron transfer or evolved hydrogen. To optimize methane generation, we examined several cathode materials: plain graphite blocks, graphite blocks coated with carbon black or carbon black containing metals (platinum, stainless steel or nickel) or insoluble minerals (ferrihydrite, magnetite, iron sulfide, or molybdenum disulfide), and carbon fiber brushes. Assuming a stoichiometric ratio of hydrogen (abiotic):methane (biotic) of 4:1, methane production with platinum could be explained solely by hydrogen production. For most other materials, however, abiotic hydrogen production rates were insufficient to explain methane production. At −600 mV, platinum on carbon black had the highest abiotic hydrogen gas formation rate (1600 ± 200 nmol cm–3 d–1) and the highest biotic methane production rate (250 ± 90 nmol cm–3 d–1). At −550 mV, plain graphite (76 nmol cm–3 d–1) performed similarly to platinum (73 nmol cm–3 d–1). Coulombic recoveries, based on the measured current and evolved gas, were initially greater than 100% for all materials except platinum, suggesting that cathodic corrosion also contributed to electromethanogenic gas production. PMID:24741468

  12. Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis.

    PubMed

    Siegert, Michael; Yates, Matthew D; Call, Douglas F; Zhu, Xiuping; Spormann, Alfred; Logan, Bruce E

    2014-04-01

    In methanogenic microbial electrolysis cells (MMCs), CO2 is reduced to methane using a methanogenic biofilm on the cathode by either direct electron transfer or evolved hydrogen. To optimize methane generation, we examined several cathode materials: plain graphite blocks, graphite blocks coated with carbon black or carbon black containing metals (platinum, stainless steel or nickel) or insoluble minerals (ferrihydrite, magnetite, iron sulfide, or molybdenum disulfide), and carbon fiber brushes. Assuming a stoichiometric ratio of hydrogen (abiotic):methane (biotic) of 4:1, methane production with platinum could be explained solely by hydrogen production. For most other materials, however, abiotic hydrogen production rates were insufficient to explain methane production. At -600 mV, platinum on carbon black had the highest abiotic hydrogen gas formation rate (1600 ± 200 nmol cm(-3) d(-1)) and the highest biotic methane production rate (250 ± 90 nmol cm(-3) d(-1)). At -550 mV, plain graphite (76 nmol cm(-3) d(-1)) performed similarly to platinum (73 nmol cm(-3) d(-1)). Coulombic recoveries, based on the measured current and evolved gas, were initially greater than 100% for all materials except platinum, suggesting that cathodic corrosion also contributed to electromethanogenic gas production.

  13. Sulfide and methane production in sewer sediments: Field survey and model evaluation.

    PubMed

    Liu, Yiwen; Tugtas, A Evren; Sharma, Keshab R; Ni, Bing-Jie; Yuan, Zhiguo

    2016-02-01

    Sewer sediment processes have been reported to significantly contribute to overall sulfide and methane production in sewers, at a scale comparable to that of sewer biofilms. The physiochemical and biological characteristics of sewer sediments are heterogeneous; however, the variability of in-sediments sulfide and methane production rates among sewers has not been assessed to date. In this study, five sewer sediment samples were collected from two cities in Australia with different climatic conditions. Batch assays were conducted to determine the rates of sulfate reduction and methane production under different flow velocity (shear stress) conditions as well as under completely mixed conditions. The tests showed substantial and variable sulfate reduction and methane production activities among different sediments. Sulfate reduction and methane production from sewer sediments were confirmed to be areal processes, and were dependent on flow velocity/shear stress. Despite of the varying characteristics and reactions kinetics, the sulfate reduction and methane production processes in all sediments could be well described by a one-dimensional sewer sediment model recently developed based on results obtained from a laboratory sewer sediment reactor. Model simulations indicated that the in-situ contribution of sewer sediment emissions could be estimated without the requirement of measuring the specific sediment characteristics or the sediment depths.

  14. Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis.

    PubMed

    Siegert, Michael; Yates, Matthew D; Call, Douglas F; Zhu, Xiuping; Spormann, Alfred; Logan, Bruce E

    2014-04-01

    In methanogenic microbial electrolysis cells (MMCs), CO2 is reduced to methane using a methanogenic biofilm on the cathode by either direct electron transfer or evolved hydrogen. To optimize methane generation, we examined several cathode materials: plain graphite blocks, graphite blocks coated with carbon black or carbon black containing metals (platinum, stainless steel or nickel) or insoluble minerals (ferrihydrite, magnetite, iron sulfide, or molybdenum disulfide), and carbon fiber brushes. Assuming a stoichiometric ratio of hydrogen (abiotic):methane (biotic) of 4:1, methane production with platinum could be explained solely by hydrogen production. For most other materials, however, abiotic hydrogen production rates were insufficient to explain methane production. At -600 mV, platinum on carbon black had the highest abiotic hydrogen gas formation rate (1600 ± 200 nmol cm(-3) d(-1)) and the highest biotic methane production rate (250 ± 90 nmol cm(-3) d(-1)). At -550 mV, plain graphite (76 nmol cm(-3) d(-1)) performed similarly to platinum (73 nmol cm(-3) d(-1)). Coulombic recoveries, based on the measured current and evolved gas, were initially greater than 100% for all materials except platinum, suggesting that cathodic corrosion also contributed to electromethanogenic gas production. PMID:24741468

  15. Temperature response of methane production in liquid manures and co-digestates.

    PubMed

    Elsgaard, Lars; Olsen, Anne B; Petersen, Søren O

    2016-01-01

    Intensification of livestock production makes correct estimation of methanogenesis in liquid manure increasingly important for inventories of CH4 emissions. Such inventories currently rely on fixed methane conversion factors as knowledge gaps remain with respect to detailed temperature responses of CH4 emissions from liquid manure. Here, we describe the temperature response of CH4 production in liquid cattle slurry, pig slurry, and fresh and stored co-digested slurry from a thermophilic biogas plant. Subsamples of slurry were anoxically incubated at 20 temperatures from 5-52°C in a temperature gradient incubator and CH4 production was measured by gas chromatographic analysis of headspace gas after a 17-h incubation period. Methane production potentials at 5-37°C were described by the Arrhenius equation (modelling efficiencies, 79.2-98.1%), and the four materials showed a consistent activation energy (Ea) which averaged 81.0kJmol(-1) (95% confidence interval, 74.9-87.1kJmol(-1)) corresponding to a temperature sensitivity (Q10) of 3.4. In contrast, the frequency factor (A) differed among the slurry materials (30.1affect this parameter. The Ea estimate, based on individual slurry materials, was intermediate when compared to published values of 63 and 112.7kJmol(-1) derived from composite data, but was similar to Ea estimated for CH4 production at microbial community level across aquatic ecosystems, wetlands and rice paddies (89.3kJmol(-1)). This supports that the derived temperature sensitivity parameters may be applicable to dynamic modelling of CH4 emissions from livestock manure.

  16. Environmental evidence for net methane production and oxidation in putative ANaerobic MEthanotrophic (ANME) archaea.

    PubMed

    Lloyd, Karen G; Alperin, Marc J; Teske, Andreas

    2011-09-01

    Uncultured ANaerobic MEthanotrophic (ANME) archaea are often assumed to be obligate methanotrophs that are incapable of net methanogenesis, and are therefore used as proxies for anaerobic methane oxidation in many environments in spite of uncertainty regarding their metabolic capabilities. Anaerobic methane oxidation regulates methane emissions in marine sediments and appears to occur through a reversal of a methane-producing metabolism. We tested the assumption that ANME are obligate methanotrophs by detecting and quantifying gene transcription of ANME-1 across zones of methane oxidation versus methane production in sediments from the White Oak River estuary, North Carolina. ANME-1 consistently transcribe 16S rRNA and mRNA of methyl coenzyme M reductase (mcrA), the key gene for methanogenesis, up to 45 cm into methanogenic sediments. CARD-FISH shows that ANME-1 exist as single rod-shaped cells or pairs of cells. Integrating normalized depth distributions of 16S rDNA and rRNA (measured with qPCR and RT-qPCR respectively) shows that 26-77% of the rDNA (a proxy for ANME-1 cell numbers), and 18-76% of the rRNA (a proxy for ANME-1 activity) occurs within methane-producing sediments. These results, along with a re-assessment of the published Iiterature, change the perspective to ANME-1 as methanogens that are also capable of methane oxidation.

  17. Methyl-coenzyme M reductase A as an indicator to estimate methane production from dairy cows.

    PubMed

    Aguinaga Casañas, M A; Rangkasenee, N; Krattenmacher, N; Thaller, G; Metges, C C; Kuhla, B

    2015-06-01

    The evaluation of greenhouse gas mitigation strategies requires the quantitative assessment of individual methane production. Because methane measurement in respiration chambers is highly accurate, but also comprises various disadvantages such as limited capacity and high costs, the establishment of an indicator for estimating methane production of individual ruminants would provide an alternative to direct methane measurement. Methyl-coenzyme M reductase is involved in methanogenesis and the subunit α of methyl-coenzyme M reductase is encoded by the mcrA gene of rumen archaea. We therefore examined the relationship between methane emissions of Holstein dairy cows measured in respiration chambers with 2 different diets (high- and medium-concentrate diet) and the mcrA DNA and mcrA cDNA abundance determined from corresponding rumen fluid samples. Whole-body methane production per kilogram of dry matter intake and mcrA DNA normalized to the abundance of the rrs gene coding for 16S rRNA correlated significantly when using qmcrA primers. Use of qmcrA primers also revealed linear correlation between mcrA DNA copy number and methane yield. Regression analyses based on normalized mcrA cDNA abundances revealed no significant linear correlation with methane production per kilogram of dry matter intake. Furthermore, the correlations between normalized mcrA DNA abundance and the rumen fluid concentration of acetic and isobutyric acid were positive, whereas the correlations with propionic and lactic acid were negative. These data suggest that the mcrA DNA approach based on qmcrA primers could potentially be a molecular proxy for methane yield after further refinement.

  18. Methane from CO₂: Influence of different CO₂ concentrations in the flush gas on the methane production in BMP tests.

    PubMed

    Koch, Konrad; Huber, Bettina; Fernández, Yadira Bajón; Drewes, Jörg E

    2016-03-01

    The influence of carbon dioxide (CO2) in the headspace gas on the specific methane (CH4) production of blank samples with just inoculum during Biochemical Methane Potential (BMP) tests was studied. The headspace of the bottles had been flushed with 15 different ratios of CO2 and N2 prior to incubation, while they were treated otherwise identically. The results revealed that the CH4 yield increased linearly with higher ratio of CO2 in the flush gas reaching a 30% higher yield at pure CO2 relative to pure N2 headspace conditions. However, a slightly distinct lag is noticeable during the initial phase of the degradation process at high ratios of CO2, hypothesizing a reversible disturbance of the biocenosis. Further experiments and analyses need to be performed to elucidate the underlying mechanisms. PMID:26818184

  19. Petrophysical Characterization and Reservoir Simulator for Methane Gas Production from Gulf of Mexico Hydrates

    SciTech Connect

    Kishore Mohanty; Bill Cook; Mustafa Hakimuddin; Ramanan Pitchumani; Damiola Ogunlana; Jon Burger; John Shillinglaw

    2006-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Estimates of the amounts of methane sequestered in gas hydrates worldwide are speculative and range from about 100,000 to 270,000,000 trillion cubic feet (modified from Kvenvolden, 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In this project novel techniques were developed to form and dissociate methane hydrates in porous media, to measure acoustic properties and CT properties during hydrate dissociation in the presence of a porous medium. Hydrate depressurization experiments in cores were simulated with the use of TOUGHFx/HYDRATE simulator. Input/output software was developed to simulate variable pressure boundary condition and improve the ease of use of the simulator. A series of simulations needed to be run to mimic the variable pressure condition at the production well. The experiments can be matched qualitatively by the hydrate simulator. The temperature of the core falls during hydrate dissociation; the temperature drop is higher if the fluid withdrawal rate is higher. The pressure and temperature gradients are small within the core. The sodium iodide concentration affects the dissociation pressure and rate. This procedure and data will be useful in designing future hydrate studies.

  20. Methane production and digestion of different physical forms of rapeseed as fat supplements in dairy cows.

    PubMed

    Brask, M; Lund, P; Weisbjerg, M R; Hellwing, A L F; Poulsen, M; Larsen, M K; Hvelplund, T

    2013-04-01

    The purpose of this experiment was to study the effect of the physical form of rapeseed fat on methane (CH4) mitigation properties, feed digestion, and rumen fermentation. Four lactating ruminal-, duodenal-, and ileal-cannulated Danish Holstein dairy cows (143 d in milk, milk yield of 34.3 kg) were submitted to a 4×4 Latin square design with 4 rations: 1 control with rapeseed meal (low-fat, CON) and 3 fat-supplemented rations with either rapeseed cake (RSC), whole cracked rapeseed (WCR), or rapeseed oil (RSO). Dietary fat concentrations were 3.5 in CON, 5.5 in RSC, 6.2 in WCR, and 6.5% in RSO. The amount of fat-free rapeseed was kept constant for all rations. The forage consisted of corn silage and grass silage and the forage to concentrate ratio was 50:50 on a dry matter basis. Diurnal samples of duodenal and ileal digesta and feces were compiled. The methane production was measured for 4 d in open-circuit respiration chambers. Additional fat reduced the CH4 production per kilogram of dry matter intake and as a proportion of the gross energy intake by 11 and 14%, respectively. Neither the total tract nor the rumen digestibility of organic matter (OM) or neutral detergent fiber were significantly affected by the treatment. Relating the CH4 production to the total-tract digested OM showed a tendency to decrease CH4 per kilogram of digested OM for fat-supplemented rations versus CON. The acetate to propionate ratio was not affected for RSC and WCR but was increased for RSO compared with CON. The rumen ammonia concentration was not affected by the ration. The milk and energy-corrected milk yields were unaffected by the fat supplementation. In conclusion, rapeseed is an appropriate fat source to reduce the enteric CH4 production without affecting neutral detergent fiber digestion or milk production. The physical form of fat did not influence the CH4-reducing effect of rapeseed fat. However, differences in the volatile fatty acid pattern indicate that different

  1. Methane production in low-cost, unheated, plug-flow digesters treating swine manure and used cooking grease.

    PubMed

    Lansing, Stephanie; Martin, Jay F; Botero, Raúl Botero; da Silva, Tatiana Nogueira; da Silva, Ederson Dias

    2010-06-01

    A co-digestion investigation was conducted using small-scale digesters in Costa Rica to optimize their ability to treat animal wastewater and produce renewable energy. Increases in methane production were quantified when swine manure was co-digested with used cooking grease in plug-flow digesters that operated at ambient temperate without mixing. The co-digestion experiments were conducted on 12 field-scale digesters (250 L each) using three replications of four treatment groups: the control (T0), which contained only swine manure and no waste oil, and T2.5, T5, and T10, which contained 2.5%, 5%, and 10% used cooking grease (by volume) combined with swine manure. The T2.5 treatment had the greatest methane (CH(4)) production (45 L/day), a 124% increase from the control, with a total biogas production of 67.3 L/day and 66.9% CH(4) in the produced biogas. Increasing the grease concentration beyond T2.5 produced biogas with a lower percentage of CH(4), and thus, did not result in any additional benefits. A batch study showed that methane production could be sustained for three months in digesters that co-digested swine manure and used cooking grease without daily inputs. The investigation proved that adding small amounts of grease to the influent is a simple way to double energy production without affecting other digester benefits.

  2. Modeling the production and transport of methane in an Alaska rich fen peatland

    NASA Astrophysics Data System (ADS)

    Fan, Z.; McGuire, A. D.; Harden, J. W.; Turetsky, M. R.

    2011-12-01

    Modeling the production and transport of methane in boreal peatlands is challenging because 1) high-quality field experimental data are limited, and 2) interactions among biophysical, biogeochemical, and vegetation dynamics need to be better represented in ecosystem models. In this study, we developed a process-based model to simulate the production and transport of methane in an Alaska rich fen peatland. In the model, methane is produced in the saturated zone and transported through the soil-water system by diffusion in the aqueous and gas phases and by plant-aided processes. Methane is also partially oxidized to carbon dioxide as it moves through the unsaturated zone. The model was then incorporated into the dynamic organic soil version of the Terrestrial Ecosystem Model (DOS-TEM). The resultant model was calibrated and evaluated with high spatial and temporal resolution experimental data (e.g., methane efflux, soil temperature, water table, etc.) from the rich fen control plot of the Alaska Peatland Experiment (APEX) located near the Bonanza Creek Experimental Forest outside of Fairbanks, Alaska. After the model was calibrated, it was validated using the experimental data from the raised and lowered water-table plots of APEX. The validation results indicate that the model successfully represents the production and transport of methane in boreal rich fen peatland soils and that the model is capable of simulating responses of methane to water-table manipulation. This analysis indicates that the methane model in the DOS-TEM framework may be a useful tool to simulate methane responses of boreal peatlands to future climate and environmental changes at the local and regional scales.

  3. A novel pre-treatment for the methane production from microalgae by using N-methylmorpholine-N-oxide (NMMO).

    PubMed

    Caporgno, M P; Olkiewicz, M; Pruvost, J; Lepine, O; Legrand, J; Font, J; Bengoa, C

    2016-02-01

    The aim of this work was to study the effect of the solvent N-methylmorpholine-N-oxide (NMMO) to pre-treat Nannochloropsis oculata before the anaerobic digestion process. The results indicated that the pre-treatment affects the characteristics of the cell wall, which consequently becomes more susceptible to the microorganisms attack during anaerobic digestion. The methane production was increased by 43% after the pre-treatment, from 238±6mLCH4/gVS until 339±4mLCH4/gVS. On the contrary, the methane production from Chlorella vulgaris decreased after the pre-treatment from 251±4mLCH4/gVS to 231±3mLCH4/gVS. The failure on the pre-treatment was attributed to the particular characteristics of the substrate in consequence of a previous drying step. PMID:26684667

  4. Production of hydrogen and methane from wastewater sludge using anaerobic fermentation.

    PubMed

    Ting, C H; Lin, K R; Lee, D J; Tay, J H

    2004-01-01

    The hydrogen and methane were produced from wastewater sludge using a Clostridium strain. The original sludge and the pre-treated (acidified, sterilized, freeze/thawed, and sonicated) sludges were tested. Some pre-treatment could enhance hydrogen yield, and the other tests could enhance methane yield. Hydrogen yield followed freeze/thawed>acidified>sterilized>original sludge>sonicated; while methane yield followed sonicated>freeze/thawed>sterilized>acidified>original sludge. The production and consumption of acetate correlated closely with the trends in both yields.

  5. Prediction of methane production from dairy and beef cattle.

    PubMed

    Ellis, J L; Kebreab, E; Odongo, N E; McBride, B W; Okine, E K; France, J

    2007-07-01

    Methane (CH4) is one of the major greenhouse gases being targeted for reduction by the Kyoto protocol. The focus of recent research in animal science has thus been to develop or improve existing CH4 prediction models to evaluate mitigation strategies to reduce overall CH4 emissions. Eighty-three beef and 89 dairy data sets were collected and used to develop statistical models of CH4 production using dietary variables. Dry matter intake (DMI), metabolizable energy intake, neutral detergent fiber, acid detergent fiber, ether extract, lignin, and forage proportion were considered in the development of models to predict CH4 emissions. Extant models relevant to the study were also evaluated. For the beef database, the equation CH4 (MJ/d) = 2.94 (+/- 1.16) + 0.059 (+/- 0.0201) x metabolizable energy intake (MJ/d) + 1.44 (+/- 0.331) x acid detergent fiber (kg/d) - 4.16 (+/- 1.93) x lignin (kg/d) resulted in the lowest root mean square prediction error (RMSPE) value (14.4%), 88% of which was random error. For the dairy database, the equation CH4 (MJ/d) = 8.56 (+/- 2.63) + 0.14 (+/- 0.056) x forage (%) resulted in the lowest RMSPE value (20.6%) and 57% of error from random sources. An equation based on DMI also performed well for the dairy database: CH4 (MJ/d) = 3.23 (+/- 1.12) + 0.81 (+/- 0.086) x DMI (kg/d), with a RMSPE of 25.6% and 91% of error from random sources. When the dairy and beef databases were combined, the equation CH4 (MJ/d) = 3.27 (+/- 0.79) + 0.74 (+/- 0.074) x DMI (kg/d) resulted in the lowest RMSPE value (28.2%) and 83% of error from random sources. Two of the 9 extant equations evaluated predicted CH4 production adequately. However, the new models based on more commonly determined values showed an improvement in predictions over extant equations.

  6. Semi-continuous methane production from undiluted brown algae using a halophilic marine microbial community.

    PubMed

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2016-01-01

    Acclimated marine sediment-derived culture was used for semi-continuous methane production from materials equivalent to raw brown algae, without dilution of salinity and without nutrient supply, under 3 consecutive conditions of varying organic loading rates (OLRs) and hydraulic retention time (HRT). Methane production was stable at 2.0gVS/kg/day (39-day HRT); however, it became unstable at 2.9gVS/kg/day (28-day HRT) due to acetate and propionate accumulation. OLR subsequently decreased to 1.7gVS/kg/day (46-day HRT), stabilizing methane production beyond steady state. Methane yield was above 300mL/g VS at all OLRs. These results indicated that the acclimated marine sediment culture was able to produce methane semi-continuously from raw brown algae without dilution and nutrient supply under steady state. Microbial community analysis suggested that hydrogenotrophic methanogens predominated among archaea during unstable methane production, implying a partial shift of the methanogenic pathway from acetoclastic methanogenesis to acetate oxidation.

  7. Selective production of methane from aqueous biocarbohydrate streams over a mixture of platinum and ruthenium catalysts.

    PubMed

    Neira D'Angelo, Maria Fernanda; Ordomsky, Vitaly; van der Schaaf, John; Schouten, Jaap C; Nijhuis, Tjeerd Alexander

    2014-02-01

    A one-step process for the selective production of methane from low-value aqueous carbohydrate streams is proposed. Sorbitol, used herein as a model compound, is fully converted to methane, CO2 , and a minor amount of H2 by using a physical mixture of Pt and Ru (1:5 in mass basis) at 220 °C and 35 bar. This conversion is the result of hydrogenolysis of part of the sorbitol over Ru and the in situ production of H2 through the aqueous-phase reforming of the remaining carbohydrate over Pt. A synergistic effect of the combination of these two catalysts results in the rapid and highly selective conversion of the carbohydrate to methane. This process offers the possibility of upgrading a low-value carbohydrate stream into a valuable fuel with no addition of H2. Exergy analysis reveals that nearly 80 % of the exergy of the reactant is recovered as methane.

  8. Comparison between ensilage and fungal pretreatment for storage of giant reed and subsequent methane production.

    PubMed

    Liu, Shan; Xu, Fuqing; Ge, Xumeng; Li, Yebo

    2016-06-01

    Ensilage and fungal pretreatment of giant reed harvested from August through December were compared based on their effects on feedstock preservation, glucose yield, and subsequent methane production via anaerobic digestion (AD). Compared to fungal pretreatment, ensilage obtained lower total solids (<1.2%) and cellulose (<3.5%) losses, and comparable hemicellulose degradation, except for giant reed harvested in August. Ensilage increased glucose and methane yields by 7-15% and 4-14%, respectively, for giant reed harvested from August through December. Fungal pretreatment failed for giant reed harvested in August and October with reduced glucose yields, and was effective for that harvested in November and December, with about 20% increases in glucose yield. However, hydrocarbon losses during fungal pretreatment offset the increased glucose yield, resulting in decreased methane yields by AD. In summary, ensilage was found to be more suitable than fungal pretreatment for giant reed storage and its methane production via AD. PMID:26974356

  9. Evaluation of marine sediments as microbial sources for methane production from brown algae under high salinity.

    PubMed

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2014-10-01

    Various marine sediments were evaluated as promising microbial sources for methane fermentation of Saccharina japonica, a brown alga, at seawater salinity. All marine sediments tested produced mainly acetate among volatile fatty acids. One marine sediment completely converted the produced volatile fatty acids to methane in a short period. Archaeal community analysis revealed that acetoclastic methanogens belonging to the Methanosarcina genus dominated after cultivation. Measurement of the specific conversion rate at each step of methane production under saline conditions demonstrated that the marine sediments had higher conversion rates of butyrate and acetate than mesophilic methanogenic granules. These results clearly show that marine sediments can be used as microbial sources for methane production from algae under high-salt conditions without dilution.

  10. Comparison between ensilage and fungal pretreatment for storage of giant reed and subsequent methane production.

    PubMed

    Liu, Shan; Xu, Fuqing; Ge, Xumeng; Li, Yebo

    2016-06-01

    Ensilage and fungal pretreatment of giant reed harvested from August through December were compared based on their effects on feedstock preservation, glucose yield, and subsequent methane production via anaerobic digestion (AD). Compared to fungal pretreatment, ensilage obtained lower total solids (<1.2%) and cellulose (<3.5%) losses, and comparable hemicellulose degradation, except for giant reed harvested in August. Ensilage increased glucose and methane yields by 7-15% and 4-14%, respectively, for giant reed harvested from August through December. Fungal pretreatment failed for giant reed harvested in August and October with reduced glucose yields, and was effective for that harvested in November and December, with about 20% increases in glucose yield. However, hydrocarbon losses during fungal pretreatment offset the increased glucose yield, resulting in decreased methane yields by AD. In summary, ensilage was found to be more suitable than fungal pretreatment for giant reed storage and its methane production via AD.

  11. The Potential Role of Seaweeds in the Natural Manipulation of Rumen Fermentation and Methane Production

    PubMed Central

    Maia, Margarida R. G.; Fonseca, António J. M.; Oliveira, Hugo M.; Mendonça, Carla; Cabrita, Ana R. J.

    2016-01-01

    This study is the first to evaluate the effects of five seaweeds (Ulva sp., Laminaria ochroleuca, Saccharina latissima, Gigartina sp., and Gracilaria vermiculophylla) on gas and methane production and ruminal fermentation parameters when incubated in vitro with two substrates (meadow hay and corn silage) for 24 h. Seaweeds led to lower gas production, with Gigartina sp. presenting the lowest value. When incubated with meadow hay, Ulva sp., Gigartina sp. and G. vermiculophylla decreased methane production, but with corn silage, methane production was only decreased by G. vermiculophylla. With meadow hay, L. ochroleuca and S. latissima promoted similar methane production as the control, but with corn silage, L. ochroleuca increased it. With the exception of S. latissima, all seaweeds promoted similar levels of total volatile fatty acid production. The highest proportion of acetic acid was produced with Ulva sp., G. vermiculophylla, and S. latissima; the highest proportion of butyric acid with the control and L. ochroleuca; and the highest proportion of iso-valeric acid with Gigartina sp. These results reveal the potential of seaweeds to mitigate ruminal methane production and the importance of the basal diet. To efficiently use seaweeds as feed ingredients with nutritional and environmental benefits, more research is required to determine the mechanisms underlying seaweed and substrate interactions. PMID:27572486

  12. The Potential Role of Seaweeds in the Natural Manipulation of Rumen Fermentation and Methane Production.

    PubMed

    Maia, Margarida R G; Fonseca, António J M; Oliveira, Hugo M; Mendonça, Carla; Cabrita, Ana R J

    2016-01-01

    This study is the first to evaluate the effects of five seaweeds (Ulva sp., Laminaria ochroleuca, Saccharina latissima, Gigartina sp., and Gracilaria vermiculophylla) on gas and methane production and ruminal fermentation parameters when incubated in vitro with two substrates (meadow hay and corn silage) for 24 h. Seaweeds led to lower gas production, with Gigartina sp. presenting the lowest value. When incubated with meadow hay, Ulva sp., Gigartina sp. and G. vermiculophylla decreased methane production, but with corn silage, methane production was only decreased by G. vermiculophylla. With meadow hay, L. ochroleuca and S. latissima promoted similar methane production as the control, but with corn silage, L. ochroleuca increased it. With the exception of S. latissima, all seaweeds promoted similar levels of total volatile fatty acid production. The highest proportion of acetic acid was produced with Ulva sp., G. vermiculophylla, and S. latissima; the highest proportion of butyric acid with the control and L. ochroleuca; and the highest proportion of iso-valeric acid with Gigartina sp. These results reveal the potential of seaweeds to mitigate ruminal methane production and the importance of the basal diet. To efficiently use seaweeds as feed ingredients with nutritional and environmental benefits, more research is required to determine the mechanisms underlying seaweed and substrate interactions. PMID:27572486

  13. The Potential Role of Seaweeds in the Natural Manipulation of Rumen Fermentation and Methane Production.

    PubMed

    Maia, Margarida R G; Fonseca, António J M; Oliveira, Hugo M; Mendonça, Carla; Cabrita, Ana R J

    2016-08-30

    This study is the first to evaluate the effects of five seaweeds (Ulva sp., Laminaria ochroleuca, Saccharina latissima, Gigartina sp., and Gracilaria vermiculophylla) on gas and methane production and ruminal fermentation parameters when incubated in vitro with two substrates (meadow hay and corn silage) for 24 h. Seaweeds led to lower gas production, with Gigartina sp. presenting the lowest value. When incubated with meadow hay, Ulva sp., Gigartina sp. and G. vermiculophylla decreased methane production, but with corn silage, methane production was only decreased by G. vermiculophylla. With meadow hay, L. ochroleuca and S. latissima promoted similar methane production as the control, but with corn silage, L. ochroleuca increased it. With the exception of S. latissima, all seaweeds promoted similar levels of total volatile fatty acid production. The highest proportion of acetic acid was produced with Ulva sp., G. vermiculophylla, and S. latissima; the highest proportion of butyric acid with the control and L. ochroleuca; and the highest proportion of iso-valeric acid with Gigartina sp. These results reveal the potential of seaweeds to mitigate ruminal methane production and the importance of the basal diet. To efficiently use seaweeds as feed ingredients with nutritional and environmental benefits, more research is required to determine the mechanisms underlying seaweed and substrate interactions.

  14. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    PubMed

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production.

  15. Methane production from mixed tropical savanna and forest vegetation in Venezuela

    NASA Astrophysics Data System (ADS)

    Crutzen, P. J.; Sanhueza, E.; Brenninkmeijer, C. A. M.

    2006-04-01

    Measurements of methane concentrations in the boundary layer in the northern part of the Guayana shield, Venezuela, during the wet season (October 1988), showed the presence of substantial methane surface emissions. The measuring site is within the savanna climate region, but is affected by emissions from savanna and forest vegetation. From day versus night concentration measurements, with higher concentrations during night, a methane source strength near the site of 3-7×1011 molecules/cm2/s can be estimated, which includes emissions from small tracts of flooded soils, termites and especially tropical vegetation. Extrapolated to the entire savanna, this may imply a methane source of ~30-60 Tg yr-1 similar to the one calculated for tropical vegetation on the basis of recently published in vitro plant emission experiments by Keppler et al. (2006), which indicate emissions of ~30 Tg yr-1 for tropical savannas and grasslands and ~78 Tg yr-1 for tropical forests.

  16. Microbial diversity and dynamics during methane production from municipal solid waste.

    PubMed

    Bareither, Christopher A; Wolfe, Georgia L; McMahon, Katherine D; Benson, Craig H

    2013-10-01

    The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and hemicellulose contents supported growth of larger methanogen populations that resulted in higher methane yield.

  17. Physiology and Genetics of Biogenic Methane-Production from Acetate

    SciTech Connect

    Sowers, Kevin R

    2013-04-04

    Biomass conversion catalyzed by methanogenic consortia is a widely available, renewable resource for both energy production and waste treatment. The efficiency of this process is directly dependent upon the interaction of three metabolically distinct groups of microorganisms; the fermentative and acetogenic Bacteria and the methanogenic Archaea. One of the rate limiting steps in the degradation of soluble organic matter is the dismutation of acetate, a predominant intermediate in the process, which accounts for 70 % or more of the methane produced by the methanogens. Acetate utilization is controlled by regulation of expression of carbon monoxide dehydrogensase (COdh), which catalyzes the dismutation of acetate. However, physiological and molecular factors that control differential substrate utilization have not been identified in these Archaea. Our laboratory has identified sequence elements near the promoter of the gene (cdh) encoding for COdh and we have confirmed that these sequences have a role in the in vivo expression of cdh. The current proposal focuses on identifying the regulatory components that interact with DNA and RNA elements, and identifying the mechanisms used to control cdh expression. We will determine whether expression is controlled at the level of transcription or if it is mediated by coordinate interaction of transcription initiation with other processes such as transcription elongation rate and differential mRNA stability. Utilizing recently sequenced methanosarcinal genomes and a DNA microarray currently under development genes that encode regulatory proteins and transcription factors will be identified and function confirmed by gene disruption and subsequent screening on different substrates. Functional interactions will be determined in vivo by assaying the effects of gene dosage and site-directed mutagenesis of the regulatory gene on the expression of a cdh::lacZ operon fusion. Results of this study will reveal whether this critical

  18. Enhancement of anaerobic biohydrogen/methane production from cellulose using heat-treated activated sludge.

    PubMed

    Lay, C H; Chang, F Y; Chu, C Y; Chen, C C; Chi, Y C; Hsieh, T T; Huang, H H; Lin, C Y

    2011-01-01

    Anaerobic digestion is an effective technology to convert cellulosic wastes to methane and hydrogen. Heat-treatment is a well known method to inhibit hydrogen-consuming bacteria in using anaerobic mixed cultures for seeding. This study aims to investigate the effects of heat-treatment temperature and time on activated sludge for fermentative hydrogen production from alpha-cellulose by response surface methodology. Hydrogen and methane production was evaluated based on the production rate and yield (the ability of converting cellulose into hydrogen and methane) with heat-treated sludge as the seed at various temperatures (60-97 degrees C) and times (20-60 min). Batch experiments were conducted at 55 degrees C and initial pH of 8.0. The results indicate that hydrogen and methane production yields peaked at 4.3 mmol H2/g cellulose and 11.6 mmol CH4/g cellulose using the seed activated sludge that was thermally treated at 60 degrees C for 40 min. These parameter values are higher than those of no-treatment seed (HY 3.6 mmol H2/g cellulose and MY 10.4 mmol CH4/g cellulose). The maximum hydrogen production rate of 26.0 mmol H2/L/d and methane production rate of 23.2 mmol CH4/L/d were obtained for the seed activated sludge that was thermally treated at 70 degrees C for 50 min and 60 degrees C for 40 min, respectively.

  19. Methane Emission and Milk Production of Dairy Cows Grazing Pastures Rich in Legumes or Rich in Grasses in Uruguay.

    PubMed

    Dini, Yoana; Gere, José; Briano, Carolina; Manetti, Martin; Juliarena, Paula; Picasso, Valentin; Gratton, Roberto; Astigarraga, Laura

    2012-01-01

    Understanding the impact of changing pasture composition on reducing emissions of GHGs in dairy grazing systems is an important issue to mitigate climate change. The aim of this study was to estimate daily CH₄ emissions of dairy cows grazing two mixed pastures with contrasting composition of grasses and legumes: L pasture with 60% legumes on Dry Matter (DM) basis and G pasture with 75% grasses on DM basis. Milk production and CH₄ emissions were compared over two periods of two weeks during spring using eight lactating Holstein cows in a 2 × 2 Latin square design. Herbage organic matter intake (HOMI) was estimated by chromic oxide dilution and herbage organic matter digestibility (OMD) was estimated by faecal index. Methane emission was estimated by using the sulfur hexafluoride (SF6) tracer technique adapted to collect breath samples over 5-day periods. OMD (0.71) and HOMI (15.7 kg OM) were not affected by pasture composition. Milk production (20.3 kg/d), milk fat yield (742 g/d) and milk protein yield (667 g/d) were similar for both pastures. This may be explained by the high herbage allowance (30 kg DM above 5 cm/cow) which allowed the cows to graze selectively, in particular in grass sward. Similarly, methane emission expressed as absolute value (368 g/d or 516 L/d) or expressed as methane yield (6.6% of Gross Energy Intake (GEI)) was not affected by treatments. In conclusion, at high herbage allowance, the quality of the diet selected by grazing cows did not differ between pastures rich in legumes or rich in grasses, and therefore there was no effect on milk or methane production. PMID:26486922

  20. Methane sources and production in the northern Cascadia margin gas hydrate system

    USGS Publications Warehouse

    Pohlman, J.W.; Kaneko, M.; Heuer, V.B.; Coffin, R.B.; Whiticar, M.

    2009-01-01

    -enrichment. The magnitude of the 13C-enrichment of CO2 correlates with decreasing sedimentation rates and a diminishing occurrence of stratigraphic gas hydrate. We suggest the decreasing sedimentation rates increase the exposure time of sedimentary organic matter to aerobic and anaerobic degradation, during burial, thereby reducing the availability of metabolizable organic matter available for methane production. This process is reflected in the occurrence and distribution of gas hydrate within the northern Cascadia margin accretionary prism. Our observations are relevant for evaluating methane production and the occurrence of stratigraphic gas hydrate within other convergent margins.

  1. Explicit Microbial Processes to Simulate Methane Production and Oxidation in Wetlands in the GFDL Land Model

    NASA Astrophysics Data System (ADS)

    Smolander, S.; Sulman, B. N.; Shevliakova, E.

    2015-12-01

    Recent observational studies highlighted the need to include explicit treatment of the soil microbial processes into the next generation of Earth System Models (ESMs). These processes shape most soil biogeochemical cycles and control releases of the most potent greenhouses gases carbon dioxide and methane. Currently global ecosystem models usually parameterize methane production as a fraction of soil heterotrophic respiration. This lumps the pathways of several different functional groups of microbes into one production rate, possibly modified by a number of environmental factor multipliers. Methane oxidation is usually more explicitly modeled by Michaelis-Menten kinetics, but if the maximum rate, before environmental multipliers, is a constant parameter, this essentially implies a constant methanotrophic microbe population size. We present an explicit model for wetland soil microbial processes in an ESM context. We introduce a growth and decomposition model for four functional groups of microbes involved in methane production and oxidation, so microbial populations can grow when conditions are favorable and substrate is available. When soil conditions are anoxic, fermenting microbes transform available soil carbon into intermediate substrates, and two different kinds of methanogenic microbes live on their preferred substrates producing methane. Methane is transported through aerobic layers of the soil column, where methanotrophic microbes oxidize part of the methane, and the rest escapes to the atmosphere. We present initial simulations using the new model in the context of existing measurements of methane emissions and microbial populations at the site level, and discuss the implications of including these processes in an ESM. This explicit process model establishes a foundation for improving dynamic ecosystem-climate feedbacks in ESM simulations, and facilitates more detailed experimental verification of wetland biogeochemical processes.

  2. Analysis of methane potentials of steam-exploded wheat straw and estimation of energy yields of combined ethanol and methane production.

    PubMed

    Bauer, Alexander; Bösch, Peter; Friedl, Anton; Amon, Thomas

    2009-06-01

    Agrarian biomass as a renewable energy source can contribute to a considerable CO(2) reduction. The overriding goal of the European Union is to cut energy consumption related greenhouse gas emission in the EU by 20% until the year 2020. This publication aims at optimising the methane production from steam-exploded wheat straw and presents a theoretical estimation of the ethanol and methane potential of straw. For this purpose, wheat straw was pretreated by steam explosion using different time/temperature combinations. Specific methane yields were analyzed according to VDI 4630. Pretreatment of wheat straw by steam explosion significantly increased the methane yield from anaerobic digestion by up to 20% or a maximum of 331 l(N)kg(-1) VS compared to untreated wheat straw. Furthermore, the residual anaerobic digestion potential of methane after ethanol fermentation was determined by enzymatic hydrolysis of pretreated wheat straw using cellulase. Based on the resulting glucose concentration the ethanol yield and the residual sugar available for methane production were calculated. The theoretical maximum ethanol yield of wheat straw was estimated to be 0.249 kg kg(-1) dry matter. The achievable maximum ethanol yield per kg wheat straw dry matter pretreated by steam explosion and enzymatic hydrolysis was estimated to be 0.200 kg under pretreatment conditions of 200 degrees C and 10 min corresponding to 80% of the theoretical maximum. The residual methane yield from straw stillage was estimated to be 183 l(N)kg(-1) wheat straw dry matter. Based on the presented experimental data, a concept is proposed that processes wheat straw for ethanol and methane production. The concept of an energy supply system that provides more than two forms of energy is met by (1) upgrading obtained ethanol to fuel-grade quality and providing methane to CHP plants for the production of (2) electric energy and (3) utility steam that in turn can be used to operate distillation columns in the

  3. The marketing implications of affective product design.

    PubMed

    Seva, Rosemary R; Duh, Henry Been-Lirn; Helander, Martin G

    2007-11-01

    Emotions are compelling human experiences and product designers can take advantage of this by conceptualizing emotion-engendering products that sell well in the market. This study hypothesized that product attributes influence users' emotions and that the relationship is moderated by the adherence of these product attributes to purchase criteria. It was further hypothesized that the emotional experience of the user influences purchase intention. A laboratory study was conducted to validate the hypotheses using mobile phones as test products. Sixty-two participants were asked to assess eight phones from a display of 10 phones and indicate their emotional experiences after assessment. Results suggest that some product attributes can cause intense emotional experience. The attributes relate to the phone's dimensions and the relationship between these dimensions. The study validated the notion of integrating affect in designing products that convey users' personalities. PMID:17303064

  4. Microbial and chemical factors influencing methane production in laboratory incubations of low-rank subsurface coals

    USGS Publications Warehouse

    Harris, Stephen H.; Smith, Richard L.; Barker, Charles E.

    2008-01-01

    Lignite and subbituminous coals were investigated for their ability to support microbial methane production in laboratory incubations. Results show that naturally-occurring microorganisms associated with the coals produced substantial quantities of methane, although the factors influencing this process were variable among different samples tested. Methanogenic microbes in two coals from the Powder River Basin, Wyoming, USA, produced 140.5-374.6 mL CH4/kg ((4.5-12.0 standard cubic feet (scf)/ton) in response to an amendment of H2/CO2. The addition of high concentrations (5-10 mM) of acetate did not support substantive methane production under the laboratory conditions. However, acetate accumulated in control incubations where methanogenesis was inhibited, indicating that acetate was produced and consumed during the course of methane production. Acetogenesis from H2/CO2 was evident in these incubations and may serve as a competing metabolic mode influencing the cumulative amount of methane produced in coal. Two low-rank (lignite A) coals from Fort Yukon, Alaska, USA, demonstrated a comparable level of methane production (131.1-284.0 mL CH4/kg (4.2-9.1 scf/ton)) in the presence of an inorganic nutrient amendment, indicating that the source of energy and organic carbon was derived from the coal. The concentration of chloroform-extractable organic matter varied by almost three orders of magnitude among all the coals tested, and appeared to be related to methane production potential. These results indicate that substrate availability within the coal matrix and competition between different groups of microorganisms are two factors that may exert a profound influence on methanogenesis in subsurface coal beds.

  5. Hydrothermal carbonisation of sewage sludge: effect of process conditions on product characteristics and methane production.

    PubMed

    Danso-Boateng, E; Shama, G; Wheatley, A D; Martin, S J; Holdich, R G

    2015-02-01

    Hydrothermal carbonisation of primary sewage sludge was carried out using a batch reactor. The effect of temperature and reaction time on the characteristics of solid (hydrochar), liquid and gas products, and the conditions leading to optimal hydrochar characteristics were investigated. The amount of carbon retained in hydrochars decreased as temperature and time increased with carbon retentions of 64-77% at 140 and 160°C, and 50-62% at 180 and 200°C. Increasing temperature and treatment time increased the energy content of the hydrochar from 17 to 19 MJ/kg but reduced its energy yield from 88% to 68%. Maillard reaction products were identified in the liquid fractions following carbonisations at 180 and 200°C. Theoretical estimates of the methane yields resulting from the anaerobic digestion of the liquid by-products are also presented and optimal reaction conditions to maximise these identified.

  6. Effect of pretreatment by a microbial consortium on methane production of waste paper and cardboard.

    PubMed

    Yuan, Xufeng; Cao, Yanzhuan; Li, Jiajia; Wen, Boting; Zhu, Wanbin; Wang, Xiaofen; Cui, Zongjun

    2012-08-01

    A microbial consortium MC1 was used to pretreat filter paper, office paper, newspaper, and cardboard to enhance methane production. The results of pretreatment indicated that sCOD of hydrolysates of the four substrates increased significantly in the early stage, and peaked on day 7. During pretreatment, ethanol, acetic acid, propionic acid, butyric acid, and glycerol were the predominant volatile organic products in hydrolysates. MC1 had strong degradation ability on the four substrates, and the weight loss of filter paper, office paper, newspaper, and cardboard reached 78.3%, 80.5%, 39.7%, and 49.7%, respectively. The results of anaerobic digestion showed that methane production yields and rates of the four substrates significantly increased after pretreatment. This study is the first attempt to explore the microbial pretreatment method for anaerobic digestion of waste paper and cardboard. Microbial consortium pretreatment could be an effective method for enhancing methane production of waste paper and cardboard into bioenergy.

  7. Methane production potential (B0) of swine and cattle manures--a Canadian perspective.

    PubMed

    Godbout, S; Verma, M; Larouche, J P; Potvin, L; Chapman, A M; Lemay, S P; Pelletier, F; Brar, S K

    2010-11-01

    Canada's agricultural emissions accounted for 60 Mt or 8% of national greenhouse gas (GHG) emissions in 2007. The estimation of CH4 emission factor (B0) from manure management systems in Canada is prone to uncertainty owing to lack of B0 values for Canadian conditions. Therefore, in this study, manure samples from six Canadian animal farms, two each of swine, beef and dairy cattle, were investigated in order to estimate their methane production potential (B0). The ultimate anaerobic biodegradability was measured with ISO standard batch fermentation. The extent of biodegradation of the manure samples with or without sodium benzoate was always greater than 60% and hence showed no inhibitory effect on methane production by the manure. The impact of use of antibiotics in the animal feed on methane production was also considered; however, no inhibitory effect on methane production could be observed. The plateau of methane production in all cases was achieved by 63 d of anaerobic digestion process and the final pH was within 6-8. The calculated B0 were in the range of 0.47-0.42, 0.21-0.19 and 0.35-0.30 for swine, beef cattle and dairy cattle, respectively. The uncertainties associated with B0 values were +/- 9% for swine, +/- 3% for beef cattle and, +/- 6 and +/- 2% for dairy cows.

  8. Spatial Variability in Biodegradation Rates as Evidenced by Methane Production from an Aquifer

    PubMed Central

    Adrian, Neal R.; Robinson, Joseph A.; Suflita, Joseph M.

    1994-01-01

    Accurate predictions of carbon and energy cycling rates in the environment depend on sampling frequencies and on the spatial variability associated with biological activities. We examined the variability associated with anaerobic biodegradation rates at two sites in an alluvial sand aquifer polluted by municipal landfill leachate. In situ rates of methane production were measured for almost a year, using anaerobic wells installed at two sites. Methane production ranged from 0 to 560 μmol · m-2 · day-1 at one site (A), while a range of 0 to 120,000 μmol · m-2 · day-1 was measured at site B. The mean and standard deviations associated with methane production at site A were 17 and 57 μmol · m-2 · day-1, respectively. The comparable summary statistics for site B were 2,000 and 9,900 μmol · m-2 · day-1. The coefficients of variation at sites A and B were 340 and 490%, respectively. Despite these differences, the two sites had similar seasonal trends, with the maximal rate of methane production occurring in summer. However, the relative variability associated with the seasonal rates changed very little. Our results suggest that (i) two spatially distinct sites exist in the aquifer, (ii) methanogenesis is a highly variable process, (iii) the coefficient of variation varied little with the rate of methane production, and (iv) in situ anaerobic biodegradation rates are lognormally distributed. PMID:16349410

  9. The carbon isotope biogeochemistry of methane production in anoxic sediments. 1: Field observations

    NASA Technical Reports Server (NTRS)

    Blair, Neal E.; Boehme, Susan E.; Carter, W. Dale, Jr.

    1993-01-01

    The natural abundance C-13/C-12 ratio of methane from anoxic marine and freshwater sediments in temperate climates varies seasonally. Carbon isotopic measurements of the methanogenic precursors, acetate and dissolved inorganic carbon, from the marine sediments of Cape Lookout Bight, North Carolina were used to determine the sources of the seasonal variations at that site. Movement of the methanogenic zone over an isotopic gradient within the dissolved CO2 pool appears to be the dominant control of the methane C-13/C-12 ratio from February to June. The onset of acetoclastic methane-production is a second important controlling process during mid-summer. An apparent temperature dependence on the fractionation factor for CO2-reduction may have a significant influence on the isotopic composition of methane throughout the year.

  10. Evaluation of Dried Sweet Sorghum Stalks as Raw Material for Methane Production

    PubMed Central

    Matsakas, Leonidas; Rova, Ulrika; Christakopoulos, Paul

    2014-01-01

    The potential of utilizing dried sweet sorghum stalks as raw material for anaerobic digestion has been evaluated. Two different treatments were tested, a mild thermal and an enzymatic, alone or in combination. Thermal pretreatment was found to decrease the methane yields, whereas one-step enzymatic treatment resulted in a significant increase of 15.1% comparing to the untreated sweet sorghum. Subsequently, in order to increase the total methane production, the combined effect of enzyme load and I/S on methane yields from sweet sorghum was evaluated by employing response surface methodology. The obtained model showed that the maximum methane yield that could be achieved is 296 mL CH4/g VS at I/S ratio of 0.35 with the addition of 11.12 FPU/g sweet sorghum. PMID:25210715

  11. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows.

    PubMed

    Holtshausen, L; Chaves, A V; Beauchemin, K A; McGinn, S M; McAllister, T A; Odongo, N E; Cheeke, P R; Benchaar, C

    2009-06-01

    An experiment was conducted in vitro to determine whether the addition of saponin-containing Yucca schidigera or Quillaja saponaria reduces methane production without impairing ruminal fermentation or fiber digestion. A slightly lower dose of saponin was then fed to lactating dairy cows to evaluate effects on ruminal fermentation, methane production, total-tract nutrient digestibility, and milk production and composition. A 24-h batch culture in vitro incubation was conducted in a completely randomized design with a control (no additive, CON) and 3 doses of either saponin source [15, 30, and 45 g/kg of substrate dry matter (DM)] using buffered ruminal fluid from 3 dairy cows. The in vivo study was conducted as a crossover design with 2 groups of cows, 3 treatments, and three 28-d periods. Six ruminally cannulated cows were used in group 1 and 6 intact cows in group 2 (627 +/- 55 kg of body weight and 155 +/- 28 d in milk). The treatments were 1) early lactation total mixed ration, no additive (control; CON); 2) CON diet supplemented with whole-plant Y. schidigera powder at 10 g/kg of DM (YS); and 3) CON diet supplemented with whole-plant Q. saponaria powder at 10 g/kg of DM (QS). Methane production was measured in environmental chambers and with the sulfur hexafluoride (SF(6)) tracer technique. In vitro, increasing levels of both saponin sources decreased methane concentration in the headspace and increased the proportion of propionate in the buffered rumen fluid. Concentration of ammonia-N, acetate proportion, and the acetate:propionate ratio in the buffered rumen fluid as well as 24-h digestible neutral detergent fiber were reduced compared with the CON treatment. Medium and high saponin levels decreased DM digestibility compared with the CON treatment. A lower feeding rate of both saponin sources (10 g/kg of DM) was used in vivo in an attempt to avoid potentially negative effects of higher saponin levels on feed digestibility. Feeding saponin did not affect milk

  12. Methane and fertilizer production from seaweed biomass. Final report

    SciTech Connect

    Betzer, P.R.; Humm, H.J.

    1984-01-01

    It was demonstrated that several varieties of abundant benthic algae indigenous to Tampa Bay (Gracilaria, Hypnea, and Ulva) were readily degradable via anaerobic digestion to methane. The energy yield per unit weight biomass degraded was higher than any previously reported. Given the large masses of readily degradable plants which are annually produced in and around Tampa Bay, the resource is estimated to be at least equivalent to several million gallons of gasoline.

  13. Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments

    USGS Publications Warehouse

    Oremland, R.S.; Marsh, L.M.; Polcin, S.

    1982-01-01

    It has been generally believed that sulphate reduction precludes methane generation during diagenesis of anoxic sediments1,2. Because most biogenic methane formed in nature is thought to derive either from acetate cleavage or by hydrogen reduction of carbon dioxide3-6, the removal of these compounds by the energetically more efficient sulphate-reducing bacteria can impose a substrate limitation on methanogenic bacteria 7-9. However, two known species of methanogens, Methanosarcina barkeri and Methanococcus mazei, can grow on and produce methane from methanol and methylated amines10-13. In addition, these compounds stimulate methane production by bacterial enrichments from the rumen11,14 and aquatic muds13,14. Methanol can enter anaerobic food webs through bacterial degradation of lignins15 or pectin16, and methylated amines can be produced either from decomposition of substances like choline, creatine and betaine13,14 or by bacterial reduction of trimethylamine oxide17, a common metabolite and excretory product of marine animals. However, the relative importance of methanol and methylated amines as precursors of methane in sediments has not been previously examined. We now report that methanol and trimethylamine are important substrates for methanogenic bacteria in salt marsh sediments and that these compounds may account for the bulk of methane produced therein. Furthermore, because these compounds do not stimulate sulphate reduction, methanogenesis and sulphate reduction can operate concurrently in sulphate-containing anoxic sediments. ?? 1982 Nature Publishing Group.

  14. Microbial methane production in deep aquifer associated with the accretionary prism in Japan.

    PubMed

    Kimura, Hiroyuki; Nashimoto, Hiroaki; Shimizu, Mikio; Hattori, Shohei; Yamada, Keita; Koba, Keisuke; Yoshida, Naohiro; Kato, Kenji

    2010-04-01

    To identify the methanogenic pathways present in a deep aquifer associated with an accretionary prism in Southwest Japan, a series of geochemical and microbiological studies of natural gas and groundwater derived from a deep aquifer were performed. Stable carbon isotopic analysis of methane in the natural gas and dissolved inorganic carbon (mainly bicarbonate) in groundwater suggested that the methane was derived from both thermogenic and biogenic processes. Archaeal 16S rRNA gene analysis revealed the dominance of H(2)-using methanogens in the groundwater. Furthermore, the high potential of methane production by H(2)-using methanogens was shown in enrichments using groundwater amended with H(2) and CO(2). Bacterial 16S rRNA gene analysis showed that fermentative bacteria inhabited the deep aquifer. Anaerobic incubations using groundwater amended with organic substrates and bromoethanesulfonate (a methanogen inhibitor) suggested a high potential of H(2) and CO(2) generation by fermentative bacteria. To confirm whether or not methane is produced by a syntrophic consortium of H(2)-producing fermentative bacteria and H(2)-using methanogens, anaerobic incubations using the groundwater amended with organic substrates were performed. Consequently, H(2) accumulation and rapid methane production were observed in these enrichments incubated at 55 and 65 degrees C. Thus, our results suggested that past and ongoing syntrophic biodegradation of organic compounds by H(2)-producing fermentative bacteria and H(2)-using methanogens, as well as a thermogenic reaction, contributes to the significant methane reserves in the deep aquifer associated with the accretionary prism in Southwest Japan.

  15. Effects of Marine and Freshwater Macroalgae on In Vitro Total Gas and Methane Production

    PubMed Central

    Machado, Lorenna; Magnusson, Marie; Paul, Nicholas A.; de Nys, Rocky; Tomkins, Nigel

    2014-01-01

    This study aimed to evaluate the effects of twenty species of tropical macroalgae on in vitro fermentation parameters, total gas production (TGP) and methane (CH4) production when incubated in rumen fluid from cattle fed a low quality roughage diet. Primary biochemical parameters of macroalgae were characterized and included proximate, elemental, and fatty acid (FAME) analysis. Macroalgae and the control, decorticated cottonseed meal (DCS), were incubated in vitro for 72 h, where gas production was continuously monitored. Post-fermentation parameters, including CH4 production, pH, ammonia, apparent organic matter degradability (OMd), and volatile fatty acid (VFA) concentrations were measured. All species of macroalgae had lower TGP and CH4 production than DCS. Dictyota and Asparagopsis had the strongest effects, inhibiting TGP by 53.2% and 61.8%, and CH4 production by 92.2% and 98.9% after 72 h, respectively. Both species also resulted in the lowest total VFA concentration, and the highest molar concentration of propionate among all species analysed, indicating that anaerobic fermentation was affected. Overall, there were no strong relationships between TGP or CH4 production and the >70 biochemical parameters analysed. However, zinc concentrations >0.10 g.kg−1 may potentially interact with other biochemical components to influence TGP and CH4 production. The lack of relationship between the primary biochemistry of species and gas parameters suggests that significant decreases in TGP and CH4 production are associated with secondary metabolites produced by effective macroalgae. The most effective species, Asparagopsis, offers the most promising alternative for mitigation of enteric CH4 emissions. PMID:24465524

  16. Methane Emission and Milk Production of Dairy Cows Grazing Pastures Rich in Legumes or Rich in Grasses in Uruguay

    PubMed Central

    Dini, Yoana; Gere, José; Briano, Carolina; Manetti, Martin; Juliarena, Paula; Picasso, Valentin; Gratton, Roberto; Astigarraga, Laura

    2012-01-01

    Simple Summary GHGs emissions are relevant in evaluating environmental impact of farming systems. Methane (CH4) produced by enteric fermentation accounts for half of all anthropogenic emissions of GHGs in Uruguay, where ruminant production is based on year round grazing of forages. Here we compared milk production and CH4 emissions by dairy cows grazing two contrasting mixed pastures (rich in legumes or rich in grasses) using the SF6 tracer technique adapted to collect breath samples over 5-days periods. There were no differences in milk or CH4 production between the contrasting pastures, probably because of the high herbage allowance that enabled selective grazing by cows. Abstract Understanding the impact of changing pasture composition on reducing emissions of GHGs in dairy grazing systems is an important issue to mitigate climate change. The aim of this study was to estimate daily CH4 emissions of dairy cows grazing two mixed pastures with contrasting composition of grasses and legumes: L pasture with 60% legumes on Dry Matter (DM) basis and G pasture with 75% grasses on DM basis. Milk production and CH4 emissions were compared over two periods of two weeks during spring using eight lactating Holstein cows in a 2 × 2 Latin square design. Herbage organic matter intake (HOMI) was estimated by chromic oxide dilution and herbage organic matter digestibility (OMD) was estimated by faecal index. Methane emission was estimated by using the sulfur hexafluoride (SF6) tracer technique adapted to collect breath samples over 5-day periods. OMD (0.71) and HOMI (15.7 kg OM) were not affected by pasture composition. Milk production (20.3 kg/d), milk fat yield (742 g/d) and milk protein yield (667 g/d) were similar for both pastures. This may be explained by the high herbage allowance (30 kg DM above 5 cm/cow) which allowed the cows to graze selectively, in particular in grass sward. Similarly, methane emission expressed as absolute value (368 g/d or 516 L/d) or expressed as

  17. New sludge pretreatment method to improve methane production in waste activated sludge digestion.

    PubMed

    Zhang, Dong; Chen, Yinguang; Zhao, Yuxiao; Zhu, Xiaoyu

    2010-06-15

    During two-phase sludge anaerobic digestion, sludge is usually hydrolyzed and acidified in the first phase, then methane is produced in the second stage. To get more methane from sludge, most studies in literature focused on the increase of sludge hydrolysis. In this paper a different sludge pretreatment method, i.e., pretreating sludge at pH 10 for 8 d is reported, by which both waste activated sludge hydrolysis and acidification were increased, and the methane production was significantly improved. First, the effect of different sludge pretreatment methods on methane yield was compared. The pH 10 pretreated sludge showed the highest accumulative methane yield (398 mL per g of volatile suspended solids), which was 4.4-, 3.5-, 3.1-, and 2.3-fold of the blank (unpretreated), ultrasonic, thermal, and thermal-alkaline pretreated sludge, respectively. Nevertheless, its total time involved in the first (hydrolysis and acidification) and second (methanogenesis) stages was 17 (8 + 9) d, which was almost the same as other pretreatments. Then, the mechanisms for pH 10 pretreatment significantly improving methane yield were investigated. It was found that pretreating sludge at pH 10 caused the greatest sludge hydrolysis, acidification, soluble C:N and C:P ratios, and Fe(3+) concentration with a suitable short-chain fatty acids composition in the first stage, which resulted in the highest microorganism activity (ATP) and methane production in the second phase. Further investigation on the second phase microorganisms with fluorescence in situ hybridization (FISH) and scanning electron microscopy (SEM) indicated that there were much greater active methanogenesis Archaea when methane was produced with the pH 10 pretreated sludge, and the predominant morphology of the microcolonies suggest a shift to Methanosarcina sp. like.

  18. Impact of hydrology on methane flux patterns in a permafrost-affected floodplain in Northeast Siberia

    NASA Astrophysics Data System (ADS)

    Kwon, Min Jung; Beulig, Felix; Kuesel, Kirsten; Wildner, Marcus; Heimann, Martin; Zimov, Nikita; Zimov, Sergei; Goeckede, Mathias

    2015-04-01

    A large fraction of organic carbon stored in Arctic permafrost soil is at risk to be decomposed and released to the atmosphere under climate change. Thawing of ice-rich permafrost will re-structure the surface topography, with potentially significant effects on hydrology: water table depth (WTD) of depressed areas will increase, while that of the surrounding area will decrease. Changes in hydrology will trigger modifications in soil and vegetation, e.g. soil temperature, vegetation and microbial community structure. All of these secondary effects will alter carbon cycle processes, with the magnitude and even sign of the net effect yet unknown. The objective of this study is to investigate effects of drainage on methane fluxes in a floodplain of the Kolyma River near Cherskii, Northeast Siberia. The study site is separated into two areas, one that has been drained since 2004, and a nearby reference site. Methane flux was measured for ~16 weeks during summer and early winter of 2013, and summer of 2014. In addition, to separate different methane emission pathways, plant-mediated methane transport (through aerenchyma) as well as the proportion of ebullition were measured in 2014. Vegetation and microbial community structures were investigated and compared. After a decade of drainage history that lowered WTD by about 20cm in the drained area, Eriophorum (cotton grass) that previously dominated have to a large part been replaced by Carex (tussock-forming sedge) and shrub species. While WTD primarily influenced the methane flux rate, this vegetation change indirectly altered the flux as well in a way that sites with Eriophorum emitted more methane. Concerning the microbial community structure, the relative abundance of methanogen and ratio of methanotrophs to methanogens were well correlated with methane flux rates, implying that the methane flux is highly influenced by microorganisms. As a consequence of these changes, in the drained area less amount of methane was

  19. Controls on methane released through ebullition in peatlands affected by permafrost degradation

    USGS Publications Warehouse

    Klapstein, Sara J.; Turetsky, Merritt R.; McGuire, Anthony; Harden, Jennifer W.; Czimczik, C.I.; Xu, Xiaomei; Chanton, J.P.; Waddington, James Michael

    2014-01-01

    Permafrost thaw in peat plateaus leads to the flooding of surface soils and the formation of collapse scar bogs, which have the potential to be large emitters of methane (CH4) from surface peat as well as deeper, previously frozen, permafrost carbon (C). We used a network of bubble traps, permanently installed 20 cm and 60 cm beneath the moss surface, to examine controls on ebullition from three collapse bogs in interior Alaska. Overall, ebullition was dominated by episodic events that were associated with changes in atmospheric pressure, and ebullition was mainly a surface process regulated by both seasonal ice dynamics and plant phenology. The majority (>90%) of ebullition occurred in surface peat layers, with little bubble production in deeper peat. During periods of peak plant biomass, bubbles contained acetate-derived CH4 dominated (>90%) by modern C fixed from the atmosphere following permafrost thaw. Post-senescence, the contribution of CH4 derived from thawing permafrost C was more variable and accounted for up to 22% (on average 7%), in the most recently thawed site. Thus, the formation of thermokarst features resulting from permafrost thaw in peatlands stimulates ebullition and CH4 release both by creating flooded surface conditions conducive to CH4 production and bubbling as well as by exposing thawing permafrost C to mineralization.

  20. Controls on methane released through ebullition in peatlands affected by permafrost degradation

    NASA Astrophysics Data System (ADS)

    Klapstein, Sara J.; Turetsky, Merritt R.; McGuire, A. David; Harden, Jennifer W.; Czimczik, Claudia I.; Xu, Xiaomei; Chanton, Jeffrey P.; Waddington, James M.

    2014-03-01

    Permafrost thaw in peat plateaus leads to the flooding of surface soils and the formation of collapse scar bogs, which have the potential to be large emitters of methane (CH4) from surface peat as well as deeper, previously frozen, permafrost carbon (C). We used a network of bubble traps, permanently installed 20 cm and 60 cm beneath the moss surface, to examine controls on ebullition from three collapse bogs in interior Alaska. Overall, ebullition was dominated by episodic events that were associated with changes in atmospheric pressure, and ebullition was mainly a surface process regulated by both seasonal ice dynamics and plant phenology. The majority (>90%) of ebullition occurred in surface peat layers, with little bubble production in deeper peat. During periods of peak plant biomass, bubbles contained acetate-derived CH4 dominated (>90%) by modern C fixed from the atmosphere following permafrost thaw. Post-senescence, the contribution of CH4 derived from thawing permafrost C was more variable and accounted for up to 22% (on average 7%), in the most recently thawed site. Thus, the formation of thermokarst features resulting from permafrost thaw in peatlands stimulates ebullition and CH4 release both by creating flooded surface conditions conducive to CH4 production and bubbling as well as by exposing thawing permafrost C to mineralization.

  1. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field.

    PubMed

    Mand, Jaspreet; Park, Hyung S; Okoro, Chuma; Lomans, Bart P; Smith, Seun; Chiejina, Leo; Voordouw, Gerrit

    2015-01-01

    Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC. PMID:26793176

  2. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field

    PubMed Central

    Mand, Jaspreet; Park, Hyung S.; Okoro, Chuma; Lomans, Bart P.; Smith, Seun; Chiejina, Leo; Voordouw, Gerrit

    2016-01-01

    Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC. PMID:26793176

  3. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field.

    PubMed

    Mand, Jaspreet; Park, Hyung S; Okoro, Chuma; Lomans, Bart P; Smith, Seun; Chiejina, Leo; Voordouw, Gerrit

    2015-01-01

    Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC.

  4. Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment.

    PubMed

    Tsapekos, P; Kougias, Panagiotis G; Frison, A; Raga, R; Angelidaki, I

    2016-09-01

    Animal manure digestion is associated with limited methane production, due to the high content in fibers, which are hardly degradable lignocellulosic compounds. In this study, different mechanical and thermal alkaline pretreatment methods were applied to partially degradable fibers, separated from the effluent stream of biogas reactors. Batch and continuous experiments were conducted to evaluate the efficiency of these pretreatments. In batch experiments, the mechanical pretreatment improved the degradability up to 45%. Even higher efficiency was shown by applying thermal alkaline pretreatments, enhancing fibers degradability by more than 4-fold. In continuous experiments, the thermal alkaline pretreatment, using 6% NaOH at 55°C was proven to be the most efficient pretreatment method as the methane production was increased by 26%. The findings demonstrated that the methane production of the biogas plants can be increased by further exploiting the fraction of the digested manure fibers which are discarded in the post-storage tank.

  5. Methane production in an UASB reactor operated under periodic mesophilic-thermophilic conditions.

    PubMed

    Bourque, J-S; Guiot, S R; Tartakovsky, B

    2008-08-15

    Methane production was studied in a laboratory-scale 10 L anaerobic upflow sludge bed (UASB) reactor with periodic variations of the reactor temperature. On a daily basis the temperature was varied between 35 and 45 degrees C or 35 and 55 degrees C with a heating period of 6 h. Each temperature increase was accompanied by an increase in methane production and a decrease in the concentration of soluble organic matter in the effluent. In comparison to a reactor operated at 35 degrees C, a net increase in methane production of up to 22% was observed. Batch activity tests demonstrated a tolerance of mesophilic methanogenic populations to short-term, 2-6 h, temperature increases, although activity of acetoclastic methanogens decreased after 6 h exposure to a temperature of 55 degrees C. 16S sequencing of DGGE bands revealed proliferation of temperature-tolerant Methanospirillum hungatii sp. in the reactor.

  6. Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment.

    PubMed

    Tsapekos, P; Kougias, Panagiotis G; Frison, A; Raga, R; Angelidaki, I

    2016-09-01

    Animal manure digestion is associated with limited methane production, due to the high content in fibers, which are hardly degradable lignocellulosic compounds. In this study, different mechanical and thermal alkaline pretreatment methods were applied to partially degradable fibers, separated from the effluent stream of biogas reactors. Batch and continuous experiments were conducted to evaluate the efficiency of these pretreatments. In batch experiments, the mechanical pretreatment improved the degradability up to 45%. Even higher efficiency was shown by applying thermal alkaline pretreatments, enhancing fibers degradability by more than 4-fold. In continuous experiments, the thermal alkaline pretreatment, using 6% NaOH at 55°C was proven to be the most efficient pretreatment method as the methane production was increased by 26%. The findings demonstrated that the methane production of the biogas plants can be increased by further exploiting the fraction of the digested manure fibers which are discarded in the post-storage tank. PMID:27268439

  7. Using Methane 14C to Determine the Origin of the Rapid Methane Rise at the End of the Younger Dryas 11,600 Years Ago: Increased Wetland Production or Methane Hydrates? A Progress Report.

    NASA Astrophysics Data System (ADS)

    Petrenko, V. V.; Severinghaus, J.; Brook, E.; Reeh, N.

    2002-12-01

    The atmospheric methane concentration rose from about 500 parts per billion (ppb) to about 750 ppb over a period of just 150 years at the termination of the Younger Dryas cold period 11,600 years ago, as indicated by Greenland ice core records. The start of this rapid methane increase was synchronous with an even more rapid climate warming -- Greenland ice core nitrogen and argon isotope records indicate that temperatures rose 5 - 10 ?C over just a few decades. There has been considerable debate about the source of this methane rise. Currently, the two main hypotheses attribute the methane rise either to increased bacterial methane production in wetlands, or to the dissociation of large quantities of methane hydrates on the ocean floor. Here we describe the progress of a project whose aim is to determine the origin of this methane rise. Our approach involves using 14C of ancient methane (derived from air bubbles in glacial ice) to determine its source. Methane hydrates are hundreds of thousands to millions of years old, and should contain virtually no 14C, whereas wetland-derived methane will have 14C content identical to that of atmospheric CO2 at the time of production. Obtaining enough ancient methane for a 14C measurement requires very large samples -- about 2 cubic meters. We have been able to locate a site on the western margin of the Greenland ice sheet where large amounts of uncontaminated ancient ice are available at the surface. Furthermore, our measurements of oxygen isotopes in the ice, as well as measurements of methane and oxygen and nitrogen isotopes in the air trapped in this ice have allowed us to date the ice and precisely locate the ice that contains the end-of-Younger-Dryas methane increase signal. Our data also demonstrate that the methane record in this ice is uncontaminated and suitable for methane 14C analysis. During the past year, we also constructed and are testing a device for melting and extracting air from large volumes of glacial ice.

  8. Comparison of Methane Data Products from the TES and AIRS Infrared Sounders

    NASA Astrophysics Data System (ADS)

    Pagano, T. J.; Pagano, T. S.; Worden, J. R.

    2015-12-01

    Methane is the second most powerful greenhouse gas with a highly positive radiative forcing of 0.48 W/m2 (IPCC 2013). Global concentrations of methane have been steadily increasing since 2007 (Bruhwiler 2014), raising concerns about methane's impact on the future global climate. For about the last decade, the Tropospheric Emission Spectrometer (TES) on the Earth Observing System (EOS) Aura spacecraft has been detecting several trace gas species in the troposphere including methane. The goal of this study is to compare TES methane retrievals to that of the Atmospheric Infrared Sounder (AIRS) on the EOS Aqua spacecraft so that scientific investigations may be transferred from TES to AIRS. The two instruments fly in the afternoon constellation (A-Train), providing numerous coincident measurements for comparison. In addition, they also have a similar spectral range, (3.3 to 15.4 µm) for TES (Beer, 2006) and (3.7 to 15.4 µm) for AIRS (Chahine, 2006), making both instruments sensitive to the mid and upper troposphere. This makes them ideal candidates to compare methane data products. However, because AIRS spectral resolution is lower than that of the TES, there may be a difference in vertical sensitivity. In addition, the retrieval techniques and error characteristics are different for the two data sets. The current state of validation for these data products will be presented. To identify conditions in which the data sets agree and dis agree, we present global maps of methane concentrations from monthly level 3 (L3) data products. We also investigate the temporal stability between the two datasets by comparing global zonal averages derived from L3 over the last decade. Finally, we compare L2 retrieval profiles from representative granules in the tropical, mid-latitude and northern latitudes.

  9. A model for methane production in anaerobic digestion of swine wastewater.

    PubMed

    Yang, Hongnan; Deng, Liangwei; Liu, Gangjin; Yang, Di; Liu, Yi; Chen, Ziai

    2016-10-01

    A study was conducted using a laboratory-scale anaerobic sequencing batch digester to investigate the quantitative influence of organic loading rates (OLRs) on the methane production rate during digestion of swine wastewater at temperatures between 15 °C and 35 °C. The volumetric production rate of methane (Rp) at different OLRs and temperatures was obtained. The maximum volumetric methane production rates (Rpmax) were 0.136, 0.796, 1.294, 1.527 and 1.952 LCH4 L(-1) d(-1) at corresponding organic loading rates of 1.2, 3.6, 5.6, 5.6 and 7.2 g volatile solids L(-1) d(-1), respectively, which occurred at 15, 20, 25, 30 and 35 °C, respectively. A new model was developed to describe the quantitative relationship between Rp and OLR. In addition to the maximum volumetric methane production rate (Rpmax) and the half-saturation constant (KLR) commonly used in previous models such as the modified Stover-Kincannon model and Deng model, the new model introduced a new index (KD) that denoted the speed of volumetric methane production rate approaching the maximum as a function of temperature. The new model more satisfactorily described the influence of OLR on the rate of methane production than other models as confirmed by higher determination coefficients (R(2)) (0.9717-0.9900) and lower bias between the experimental and predicted data in terms of the root mean square error and the Akaike Information Criterion. Data from other published research also validated the applicability and generality of the new kinetic model to different types of wastewater.

  10. Effects of the incorporation of drinking water sludge on the anaerobic digestion of domestic wastewater sludge for methane production.

    PubMed

    Torres-Lozada, Patricia; Díaz-Granados, José Sánchez; Parra-Orobio, Brayan Alexis

    2015-01-01

    Water purification and wastewater treatment generate sludge, which must be adequately handled to prevent detrimental effects to the environment and public health. In this study, we examined the influence of the application of settled sludge from a drinking water treatment plant (S(DWTP)) on the anaerobic digestion (AD) of the thickened primary sludge from a municipal wastewater treatment plant (S(WWTP)) which uses chemically assisted primary treatment (CAPT). On both plants the primary coagulant is ferric chloride. The study was performed at laboratory scale using specific methanogenic activity (SMA) tests, in which mixtures of S(WWTP)-S(DWTP) with the ratios 100:00, 80:20, 75:25, 70:30 and 00:100 were evaluated. Methane detection was also performed by gas chromatography for a period of 30 days. Our results show that all evaluated ratios that incorporate S(DWTP), produce an inhibitory effect on the production of methane. The reduction in methane production ranged from 26% for the smallest concentration of S(DWTP) (20%) to more than 70% for concentrations higher than 25%. The results indicated that the hydrolytic stage was significantly affected, with the hydrolysis constant Kh also reduced by approximately 70% (0.24-0.26 day(-1) for the different ratios compared with 0.34 day(-1) for the S(WWTP) alone). This finding demonstrates that the best mixtures to be considered for anaerobic co-digestion must contain a fraction of S(DWTP) below 20%.

  11. Determination of optimal sulfate concentration for methane production from volatile fatty acids

    SciTech Connect

    Demafelis, R.B.; Tomita, Osamu; Kajiuchi, Toshio

    1996-12-31

    The effect of sulfate on methane production from individual volatile fatty acids were investigated using batch cultures. Optimum sulfate concentrations were found to be at 220mg/l for propionate digestion and 55mg/l for butyrate and valerate digestions. Methane productions were significantly increased at these conditions compared to cultures containing no sulfates. Hydrogen sulfide levels, at optimum sulfate concentration were relatively low up to 0.7 % in the gas phase. Sulfate reducing bacteria (SRB) predominates the bacterial population while Methanosaeta concilii outnumbered Methanospirillium hungatei. 7 refs., 3 figs.

  12. Chamber-Based Estimates of Methane Production in Coastal Estuarine Systems in Southern California

    NASA Astrophysics Data System (ADS)

    Brigham, B.; Lipson, D.; Lai, C.

    2008-12-01

    Wetland systems are believed to produce between 100 - 231 Tg CH4 yr-1 which is roughly 20% of global methane emissions. The uncertainty in methane emissions models stem from the lack of detailed information about methane gas production within regional wetland systems. The aim of this study is to report the range of methane fluxes observed along salinity gradients at two San Diego coastal wetland systems, the Tijuana Estuary (Tijuana River National Estuarine Research Reserve) and the Peñasquitos Lagoon (Torrey Pines State Park Reserve). Soil water samples are used to elucidate factors responsible for the observed variation in methane fluxes. Air samples were subsequently collected from the headspace of a static soil chamber and stored in pre- evacuated vials. Methane concentrations were analyzed within hours after collection by gas chromatography in the laboratory. The chemical and physical properties of the soil, including salinity, pH, redox potential and temperature are measured with a hand-held probe nearby soil collars. The biological properties of the soil, including dissolved organic carbon, nitrate, and ammonia levels are measured from soil water samples in the laboratory. We find that saline sites under direct tidal influence produced methane fluxes ranging from -3.10 to 9.10 (mean 2.18) mg CH4 m-2 day-1. We also find that brackish sites (0.6 to 3.2 ppt in salinity) with fresh water input from residential runoff at the Peñasquitos Lagoon produced methane fluxes ranging from 0.53 to 192.10 (mean 33.34) mg CH4 m-2 day-1. Sampling was done over the course of 5 weeks during August-September of 2008. We hypothesize that the contrasting methane fluxes found between the saline and the brackish sites is due primarily to the different salinity, and in turn sulfate levels found at the two sites. The reduction of sulfate to produce energy is more energetically favorable than the reduction of carbon dioxide to produce methane. Thus the presence of sulfate may act as

  13. Estimating daily methane production in individual cattle with irregular feed intake patterns from short-term methane emission measurements.

    PubMed

    Cottle, D J; Velazco, J; Hegarty, R S; Mayer, D G

    2015-12-01

    Spot measurements of methane emission rate (n = 18 700) by 24 Angus steers fed mixed rations from GrowSafe feeders were made over 3- to 6-min periods by a GreenFeed emission monitoring (GEM) unit. The data were analysed to estimate daily methane production (DMP; g/day) and derived methane yield (MY; g/kg dry matter intake (DMI)). A one-compartment dose model of spot emission rate v. time since the preceding meal was compared with the models of Wood (1967) and Dijkstra et al. (1997) and the average of spot measures. Fitted values for DMP were calculated from the area under the curves. Two methods of relating methane and feed intakes were then studied: the classical calculation of MY as DMP/DMI (kg/day); and a novel method of estimating DMP from time and size of preceding meals using either the data for only the two meals preceding a spot measurement, or all meals for 3 days prior. Two approaches were also used to estimate DMP from spot measurements: fitting of splines on a 'per-animal per-day' basis and an alternate approach of modelling DMP after each feed event by least squares (using Solver), summing (for each animal) the contributions from each feed event by best-fitting a one-compartment model. Time since the preceding meal was of limited value in estimating DMP. Even when the meal sizes and time intervals between a spot measurement and all feeding events in the previous 72 h were assessed, only 16.9% of the variance in spot emission rate measured by GEM was explained by this feeding information. While using the preceding meal alone gave a biased (underestimate) of DMP, allowing for a longer feed history removed this bias. A power analysis taking into account the sources of variation in DMP indicated that to obtain an estimate of DMP with a 95% confidence interval within 5% of the observed 64 days mean of spot measures would require 40 animals measured over 45 days (two spot measurements per day) or 30 animals measured over 55 days. These numbers suggest that

  14. Estimating daily methane production in individual cattle with irregular feed intake patterns from short-term methane emission measurements.

    PubMed

    Cottle, D J; Velazco, J; Hegarty, R S; Mayer, D G

    2015-12-01

    Spot measurements of methane emission rate (n = 18 700) by 24 Angus steers fed mixed rations from GrowSafe feeders were made over 3- to 6-min periods by a GreenFeed emission monitoring (GEM) unit. The data were analysed to estimate daily methane production (DMP; g/day) and derived methane yield (MY; g/kg dry matter intake (DMI)). A one-compartment dose model of spot emission rate v. time since the preceding meal was compared with the models of Wood (1967) and Dijkstra et al. (1997) and the average of spot measures. Fitted values for DMP were calculated from the area under the curves. Two methods of relating methane and feed intakes were then studied: the classical calculation of MY as DMP/DMI (kg/day); and a novel method of estimating DMP from time and size of preceding meals using either the data for only the two meals preceding a spot measurement, or all meals for 3 days prior. Two approaches were also used to estimate DMP from spot measurements: fitting of splines on a 'per-animal per-day' basis and an alternate approach of modelling DMP after each feed event by least squares (using Solver), summing (for each animal) the contributions from each feed event by best-fitting a one-compartment model. Time since the preceding meal was of limited value in estimating DMP. Even when the meal sizes and time intervals between a spot measurement and all feeding events in the previous 72 h were assessed, only 16.9% of the variance in spot emission rate measured by GEM was explained by this feeding information. While using the preceding meal alone gave a biased (underestimate) of DMP, allowing for a longer feed history removed this bias. A power analysis taking into account the sources of variation in DMP indicated that to obtain an estimate of DMP with a 95% confidence interval within 5% of the observed 64 days mean of spot measures would require 40 animals measured over 45 days (two spot measurements per day) or 30 animals measured over 55 days. These numbers suggest that

  15. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    PubMed

    Roehe, Rainer; Dewhurst, Richard J; Duthie, Carol-Anne; Rooke, John A; McKain, Nest; Ross, Dave W; Hyslop, Jimmy J; Waterhouse, Anthony; Freeman, Tom C; Watson, Mick; Wallace, R John

    2016-02-01

    Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism

  16. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance

    PubMed Central

    Roehe, Rainer; Dewhurst, Richard J.; Duthie, Carol-Anne; Rooke, John A.; McKain, Nest; Ross, Dave W.; Hyslop, Jimmy J.; Waterhouse, Anthony; Freeman, Tom C.

    2016-01-01

    Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism

  17. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    PubMed

    Roehe, Rainer; Dewhurst, Richard J; Duthie, Carol-Anne; Rooke, John A; McKain, Nest; Ross, Dave W; Hyslop, Jimmy J; Waterhouse, Anthony; Freeman, Tom C; Watson, Mick; Wallace, R John

    2016-02-01

    Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism

  18. Production of Excess CO2 relative to methane in peatlands: a new H2 sink

    NASA Astrophysics Data System (ADS)

    Wilson, R.; Woodcroft, B. J.; Varner, R. K.; Tyson, G. W.; Tfaily, M. M.; Sebestyen, S.; Saleska, S. R.; Rogers, K.; Rich, V. I.; McFarlane, K. J.; Kostka, J. E.; Kolka, R. K.; Keller, J.; Iversen, C. M.; Hodgkins, S. B.; Hanson, P. J.; Guilderson, T. P.; Griffiths, N.; de La Cruz, F.; Crill, P. M.; Chanton, J.; Bridgham, S. D.; Barlaz, M.

    2015-12-01

    Methane is generated as the end product of anaerobic organic matter degradation following a series of reaction pathways including fermentation and syntrophy. Along with acetate and CO2, syntrophic reactions generate H2 and are only thermodynamically feasible when coupled to an exothermic reaction that consumes H2. The usual model of organic matter degradation in peatlands has assumed that methanogenesis is that exothermic H2-consuming reaction. If correct, this paradigm should ultimately result in equimolar production of CO2 and methane from the degradation of the model organic compound cellulose: i.e. C6H12O6 à 3CO2 + 3CH4. However, dissolved gas measurement and modeling results from field and incubation experiments spanning peatlands across the northern hemisphere have failed to demonstrate equimolar production of CO2 and methane. Instead, in a flagrant violation of thermodynamics, these studies show a large bias favoring CO2 production over methane generation. In this talk, we will use an array of complementary analytical techniques including FT-IR, cellulose and lignin measurements, 13C-NMR, fluorescence spectroscopy, and ultra-high resolution mass spectrometry to describe organic matter degradation within a peat column and identify the important degradation mechanisms. Hydrogenation was the most common transformation observed in the ultra-high resolution mass spectrometry data. From these results we propose a new mechanism for consuming H2 generated during CO2 production, without concomitant methane formation, consistent with observed high CO2/CH4 ratios. While homoacetogenesis is a known sink for H2 in these systems, this process also consumes CO2 and therefore does not explain the excess CO2 measured in field and incubation samples. Not only does the newly proposed mechanism consume H2 without generating methane, but it also yields enough energy to balance the coupled syntrophic reactions, thereby restoring thermodynamic order. Schematic of organic matter

  19. Analysis of factors affecting methane-gas recovery from six landfills. Final report Jul 90-Jul 91

    SciTech Connect

    Campbell, D.; Epperson, D.; Davis, L.; Peer, R.; Gray, W.

    1991-09-01

    The report gives results of a pilot study of six U.S. landfills that have methane (CH4) gas recovery systems. (NOTE: The study was a first step in developing a field testing program to gather data to identify key variables that affect CH4 generation and to develop an empirical model of CH4 generation based on those variables. The field test program development, in turn, is part of EPA/AEERL's research program aimed at improving global landfill CH4 emissions estimates.) To evaluate the effects of climate on CH4 production and recovery, the six sites represented a variety of moisture and temperature patterns (i.e., hot and wet, cool and wet, hot and dry). Landfill gas was tested at each landfill to evaluate the quality of the gas recovery data available at each. The testing included assessing the adequacy of on-site instrumentation and scanning the landfill surfaces for organic vapors that would indicate emissions of CH4. In addition, information on waste composition and landfill characteristics was sought for each landfill. Except for flow measurements, the test procedures selected were well suited to the types of gas recovery installations encountered at the landfills visited. Based on comparisons between EPA Reference Method 3C and instrument analyses of the landfill gas compositions, all on-site analysis instruments appeared to be operating with reasonable accuracy.

  20. Fungal degradation of coal as a pretreatment for methane production

    USGS Publications Warehouse

    Haider, Rizwan; Ghauri, Muhammad A.; SanFilipo, John R.; Jones, Elizabeth J.; Orem, William H.; Tatu, Calin A.; Akhtar, Kalsoom; Akhtar, Nasrin

    2013-01-01

    Coal conversion technologies can help in taking advantage of huge low rank coal reserves by converting those into alternative fuels like methane. In this regard, fungal degradation of coal can serve as a pretreatment step in order to make coal a suitable substrate for biological beneficiation. A fungal isolate MW1, identified as Penicillium chrysogenum on the basis of fungal ITS sequences, was isolated from a core sample of coal, taken from a well drilled by the US. Geological Survey in Montana, USA. The low rank coal samples, from major coal fields of Pakistan, were treated with MW1 for 7 days in the presence of 0.1% ammonium sulfate as nitrogen source and 0.1% glucose as a supplemental carbon source. Liquid extracts were analyzed through Excitation–Emission Matrix Spectroscopy (EEMS) to obtain qualitative estimates of solubilized coal; these analyses indicated the release of complex organic functionalities. In addition, GC–MS analysis of these extracts confirmed the presence of single ring aromatics, polyaromatic hydrocarbons (PAHs), aromatic nitrogen compounds and aliphatics. Subsequently, the released organics were subjected to a bioassay for the generation of methane which conferred the potential application of fungal degradation as pretreatment. Additionally, fungal-mediated degradation was also prospected for extracting some other chemical entities like humic acids from brown coals with high huminite content especially from Thar, the largest lignite reserve of Pakistan.

  1. Daily methane production pattern of Welsh ponies fed a roughage diet with or without a cereal mixture.

    PubMed

    Dansen, O; Pellikaan, W F; Hendriks, W H; Dijkstra, J; Jacobs, M P T; Everts, H; van Doorn, D A

    2015-04-01

    Methane production from Welsh ponies fed 2 isoenergetic diets (NE basis) at maintenance was studied in a crossover design with 4 mature geldings (230 ± 10.5 kg BW, mean ± SE). Treatments included a roughage-only (R) diet (5.1 kg DM/d) or a roughage plus cereal mix (RC) diet (2.5 kg DM hay/d plus 1.1 kg DM cereal mix/d). For both diets, the same grass hay was used (898 g DM/kg and 4.5 MJ NE/kg DM) and a commercial cereal mix was used in the RC diet (890 g DM/kg and 9.6 MJ NE/kg DM). Ponies were housed in pairs in climate-controlled respiration chambers. Carbon dioxide production (CO2), oxygen (O2) consumption, and CH4 production were measured over 3 consecutive days. Heat production (HP) rates were calculated from gaseous exchange. Feces were collected quantitatively to determine dietary nutrient digestibility. Dry matter intake differed between diets (P < 0.0001), but NE intake was equal for both diets (22.3 ± 0.07 MJ NEm/d). Organic matter digestibility was lower (P = 0.006) for the R diet (47.2%) than the RC diet (55.6%). Methane production was higher (P = 0.014) on the R diet (29.8 L · pony(-1) · d(-1)) compared to the RC diet (23.2 L · pony(-1) · d(-1)). Methane production expressed in liters/kilogram metabolic body weight (BW0.75) per day tended (P = 0.064) to decrease with 21% for the RC group compared with the R group. Heat production, O2 consumption, and CO2 production were not affected by diet. Diurnal patterns of CH4 production and HP were similar for both diets. Methane production increased slightly (P < 0.652) after feeding and was numerically lower for the RC diet for all time points throughout the day. For both diets, HP was higher after feeding than before feeding and decreased again within approximately 3 h after feeding. Isoenergetic replacement of roughage by a cereal mix reduces CH4 production in ponies. No clear diurnal pattern in CH4 emission can be discerned in ponies fed at maintenance.

  2. Effect of pre-treatments on hydrolysis and methane production potentials of by-products from meat-processing industry.

    PubMed

    Luste, Sami; Luostarinen, Sari; Sillanpää, Mika

    2009-05-15

    In this study, the effect of five pre-treatments (thermal, ultrasound, acid, base and bacterial product) on hydrolysis and methane production potentials of four by-products from meat-processing industry was studied. The bacterial product Liquid Certizyme 5 increased soluble chemical oxygen demand (CODsol) of digestive tract content and drumsieve waste the most as compared to untreated material (62 and 96%, respectively), while ultrasound was the most effective to increase CODsol with dissolved air flotation (DAF) sludge (88%) and grease trap sludge (188%). In batch experiments, thermal treatment increased methane production potential of drumsieve waste, acid of grease trap sludge and all pre-treatments of DAF sludge. However, with all other pre-treatments, methane production potential was decreased compared to untreated materials, apparently due to inhibition by hydrolysis products and/or possible re-crystallization of some compounds. Methane production potentials from the untreated materials were as follows: digestive tract content 400+/-50m(3)CH(4)/t volatile solids (VS)(added), drumsieve waste 230+/-20m(3)CH(4)/tVS(added), DAF sludge 340+/-17m(3)CH(4)/tVS(added) and grease trap sludge 900+/-44m(3)CH(4)/tVS(added).

  3. Effects of lactone, ketone, and phenolic compounds on methane production and metabolic intermediates during anaerobic digestion.

    PubMed

    Wikandari, Rachma; Sari, Noor Kartika; A'yun, Qurrotul; Millati, Ria; Cahyanto, Muhammad Nur; Niklasson, Claes; Taherzadeh, Mohammad J

    2015-02-01

    Fruit waste is a potential feedstock for biogas production. However, the presence of fruit flavors that have antimicrobial activity is a challenge for biogas production. Lactones, ketones, and phenolic compounds are among the several groups of fruit flavors that are present in many fruits. This work aimed to investigate the effects of two lactones, i.e., γ-hexalactone and γ-decalactone; two ketones, i.e., furaneol and mesifurane; and two phenolic compounds, i.e., quercetin and epicatechin on anaerobic digestion with a focus on methane production, biogas composition, and metabolic intermediates. Anaerobic digestion was performed in a batch glass digester incubated at 55 °C for 30 days. The flavor compounds were added at concentrations of 0.05, 0.5, and 5 g/L. The results show that the addition of γ-decalactone, quercetin, and epicathechin in the range of 0.5-5 g/L reduced the methane production by 50 % (MIC50). Methane content was reduced by 90 % with the addition of 5 g/L of γ-decalactone, quercetin, and epicathechin. Accumulation of acetic acid, together with an increase in carbon dioxide production, was observed. On the contrary, γ-hexalactone, furaneol, and mesifurane increased the methane production by 83-132 % at a concentration of 5 g/L.

  4. Sequential parametric optimization of methane production from different sources of forest raw material.

    PubMed

    Matsakas, Leonidas; Rova, Ulrika; Christakopoulos, Paul

    2015-01-01

    The increase in environmental problems and the shortage of fossil fuels have led to the need for action in the development of sustainable and renewable fuels. Methane is produced through anaerobic digestion of organic materials and is a biofuel with very promising characteristics. The success in using methane as a biofuel has resulted in the operation of several commercial-scale plants and the need to exploit novel materials to be used. Forest biomass can serve as an excellent candidate for use as raw material for anaerobic digestion. During this work, both hardwood and softwood species-which are representative of the forests of Sweden-were used for the production of methane. Initially, when untreated forest materials were used for the anaerobic digestion, the yields obtained were very low, even with the addition of enzymes, reaching a maximum of only 40 mL CH4/g VS when birch was used. When hydrothermal pretreatment was applied, the enzymatic digestibility improved up to 6.7 times relative to that without pretreatment, and the yield of methane reached up to 254 mL CH4/g VS. Then the effect of chemical/enzymatic detoxification was examined, where laccase treatment improved the methane yield from the more harshly pretreated materials while it had no effect on the more mildly pretreated material. Finally, addition of cellulolytic enzymes during the digestion improved the methane yields from spruce and pine, whereas for birch separate saccharification was more beneficial. To achieve high yields in spruce 30 filter paper units (FPU)/g was necessary, whereas 15 FPU/g was enough when pine and birch were used. During this work, the highest methane yields obtained from pine and birch were 179.9 mL CH4/g VS and 304.8 mL CH4/g VS, respectively. For mildly and severely pretreated spruce, the methane yields reached 259.4 mL CH4/g VS and 276.3 mL CH4/g VS, respectively. We have shown that forest material can serve as raw material for efficient production of methane. The

  5. Sequential parametric optimization of methane production from different sources of forest raw material

    PubMed Central

    Matsakas, Leonidas; Rova, Ulrika; Christakopoulos, Paul

    2015-01-01

    The increase in environmental problems and the shortage of fossil fuels have led to the need for action in the development of sustainable and renewable fuels. Methane is produced through anaerobic digestion of organic materials and is a biofuel with very promising characteristics. The success in using methane as a biofuel has resulted in the operation of several commercial-scale plants and the need to exploit novel materials to be used. Forest biomass can serve as an excellent candidate for use as raw material for anaerobic digestion. During this work, both hardwood and softwood species—which are representative of the forests of Sweden—were used for the production of methane. Initially, when untreated forest materials were used for the anaerobic digestion, the yields obtained were very low, even with the addition of enzymes, reaching a maximum of only 40 mL CH4/g VS when birch was used. When hydrothermal pretreatment was applied, the enzymatic digestibility improved up to 6.7 times relative to that without pretreatment, and the yield of methane reached up to 254 mL CH4/g VS. Then the effect of chemical/enzymatic detoxification was examined, where laccase treatment improved the methane yield from the more harshly pretreated materials while it had no effect on the more mildly pretreated material. Finally, addition of cellulolytic enzymes during the digestion improved the methane yields from spruce and pine, whereas for birch separate saccharification was more beneficial. To achieve high yields in spruce 30 filter paper units (FPU)/g was necessary, whereas 15 FPU/g was enough when pine and birch were used. During this work, the highest methane yields obtained from pine and birch were 179.9 mL CH4/g VS and 304.8 mL CH4/g VS, respectively. For mildly and severely pretreated spruce, the methane yields reached 259.4 mL CH4/g VS and 276.3 mL CH4/g VS, respectively. We have shown that forest material can serve as raw material for efficient production of methane. The

  6. Sequential parametric optimization of methane production from different sources of forest raw material.

    PubMed

    Matsakas, Leonidas; Rova, Ulrika; Christakopoulos, Paul

    2015-01-01

    The increase in environmental problems and the shortage of fossil fuels have led to the need for action in the development of sustainable and renewable fuels. Methane is produced through anaerobic digestion of organic materials and is a biofuel with very promising characteristics. The success in using methane as a biofuel has resulted in the operation of several commercial-scale plants and the need to exploit novel materials to be used. Forest biomass can serve as an excellent candidate for use as raw material for anaerobic digestion. During this work, both hardwood and softwood species-which are representative of the forests of Sweden-were used for the production of methane. Initially, when untreated forest materials were used for the anaerobic digestion, the yields obtained were very low, even with the addition of enzymes, reaching a maximum of only 40 mL CH4/g VS when birch was used. When hydrothermal pretreatment was applied, the enzymatic digestibility improved up to 6.7 times relative to that without pretreatment, and the yield of methane reached up to 254 mL CH4/g VS. Then the effect of chemical/enzymatic detoxification was examined, where laccase treatment improved the methane yield from the more harshly pretreated materials while it had no effect on the more mildly pretreated material. Finally, addition of cellulolytic enzymes during the digestion improved the methane yields from spruce and pine, whereas for birch separate saccharification was more beneficial. To achieve high yields in spruce 30 filter paper units (FPU)/g was necessary, whereas 15 FPU/g was enough when pine and birch were used. During this work, the highest methane yields obtained from pine and birch were 179.9 mL CH4/g VS and 304.8 mL CH4/g VS, respectively. For mildly and severely pretreated spruce, the methane yields reached 259.4 mL CH4/g VS and 276.3 mL CH4/g VS, respectively. We have shown that forest material can serve as raw material for efficient production of methane. The

  7. Methane production from hydrothermal transformation of siderite to magnetite

    NASA Astrophysics Data System (ADS)

    Muratbayev, T.; Schroeder, C.; Kappler, A.; Haderlein, S.

    2012-12-01

    Mumma et al. (2009) observed a methane (CH4) plume above the Nili Fossae region on Mars, a region rich in carbonate minerals. Morris et al. (2010) suggest this to be (Mg,Fe)-carbonate. McCollom (2003) demonstrated that the hydrothermal transformation of siderite (FeCO3), to magnetite (Fe3O4) produces CH4. This reaction may thus contribute to the formation of methane on Mars, but is also relevant in the context of such diverse topics as diagenesis of Precambrian banded iron formations, sources of prebiotic organic compounds on early Earth, oil and gas accumulations in Earth's crust, or geological sequestration and storage of CO2. However, neither the thermodynamics of this reaction nor the conditions of maximum CH4 yield have been investigated to date. In order to estimate how pressure and temperature influence CH4 yield we derived a thermodynamic model with a numerical solution implemented in MATLAB. We used the equation 12FeCO3 + 2H2O → 4Fe3O4 + 11CO2 + CH4 (Frost et al. 2007) and thermodynamic calculations of the stability field of FeCO3 by Thoms-Keprta et al. (2009) as a template. At 1 bar pressure, the Gibbs energy turns negative (favorable reaction conditions) at a temperature of 200°C. Increasing pressure to 1000 bar changes that temperature to 250°C. An increase in temperature has a larger effect on shifting the Gibbs energy to more negative values. We therefore chose ambient pressure and temperatures of 300°C, 400°C, and 500°C as experimental conditions. We added 100 mg of either natural or synthetic FeCO3 and 25 μL of MilliQ water into long tip Pasteur pipettes inside an anoxic glove box to avoid contamination by free oxygen. The Pasteur pipettes were sealed with butyl stoppers and then melted shut outside of the glove box. The glass capsules were heated for 48 hours in a muffle furnace at 300°C, 400 0C or 5000C. The composition of the gas phase and the formation of methane in particular were analyzed using gas chromatography with a flame

  8. Microalgae to biofuels: life cycle impacts of methane production of anaerobically digested lipid extracted algae.

    PubMed

    Quinn, Jason C; Hanif, Asma; Sharvelle, Sybil; Bradley, Thomas H

    2014-11-01

    This study presents experimental measurements of the biochemical methane production for whole and lipid extracted Nannochloropsis salina. Results show whole microalgae produced 430 cm(3)-CH4 g-volatile solids(-1) (g-VS) (σ=60), 3 times more methane than was produced by the LEA, 140 cm(3)-CH4 g-VS(-1) (σ=30). Results illustrate current anaerobic modeling efforts in microalgae to biofuel assessments are not reflecting the impact of lipid removal. On a systems level, the overestimation of methane production is shown to positively skew the environmental impact of the microalgae to biofuels process. Discussion focuses on a comparison results to those of previous anaerobic digestion studies and quantifies the corresponding change in greenhouse gas emissions of the microalgae to biofuels process based on results from this study.

  9. Enhancing methane production during the anaerobic digestion of crude glycerol using Japanese cedar charcoal.

    PubMed

    Watanabe, Ryoya; Tada, Chika; Baba, Yasunori; Fukuda, Yasuhiro; Nakai, Yutaka

    2013-12-01

    The use of Japanese cedar charcoal as a support material for microbial attachment could enhance methane production during anaerobic digestion of crude glycerol and wastewater sludge. Methane yield from a charcoal-containing reactor was approximately 1.6 times higher than that from a reactor without charcoal, and methane production was stable over 50 days when the loading rate was 2.17 g chemical oxygen demand (COD) L(-1) d(-1). Examination of microbial communities on the charcoal revealed the presence of Uncultured Desulfovibrio sp. clone V29 and Pelobacter seleniigenes, known as 1,3-propandiol degraders. Hydrogenotrophic methanogens were also detected in the archaeal community on the charcoal. Methanosaeta, Methanoregula, and Methanocellus were present in the charcoal-containing reactor. The concentration of propionate in the charcoal-containing reactor was also lower than that in the control reactor. These results suggest that propionate degradation was enhanced by the consumption of hydrogen by hydrogenotrophic methanogens on the charcoal.

  10. Methane production potentials, pathways, and communities of methanogens in vertical sediment profiles of river Sitka

    PubMed Central

    Mach, Václav; Blaser, Martin B.; Claus, Peter; Chaudhary, Prem P.; Rulík, Martin

    2015-01-01

    Biological methanogenesis is linked to permanent water logged systems, e.g., rice field soils or lake sediments. In these systems the methanogenic community as well as the pathway of methane formation are well-described. By contrast, the methanogenic potential of river sediments is so far not well-investigated. Therefore, we analyzed (a) the methanogenic potential (incubation experiments), (b) the pathway of methane production (stable carbon isotopes and inhibitor studies), and (c) the methanogenic community composition (terminal restriction length polymorphism of mcrA) in depth profiles of sediment cores of River Sitka, Czech Republic. We found two depth-related distinct maxima for the methanogenic potentials (a) The pathway of methane production was dominated by hydrogenotrophic methanogenesis (b) The methanogenic community composition was similar in all depth layers (c) The main TRFs were representative for Methanosarcina, Methanosaeta, Methanobacterium, and Methanomicrobium species. The isotopic signals of acetate indicated a relative high contribution of chemolithotrophic acetogenesis to the acetate pool. PMID:26052322

  11. Methane production potentials, pathways, and communities of methanogens in vertical sediment profiles of river Sitka.

    PubMed

    Mach, Václav; Blaser, Martin B; Claus, Peter; Chaudhary, Prem P; Rulík, Martin

    2015-01-01

    Biological methanogenesis is linked to permanent water logged systems, e.g., rice field soils or lake sediments. In these systems the methanogenic community as well as the pathway of methane formation are well-described. By contrast, the methanogenic potential of river sediments is so far not well-investigated. Therefore, we analyzed (a) the methanogenic potential (incubation experiments), (b) the pathway of methane production (stable carbon isotopes and inhibitor studies), and (c) the methanogenic community composition (terminal restriction length polymorphism of mcrA) in depth profiles of sediment cores of River Sitka, Czech Republic. We found two depth-related distinct maxima for the methanogenic potentials (a) The pathway of methane production was dominated by hydrogenotrophic methanogenesis (b) The methanogenic community composition was similar in all depth layers (c) The main TRFs were representative for Methanosarcina, Methanosaeta, Methanobacterium, and Methanomicrobium species. The isotopic signals of acetate indicated a relative high contribution of chemolithotrophic acetogenesis to the acetate pool.

  12. Effects of dietary starch content and rate of fermentation on methane production in lactating dairy cows.

    PubMed

    Hatew, B; Podesta, S C; Van Laar, H; Pellikaan, W F; Ellis, J L; Dijkstra, J; Bannink, A

    2015-01-01

    The objective of this study was to investigate the effects of starch varying in rate of fermentation and level of inclusion in the diet in exchange for fiber on methane (CH4) production of dairy cows. Forty Holstein-Friesian lactating dairy cows of which 16 were rumen cannulated were grouped in 10 blocks of 4 cows each. Cows received diets consisting of 60% grass silage and 40% concentrate (dry matter basis). Cows within block were randomly assigned to 1 of 4 different diets composed of concentrates that varied in rate of starch fermentation [slowly (S) vs. rapidly (R) rumen fermentable; native vs. gelatinized corn grain] and level of starch (low vs. high; 270 vs. 530g/kg of concentrate dry matter). Results of rumen in situ incubations confirmed that the fractional rate of degradation of starch was higher for R than S starch. Effective rumen degradability of organic matter was higher for high than low starch and also higher for R than S starch. Increased level of starch, but not starch fermentability, decreased dry matter intake and daily CH4 production. Milk yield (mean 24.0±1.02kg/d), milk fat content (mean 5.05±0.16%), and milk protein content (mean 3.64±0.05%) did not differ between diets. Methane expressed per kilogram of fat- and protein-corrected milk, per kilogram of dry matter intake, or as a fraction of gross energy intake did not differ between diets. Methane expressed per kilogram of estimated rumen-fermentable organic matter (eRFOM) was higher for S than R starch-based diets (47.4 vs. 42.6g/kg of eRFOM) and for low than high starch-based diets (46.9 vs. 43.1g/kg of eRFOM). Apparent total-tract digestibility of neutral detergent fiber and crude protein were not affected by diets, but starch digestibility was higher for diets based on R starch (97.2%) compared with S starch (95.5%). Both total volatile fatty acid concentration (109.2 vs. 97.5mM) and propionate proportion (16.5 vs. 15.8mol/100mol) were higher for R starch- compared with S starch

  13. Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor

    PubMed Central

    2012-01-01

    Background A modified laboratory-scale upflow anaerobic sludge blanket (UASB) reactor was used to obtain methane by treating hydrous ethanol vinasse. Vinasses or stillage are waste materials with high organic loads, and a complex composition resulting from the process of alcohol distillation. They must initially be treated with anaerobic processes due to their high organic loads. Vinasses can be considered multipurpose waste for energy recovery and once treated they can be used in agriculture without the risk of polluting soil, underground water or crops. In this sense, treatment of vinasse combines the elimination of organic waste with the formation of methane. Biogas is considered as a promising renewable energy source. The aim of this study was to determine the optimum organic loading rate for operating a modified UASB reactor to treat vinasse generated in the production of hydrous ethanol from sugar cane molasses. Results The study showed that chemical oxygen demand (COD) removal efficiency was 69% at an optimum organic loading rate (OLR) of 17.05 kg COD/m3-day, achieving a methane yield of 0.263 m3/kg CODadded and a biogas methane content of 84%. During this stage, effluent characterization presented lower values than the vinasse, except for potassium, sulfide and ammonia nitrogen. On the other hand, primers used to amplify the 16S-rDNA genes for the domains Archaea and Bacteria showed the presence of microorganisms which favor methane production at the optimum organic loading rate. Conclusions The modified UASB reactor proposed in this study provided a successful treatment of the vinasse obtained from hydrous ethanol production. Methanogen groups (Methanobacteriales and Methanosarcinales) detected by PCR during operational optimum OLR of the modified UASB reactor, favored methane production. PMID:23167984

  14. Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion.

    PubMed

    Khan, M A; Ngo, H H; Guo, W S; Liu, Y; Nghiem, L D; Hai, F I; Deng, L J; Wang, J; Wu, Y

    2016-11-01

    The anaerobic digestion process has been primarily utilized for methane containing biogas production over the past few years. However, the digestion process could also be optimized for producing volatile fatty acids (VFAs) and biohydrogen. This is the first review article that combines the optimization approaches for all three possible products from the anaerobic digestion. In this review study, the types and configurations of the bioreactor are discussed for each type of product. This is followed by a review on optimization of common process parameters (e.g. temperature, pH, retention time and organic loading rate) separately for the production of VFA, biohydrogen and methane. This review also includes additional parameters, treatment methods or special additives that wield a significant and positive effect on production rate and these products' yield.

  15. Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion.

    PubMed

    Khan, M A; Ngo, H H; Guo, W S; Liu, Y; Nghiem, L D; Hai, F I; Deng, L J; Wang, J; Wu, Y

    2016-11-01

    The anaerobic digestion process has been primarily utilized for methane containing biogas production over the past few years. However, the digestion process could also be optimized for producing volatile fatty acids (VFAs) and biohydrogen. This is the first review article that combines the optimization approaches for all three possible products from the anaerobic digestion. In this review study, the types and configurations of the bioreactor are discussed for each type of product. This is followed by a review on optimization of common process parameters (e.g. temperature, pH, retention time and organic loading rate) separately for the production of VFA, biohydrogen and methane. This review also includes additional parameters, treatment methods or special additives that wield a significant and positive effect on production rate and these products' yield. PMID:27570139

  16. Relation between methanogenic archaea and methane production potential in selected natural wetland ecosystems across China

    NASA Astrophysics Data System (ADS)

    Liu, D. Y.; Ding, W. X.; Jia, Z. J.; Cai, Z. C.

    2011-02-01

    Methane (CH4) emissions from natural wetland ecosystems exhibit large spatial variability at regional, national, and global levels related to temperature, water table, plant type and methanogenic archaea etc. To understand the underlying factors that induce spatial differences in CH4 emissions, and the relationship between the population of methanogenic archaea and CH4 production potential in natural wetlands around China, we measured the CH4 production potential and the abundance of methanogenic archaea in vertical soil profiles sampled from the Poyang wetland in the subtropical zone, the Hongze wetland in the warm temperate zone, the Sanjiang marsh in the cold temperate zone, and the Ruoergai peatland in the Qinghai-Tibetan Plateau in the alpine climate zone. The top soil layer had the highest population of methanogens (1.07-8.29 × 109 cells g-1 soil) in all wetlands except the Ruoergai peatland and exhibited the maximum CH4 production potential measured at the mean in situ summer temperature. There is a significant logarithmic correlation between the abundance of methanogenic archaea and the soil organic carbon (R2 = 0.72, P < 0.001, n = 13) and between the abundance of methanogenic archaea and the total nitrogen concentrations (R2 = 0.76, P < 0.001, n = 13) in wetland soils. This indicates that the amount of soil organic carbon may affect the population of methanogens in wetland ecosystems. While the CH4 production potential is not significantly related to methanogen population (R2 = 0.01, P > 0.05, n = 13), it is related to the dissolved organic carbon concentration (R2 = 0.31, P = 0.05, n = 13). This suggests that the methanogen population might be not an effective index for predicting the CH4 production in wetland ecosystems. The CH4 production rate of the top soil layer increases with increasing latitude, from 273.64 μg CH4 kg-1 soil d-1 in the Poyang wetland to 664.59 μg CH4 kg-1 soil d-1 in the Carex lasiocarpa marsh of the Sanjiang Plain. We conclude

  17. Monitoring the Methane Hydrate Dissociation by the Offshore Methane Hydrate Production Tests using Multi-component Seismic

    NASA Astrophysics Data System (ADS)

    Asakawa, Eiichi; Hayashi, Tsutomu; Tsukahara, Hitoshi; Takahashi, Hiroo; Saeki, Tatsuo

    2013-04-01

    We developed a new OBC (Ocean Bottom Cable), named as 'DSS' (Deep-sea Seismic System). The sensor has 3-component accelerometer and a hydrophone applicable for four-component (4C) seismic survey. Using the DSS, the methane hydrate dissociation zone will be tried to be monitored at the water depth of around 1000m during JOGMEC offshore methane hydrate production test in early 2013. Before the DSS, we had developed the RSCS (Real-time Seismic Cable System) with 3-component gimbaled geophones, and carried out a reflection seismic survey in the Nankai Trough in 2006. Referring this successful survey, we improved the RSCS to the DSS. The receiver size is reduced to 2/3 and the receiver case has a protective metallic exterior and the cable is protected with steel-screened armouring, allowing burial usage using ROV for sub-seabed deployment at the water depth up to 2000m. It will realize a unique survey style that leaves the system on the seabed between pre-test baseline survey and post-test repeated surveys, which might be up to 6 months. The fixed location of the receiver is very important for time-lapse monitoring survey. The DSS has totally 36 sensors and the sensor spacing is 26.5m. The total length is about 1km. We carried out the pre-test baseline survey between off Atsumi and Shima-peninsula in August, 2012.We located the DSS close to the production test well. The nearest sensor is 63m apart from the well. A newly developed real-time 3-D laying simulation system consisting of ADCP (Acoustic Doppler Current Profiler), transponders attached to the DSS, and real-time 3-D plotting system for transponder locations have been adopted. After we laid the cable, we buried the DSS using ROV (Remotely Operated Vehicle). The baseline survey included 2D/3D seismic surveys with shooting vessel and cable laying/observation ship. The resultant 2D section and 3D volume shows the good quality to delineate the methane hydrate concentrated zone. After the baseline survey, we have left

  18. Quantification of Methane and VOC Emissions from Natural Gas Production in Two Basins with High Ozone Events

    NASA Astrophysics Data System (ADS)

    Edie, R.; Robertson, A.; Snare, D.; Soltis, J.; Field, R. A.; Murphy, S. M.

    2015-12-01

    Since 2005, the Uintah Basin of Utah and the Upper Green River Basin of Wyoming frequently exceeded the EPA 8-hour allowable ozone level of 75 ppb, spurring interest in volatile organic compounds (VOCs) emitted during oil and gas production. Debate continues over which stage of production (drilling, flowback, normal production, transmission, etc.) is the most prevalent VOC source. In this study, we quantify emissions from normal production on well pads by using the EPA-developed Other Test Method 33a. This methodology combines ground-based measurements of fugitive emissions with 3-D wind data to calculate the methane and VOC emission fluxes from a point source. VOC fluxes are traditionally estimated by gathering a canister of air during a methane flux measurement. The methane:VOC ratio of this canister is determined at a later time in the laboratory, and applied to the known methane flux. The University of Wyoming Mobile Laboratory platform is equipped with a Picarro methane analyzer and an Ionicon Proton Transfer Reaction-Time of Flight-Mass Spectrometer, which provide real-time methane and VOC data for each well pad. This independent measurement of methane and VOCs in situ reveals multiple emission sources on one well pad, with varying methane:VOC ratios. Well pad emission estimates of methane, benzene, toluene and xylene for the two basins will be presented. The different emission source VOC profiles and the limitations of real-time and traditional VOC measurement methods will also be discussed.

  19. Methane production by fermentation cultures acclimated to waste from cattle fed monensin, lasalocid, salinomycin, or avoparcin

    SciTech Connect

    Varel, V.H.; Hashimoto, A.G.

    1982-12-01

    The ability of microorganisms to ferment waste from cattle fed monensin, lasalocid, or salinomycin to methane was determined. Continuously mixed anaerobic fermentors with 3-liter working volumes at 55 degrees C were used; fermentors were fed once per day. Initially, all fermentors were fed waste without antibiotics at 6% volatile solids (VSs, organic matter) and a 20-day retention time (RT) for 60 days. Waste from animals fed monensin, lasalocid, or salinomycin at 29, 20, and 16.5 mg per kg of feed, respectively, was added to duplicate fermentors at the above VSs, and RT. Avoparcin (5 to 45 mg/liter) was not fed to animals but was added directly to duplicate fermentors. Lasalocid and salinomycin had minimal effects of the rate of methane production at RTs of 20 days and later at 6.5 days. Avoparcin caused an increaes in organic acids from 599 to 1,672 mg/liter (as acetate) after 4 weeks, but by 6 weeks, acid concentrations declined and the rate of methane production was similar to controls at 6.5 day RT. The monensin fermentors stopped producing methane 3 weeks after antibiotic addition. However, after a 6-month acclimation period, the microorganisms apparently adapted, and methane production rates of 1.65 and 2.51 liters per liter of fermentor volume per day were obtained with 6% VSs, and RTs of 10 and 6.5 days, respectively. All fermentors that were fed waste containing antibiotics had lower pH values and ammonia and alkalinity concentrations, suggesting less buffering capacity and protein catabolism than in controls. Acclimation results obtained with fermentors at 35 degrees C were similar to those for fermentors at 55 degrees C. These studies indicate that waste from cattle fed these selected growth-promoting antibiotics can be thermophilically fermented to methane at RTs of 6.5 days or longer and VS concentrations of 6%, at rates comparable to waste without antibiotics. (Refs. 21).

  20. Methane emissions from drill-seeded, delayed-flood rice production on a silt-loam soil in arkansas.

    PubMed

    Rogers, Christopher W; Brye, Kristofor R; Norman, Richard J; Gbur, Edward E; Mattice, John D; Parkin, Timothy B; Roberts, Trenton L

    2013-07-01

    Rice ( L.) production is unique among staple food crops because the majority of the growing season typically occurs under flooded-soil conditions. Flooding the soil leads to anaerobic conditions, which are a precursor to methane (CH) production. However, no known research has investigated CH emissions from the drill-seeded, delayed-flood rice production system common in Arkansas, the leading rice-producing state in the United States. Therefore, research was conducted in 2011 to determine the effects of vegetation (rice and bare soil), chamber location (in- and between-rice rows), and nitrogen (N) fertilization (optimal and no N) on CH emissions from a silt-loam soil. Methane fluxes measured weekly from flooding until flood release were affected by vegetation, chamber location, and sample date ( < 0.05). In-row CH fluxes were <0.7 mg CH-C m h until 20 d after flooding (DAF) and <1.0 mg CH-C m h from between-row and bare soil until 41 DAF and were unaffected by fertilization over time. The largest weekly measured CH flux (31.9 mg CH-C m h) was observed from in-row rice at 41 DAF. Post-flood-release CH fluxes were affected by vegetation, fertilization, chamber placement, and sample date ( < 0.05) and accounted for approximately 3 to 7% of the season-long CH emissions. Methane emissions averaged 195 kg CH-C ha per growing season and were unaffected by fertilization. Direct measurement of CH emissions from drill-seeded, delayed-flood rice grown on a silt-loam soil will improve the accuracy of assessments of the carbon footprint and long-term sustainability of rice.

  1. Methane emissions from drill-seeded, delayed-flood rice production on a silt-loam soil in arkansas.

    PubMed

    Rogers, Christopher W; Brye, Kristofor R; Norman, Richard J; Gbur, Edward E; Mattice, John D; Parkin, Timothy B; Roberts, Trenton L

    2013-07-01

    Rice ( L.) production is unique among staple food crops because the majority of the growing season typically occurs under flooded-soil conditions. Flooding the soil leads to anaerobic conditions, which are a precursor to methane (CH) production. However, no known research has investigated CH emissions from the drill-seeded, delayed-flood rice production system common in Arkansas, the leading rice-producing state in the United States. Therefore, research was conducted in 2011 to determine the effects of vegetation (rice and bare soil), chamber location (in- and between-rice rows), and nitrogen (N) fertilization (optimal and no N) on CH emissions from a silt-loam soil. Methane fluxes measured weekly from flooding until flood release were affected by vegetation, chamber location, and sample date ( < 0.05). In-row CH fluxes were <0.7 mg CH-C m h until 20 d after flooding (DAF) and <1.0 mg CH-C m h from between-row and bare soil until 41 DAF and were unaffected by fertilization over time. The largest weekly measured CH flux (31.9 mg CH-C m h) was observed from in-row rice at 41 DAF. Post-flood-release CH fluxes were affected by vegetation, fertilization, chamber placement, and sample date ( < 0.05) and accounted for approximately 3 to 7% of the season-long CH emissions. Methane emissions averaged 195 kg CH-C ha per growing season and were unaffected by fertilization. Direct measurement of CH emissions from drill-seeded, delayed-flood rice grown on a silt-loam soil will improve the accuracy of assessments of the carbon footprint and long-term sustainability of rice. PMID:24216357

  2. Nanostructural control of methane release in kerogen and its implications to wellbore production decline

    NASA Astrophysics Data System (ADS)

    Ho, Tuan Anh; Criscenti, Louise J.; Wang, Yifeng

    2016-06-01

    Despite massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix-a limiting step in shale gas extraction. Using molecular simulations, we here show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30-47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3-35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release.

  3. Assessment of Methane Emissions from Oil and Gas Production Pads using Mobile Measurements

    EPA Science Inventory

    Journal Article Abstract --- "A mobile source inspection approach called OTM 33A was used to quantify short-term methane emission rates from 218 oil and gas production pads in Texas, Colorado, and Wyoming from 2010 to 2013. The emission rates were log-normally distributed with ...

  4. Nanostructural control of methane release in kerogen and its implications to wellbore production decline

    DOE PAGES

    Ho, Tuan Anh; Criscenti, Louise J.; Wang, Yifeng

    2016-06-16

    In spite of the massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix–a limiting step in shale gas extraction. Here we show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30–47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases, and we usemore » molecular simulations to demonstrate it. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3–35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Finally, our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release.« less

  5. Nanostructural control of methane release in kerogen and its implications to wellbore production decline

    PubMed Central

    Ho, Tuan Anh; Criscenti, Louise J.; Wang, Yifeng

    2016-01-01

    Despite massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix–a limiting step in shale gas extraction. Using molecular simulations, we here show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30–47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3–35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release. PMID:27306967

  6. Nanostructural control of methane release in kerogen and its implications to wellbore production decline

    NASA Astrophysics Data System (ADS)

    Ho, Tuan Anh; Criscenti, Louise J.; Wang, Yifeng

    2016-06-01

    Despite massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix–a limiting step in shale gas extraction. Using molecular simulations, we here show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30–47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3–35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release.

  7. Estimating methane gas production in peat soils of the Florida Everglades using hydrogeophysical methods

    NASA Astrophysics Data System (ADS)

    Wright, William; Comas, Xavier

    2016-04-01

    The spatial and temporal variability in production and release of greenhouse gases (such as methane) in peat soils remains uncertain, particularly for low-latitude peatlands like the Everglades. Ground penetrating radar (GPR) is a hydrogeophysical tool that has been successfully used in the last decade to noninvasively investigate carbon dynamics in peat soils; however, application in subtropical systems is almost non-existent. This study is based on four field sites in the Florida Everglades, where changes in gas content within the soil are monitored using time-lapse GPR measurements and gas releases are monitored using gas traps. A weekly methane gas production rate is estimated using a mass balance approach, considering gas content estimated from GPR, gas release from gas traps and incorporating rates of diffusion, and methanotrophic consumption from previous studies. Resulting production rates range between 0.02 and 0.47 g CH4 m-2 d-1, falling within the range reported in literature. This study shows the potential of combining GPR with gas traps to monitor gas dynamics in peat soils of the Everglades and estimate methane gas production. We also show the enhanced ability of certain peat soils to store gas when compared to others, suggesting that physical properties control biogenic gas storage in the Everglades peat soils. Better understanding biogenic methane gas dynamics in peat soils has implications regarding the role of wetlands in the global carbon cycle, particularly under a climate change scenario.

  8. The presence of hydrogenotrophic methanogens in the inoculum improves methane gas production in microbial electrolysis cells.

    PubMed

    Siegert, Michael; Li, Xiu-Fen; Yates, Matthew D; Logan, Bruce E

    2014-01-01

    High current densities in microbial electrolysis cells (MECs) result from the predominance of various Geobacter species on the anode, but it is not known if archaeal communities similarly converge to one specific genus. MECs were examined here on the basis of maximum methane production and current density relative to the inoculum community structure. We used anaerobic digester (AD) sludge dominated by acetoclastic Methanosaeta, and an anaerobic bog sediment where hydrogenotrophic methanogens were detected. Inoculation using solids to medium ratio of 25% (w/v) resulted in the highest methane production rates (0.27 mL mL(-1) cm(-2), gas volume normalized by liquid volume and cathode projected area) and highest peak current densities (0.5 mA cm(-2)) for the bog sample. Methane production was independent of solid to medium ratio when AD sludge was used as the inoculum. 16S rRNA gene community analysis using pyrosequencing and quantitative PCR confirmed the convergence of Archaea to Methanobacterium and Methanobrevibacter, and of Bacteria to Geobacter, despite their absence in AD sludge. Combined with other studies, these findings suggest that Archaea of the hydrogenotrophic genera Methanobacterium and Methanobrevibacter are the most important microorganisms for methane production in MECs and that their presence in the inoculum improves the performance. PMID:25642216

  9. Nanostructural control of methane release in kerogen and its implications to wellbore production decline.

    PubMed

    Ho, Tuan Anh; Criscenti, Louise J; Wang, Yifeng

    2016-01-01

    Despite massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix-a limiting step in shale gas extraction. Using molecular simulations, we here show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30-47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3-35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release. PMID:27306967

  10. Methane Production and Consumption in Loess Soil at Different Slope Position

    PubMed Central

    Brzezińska, Małgorzata; Nosalewicz, Magdalena; Pasztelan, Marek; Włodarczyk, Teresa

    2012-01-01

    Methane (CH4) production and consumption and soil respiration in loess soils collected from summit (Top), back slope (Middle), and slope bottom (Bottom) positions were assessed in laboratory incubations. The CH4 production potential was determined under conditions which can occur in the field (relatively short-term flooding periods with initially ambient O2 concentrations), and the CH4 oxidation potential was estimated in wet soils enriched with CH4. None of the soils tested in this study emitted a significant amount of CH4. In fact, the Middle and Bottom soils, especially at the depth of 20–40 cm, were a consistent sink of methane. Soils collected at different slope positions significantly differed in their methanogenic, methanotrophic, and respiration activities. In comparison with the Top position (as reference soil), methane production and both CO2 production and O2 consumption under flooding were significantly stimulated in the soil from the Middle slope position (P < 0.001), while they were reduced in the Bottom soil (not significantly, by 6 to 57%). All upper soils (0–20 cm) completely oxidized the added methane (5 kPa) during 9–11 days of incubation. Soils collected from the 20–40 cm at the Middle and Bottom slope positions, however, consumed significantly more CH4 than the Top soil (P < 0.001). PMID:22629168

  11. Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors.

    PubMed

    Liu, Yiwen; Zhang, Yaobin; Ni, Bing-Jie

    2015-05-15

    Zero valent iron (ZVI) packed anaerobic granular sludge reactors have been developed for improved anaerobic wastewater treatment. In this work, a mathematical model is developed to describe the enhanced methane production and sulfate reduction in anaerobic granular sludge reactors with the addition of ZVI. The model is successfully calibrated and validated using long-term experimental data sets from two independent ZVI-enhanced anaerobic granular sludge reactors with different operational conditions. The model satisfactorily describes the chemical oxygen demand (COD) removal, sulfate reduction and methane production data from both systems. Results show ZVI directly promotes propionate degradation and methanogenesis to enhance methane production. Simultaneously, ZVI alleviates the inhibition of un-dissociated H2S on acetogens, methanogens and sulfate reducing bacteria (SRB) through buffering pH (Fe(0) + 2H(+) = Fe(2+) + H2) and iron sulfide precipitation, which improve the sulfate reduction capacity, especially under deterioration conditions. In addition, the enhancement of ZVI on methane production and sulfate reduction occurs mainly at relatively low COD/ [Formula: see text] ratio (e.g., 2-4.5) rather than high COD/ [Formula: see text] ratio (e.g., 16.7) compared to the reactor without ZVI addition. The model proposed in this work is expected to provide support for further development of a more efficient ZVI-based anaerobic granular system.

  12. Anaerobic digestion of poplar processing residues for methane production after alkaline treatment.

    PubMed

    Yao, Yiqing; He, Mulan; Ren, Yubing; Ma, Liying; Luo, Yang; Sheng, Hongmei; Xiang, Yun; Zhang, Hua; Li, Qien; An, Lizhe

    2013-04-01

    Poplar processing residues were used for methane production by anaerobic digestion after alkaline treatment and methane production was measured. The highest methane production of 271.9 L/kg volatile solid (VS) was obtained at conditions of 35 g/L and 5.0% NaOH, which was 113.8% higher than non-alkaline treated samples, and 28.9% higher than that of corn straw, which is the conventional anaerobic digestion material in China. The maximal enhancement of 275.5% obtained at conditions of 50 g/L and 7.0% NaOH. Degradation of cellulose, hemicellulose and lignin after treatment increased by 4.0-9.0%, 3.3-6.2%, and 11.1-20.5%, respectively, with NaOH dose ranged from 3.0% to 7.0%. Scanning electron microscopy (SEM), FTIR spectra and Crystallinity measurements showed that the lignocellulosic structures were disrupted by NaOH. The results indicate poplar processing residues might be an efficient substrate for methane production after alkaline treatment.

  13. Enhancement of methane production from co-digestion of chicken manure with agricultural wastes.

    PubMed

    Abouelenien, Fatma; Namba, Yuzaburo; Kosseva, Maria R; Nishio, Naomichi; Nakashimada, Yutaka

    2014-05-01

    The potential for methane production from semi-solid chicken manure (CM) and mixture of agricultural wastes (AWS) in a co-digestion process has been experimentally evaluated at thermophilic and mesophilic temperatures. To the best of author(')s knowledge, it is the first time that CM is co-digested with mixture of AWS consisting of coconut waste, cassava waste, and coffee grounds. Two types of anaerobic digestion processes (AD process) were used, process 1 (P1) using fresh CM (FCM) and process 2 (P2) using treated CM (TCM), ammonia stripped CM, were conducted. Methane production in P1 was increased by 93% and 50% compared to control (no AWS added) with maximum methane production of 502 and 506 mL g(-1)VS obtained at 55°C and 35°C, respectively. Additionally, 42% increase in methane production was observed with maximum volume of 695 mL g(-1)VS comparing P2 test with P2 control under 55°C. Ammonia accumulation was reduced by 39% and 32% in P1 and P2 tests.

  14. Short chain fatty acid production and glucose responses by methane producers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fermentation by gut microbiota has been linked to physiologic responses in the host. Methanogenic gut bacteria may remove more carbon from indigestible food matrices especially poorly digested carbohydrates. We sought to assess the effects of methane production on short chain fatty acid (SCFA) con...

  15. Effect of the chlortetracycline addition method on methane production from the anaerobic digestion of swine wastewater.

    PubMed

    Huang, Lu; Wen, Xin; Wang, Yan; Zou, Yongde; Ma, Baohua; Liao, Xindi; Liang, Juanboo; Wu, Yinbao

    2014-10-01

    Effects of antibiotic residues on methane production in anaerobic digestion are commonly studied using the following two antibiotic addition methods: (1) adding manure from animals that consume a diet containing antibiotics, and (2) adding antibiotic-free animal manure spiked with antibiotics. This study used chlortetracycline (CTC) as a model antibiotic to examine the effects of the antibiotic addition method on methane production in anaerobic digestion under two different swine wastewater concentrations (0.55 and 0.22mg CTC/g dry manure). The results showed that CTC degradation rate in which manure was directly added at 0.55mg CTC/g (HSPIKE treatment) was lower than the control values and the rest of the treatment groups. Methane production from the HSPIKE treatment was reduced (p<0.05) by 12% during the whole experimental period and 15% during the first 7days. The treatments had no significant effect on the pH and chemical oxygen demand value of the digesters, and the total nitrogen of the 0.55mg CTC/kg manure collected from mediated swine was significantly higher than the other values. Therefore, different methane production under different antibiotic addition methods might be explained by the microbial activity and the concentrations of antibiotic intermediate products and metabolites. Because the primary entry route of veterinary antibiotics into an anaerobic digester is by contaminated animal manure, the most appropriate method for studying antibiotic residue effects on methane production may be using manure from animals that are given a particular antibiotic, rather than adding the antibiotic directly to the anaerobic digester.

  16. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOEpatents

    Balachandran, Uthamalingam; Dusek, Joseph T.; Kleefisch, Mark S.; Kobylinski, Thadeus P.

    1996-01-01

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials.

  17. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOEpatents

    Balachandran, U.; Dusek, J.T.; Kleefisch, M.S.; Kobylinski, T.P.

    1996-11-12

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials. 7 figs.

  18. Measurements of soot production and thermal radiation from confined turbulent jet diffusion flames of methane

    SciTech Connect

    Brookes, S.J.; Moss, J.B.

    1999-01-01

    Turbulent methane/air jet diffusion flames at atmospheric and elevated pressure have been studied experimentally to provide data for coupled thermal radiation and soot production model development and validation. Although methane is only lightly sooting at atmospheric pressure, at elevated pressure the soot yield increases greatly. This allows the creation of a highly radiating flame, of moderate optical depth, within a laboratory scale rig. Spatially resolved flame properties needed for model validation have been measured at 1 and 3 atm. These measurements include detailed maps of mean mixture fraction, mean temperature, mean soot volume fraction, and mean and instantaneous spectrally resolved, path integrated radiation intensity.

  19. Methane production and small intestinal bacterial overgrowth in children living in a slum

    PubMed Central

    Mello, Carolina Santos; Tahan, Soraia; Melli, Lígia Cristina FL; Rodrigues, Mirian Silva do Carmo; de Mello, Ricardo Martin Pereira; Scaletsky, Isabel Cristina Affonso; de Morais, Mauro Batista

    2012-01-01

    AIM: To analyze small intestinal bacterial overgrowth in school-aged children and the relationship between hydrogen and methane production in breath tests. METHODS: This transversal study included 85 children residing in a slum and 43 children from a private school, all aged between 6 and 10 years, in Osasco, Brazil. For characterization of the groups, data regarding the socioeconomic status and basic housing sanitary conditions were collected. Anthropometric data was obtained in children from both groups. All children completed the hydrogen (H2) and methane (CH4) breath test in order to assess small intestinal bacterial overgrowth (SIBO). SIBO was diagnosed when there was an increase in H2 ≥ 20 ppm or CH4 ≥ 10 ppm with regard to the fasting value until 60 min after lactulose ingestion. RESULTS: Children from the slum group had worse living conditions and lower nutritional indices than children from the private school. SIBO was found in 30.9% (26/84) of the children from the slum group and in 2.4% (1/41) from the private school group (P = 0.0007). Greater hydrogen production in the small intestine was observed in children from the slum group when compared to children from the private school (P = 0.007). A higher concentration of hydrogen in the small intestine (P < 0.001) and in the colon (P < 0.001) was observed among the children from the slum group with SIBO when compared to children from the slum group without SIBO. Methane production was observed in 63.1% (53/84) of the children from the slum group and in 19.5% (8/41) of the children from the private school group (P < 0.0001). Methane production was observed in 38/58 (65.5%) of the children without SIBO and in 15/26 (57.7%) of the children with SIBO from the slum. Colonic production of hydrogen was lower in methane-producing children (P = 0.017). CONCLUSION: Children who live in inadequate environmental conditions are at risk of bacterial overgrowth and methane production. Hydrogen is a substrate for

  20. Two-phase anaerobic digestion for production of hydrogen-methane mixtures.

    PubMed

    Cooney, Michael; Maynard, Nathan; Cannizzaro, Christopher; Benemann, John

    2007-10-01

    An anaerobic digestion process to produce hydrogen and methane in two sequential stages was investigated, using two bioreactors of 2 and 15 L working volume, respectively. This relative volume ratio (and shorter retention time in the second, CH(4)-producing reactor) was selected, in part, to test the assumption that separation of phase can enhance metabolism in the second methane producing reactor. The reactor system was seeded with conventional anaerobic digester sludge, fed with a glucose-yeast extract--peptone medium and operated under conditions of relatively low mixing, to simulate full scale operation. A total of nine steady states were investigated, spanning a range of feed concentrations, dilution rates, feed carbon to nitrogen ratios and degree of integration of the two stages. The performance of this two-stage process and potential practical applications for the production of clean-burning hydrogen-methane mixtures are discussed.

  1. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.

    PubMed

    Xia, Ao; Cheng, Jun; Murphy, Jerry D

    2016-01-01

    Biofuels derived from biomass will play a major role in future renewable energy supplies in transport. Gaseous biofuels have superior energy balances, offer greater greenhouse gas emission reductions and produce lower pollutant emissions than liquid biofuels. Biogas derived through fermentation of wet organic substrates will play a major role in future transport systems. Biogas (which is composed of approximately 60% methane/hydrogen and 40% carbon dioxide) requires an upgrading process to reduce the carbon dioxide content to less than 3% before it is used as compressed gas in transport. This paper reviews recent developments in fermentative biogas production and upgrading as a transport fuel. Third generation gaseous biofuels may be generated using marine-based algae via two-stage fermentation, cogenerating hydrogen and methane. Alternative biological upgrading techniques, such as biological methanation and microalgal biogas upgrading, have the potential to simultaneously upgrade biogas, increase gaseous biofuel yield and reduce carbon dioxide emission.

  2. Evaluating limiting steps of anaerobic degradation of food waste based on methane production tests.

    PubMed

    Ortega, Luis; Husser, Céline; Barrington, Suzelle; Guiot, Serge R

    2008-01-01

    This research adapted a batch test for biochemical methane production (BMP) to follow the degradation of complex compounds such as proteins and vegetable oils. The test measured the transformation of albumin and olive oil into methane under mesophilic and thermophilic conditions and assess limiting step in the overall degradation process. The thermophilic sludge used for the BMP tests was adapted during ten month from mesophilic sludge while being fed food waste. As compared to acetic acid, the specific rate of transformation of albumin and olive oil into methane reached 22 and 51%, respectively, under mesophilic conditions. Acetoclastic methanogenesis was not the limiting step in the presence of albumin or olive oil (and its monomer-like molecules such as amino acids, glycerol and oleic acid). Rather, the degradation of albumin was restricted by the presence of proteins. The thermophilically adapted sludge showed good proteolytic activity, but its acetoclastic methanogens were unable to degrade olive oil, because of the inhibitory effect of oleic acid.

  3. Methane production from rice straw pretreated by a mixture of acetic-propionic acid.

    PubMed

    Zhao, Rui; Zhang, Zhenya; Zhang, Ruiqin; Li, Miao; Lei, Zhongfang; Utsumi, Motoo; Sugiura, Norio

    2010-02-01

    Rice straw was treated with a mixed solution of acetic acid and propionic acid to enhance its biodegradability. The effect of acid concentration, pretreatment time, and the ratio of solid to liquid on the delignification performance of rice straw were investigated. It was found that the optimal conditions for hydrolysis were 0.75 mol/L acid concentration, 2h pretreatment time and 1:20 solid to liquid ratio. Batch methane fermentation of untreated rice straw, pretreated rice straw, and the hydrolysates (the liquid fraction) of pretreatment were conducted at 35 degrees C for 30 days, and the results indicated that methane production of rice straw can be enhanced by dilute organic acid pretreatment. Moreover, most of the acid in hydrolysates can also be converted into methane gas.

  4. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.

    PubMed

    Xia, Ao; Cheng, Jun; Murphy, Jerry D

    2016-01-01

    Biofuels derived from biomass will play a major role in future renewable energy supplies in transport. Gaseous biofuels have superior energy balances, offer greater greenhouse gas emission reductions and produce lower pollutant emissions than liquid biofuels. Biogas derived through fermentation of wet organic substrates will play a major role in future transport systems. Biogas (which is composed of approximately 60% methane/hydrogen and 40% carbon dioxide) requires an upgrading process to reduce the carbon dioxide content to less than 3% before it is used as compressed gas in transport. This paper reviews recent developments in fermentative biogas production and upgrading as a transport fuel. Third generation gaseous biofuels may be generated using marine-based algae via two-stage fermentation, cogenerating hydrogen and methane. Alternative biological upgrading techniques, such as biological methanation and microalgal biogas upgrading, have the potential to simultaneously upgrade biogas, increase gaseous biofuel yield and reduce carbon dioxide emission. PMID:26724182

  5. Measurements of methane emissions at natural gas production sites in the United States

    PubMed Central

    Allen, David T.; Torres, Vincent M.; Thomas, James; Sullivan, David W.; Harrison, Matthew; Hendler, Al; Herndon, Scott C.; Kolb, Charles E.; Fraser, Matthew P.; Hill, A. Daniel; Lamb, Brian K.; Miskimins, Jennifer; Sawyer, Robert F.; Seinfeld, John H.

    2013-01-01

    Engineering estimates of methane emissions from natural gas production have led to varied projections of national emissions. This work reports direct measurements of methane emissions at 190 onshore natural gas sites in the United States (150 production sites, 27 well completion flowbacks, 9 well unloadings, and 4 workovers). For well completion flowbacks, which clear fractured wells of liquid to allow gas production, methane emissions ranged from 0.01 Mg to 17 Mg (mean = 1.7 Mg; 95% confidence bounds of 0.67–3.3 Mg), compared with an average of 81 Mg per event in the 2011 EPA national emission inventory from April 2013. Emission factors for pneumatic pumps and controllers as well as equipment leaks were both comparable to and higher than estimates in the national inventory. Overall, if emission factors from this work for completion flowbacks, equipment leaks, and pneumatic pumps and controllers are assumed to be representative of national populations and are used to estimate national emissions, total annual emissions from these source categories are calculated to be 957 Gg of methane (with sampling and measurement uncertainties estimated at ±200 Gg). The estimate for comparable source categories in the EPA national inventory is ∼1,200 Gg. Additional measurements of unloadings and workovers are needed to produce national emission estimates for these source categories. The 957 Gg in emissions for completion flowbacks, pneumatics, and equipment leaks, coupled with EPA national inventory estimates for other categories, leads to an estimated 2,300 Gg of methane emissions from natural gas production (0.42% of gross gas production). PMID:24043804

  6. Methane and carbon dioxide production from simulated anaerobic degradation of cattle carcasses

    SciTech Connect

    Yuan Qi; Saunders, Samuel E.; Bartelt-Hunt, Shannon L.

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer This study evaluates methane and carbon dioxide production after land burial of cattle carcasses. Black-Right-Pointing-Pointer Disposal of animal mortalities is often overlooked in evaluating the environmental impacts of animal production. Black-Right-Pointing-Pointer we quantify annual emissions from cattle carcass disposal in the United States as 1.6 Tg CO{sub 2} equivalents. - Abstract: Approximately 2.2 million cattle carcasses require disposal annually in the United States. Land burial is a convenient disposal method that has been widely used in animal production for disposal of both daily mortalities as well as during catastrophic mortality events. To date, greenhouse gas production after mortality burial has not been quantified, and this study represents the first attempt to quantify greenhouse gas emissions from land burial of animal carcasses. In this study, anaerobic decomposition of both homogenized and unhomogenized cattle carcass material was investigated using bench-scale reactors. Maximum yields of methane and carbon dioxide were 0.33 and 0.09 m{sup 3}/kg dry material, respectively, a higher methane yield than that previously reported for municipal solid waste. Variability in methane production rates were observed over time and between reactors. Based on our laboratory data, annual methane emissions from burial of cattle mortalities in the United States could total 1.6 Tg CO{sub 2} equivalents. Although this represents less than 1% of total emissions produced by the agricultural sector in 2009, greenhouse gas emissions from animal carcass burial may be significant if disposal of swine and poultry carcasses is also considered.

  7. Measurements of methane emissions at natural gas production sites in the United States.

    PubMed

    Allen, David T; Torres, Vincent M; Thomas, James; Sullivan, David W; Harrison, Matthew; Hendler, Al; Herndon, Scott C; Kolb, Charles E; Fraser, Matthew P; Hill, A Daniel; Lamb, Brian K; Miskimins, Jennifer; Sawyer, Robert F; Seinfeld, John H

    2013-10-29

    Engineering estimates of methane emissions from natural gas production have led to varied projections of national emissions. This work reports direct measurements of methane emissions at 190 onshore natural gas sites in the United States (150 production sites, 27 well completion flowbacks, 9 well unloadings, and 4 workovers). For well completion flowbacks, which clear fractured wells of liquid to allow gas production, methane emissions ranged from 0.01 Mg to 17 Mg (mean = 1.7 Mg; 95% confidence bounds of 0.67-3.3 Mg), compared with an average of 81 Mg per event in the 2011 EPA national emission inventory from April 2013. Emission factors for pneumatic pumps and controllers as well as equipment leaks were both comparable to and higher than estimates in the national inventory. Overall, if emission factors from this work for completion flowbacks, equipment leaks, and pneumatic pumps and controllers are assumed to be representative of national populations and are used to estimate national emissions, total annual emissions from these source categories are calculated to be 957 Gg of methane (with sampling and measurement uncertainties estimated at ± 200 Gg). The estimate for comparable source categories in the EPA national inventory is ~1,200 Gg. Additional measurements of unloadings and workovers are needed to produce national emission estimates for these source categories. The 957 Gg in emissions for completion flowbacks, pneumatics, and equipment leaks, coupled with EPA national inventory estimates for other categories, leads to an estimated 2,300 Gg of methane emissions from natural gas production (0.42% of gross gas production).

  8. Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions.

    PubMed

    Luo, Xi; Zhang, Fang; Liu, Jia; Zhang, Xiaoyuan; Huang, Xia; Logan, Bruce E

    2014-01-01

    The utilization of bioelectrochemical systems for methane production has attracted increasing attention, but producing methane in these systems requires additional voltage to overcome large cathode overpotentials. To eliminate the need for electrical grid energy, we constructed a microbial reverse-electrodialysis methanogenesis cell (MRMC) by placing a reverse electrodialysis (RED) stack between an anode with exoelectrogenic microorganisms and a methanogenic biocathode. In the MRMC, renewable salinity gradient energy was converted to electrical energy, thus providing the added potential needed for methane evolution from the cathode. The feasibility of the MRMC was examined using three different cathode materials (stainless steel mesh coated with platinum, SS/Pt; carbon cloth coated with carbon black, CC/CB; or a plain graphite fiber brush, GFB) and a thermolytic solution (ammonium bicarbonate) in the RED stack. A maximum methane yield of 0.60 ± 0.01 mol-CH4/mol-acetate was obtained using the SS/Pt biocathode, with a Coulombic recovery of 75 ± 2% and energy efficiency of 7.0 ± 0.3%. The CC/CB biocathode MRMC had a lower methane yield of 0.55 ± 0.02 mol-CH4/mol-acetate, which was twice that of the GFB biocathode MRMC. COD removals (89-91%) and Coulombic efficiencies (74-81%) were similar for all cathode materials. Linear sweep voltammetry and electrochemical impedance spectroscopy tests demonstrated that cathodic microorganisms enhanced electron transfer from the cathode compared to abiotic controls. These results show that the MRMC has significant potential for production of nearly pure methane using low-grade waste heat and a source of waste organic matter at the anode. PMID:25010133

  9. Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions.

    PubMed

    Luo, Xi; Zhang, Fang; Liu, Jia; Zhang, Xiaoyuan; Huang, Xia; Logan, Bruce E

    2014-01-01

    The utilization of bioelectrochemical systems for methane production has attracted increasing attention, but producing methane in these systems requires additional voltage to overcome large cathode overpotentials. To eliminate the need for electrical grid energy, we constructed a microbial reverse-electrodialysis methanogenesis cell (MRMC) by placing a reverse electrodialysis (RED) stack between an anode with exoelectrogenic microorganisms and a methanogenic biocathode. In the MRMC, renewable salinity gradient energy was converted to electrical energy, thus providing the added potential needed for methane evolution from the cathode. The feasibility of the MRMC was examined using three different cathode materials (stainless steel mesh coated with platinum, SS/Pt; carbon cloth coated with carbon black, CC/CB; or a plain graphite fiber brush, GFB) and a thermolytic solution (ammonium bicarbonate) in the RED stack. A maximum methane yield of 0.60 ± 0.01 mol-CH4/mol-acetate was obtained using the SS/Pt biocathode, with a Coulombic recovery of 75 ± 2% and energy efficiency of 7.0 ± 0.3%. The CC/CB biocathode MRMC had a lower methane yield of 0.55 ± 0.02 mol-CH4/mol-acetate, which was twice that of the GFB biocathode MRMC. COD removals (89-91%) and Coulombic efficiencies (74-81%) were similar for all cathode materials. Linear sweep voltammetry and electrochemical impedance spectroscopy tests demonstrated that cathodic microorganisms enhanced electron transfer from the cathode compared to abiotic controls. These results show that the MRMC has significant potential for production of nearly pure methane using low-grade waste heat and a source of waste organic matter at the anode.

  10. Evidence for methane-subsidised secondary production in a groundwater-fed lowland river.

    NASA Astrophysics Data System (ADS)

    Trimmer, M.; Grey, J.; Hildrew, A.; Jackson, M.

    2009-04-01

    We are probably familiar with the chemosynthetic ecosystems of the deep Pacific, where life in the dark is coupled to the oxidation of sulphur from ‘black smokers' rather than the sun, but few, if any, would suspect such a mode of life in the classic chalk rivers of southern England. We measured the delta13C values of dominant primary consumers and their potential food sources in a groundwater-fed lowland river. The delta13C of most consumers, such as Gammarus and Simulium, reflected that of the dominant forms of photosynthetic production, whereas the cased larvae of two caddis flies (Agapetus and Silo) were consistently 13C-depleted throughout the year. The river water was supersaturated (50-60 times atmospheric) with methane, reflecting both supersaturation in the groundwater and local production in fine sediments. We measured significant rates of methane oxidation, which generates 13C-depleted organic carbon, in the biofilms on gravel, on the caddis fly cases, and on the bottom of larger rocks. In addition, there was a marked difference in the ratio of methane oxidising potential to chlorophyll a across those substrata. This ratio was below detection in the biofilm (i.e. no methane oxidation) on the tops of rocks, greater on the bottom of rocks, and maximal for the gravels and the caddis cases. If the caddis larvae acquire most of their carbon by grazing the tops of such rocks (where they are normally found), then they must acquire their depleted delta13C values by occasionally grazing biofilm where the ratio of methane oxidation to chlorophyll was much greater, and the most likely candidate is from their own cases. Grazing methane oxidising bacteria could provide the caddis larvae with up to 30 % of their carbon, which could represent a true subsidy from an ancient groundwater source.

  11. Low temperature calcium hydroxide treatment enhances anaerobic methane production from (extruded) biomass.

    PubMed

    Khor, Way Cern; Rabaey, Korneel; Vervaeren, Han

    2015-01-01

    Ca(OH)2 treatment was applied to enhance methane yield. Different alkali concentration, incubation temperature and duration were evaluated for their effect on methane production and COD conversion efficiency from (non-)extruded biomass during mesophilic anaerobic digestion at lab-scale. An optimum Ca(OH)2 pretreatment for grass is found at 7.5% lime loading at 10°C for 20h (37.3% surplus), while mild (50°C) and high temperatures perform sub-optimal. Ca(OH)2 post-treatment after fast extrusion gives an additional surplus compared to extruded material of 15.2% (grass), 11.2% (maize straw) and 8.2% (sprout stem) regarding methane production. COD conversion improves accordingly, with additional improvements of 10.3% (grass), 9.0% (maize straw) and 6.8% (sprout stem) by Ca(OH)2 post-treatment. Therefore, Ca(OH)2 pretreatment and post-treatment at low temperature generate an additional effect regarding methane production and COD conversion efficiency. Fast extrusion gives a higher energy efficiency ratio compared to slow extrusion. PMID:25461001

  12. Methane Production and Methanogenic Archaea in the Digestive Tracts of Millipedes (Diplopoda)

    PubMed Central

    Šustr, Vladimír; Chroňáková, Alica; Semanová, Stanislava; Tajovský, Karel; Šimek, Miloslav

    2014-01-01

    Methane production by intestinal methanogenic Archaea and their community structure were compared among phylogenetic lineages of millipedes. Tropical and temperate millipedes of 35 species and 17 families were investigated. Species that emitted methane were mostly in the juliform orders Julida, Spirobolida, and Spirostreptida. The irregular phylogenetic distribution of methane production correlated with the presence of the methanogen-specific mcrA gene. The study brings the first detailed survey of methanogens’ diversity in the digestive tract of millipedes. Sequences related to Methanosarcinales, Methanobacteriales, Methanomicrobiales and some unclassified Archaea were detected using molecular profiling (DGGE). The differences in substrate preferences of the main lineages of methanogenic Archaea found in different millipede orders indicate that the composition of methanogen communities may reflect the differences in available substrates for methanogenesis or the presence of symbiotic protozoa in the digestive tract. We conclude that differences in methane production in the millipede gut reflect differences in the activity and proliferation of intestinal methanogens rather than an absolute inability of some millipede taxa to host methanogens. This inference was supported by the general presence of methanogenic activity in millipede faecal pellets and the presence of the 16S rRNA gene of methanogens in all tested taxa in the two main groups of millipedes, the Helminthophora and the Pentazonia. PMID:25028969

  13. Waste lipids to energy: how to optimize methane production from long‐chain fatty acids (LCFA)

    PubMed Central

    Alves, M. Madalena; Pereira, M. Alcina; Sousa, Diana Z.; Cavaleiro, Ana J.; Picavet, Merijn; Smidt, Hauke; Stams, Alfons J. M.

    2009-01-01

    Summary The position of high‐rate anaerobic technology (HR‐AnWT) in the wastewater treatment and bioenergy market can be enhanced if the range of suitable substrates is expanded. Analyzing existing technologies, applications and problems, it is clear that, until now, wastewaters with high lipids content are not effectively treated by HR‐AnWT. Nevertheless, waste lipids are ideal potential substrates for biogas production, since theoretically more methane can be produced, when compared with proteins or carbohydrates. In this minireview, the classical problems of lipids methanization in anaerobic processes are discussed and new concepts to enhance lipids degradation are presented. Reactors operation, feeding strategies and prospects of technological developments for wastewater treatment are discussed. Long‐chain fatty acids (LCFA) degradation is accomplished by syntrophic communities of anaerobic bacteria and methanogenic archaea. For optimal performance these syntrophic communities need to be clustered in compact aggregates, which is often difficult to achieve with wastewaters that contain fats and lipids. Driving the methane production from lipids/LCFA at industrial scale without risk of overloading and inhibition is still a challenge that has the potential for filling a gap in the existing processes and technologies for biological methane production associated to waste and wastewater treatment. PMID:21255287

  14. Low temperature calcium hydroxide treatment enhances anaerobic methane production from (extruded) biomass.

    PubMed

    Khor, Way Cern; Rabaey, Korneel; Vervaeren, Han

    2015-01-01

    Ca(OH)2 treatment was applied to enhance methane yield. Different alkali concentration, incubation temperature and duration were evaluated for their effect on methane production and COD conversion efficiency from (non-)extruded biomass during mesophilic anaerobic digestion at lab-scale. An optimum Ca(OH)2 pretreatment for grass is found at 7.5% lime loading at 10°C for 20h (37.3% surplus), while mild (50°C) and high temperatures perform sub-optimal. Ca(OH)2 post-treatment after fast extrusion gives an additional surplus compared to extruded material of 15.2% (grass), 11.2% (maize straw) and 8.2% (sprout stem) regarding methane production. COD conversion improves accordingly, with additional improvements of 10.3% (grass), 9.0% (maize straw) and 6.8% (sprout stem) by Ca(OH)2 post-treatment. Therefore, Ca(OH)2 pretreatment and post-treatment at low temperature generate an additional effect regarding methane production and COD conversion efficiency. Fast extrusion gives a higher energy efficiency ratio compared to slow extrusion.

  15. Methane production enhancement by an independent cathode in integrated anaerobic reactor with microbial electrolysis.

    PubMed

    Cai, Weiwei; Han, Tingting; Guo, Zechong; Varrone, Cristiano; Wang, Aijie; Liu, Wenzong

    2016-05-01

    Anaerobic digestion (AD) represents a potential way to achieve energy recovery from waste organics. In this study, a novel bioelectrochemically-assisted anaerobic reactor is assembled by two AD systems separated by anion exchange membrane, with the cathode placing in the inside cylinder (cathodic AD) and the anode on the outside cylinder (anodic AD). In cathodic AD, average methane production rate goes up to 0.070 mL CH4/mL reactor/day, which is 2.59 times higher than AD control reactor (0.027 m(3) CH4/m(3)/d). And COD removal is increased ∼15% over AD control. When changing to sludge fermentation liquid, methane production rate has been further increased to 0.247 mL CH4/mL reactor/day (increased by 51.53% comparing with AD control). Energy recovery efficiency presents profitable gains, and economic revenue from increased methane totally self-cover the cost of input electricity. The study indicates that cathodic AD could cost-effectively enhance methane production rate and degradation of glucose and fermentative liquid.

  16. Methane production and methanogenic Archaea in the digestive tracts of millipedes (Diplopoda).

    PubMed

    Šustr, Vladimír; Chroňáková, Alica; Semanová, Stanislava; Tajovský, Karel; Šimek, Miloslav

    2014-01-01

    Methane production by intestinal methanogenic Archaea and their community structure were compared among phylogenetic lineages of millipedes. Tropical and temperate millipedes of 35 species and 17 families were investigated. Species that emitted methane were mostly in the juliform orders Julida, Spirobolida, and Spirostreptida. The irregular phylogenetic distribution of methane production correlated with the presence of the methanogen-specific mcrA gene. The study brings the first detailed survey of methanogens' diversity in the digestive tract of millipedes. Sequences related to Methanosarcinales, Methanobacteriales, Methanomicrobiales and some unclassified Archaea were detected using molecular profiling (DGGE). The differences in substrate preferences of the main lineages of methanogenic Archaea found in different millipede orders indicate that the composition of methanogen communities may reflect the differences in available substrates for methanogenesis or the presence of symbiotic protozoa in the digestive tract. We conclude that differences in methane production in the millipede gut reflect differences in the activity and proliferation of intestinal methanogens rather than an absolute inability of some millipede taxa to host methanogens. This inference was supported by the general presence of methanogenic activity in millipede faecal pellets and the presence of the 16S rRNA gene of methanogens in all tested taxa in the two main groups of millipedes, the Helminthophora and the Pentazonia.

  17. Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production.

    PubMed

    González-Fernández, C; Sialve, B; Bernet, N; Steyer, J P

    2012-04-01

    Ultrasound at 20Hz was applied at different energy levels (Es) to treat Scenedesmus biomass, and organic matter solubilization, particle size distribution, cell disruption and biochemical methane potential were evaluated. An Es of 35.5 and 47.2MJ/kg resulted in floc deagglomeration but no improvement in methane production compared to untreated biomass. At an Es of 128.9, cell wall disruption was observed together with a 3.1-fold organic matter solubilization and an approximately 2-fold methane production in comparison with untreated biomass. Thermal pretreatment at 80°C caused cell wall disruption and improved anaerobic biodegradability 1.6-fold compared to untreated biomass. Since sonication caused a temperature increase in samples to as high as 85°C, it is likely that thermal effects accounted for much of the observed changes in the biomass. Given that ultrasound treatment at the highest Es studied only increased methane production by 1.2-fold over thermal treatment at 80°C, the higher energy requirement of sonication might not justify the use of this approach over thermal treatment.

  18. Sulfidogenesis interference on methane production from carbohydrate-rich wastewater.

    PubMed

    Godoi, L A G; Damianovic, M H R Z; Foresti, E

    2015-01-01

    Two anaerobic fixed-structured bed reactors were fed with synthetic wastewater simulating the soluble fraction of sugarcane vinasse to evaluate the interference of sulfidogenesis on methanogenesis. The reactors running in parallel were subjected to the same operating conditions. The influent organic matter concentration (in term of chemical oxygen demand (COD)) remained close to 4,000 mgCOD L(-1) and the hydraulic retention time was 24 hours. One reactor, the methanogenic (control reactor), received sulfate only to provide the sulfur required as a nutrient to the methanogenic biomass. The other one, the sulfidogenic/methanogenic reactor (SMR), received sulfate concentration corresponding to COD/sulfate ratios of 4, 5 and 3. In the last phase, the COD removal efficiencies were higher than 96% in both reactors and the SMR achieved 97% of sulfate removal efficiency (COD/sulfate ratio of 3 and influent sulfate concentration close to 1,300 mgSO4(2-) L(-1)). Both reactors also had similar methane yields in this phase, close to 350 mLCH4 gCODremoved(-1) at standard temperature and pressure. These results indicated no significant inhibition of methanogenic activity under the sulfidogenic conditions assessed. PMID:26524457

  19. Sulfidogenesis interference on methane production from carbohydrate-rich wastewater.

    PubMed

    Godoi, L A G; Damianovic, M H R Z; Foresti, E

    2015-01-01

    Two anaerobic fixed-structured bed reactors were fed with synthetic wastewater simulating the soluble fraction of sugarcane vinasse to evaluate the interference of sulfidogenesis on methanogenesis. The reactors running in parallel were subjected to the same operating conditions. The influent organic matter concentration (in term of chemical oxygen demand (COD)) remained close to 4,000 mgCOD L(-1) and the hydraulic retention time was 24 hours. One reactor, the methanogenic (control reactor), received sulfate only to provide the sulfur required as a nutrient to the methanogenic biomass. The other one, the sulfidogenic/methanogenic reactor (SMR), received sulfate concentration corresponding to COD/sulfate ratios of 4, 5 and 3. In the last phase, the COD removal efficiencies were higher than 96% in both reactors and the SMR achieved 97% of sulfate removal efficiency (COD/sulfate ratio of 3 and influent sulfate concentration close to 1,300 mgSO4(2-) L(-1)). Both reactors also had similar methane yields in this phase, close to 350 mLCH4 gCODremoved(-1) at standard temperature and pressure. These results indicated no significant inhibition of methanogenic activity under the sulfidogenic conditions assessed.

  20. Assessment of methane emissions from oil and gas production pads using mobile measurements.

    PubMed

    Brantley, Halley L; Thoma, Eben D; Squier, William C; Guven, Birnur B; Lyon, David

    2014-12-16

    A new mobile methane emissions inspection approach, Other Test Method (OTM) 33A, was used to quantify short-term emission rates from 210 oil and gas production pads during eight two-week field studies in Texas, Colorado, and Wyoming from 2010 to 2013. Emission rates were log-normally distributed with geometric means and 95% confidence intervals (CIs) of 0.33 (0.23, 0.48), 0.14 (0.11, 0.19), and 0.59 (0.47, 0.74) g/s in the Barnett, Denver-Julesburg, and Pinedale basins, respectively. This study focused on sites with emission rates above 0.01 g/s and included short-term (i.e., condensate tank flashing) and maintenance-related emissions. The results fell within the upper ranges of the distributions observed in recent onsite direct measurement studies. Considering data across all basins, a multivariate linear regression was used to assess the relationship of methane emissions to well age, gas production, and hydrocarbon liquids (oil or condensate) production. Methane emissions were positively correlated with gas production, but only approximately 10% of the variation in emission rates was explained by variation in production levels. The weak correlation between emission and production rates may indicate that maintenance-related stochastic variables and design of production and control equipment are factors determining emissions.

  1. Effects of heavy metals on methane production in tropical rice soils.

    PubMed

    Mishra, S R; Bharati, K; Sethunathan, N; Adhya, T K

    1999-09-01

    In a laboratory incubation study, the effect of select heavy metals on methane (CH(4)) production in three rice soils was investigated under flooded conditions. Heavy metals behaved differently in their effect on methanogenesis in different soils and methane-producing bacteria. Cd, Cu, and Pb inhibited CH(4) production in all the soils. Zn stimulated CH(4) production in the alluvial soil, but inhibited it in laterite and acid sulfate soils. Cr effectively inhibited CH(4) production in the alluvial soil, but stimulated it in laterite and acid sulfate soils. The stimulatory effect of Zn and the inhibitory effect of Cr on methanogenesis in alluvial soil were attributed to their stimulation or inhibition of methanogenic bacterial population. PMID:10499999

  2. Methane production and energy evaluation of a farm scaled biogas plant in cold climate area.

    PubMed

    Fjørtoft, Kristian; Morken, John; Hanssen, Jon Fredrik; Briseid, Tormod

    2014-10-01

    The aim of this study was to investigate the specific methane production and the energy balance at a small farm scaled mesophilic biogas plant in a cold climate area. The main substrate was dairy cow slurry. Fish silage was used as co-substrate for two of the three test periods. Energy production, substrate volumes and thermal and electric energy consumption was monitored. Methane production depended mainly on type and amount of substrates, while energy consumption depended mainly on the ambient temperature. During summer the main thermal energy consumption was caused by heating of new substrates, while covering for thermal energy losses from digester and pipes required most thermal energy during winter. Fish silage gave a total energy production of 1623 k Wh/m(3), while the dairy cow slurry produced 79 k Wh/m(3) slurry. Total energy demand at the plant varied between 26.9% and 88.2% of the energy produced. PMID:25033326

  3. Methane production and energy evaluation of a farm scaled biogas plant in cold climate area.

    PubMed

    Fjørtoft, Kristian; Morken, John; Hanssen, Jon Fredrik; Briseid, Tormod

    2014-10-01

    The aim of this study was to investigate the specific methane production and the energy balance at a small farm scaled mesophilic biogas plant in a cold climate area. The main substrate was dairy cow slurry. Fish silage was used as co-substrate for two of the three test periods. Energy production, substrate volumes and thermal and electric energy consumption was monitored. Methane production depended mainly on type and amount of substrates, while energy consumption depended mainly on the ambient temperature. During summer the main thermal energy consumption was caused by heating of new substrates, while covering for thermal energy losses from digester and pipes required most thermal energy during winter. Fish silage gave a total energy production of 1623 k Wh/m(3), while the dairy cow slurry produced 79 k Wh/m(3) slurry. Total energy demand at the plant varied between 26.9% and 88.2% of the energy produced.

  4. Effects of heavy metals on methane production in tropical rice soils.

    PubMed

    Mishra, S R; Bharati, K; Sethunathan, N; Adhya, T K

    1999-09-01

    In a laboratory incubation study, the effect of select heavy metals on methane (CH(4)) production in three rice soils was investigated under flooded conditions. Heavy metals behaved differently in their effect on methanogenesis in different soils and methane-producing bacteria. Cd, Cu, and Pb inhibited CH(4) production in all the soils. Zn stimulated CH(4) production in the alluvial soil, but inhibited it in laterite and acid sulfate soils. Cr effectively inhibited CH(4) production in the alluvial soil, but stimulated it in laterite and acid sulfate soils. The stimulatory effect of Zn and the inhibitory effect of Cr on methanogenesis in alluvial soil were attributed to their stimulation or inhibition of methanogenic bacterial population.

  5. High diversity of methanotrophic bacteria in geothermal soils affected by high methane fluxes

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Walter; Gagliano, Antonina Lisa; Quatrini, Paola; Parello, Francesco

    2014-05-01

    Volcanic and geothermal systems emit endogenous gases by widespread degassing from soils, including CH4, a greenhouse gas 25 times as potent as CO2. Recently, it has been demonstrated that volcanic/geothermal soils act as source, but also as biological filter for methane release to the atmosphere. For long time, volcanic/geothermal soils has been considered inhospitable for methanotrophic microorganisms, but new extremophile methanotrophs belonging to Verrucomicrobia were identified in three different areas (Pozzuoli, Italy; Hell's Gate, New Zealand; Kamchatka, Russia), explaining anomalous behaviours in methane leakages of several geothermal/volcanic sites. Our aim was to increase the knowledge of the relationship between methane emissions from volcanic/geothermal areas and biological methane oxidation, by investigating a geothermal site of Pantelleria island (Italy). Pantelleria Island hosts a high enthalpy geothermal system characterized by high temperature, high CH4 and very low H2S fluxes. Such characteristics are reflected in potentially great supply of methane for methanotrophs and scarce presence of inhibitors of their activity (H2S and NH3) in the Pantelleria soils. Potential methanotrophic activity within these soils was already evidenced by the CH4/CO2 ratio of the flux measurements which was lower than that of the respective fumarolic manifestations indicating a loss of CH4 during the gas travel towards the earth's surface. In this study laboratory incubation experiments using soils sampled at Favara Grande, the main hydrothermal area of Pantelleria, showed very high methane consumption rates (up to 9500 ng CH4 h-1 g-1). Furthermore, microbiological and culture-independent molecular analyses allowed to detect the presence of methanotrophs affiliated to Gamma- and Alpha-Proteobacteria and to the newly discovered acidothermophilic methanotrophs Verrucomicrobia. Culturable methanotrophic Alpha-proteobacteria of the genus Methylocystis were isolated by

  6. Potential methane production and oxidation in soil reclamation covers of an oil sands mining site in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Pum, Lisa; Reichenauer, Thomas; Germida, Jim

    2015-04-01

    Anthropogenic activities create a number of significant greenhouse gases and thus potentially contribute to global warming. Methane production is significant in some agricultural production systems and from wetlands. In soil, methane can be oxidised by methanotrophic bacteria. However, little is known about methane production and oxidation in oil sand reclamation covers. The purpose of this study was to investigate methane production and oxidation potential of tailing sands and six different reclamation layers of oil sands mining sites in Alberta, Canada. Methane production and oxidation potential were investigated in laboratory scale microcosms through continuous headspace analysis using gas chromatography. Samples from a reclamation layer were collected at the Canadian Natural Resources Limited (CNRL) reclamation site at depths of 0-10 cm, 10-20 cm and 20-40 cm in October 2014. In addition, tailing sands provided by Suncor Energy Inc. and soil from a CNRL wetland were studied for methane production. Samples were dried, crushed and sieved to 4 mm, packed into serum bottle microcosms and monitored for eight weeks. Methane production potential was assessed by providing an anoxic environment and by adjusting the samples to a moisture holding capacity of 100 %. Methane oxidation potential was examined by an initial application of 2 vol % methane to the microcosms and by adjusting the samples to a moisture holding capacity of 50 %. Microcosm headspace gas was analysed for methane, carbon dioxide, nitrous oxide and oxygen. All experiments were carried out in triplicates, including controls. SF6 and Helium were used as internal standards to detect potential leaks. Our results show differences for methane production potential between the soil depths, tailing sands and wetlands. Moreover, there were differences in the methane oxidation potential of substrate from the three depths investigated and between the reclamation layers. In conclusion, the present study shows that

  7. Eremophila glabra reduces methane production and methanogen populations when fermented in a Rusitec.

    PubMed

    Li, XiXi; Durmic, Zoey; Liu, ShiMin; McSweeney, Chris S; Vercoe, Philip E

    2014-10-01

    Eremophila glabra Juss. (Scrophulariaceae), a native Australian shrub, has been demonstrated to have low methanogenic potential in a batch in vitro fermentation system. The present study aimed to test longer-term effects of E. glabra on rumen fermentation characteristics, particularly methane production and the methanogen population, when included as a component of a fermentation substrate in an in vitro continuous culture system (Rusitec). E. glabra was included at 150, 250, 400 g/kg DM (EG15, EG25, and EG40) with an oaten chaff and lupin-based substrate (control). Overall, the experiment lasted 33 days, with 12 days of acclimatization, followed by two periods during which fermentation characteristics (total gas, methane and VFA productions, dry matter disappearance, pH) were measured. The number of copies of genes specifically associated with total bacteria and cellulolytic bacteria (16S rRNA gene) and total ruminal methanogenic archaeal organisms (the methyl coenzyme M reductase A gene (mcrA)) was also measured during this time using quantitative real-time PCR. Total gas production, methane and volatile fatty acid concentrations were significantly reduced with addition of E. glabra. At the end of the experiment, the overall methane reduction was 32% and 45% for EG15 and EG25 respectively, compared to the control, and the reduction was in a dose-dependent manner. Total bacterial numbers did not change, but the total methanogen population decreased by up to 42.1% (EG40) when compared to the control substrate. The Fibrobacter succinogenes population was reduced at all levels of E. glabra, while Ruminococcus albus was reduced only by EG40. Our results indicate that replacing a portion of a fibrous substrate with E. glabra maintained a significant reduction in methane production and methanogen populations over three weeks in vitro, with some minor inhibition on overall fermentation at the lower inclusion levels.

  8. Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process.

    PubMed

    Luo, Gang; Xie, Li; Zhou, Qi; Angelidaki, Irini

    2011-09-01

    The present study investigated a two-stage anaerobic hydrogen and methane process for increasing bioenergy production from organic wastes. A two-stage process with hydraulic retention time (HRT) 3d for hydrogen reactor and 12d for methane reactor, obtained 11% higher energy compared to a single-stage methanogenic process (HRT 15 d) under organic loading rate (OLR) 3 gVS/(L d). The two-stage process was still stable when the OLR was increased to 4.5 gVS/(Ld), while the single-stage process failed. The study further revealed that by changing the HRT(hydrogen):HRT(methane) ratio of the two-stage process from 3:12 to 1:14, 6.7%, more energy could be obtained. Microbial community analysis indicated that the dominant bacterial species were different in the hydrogen reactors (Thermoanaerobacterium thermosaccharolyticum-like species) and methane reactors (Clostridium thermocellum-like species). The changes of substrates and HRT did not change the dominant species. The archaeal community structures in methane reactors were similar both in single- and two- stage reactors, with acetoclastic methanogens Methanosarcina acetivorans-like organisms as the dominant species.

  9. [Physicochemical and biological factors affecting atmospheric methane oxidation in gray forest soils].

    PubMed

    Kravchenko, I K; Semenov, V M; Kuznetsova, T V; Bykova, S A; Dulov, L E; Pardini, G; Gispert, M; Boeckx, P; Van Cleemput, O; Gal'chenko, V F

    2005-01-01

    The decline of methane oxidizing activities in gray forest soil upon its conversion into arable land was shown to be caused by major changes in biotic and physicochemical properties of soil. Using the method of immune serums, methane-oxidizing bacteria were detected in both forest and agricultural soils, but their populations differed significantly in both abundance and composition. In the forest soil, the number of methanotrophs was an order of magnitude higher than in arable soil, amounting to 3.5 x 10(8) and 0.24 x 10(8) cells/g soil, respectively. All methane-oxidizing bacteria identified in the forest soil belonged to the genus Methylocystis, and 94% of these were represented by a single species, M. parvus. The arable soil was dominated by type I methanotrophs (Methylobacter and Methylomonas, 67.6%), occurring along with bacteria of the genus Methylocystis. In addition, arable soil is characterized by a low content of microbial biomass, lower porosity and water permeability of soil aggregates, and the predominance of nitrogen mineralization processes over those of nitrogen immobilization. These factors can also contribute to lower rates of methane oxidation in arable soil as compared to forest soil.

  10. Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature.

    PubMed

    Schnürer, A; Nordberg, A

    2008-01-01

    In biogas processes, methane production from acetate proceeds by either aceticlastic methanogenesis or through syntrophic acetate oxidation (SAO). In the present study, the pathway for methane production from acetate was analysed; i) during a gradual increase of the ammonia concentration (final concentration 7 g NH(4)(+) -N/L) in a semi-continuous lab-scale anaerobic digester (4.3 L), operating at mesophilic temperature (37 degrees C) or ii) in diluted enrichment cultures (100 ml) experiencing a gradual increase in ammonia, sodium, potassium and propionic acid. The pathway for methane formation was determined by calculating the (14)CO(2)/(14)CH(4) ratio after incubating samples with (14)C-2-acetate. In the anaerobic digester, as well as in the enrichment cultures, the (14)CO(2)/(14)CH4 ratio clearly increased with increasing ammonium-nitrogen concentration, i.e. as the ammonia concentration increased, a shift from the aceticlastic mechanism to the syntrophic pathway occurred. The shift was very distinct and occurred as the NH(4)(+) -N concentration rose above 3 g/l. No shift in pathway was seen during increasing concentrations of sodium, potassium or propionic acid. The shift to SAO in the biogas digester resulted in a twofold decrease in the specific gas and methane yield.

  11. Enhanced methane production from anaerobic digestion of disintegrated and deproteinized excess sludge.

    PubMed

    Cui, Rong; Jahng, Deokjin

    2006-04-01

    To improve biogas yield and methane content in anaerobic digestion of excess sludge from the wastewater treatment plant, the sludge was disintegrated by using various methods (sonication, alkaline and thermal treatments). Since disintegrated sludge contains a high concentration of soluble proteins, the resulting metabolite, ammonia, may inhibit methane generation. Therefore, the effects of protein removal from disintegrated sludge on methane production were also studied. As a result, an obvious enhancement of biogas generation was observed by digesting disintegrated sludge (biogas yield increased from 15 to 36 ml/g COD(added).day for the raw excess sludge and the sonicated sludge, respectively). The quality of biogas was also improved by removing proteins from the disintegrated sludge. About 50% (w/w) of soluble proteins were removed from the suspension of disintegrated sludge by salting out using 35 g MgCl(2) x 6H(2)O/l and also by isoelectric point precipitation at pH 3.3. For deproteinized sludge, methane production increased by 19%, and its yield increased from 145 ml/g COD(removed) to 325 ml/g COD(removed). Therefore, the yield and quality of biogas produced from digestion of excess sludge can be enhanced by disintegrating the sludge and subsequent protein removal.

  12. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste.

    PubMed

    Sunyoto, Nimas M S; Zhu, Mingming; Zhang, Zhezi; Zhang, Dongke

    2016-11-01

    Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates was studied using bench-scale bioreactors. The cultures with biochar additions were placed in 100ml reactors and incubated at 35°C and pH 5 for hydrogen production. The residual cultures were then used for methane production, incubated at 35°C and pH 7. Daily yields of hydrogen and methane and weekly yield of volatile fatty acids (VFA) were measured. The hydrogen and methane production potentials, rate and lag phases of the two phases were analysed using the Gompertz model. The results showed that biochar addition increased the maximum production rates of hydrogen by 32.5% and methane 41.6%, improved hydrogen yield by 31.0% and methane 10.0%, and shortened the lag phases in the two phases by 36.0% and 41.0%, respectively. Biochar addition also enhanced VFA generation during hydrogen production and VFA degradation in methane production.

  13. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste.

    PubMed

    Sunyoto, Nimas M S; Zhu, Mingming; Zhang, Zhezi; Zhang, Dongke

    2016-11-01

    Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates was studied using bench-scale bioreactors. The cultures with biochar additions were placed in 100ml reactors and incubated at 35°C and pH 5 for hydrogen production. The residual cultures were then used for methane production, incubated at 35°C and pH 7. Daily yields of hydrogen and methane and weekly yield of volatile fatty acids (VFA) were measured. The hydrogen and methane production potentials, rate and lag phases of the two phases were analysed using the Gompertz model. The results showed that biochar addition increased the maximum production rates of hydrogen by 32.5% and methane 41.6%, improved hydrogen yield by 31.0% and methane 10.0%, and shortened the lag phases in the two phases by 36.0% and 41.0%, respectively. Biochar addition also enhanced VFA generation during hydrogen production and VFA degradation in methane production. PMID:27474855

  14. Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming.

    PubMed

    Tveit, Alexander Tøsdal; Urich, Tim; Frenzel, Peter; Svenning, Mette Marianne

    2015-05-12

    Arctic permafrost soils store large amounts of soil organic carbon (SOC) that could be released into the atmosphere as methane (CH4) in a future warmer climate. How warming affects the complex microbial network decomposing SOC is not understood. We studied CH4 production of Arctic peat soil microbiota in anoxic microcosms over a temperature gradient from 1 to 30 °C, combining metatranscriptomic, metagenomic, and targeted metabolic profiling. The CH4 production rate at 4 °C was 25% of that at 25 °C and increased rapidly with temperature, driven by fast adaptations of microbial community structure, metabolic network of SOC decomposition, and trophic interactions. Below 7 °C, syntrophic propionate oxidation was the rate-limiting step for CH4 production; above this threshold temperature, polysaccharide hydrolysis became rate limiting. This change was associated with a shift within the functional guild for syntrophic propionate oxidation, with Firmicutes being replaced by Bacteroidetes. Correspondingly, there was a shift from the formate- and H2-using Methanobacteriales to Methanomicrobiales and from the acetotrophic Methanosarcinaceae to Methanosaetaceae. Methanogenesis from methylamines, probably stemming from degradation of bacterial cells, became more important with increasing temperature and corresponded with an increased relative abundance of predatory protists of the phylum Cercozoa. We concluded that Arctic peat microbiota responds rapidly to increased temperatures by modulating metabolic and trophic interactions so that CH4 is always highly produced: The microbial community adapts through taxonomic shifts, and cascade effects of substrate availability cause replacement of functional guilds and functional changes within taxa.

  15. Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming

    PubMed Central

    Tveit, Alexander Tøsdal; Urich, Tim; Frenzel, Peter; Svenning, Mette Marianne

    2015-01-01

    Arctic permafrost soils store large amounts of soil organic carbon (SOC) that could be released into the atmosphere as methane (CH4) in a future warmer climate. How warming affects the complex microbial network decomposing SOC is not understood. We studied CH4 production of Arctic peat soil microbiota in anoxic microcosms over a temperature gradient from 1 to 30 °C, combining metatranscriptomic, metagenomic, and targeted metabolic profiling. The CH4 production rate at 4 °C was 25% of that at 25 °C and increased rapidly with temperature, driven by fast adaptations of microbial community structure, metabolic network of SOC decomposition, and trophic interactions. Below 7 °C, syntrophic propionate oxidation was the rate-limiting step for CH4 production; above this threshold temperature, polysaccharide hydrolysis became rate limiting. This change was associated with a shift within the functional guild for syntrophic propionate oxidation, with Firmicutes being replaced by Bacteroidetes. Correspondingly, there was a shift from the formate- and H2-using Methanobacteriales to Methanomicrobiales and from the acetotrophic Methanosarcinaceae to Methanosaetaceae. Methanogenesis from methylamines, probably stemming from degradation of bacterial cells, became more important with increasing temperature and corresponded with an increased relative abundance of predatory protists of the phylum Cercozoa. We concluded that Arctic peat microbiota responds rapidly to increased temperatures by modulating metabolic and trophic interactions so that CH4 is always highly produced: The microbial community adapts through taxonomic shifts, and cascade effects of substrate availability cause replacement of functional guilds and functional changes within taxa. PMID:25918393

  16. Anaerobic Biological Treatment of Vinasse for Environmental Compliance and Methane Production.

    PubMed

    Albanez, R; Chiaranda, B C; Ferreira, R G; França, A L P; Honório, C D; Rodrigues, J A D; Ratusznei, S M; Zaiat, M

    2016-01-01

    The energy crisis resulted in increasing awareness that alternative sources of energy should be considered. During this time, Brazil implemented ethanol production from sugarcane as biofuel. However, during this process, large amounts of residues are generated, such as vinasse. This residue can be treated anaerobically to generate methane as a source of bioenergy with the use of sequencing batch reactors operated with immobilized biomass (AnSBBR). In this work, tests were conducted in an AnSBBR laboratory-scale reactor, and the main results regarding the kinetic model fitting and performance of substrate consumption (83 %), methane content in the biogas (77 %), applied organic load (5.54 g COD L(-1) day(-1)), methane productivity (973 N-mL CH4 L(-1) day(-1)), and yield (9.47 mol CH4 kg COD(-1)) show that AnSBBR is a promising technological alternative. After tests conducted in a laboratory-scale reactor, an industrial reactor was scaled and was also operated in a sequencing batch with immobilized biomass (AnSBBR) for the anaerobic treatment of vinasse with the goal of generating methane and environmental suitability to further disposal in soil. The calculations were performed based on data from a sugar and alcohol plant located in São Paulo, Brazil. This study proposes to the operation of the industrial scale reactor was the association of four AnSBBR (each one with a volume of 15849 m(3)) operating in parallel (with a feeding and discharge time of 4 h and a reaction time of 8 h), with the goal of adapting the treatment system from a discontinuous operation to a continuous operation. In this industrial scenario, the methane production was estimated at 1.65 × 10(6) mol CH4 day(-1), and the energy was approximately 17 MW, increasing the possible energy recovery contained in sugarcane from 93 to 96 %. PMID:26400496

  17. Conversion of crude oil to methane by a microbial consortium enriched from oil reservoir production waters

    PubMed Central

    Berdugo-Clavijo, Carolina; Gieg, Lisa M.

    2014-01-01

    The methanogenic biodegradation of crude oil is an important process occurring in petroleum reservoirs and other oil-containing environments such as contaminated aquifers. In this process, syntrophic bacteria degrade hydrocarbon substrates to products such as acetate, and/or H2 and CO2 that are then used by methanogens to produce methane in a thermodynamically dependent manner. We enriched a methanogenic crude oil-degrading consortium from production waters sampled from a low temperature heavy oil reservoir. Alkylsuccinates indicative of fumarate addition to C5 and C6 n-alkanes were identified in the culture (above levels found in controls), corresponding to the detection of an alkyl succinate synthase encoding gene (assA/masA) in the culture. In addition, the enrichment culture was tested for its ability to produce methane from residual oil in a sandstone-packed column system simulating a mature field. Methane production rates of up to 5.8 μmol CH4/g of oil/day were measured in the column system. Amounts of produced methane were in relatively good agreement with hydrocarbon loss showing depletion of more than 50% of saturate and aromatic hydrocarbons. Microbial community analysis revealed that the enrichment culture was dominated by members of the genus Smithella, Methanosaeta, and Methanoculleus. However, a shift in microbial community occurred following incubation of the enrichment in the sandstone columns. Here, Methanobacterium sp. were most abundant, as were bacterial members of the genus Pseudomonas and other known biofilm forming organisms. Our findings show that microorganisms enriched from petroleum reservoir waters can bioconvert crude oil components to methane both planktonically and in sandstone-packed columns as test systems. Further, the results suggest that different organisms may contribute to oil biodegradation within different phases (e.g., planktonic vs. sessile) within a subsurface crude oil reservoir. PMID:24829563

  18. Primary production control of methane emission from wetlands

    NASA Astrophysics Data System (ADS)

    Whiting, G. J.; Chanton, J. P.

    1993-08-01

    Based on simultaneous measurements of CO2 and CH4 exchange in wetlands extending from subarctic peatlands to subtropical marshes, a positive correlation between CH4 emission and net ecosystem production is reported. It is suggested that net ecosystem production is a master variable integrating many factors which control CH4 emission in vegetated wetlands. It is found that about 3 percent of the daily net ecosystem production is emitted back to the atmosphere as CH4. With projected stimulation of primary production and soil microbial activity in wetlands associated with elevated atmospheric CO2 concentration, the potential for increasing CH4 emission from inundated wetlands, further enhancing the greenhouse effect, is examined.

  19. Bromochloromethane, a Methane Analogue, Affects the Microbiota and Metabolic Profiles of the Rat Gastrointestinal Tract

    PubMed Central

    Yang, Yu-Xiang; Mu, Chun-Long; Luo, Zhen

    2015-01-01

    Bromochloromethane (BCM), an inhibitor of methanogenesis, has been used in animal production. However, little is known about its impact on the intestinal microbiota and metabolic patterns. The present study aimed to investigate the effect of BCM on the colonic bacterial community and metabolism by establishing a Wistar rat model. Twenty male Wistar rats were randomly divided into two groups (control and treated with BCM) and raised for 6 weeks. Bacterial fermentation products in the cecum were determined, and colonic methanogens and sulfate-reducing bacteria (SRB) were quantified. The colonic microbiota was analyzed by pyrosequencing of the 16S rRNA genes, and metabolites were profiled by gas chromatography and mass spectrometry. The results showed that BCM did not affect body weight and feed intake, but it did significantly change the intestinal metabolic profiles. Cecal protein fermentation was enhanced by BCM, as methylamine, putrescine, phenylethylamine, tyramine, and skatole were significantly increased. Colonic fatty acid and carbohydrate concentrations were significantly decreased, indicating the perturbation of lipid and carbohydrate metabolism by BCM. BCM treatment decreased the abundance of methanogen populations, while SRB were increased in the colon. BCM did not affect the total colonic bacterial counts but significantly altered the bacterial community composition by decreasing the abundance of actinobacteria, acidobacteria, and proteobacteria. The results demonstrated that BCM treatment significantly altered the microbiotic and metabolite profiles in the intestines, which may provide further information on the use of BCM in animal production. PMID:26567308

  20. Bromochloromethane, a Methane Analogue, Affects the Microbiota and Metabolic Profiles of the Rat Gastrointestinal Tract.

    PubMed

    Yang, Yu-Xiang; Mu, Chun-Long; Luo, Zhen; Zhu, Wei-Yun

    2016-02-01

    Bromochloromethane (BCM), an inhibitor of methanogenesis, has been used in animal production. However, little is known about its impact on the intestinal microbiota and metabolic patterns. The present study aimed to investigate the effect of BCM on the colonic bacterial community and metabolism by establishing a Wistar rat model. Twenty male Wistar rats were randomly divided into two groups (control and treated with BCM) and raised for 6 weeks. Bacterial fermentation products in the cecum were determined, and colonic methanogens and sulfate-reducing bacteria (SRB) were quantified. The colonic microbiota was analyzed by pyrosequencing of the 16S rRNA genes, and metabolites were profiled by gas chromatography and mass spectrometry. The results showed that BCM did not affect body weight and feed intake, but it did significantly change the intestinal metabolic profiles. Cecal protein fermentation was enhanced by BCM, as methylamine, putrescine, phenylethylamine, tyramine, and skatole were significantly increased. Colonic fatty acid and carbohydrate concentrations were significantly decreased, indicating the perturbation of lipid and carbohydrate metabolism by BCM. BCM treatment decreased the abundance of methanogen populations, while SRB were increased in the colon. BCM did not affect the total colonic bacterial counts but significantly altered the bacterial community composition by decreasing the abundance of actinobacteria, acidobacteria, and proteobacteria. The results demonstrated that BCM treatment significantly altered the microbiotic and metabolite profiles in the intestines, which may provide further information on the use of BCM in animal production. PMID:26567308

  1. Effect of urea addition on giant reed ensilage and subsequent methane production by anaerobic digestion.

    PubMed

    Liu, Shan; Ge, Xumeng; Liew, Lo Niee; Liu, Zhe; Li, Yebo

    2015-09-01

    The effect of urea addition on giant reed ensilage and sequential anaerobic digestion (AD) of the ensiled giant reed was evaluated. The dry matter loss during ensilage (up to 90 days) with or without urea addition was about 1%. Addition of 2% urea enhanced production of lactic acid by about 4 times, and reduced production of propionic acid by 2-8 times. Besides, urea addition reduced degradation of cellulose and hemicellulose, and increased degradation of lignin in giant reed during ensilage. Ensilage with or without urea addition had no significant effects on the enzymatic digestibility of giant reed, but ensilage with urea addition achieved a cumulative methane yield of 173 L/kg VS, which was 18% higher than that of fresh giant reed. The improved methane yield of giant reed could be attributed to the production of organic acids and ethanol during ensilage.

  2. Study on methane fermentation and production of vitamin B12 from alcohol waste slurry.

    PubMed

    Zhang, Zhenya; Quan, Taisheng; Li, Pomin; Zhang, Yansheng; Sugiura, Norio; Maekawa, Takaaki

    2004-01-01

    We studied biogas fermentation from alcohol waste fluid to evaluate the anaerobic digestion process and the production of vitamin B12 as a byproduct. Anaerobic digestion using acclimated methanogens was performed using the continuously stirred tank reactor (CSTR) and fixed-bed reactor packed with rock wool as carrier material at 55 degrees C. We also studied the effects of metal ions added to the culture broth on methane and vitamin B12 formation. Vitamin B12 production was 2.92 mg/L in the broth of the fixed-bed reactor, twice that of the CSTR. The optimum concentrations of trace metal ions added to the culture liquid for methane and vitamin B12 production were 1.0 and 8 mL/L for the CSTR and fixed-bed reactor, respectively. Furthermore, an effective method for extracting and purifying vitamin B12 from digested fluid was developed.

  3. Field-project designs for carbon dioxide sequestration and enhanced coalbed methane production

    SciTech Connect

    W. Neal Sams; Grant Bromhal; Sinisha Jikich; Turgay Ertekin; Duane H. Smith

    2005-12-01

    Worldwide concerns about global warming and possible contributions to it from anthropogenic carbon dioxide have become important during the past several years. Coal seams may make excellent candidates for CO{sub 2} sequestration; coal-seam sequestration could enhance methane production and improve sequestration economics. Reservoir-simulation computations are an important component of any engineering design before carbon dioxide is injected underground. We have performed such simulations for a hypothetical pilot-scale project in representative coal seams. In these simulations we assume four horizontal production wells that form a square, that is, two wells drilled at right angles to each other forming two sides of a square, with another pair of horizontal wells similarly drilled to form the other two sides. Four shorter horizontal wells are drilled from a vertical well at the center of the square, forming two straight lines orthogonal to each other. By modifying coal properties, especially sorption rate, we have approximated different types of coals. By varying operational parameters, such as injector length, injection well pressure, time to injection, and production well pressure, we can evaluate different production schemes to determine an optimum for each coal type. Any optimization requires considering a tradeoff between total CO{sub 2} sequestered and the rate of methane production. Values of total CO{sub 2} sequestered and methane produced are presented for multiple coal types and different operational designs. 30 refs., 11 figs., 1 tab.

  4. Zoonotic bacterial populations, gut fermentation characteristics and methane production in feedlot steers during oral nitroethane treatment and after the feeding of an experimental chlorate product.

    PubMed

    Gutierrez-Bañuelos, Hector; Anderson, Robin C; Carstens, Gordon E; Slay, Lisa J; Ramlachan, Nicole; Horrocks, Shane M; Callaway, Todd R; Edrington, Thomas S; Nisbet, David J

    2007-02-01

    Nitroethane inhibits the growth of certain zoonotic pathogens such as Campylobacter and Salmonella spp., foodborne pathogens estimated to cause millions of human infections each year, and enhances the Salmonella- and Escherichia coli-killing effect of an experimental chlorate product being developed as a feed additive to kill these bacteria immediately pre-harvest. Limited studies have shown that nitroethane inhibits ruminal methane production, which represents a loss of 2-12% of the host's gross energy intake and contributes to global warming and destruction of the ozone layer. The present study was conducted to assess the effects of 14-day oral nitroethane administration, 0 (0X), 80 (1X) or 160 (2X)mg nitroethane/kg body weight per day on ruminal and fecal E. coli and Campylobacter, ruminal and fecal methane-producing and nitroethane-reducing activity, whole animal methane emissions, and ruminal and fecal fermentation balance in Holstein steers (n=6 per treatment) averaging 403+/-26 (SD) kg BW. An experimental chlorate product was fed the day following the last nitroethane administration to determine effects on E. coli and Campylobacter. The experimental chlorate product decreased (P<0.001) fecal, but not ruminal (P>0.05) E. coli concentrations by 1000- and 10-fold by 24 and 48 h, respectively, after chlorate feeding when compared to pre-treatment concentrations (>5.7 log(10) colony forming units/g). No effects (P>0.05) of nitroethane or the experimental chlorate product were observed on fecal Campylobacter concentrations; Campylobacter were not recovered from ruminal contents. Nitroethane treatment decreased (P<0.01) ruminal (8.46, 7.91 and 4.74+/-0.78 micromol/g/h) and fecal (3.90, 1.36 and 1.38+/-0.50 micromol/g/h) methane-producing activity for treatments 0X, 1X and 2X, respectively. Administration of nitroethane increased (P<0.001) nitroethane-reducing activity in ruminal, but not fecal samples. Day of study affected ruminal (P<0.0001) but not fecal (P>0

  5. Wet explosion of wheat straw and codigestion with swine manure: effect on the methane productivity.

    PubMed

    Wang, G; Gavala, H N; Skiadas, I V; Ahring, B K

    2009-11-01

    The continuously increasing demand for renewable energy sources renders anaerobic digestion to one of the most promising technologies for renewable energy production. Twenty-two (22) large-scale biogas plants are currently under operation in Denmark. Most of these plants use manure as the primary feedstock but their economical profitable operation relies on the addition of other biomass products with a high biogas yield. Wheat straw is the major crop residue in Europe and the second largest agricultural residue in the world. So far it has been used in several applications, i.e. pulp and paper making, production of regenerated cellulose fibers as an alternative to wood for cellulose-based materials and ethanol production. The advantage of exploiting wheat straw for various applications is that it is available in considerable quantity and at low-cost. In the present study, the codigestion of swine manure with wheat straw in a continuous operated system was investigated, as a method to increase the efficiency of biogas plants that are based on anaerobic digestion of swine manure. Also, the pretreatment of wheat straw with the wet explosion method was studied and the efficiency of the wet explosion process was evaluated based on (a) the sugars release and (b) the methane potential of the pretreated wheat straw compared to that of the raw biomass. It was found that, although a high release of soluble sugars was observed after wet explosion, the methane obtained from the wet-exploded wheat straw was slightly lower compared to that from the raw biomas s. On the other hand, the results from the codigestion of raw (non-pretreated) wheat straw with swine manure were very promising, suggesting that 4.6 kg of straw added to 1t of manure increase the methane production by 10%. Thus, wheat straw can be considered as a promising, low-cost biomass for increasing the methane productivity of biogas plants that are based mainly on swine manure. PMID:19666217

  6. Wet explosion of wheat straw and codigestion with swine manure: effect on the methane productivity.

    PubMed

    Wang, G; Gavala, H N; Skiadas, I V; Ahring, B K

    2009-11-01

    The continuously increasing demand for renewable energy sources renders anaerobic digestion to one of the most promising technologies for renewable energy production. Twenty-two (22) large-scale biogas plants are currently under operation in Denmark. Most of these plants use manure as the primary feedstock but their economical profitable operation relies on the addition of other biomass products with a high biogas yield. Wheat straw is the major crop residue in Europe and the second largest agricultural residue in the world. So far it has been used in several applications, i.e. pulp and paper making, production of regenerated cellulose fibers as an alternative to wood for cellulose-based materials and ethanol production. The advantage of exploiting wheat straw for various applications is that it is available in considerable quantity and at low-cost. In the present study, the codigestion of swine manure with wheat straw in a continuous operated system was investigated, as a method to increase the efficiency of biogas plants that are based on anaerobic digestion of swine manure. Also, the pretreatment of wheat straw with the wet explosion method was studied and the efficiency of the wet explosion process was evaluated based on (a) the sugars release and (b) the methane potential of the pretreated wheat straw compared to that of the raw biomass. It was found that, although a high release of soluble sugars was observed after wet explosion, the methane obtained from the wet-exploded wheat straw was slightly lower compared to that from the raw biomas s. On the other hand, the results from the codigestion of raw (non-pretreated) wheat straw with swine manure were very promising, suggesting that 4.6 kg of straw added to 1t of manure increase the methane production by 10%. Thus, wheat straw can be considered as a promising, low-cost biomass for increasing the methane productivity of biogas plants that are based mainly on swine manure.

  7. Laboratory-scale bioaugmentation relieves acetate accumulation and stimulates methane production in stalled anaerobic digesters.

    PubMed

    Town, Jennifer R; Dumonceaux, Tim J

    2016-01-01

    An imbalance between acidogenic and methanogenic organisms during anaerobic digestion can result in increased accumulation of volatile fatty acids, decreased reactor pH, and inhibition of methane-producing Archaea. Most commonly the result of organic input overload or poor inoculum selection, these microbiological and biochemical changes severely hamper reactor performance, and there are a few tools available to facilitate reactor recovery. A small, stable consortium capable of catabolizing acetate and producing methane was propagated in vitro and evaluated as a potential bioaugmentation tool for stimulating methanogenesis in acidified reactors. Replicate laboratory-scale batch digesters were seeded with a combination of bioethanol stillage waste and a dairy manure inoculum previously observed to result in high volatile fatty acid accumulation and reactor failure. Experimental reactors were then amended with the acetoclastic consortium, and control reactors were amended with sterile culture media. Within 7 days, bioaugmented reactors had significantly reduced acetate accumulation and the proportion of methane in the biogas increased from 0.2 ± 0 to 74.4 ± 9.9 % while control reactors showed no significant reduction in acetate accumulation or increase in methane production. Organisms from the consortium were enumerated using specific quantitative PCR assays to evaluate their growth in the experimental reactors. While the abundance of hydrogenotrophic microorganisms remained stable during the recovery period, an acetoclastic methanogen phylogenetically similar to Methanosarcina sp. increased more than 100-fold and is hypothesized to be the primary contributor to reactor recovery. Genomic sequencing of this organism revealed genes related to the production of methane from acetate, hydrogen, and methanol.

  8. Laboratory-scale bioaugmentation relieves acetate accumulation and stimulates methane production in stalled anaerobic digesters.

    PubMed

    Town, Jennifer R; Dumonceaux, Tim J

    2016-01-01

    An imbalance between acidogenic and methanogenic organisms during anaerobic digestion can result in increased accumulation of volatile fatty acids, decreased reactor pH, and inhibition of methane-producing Archaea. Most commonly the result of organic input overload or poor inoculum selection, these microbiological and biochemical changes severely hamper reactor performance, and there are a few tools available to facilitate reactor recovery. A small, stable consortium capable of catabolizing acetate and producing methane was propagated in vitro and evaluated as a potential bioaugmentation tool for stimulating methanogenesis in acidified reactors. Replicate laboratory-scale batch digesters were seeded with a combination of bioethanol stillage waste and a dairy manure inoculum previously observed to result in high volatile fatty acid accumulation and reactor failure. Experimental reactors were then amended with the acetoclastic consortium, and control reactors were amended with sterile culture media. Within 7 days, bioaugmented reactors had significantly reduced acetate accumulation and the proportion of methane in the biogas increased from 0.2 ± 0 to 74.4 ± 9.9 % while control reactors showed no significant reduction in acetate accumulation or increase in methane production. Organisms from the consortium were enumerated using specific quantitative PCR assays to evaluate their growth in the experimental reactors. While the abundance of hydrogenotrophic microorganisms remained stable during the recovery period, an acetoclastic methanogen phylogenetically similar to Methanosarcina sp. increased more than 100-fold and is hypothesized to be the primary contributor to reactor recovery. Genomic sequencing of this organism revealed genes related to the production of methane from acetate, hydrogen, and methanol. PMID:26481626

  9. Coal-bed methane in Utah, New Mexico, Colorado, and Wyoming: Resources, reserves, and production

    SciTech Connect

    Sommer, S.N. ); DeBruin, R.H. ); Tremain, C.M. ); Whitehead, N.H. III )

    1993-08-01

    Coal-bed methane reserves of 10 tcf, in-place resources up to 250 tcf, and dramatically increased production rates from Cretaceous and Tertiary formations affirm the importance of the Rocky Mountain gas province well into the 21st century. These resources have been calculated for the individual states and basins using a variety of criteria and methods and the resource numbers are not necessarily comparable. The Book Cliffs, Emery, Wastach Plateau, Kaiparowits Plateau, and Sego coal fields in Utah contain a coal-bed methane resource of 10.4 tcf. The Book Cliffs and Emery coal fields contain 8.3 tcf or 80% of this resource. The San Juan basin, New Mexico and Colorado, has 10 tcf (reserves), 40 tcf (resources) in the Fruitland Formation, and 28 tcf (resources) in the Menefee Formation. The Raton basin, Colorado and New Mexico, has 10.2 tcf of resources in the Raton and Vermejo Formations. The Piceance and Sand Wash basins in Colorado have estimated resources of more than 96 tcf. The Powder River, Green River, Hams Fork, Wind River, Hanna, Rock Creek, and Bighorn coal fields in Wyoming have resources of 54.4 tcf. The Powder River, Wind River, Green River, and Hams Fork coal fields contain 87% of this resource. In August, 1992, coal-bed methane production accounted for 49% of all gas produced from the San Juan basin (New Mexico) and 30% of all New Mexico production. For 1991, coal-bed methane production in Colorado from the San Juan and Piceance basins was 16% of all Colorado gas production.

  10. AO13. High energy, low methane syngas from low-rank coals for coal-to-liquids production

    SciTech Connect

    Lucero, Andrew; Goyal, Amit; McCabe, Kevin; Gangwal, Santosh

    2015-06-30

    An experimental program was undertaken to develop and demonstrate novel steam reforming catalysts for converting tars, C2+ hydrocarbons, and methane under high temperature and sulfur environments at lab scale. Several catalysts were developed and synthesized along with some catalysts based on recipes found in the literature. Of these, two had good resistance at 90 ppm H2S with one almost not affected at all. Higher concentrations of H2S did affect methane conversion across the catalyst, but performance was fairly stable for up to 200 hours. Based on the results of the experimental program, a techno-economic analysis was developed for IGCC and CTL applications and compared to DOE reference cases to examine the effects of the new technology. In the IGCC cases, the reformer/POX system produces nearly the same amount of electricity for nearly the same cost, however, the reformers/POX case sequesters a higher percentage of the carbon when compared to IGCC alone. For the CTL case the economics of the new process were nearly identical to the CTL case, but due to improved yields, the greenhouse gas emissions for a given production of fuels was approximately 50% less than the baseline case.

  11. Production of nitrogen oxides by lightning in a methane-rich early atmosphere

    NASA Astrophysics Data System (ADS)

    Navarro, Karina; Navarro-Gonzalez, Rafael; McKay, Christopher

    2013-04-01

    The composition of the early Earth's atmosphere is not known. Assuming that rapid weathering of fragments from impacts took placed and efficient sequestration of carbon occurred in the Earth's mantle, the early atmosphere would have been mostly composed of molecular nitrogen with low concentrations of carbon dioxide (less than percent). In order preserve the existence of oceans, it is required to warm up the atmosphere almost exclusively with methane [1]. Predicted methane concentrations in the distant past range from few ppm to several thousand ppm. Photochemical models predict a production rate of hydrogen cyanide of the order of 6 Tg/yr in a 3 percent carbon dioxide atmosphere with 1000 ppm of methane [2]. When the atmospheric levels of carbon dioxide dropped to 0.3 percent but with the methane levels of 1000 ppm, the production rate of hydrogen cyanide increased up to 20 Tg/yr [2]. The nitrogen fixation rate by lightning in atmospheres dominated bymolecula nitrogen, less than 10 percent carbon dioxide, and the absence of methane has been reported by Navarro-Gonzalez et al. [3]. Here we report an experimental study of the effects of lightning discharges on the nitrogen fixation rate during the evolution of the Earth's early atmosphere from 10 to 0.5percent of carbon dioxide with methane concentrations from 0 to 10,000 ppm in molecular nitrogen. Our results show that the main nitrogen fixation products by lightning are nitric oxide, nitrous oxide and methyl nitrite. Preliminary estimates indicate that the production of nitric oxide is not dependent on the initial concentration of methane and that its production rate decreases from about 0.02 Tg/yr to about 0.003 Tg/yr in atmospheres ranging from 10 to 0.5 percent of carbon dioxide, respectively. Nitrous oxide is produced by lightning is the contemporaneous oxygenated Earth's atmosphere [4], but has not been detected in nitrogen-carbon dioxide mixtures in the absence of oxygen [5]. This is the first report for the

  12. Effect of combined herbal feed additives on methane, total gas production and rumen fermentation.

    PubMed

    Chaturvedi, Indu; Dutta, Tapas Kumar; Singh, Pawan Kumar; Sharma, Ashwani

    2015-01-01

    The present study was to evaluate effect of herbal feed additives on methane and total gas production during the rumen fermentation for environment and animal health concern. Different parts of the five medicinal plants were selected such as leaf and small stems of Ocimum sanctum (Tulsi), roots of Curcuma longa (Haldi), fruits of Emblica officinalis (Amla), leaves of Azadirachta indica (Neem) and leaves and small stem of Clerodendrum phlomidis (Arni) for our study. Addition of different herbal additive combinations did not influence IVDMD and total gas production however methane production (mg/g of substrate DM) was significantly (P<0.05) reduced in Amla: Neem and Neem: Arni combinations. Total nitrogen significantly (P<0.01) increased in the combinations of Tulsi: Haldi and Amla: Neem. TCA-ppt-N is significantly (P<0.01) increased in Tulsi: Haldi, Haldi: Amla, Amla: Neem and Neem: Arni however NH3-N (mg/dl) significantly decreased in all treatments. We conclude that the screening of plant combinations, Amla: Neem and Neem: Arni have potential to decrease methane production and our herbal feed supplements have no side-effects on the ruminant in small amount. PMID:26124571

  13. Anaerobic digestion of grape pomace: Biochemical characterization of the fractions and methane production in batch and continuous digesters.

    PubMed

    El Achkar, Jean H; Lendormi, Thomas; Hobaika, Zeina; Salameh, Dominique; Louka, Nicolas; Maroun, Richard G; Lanoisellé, Jean-Louis

    2016-04-01

    In this study, we have estimated the biogas and methane production from grape pomace (variety Cabernet Franc). The physical and chemical characteristics of the raw material were determined, and the structural polysaccharides were identified and analyzed by the Van Soest method. Batch anaerobic digestions were carried out to assess the methane production of the grape pomace, pulp and seeds. The obtained cumulative methane productions are 0.125, 0.165 and 0.052 Nm(3) kg COD(-1) for grape pomace, pulps and seeds, respectively. The effect of grinding on the methane potential of the substrates, as a mechanical pretreatment, was evaluated. We found that it increased the anaerobic biodegradability for grape pomace, pulp and seeds by 13.1%, 4.8% and 22.2%, respectively. On the other hand, the methane potential of the grape pomace was determined in a laboratory pilot plant (12L) continuously mixed with an organic loading rate of 2.5 kg COD m(3) d(-1) and a hydraulic retention time of 30 days. The corresponding biogas production was 6.43 × 10(-3) Nm(3) d(-1), with a methane content of 62.3%. Thus, the pilot plant's efficiency compared to that achieved in the batch process was 81.2%. Finally, a significant correlation was found between the biochemical content and methane production.

  14. Methane production from formate, acetate and H2/CO2; focusing on kinetics and microbial characterization.

    PubMed

    Pan, Xiaofang; Angelidaki, Irini; Alvarado-Morales, Merlin; Liu, Houguang; Liu, Yuhong; Huang, Xu; Zhu, Gefu

    2016-10-01

    For evaluating the methanogenesis from typical methanogenic precursors (formate, acetate and H2/CO2), CH4 production kinetics were investigated at 37±1°C in batch anaerobic digestion tests and stimulated by modified Gompertz model. The results showed that maximum methanation rate from formate, acetate and H2/CO2 were 19.58±0.49, 42.65±1.17 and 314.64±3.58NmL/gVS/d in digested manure system and 6.53±0.31, 132.04±3.96 and 640.16±19.92NmL/gVS/d in sewage sludge system during second generation incubation. Meanwhile the model could not fit well in granular sludge system, while the rate of formate methanation was faster than from H2/CO2 and acetate. Considering both the kinetic results and microbial assay we could conclude that H2/CO2 methanation was the fastest methanogenic step in digested manure and sewage sludge system with Methanomicrobiales as dominant methanogens, while granular sludge with Methanobacteriales as dominant methanogens contributed to the fastest formate methanation. PMID:27423547

  15. Optimization of thermal-dilute sulfuric acid pretreatment for enhancement of methane production from cassava residues.

    PubMed

    Zhang, Qinghua; Tang, Lei; Zhang, Jianhua; Mao, Zhonggui; Jiang, Li

    2011-02-01

    In this study, the pretreatment of cassava residues by thermal-dilute sulfuric acid (TDSA) hydrolysis was investigated by means of a statistically designed set of experiments. A three-factor central composite design (CCD) was employed to identify the optimum pretreatment condition of cassava residues for methane production. The individual and interactive effects of temperature, H(2)SO(4) concentration and reaction time on increase of methane yield (IMY) were evaluated by applying response surface methodology (RSM). After optimization, the resulting optimum pretreatment condition was 157.84°C, utilizing 2.99% (w/w TS) H(2)SO(4) for 20.15 min, where the maximum methane yield (248 mL/g VS) was 56.96% higher than the control (158 mL/g VS), which was very close to the predict value 56.53%. These results indicate the model obtained through RSM analysis is suit to predict the optimum pretreatment condition and there is great potential of using TDSA pretreatment of cassava residues to enhance methane yield.

  16. Methane production from the red seaweed gracilaria tikvahiae

    SciTech Connect

    Hanisak, M.D.

    1981-01-01

    Stable continuous anaerobic digestion of the title seaweed was maintained in large (120 L) digesters for more than 20 months, with an average gas (60% CH4) production of 0.4 L/g volatile solids. The average bioconversion efficiency was approximately 48%. When the retention time, t, was increased (i.e., loading rate decreased) from 10 to 60 days the total production of biogas and CH4 (as well as the percent CH4 and the reduction of total volatile solids) increased to maximum at t = 30 days and decreased at t = 60 days. Biogas and CH4 production on the basis of volatile solids added increased to less than or equal to 60 days, as did the percent volatile solids reduction. The pH in the digesters increased with increasing t.

  17. The scientific objectives and program of the Japanese offshore methane hydrate production test

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Fujii, T.; Noguchi, S.; Nagao, J.

    2012-12-01

    A gas production attempt from deepwater marine methane hydrate deposits is planned in early 2013 in the AT1 site in the north slope Daini-Atsumi Knoll in the Eastern Nankai Trough. The scientific goal of this production test is to understand the behavior of methane hydrate dissociation under an in-situ condition. The program includes one to several weeks of gas flow by applying depressurization technique. Drilling operations for the production test started in February 2012 at the test location, and two monitoring boreholes and part of production well have been drilled and completed. Reservoir characterization study is an essential part of the science program. For this purpose, intensive geophysical logging and coring programs are included in the drilling program. The logging data were mainly obtained from a hole named AT1-MC. The well was drilled with LWD tools, wireline logging suits were run subsequently. Also pressure-preserved cores were recovered from methane hydrate-concentrated and overburden sections in a dedicated borehole (AT1-C). To keep the pressure and temperature of cores under gas hydrate stability condition all the time, pressure core analysis and transfer system (PCATS) was used. Also the PCATS-triaxial device that can make mechanical and physical property measurements possible under tri-axial effective stress conditions was utilized. The physical, hydraulic and mechanical properties obtained from core and log data will be used for modeling works, and given to the numerical simulator MH21-HYDRES for methane hydrate production modeling as input parameters for forward analysis and inversion (history matching) to understand the in-situ processes. The monitoring of the methane hydrate dissociation processes is another important subject. The two monitoring holes have temperature sensors to detect temperature drop and recovery due to gas hydrate dissociation and heat transfer. Also, one of the monitoring holes is kept re-accessible to allow cased

  18. Emerging topics in marine methane biogeochemistry.

    PubMed

    Valentine, David L

    2011-01-01

    Our knowledge of physical, chemical, geological and biological processes affecting methane in the ocean and in underlying sediments is expanding at a rapid pace. On first inspection, marine methane biogeochemistry appears simple: Methane distribution in sediment is set by the deposition pattern of organic material, and the balance of sources and sinks keeps its concentration low in most waters. However, recent research reveals that methane is affected by complex biogeochemical processes whose interactions are understood only at a superficial level. Such processes span the deep-subsurface, near subsurface, and ocean waters, and relate primarily to the production, consumption, and transport of methane. The purpose of this synthesis is to examine select processes within the framework of methane biogeochemistry, to formulate hypotheses on how they might operate and interact with one another, and to consider their controls. PMID:21329202

  19. Effect of nickel ions on anaerobic methane production from water hyacinth.

    PubMed

    Cai, Xuan; Hong, Zi-Jian; Dai, Rui-Hua; Liu, Yan; Liu, Xiang

    2012-01-01

    The effect of different concentrations of nickel ions (Ni(2+), 0, 10, 40 and 80 mg/L) on the anaerobic methane production of water hyacinth were investigated. Under these four concentrations, the methane production in 40 d was 2,275, 2,703, 3,210 and 2,481 mL, respectively. This situation illustrated that the Ni(2+) promoted the growth of hydrogen-producing acetic acid bacteria and methanogenic bacteria, even at high concentrations (i.e. 40-80 mg/L). The highest methane production per unit weight water hyacinth reached 206 mL/gTS with 40 mg/L Ni(2+). Meanwhile, the modified Gompertz and Logistic equations were applied to describe the effect on anaerobic culture of Ni(2+). According to these models, the values of methane production potential (mL) for four concentrations were in the following order: 40 mg/L (3,123.42 ± 60.08) > 10 mg/L (2,541.16 ± 46.94) > 80 mg/L (2,432.36 ± 40.18) > 0 mg/L (2,238.10 ± 31.90). According to the analysis of the digestate, the residual concentration of Ni(2+) was approximately 1.05-4.9 mg/L, which was relatively low compared with the Ni(2+) concentrations in the raw feedstock. The results would provide academic guidance and technical support for treatment of water hyacinth with an accumulation of heavy metals. PMID:22258675

  20. Heterogeneous photocatalytic production of hydrogen and methane from ethanol and water

    NASA Astrophysics Data System (ADS)

    Sakata, Tadayoshi; Kawai, Tomoji

    1981-06-01

    Xe lamp irradiation of various TiO 2 photocatalysts suspended in an ethanol-water mixture can produce hydrogen, methane and acetaldehyde at room temperature. The quantum yield of hydrogen production was increased greatly by supporting metals or metal complexes on the TiO 2 surface, amounting to 38% for a Pt-TiO 2 photocatalyst. A mechanism of the photocatalytic reactions is discussed.

  1. Temperature response of methane oxidation and production potentials in peatland ecosystems across Finland

    NASA Astrophysics Data System (ADS)

    Welti, Nina; Korrensalo, Aino; Kerttula, Johanna; Maljanen, Marja; Uljas, Salli; Lohila, Annalea; Laine, Anna; Vesala, Timo; Elliott, David; Tuittila, Eeva-Stiina

    2016-04-01

    It has been suggested that the ecosystems located in the high latitudes are especially sensitive to warming. Therefore, we compared 14 peatland systems throughout Finland along a latitudinal gradient from 69°N to 61°N to examine the response of methane production and methane oxidation with warming climate. Peat samples were taken at the height of the growing season in 2015 from 0 - 10cm below the water table depth. The plant communities in sampling locations were described by estimating cover of each plant species and pH of water was measured. Upon return to the lab, we made two parallel treatments, under anoxic and oxic conditions in order to calculate the CH4 production and consumption potentials of the peat and used three temperatures, 4°C, 17.5°C, and 30°C to examine the temperature effect on the potentials. We hypothesized that there will be an observable response curve in CH4 production and oxidation relative to temperature with a greater response with increasing latitude. In general, increasing temperature increased the potential for CH4 production and oxidation, at some sites, the potential was highest at 17.5°C, indicating that there is an optimum temperature threshold for the in situ methane producing and oxidizing microbial communities. Above this threshold, the peat microbial communities are not able to cope with increasing temperature. This is especially noticeable for methane oxidation at sites above 62°N. As countries are being expected to adequately account for their greenhouse gas budgets with increasing temperature models, knowing where the temperature threshold exists is of critical importance.

  2. Effect of nickel ions on anaerobic methane production from water hyacinth.

    PubMed

    Cai, Xuan; Hong, Zi-Jian; Dai, Rui-Hua; Liu, Yan; Liu, Xiang

    2012-01-01

    The effect of different concentrations of nickel ions (Ni(2+), 0, 10, 40 and 80 mg/L) on the anaerobic methane production of water hyacinth were investigated. Under these four concentrations, the methane production in 40 d was 2,275, 2,703, 3,210 and 2,481 mL, respectively. This situation illustrated that the Ni(2+) promoted the growth of hydrogen-producing acetic acid bacteria and methanogenic bacteria, even at high concentrations (i.e. 40-80 mg/L). The highest methane production per unit weight water hyacinth reached 206 mL/gTS with 40 mg/L Ni(2+). Meanwhile, the modified Gompertz and Logistic equations were applied to describe the effect on anaerobic culture of Ni(2+). According to these models, the values of methane production potential (mL) for four concentrations were in the following order: 40 mg/L (3,123.42 ± 60.08) > 10 mg/L (2,541.16 ± 46.94) > 80 mg/L (2,432.36 ± 40.18) > 0 mg/L (2,238.10 ± 31.90). According to the analysis of the digestate, the residual concentration of Ni(2+) was approximately 1.05-4.9 mg/L, which was relatively low compared with the Ni(2+) concentrations in the raw feedstock. The results would provide academic guidance and technical support for treatment of water hyacinth with an accumulation of heavy metals.

  3. Bioelectrochemical enhancement of methane production in low temperature anaerobic digestion at 10 °C.

    PubMed

    Liu, Dandan; Zhang, Lei; Chen, Si; Buisman, Cees; Ter Heijne, Annemiek

    2016-08-01

    Anaerobic digestion at low temperature is an attractive technology especially in moderate climates, however, low temperature results in low microbial activity and low rates of methane formation. This study investigated if bioelectrochemical systems (BESs) can enhance methane production from organic matter in low-temperature anaerobic digestion (AD). A bioelectrochemical reactor was operated with granular activated carbon as electrodes at 10 °C. Our results showed that bioelectrochemical systems can enhance CH4 yield, accelerate CH4 production rate and increase acetate removal efficiency at 10 °C. The highest CH4 yield of 31 mg CH4-COD/g VSS was achieved in the combined BES-AD system at a cathode potential of -0.90 V (Ag/AgCl), which was 5.3-6.6 times higher than that in the AD reactor at 10 °C. CH4 production rate achieved in the combined BES-AD system at 10 °C was only slightly lower than that in the AD reactor at 30 °C. The presence of an external circuit between the acetate-oxidizing bioanode and methane-producing cathode provided an alternative pathway from acetate via electrons to methane, potentially via hydrogen. This alternative pathway seems to result in higher CH4 production rates at low temperature compared with traditional methanogenesis from acetate. Integration of BES with AD could therefore be an attractive alternative strategy to enhance the performance of anaerobic digestion in cold areas.

  4. Influence of different supplements and sugarcane (Saccharum officinarum L.) cultivars on intake, digestible variables and methane production of dairy heifers under tropical conditions.

    PubMed

    Pedreira, Márcio dos Santos; Berchelli, Telma Teresinha; Primavesi, Odo; de Oliveira, Simone Gisele; Frighetto, Rosa; de Lima, Magda Aparecida

    2012-10-01

    The sulphur hexafluoride (SF(6)) gas tracer method was used to measure methane (CH(4)) production of crossbred (3/4 Holstein x Zebu) dairy heifers fed two types of sugarcane (Saccharum officinarum L.; cultivar IAC-862480 (CC1) or cultivar IAC-873184 (CC2)) and supplemented with urea or concentrate. The study was performed at Embrapa Southeast Cattle, São Carlos, SP, Brazil, using a completely randomised design. Differences between treatments were significant for digestibility of dry matter, organic matter and energy. When animals were supplemented with urea differences between sugarcane cultivars did occur for NDF consumption, but not for daily methane production. This suggest that variation in chemical composition of sugarcane did not affect bovine ruminal CH(4) emissions. Concentrate inclusion in animal diet increased digestible organic matter intake, improving the nutrient intake by animals, but did not reduce CH(4) production expressed as a percentage of gross energy intake.

  5. Magnetite nanoparticles facilitate methane production from ethanol via acting as electron acceptors

    PubMed Central

    Yang, Zhiman; Shi, Xiaoshuang; Wang, Chuanshui; Wang, Lin; Guo, Rongbo

    2015-01-01

    Potential for interspecies hydrogen transfer within paddy soil enrichments obtained via addition of magnetite nanoparticles and ethanol (named as PEM) was investigated. To do this, PEM derived from rice field of Hangzhou (named as PEM-HZ) was employed, because it offered the best methane production performance. Methane production and Fe (III) reduction proceeded in parallel in the presence of magnetite. Inhibition experiments with 2-bromoethane sulfonate (BES) or phosphate showed that interspecies hydrogen transfer and Fe (III) reduction also occurred in methane production from ethanol. 16S rRNA-based Illumina sequencing results showed that Dechloromonas, Thauera, Desulfovibrio and Clostridium were the dominant putative Fe (III) -reducers, and that hydrogenotrophic Methanobacterium accounted for about 88% of the total archaeal community. These results indicated that magnetite nanoparticles that acted as electron acceptor could facilitate rapid oxidation of ethanol by members of the Fe (III) -reducers in PEM-HZ and establishment of the syntrophic relationship of Fe (III) -reducers with Methanobacterium via interspecies hydrogen transfer. Our results could offer a model to understand the microbial interaction with magnetite from a novel angle during methanogenesis. PMID:26559132

  6. Magnetite nanoparticles facilitate methane production from ethanol via acting as electron acceptors

    NASA Astrophysics Data System (ADS)

    Yang, Zhiman; Shi, Xiaoshuang; Wang, Chuanshui; Wang, Lin; Guo, Rongbo

    2015-11-01

    Potential for interspecies hydrogen transfer within paddy soil enrichments obtained via addition of magnetite nanoparticles and ethanol (named as PEM) was investigated. To do this, PEM derived from rice field of Hangzhou (named as PEM-HZ) was employed, because it offered the best methane production performance. Methane production and Fe (III) reduction proceeded in parallel in the presence of magnetite. Inhibition experiments with 2-bromoethane sulfonate (BES) or phosphate showed that interspecies hydrogen transfer and Fe (III) reduction also occurred in methane production from ethanol. 16S rRNA-based Illumina sequencing results showed that Dechloromonas, Thauera, Desulfovibrio and Clostridium were the dominant putative Fe (III) -reducers, and that hydrogenotrophic Methanobacterium accounted for about 88% of the total archaeal community. These results indicated that magnetite nanoparticles that acted as electron acceptor could facilitate rapid oxidation of ethanol by members of the Fe (III) -reducers in PEM-HZ and establishment of the syntrophic relationship of Fe (III) -reducers with Methanobacterium via interspecies hydrogen transfer. Our results could offer a model to understand the microbial interaction with magnetite from a novel angle during methanogenesis.

  7. Magnetite nanoparticles facilitate methane production from ethanol via acting as electron acceptors.

    PubMed

    Yang, Zhiman; Shi, Xiaoshuang; Wang, Chuanshui; Wang, Lin; Guo, Rongbo

    2015-01-01

    Potential for interspecies hydrogen transfer within paddy soil enrichments obtained via addition of magnetite nanoparticles and ethanol (named as PEM) was investigated. To do this, PEM derived from rice field of Hangzhou (named as PEM-HZ) was employed, because it offered the best methane production performance. Methane production and Fe (III) reduction proceeded in parallel in the presence of magnetite. Inhibition experiments with 2-bromoethane sulfonate (BES) or phosphate showed that interspecies hydrogen transfer and Fe (III) reduction also occurred in methane production from ethanol. 16S rRNA-based Illumina sequencing results showed that Dechloromonas, Thauera, Desulfovibrio and Clostridium were the dominant putative Fe (III) -reducers, and that hydrogenotrophic Methanobacterium accounted for about 88% of the total archaeal community. These results indicated that magnetite nanoparticles that acted as electron acceptor could facilitate rapid oxidation of ethanol by members of the Fe (III) -reducers in PEM-HZ and establishment of the syntrophic relationship of Fe (III) -reducers with Methanobacterium via interspecies hydrogen transfer. Our results could offer a model to understand the microbial interaction with magnetite from a novel angle during methanogenesis. PMID:26559132

  8. Methane production from horse manure and stall waste with softwood bedding.

    PubMed

    Wartell, Brian A; Krumins, Valdis; Alt, Jeffrey; Kang, Kathleen; Schwab, Bryan J; Fennell, Donna E

    2012-05-01

    Substantial stall waste is generated from horses on softwood bedding. The methane potential (G(pot)) of horse manure and constructed mixtures of stall waste with softwood bedding was determined at 35°C. G(pot) of 68, 191 and 273 mL/g volatile solids (VS) were estimated for three separate batches of horse manure, indicating variability in the material. Cumulative energy production over 20-40 days ranged from 3.11 ± 0.92 to 8.45 ± 5.42 × 10(5)kJ/metric ton wet weight horse manure alone, and from 1.69 ± 0.39 to 3.91 ± 0.47 × 10(5)kJ/metric ton wet weight horse manure plus softwood stall bedding (mixed at a 1:1 ratio on a VS basis). Softwood bedding was barely degradable and diluted the energy production of the stall waste; however, it did not cause inhibition of methane production from manure. Manually separated used softwood bedding contained substantial methane potential.

  9. Toward a Functional Definition of Methane Super-Emitters: Application to Natural Gas Production Sites.

    PubMed

    Zavala-Araiza, Daniel; Lyon, David; Alvarez, Ramón A; Palacios, Virginia; Harriss, Robert; Lan, Xin; Talbot, Robert; Hamburg, Steven P

    2015-07-01

    Emissions from natural gas production sites are characterized by skewed distributions, where a small percentage of sites-commonly labeled super-emitters-account for a majority of emissions. A better characterization of super-emitters is needed to operationalize ways to identify them and reduce emissions. We designed a conceptual framework that functionally defines superemitting sites as those with the highest proportional loss rates (methane emitted relative to methane produced). Using this concept, we estimated total methane emissions from natural gas production sites in the Barnett Shale; functionally superemitting sites accounted for roughly three-fourths of total emissions. We discuss the potential to reduce emissions from these sites, under the assumption that sites with high proportional loss rates have excess emissions resulting from abnormal or otherwise avoidable operating conditions, such as malfunctioning equipment. Because the population of functionally superemitting sites is not expected to be static over time, continuous monitoring will likely be necessary to identify them and improve their operation. This work suggests that achieving and maintaining uniformly low emissions across the entire population of production sites will require mitigation steps at a large fraction of sites.

  10. Magnetite nanoparticles facilitate methane production from ethanol via acting as electron acceptors.

    PubMed

    Yang, Zhiman; Shi, Xiaoshuang; Wang, Chuanshui; Wang, Lin; Guo, Rongbo

    2015-11-12

    Potential for interspecies hydrogen transfer within paddy soil enrichments obtained via addition of magnetite nanoparticles and ethanol (named as PEM) was investigated. To do this, PEM derived from rice field of Hangzhou (named as PEM-HZ) was employed, because it offered the best methane production performance. Methane production and Fe (III) reduction proceeded in parallel in the presence of magnetite. Inhibition experiments with 2-bromoethane sulfonate (BES) or phosphate showed that interspecies hydrogen transfer and Fe (III) reduction also occurred in methane production from ethanol. 16S rRNA-based Illumina sequencing results showed that Dechloromonas, Thauera, Desulfovibrio and Clostridium were the dominant putative Fe (III) -reducers, and that hydrogenotrophic Methanobacterium accounted for about 88% of the total archaeal community. These results indicated that magnetite nanoparticles that acted as electron acceptor could facilitate rapid oxidation of ethanol by members of the Fe (III) -reducers in PEM-HZ and establishment of the syntrophic relationship of Fe (III) -reducers with Methanobacterium via interspecies hydrogen transfer. Our results could offer a model to understand the microbial interaction with magnetite from a novel angle during methanogenesis.

  11. MATHEMATICAL MODEL FOR METHANE PRODUCTION FROM LANDFILL BIOREACTOR - A DISCUSSION PAPER HTTP://OIPS.AIP.ORG/EEO/

    EPA Science Inventory

    This discussion explains the experimental results of a landfill bioreactor (LFBR) from a microbiological perspective and provides a feasible strategy to evaluate methane production performance, since suitable models are complicated and not sufficiently reliable for anaerobic-syst...

  12. An Ecosystem Simulation Model for Methane Production and Emission from Wetlands

    NASA Technical Reports Server (NTRS)

    Potter, C. S.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Previous experimental studies suggest that methane emission from wetland is influenced by multiple interactive pathways of gas production and transport through soil and sediment layers to the atmosphere. The objective of this study is to evaluate a new simulation model of methane production and emission in wetland soils that was developed initially to help identify key processes that regulate methanogenesis and net flux of CH4 to the air, but which is designed ultimately for regional simulation using remotely sensed inputs for land cover characteristics. The foundation for these computer simulations is based on a well-documented model (CASA) of ecosystem production and carbon cycling in the terrestrial blaspheme. Modifications to represent flooded wetland soils and anaerobic decomposition include three new sub-models for: (1) layered soil temperature and water table depth (WTD) as a function of daily climate drivers, (2) CH4 production within the anoxic soil layer as a function of WTD and CO2 production under poorly drained conditions, and (3) CH4 gaseous transport pathways (molecular diffusion, ebullition, and plant vascular transport) as a function of WTD and ecosystem type. The model was applied and tested using climate and ecological data to characterize tundra wetland sites near Fairbanks, Alaska studied previously by Whalen and Reeburgh. Comparison of model predictions to measurements of soil temperature and thaw depth, water-table depth, and CH4 emissions over a two year period suggest that inter-site differences in soil physical conditions and methane fluxes could be reproduced accurately for selected periods. Day-to-day comparison of predicted emissions to measured CH4 flux rates reveals good agreement during the early part of the thaw season, but the model tends to underestimate production of CH4 during the months of July and August in both test years. Important seasonal effects, including that of falling WTD during these periods, are apparently

  13. Monitoring Production of Methane from Spills of Gasoline at UST Release Sites (Boston, MA)

    EPA Science Inventory

    Anaerobic biodegradation of the BTEX compounds can produce substantial concentrations of methane in ground water at gasoline spill sites. This methane can escape the ground water, move through the unsaturated zone and potentially produce explosive concentrations of methane in c...

  14. Methane as a product of chloroethene biodegradation under methanogenic conditions

    SciTech Connect

    Bradley, P.M.; Chapelle, F.H.

    1999-02-15

    Radiometric detection headspace analyses of microcosms containing bed sediments from two geographically distinct sites indicated that 10--39% of the radiolabeled carbon transformed during anaerobic biodegradation of [1,2-{sup 14}C]trichloroethene (TCE) or [1,2-{sup 14}C]vinyl chloride (VC) under methanogenic conditions was ultimately incorporated into {sup 14}CH{sub 4}. The results demonstrate that, in addition to ethene, ethane, and CO{sub 2}, CH{sub 4} can be a significant product of chloroethene biodegradation in some methanogenic sediments.

  15. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico.

    PubMed

    Orcutt, Beth; Samarkin, Vladimir; Boetius, Antje; Joye, Samantha

    2008-05-01

    The anaerobic oxidation of methane (AOM) in the marine subsurface is a significant sink for methane in the environment, yet our understanding of its regulation and dynamics is still incomplete. Relatively few groups of microorganisms consume methane in subsurface environments--namely the anaerobic methanotrophic archaea (ANME clades 1, 2 and 3), which are phylogenetically related to methanogenic archaea. Anaerobic oxidation of methane presumably proceeds via a 'reversed' methanogenic pathway. The ANME are generally associated with sulfate-reducing bacteria (SRB) and sulfate is the only documented final electron acceptor for AOM in marine sediments. Our comparative study explored the coupling of AOM with sulfate reduction (SR) and methane generation (MOG) in microbial communities from Gulf of Mexico cold seep sediments that were naturally enriched with methane and other hydrocarbons. These sediments harbour a variety of ANME clades and SRB. Following enrichment under an atmosphere of methane, AOM fuelled 50-100% of SR, even in sediment slurries containing petroleum-associated hydrocarbons and organic matter. In the presence of methane and sulfate, the investigated microbial communities produce methane at a small fraction ( approximately 10%) of the AOM rate. Anaerobic oxidation of methane, MOG and SR rates decreased significantly with decreasing concentration of methane, and in the presence of the SR inhibitor molybdate, but reacted differently to the MOG inhibitor 2-bromoethanesulfonate (BES). The addition of acetate, a possible breakdown product of petroleum in situ and a potential intermediate in AOM/SR syntrophy, did not suppress AOM activity; rather acetate stimulated microbial activity in oily sediment slurries.

  16. Diamond dissolution and the production of methane and other carbon-bearing species in hydrothermal diamond-anvil cells

    USGS Publications Warehouse

    Chou, I.-Ming; Anderson, Alan J.

    2009-01-01

    Raman analysis of the vapor phase formed after heating pure water to near critical (355-374 ??C) temperatures in a hydrothermal diamond-anvil cell (HDAC) reveals the synthesis of abiogenic methane. This unexpected result demonstrates the chemical reactivity of diamond at relatively low temperatures. The rate of methane production from the reaction between water and diamond increases with increasing temperature and is enhanced by the presence of a metal gasket (Re, Ir, or Inconel) which is compressed between the diamond anvils to seal the aqueous sample. The minimum detection limit for methane using Raman spectroscopy was determined to be ca. 0.047 MPa, indicating that more than 1.4 nanograms (or 8.6 ?? 10-11 mol) of methane were produced in the HDAC at 355 ??C and 30 MPa over a period of ten minutes. At temperatures of 650 ??C and greater, hydrogen and carbon dioxide were detected in addition to methane. The production of abiogenic methane, observed in all HDAC experiments where a gasket was used, necessitates a reexamination of the assumed chemical systems and intensive parameters reported in previous hydrothermal investigations employing diamonds. The results also demonstrate the need to minimize or eliminate the production of methane and other carbonic species in experiments by containing the sample within a HDAC without using a metal gasket.

  17. Use of 13C-Labeled Substrates to Determine Relative Methane Production Rates in Hypersaline Microbial Communities

    NASA Astrophysics Data System (ADS)

    Kelley, C. A.; Bebout, B.; Chanton, J.

    2015-12-01

    Rates and pathways of methane production were determined from photosynthetic soft microbial mats and gypsum-encrusted endoevaporites collected in hypersaline environments from California, Mexico and Chile, as well as an organic-rich mud from a pond in the El Tatio volcanic fields, Chile. Samples (mud, homogenized soft mats and endoevaporites) were incubated anaerobically with deoxygenated site water, and the increase in methane concentration through time in the headspaces of the incubation vials was used to determine methane production rates. To ascertain the substrates used by the methanogens, 13C-labeled methylamines, methanol, dimethylsulfide, acetate or bicarbonate were added to the incubations (one substrate per vial) and the stable isotopic composition of the resulting methane was measured. The vials amended with 13C-labeled methylamines produced the most 13C-enriched methane, generally followed by the 13C-labeled methanol-amended vials. The stable isotope data and the methane production rates were used to determine first order rate constants for each of the substrates at each of the sites. Estimates of individual substrate use revealed that the methylamines produced 55 to 92% of the methane generated, while methanol was responsible for another 8 to 40%.

  18. Methane emissions from process equipment at natural gas production sites in the United States: liquid unloadings.

    PubMed

    Allen, David T; Sullivan, David W; Zavala-Araiza, Daniel; Pacsi, Adam P; Harrison, Matthew; Keen, Kindal; Fraser, Matthew P; Daniel Hill, A; Lamb, Brian K; Sawyer, Robert F; Seinfeld, John H

    2015-01-01

    Methane emissions from liquid unloadings were measured at 107 wells in natural gas production regions throughout the United States. Liquid unloadings clear wells of accumulated liquids to increase production, employing a variety of liquid lifting mechanisms. In this work, wells with and without plunger lifts were sampled. Most wells without plunger lifts unload less than 10 times per year with emissions averaging 21,000-35,000 scf methane (0.4-0.7 Mg) per event (95% confidence limits of 10,000-50,000 scf/event). For wells with plunger lifts, emissions averaged 1000-10,000 scf methane (0.02-0.2 Mg) per event (95% confidence limits of 500-12,000 scf/event). Some wells with plunger lifts are automatically triggered and unload thousands of times per year and these wells account for the majority of the emissions from all wells with liquid unloadings. If the data collected in this work are assumed to be representative of national populations, the data suggest that the central estimate of emissions from unloadings (270 Gg/yr, 95% confidence range of 190-400 Gg) are within a few percent of the emissions estimated in the EPA 2012 Greenhouse Gas National Emission Inventory (released in 2014), with emissions dominated by wells with high frequencies of unloadings.

  19. Variation in methane production pathways associated with permafrost decomposition in collapse scar bogs of Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Prater, James L.; Chanton, Jeffrey P.; Whiting, Gary J.

    2007-12-01

    Stable isotope analysis was used to determine the distribution of methanogenic pathways at permafrost collapse scar bogs to test the hypothesis that microbial respiration and methane production are stimulated by the input of organic matter associated with permafrost degradation and collapse. An alternative hypothesis is that recently assimilated carbon produced by the fen-like vegetation (Carex, Eriophorum) growing in open water moats formed by the collapsing edge of these features stimulates microbial respiration. We found that CO2 reduction was the dominant pathway for methanogenesis within the Sphagnum areas that dominate the surface cover of these features, but relatively more acetate fermentation occurred near collapse scar moats. Methane emission and net CO2 uptake were correlated. Both were elevated in collapse scar moats and then decreased along a transect from the moats toward the center Sphagnum-dominated areas. There also appeared to be a shift toward relatively more acetate fermentation in deeper samples associated with increasing cation (calcium and magnesium) concentrations. Our results indicate that organic inputs from permafrost degradation alone do not appear to stimulate acetate fermentation. Permafrost decomposition provides conditions along the collapsing edge that are conducive to colonization by fen-like vegetation that stimulates acetate fermentation and increases methane production and emission rates.

  20. Estimating methane production rates in bogs and landfills by deuterium enrichment of pore water

    USGS Publications Warehouse

    Siegel, D.I.; Chanton, J.P.; Glaser, P.H.; Chasar, L.S.; Rosenberry, D.O.

    2001-01-01

    Raised bogs and municipal waste landfills harbor large populations of methanogens within their domed deposits of anoxic organic matter. Although the methane emissions from these sites have been estimated by various methods, limited data exist on the activity of the methanogens at depth. We therefore analyzed the stable isotopic signature of the pore waters in two raised bogs from northern Minnesota to identify depth intervals in the peat profile where methanogenic metabolism occurs. Methanogenesis enriched the deuterium (2H) content of the deep peat pore waters by as much as +11% (Vienna Standard Mean Sea Water), which compares to a much greater enrichment factor of +70% in leachate from New York City's Fresh Kills landfill. The bog pore waters were isotopically dated by tritium (3H) to be about 35 years old at 1.5 m depth, whereas the landfill leachate was estimated as ~ 17 years old from Darcy flow calculations. According to an isotopic mass balance the observed deuterium enrichment indicates that about 1.2 g of CH4m-3 d-1 were produced within the deeper peat, compared to about 2.8 g CH4 m-3 d-1 in the landfill. The values for methane production in the bog peat are substantially higher than the flux rates measured at the surface of the bogs or at the landfill, indicating that deeper methane production may be much higher than was previously assumed.

  1. Methane emissions from process equipment at natural gas production sites in the United States: liquid unloadings.

    PubMed

    Allen, David T; Sullivan, David W; Zavala-Araiza, Daniel; Pacsi, Adam P; Harrison, Matthew; Keen, Kindal; Fraser, Matthew P; Daniel Hill, A; Lamb, Brian K; Sawyer, Robert F; Seinfeld, John H

    2015-01-01

    Methane emissions from liquid unloadings were measured at 107 wells in natural gas production regions throughout the United States. Liquid unloadings clear wells of accumulated liquids to increase production, employing a variety of liquid lifting mechanisms. In this work, wells with and without plunger lifts were sampled. Most wells without plunger lifts unload less than 10 times per year with emissions averaging 21,000-35,000 scf methane (0.4-0.7 Mg) per event (95% confidence limits of 10,000-50,000 scf/event). For wells with plunger lifts, emissions averaged 1000-10,000 scf methane (0.02-0.2 Mg) per event (95% confidence limits of 500-12,000 scf/event). Some wells with plunger lifts are automatically triggered and unload thousands of times per year and these wells account for the majority of the emissions from all wells with liquid unloadings. If the data collected in this work are assumed to be representative of national populations, the data suggest that the central estimate of emissions from unloadings (270 Gg/yr, 95% confidence range of 190-400 Gg) are within a few percent of the emissions estimated in the EPA 2012 Greenhouse Gas National Emission Inventory (released in 2014), with emissions dominated by wells with high frequencies of unloadings. PMID:25488307

  2. Sodium hydroxide pretreatment of ensiled sorghum forage and wheat straw to increase methane production.

    PubMed

    Sambusiti, C; Ficara, E; Rollini, M; Manzoni, M; Malpei, F

    2012-01-01

    The aim of this study was to determine the effect of sodium hydroxide pretreatment on the chemical composition and the methane production of ensiled sorghum forage and wheat straw. NaOH pretreatment was conducted in closed bottles, at 40 °C for 24 h. Samples were soaked in a NaOH solution at different dosages (expressed in terms of total solids (TS) content) of 1 and 10% gNaOH/gTS, with a TS concentration of 160 gTS/L. At the highest NaOH dosage the reduction of cellulose, hemicelluloses and lignin was 31, 66 and 44%, and 13, 45 and 3% for sorghum and wheat straw, respectively. The concentration of soluble chemical oxygen demand (CODs) in the liquid phase after the pretreatment was also improved both for wheat straw and sorghum (up to 24 and 33%, respectively). Total sugars content increased up to five times at 10% gNaOH/gTS with respect to control samples, suggesting that NaOH pretreatment improves the hydrolysis of cellulose and hemicelluloses. The Biochemical Methane Potential (BMP) tests showed that the NaOH pretreatment favoured the anaerobic degradability of both substrates. At 1 and 10% NaOH dosages, the methane production increased from 14 to 31% for ensiled sorghum forage and from 17 to 47% for wheat straw. The first order kinetic constant increased up to 65% for sorghum and up to 163% for wheat straw.

  3. Estimating methane production rates in bogs and landfills by deuterium enrichment of pore water

    NASA Astrophysics Data System (ADS)

    Siegel, D. I.; Chanton, J. R.; Glaser, P. H.; Chasar, L. S.; Rosenberry, D. O.

    2001-12-01

    Raised bogs and municipal waste landfills harbor large populations of methanogens within their domed deposits of anoxic organic matter. Although the methane emissions from these sites have been estimated by various methods, limited data exist on the activity of the methanogens at depth. We therefore analyzed the stable isotopic signature of the pore waters in two raised bogs from northern Minnesota to identify depth intervals in the peat profile where methanogenic metabolism occurs. Methanogenesis enriched the deuterium (2H) content of the deep peat pore waters by as much as +11‰ (Vienna Standard Mean Sea Water), which compares to a much greater enrichment factor of +70‰ in leachate from New York City's Fresh Kills landfill. The bog pore waters were isotopically dated by tritium (3H) to be about 35 years old at 1.5 m depth, whereas the landfill leachate was estimated as ˜17 years old from Darcy flow calculations. According to an isotopic mass balance the observed deuterium enrichment indicates that about 1.2 g of CH4 m-3 d-1 were produced within the deeper peat, compared to about 2.8 g CH4 m-3 d-1 in the landfill. The values for methane production in the bog peat are substantially higher than the flux rates measured at the surface of the bogs or at the landfill, indicating that deeper methane production may be much higher than was previously assumed.

  4. Methane production and microbial community structure for alkaline pretreated waste activated sludge.

    PubMed

    Sun, Rui; Xing, Defeng; Jia, Jianna; Zhou, Aijuan; Zhang, Lu; Ren, Nanqi

    2014-10-01

    Alkaline pretreatment was studied to analyze the influence on waste activated sludge (WAS) reduction, methane production and microbial community structure during anaerobic digestion. Methane production from alkaline pretreated sludge (A-WAS) (pH = 12) increased from 251.2 mL/Ld to 362.2 mL/Ld with the methane content of 68.7% compared to raw sludge (R-WAS). Sludge reduction had been improved, and volatile suspended solids (VSS) removal rate and protein reduction had increased by ∼ 10% and ∼ 35%, respectively. The bacterial and methanogenic communities were analyzed using 454 pyrosequencing and clone libraries of 16S rRNA gene. Remarkable shifts were observed in microbial community structures after alkaline pretreatment, especially for Archaea. The dominant methanogenic population changed from Methanosaeta for R-WAS to Methanosarcina for A-WAS. In addition to the enhancement of solubilization and hydrolysis of anaerobic digestion of WAS, alkaline pretreatment showed significant impacts on the enrichment and syntrophic interactions between microbial communities.

  5. Methane production from rice straw with acclimated anaerobic sludge: effect of phosphate supplementation.

    PubMed

    Lei, Zhongfang; Chen, Jiayi; Zhang, Zhenya; Sugiura, Norio

    2010-06-01

    Rice straw particles were directly used as substrate for anaerobic digestion with acclimated sludge under room temperature and different levels of phosphate. Two obvious biogas production peaks were observed for all reactors, with biogas or methane yields of (0.33-0.35)m(3)/kg-VS loaded or (0.27-0.29)m(3) CH(4)/kg-VS loaded and average methane contents of 75.9-78.2%. A separated two-stage first-order kinetic model was developed in this study and showed a good fit to the experimental data when this complicated process was divided into two stages. The average biogas and methane production rate constants were (0.027-0.031)d(-1) and (0.028-0.033)d(-1), respectively, increased by 2-3 times in the second stages than those in the first. The results indicated that an adequate level of phosphate addition (465 mg-P/L) could accelerate the biogasification process: 7-13 days earlier appearance of the two peaks and shorter time needed for complete biogasification of rice straw.

  6. Simultaneous enhancement of methane production and methane content in biogas from waste activated sludge and perennial ryegrass anaerobic co-digestion: The effects of pH and C/N ratio.

    PubMed

    Dai, Xiaohu; Li, Xiaoshuai; Zhang, Dong; Chen, Yinguang; Dai, Lingling

    2016-09-01

    It is necessary to find an appropriate strategy to simultaneously enhance the methane production and methane content in biogas from waste activated sludge (WAS) and grass co-digestion. In this study an efficient strategy, i.e., adjusting the initial pH 12 and C/N ratio 17/1, for simultaneous enhancement of methane production and methane content in biogas from WAS and perennial ryegrass co-digestion was reported. Experimental results indicated that the maximal methane production was 310mL/gVSadd at the optimum conditions after 30-d anaerobic digestion, which was, respectively, about 1.5- and 3.8-fold of the sole WAS and sole perennial ryegrass anaerobic digestion. Meanwhile, the methane content in biogas was about 74%, which was much higher than that of sole WAS (64%) or sole perennial ryegrass (54%) anaerobic digestion.

  7. A trimodal porous carbon as an effective catalyst for hydrogen production by methane decomposition.

    PubMed

    Shen, Yi; Lua, Aik Chong

    2016-01-15

    A new type of porous carbon with an interconnected trimodal pore system is synthesized by a nanocasting method using nanoparticulated bimodal micro-mesoporous silica particles as the template. The synthesized template and carbon material are characterized using transmission electron microscopy (TEM), field emission electron scanning microscopy (FESEM) and nitrogen adsorption-desorption test. The synthesized carbon material has an extremely high surface area, a large pore volume and an interconnected pore structure, which could provide abundant active sites and space for chemical reactions and minimize the diffusion resistance of the reactants. The resulting carbon is used as the catalyst for hydrogen production by the thermal decomposition of methane. The catalytic results show that the as-synthesized carbon in this study produces much higher methane conversion and hydrogen yield than the commercial carbon materials.

  8. Prototype demonstration studies of production of methane from municipal solid waste at Pompano Beach, Florida

    SciTech Connect

    Faroog, S.; Daly, E.; Dasgupta, A.; Gerrish, M.P.; Sengupta, S.; Wong, K.F.

    1980-12-01

    A prototype demonstration plant for the production of methane from anaerobic digestion of municipal solid waste in amounts up to 100 tons per day is built at Pompano Beach, Florida. The plant is capable of producing 6000 ft/sup 3/ of gas per ton of municipal waste. Approximately half of the gas is methane, the other half CO/sub 2/ along with some trace gases. In this plant the raw municipal solid waste is shredded, ferrous metals removed magnetically and air classified to obtain an organic-rich light weight fraction, which is periodically mixed with sewage sludge and fed into the anaerobic digester. The processed effluent is filtered in a vacuum filter and the emerging filter cake is disposed on the nearby existing sanitary landfill. The filtrate is recirculated into the digester. Various gas, solid and liquid streams coming out of the digester are analyzed for physical, chemical and biological pollution parameters.

  9. Optimisation of a microwave pretreatment of wheat straw for methane production.

    PubMed

    Jackowiak, D; Bassard, D; Pauss, A; Ribeiro, T

    2011-06-01

    This study aims at the optimisation of a microwave pretreatment for wheat straw solubilisation and anaerobic biodegradability. The maximum yield of methane production was obtained at 150°C with an improvement of 28% compared to an untreated sample. In addition, at this temperature, the time to reach 80% of the methane volume obtained from untreated straw was about 35%. The study of ramp time and holding time at targeted temperature showed that they had no improvement effect. Thus, the best conditions are the highest heating rate for a final temperature 150°C without any holding time. The reading of energy consumed by pretreatment and energy overproduced by pretreated samples showed that increasing tVS amount and heating rate led to a saving of energy consumption. Nevertheless, to obtain a positive energy balance, a microwave device should consume less than 2.65 kJ/g(tVS).

  10. Solid-state co-digestion of expired dog food and corn stover for methane production.

    PubMed

    Xu, Fuqing; Li, Yebo

    2012-08-01

    Expired dog food was co-digested with corn stover for biogas production via solid-state anaerobic digestion (SS-AD) at feedstock-to-effluent (F/E) ratios of 2, 4, and 6 using effluent from a sewage sludge digester as inoculum. Degradation of the main components in dog food and corn stover was measured. Higher methane yields were obtained at lower F/E ratios and at higher percentages of dog food in the substrate. The highest methane yield of 304.4 L/kg VS(feed) was obtained for the substrate containing 50% corn stover and 50% dog food, which was an increase of 229% and 109% compared to digesting corn stover and dog food alone, respectively. Co-digestion of corn stover with dog food reduced the start-up time and volatile fatty acid (VFA) accumulation, but decreased the cellulose and xylan degradation of corn stover.

  11. A comparison of Methane data products from Chemistry Transport Models, SCIAMACHY and a network of FTIR stations

    NASA Astrophysics Data System (ADS)

    Dils, Bart; de Mazière, Martine; Vigouroux, Corinne

    2010-05-01

    Since its launch in 2002, the SCIAMACHY instrument on board ENVISAT has provided information on a large array of species affecting our environment. Methane, a species for which the retrieval algorithm development is still ongoing, is believed to be an important greenhouse gas. Thus, to effectively study the impact of CH4 on climate, information on its sources and sinks needs to be improved. To this end Eulerian Chemistry Transport models coupled with emission data are often compared with the available satellite data. However, since both model-emission databases and satellite data are still very much under development, it is very useful to compare both with independent third party data. In the framework of the EU project HYMN, the methane field as simulated by several Eulerian Chemistry Transport Models has been compared with data from a quasi-global network of groundbased Fourier Tranform Infrared (FTIR) spectrometers of NDACC. The FTIR data have been harmonized across the network in order to eliminate any station to station biases resulting from different retrieval parameter settings such as the choice of the retrieval spectral microwindows and the a priori profile selection. The models in question are TM4 developed at the Royal Netherlands Meteorological Institute (KNMI), LMDz-INCA (Laboratoire des Sciences du Climat et de l'Environnement (LSCE)) and CTM2 from the University of Oslo. The impact of several emission inventories on the modeled atmospheric CH4 distribution will be assessed. We will also discuss the inter-comparison of the latest IMAP-DOAS and WFM-DOAS CH4 SCHIAMACHY satellite products with said FTIR and model datasets, focusing on the seasonal cycle of methane.

  12. Microbially-Enhanced Coal Bed Methane: Strategies for Increased Biogenic Production

    NASA Astrophysics Data System (ADS)

    Davis, K.; Barhart, E. P.; Schweitzer, H. D.; Cunningham, A. B.; Gerlach, R.; Hiebert, R.; Fields, M. W.

    2014-12-01

    Coal is the largest fossil fuel resource in the United States. Most of this coal is deep in the subsurface making it costly and potentially dangerous to extract. However, in many of these deep coal seams, methane, the main component of natural gas, has been discovered and successfully harvested. Coal bed methane (CBM) currently accounts for approximately 7.5% of the natural gas produced in the U.S. Combustion of natural gas produces substantially less CO2 and toxic emissions (e.g. heavy metals) than combustion of coal or oil thereby making it a cleaner energy source. In the large coal seams of the Powder River Basin (PRB) in southeast Montana and northeast Wyoming, CBM is produced almost entirely by biogenic processes. The in situ conversion of coal to CBM by the native microbial community is of particular interest for present and future natural gas sources as it provides the potential to harvest energy from coal seams with lesser environmental impacts than mining and burning coal. Research at Montana State University has shown the potential for enhancing the subsurface microbial processes that produce CBM. Long-term batch enrichments have investigated the methane enhancement potential of yeast extract as well as algal and cyanobacterial biomass additions with increased methane production observed with all three additions when compared to no addition. Future work includes quantification of CBM enhancement and normalization of additions. This presentation addresses the options thus far investigated for increasing CBM production and the next steps for developing the enhanced in situ conversion of coal to CBM.

  13. Seafloor methane: Atlantic bubble bath

    NASA Astrophysics Data System (ADS)

    Kessler, John

    2014-09-01

    The release of large quantities of methane from ocean sediments might affect global climate change. The discovery of expansive methane seeps along the US Atlantic margin provides an ideal test bed for such a marine methane-climate connection.

  14. Straw application in paddy soil enhances methane production also from other carbon sources

    NASA Astrophysics Data System (ADS)

    Yuan, Q.; Pump, J.; Conrad, R.

    2013-08-01

    Flooded rice fields are an important source of the greenhouse gas methane. Methane is produced from rice straw (RS), soil organic matter (SOM), and rice root organic carbon (ROC). Addition of RS is widely used for ameliorating soil fertility. However, this practice provides additional substrate for CH4 production and results in increased CH4 emission. Here, we found that decomposing RS is not only a substrate of CH4 production, but in addition stimulates CH4 production from SOM and ROC. Apart from accelerating the creation of reduced conditions in the soil environment, RS decomposition exerted a positive priming effect on SOM-derived CH4 production. In particular, hydrogenotrophic methanogenesis from SOM-derived CO2 was stimulated, presumably by H2 released from RS decomposition. On the other hand, the positive priming effect of RS on ROC-derived CH4 production was probably caused by the significant increase of the abundance of methanogenic archaea in the RS treatment compared with the untreated control. Our results show that traditional management of rice residues exerts a positive feedback on CH4 production from rice fields, thus exacerbating its effect on the global CH4 budget.

  15. Straw application in paddy soil enhances methane production also from other carbon sources

    NASA Astrophysics Data System (ADS)

    Yuan, Q.; Pump, J.; Conrad, R.

    2014-01-01

    Flooded rice fields are an important source of the greenhouse gas methane. Methane is produced from rice straw (RS), soil organic matter (SOM), and rice root organic carbon (ROC). Addition of RS is widely used for ameliorating soil fertility. However, this practice provides additional substrate for CH4 production and results in increased CH4 emission. Here, we found that decomposing RS is not only a substrate of CH4 production, but in addition stimulates CH4 production from SOM and ROC. Apart from accelerating the creation of reduced conditions in the soil environment, RS decomposition resulted in enhancement of SOM-derived CH4 production. In particular, hydrogenotrophic methanogenesis from SOM-derived CO2 was stimulated, presumably by H2 released from RS decomposition. On the other hand, the enhancement of ROC-derived CH4 production after RS application was probably caused by the significant increase of the abundance of methanogenic Archaea in the RS treatment compared with the untreated control. Our results show that traditional management of rice residues exerts a positive feedback on CH4 production from rice fields, thus exacerbating its effect on the global CH4 budget.

  16. Effects of lactic acid bacteria silage inoculation on methane emission and productivity of Holstein Friesian dairy cattle.

    PubMed

    Ellis, J L; Hindrichsen, I K; Klop, G; Kinley, R D; Milora, N; Bannink, A; Dijkstra, J

    2016-09-01

    Inoculants of lactic acid bacteria (LAB) are used to improve silage quality and prevent spoilage via increased production of lactic acid and other organic acids and a rapid decline in silage pH. The addition of LAB inoculants to silage has been associated with increases in silage digestibility, dry matter intake (DMI), and milk yield. Given the potential change in silage and rumen fermentation conditions accompanying these silage additives, the aim of this study was to investigate the effect of LAB silage inoculants on DMI, digestibility, milk yield, milk composition, and methane (CH4) production from dairy cows in vivo. Eight mid-lactation Holstein-Friesian dairy cows were grouped into 2 blocks of 4 cows (multiparous and primiparous) and used in a 4×4 double Latin square design with 21-d periods. Methane emissions were measured by indirect calorimetry. Treatments were grass silage (mainly ryegrass) with no inoculant (GS), with a long-term inoculant (applied at harvest; GS+L), with a short-term inoculant (applied 16h before feeding; GS+S), or with both long and short-term inoculants (GS+L+S). All diets consisted of grass silage and concentrate (75:25 on a dry matter basis). The long-term inoculant consisted of a 10:20:70 mixture of Lactobacillus plantarum, Lactococcus lactis, and Lactobacillus buchneri, and the short-term inoculant was a preparation of Lc. lactis. Dry matter intake was not affected by long-term or short-term silage inoculation, nor was dietary neutral detergent fiber or fat digestibility, or N or energy balance. Milk composition (except milk urea) and fat and protein-corrected milk yield were not affected by long- or short-term silage inoculation, nor was milk microbial count. However, milk yield tended to be greater with long-term silage inoculation. Methane expressed in units of grams per day, grams per kilogram of DMI, grams per kilogram of milk, or grams per kilogram of fat and protein-corrected milk yield was not affected by long- or short

  17. Effects of lactic acid bacteria silage inoculation on methane emission and productivity of Holstein Friesian dairy cattle.

    PubMed

    Ellis, J L; Hindrichsen, I K; Klop, G; Kinley, R D; Milora, N; Bannink, A; Dijkstra, J

    2016-09-01

    Inoculants of lactic acid bacteria (LAB) are used to improve silage quality and prevent spoilage via increased production of lactic acid and other organic acids and a rapid decline in silage pH. The addition of LAB inoculants to silage has been associated with increases in silage digestibility, dry matter intake (DMI), and milk yield. Given the potential change in silage and rumen fermentation conditions accompanying these silage additives, the aim of this study was to investigate the effect of LAB silage inoculants on DMI, digestibility, milk yield, milk composition, and methane (CH4) production from dairy cows in vivo. Eight mid-lactation Holstein-Friesian dairy cows were grouped into 2 blocks of 4 cows (multiparous and primiparous) and used in a 4×4 double Latin square design with 21-d periods. Methane emissions were measured by indirect calorimetry. Treatments were grass silage (mainly ryegrass) with no inoculant (GS), with a long-term inoculant (applied at harvest; GS+L), with a short-term inoculant (applied 16h before feeding; GS+S), or with both long and short-term inoculants (GS+L+S). All diets consisted of grass silage and concentrate (75:25 on a dry matter basis). The long-term inoculant consisted of a 10:20:70 mixture of Lactobacillus plantarum, Lactococcus lactis, and Lactobacillus buchneri, and the short-term inoculant was a preparation of Lc. lactis. Dry matter intake was not affected by long-term or short-term silage inoculation, nor was dietary neutral detergent fiber or fat digestibility, or N or energy balance. Milk composition (except milk urea) and fat and protein-corrected milk yield were not affected by long- or short-term silage inoculation, nor was milk microbial count. However, milk yield tended to be greater with long-term silage inoculation. Methane expressed in units of grams per day, grams per kilogram of DMI, grams per kilogram of milk, or grams per kilogram of fat and protein-corrected milk yield was not affected by long- or short

  18. Utilization of coal mine methane for methanol and SCP production. Topical report, May 5, 1995--March 4, 1996

    SciTech Connect

    1998-12-31

    The feasibility of utilizing a biological process to reduce methane emissions from coal mines and to produce valuable single cell protein (SCP) and/or methanol as a product has been demonstrated. The quantities of coal mine methane from vent gas, gob wells, premining wells and abandoned mines have been determined in order to define the potential for utilizing mine gases as a resource. It is estimated that 300 MMCFD of methane is produced in the United States at a typical concentration of 0.2-0.6 percent in ventilation air. Of this total, almost 20 percent is produced from the four Jim Walter Resources (JWR) mines, which are located in very gassy coal seams. Worldwide vent gas production is estimated at 1 BCFD. Gob gas methane production in the U.S. is estimated to be 38 MMCFD. Very little gob gas is produced outside the U.S. In addition, it is estimated that abandoned mines may generate as much as 90 MMCFD of methane. In order to make a significant impact on coal mine methane emissions, technology which is able to utilize dilute vent gases as a resource must be developed. Purification of the methane from the vent gases would be very expensive and impractical. Therefore, the process application must be able to use a dilute methane stream. Biological conversion of this dilute methane (as well as the more concentrated gob gases) to produce single cell protein (SCP) and/or methanol has been demonstrated in the Bioengineering Resources, Inc. (BRI) laboratories. SCP is used as an animal feed supplement, which commands a high price, about $0.11 per pound.

  19. Methane excess production in oxygen-rich polar water and a model of cellular conditions for this paradox

    NASA Astrophysics Data System (ADS)

    Damm, E.; Thoms, S.; Beszczynska-Möller, A.; Nöthig, E. M.; Kattner, G.

    2015-09-01

    Summer sea ice cover in the Arctic Ocean has undergone a reduction in the last decade exposing the sea surface to unforeseen environmental changes. Melting sea ice increases water stratification and induces nutrient limitation, which is also known to play a crucial role in methane formation in oxygenated surface water. We report on an excess of methane in the marginal ice zone in the western Fram Strait. Our study is based on measurements of oxygen, methane, DMSP, nitrate and phosphate concentrations as well as on phytoplankton composition and light transmission, conducted along the 79°N oceanographic transect, in the western part of the Fram Strait and in Northeast Water Polynya region off Greenland. Between the eastern Fram Strait, where Atlantic water enters from the south and the western Fram Strait, where Polar water enters from the north, different nutrient limitations occurred and consequently different bloom conditions were established. Ongoing sea ice melting enhances the environmental differences between both water masses and initiates regenerated production in the western Fram Strait. We show that in this region methane is in situ produced while DMSP (dimethylsulfoniopropionate) released from sea ice may serve as a precursor for the methane formation. The methane production occured despite high oxygen concentrations in this water masses. As the metabolic activity (respiration) of unicellular organisms explains the presence of anaerobic conditions in the cellular environment we present a theoretical model which explains the maintenance of anaerobic conditions for methane formation inside bacterial cells, despite enhanced oxygen concentrations in the environment.

  20. Improving methane production and phosphorus release in anaerobic digestion of particulate saline sludge from a brackish aquaculture recirculation system.

    PubMed

    Zhang, Xuedong; Ferreira, Rui B; Hu, Jianmei; Spanjers, Henri; van Lier, Jules B

    2014-06-01

    In this study, batch tests were conducted to examine the effects of trehalose and glycine betaine as well as potassium on the specific methanogenic activity (SMA), acid and alkaline phosphatase activity of anaerobic biomass and phosphorus release in anaerobic digestion of saline sludge from a brackish recirculation aquaculture system. The results of ANOVA and Tukey's HSD (honestly significant difference) tests showed that glycine betaine and trehalose enhanced SMA of anaerobic biomass and reactive phosphorus release from the particulate waste. Moreover, SMA tests revealed that methanogenic sludge, which was long-term acclimatized to a salinity level of 17 g/L was severely affected by the increase in salinity to values exceeding 35 g/L. Addition of compatible solutes, such as glycine betaine and trehalose, could be used to enhance the specific methane production rate and phosphorus release in anaerobic digestion from particulate organic waste produced in marine or brackish aquaculture recirculation systems.

  1. Automotive fuels from cellulose materials. [Production of ethanol and methane simultaneously

    SciTech Connect

    Higginson, B.; Thornton, R.H.

    1980-01-01

    The results of this investigation showed that it was feasible to link the alcohol fermentation and anaerobic digestion processes into a system for the production of both alcohol and methane from organic substrates. The rate of ethanol production has been determined with respect to cell concentration and the prerequisite of both a high cell concentration and yeast recycling has been shown. Ethanol fermentation under reduced pressure has been shown to be feasible and to give higher ethanol productivities. Although optimization of fermentation has been attempted in this report, with due regard to energy conservation, for industrial application the cost of sugar will be the overriding factor. Cysewski and Wilke (7) pointed out that the cost of sugar overwhelms all other costs in the production of ethanol by fermetation: up to 70 to 80% of the total cost of the ethanol. Results showed that the resultant fermentation spent wash and extracted crop residues could be anaerobically digested to produce methane (and carbon dioxide). A hydraulic retention time of 10 days or longer was needed for effective digestion in which a reduction of chemical oxygen demand (COD) of up to 85% was achieved. Results indicated that further reduction in retention time may be possible if the microbial biomass could be either retained on support media, or recycled more effectively. A gas production rate of 4270 liters gas/m/sup 3/ culture/day at 11.6 day retention time was obtained with the anaerobic contact digester using fodder beet spent wash. Using the same substrate, results over short periods with the anaerobic filter system could produce up to 4.8 liters gas/litre culture/day. The high methane composition of this gas (75 to 80%) make this an attractive proposition.

  2. In vitro Fermentation, Digestion Kinetics and Methane Production of Oilseed Press Cakes from Biodiesel Production

    PubMed Central

    Olivares-Palma, S. M.; Meale, S. J.; Pereira, L. G. R.; Machado, F. S.; Carneiro, H.; Lopes, F. C. F.; Maurício, R. M.; Chaves, A. V.

    2013-01-01

    Following the extraction of oil for biodiesel production, oilseed press cakes are high in fat. As the dietary supplementation of fat is currently considered the most promising strategy of consistently depressing methanogenesis, it follows that oilseed press cakes may have a similar potential for CH4 abatement. As such, this study aimed to characterise the nutritive value of several oilseed press cakes, glycerine and soybean meal (SBM) and to examine their effects on in vitro ruminal fermentation, digestion kinetics and CH4 production. Moringa press oil seeds exhibited the greatest in sacco effective degradability (ED) of DM and CP (p<0.05). In vitro gas production (ml/g digested DM) was not affected (p = 0.70) by supplement at 48 h of incubation. In vitro DMD was increased with the supplementation of glycerine and SBM at all levels of inclusion. Moringa oilseed press cakes produced the lowest CH4 (mg/g digested DM) at 6 and 12 h of incubation (p<0.05). The findings suggest that moringa oilseed press cake at 400 g/kg DM has the greatest potential of the oilseed press cakes examined in this study, to reduce CH4 production, without adversely affecting nutrient degradability. PMID:25049890

  3. In vitro Fermentation, Digestion Kinetics and Methane Production of Oilseed Press Cakes from Biodiesel Production.

    PubMed

    Olivares-Palma, S M; Meale, S J; Pereira, L G R; Machado, F S; Carneiro, H; Lopes, F C F; Maurício, R M; Chaves, A V

    2013-08-01

    Following the extraction of oil for biodiesel production, oilseed press cakes are high in fat. As the dietary supplementation of fat is currently considered the most promising strategy of consistently depressing methanogenesis, it follows that oilseed press cakes may have a similar potential for CH4 abatement. As such, this study aimed to characterise the nutritive value of several oilseed press cakes, glycerine and soybean meal (SBM) and to examine their effects on in vitro ruminal fermentation, digestion kinetics and CH4 production. Moringa press oil seeds exhibited the greatest in sacco effective degradability (ED) of DM and CP (p<0.05). In vitro gas production (ml/g digested DM) was not affected (p = 0.70) by supplement at 48 h of incubation. In vitro DMD was increased with the supplementation of glycerine and SBM at all levels of inclusion. Moringa oilseed press cakes produced the lowest CH4 (mg/g digested DM) at 6 and 12 h of incubation (p<0.05). The findings suggest that moringa oilseed press cake at 400 g/kg DM has the greatest potential of the oilseed press cakes examined in this study, to reduce CH4 production, without adversely affecting nutrient degradability. PMID:25049890

  4. In vitro Fermentation, Digestion Kinetics and Methane Production of Oilseed Press Cakes from Biodiesel Production.

    PubMed

    Olivares-Palma, S M; Meale, S J; Pereira, L G R; Machado, F S; Carneiro, H; Lopes, F C F; Maurício, R M; Chaves, A V

    2013-08-01

    Following the extraction of oil for biodiesel production, oilseed press cakes are high in fat. As the dietary supplementation of fat is currently considered the most promising strategy of consistently depressing methanogenesis, it follows that oilseed press cakes may have a similar potential for CH4 abatement. As such, this study aimed to characterise the nutritive value of several oilseed press cakes, glycerine and soybean meal (SBM) and to examine their effects on in vitro ruminal fermentation, digestion kinetics and CH4 production. Moringa press oil seeds exhibited the greatest in sacco effective degradability (ED) of DM and CP (p<0.05). In vitro gas production (ml/g digested DM) was not affected (p = 0.70) by supplement at 48 h of incubation. In vitro DMD was increased with the supplementation of glycerine and SBM at all levels of inclusion. Moringa oilseed press cakes produced the lowest CH4 (mg/g digested DM) at 6 and 12 h of incubation (p<0.05). The findings suggest that moringa oilseed press cake at 400 g/kg DM has the greatest potential of the oilseed press cakes examined in this study, to reduce CH4 production, without adversely affecting nutrient degradability.

  5. Effect of temperature and retention time on methane production from beef cattle waste

    SciTech Connect

    Varel, V.H.; Hashimoto, A.G.; Chen, Y.R.

    1980-08-01

    The effect of temperature and retention time on the rate of methane production from waste of beef cattle fed a finishing diet was investigated by using continuously mixed 3-liter working volume anaerobic fermentors. The temperatures ranged from 30 to 65/sup 0/C with 5/sup 0/C increments between fermentors. The fermentors were fed once per day with 6% volatile solids (organic matter). Retention time for each temperature was varied from 18 to 2.5 days. After 3-volume turnovers, samples were obtained on 4 consecutive days. The highest methane production rate (liters/liter of fermentor per day) and methane yield at that rate (liters/gram of volatile solids) were 1.27 and 0.19 at 9 days and 30/sup 0/C, 1.60 and 0.16 at 6 days and 35/sup 0/C, 2.28 and 0.23 at 6 days and 40/sup 0/C, 2.42 and 0.24 at 6 days and 45/sup 0/C, 2.83 and 0.14 at 3 days and 50/sup 0/C, 2.75 and 0.14 at 3 days and 55/sup 0/C, 3.18 and 0.14 at 2.5 days and 60/sup 0/C, and 1.69 and 0.17 at 6 days and 65/sup 0/C. Volatile solids degradation at these retention times and temperatures was between 46 and 54%. The concentrations of volatile acids in the 30 to 55/sup 0/C fermentors were generally below 2000 mg/liter, with the exception of the 3-day retention time. The 60 and 65/sup 0/C fermentors were usually above this level for all retention times. These studies indicate potential rates of methane production from the fermentation of untreated waste of beef cattle fed high-grain finishing diets. This information should serve as preliminary guidelines for various kinetic analyses and aid in economic evaluations of the potential feasibility of fermenting beef cattle waste to methane.

  6. Process for the utilization of household rubbish or garbage and other organic waste products for the production of methane gas

    SciTech Connect

    Hunziker, M.; Schildknecht, A.

    1985-04-16

    Non-organic substances are separated from household garbage and the organic substances are fed in proportioned manner into a mixing tank and converted into slurry by adding liquid. The slurry is crushed for homogenization purposes in a crushing means and passed into a closed holding container. It is then fed over a heat exchanger and heated to 55/sup 0/ to 60/sup 0/ C. The slurry passes into a plurality of reaction vessels in which the methane gas and carbon dioxide are produced. In a separating plant, the mixture of gaseous products is broken down into its components and some of the methane gas is recycled by bubbling it through both the holding tank and the reaction tank, the remainder being stored in gasholders. The organic substances are degraded much more rapidly through increasing the degradation temperature and as a result constructional expenditure can be reduced.

  7. Methane production from protozoan endosymbionts following stimulation of microbial metabolism within subsurface sediments

    PubMed Central

    Holmes, Dawn E.; Giloteaux, Ludovic; Orellana, Roberto; Williams, Kenneth H.; Robbins, Mark J.; Lovley, Derek R.

    2014-01-01

    Previous studies have suggested that protozoa prey on Fe(III)- and sulfate-reducing bacteria that are enriched when acetate is added to uranium contaminated subsurface sediments to stimulate U(VI) reduction. In order to determine whether protozoa continue to impact subsurface biogeochemistry after these acetate amendments have stopped, 18S rRNA and ß-tubulin sequences from this phase of an in situ uranium bioremediation field experiment were analyzed. Sequences most similar to Metopus species predominated, with the majority of sequences most closely related to M. palaeformis, a cilitated protozoan known to harbor methanogenic symbionts. Quantification of mcrA mRNA transcripts in the groundwater suggested that methanogens closely related to Metopus endosymbionts were metabolically active at this time. There was a strong correlation between the number of mcrA transcripts from the putative endosymbiotic methanogen and Metopus ß-tubulin mRNA transcripts during the course of the field experiment, suggesting that the activity of the methanogens was dependent upon the activity of the Metopus species. Addition of the eukaryotic inhibitors cyclohexamide and colchicine to laboratory incubations of acetate-amended subsurface sediments significantly inhibited methane production and there was a direct correlation between methane concentration and Metopus ß-tubulin and putative symbiont mcrA gene copies. These results suggest that, following the stimulation of subsurface microbial growth with acetate, protozoa harboring methanogenic endosymbionts become important members of the microbial community, feeding on moribund biomass and producing methane. PMID:25147543

  8. Effect of recirculation rate on methane production and SEBAR system performance using active stage digester.

    PubMed

    Tubtong, Cheevanuch; Towprayoon, Sirintornthep; Connor, Michael Anthony; Chaiprasert, Pawinee; Nopharatana, Annop

    2010-09-01

    A project was undertaken to examine the feasibility of treating organic wastes from Thai fruit and vegetable markets using the sequential batch anaerobic digester (SEBAR) approach. A key feature of the SEBAR system is the regular interchanging, or recirculation, of portions of leachate between each freshly filled digester and a support digester to which it is coupled until it is ready to operate independently. Leachate transfer from this support digester to the fresh waste digester provides additional alkalinity to help counteract the effects of early high acid release rates; it also helps build a balanced microbial population in the fresh waste digester. To optimize the leachate recirculation process, the effect of varying the quantities of leachate interchanged between freshly filled waste digesters and the still highly active support digesters to which they were coupled was studied. It was found that increasing the recirculation rate accelerated the onset of both waste degradation and methane production. The increasing of recirculation rate from 10% to 20% and 10% to 30% could reduce the SEBAR cycle period by approximately 7% and 22% without significant reduction in the amount of methane obtained from the systems. The methane yields were 0.0063, 0.0068 and 0.0077 l g(-1) VS added in the NEW digester per day using leachate recirculation rates of 10%, 20% and 30%, respectively. This finding has potentially important practical and economic implications for those using the SEBAR system to add value to market waste. PMID:20124320

  9. Effect of pH buffering capacity and sources of dietary sulfur on rumen fermentation, sulfide production, methane production, sulfate reducing bacteria, and total Archaea in in vitro rumen cultures.

    PubMed

    Wu, Hao; Meng, Qingxiang; Yu, Zhongtang

    2015-06-01

    The effects of three types of dietary sulfur on in vitro fermentation characteristics, sulfide production, methane production, and microbial populations at two different buffer capacities were examined using in vitro rumen cultures. Addition of dry distilled grain with soluble (DDGS) generally decreased total gas production, degradation of dry matter and neutral detergent fiber, and concentration of total volatile fatty acids, while increasing ammonia concentration. High buffering capacity alleviated these adverse effects on fermentation. Increased sulfur content resulted in decreased methane emission, but total Archaea population was not changed significantly. The population of sulfate reducing bacteria was increased in a sulfur type-dependent manner. These results suggest that types of dietary sulfur and buffering capacity can affect rumen fermentation and sulfide production. Diet buffering capacity, and probably alkalinity, may be increased to alleviate some of the adverse effects associated with feeding DDGS at high levels. PMID:25797103

  10. Effect of pH buffering capacity and sources of dietary sulfur on rumen fermentation, sulfide production, methane production, sulfate reducing bacteria, and total Archaea in in vitro rumen cultures.

    PubMed

    Wu, Hao; Meng, Qingxiang; Yu, Zhongtang

    2015-06-01

    The effects of three types of dietary sulfur on in vitro fermentation characteristics, sulfide production, methane production, and microbial populations at two different buffer capacities were examined using in vitro rumen cultures. Addition of dry distilled grain with soluble (DDGS) generally decreased total gas production, degradation of dry matter and neutral detergent fiber, and concentration of total volatile fatty acids, while increasing ammonia concentration. High buffering capacity alleviated these adverse effects on fermentation. Increased sulfur content resulted in decreased methane emission, but total Archaea population was not changed significantly. The population of sulfate reducing bacteria was increased in a sulfur type-dependent manner. These results suggest that types of dietary sulfur and buffering capacity can affect rumen fermentation and sulfide production. Diet buffering capacity, and probably alkalinity, may be increased to alleviate some of the adverse effects associated with feeding DDGS at high levels.

  11. Influence of Oxygenated Compounds on Reaction Products in a Microwave Plasma Methane Pyrolysis Assembly for Post-Processing of Sabatier Methane

    NASA Technical Reports Server (NTRS)

    Mansell, J. Matthew; Abney, Morgan B.; Miller, Lee A.

    2011-01-01

    The state-of-the-art Carbon Dioxide Reduction Assembly (CRA) was delivered to the International Space Station (ISS) in April 2010. The system is designed to accept carbon dioxide from the Carbon Dioxide Removal Assembly and hydrogen from the Oxygen Generation Assembly. The two gases are reacted in the CRA in a Sabatier reactor to produce water and methane. Venting of methane results in an oxygen resupply requirement of about 378 lbs per crew member per year. If the oxygen is supplied as water, the total weight for resupply is about 476 lb per crew member per year. For long-term missions beyond low Earth orbit, during which resupply capabilities will be further limited, recovery of hydrogen from methane is highly desirable. For this purpose, NASA is pursuing development of a Plasma Pyrolysis Assembly (PPA) capable of recovering hydrogen from methane. Under certain conditions, water vapor and carbon dioxide (nominally intended to be separated from the CRA outlet stream) may be present in the PPA feed stream. Thus, testing was conducted in 2010 to determine the effect of these "oxygenated" compounds on PPA performance, particularly the effect of inlet carbon dioxide and water variations on the PPA product stream. This paper discusses the test set-up, analysis, and results of this testing

  12. Influence of Oxygenated Compounds on Reaction Products in a Microwave Plasma Methane Pyrolysis Assembly for Post-Processing of Sabatier Methane

    NASA Technical Reports Server (NTRS)

    Mansell, J. Matthew; Abney, Morgan B.

    2012-01-01

    The state-of-the-art Carbon Dioxide Reduction Assembly (CRA) was delivered to the International Space Station (ISS) in April 2010. The system is designed to accept carbon dioxide from the Carbon Dioxide Removal Assembly and hydrogen from the Oxygen Generation Assembly. The two gases are reacted in the CRA in a Sabatier reactor to produce water and methane. Venting of methane results in an oxygen resupply requirement of about 378 lbs per crew member per year. If the oxygen is supplied as water, the total weight for resupply is about 476 lb per crew member per year. For long-term missions beyond low Earth orbit, during which resupply capabilities will be further limited, recovery of hydrogen from methane is highly desirable. For this purpose, NASA is pursuing development of a Plasma Pyrolysis Assembly (PPA) capable of recovering hydrogen from methane. Under certain conditions, water vapor and carbon dioxide (nominally intended to be separated from the CRA outlet stream) may be present in the PPA feed stream. Thus, testing was conducted in 2010 to determine the effect of these oxygenated compounds on PPA performance, particularly the effect of inlet carbon dioxide and water variations on the PPA product stream. This paper discusses the test set-up, analysis, and results of this testing.

  13. In vitro inhibition of microbial methane production by 9,10-anthraquinone.

    PubMed

    Garcia-Lopez, P M; Kung, L; Odom, J M

    1996-09-01

    Monensin, 2,2-dichloroacetamide, and 9,10-anthraquinone were incubated for 24 h in ruminal fluid and buffer with 100:0, 50:50, and 10:90 forage-concentrate diets. Monensin (.5 ppm of the fluid) increased (P < .05) the molar proportion of propionate in the 50 and 100% forage diets but not in the high concentrate diet. At the same level of addition, 2,2-dichloroacetamide increased (P < .05) the molar proportion of propionate only in the 50:50 forage-concentrate diet. Relative to control cultures, monensin and 2,2-dichloroacetamide numerically decreased methane production in the 10 and 100% forage diets and decreased (P < .05) methane in the 50% forage diet. Hydrogen production was unaffected by treatment. Lack of an effect on fermentation end products in the high concentrate diet was probably a result of the low dose levels. In general, increasing levels of 9,10-anthraquinone (.5, 1.0, and 5.0 ppm) reduced total VFA concentration and the molar proportion of acetate, and increased propionate, butyrate and valerate. Increasing levels of 9,10-anthraquinone caused linear and quadratic decreases (P < .05) in methane production, and increases (P < .05) in hydrogen. There were no consistent effects on ammonia concentration in culture fluid from any of the compounds. In continuous culture of a 10:90 forage-concentrate diet, addition of 9,10-anthraquinone (10 ppm of the fluid/12 h) caused changes similar to those observed in batch culture with the exception of a decreased (P < .05) molar percentage of propionate, which may have been due to the high dose. The data are interpreted to indicate that 9,10-anthraquinone has the ability to alter in vitro microbial fermentation.

  14. Wood ant nests as hot spots of carbon dioxide production and cold spots of methane oxidation in temperate forests

    NASA Astrophysics Data System (ADS)

    Jilkova, Veronika; Picek, Tomas; Cajthaml, Tomas; Frouz, Jan

    2016-04-01

    Wood ant nests are known as hot spots of carbon dioxide (CO2) production and are also thought to affect methane (CH4) flux. Stable high temperatures are maintained in ant nests even in cold environments. Here we focused on quantification of CO2 and CH4 flux in wood ant nests, contribution of ants and microbes to CO2 production, properties of nest material that affect CO2 production and the role of ants and microbes in the maintenance of nest temperature. The research was conducted in temperate and boreal forests inhabited by wood ants (Formica s. str.). Gas fluxes were measured either by an infrared gas analyser or a static chamber technique. Ants and nest materials were also incubated in a laboratory. Material properties potentially influencing CO2 flux, such as moisture, nutrient content or temperature were determined. According to the results, CH4 oxidation was lower in wood ant nests than in the surrounding forest soil suggesting that some characteristics of ant nests hinder CH4 oxidation or promote CH4 production. These characteristics were mainly available carbon and nitrogen contents. Wood ant nests clearly are hot spots of CO2 production in temperate forests originating mainly from ant and also from microbial metabolism. Most important properties positively affecting CO2 production were found to be moisture, nutrient content and temperature. Nest temperature is maintained by ant and microbial metabolism; nests from colder environments produce more metabolic heat to maintain similar temperature as nests from warmer environments. In conclusion, as the abundance of wood ant nests in some forests can be very high, ant nests may largely increase heterogeneity in greenhouse gas fluxes in forest ecosystems.

  15. River methane hot-spots: Continuous methane ebullition measurements over an annual cycle linked to river sediment production

    NASA Astrophysics Data System (ADS)

    Wilkinson, Jeremy; Maeck, Andreas; Ashboul, Zeyad; Lorke, Andreas

    2015-04-01

    Hot spot methane ebullition from impounded river reaches matches high rates observed around the globe. Ebullition dominates total methane flux in the Saar River (Germany) and is largely determined by sediment deposition rate. Using automated bubble traps developed in-house, and deployed over a year at four sites, we collected high resolution data showing that hydrodynamic disturbances from shipping, lock operations and hydrograph events trigger ebullition episodes. Reverse smoothing was used to integrate the observed ebullition back in time, and helped in visualizing the data, and provides a time-series closer to methane accumulation in the sediments, whereas ebullition shows the triggering and release of the accumulated gas. One major hydrological disturbance of shallow-water sediment released around 13% of the total annual ebullition at that site, and ebullition generally followed the seasonal sediment temperature variations. The same event damped ebullition from deeper water sites. Total annual ebullition values ranged from 200 to 500 gCH4 m-2 yr-1. Ebullition from shallow water sediments in winter ceased for extended periods, but continued un-broken from deeper sites. With on-going measurements we believe these findings will help to improve estimates and the modelling of methane emissions from impounded river systems.

  16. The cumulative methane production from dairy cattle slurry can be explained by its volatile solid, temperature and length of storage.

    PubMed

    Sawamoto, Takuji; Nakamura, Megumi; Nekomoto, Kenji; Hoshiba, Shinji; Minato, Keiko; Nakayama, Motoo; Osada, Takashi

    2016-06-01

    In order to refine the national estimate of methane emission from stored cattle slurry, it is important to comprehend the basic characteristics of methane production. Two dairy cattle slurries were obtained from livestock farms located in Hokkaido (a northern island) and Kyushu (a southern island). The slurries were diluted with water into three levels: undiluted, three times diluted, and 10 times diluted. Three hundred mL of the slurries were put into a bottle with a headspace volume of 2.0 L, which was filled with nitrogen gas and then sealed by butyl rubber. Four levels of temperature were used for incubation: 35, 25, 15 and 5 °C. The time course of the cumulative methane production per volatile solid (VS) was satisfactorily expressed by an asymptotic regression model. The effect of dilution on the methane production per VS was not distinctive, but that of temperature was of primary importance. In particular, higher temperature yields a higher potential production and a shorter time when the cumulative production reaches half of the potential production. The inclusive and simple models obtained in this study indicate that the cumulative methane production from stored cattle slurry can be explained by VS, temperature and length of storage.

  17. Production of hydrogen bromide by bromine-methane reactions at elevated temperature.

    SciTech Connect

    Bradshaw, Robert W.; Larson, Richard S.

    2003-05-01

    Hydrogen bromide is a potentially useful intermediate for hydrogen production by electrolysis because it has a low cell potential and is extremely soluble in water. Processes have been proposed to exploit these properties, but among the important issues to be resolved is the efficiency of HBr production from hydrocarbon precursors. This investigation evaluated a fundamental facet of such a technology by studying the reaction of methane and bromine at elevated temperature to determine the yield and kinetics of HBr formation. Laboratory experimentation and computational chemistry were combined to provide a description of this reaction for possible application to reactor design at a larger scale. Experimental studies with a tubular flow reactor were used to survey a range of reactant ratios and reactor residence times at temperatures between 500 C and 800 C. At temperatures near 800 C with excess methane, conversions of bromine to HBr exceeded 90% and reaction products included solid carbon (soot) in stoichiometric amounts. At lower temperatures, HBr conversion was significantly reduced, the products included much less soot, and the formation of bromocarbon compounds was indicated qualitatively. Calculations of chemical equilibrium behavior and reaction kinetics for the experimental conditions were performed using the Sandia CHEMKIN package. An elementary multistep mechanism for the gas-phase chemistry was used together with a surface mechanism that assumed facile deposition of radical species at the reactor walls. Simulations with the laminar-flow boundary-layer code of the CHEMKIN package gave reasonable agreement with experimental data.

  18. Establishment and assessment of an integrated citric acid-methane production process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Bao, Jia-Wei; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the problem of extraction wastewater in citric acid industrial production, an improved integrated citric acid-methane production process was established in this study. Extraction wastewater was treated by anaerobic digestion and then the anaerobic digestion effluent (ADE) was stripped by air to remove ammonia. Followed by solid-liquid separation to remove metal ion precipitation, the supernatant was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. 130U/g glucoamylase was added to medium after inoculation and the recycling process performed for 10 batches. Fermentation time decreased by 20% in recycling and the average citric acid production (2nd-10th) was 145.9±3.4g/L, only 2.5% lower than that with tap water (149.6g/L). The average methane production was 292.3±25.1mL/g CODremoved and stable in operation. Excessive Na(+) concentration in ADE was confirmed to be the major challenge for the proposed process.

  19. Anaerobic digestion of corn stovers for methane production in a novel bionic reactor.

    PubMed

    Zhang, Meixia; Zhang, Guangming; Zhang, Panyue; Fan, Shiyang; Jin, Shuguang; Wu, Dan; Fang, Wei

    2014-08-01

    To improve the biogas production from corn stovers, a new bionic reactor was designed and constructed. The bionic reactor simulated the rumen digestion of ruminants. The liquid was separated from corn stovers and refluxed into corn stovers again, which simulated the undigested particles separated from completely digested materials and fed back again for further degradation in ruminant stomach. Results showed that the bionic reactor was effective for anaerobic digestion of corn stovers. The liquid amount and its reflux showed an obvious positive correlation with biogas production. The highest biogas production rate was 21.6 ml/gVS-addedd, and the total cumulative biogas production was 256.5 ml/gVS-added. The methane content in biogas ranged from 52.2% to 63.3%. The degradation of corn stovers were greatly enhanced through simulating the animal digestion mechanisms in this bionic reactor.

  20. Effects of rare earth element lanthanum on rumen methane and volatile fatty acid production and microbial flora in vitro.

    PubMed

    Zhang, T T; Zhao, G Y; Zheng, W S; Niu, W J; Wei, C; Lin, S X

    2015-06-01

    The objectives of the trial were to study the effects of rare earth element (REE) lanthanum (La) on the in vitro rumen methane (CH4 ) and volatile fatty acid (VFA) production and the microbial flora of feeds. Four feed mixtures with different levels of neutral detergent fibre (NDF), that is 20.0% (I), 31.0% (II), 41.9% (III) and 52.7% (IV), were formulated as substrates. Five levels of LaCl3 , that is 0, 0.4, 0.6, 0.8 and 1.0 mmol/kg dry matter (DM), were added to the feed mixtures, respectively, as experimental treatments in a two-factor 5 × 4 randomized design. The in vitro incubation lasted for 24 h. The results showed that supplementing LaCl3 increased the total gas (p < 0.001) production and tended to increase the total VFA production (p = 0.072) and decreased the CH4 production (p = 0.001) and the ratios of acetate/propionate (p = 0.019) and CH4 /total VFA (p < 0.001). Interactions between LaCl3 and NDF were significant in total gas production (p = 0.030) and tended to be significant in CH4 production (p = 0.071). Supplementing LaCl3 at the level of 0.8 mmol/g DM decreased the relative abundance of methanogens and protozoa in the total bacterial 16S rDNA analysed using the real-time PCR (p < 0.0001), increased F. succinogenes (p = 0.0003) and decreased R. flavefaciens (p < 0.0001) whereas did not affect R. albus and anaerobic fungi (p > 0.05). It was concluded that LaCl3 decreased the CH4 production without negatively affecting feed digestion through manipulating rumen microbial flora when feed mixtures with different levels of NDF were used as substrates.

  1. Parameters affecting solvent production by Clostridium pasteurianum

    SciTech Connect

    Dabrock, B.; Bahl, H.; Gottschalk, G. )

    1992-04-01

    The effect of pH, growth rate, phosphate and iron limitation, carbon monoxide, and carbon source on product formation by Clostridium pasteurianum was determined. Under phosphate limitation, glucose was fermented almost exclusively to acetate and butyrate independently of the pH and growth rate. Iron limitation caused lactate production (38 mol/100 mol) from glucose in batch and continuous culture. At 15% (vol/vol) carbon monoxide in the atmosphere, glucose was fermented to ethanol (24 mol/100 mol), lactate (32 mol/100 mol), and butanol (36 mol/100 mol) in addition to the usual products, acetate (38 mol/100 mol) and butyrate (17 mol/100 mol). During glycerol fermentation, a completely different product pattern was found. In continuous culture under phosphate limitation, acetate and butyrate were produced only in trace amounts, whereas ethanol (30 mol/10 mol), butanol (18 mol/100 mol), and 1,3-propanediol (18 mol/100 mol) were the major products. Under iron limitation, the ratio of these products could be changed in favor of 1,3-propanediol (34 mol/100 mol). In addition, lactate was produced in significant amounts (25 mol/100 mol). The tolerance of C. pasteurianum to glycerol was remarkably high; growth was not inhibited by glycerol concentrations up to 17% (wt/vol). Increasing glycerol concentrations favored the production of 1,3-propanediol.

  2. Enteric methane production from beef cattle that vary in feed efficiency.

    PubMed

    Freetly, H C; Brown-Brandl, T M

    2013-10-01

    We hypothesized that CH4 production will decrease with increased feed efficiency. Two experiments were conducted to determine CH4 production of cattle that differed in feed efficiency. Cattle in both studies were selected from larger contemporary groups. Animals furthest from the confidence ellipse that resulted from regressing BW gain on DMI were selected. In the first experiment, 113 crossbred steers were evaluated for feed efficiency for 64 d. Steers were 355 ± 1 d of age and weighed 456 ± 10 kg when they began the study. Steers were fed a ration that consisted of (DM basis) 82.8% corn, 12.8% corn silage, and 4.5% supplement [contains 0.065% monensin, 32% CP (28% NPN), 7.5% Ca, 0.8% P, 4.8% NaCl, 1.8% K, and 55,116 IU/kg vitamin A]. Thirty-seven steers were selected to measure CH4 production. In the second experiment, 197 heifers were evaluated for feed efficiency for 64 d. Heifers were 286 ± 1 d of age and weighed 327 ± 2 kg when they began the study. Heifers were fed a ration that consisted of (DM basis) 60% corn silage, 30% alfalfa hay, and 10% wet distillers grains with solubles. Forty-seven heifers were selected to measure CH4 production. Methane production was measured with respiration calorimeters. In both experiments, cattle had ad libitum access to feed, and DMI consumed during the 24 h before CH4 production was measured. Methane production was collected for a 6-h period on untrained cattle. Consequently, methane production is not a quantitative measure of daily methane production; rather, it is an index value to rank cattle. Multiple regression analysis was used to determine the relationship between either BW gain:DMI ratio or residual feed intake (RFI) on CH4 production after adjusting for the previous 24-h DMI. In the steers, BW gain:DMI ratio and previous 24-h feed intake accounted for little of the variance in CH4 production (R(2) = 0.009), and neither did RFI and previous 24-h feed intake (R(2) = 0.001). In the heifers, the BW gain:DMI ratio

  3. Air-adapted Methanosarcina acetivorans shows high methane production and develops resistance against oxygen stress.

    PubMed

    Jasso-Chávez, Ricardo; Santiago-Martínez, M Geovanni; Lira-Silva, Elizabeth; Pineda, Erika; Zepeda-Rodríguez, Armando; Belmont-Díaz, Javier; Encalada, Rusely; Saavedra, Emma; Moreno-Sánchez, Rafael

    2015-01-01

    Methanosarcina acetivorans, considered a strict anaerobic archaeon, was cultured in the presence of 0.4-1% O2 (atmospheric) for at least 6 months to generate air-adapted cells; further, the biochemical mechanisms developed to deal with O2 were characterized. Methane production and protein content, as indicators of cell growth, did not change in air-adapted cells respect to cells cultured under anoxia (control cells). In contrast, growth and methane production significantly decreased in control cells exposed for the first time to O2. Production of reactive oxygen species was 50 times lower in air-adapted cells versus control cells, suggesting enhanced anti-oxidant mechanisms that attenuated the O2 toxicity. In this regard, (i) the transcripts and activities of superoxide dismutase, catalase and peroxidase significantly increased; and (ii) the thiol-molecules (cysteine + coenzyme M-SH + sulfide) and polyphosphate contents were respectively 2 and 5 times higher in air-adapted cells versus anaerobic-control cells. Long-term cultures (18 days) of air-adapted cells exposed to 2% O2 exhibited the ability to form biofilms. These data indicate that M. acetivorans develops multiple mechanisms to contend with O2 and the associated oxidative stress, as also suggested by genome analyses for some methanogens.

  4. Study on the inhibition of methane production from anaerobic digestion of biodegradable solid waste.

    PubMed

    Tiantao Zhao; Lijie Zhang; Youcai Zhao

    2010-04-01

    The inhibition effects and mechanisms of chlorinated methane, anthraquinone and acetylene on methanogenesis in the anaerobic digestion process of biodegradable solid wastes were investigated. It was found that both chloroform and acetylene could effectively inhibit methanogens. Acetylene inhibited the activity of methanogens, while chloroform inhibited metabolic process of methanogenesis. A central composite design (CCD) and response surface regression analysis (RSREG) were employed to determine the optimum conditions and interaction effects of chloroform and acetylene in terms of methane and hydrogen production. Acetylene promoted the inhibition efficiency (F = 31.14; P < 0.01) more effectively than chloroform (F = 2.46; P > 0.05). In addition, a maximum hydrogen production of 1.6 ml was estimated under the optimum conditions of chloroform concentration of 6.69 mg kg(-1) and acetylene concentration of 3.08 x 10(-3) (v/v). Chloroform had a significant effect on enhancing the production of propionic acid and a minimum molar ratio of acetic acid to propionic acid of 0.707 was reached with the chloroform concentration of 9.24 mg kg(-1) and acetylene concentration of 4.0 x 10(-3) (v/v). Hence, methanogens can be inhibited while the stabilization process of solid wastes can still work well. Moreover, co-inhibition technology practice at landfills was feasible and the environmental damage was negligible, according to the analysis and experimental results.

  5. Enhancement of methane production and bio-stabilisation of municipal solid waste in anaerobic bioreactor landfill.

    PubMed

    Mali Sandip, T; Khare Kanchan, C; Biradar Ashok, H

    2012-04-01

    The aim of the experiment was to enhance biodegradation and methane production of municipal solid waste (MSW). Two groups of simulated anaerobic bioreactor landfill were used; one group of mixed MSW with three bioreactors (R1, R2 and R3) and second group was compostable MSW with two bioreactors (R4 and R5). The different combinations of operational parameters were aeration with addition of aerobic microbial culture, anaerobic sludge, coarse gravel mixing, intermediate soil cover and varied leachate recirculation rate. The results observed at the end of 270days prevail that the process combination of above operational parameters adopted in compostable MSW bioreactor was more efficient approach for stabilization of MSW. It has accelerated the methane production rate (141.28Lkg(-1)dry waste) by 25%. It was also observed that the degradation time of MSW was reduced by 25% compared to maximum values quoted in the literature. The nonlinear regression of the cumulative biogas production and digestion time shows that Gompertz growth equation fits the results well. PMID:22342079

  6. Air-Adapted Methanosarcina acetivorans Shows High Methane Production and Develops Resistance against Oxygen Stress

    PubMed Central

    Jasso-Chávez, Ricardo; Santiago-Martínez, M. Geovanni; Lira-Silva, Elizabeth; Pineda, Erika; Zepeda-Rodríguez, Armando; Belmont-Díaz, Javier; Encalada, Rusely; Saavedra, Emma; Moreno-Sánchez, Rafael

    2015-01-01

    Methanosarcina acetivorans, considered a strict anaerobic archaeon, was cultured in the presence of 0.4–1% O2 (atmospheric) for at least 6 months to generate air-adapted cells; further, the biochemical mechanisms developed to deal with O2 were characterized. Methane production and protein content, as indicators of cell growth, did not change in air-adapted cells respect to cells cultured under anoxia (control cells). In contrast, growth and methane production significantly decreased in control cells exposed for the first time to O2. Production of reactive oxygen species was 50 times lower in air-adapted cells versus control cells, suggesting enhanced anti-oxidant mechanisms that attenuated the O2 toxicity. In this regard, (i) the transcripts and activities of superoxide dismutase, catalase and peroxidase significantly increased; and (ii) the thiol-molecules (cysteine + coenzyme M-SH + sulfide) and polyphosphate contents were respectively 2 and 5 times higher in air-adapted cells versus anaerobic-control cells. Long-term cultures (18 days) of air-adapted cells exposed to 2% O2 exhibited the ability to form biofilms. These data indicate that M. acetivorans develops multiple mechanisms to contend with O2 and the associated oxidative stress, as also suggested by genome analyses for some methanogens. PMID:25706146

  7. Methane production potential of leachate generated from Korean food waste recycling facilities: a lab-scale study.

    PubMed

    Lee, Dae Hee; Behera, Shishir Kumar; Kim, Ji Won; Park, Hung-Suck

    2009-02-01

    This paper examines the applicability of food waste leachate (FWL) in bioreactor landfills or anaerobic digesters to produce methane as a sustainable solution to the persisting leachate management problem in Korea. Taking into account the climatic conditions in Korea and FWL characteristics, the effect of key parameters, viz., temperature, alkalinity and salinity on methane yield was investigated. The monthly average moisture content and the ratio of volatile solids to total solids of the FWL were found to be 84% and 91%, respectively. The biochemical methane potential experiment under standard digestion conditions showed the methane yield of FWL to be 358 and 478 ml/g VS after 10 and 28 days of digestion, respectively, with an average methane content of 70%. Elemental analysis showed the chemical composition of FWL to be C(13.02)H(23.01)O(5.93)N(1). The highest methane yield of 403 ml/g VS was obtained at 35 degrees C due to the adaptation of seed microorganisms to mesophilic atmosphere, while methane yields at 25, 45 and 55 degrees C were 370, 351 and 275 ml/g VS, respectively, at the end of 20 days. Addition of alkalinity had a favorable effect on the methane yield. Dilution of FWL with salinity of 2g/l NaCl resulted in 561 ml CH(4)/g VS at the end of 30 days. Considering its high biodegradability (82.6%) and methane production potential, anaerobic digestion of FWL in bioreactor landfills or anaerobic digesters with a preferred control of alkalinity and salinity can be considered as a sustainable solution to the present emergent problem.

  8. Water Management Strategies for Improved Coalbed Methane Production in the Black Warrior Basin

    SciTech Connect

    Pashin, Jack; McIntyre-Redden, Marcella; Mann, Steven; Merkel, David

    2013-10-31

    The modern coalbed methane industry was born in the Black Warrior Basin of Alabama and has to date produced more than 2.6 trillion cubic feet of gas and 1.6 billion barrels of water. The coalbed gas industry in this area is dependent on instream disposal of co-produced water, which ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride water. This study employed diverse analytical methods to characterize water chemistry in light of the regional geologic framework and to evaluate the full range of water management options for the Black Warrior coalbed methane industry. Results reveal strong interrelationships among regional geology, water chemistry, and gas chemistry. Coalbed methane is produced from multiple coal seams in Pennsylvanian-age strata of the Pottsville Coal Interval, in which water chemistry is influenced by a structurally controlled meteoric recharge area along the southeastern margin of the basin. The most important constituents of concern in the produced water include chlorides, ammonia compounds, and organic substances. Regional mapping and statistical analysis indicate that the concentrations of most ionic compounds, metallic substances, and nonmetallic substances correlate with total dissolved solids and chlorides. Gas is effectively produced at pipeline quality, and the only significant impurity is N{sub 2}. Geochemical analysis indicates that the gas is of mixed thermogenic-biogenic origin. Stable isotopic analysis of produced gas and calcite vein fills indicates that widespread late-stage microbial methanogenesis occurred primarily along a CO{sub 2} reduction metabolic pathway. Organic compounds in the produced water appear to have helped sustain microbial communities. Ammonia and ammonium levels increase with total dissolved solids content and appear to have played a role in late-stage microbial methanogenesis and the generation of N{sub 2}. Gas production tends to decline exponentially, whereas water production

  9. Methane emissions and production potentials of forest swamp wetlands in the Eastern Great Xing'an Mountains, Northeast China.

    PubMed

    Yu, Bing; Stott, Philip; Yu, Hongxian; Li, Xiaoyu

    2013-11-01

    Measurements of methane flux at a few inundated sites in China have been extrapolated to obtain estimates on a national scale. To enable those national estimates to be refined and to compare flux from geographically separated sites comprising the same wetland types, we used a closed chamber method to measure methane flux in uninundated Betula platyphylla-and Larix gmelinii-dominated peatlands in the Northeast China. Our measurements were taken from both vegetated and bare soil surfaces, and we compared flux with environmental measures including vegetation biomass, soil temperature and soil characteristics. We found that methane flux was low, and that there were no significant differences between wetland types, indicating that environmental influences were dominant. We found that flux was positively correlated to temperature in the surface layers of the soil, the above-ground biomass of the shrub and herb layers, total soil carbon and total soil nitrogen; and we suggest that emissions may be due to anaerobic microcosms in the surface layers. The methane production potentials of the soils were low and similar between both sites but inconsistent with the differences between fluxes, and inconsistent with production potentials and fluxes reported from the same wetland types elsewhere, indicating that there were subtle environmental differences between wetlands classed as being of the same type. Differences between fluxes in vegetated chambers with bare soil chambers were insignificant, indicating that no methane emission through aerenchyma occurred at our sites. We concluded that wetland type was not an accurate predictor of methane flux.

  10. Methane Emissions and Production Potentials of Forest Swamp Wetlands in the Eastern Great Xing'an Mountains, Northeast China

    NASA Astrophysics Data System (ADS)

    Yu, Bing; Stott, Philip; Yu, Hongxian; Li, Xiaoyu

    2013-11-01

    Measurements of methane flux at a few inundated sites in China have been extrapolated to obtain estimates on a national scale. To enable those national estimates to be refined and to compare flux from geographically separated sites comprising the same wetland types, we used a closed chamber method to measure methane flux in uninundated Betula platyphylla—and Larix gmelinii—dominated peatlands in the Northeast China. Our measurements were taken from both vegetated and bare soil surfaces, and we compared flux with environmental measures including vegetation biomass, soil temperature and soil characteristics. We found that methane flux was low, and that there were no significant differences between wetland types, indicating that environmental influences were dominant. We found that flux was positively correlated to temperature in the surface layers of the soil, the above-ground biomass of the shrub and herb layers, total soil carbon and total soil nitrogen; and we suggest that emissions may be due to anaerobic microcosms in the surface layers. The methane production potentials of the soils were low and similar between both sites but inconsistent with the differences between fluxes, and inconsistent with production potentials and fluxes reported from the same wetland types elsewhere, indicating that there were subtle environmental differences between wetlands classed as being of the same type. Differences between fluxes in vegetated chambers with bare soil chambers were insignificant, indicating that no methane emission through aerenchyma occurred at our sites. We concluded that wetland type was not an accurate predictor of methane flux.

  11. Global Climate Change Resulting From Voluminous Intrusive Basaltic Volcanism in Sedimentary Basins: the Methane Production Potential

    NASA Astrophysics Data System (ADS)

    Planke, S.; Svensen, H.; Malthe-Srenssen, A.; Rasmussen, T.; Jamtveit, B.

    2003-12-01

    Large igneous provinces are often temporarily associated with global warming and mass extinction events, for instance (1) the Siberian Traps and the Permian-Triassic boundary, (2) the Karoo igneous event and the Early Toacian anoxic event, (3) the Deccan Traps and the Cretaceous-Tertiary boundary, and (4) the North Atlantic Volcanic Province (NAVP) and the initial Eocene thermal maximum (IETM). We propose a new theory for linking the volcanic and global warming events where the magma emplacement environment is a crucial parameter. Our theory is that massive production and release of isotopically light carbon gasses in metamorphic aureoles surrounding magmatic sill intrusions in organic-rich sedimentary basins may trigger global climate change. The greenhouse gasses have to be produced and released in a short time (about 104 years) to be able to explain large global warming events. The intrusion of magma into an organic-rich sedimentary basin may increase the carbon flux into the atmosphere by at least 5 to 30 times compared with degassing of the same volume of extruded magma. Field and seismic data, combined with temperature modelling, show that very voluminous sill complexes are intruded and solidified in a short time span (<1000 years) during the initial phase of volcanic activity. We have recently completed an extensive mapping of Paleocene/Eocene sill complexes in the Cretaceous Vøring and Møre basins off mid-Norway. The extent of the sill complex is >80,000 km2, whereas the estimated total volume of the sill complex is 0.9 to 2.5 x 104 km3. The methane production potential in metamorphic aureoles in these two basins is in the rage 0.3 to 3.3 x1018 g CH4 assuming that 0.5 to 2.0 wt. {%} organic carbon is converted to methane. The methane production potential in the entire NAVP is estimated to be about five times greater. The total volume of methane produced in metamorphic aureoles in NAVP is larger than the volumes required to explain the IETM and the

  12. Plant species diversity affects soil-atmosphere fluxes of methane and nitrous oxide.

    PubMed

    Niklaus, Pascal A; Le Roux, Xavier; Poly, Franck; Buchmann, Nina; Scherer-Lorenzen, Michael; Weigelt, Alexandra; Barnard, Romain L

    2016-07-01

    Plant diversity effects on ecosystem functioning can potentially interact with global climate by altering fluxes of the radiatively active trace gases nitrous oxide (N2O) and methane (CH4). We studied the effects of grassland species richness (1-16) in combination with application of fertilizer (nitrogen:phosphorus:potassium = 100:43.6:83 kg ha(-1) a(-1)) on N2O and CH4 fluxes in a long-term field experiment. Soil N2O emissions, measured over 2 years using static chambers, decreased with species richness unless fertilizer was added. N2O emissions increased with fertilization and the fraction of legumes in plant communities. Soil CH4 uptake, a process driven by methanotrophic bacteria, decreased with plant species numbers, irrespective of fertilization. Using structural equation models, we related trace gas fluxes to soil moisture, soil inorganic N concentrations, nitrifying and denitrifying enzyme activity, and the abundance of ammonia oxidizers, nitrite oxidizers, and denitrifiers (quantified by real-time PCR of gene fragments amplified from microbial DNA in soil). These analyses indicated that plant species richness increased soil moisture, which in turn increased N cycling-related activities. Enhanced N cycling increased N2O emission and soil CH4 uptake, with the latter possibly caused by removal of inhibitory ammonium by nitrification. The moisture-related indirect effects were surpassed by direct, moisture-independent effects opposite in direction. Microbial gene abundances responded positively to fertilizer but not to plant species richness. The response patterns we found were statistically robust and highlight the potential of plant biodiversity to interact with climatic change through mechanisms unrelated to carbon storage and associated carbon dioxide removal. PMID:27038993

  13. Anaerobic digestion of pre-fermented potato peel wastes for methane production.

    PubMed

    Liang, Shaobo; McDonald, Armando G

    2015-12-01

    This study investigated the feasibility of anaerobic digestion (AD) of potato peel waste (PPW) and its lactic acid fermentation residue (PPW-FR) for methane (CH4) production. The experimental results showed that about 60-70% CH4 content was obtained. The digester using PPW-FR as feedstock exhibited better performance and produced a highest cumulative CH4 production of 273 L/kg VS fed, followed by 239 L/kg VS fed using PPW under the same conditions. However, with increasing solid loadings of PPW-FR feedstock from 6.4% to 9.1%, the CH4 production was inhibited. The generation, accumulation, and degradation of volatile fatty acids (VFAs) in digesters were also investigated in this research.

  14. Anaerobic digestion of pre-fermented potato peel wastes for methane production.

    PubMed

    Liang, Shaobo; McDonald, Armando G

    2015-12-01

    This study investigated the feasibility of anaerobic digestion (AD) of potato peel waste (PPW) and its lactic acid fermentation residue (PPW-FR) for methane (CH4) production. The experimental results showed that about 60-70% CH4 content was obtained. The digester using PPW-FR as feedstock exhibited better performance and produced a highest cumulative CH4 production of 273 L/kg VS fed, followed by 239 L/kg VS fed using PPW under the same conditions. However, with increasing solid loadings of PPW-FR feedstock from 6.4% to 9.1%, the CH4 production was inhibited. The generation, accumulation, and degradation of volatile fatty acids (VFAs) in digesters were also investigated in this research. PMID:26421481

  15. Effects of composition of labile organic matter on biogenic production of methane in the coastal sediments of the Arabian Sea.

    PubMed

    Gonsalves, Maria-Judith; Fernandes, Christabelle E G; Fernandes, Sheryl Oliveira; Kirchman, David L; Bharathi, P A Loka

    2011-11-01

    Coastal regions are potential zones for production of methane which could be governed by ecological/environmental differences or even sediment properties of a niche. In order to test the hypothesis that methanogenesis in most marine sediments could be driven more by proteins than by carbohydrates and lipid content of labile organic matter (LOM), incubation experiments were carried out with sediments from different environmental niches to measure methane production. The methane production rates were examined in relationship to the sediment biochemistry, i.e., carbohydrates, proteins, and lipids. The gas production measured by head space method ranged from 216 ng g( -1) day( -1) in the mangrove sediments to 3.1 μg g( -1) day( -1) in the shallow Arabian Sea. LOM ranged from 1.56 to 2.85 mg g( -1) in the shallow Arabian Sea, from 3.35 to 5.43 mg g( -1) in the mangrove estuary, and from 0.66 to 0.70 mg g( -1) in the sandy sediments with proteins contributing maximum to the LOM pool. Proteins influenced methane production in the clayey sediments of shallow depths of the Arabian Sea (r = 0.933, p < 0.001) and mangrove estuary (r = 0.981, p < 0.001) but in the sandy beach sediments, carbohydrates (r = 0.924, p < 0.001) governed the net methane production. The gas production was more pronounced in shallow and surface sediments and it decreased with depth apparently governed by the decrease in lability index. Thus, the lability index and protein content are important factors that determine methane production rates in these coastal ecosystems.

  16. Use of short-term breath measures to estimate daily methane production by cattle.

    PubMed

    Velazco, J I; Mayer, D G; Zimmerman, S; Hegarty, R S

    2016-01-01

    Methods to measure enteric methane (CH4) emissions from individual ruminants in their production environment are required to validate emission inventories and verify mitigation claims. Estimates of daily methane production (DMP) based on consolidated short-term emission measurements are developing, but method verification is required. Two cattle experiments were undertaken to test the hypothesis that DMP estimated by averaging multiple short-term breath measures of methane emission rate did not differ from DMP measured in respiration chambers (RC). Short-term emission rates were obtained from a GreenFeed Emissions Monitoring (GEM) unit, which measured emission rate while cattle consumed a dispensed supplement. In experiment 1 (Expt. 1), four non-lactating cattle (LW=518 kg) were adapted for 18 days then measured for six consecutive periods. Each period consisted of 2 days of ad libitum intake and GEM emission measurement followed by 1 day in the RC. A prototype GEM unit releasing water as an attractant (GEM water) was also evaluated in Expt. 1. Experiment 2 (Expt. 2) was a larger study based on similar design with 10 cattle (LW=365 kg), adapted for 21 days and GEM measurement was extended to 3 days in each of the six periods. In Expt. 1, there was no difference in DMP estimated by the GEM unit relative to the RC (209.7 v. 215.1 g CH(4)/day) and no difference between these methods in methane yield (MY, 22.7 v. 23.7 g CH(4)/kg of dry matter intake, DMI). In Expt. 2, the correlation between GEM and RC measures of DMP and MY were assessed using 95% confidence intervals, with no difference in DMP or MY between methods and high correlations between GEM and RC measures for DMP (r=0.85; 215 v. 198 g CH(4)/day SEM=3.0) and for MY (r=0.60; 23.8 v. 22.1 g CH(4)/kg DMI SEM=0.42). When data from both experiments was combined neither DMP nor MY differed between GEM- and RC-based measures (P>0.05). GEM water-based estimates of DMP and MY were lower than RC and GEM (P<0

  17. Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation

    SciTech Connect

    Ali, Muhammad Aslam; Lee, Chang Hoon; Kim, Sang Yoon; Kim, Pil Joo

    2009-10-15

    Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH{sub 4}) emission resulting from rice cultivation. In laboratory incubations, CH{sub 4} production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt{sup -1}), while observed CO{sub 2} production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH{sub 4} emission rates from the rice planted potted soils significantly decreased with the increasing levels (2-20 Mg ha{sup -1}) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha{sup -1} application level of the amendments, total seasonal CH{sub 4} emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH{sub 4} production rates as well as total seasonal CH{sub 4} flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens' activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH{sub 4} emissions as well as sustaining rice productivity.

  18. Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation.

    PubMed

    Ali, Muhammad Aslam; Lee, Chang Hoon; Kim, Sang Yoon; Kim, Pil Joo

    2009-10-01

    Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH(4)) emission resulting from rice cultivation. In laboratory incubations, CH(4) production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt(-1)), while observed CO(2) production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH(4) emission rates from the rice planted potted soils significantly decreased with the increasing levels (2-20 Mg ha(-1)) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha(-1) application level of the amendments, total seasonal CH(4) emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH(4) production rates as well as total seasonal CH(4) flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens' activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH(4) emissions as well as sustaining rice productivity.

  19. Long-term effect of the antibiotic cefalexin on methane production during waste activated sludge anaerobic digestion.

    PubMed

    Lu, Xueqin; Zhen, Guangyin; Liu, Yuan; Hojo, Toshimasa; Estrada, Adriana Ledezma; Li, Yu-You

    2014-10-01

    Long-term experiments herein were conducted to investigate the effect of cefalexin (CLX) on methane production during waste activated sludge (WAS) anaerobic digestion. CLX exhibited a considerable inhibition in methane production during the initial 25 days while the negative effect attenuated subsequently and methane production recovered depending on CLX doses used (600 and 1000 mg/L). The highest methane yield reached 450 mL at 1000 mg-CLX/L after 157 days of digestion, 63.8% higher than CLX-free one. Stimulated excretion of extracellular polymeric substances (EPS) by CLX served as microbial protecting layers, creating a suitable environment for microbes' growth and fermentation. Further examination via ultraviolet visible (UV-Vis) spectra also verified the elevated slime EPS, LB-EPS and TB-EPS indicated by UV-254 in the presence of CLX. Unlike the commonly accepted adverse effect, this study demonstrated the beneficial role of CLX in methane production, providing new insights into its true environmental impacts.

  20. Anaerobic biodegradability of Category 2 animal by-products: methane potential and inoculum source.

    PubMed

    Pozdniakova, Tatiana A; Costa, José C; Santos, Ricardo J; Alves, M M; Boaventura, Rui A R

    2012-11-01

    Category 2 animal by-products that need to be sterilized with steam pressure according Regulation (EC) 1774/2002 are studied. In this work, 2 sets of experiments were performed in mesophilic conditions: (i) biomethane potential determination testing 0.5%, 2.0% and 5.0% total solids (TS), using sludge from the anaerobic digester of a wastewater treatment plant as inoculum; (ii) biodegradability tests at a constant TS concentration of 2.0% and different inoculum sources (digested sludge from a wastewater treatment plant; granular sludge from an upflow anaerobic sludge blanket reactor; leachate from a municipal solid waste landfill; and sludge from the slaughterhouse wastewater treatment anaerobic lagoon) to select the more adapted inoculum to the substrate in study. The higher specific methane production was of 317 mL CH(4)g(-1) VS(substrate) for 2.0% TS. The digested sludge from the wastewater treatment plant led to the lowest lag-phase period and higher methane potential rate. PMID:22989655