Science.gov

Sample records for affect microbial activity

  1. Temperature affects microbial abundance, activity and interactions in anaerobic digestion.

    PubMed

    Lin, Qiang; De Vrieze, Jo; Li, Jiabao; Li, Xiangzhen

    2016-06-01

    Temperature is a major factor determining the performance of the anaerobic digestion process. The microbial abundance, activity and interactional networks were investigated under a temperature gradient from 25°C to 55°C through amplicon sequencing, using 16S ribosomal RNA and 16S rRNA gene-based approaches. Comparative analysis of past accumulative elements presented by 16S rRNA gene-based analysis, and the in-situ conditions presented by 16S rRNA-based analysis, provided new insights concerning the identification of microbial functional roles and interactions. The daily methane production and total biogas production increased with temperature up to 50°C, but decreased at 55°C. Increased methanogenesis and hydrolysis at 50°C were main factors causing higher methane production which was also closely related with more well-defined methanogenic and/or related modules with comprehensive interactions and increased functional orderliness referred to more microorganisms participating in interactions. This research demonstrated the importance of evaluating functional roles and interactions of microbial community. PMID:26970926

  2. Leaf Associated Microbial Activities in a Stream Affected by Acid Mine Drainage

    NASA Astrophysics Data System (ADS)

    Schlief, Jeanette

    2004-11-01

    Microbial activity was assessed on birch leaves and plastic strips during 140 days of exposure at three sites in an acidic stream of the Lusatian post-mining landscape, Germany. The sites differed in their degrees of ochre deposition and acidification. The aim of the study was (1) to follow the microbial activities during leaf colonization, (2) to compare the effect of different environmental conditions on leaf associated microbial activities, and (3) to test the microbial availability of leaf litter in acidic mining waters. The activity peaked after 49 days and subsequently decreased gradually at all sites. A formation of iron plaques on leaf surfaces influenced associated microbial activity. It seemed that these plaques inhibit the microbial availability of leaf litter and serve as a microbial habitat by itself. (

  3. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests.

    PubMed

    Durán, Jorge; Morse, Jennifer L; Groffman, Peter M; Campbell, John L; Christenson, Lynn M; Driscoll, Charles T; Fahey, Timothy J; Fisk, Melany C; Mitchell, Myron J; Templer, Pamela H

    2014-11-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity during the growing season. Soils from lower elevation plots, which accumulated less snow and experienced more soil temperature variability during the winter (and likely more freeze/thaw events), had less extractable inorganic nitrogen (N), lower rates of microbial N production via potential net N mineralization and nitrification, and higher potential microbial respiration during the growing season. Potential nitrate production rates during the growing season were particularly sensitive to changes in winter snow pack accumulation and winter soil temperature variability, especially in spring. Effects of elevation and winter conditions on N transformation rates differed from those on potential microbial respiration, suggesting that N-related processes might respond differently to winter climate change in northern hardwood forests than C-related processes. PMID:24796872

  4. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests.

    PubMed

    Durán, Jorge; Morse, Jennifer L; Groffman, Peter M; Campbell, John L; Christenson, Lynn M; Driscoll, Charles T; Fahey, Timothy J; Fisk, Melany C; Mitchell, Myron J; Templer, Pamela H

    2014-11-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity during the growing season. Soils from lower elevation plots, which accumulated less snow and experienced more soil temperature variability during the winter (and likely more freeze/thaw events), had less extractable inorganic nitrogen (N), lower rates of microbial N production via potential net N mineralization and nitrification, and higher potential microbial respiration during the growing season. Potential nitrate production rates during the growing season were particularly sensitive to changes in winter snow pack accumulation and winter soil temperature variability, especially in spring. Effects of elevation and winter conditions on N transformation rates differed from those on potential microbial respiration, suggesting that N-related processes might respond differently to winter climate change in northern hardwood forests than C-related processes.

  5. Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity.

    PubMed

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Liu, Kun; Li, Mu; Yin, Daqiang

    2014-12-01

    Over the past few decades, human activities have accelerated the rates and extents of water eutrophication and global warming through increasing delivery of biologically available nitrogen such as nitrate and large emissions of anthropogenic greenhouse gases. In particular, nitrous oxide (N2O) is one of the most important greenhouse gases, because it has a 300-fold higher global warming potential than carbon dioxide. Microbial denitrification is a major pathway responsible for nitrate removal, and also a dominant source of N2O emissions from terrestrial or aquatic environments. However, whether the release of zinc oxide nanoparticles (ZnO NPs) into the environment affects microbial denitrification is largely unknown. Here we show that the presence of ZnO NPs lead to great increases in nitrate delivery (9.8-fold higher) and N2O emissions (350- and 174-fold higher in the gas and liquid phases, respectively). Our data further reveal that ZnO NPs significantly change the transcriptional regulations of glycolysis and polyhydroxybutyrate synthesis, which causes the decrease in reducing powers available for the reduction of nitrate and N2O. Moreover, ZnO NPs substantially inhibit the gene expressions and catalytic activities of key denitrifying enzymes. These negative effects of ZnO NPs on microbial denitrification finally cause lower nitrate removal and higher N2O emissions, which is likely to exacerbate water eutrophication and global warming.

  6. Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity.

    PubMed

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Liu, Kun; Li, Mu; Yin, Daqiang

    2014-12-01

    Over the past few decades, human activities have accelerated the rates and extents of water eutrophication and global warming through increasing delivery of biologically available nitrogen such as nitrate and large emissions of anthropogenic greenhouse gases. In particular, nitrous oxide (N2O) is one of the most important greenhouse gases, because it has a 300-fold higher global warming potential than carbon dioxide. Microbial denitrification is a major pathway responsible for nitrate removal, and also a dominant source of N2O emissions from terrestrial or aquatic environments. However, whether the release of zinc oxide nanoparticles (ZnO NPs) into the environment affects microbial denitrification is largely unknown. Here we show that the presence of ZnO NPs lead to great increases in nitrate delivery (9.8-fold higher) and N2O emissions (350- and 174-fold higher in the gas and liquid phases, respectively). Our data further reveal that ZnO NPs significantly change the transcriptional regulations of glycolysis and polyhydroxybutyrate synthesis, which causes the decrease in reducing powers available for the reduction of nitrate and N2O. Moreover, ZnO NPs substantially inhibit the gene expressions and catalytic activities of key denitrifying enzymes. These negative effects of ZnO NPs on microbial denitrification finally cause lower nitrate removal and higher N2O emissions, which is likely to exacerbate water eutrophication and global warming. PMID:25384038

  7. CO2-induced shift in microbial activity affects carbon trapping and water quality in anoxic bioreactors

    NASA Astrophysics Data System (ADS)

    Kirk, Matthew F.; Santillan, Eugenio F. U.; Sanford, Robert A.; Altman, Susan J.

    2013-12-01

    Microbial activity is a potentially important yet poorly understood control on the fate and environmental impact of CO2 that leaks into aquifers from deep storage reservoirs. In this study we examine how variation in CO2 abundance affected competition between Fe(III) and SO42--reducers in anoxic bioreactors inoculated with a mixed-microbial community from a freshwater aquifer. We performed two sets of experiments: one with low CO2 partial pressure (∼0.02 atm) in the headspace of the reactors and one with high CO2 partial pressure (∼1 atm). A fluid residence time of 35 days was maintained in the reactors by replacing one-fifth of the aqueous volume with fresh medium every seven days. The aqueous medium was composed of groundwater amended with small amounts of acetate (250 μM), phosphate (1 μM), and ammonium (50 μM) to stimulate microbial activity. Synthetic goethite (1 mmol) and SO42- (500 μM influent concentration) were also available in each reactor to serve as electron acceptors. Results of this study show that higher CO2 abundance increased the ability of Fe(III) reducers to compete with SO42- reducers, leading to significant shifts in CO2 trapping and water quality. Mass-balance calculations and pyrosequencing results demonstrate that SO42- reducers were dominant in reactors with low CO2 content. They consumed 85% of the acetate after acetate consumption reached steady state while Fe(III) reducers consumed only 15% on average. In contrast, Fe(III) reducers were dominant during that same interval in reactors with high CO2 content, consuming at least 90% of the acetate while SO42- reducers consumed a negligible amount (<1%). The higher rate of Fe(III) reduction in the high-CO2 bioreactors enhanced CO2 solubility trapping relative to the low-CO2 bioreactors by increasing alkalinity generation (6X). Hence, the shift in microbial activity we observed was a positive feedback on CO2 trapping. More rapid Fe(III) reduction degraded water quality, however, by

  8. Soil microbial activity is affected by Roundup WeatherMax and pesticides applied to cotton (Gossypium hirsutum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adoption of glyphosate-based weed control systems has led to increased use of the herbicide with continued use of additional pesticides. Combinations of pesticides may affect soil microbial activity differently than pesticides applied alone. Research was conducted to evaluate the influence of glypho...

  9. Salinity affects microbial activity and soil organic matter content in tidal wetlands.

    PubMed

    Morrissey, Ember M; Gillespie, Jaimie L; Morina, Joseph C; Franklin, Rima B

    2014-04-01

    Climate change-associated sea level rise is expected to cause saltwater intrusion into many historically freshwater ecosystems. Of particular concern are tidal freshwater wetlands, which perform several important ecological functions including carbon sequestration. To predict the impact of saltwater intrusion in these environments, we must first gain a better understanding of how salinity regulates decomposition in natural systems. This study sampled eight tidal wetlands ranging from freshwater to oligohaline (0-2 ppt) in four rivers near the Chesapeake Bay (Virginia). To help isolate salinity effects, sites were selected to be highly similar in terms of plant community composition and tidal influence. Overall, salinity was found to be strongly negatively correlated with soil organic matter content (OM%) and C : N, but unrelated to the other studied environmental parameters (pH, redox, and above- and below-ground plant biomass). Partial correlation analysis, controlling for these environmental covariates, supported direct effects of salinity on the activity of carbon-degrading extracellular enzymes (β-1, 4-glucosidase, 1, 4-β-cellobiosidase, β-D-xylosidase, and phenol oxidase) as well as alkaline phosphatase, using a per unit OM basis. As enzyme activity is the putative rate-limiting step in decomposition, enhanced activity due to salinity increases could dramatically affect soil OM accumulation. Salinity was also found to be positively related to bacterial abundance (qPCR of the 16S rRNA gene) and tightly linked with community composition (T-RFLP). Furthermore, strong relationships were found between bacterial abundance and/or composition with the activity of specific enzymes (1, 4-β-cellobiosidase, arylsulfatase, alkaline phosphatase, and phenol oxidase) suggesting salinity's impact on decomposition could be due, at least in part, to its effect on the bacterial community. Together, these results indicate that salinity increases microbial decomposition rates

  10. Microbial Functional Diversity, Biomass and Activity as Affected by Soil Surface Mulching in a Semiarid Farmland.

    PubMed

    Shen, Yufang; Chen, Yingying; Li, Shiqing

    2016-01-01

    Mulching is widely used to increase crop yield in semiarid regions in northwestern China, but little is known about the effect of different mulching systems on the microbial properties of the soil, which play an important role in agroecosystemic functioning and nutrient cycling. Based on a 4-year spring maize (Zea mays L.) field experiment at Changwu Agricultural and Ecological Experimental Station, Shaanxi, we evaluated the responses of soil microbial activity and crop to various management systems. The treatments were NMC (no mulching with inorganic N fertilizer), GMC (gravel mulching with inorganic N fertilizer), FMC (plastic-film mulching with inorganic N fertilizer) and FMO (plastic-film mulching with inorganic N fertilizer and organic manure addition). The results showed that the FMO soil had the highest contents of microbial biomass carbon and nitrogen, dehydrogenase activity, microbial activity and Shannon diversity index. The relative use of carbohydrates and amino acids by microbes was highest in the FMO soil, whereas the relative use of polymers, phenolic compounds and amines was highest in the soil in the NMC soil. Compared with the NMC, an increased but no significant trend of biomass production and nitrogen accumulation was observed under the GMC treatment. The FMC and FMO led a greater increase in biomass production than GMC and NMC. Compare with the NMC treatment, FMC increased grain yield, maize biomass and nitrogen accumulation by 62.2, 62.9 and 86.2%, but no significant difference was found between the FMO and FMC treatments. Some soil biological properties, i.e. microbial biomass carbon, microbial biomass nitrogen, being sensitive to the mulching and organic fertilizer, were significant correlated with yield and nitrogen availability. Film mulching over gravel mulching can serve as an effective measure for crop production and nutrient cycling, and plus organic fertilization additions may thus have improvements in the biological quality of the

  11. Microbial Functional Diversity, Biomass and Activity as Affected by Soil Surface Mulching in a Semiarid Farmland

    PubMed Central

    Shen, Yufang; Chen, Yingying; Li, Shiqing

    2016-01-01

    Mulching is widely used to increase crop yield in semiarid regions in northwestern China, but little is known about the effect of different mulching systems on the microbial properties of the soil, which play an important role in agroecosystemic functioning and nutrient cycling. Based on a 4-year spring maize (Zea mays L.) field experiment at Changwu Agricultural and Ecological Experimental Station, Shaanxi, we evaluated the responses of soil microbial activity and crop to various management systems. The treatments were NMC (no mulching with inorganic N fertilizer), GMC (gravel mulching with inorganic N fertilizer), FMC (plastic-film mulching with inorganic N fertilizer) and FMO (plastic-film mulching with inorganic N fertilizer and organic manure addition). The results showed that the FMO soil had the highest contents of microbial biomass carbon and nitrogen, dehydrogenase activity, microbial activity and Shannon diversity index. The relative use of carbohydrates and amino acids by microbes was highest in the FMO soil, whereas the relative use of polymers, phenolic compounds and amines was highest in the soil in the NMC soil. Compared with the NMC, an increased but no significant trend of biomass production and nitrogen accumulation was observed under the GMC treatment. The FMC and FMO led a greater increase in biomass production than GMC and NMC. Compare with the NMC treatment, FMC increased grain yield, maize biomass and nitrogen accumulation by 62.2, 62.9 and 86.2%, but no significant difference was found between the FMO and FMC treatments. Some soil biological properties, i.e. microbial biomass carbon, microbial biomass nitrogen, being sensitive to the mulching and organic fertilizer, were significant correlated with yield and nitrogen availability. Film mulching over gravel mulching can serve as an effective measure for crop production and nutrient cycling, and plus organic fertilization additions may thus have improvements in the biological quality of the

  12. Microbial Functional Diversity, Biomass and Activity as Affected by Soil Surface Mulching in a Semiarid Farmland.

    PubMed

    Shen, Yufang; Chen, Yingying; Li, Shiqing

    2016-01-01

    Mulching is widely used to increase crop yield in semiarid regions in northwestern China, but little is known about the effect of different mulching systems on the microbial properties of the soil, which play an important role in agroecosystemic functioning and nutrient cycling. Based on a 4-year spring maize (Zea mays L.) field experiment at Changwu Agricultural and Ecological Experimental Station, Shaanxi, we evaluated the responses of soil microbial activity and crop to various management systems. The treatments were NMC (no mulching with inorganic N fertilizer), GMC (gravel mulching with inorganic N fertilizer), FMC (plastic-film mulching with inorganic N fertilizer) and FMO (plastic-film mulching with inorganic N fertilizer and organic manure addition). The results showed that the FMO soil had the highest contents of microbial biomass carbon and nitrogen, dehydrogenase activity, microbial activity and Shannon diversity index. The relative use of carbohydrates and amino acids by microbes was highest in the FMO soil, whereas the relative use of polymers, phenolic compounds and amines was highest in the soil in the NMC soil. Compared with the NMC, an increased but no significant trend of biomass production and nitrogen accumulation was observed under the GMC treatment. The FMC and FMO led a greater increase in biomass production than GMC and NMC. Compare with the NMC treatment, FMC increased grain yield, maize biomass and nitrogen accumulation by 62.2, 62.9 and 86.2%, but no significant difference was found between the FMO and FMC treatments. Some soil biological properties, i.e. microbial biomass carbon, microbial biomass nitrogen, being sensitive to the mulching and organic fertilizer, were significant correlated with yield and nitrogen availability. Film mulching over gravel mulching can serve as an effective measure for crop production and nutrient cycling, and plus organic fertilization additions may thus have improvements in the biological quality of the

  13. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland.

    PubMed

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Schnecker, Jörg; Wild, Birgit; Capek, Petr; Kaiser, Christina; Torsvik, Vigdis L; Richter, Andreas; Schleper, Christa; Urich, Tim

    2014-01-01

    Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation ("buried topsoils"), resulting from a decrease in fungal abundance compared to recent ("unburied") topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation.

  14. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland

    PubMed Central

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Schnecker, Jörg; Wild, Birgit; Čapek, Petr; Kaiser, Christina; Torsvik, Vigdis L.; Richter, Andreas; Schleper, Christa; Urich, Tim

    2014-01-01

    Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation (“buried topsoils”), resulting from a decrease in fungal abundance compared to recent (“unburied”) topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation. PMID

  15. Electron donors and co-contaminants affect microbial community composition and activity in perchlorate degradation.

    PubMed

    Guan, Xiangyu; Xie, Yuxuan; Wang, Jinfeng; Wang, Jing; Liu, Fei

    2015-04-01

    Although microbial reduction of perchlorate (ClO4(-)) is a promising and effective method, our knowledge on the changes in microbial communities during ClO4(-) degradation is limited, especially when different electron donors are supplied and/or other contaminants are present. Here, we examined the effects of acetate and hydrogen as electron donors and nitrate and ammonium as co-contaminants on ClO4(-) degradation by anaerobic microcosms using six treatments. The process of degradation was divided into the lag stage (SI) and the accelerated stage (SII). Quantitative PCR was used to quantify four genes: pcrA (encoding perchlorate reductase), cld (encoding chlorite dismutase), nirS (encoding copper and cytochrome cd1 nitrite reductase), and 16S rRNA. While the degradation of ClO4(-) with acetate, nitrate, and ammonia system (PNA) was the fastest with the highest abundance of the four genes, it was the slowest in the autotrophic system (HYP). The pcrA gene accumulated in SI and played a key role in initiating the accelerated degradation of ClO4(-) when its abundance reached a peak. Degradation in SII was primarily maintained by the cld gene. Acetate inhibited the growth of perchlorate-reducing bacteria (PRB), but its effect was weakened by nitrate (NO3(-)), which promoted the growth of PRB in SI, and therefore, accelerated the ClO4(-) degradation rate. In addition, ammonia (NH4(+)), as nitrogen sources, accelerated the growth of PRB. The bacterial communities' structure and diversity were significantly affected by electron donors and co-contaminants. Under heterotrophic conditions, both ammonia and nitrate promoted Azospira as the most dominant genera, a fact that might significantly influence the rate of ClO4(-) natural attenuation by degradation.

  16. DMPP-added nitrogen fertilizer affects soil N2O emission and microbial activity in Southern Italy

    NASA Astrophysics Data System (ADS)

    Vitale, Luca; De Marco, Anna; Maglione, Giuseppe; Polimeno, Franca; Di Tommasi, Paul; Magliulo, Vincenzo

    2014-05-01

    plots, whereas an opposite trend for basal respiration was observed, thus evidencing a stressful condition for nitrifying microbial population. After 57 and 71 DAS, when fertilizer was applied as 30 kg N ha-1, the microbial biomass was similar between C and DMPP plots, whereas basal respiration resulted statistically lower in DMPP plots than C plots. During these periods, average DMPP N2O fluxes were also comparable or lower. In conclusion, our data evidence a stressful condition for soil microbes and in particular for nitrifiers when a higher DMPP quantity is supplied. On the contrary, when lower quantities of DMPP-added fertilizers are supplied (e.s. 30 kg N ha-1) effectiveness of DMPP in reducing soil N2O emission is guaranteed by reducing the nitrifiers activity without negatively affecting their growth.

  17. [Variations of microbial biomass and hydrolase activities in purple soil under different cropping modes as affected by ginger planting].

    PubMed

    Wang, Xu-Xi; Wu, Fu-Zhong; Yang, Wan-Qin; Wang, Ao

    2012-02-01

    This paper studied the variations of soil microbial biomass C, N, and P contents and soil hydrolase activities under different cropping modes, i.e., corn + sweet potato intercropping (CS), soybean mono-cropping (SM), continuous cropping of ginger (CG), and rice-milk vetch rotation (RM) , after ginger planting in the purple soil area at the lower reaches of Minjiang River. Ginger planting decreased the soil microbial biomass C, N and P contents significantly. The decrement of the soil microbial biomass C and N contents after ginger planting was lesser under CS and RM than under SM and CG, but the soil microbial biomass P content was in adverse. Ginger planting also decreased the soil acid phosphatase activity significantly, and the decrement was the greatest under CS but the least under RM. The soil invertase activity decreased significantly under CG, and the soil urease activity had a significant decrease under SM, CG and RM. After ginger planting, the soil urease and intervase activities under CS were higher, as compared with those under the other cropping modes.

  18. Habitat management affects soil chemistry and allochthonous organic inputs mediating microbial structure and exo-enzyme activity in Wadden Sea salt-marsh soils

    NASA Astrophysics Data System (ADS)

    Mueller, Peter; Granse, Dirk; Thi Do, Hai; Weingartner, Magdalena; Nolte, Stefanie; Hoth, Stefan; Jensen, Kai

    2016-04-01

    The Wadden Sea (WS) region is Europe's largest wetland and home to approximately 20% of its salt marsh area. Mainland salt marshes of the WS are anthropogenically influenced systems and have traditionally been used for livestock grazing in wide parts. After foundation of WS National Parks in the late 1980s and early 1990s, artificial drainage has been abandoned; however, livestock grazing is still common in many areas of the National Parks and is under ongoing discussion as a habitat-management practice. While studies so far focused on effects of livestock grazing on biodiversity, little is known about how biogeochemical processes, element cycling, and particularly carbon sequestration are affected. Here, we present data from a recent field study focusing on grazing effects on soil properties, microbial exo-enzyme activity, microbial abundance and structure. Exo-enzyme activity was studied conducting digestive enzyme assays for various enzymes involved in C- and N cycling. Microbial abundance and structure was assessed measuring specific gene abundance of fungi and bacteria using quantitative PCR. Soil compaction induced by grazing led to higher bulk density and decreases in soil redox (∆ >100 mV). Soil pH was significantly lower in grazed parts. Further, the proportion of allochthonous organic matter (marine input) was significantly smaller in grazed vs. ungrazed sites, likely caused by a higher sediment trapping capacity of the taller vegetation in the ungrazed sites. Grazing induced changes in bulk density, pH and redox resulted in reduced activity of enzymes involved in microbial C acquisition; however, there was no grazing effect on enzymes involved in N acquisition. While changes in pH, bulk density or redox did not affect microbial abundance and structure, the relative amount of marine organic matter significantly reduced the relative abundance of fungi (F:B ratio). We conclude that livestock grazing directly affects microbial exo-enzyme activity, thus

  19. Cry1Ac Transgenic Sugarcane Does Not Affect the Diversity of Microbial Communities and Has No Significant Effect on Enzyme Activities in Rhizosphere Soil within One Crop Season

    PubMed Central

    Zhou, Dinggang; Xu, Liping; Gao, Shiwu; Guo, Jinlong; Luo, Jun; You, Qian; Que, Youxiong

    2016-01-01

    Cry1Ac transgenic sugarcane provides a promising way to control stem-borer pests. Biosafety assessment of soil ecosystem for cry1Ac transgenic sugarcane is urgently needed because of the important role of soil microorganisms in nutrient transformations and element cycling, however little is known. This study aimed to explore the potential impact of cry1Ac transgenic sugarcane on rhizosphere soil enzyme activities and microbial community diversity, and also to investigate whether the gene flow occurs through horizontal gene transfer. We found no horizontal gene flow from cry1Ac sugarcane to soil. No significant difference in the population of culturable microorganisms between the non-GM and cry1Ac transgenic sugarcane was observed, and there were no significant interactions between the sugarcane lines and the growth stages. A relatively consistent trend at community-level, represented by the functional diversity index, was found between the cry1Ac sugarcane and the non-transgenic lines. Most soil samples showed no significant difference in the activities of four soil enzymes: urease, protease, sucrose, and acid phosphate monoester between the non-transgenic and cry1Ac sugarcane lines. We conclude, based on one crop season, that the cry1Ac sugarcane lines may not affect the microbial community structure and functional diversity of the rhizosphere soil and have few negative effects on soil enzymes. PMID:27014291

  20. Next-Generation Pyrosequencing Analysis of Microbial Biofilm Communities on Granular Activated Carbon in Treatment of Oil Sands Process-Affected Water

    PubMed Central

    Islam, M. Shahinoor; Zhang, Yanyan; McPhedran, Kerry N.

    2015-01-01

    The development of biodegradation treatment processes for oil sands process-affected water (OSPW) has been progressing in recent years with the promising potential of biofilm reactors. Previously, the granular activated carbon (GAC) biofilm process was successfully employed for treatment of a large variety of recalcitrant organic compounds in domestic and industrial wastewaters. In this study, GAC biofilm microbial development and degradation efficiency were investigated for OSPW treatment by monitoring the biofilm growth on the GAC surface in raw and ozonated OSPW in batch bioreactors. The GAC biofilm community was characterized using a next-generation 16S rRNA gene pyrosequencing technique that revealed that the phylum Proteobacteria was dominant in both OSPW and biofilms, with further in-depth analysis showing higher abundances of Alpha- and Gammaproteobacteria sequences. Interestingly, many known polyaromatic hydrocarbon degraders, namely, Burkholderiales, Pseudomonadales, Bdellovibrionales, and Sphingomonadales, were observed in the GAC biofilm. Ozonation decreased the microbial diversity in planktonic OSPW but increased the microbial diversity in the GAC biofilms. Quantitative real-time PCR revealed similar bacterial gene copy numbers (>109 gene copies/g of GAC) for both raw and ozonated OSPW GAC biofilms. The observed rates of removal of naphthenic acids (NAs) over the 2-day experiments for the GAC biofilm treatments of raw and ozonated OSPW were 31% and 66%, respectively. Overall, a relatively low ozone dose (30 mg of O3/liter utilized) combined with GAC biofilm treatment significantly increased NA removal rates. The treatment of OSPW in bioreactors using GAC biofilms is a promising technology for the reduction of recalcitrant OSPW organic compounds. PMID:25841014

  1. Can transgenic maize affect soil microbial communities?

    PubMed

    Mulder, Christian; Wouterse, Marja; Raubuch, Markus; Roelofs, Willem; Rutgers, Michiel

    2006-09-29

    The aim of the experiment was to determine if temporal variations of belowground activity reflect the influence of the Cry1Ab protein from transgenic maize on soil bacteria and, hence, on a regulatory change of the microbial community (ability to metabolize sources belonging to different chemical guilds) and/or a change in numerical abundance of their cells. Litter placement is known for its strong influence on the soil decomposer communities. The effects of the addition of crop residues on respiration and catabolic activities of the bacterial community were examined in microcosm experiments. Four cultivars of Zea mays L. of two different isolines (each one including the conventional crop and its Bacillus thuringiensis cultivar) and one control of bulk soil were included in the experimental design. The growth models suggest a dichotomy between soils amended with either conventional or transgenic maize residues. The Cry1Ab protein appeared to influence the composition of the microbial community. The highly enhanced soil respiration observed during the first 72 h after the addition of Bt-maize residues can be interpreted as being related to the presence of the transgenic crop residues. This result was confirmed by agar plate counting, as the averages of the colony-forming units of soils in conventional treatments were about one-third of those treated with transgenic straw. Furthermore, the addition of Bt-maize appeared to induce increased microbial consumption of carbohydrates in BIOLOG EcoPlates. Three weeks after the addition of maize residues to the soils, no differences between the consumption rate of specific chemical guilds by bacteria in soils amended with transgenic maize and bacteria in soils amended with conventional maize were detectable. Reaped crop residues, comparable to post-harvest maize straw (a common practice in current agriculture), rapidly influence the soil bacterial cells at a functional level. Overall, these data support the existence of short

  2. Loss in microbial diversity affects nitrogen cycling in soil

    PubMed Central

    Philippot, Laurent; Spor, Aymé; Hénault, Catherine; Bru, David; Bizouard, Florian; Jones, Christopher M; Sarr, Amadou; Maron, Pierre-Alain

    2013-01-01

    Microbial communities have a central role in ecosystem processes by driving the Earth's biogeochemical cycles. However, the importance of microbial diversity for ecosystem functioning is still debated. Here, we experimentally manipulated the soil microbial community using a dilution approach to analyze the functional consequences of diversity loss. A trait-centered approach was embraced using the denitrifiers as model guild due to their role in nitrogen cycling, a major ecosystem service. How various diversity metrics related to richness, eveness and phylogenetic diversity of the soil denitrifier community were affected by the removal experiment was assessed by 454 sequencing. As expected, the diversity metrics indicated a decrease in diversity in the 1/103 and 1/105 dilution treatments compared with the undiluted one. However, the extent of dilution and the corresponding reduction in diversity were not commensurate, as a dilution of five orders of magnitude resulted in a 75% decrease in estimated richness. This reduction in denitrifier diversity resulted in a significantly lower potential denitrification activity in soil of up to 4–5 folds. Addition of wheat residues significantly increased differences in potential denitrification between diversity levels, indicating that the resource level can influence the shape of the microbial diversity–functioning relationship. This study shows that microbial diversity loss can alter terrestrial ecosystem processes, which suggests that the importance of functional redundancy in soil microbial communities has been overstated. PMID:23466702

  3. Microbial composition affects the functioning of estuarine sediments

    PubMed Central

    Reed, Heather E; Martiny, Jennifer BH

    2013-01-01

    Although microorganisms largely drive many ecosystem processes, the relationship between microbial composition and their functioning remains unclear. To tease apart the effects of composition and the environment directly, microbial composition must be manipulated and maintained, ideally in a natural ecosystem. In this study, we aimed to test whether variability in microbial composition affects functional processes in a field setting, by reciprocally transplanting riverbed sediments between low- and high-salinity locations along the Nonesuch River (Maine, USA). We placed the sediments into microbial ‘cages' to prevent the migration of microorganisms, while allowing the sediments to experience the abiotic conditions of the surroundings. We performed two experiments, short- (1 week) and long-term (7 weeks) reciprocal transplants, after which we assayed a variety of functional processes in the cages. In both experiments, we examined the composition of bacteria generally (targeting the 16S rDNA gene) and sulfate-reducing bacteria (SRB) specifically (targeting the dsrAB gene) using terminal restriction fragment length polymorphism (T-RFLP). In the short-term experiment, sediment processes (CO2 production, CH4 flux, nitrification and enzyme activities) depended on both the sediment's origin (reflecting differences in microbial composition between salt and freshwater sediments) and the surrounding environment. In the long-term experiment, general bacterial composition (but not SRB composition) shifted in response to their new environment, and this composition was significantly correlated with sediment functioning. Further, sediment origin had a diminished effect, relative to the short-term experiment, on sediment processes. Overall, this study provides direct evidence that microbial composition directly affects functional processes in these sediments. PMID:23235294

  4. Microbial Carbon Cycling in Permafrost-Affected Soils

    SciTech Connect

    Vishnivetskaya, T.; Liebner, Susanne; Wilhelm, Ronald; Wagner, Dirk

    2011-01-01

    The Arctic plays a key role in Earth s climate system as global warming is predicted to be most pronounced at high latitudes and because one third of the global carbon pool is stored in ecosystems of the northern latitudes. In order to improve our understanding of the present and future carbon dynamics in climate sensitive permafrost ecosystems, present studies concentrate on investigations of microbial controls of greenhouse gas fluxes, on the activity and structure of the involved microbial communities, and on their response to changing environmental conditions. Permafrost-affected soils can function as both a source and a sink for carbon dioxide and methane. Under anaerobic conditions, caused by flooding of the active layer and the effect of backwater above the permafrost table, the mineralization of organic matter can only be realized stepwise by specialized microorganisms. Important intermediates of the organic matter decomposition are hydrogen, carbon dioxide and acetate, which can be further reduced to methane by methanogenic archaea. Evolution of methane fluxes across the subsurface/atmosphere boundary will thereby strongly depend on the activity of anaerobic methanogenic archaea and obligately aerobic methane oxidizing proteobacteria, which are known to be abundant and to significantly reduce methane emissions in permafrost-affected soils. Therefore current studies on methane-cycling microorganisms are the object of particular attention in permafrost studies, because of their key role in the Arctic methane cycle and consequently of their significance for the global methane budget.

  5. Microbial Community Composition Affects Soil Fungistasis†

    PubMed Central

    de Boer, Wietse; Verheggen, Patrick; Klein Gunnewiek, Paulien J. A.; Kowalchuk, George A.; van Veen, Johannes A.

    2003-01-01

    Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis) or production of antifungal compounds (antibiosis hypothesis). To obtain evidence for either of these hypotheses, we measured soil respiration and microbial numbers (as indicators of nutrient stress) and bacterial community composition (as an indicator of potential differences in the composition of antifungal components) during the development of fungistasis. This was done for two fungistatic dune soils in which fungistasis was initially fully or partly relieved by partial sterilization treatment or nutrient addition. Fungistasis development was measured as restriction of the ability of the fungi Chaetomium globosum, Fusarium culmorum, Fusarium oxysporum, and Trichoderma harzianum to colonize soils. Fungistasis did not always reappear after soil treatments despite intense competition for carbon, suggesting that microbial community composition is important in the development of fungistasis. Both microbial community analysis and in vitro antagonism tests indicated that the presence of pseudomonads might be essential for the development of fungistasis. Overall, the results lend support to the antibiosis hypothesis. PMID:12571002

  6. Microbial activity at gigapascal pressures.

    PubMed

    Sharma, Anurag; Scott, James H; Cody, George D; Fogel, Marilyn L; Hazen, Robert M; Hemley, Russell J; Huntress, Wesley T

    2002-02-22

    We observed physiological and metabolic activity of Shewanella oneidensis strain MR1 and Escherichia coli strain MG1655 at pressures of 68 to 1680 megapascals (MPa) in diamond anvil cells. We measured biological formate oxidation at high pressures (68 to 1060 MPa). At pressures of 1200 to 1600 MPa, living bacteria resided in fluid inclusions in ice-VI crystals and continued to be viable upon subsequent release to ambient pressures (0.1 MPa). Evidence of microbial viability and activity at these extreme pressures expands by an order of magnitude the range of conditions representing the habitable zone in the solar system. PMID:11859192

  7. Microbial activity at gigapascal pressures.

    PubMed

    Sharma, Anurag; Scott, James H; Cody, George D; Fogel, Marilyn L; Hazen, Robert M; Hemley, Russell J; Huntress, Wesley T

    2002-02-22

    We observed physiological and metabolic activity of Shewanella oneidensis strain MR1 and Escherichia coli strain MG1655 at pressures of 68 to 1680 megapascals (MPa) in diamond anvil cells. We measured biological formate oxidation at high pressures (68 to 1060 MPa). At pressures of 1200 to 1600 MPa, living bacteria resided in fluid inclusions in ice-VI crystals and continued to be viable upon subsequent release to ambient pressures (0.1 MPa). Evidence of microbial viability and activity at these extreme pressures expands by an order of magnitude the range of conditions representing the habitable zone in the solar system.

  8. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    PubMed

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling. PMID:26974565

  9. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    PubMed

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling.

  10. Freezing skeletal muscle tissue does not affect its decomposition in soil: evidence from temporal changes in tissue mass, microbial activity and soil chemistry based on excised samples.

    PubMed

    Stokes, Kathryn L; Forbes, Shari L; Tibbett, Mark

    2009-01-10

    The study of decaying organisms and death assemblages is referred to as forensic taphonomy, or more simply the study of graves. This field is dominated by the fields of entomology, anthropology and archaeology. Forensic taphonomy also includes the study of the ecology and chemistry of the burial environment. Studies in forensic taphonomy often require the use of analogues for human cadavers or their component parts. These might include animal cadavers or skeletal muscle tissue. However, sufficient supplies of cadavers or analogues may require periodic freezing of test material prior to experimental inhumation in the soil. This study was carried out to ascertain the effect of freezing on skeletal muscle tissue prior to inhumation and decomposition in a soil environment under controlled laboratory conditions. Changes in soil chemistry were also measured. In order to test the impact of freezing, skeletal muscle tissue (Sus scrofa) was frozen (-20 degrees C) or refrigerated (4 degrees C). Portions of skeletal muscle tissue (approximately 1.5 g) were interred in microcosms (72 mm diameter x 120 mm height) containing sieved (2mm) soil (sand) adjusted to 50% water holding capacity. The experiment had three treatments: control with no skeletal muscle tissue, microcosms containing frozen skeletal muscle tissue and those containing refrigerated tissue. The microcosms were destructively harvested at sequential periods of 2, 4, 6, 8, 12, 16, 23, 30 and 37 days after interment of skeletal muscle tissue. These harvests were replicated 6 times for each treatment. Microbial activity (carbon dioxide respiration) was monitored throughout the experiment. At harvest the skeletal muscle tissue was removed and the detritosphere soil was sampled for chemical analysis. Freezing was found to have no significant impact on decomposition or soil chemistry compared to unfrozen samples in the current study using skeletal muscle tissue. However, the interment of skeletal muscle tissue had a

  11. Microbial activity in weathering columns.

    PubMed

    García, C; Ballester, A; González, F; Blázquez, M L

    2007-03-22

    The aim of the present work was to evaluate the metabolic activity of the microbial population associated with a pyritic tailing after a column-weathering test. For this purpose, a column 150cm high and 15cm diameter was used. The solid was a tailing with 63.4% pyrite and with minor amounts of Cu, Pb and Zn sulfides (1.4, 0.5 and 0.8%, respectively). The column model was the habitual one for weathering tests: distilled water was added at the top of the column; the water flowed down through tailings and finally was collected at the bottom for chemical and microbiological analysis. Weathering was maintained for 36 weeks. The results showed a significant presence of microbial life that was distributed selectively over the column: sulfur- and iron-oxidizing aerobic bacteria were in the more oxygenated zone; anaerobic sulfur-reducing bacteria were isolated from the samples taken from the anoxic part of the column. Activity testing showed that (oxidizing and reducing) bacteria populations were active at the end of the weathering test. The quality of the water draining from the column was thus the final product of biological oxidation and reduction promoted by the bacteria consortia.

  12. Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales.

    PubMed

    Zeglin, L H; Bottomley, P J; Jumpponen, A; Rice, C W; Arango, M; Lindsley, A; McGowan, A; Mfombep, P; Myrold, D D

    2013-10-01

    Climate change models predict that future precipitation patterns will entail lower-frequency but larger rainfall events, increasing the duration of dry soil conditions. Resulting shifts in microbial C cycling activity could affect soil C storage. Further, microbial response to rainfall events may be constrained by the physiological or nutrient limitation stress of extended drought periods; thus seasonal or multiannual precipitation regimes may influence microbial activity following soil wet-up. We quantified rainfall-driven dynamics of microbial processes that affect soil C loss and retention, and microbial community composition, in soils from a long-term (14-year) field experiment contrasting "Ambient" and "Altered" (extended intervals between rainfalls) precipitation regimes. We collected soil before, the day following, and five days following 2.5-cm rainfall events during both moist and dry periods (June and September 2011; soil water potential = -0.01 and -0.83 MPa, respectively), and measured microbial respiration, microbial biomass, organic matter decomposition potential (extracellular enzyme activities), and microbial community composition (phospholipid fatty acids). The equivalent rainfall events caused equivalent microbial respiration responses in both treatments. In contrast, microbial biomass was higher and increased after rainfall in the Altered treatment soils only, thus microbial C use efficiency (CUE) was higher in Altered than Ambient treatments (0.70 +/- 0.03 > 0.46 +/- 0.10). CUE was also higher in dry (September) soils. C-acquiring enzyme activities (beta-glucosidase, cellobiohydrolase, and phenol oxidase) increased after rainfall in moist (June), but not dry (September) soils. Both microbial biomass C:N ratios and fungal:bacterial ratios were higher at lower soil water contents, suggesting a functional and/or population-level shift in the microbiota at low soil water contents, and microbial community composition also differed following wet

  13. Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales.

    PubMed

    Zeglin, L H; Bottomley, P J; Jumpponen, A; Rice, C W; Arango, M; Lindsley, A; McGowan, A; Mfombep, P; Myrold, D D

    2013-10-01

    Climate change models predict that future precipitation patterns will entail lower-frequency but larger rainfall events, increasing the duration of dry soil conditions. Resulting shifts in microbial C cycling activity could affect soil C storage. Further, microbial response to rainfall events may be constrained by the physiological or nutrient limitation stress of extended drought periods; thus seasonal or multiannual precipitation regimes may influence microbial activity following soil wet-up. We quantified rainfall-driven dynamics of microbial processes that affect soil C loss and retention, and microbial community composition, in soils from a long-term (14-year) field experiment contrasting "Ambient" and "Altered" (extended intervals between rainfalls) precipitation regimes. We collected soil before, the day following, and five days following 2.5-cm rainfall events during both moist and dry periods (June and September 2011; soil water potential = -0.01 and -0.83 MPa, respectively), and measured microbial respiration, microbial biomass, organic matter decomposition potential (extracellular enzyme activities), and microbial community composition (phospholipid fatty acids). The equivalent rainfall events caused equivalent microbial respiration responses in both treatments. In contrast, microbial biomass was higher and increased after rainfall in the Altered treatment soils only, thus microbial C use efficiency (CUE) was higher in Altered than Ambient treatments (0.70 +/- 0.03 > 0.46 +/- 0.10). CUE was also higher in dry (September) soils. C-acquiring enzyme activities (beta-glucosidase, cellobiohydrolase, and phenol oxidase) increased after rainfall in moist (June), but not dry (September) soils. Both microbial biomass C:N ratios and fungal:bacterial ratios were higher at lower soil water contents, suggesting a functional and/or population-level shift in the microbiota at low soil water contents, and microbial community composition also differed following wet

  14. Microbial biomass, activity and community composition in constructed wetlands.

    PubMed

    Truu, Marika; Juhanson, Jaanis; Truu, Jaak

    2009-06-15

    The aim of the current article is to give an overview about microbial communities and their functioning but also about factors affecting microbial activity in the three most common types (surface flow and two types of sub-surface flow) of constructed wetlands. The paper reviews the community composition and structural diversity of the microbial biomass, analyzing different aspects of microbial activity with respect to wastewater properties, specific wetland type, and environmental parameters. A brief introduction about the application of different novel molecular techniques for the assessment of microbial communities in constructed wetlands is also given. Microbially mediated processes in constructed wetlands are mainly dependent on hydraulic conditions, wastewater properties, including substrate and nutrient quality and availability, filter material or soil type, plants, and different environmental factors. Microbial biomass is within similar ranges in both horizontal and vertical subsurface flow and surface flow constructed wetlands. Stratification of the biomass but also a stratified structural pattern of the bacterial community can be seen in subsurface flow systems. Microbial biomass C/N ratio is higher in horizontal flow systems compared to vertical flow systems, indicating the structural differences in microbial communities between those two constructed wetland types. The total activity of the microbial community is in the same range, but heterotrophic growth is higher in the subsurface (vertical flow) system compared to the surface flow systems. Available species-specific data about microbial communities in different types of wetlands is scarce and therefore it is impossible make any general conclusions about the dynamics of microbial community structure in wetlands, its relationship to removal processes and operational parameters.

  15. Microbial Functional Potential and Community Composition in Permafrost-Affected Soils of the NW Canadian Arctic

    PubMed Central

    Frank-Fahle, Béatrice A.; Yergeau, Étienne; Greer, Charles W.; Lantuit, Hugues; Wagner, Dirk

    2014-01-01

    Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic. PMID:24416279

  16. Microbial functional potential and community composition in permafrost-affected soils of the NW Canadian Arctic.

    PubMed

    Frank-Fahle, Béatrice A; Yergeau, Etienne; Greer, Charles W; Lantuit, Hugues; Wagner, Dirk

    2014-01-01

    Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic.

  17. Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions.

    PubMed

    Jassey, Vincent E J; Chiapusio, Geneviève; Binet, Philippe; Buttler, Alexandre; Laggoun-Défarge, Fatima; Delarue, Frédéric; Bernard, Nadine; Mitchell, Edward A D; Toussaint, Marie-Laure; Francez, André-Jean; Gilbert, Daniel

    2013-03-01

    Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above- and belowground linkages that regulate soil organic carbon dynamics and C-balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top-predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum-polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above- and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatlands.

  18. Seasonal distribution of microbial activity in bioaerosols in the outdoor environment of the Qingdao coastal region

    NASA Astrophysics Data System (ADS)

    Zhong, Xi; Qi, Jianhua; Li, Hongtao; Dong, Lijie; Gao, Dongmei

    2016-09-01

    Microbial activities in the atmosphere can indicate the physiological processes of microorganisms and can indirectly affect cloud formation and environmental health. In this study, the microbial activity in bioaerosols collected in the Qingdao coastal region was investigated using the fluorescein diacetate (FDA) hydrolysis method to detect the enzyme activity of microorganisms. The results showed that the microbial activity ranged from 5.49 to 102 ng/m3 sodium fluorescein from March 2013 to February 2014; the average value was 34.4 ng/m3. Microbial activity has no statistical correlation with total microbial quantity. Multiple linear regression analysis showed that meteorological factors such as atmospheric temperature, relative humidity and wind speed accounted for approximately 35.7% of the variation of the microbial activity, although their individual impacts on microbial activity varied. According to the correlation analysis, atmospheric temperature and wind speed had a significant positive and negative influence on microbial activity, respectively, whereas relative humidity and wind direction had no significant influence. The seasonal distribution of microbial activity in bioaerosols was in the order of summer > autumn > winter > spring, with high fluctuations in the summer and autumn. Microbial activity in bioaerosols differed in different weather conditions such as the sunny, foggy, and hazy days of different seasons. Further in situ observations in different weather conditions at different times and places are needed to understand the seasonal distribution characteristics of microbial activity in bioaerosols and the influence factors of microbial activity.

  19. Microbial activity at Yucca Mountain

    SciTech Connect

    Horn, J.M.; Meike, A.

    1995-09-25

    The U.S. Department of Energy is engaged in a suitability study for a potential geological repository at Yucca Mountain, Nevada, for the containment and storage of commercially generated spent fuel and defense high-level nuclear waste. There is growing recognition of the role that biotic factors could play in this repository, either directly through microbially induced corrosion (MIC), or indirectly by altering the chemical environment or contributing to the transport of radionuclides. As a first step toward describing and predicting these processes, a workshop was held on April 10-12, 1995, in Lafayette, California. The immediate aims of the workshop were: (1) To identify microbially related processes relevant to the design of a radioactive waste repository under conditions similar to those at Yucca Mountain. (2) To determine parameters that are critical to the evaluation of a disturbed subterranean environment. (3) To define the most effective means of investigating the factors thus identified.

  20. Microbial activity in soils following steam treatment.

    PubMed

    Richardson, Ruth E; James, C Andrew; Bhupathiraju, Vishvesh K; Alvarez-Cohen, Lisa

    2002-01-01

    Steam enhanced extraction (SEE) is an aquifer remediation technique that can be effective at removing the bulk of non-aqueous phase liquid (NAPL) contamination from the subsurface, particularly highly volatile contaminants. However, low volatility compounds such as polynuclear aromatic hydrocarbons (PAHs) are less efficiently removed by this process. This research evaluated the effects of steam injection on soil microbial activity, community structure, and the potential for biodegradation of contaminants following steam treatment. Three different soils were evaluated: a laboratory-prepared microbially-enriched soil, soil from a creosote contaminated field site, and soil from a chlorinated solvent and waste oil contaminated field site. Results from field-scale steaming are also presented. Microbial activity before and after steam treatment was evaluated using direct epifluorescent microscopy (DEM) using the respiratory activity dye 5-cyano-2,3, ditolyl tetrazolium chloride (CTC) in conjunction with the fluorochrome 5-(4,6-dichlorotriazinyl) aminofluorescein (DTAF) to yield a quantitative assessment of active and total microbial numbers. DEM results indicate that steamed soils that were analyzed while still hot exhibited microbial activity levels that were below detection. However, soil samples that were slowly cooled, more closely reflecting the conditions of applied SEE, exhibited microbial activity levels that were comparable to presteamed soils. Samples from a field-site where steam was applied continuously for 6 weeks also showed high levels of microbial activity following cooling. The metabolic capabilities of the steamed communities were investigated by measuring cell growth in enrichment cultures on various substrates. These studies provided evidence that organisms capable of biodegradation were among the mesophilic populations that survived steam treatment. Fluorescent in situ hybridization (FISH) analysis of the soils with domain-level rRNA probes suggest

  1. Microbial communities affecting albumen photography heritage: a methodological survey.

    PubMed

    Puškárová, Andrea; Bučková, Mária; Habalová, Božena; Kraková, Lucia; Maková, Alena; Pangallo, Domenico

    2016-01-01

    This study is one of the few investigations which analyze albumen prints, perhaps the most important photographic heritage of the late 19(th) and early 20(th) centuries. The chemical composition of photographic samples was assessed using Fourier-transform infrared spectroscopy and X-ray fluorescence. These two non-invasive techniques revealed the complex nature of albumen prints, which are composed of a mixture of proteins, cellulose and salts. Microbial sampling was performed using cellulose nitrate membranes which also permitted the trapped microflora to be observed with a scanning electron microscope. Microbial analysis was performed using the combination of culture-dependent (cultivation in different media, including one 3% NaCl) and culture-independent (bacterial and fungal cloning and sequencing) approaches. The isolated microorganisms were screened for their lipolytic, proteolytic, cellulolytic, catalase and peroxidase activities. The combination of the culture-dependent and -independent techniques together with enzymatic assays revealed a substantial microbial diversity with several deteriogen microorganisms from the genera Bacillus, Kocuria, Streptomyces and Geobacillus and the fungal strains Acrostalagmus luteoalbus, Bjerkandera adusta, Pleurotus pulmonarius and Trichothecium roseum. PMID:26864429

  2. Microbial communities affecting albumen photography heritage: a methodological survey

    NASA Astrophysics Data System (ADS)

    Puškárová, Andrea; Bučková, Mária; Habalová, Božena; Kraková, Lucia; Maková, Alena; Pangallo, Domenico

    2016-02-01

    This study is one of the few investigations which analyze albumen prints, perhaps the most important photographic heritage of the late 19th and early 20th centuries. The chemical composition of photographic samples was assessed using Fourier-transform infrared spectroscopy and X-ray fluorescence. These two non-invasive techniques revealed the complex nature of albumen prints, which are composed of a mixture of proteins, cellulose and salts. Microbial sampling was performed using cellulose nitrate membranes which also permitted the trapped microflora to be observed with a scanning electron microscope. Microbial analysis was performed using the combination of culture-dependent (cultivation in different media, including one 3% NaCl) and culture-independent (bacterial and fungal cloning and sequencing) approaches. The isolated microorganisms were screened for their lipolytic, proteolytic, cellulolytic, catalase and peroxidase activities. The combination of the culture-dependent and -independent techniques together with enzymatic assays revealed a substantial microbial diversity with several deteriogen microorganisms from the genera Bacillus, Kocuria, Streptomyces and Geobacillus and the fungal strains Acrostalagmus luteoalbus, Bjerkandera adusta, Pleurotus pulmonarius and Trichothecium roseum.

  3. Microbial communities affecting albumen photography heritage: a methodological survey.

    PubMed

    Puškárová, Andrea; Bučková, Mária; Habalová, Božena; Kraková, Lucia; Maková, Alena; Pangallo, Domenico

    2016-02-11

    This study is one of the few investigations which analyze albumen prints, perhaps the most important photographic heritage of the late 19(th) and early 20(th) centuries. The chemical composition of photographic samples was assessed using Fourier-transform infrared spectroscopy and X-ray fluorescence. These two non-invasive techniques revealed the complex nature of albumen prints, which are composed of a mixture of proteins, cellulose and salts. Microbial sampling was performed using cellulose nitrate membranes which also permitted the trapped microflora to be observed with a scanning electron microscope. Microbial analysis was performed using the combination of culture-dependent (cultivation in different media, including one 3% NaCl) and culture-independent (bacterial and fungal cloning and sequencing) approaches. The isolated microorganisms were screened for their lipolytic, proteolytic, cellulolytic, catalase and peroxidase activities. The combination of the culture-dependent and -independent techniques together with enzymatic assays revealed a substantial microbial diversity with several deteriogen microorganisms from the genera Bacillus, Kocuria, Streptomyces and Geobacillus and the fungal strains Acrostalagmus luteoalbus, Bjerkandera adusta, Pleurotus pulmonarius and Trichothecium roseum.

  4. Microbial communities affecting albumen photography heritage: a methodological survey

    PubMed Central

    Puškárová, Andrea; Bučková, Mária; Habalová, Božena; Kraková, Lucia; Maková, Alena; Pangallo, Domenico

    2016-01-01

    This study is one of the few investigations which analyze albumen prints, perhaps the most important photographic heritage of the late 19th and early 20th centuries. The chemical composition of photographic samples was assessed using Fourier-transform infrared spectroscopy and X-ray fluorescence. These two non-invasive techniques revealed the complex nature of albumen prints, which are composed of a mixture of proteins, cellulose and salts. Microbial sampling was performed using cellulose nitrate membranes which also permitted the trapped microflora to be observed with a scanning electron microscope. Microbial analysis was performed using the combination of culture-dependent (cultivation in different media, including one 3% NaCl) and culture-independent (bacterial and fungal cloning and sequencing) approaches. The isolated microorganisms were screened for their lipolytic, proteolytic, cellulolytic, catalase and peroxidase activities. The combination of the culture-dependent and -independent techniques together with enzymatic assays revealed a substantial microbial diversity with several deteriogen microorganisms from the genera Bacillus, Kocuria, Streptomyces and Geobacillus and the fungal strains Acrostalagmus luteoalbus, Bjerkandera adusta, Pleurotus pulmonarius and Trichothecium roseum. PMID:26864429

  5. Linking Geology and Microbiology: Inactive Pockmarks Affect Sediment Microbial Community Structure

    PubMed Central

    Haverkamp, Thomas H. A.; Hammer, Øyvind; Jakobsen, Kjetill S.

    2014-01-01

    Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm) sediment communities are affected by local conditions within the sediment. PMID:24475066

  6. Linking geology and microbiology: inactive pockmarks affect sediment microbial community structure.

    PubMed

    Haverkamp, Thomas H A; Hammer, Øyvind; Jakobsen, Kjetill S

    2014-01-01

    Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm) sediment communities are affected by local conditions within the sediment.

  7. Composition analysis of fractions of extracellular polymeric substances from an activated sludge culture and identification of dominant forces affecting microbial aggregation

    PubMed Central

    Guo, Xuan; Wang, Xu; Liu, Junxin

    2016-01-01

    Extracellular polymeric substances (EPS) appear to play a critical role in the formation of bioaggregates, such as sludge flocs, in activated sludge processes. Here, we systematically investigated the composition and chemical structure of various EPS fractions excreted from an activated sludge culture using multi-analysis techniques to examine the ability of the sludge to aggregate. Chemical analysis was used with a three-dimensional excitation emission matrix and Fourier transform infrared spectroscopy, applying inter-particle forces theory. The combined findings revealed that hydrophobic groups, especially protein-related N–H, were present in a greater proportion in tightly bound EPS (TB-EPS). This result, which explained the specificity of TB-EPS in the chemical structure, was consistent with data indicating that TB-EPS contained a large amount of protein-like substances (86.7 mg/g of mixed liquor volatile suspended solids, 39.7% of the total EPS). Subsequently, a novel experimental procedure was developed to pinpoint key inter-particle forces in sludge aggregation. The result revealed that hydrogen bonds are the predominant triggers that promote sludge aggregation. This comprehensive analysis indicated that hydrophobic proteins in TB-EPS are responsible for the critical role played by hydrogen bonds in sludge formation. Our findings highlight the need to elucidate the mechanisms of TB-EPS-mediated flocculation in future efforts. PMID:27311788

  8. Composition analysis of fractions of extracellular polymeric substances from an activated sludge culture and identification of dominant forces affecting microbial aggregation

    NASA Astrophysics Data System (ADS)

    Guo, Xuan; Wang, Xu; Liu, Junxin

    2016-06-01

    Extracellular polymeric substances (EPS) appear to play a critical role in the formation of bioaggregates, such as sludge flocs, in activated sludge processes. Here, we systematically investigated the composition and chemical structure of various EPS fractions excreted from an activated sludge culture using multi-analysis techniques to examine the ability of the sludge to aggregate. Chemical analysis was used with a three-dimensional excitation emission matrix and Fourier transform infrared spectroscopy, applying inter-particle forces theory. The combined findings revealed that hydrophobic groups, especially protein-related N–H, were present in a greater proportion in tightly bound EPS (TB-EPS). This result, which explained the specificity of TB-EPS in the chemical structure, was consistent with data indicating that TB-EPS contained a large amount of protein-like substances (86.7 mg/g of mixed liquor volatile suspended solids, 39.7% of the total EPS). Subsequently, a novel experimental procedure was developed to pinpoint key inter-particle forces in sludge aggregation. The result revealed that hydrogen bonds are the predominant triggers that promote sludge aggregation. This comprehensive analysis indicated that hydrophobic proteins in TB-EPS are responsible for the critical role played by hydrogen bonds in sludge formation. Our findings highlight the need to elucidate the mechanisms of TB-EPS-mediated flocculation in future efforts.

  9. Microbial activity in the marine deep biosphere: progress and prospects.

    PubMed

    Orcutt, Beth N; Larowe, Douglas E; Biddle, Jennifer F; Colwell, Frederick S; Glazer, Brian T; Reese, Brandi Kiel; Kirkpatrick, John B; Lapham, Laura L; Mills, Heath J; Sylvan, Jason B; Wankel, Scott D; Wheat, C Geoff

    2013-01-01

    The vast marine deep biosphere consists of microbial habitats within sediment, pore waters, upper basaltic crust and the fluids that circulate throughout it. A wide range of temperature, pressure, pH, and electron donor and acceptor conditions exists-all of which can combine to affect carbon and nutrient cycling and result in gradients on spatial scales ranging from millimeters to kilometers. Diverse and mostly uncharacterized microorganisms live in these habitats, and potentially play a role in mediating global scale biogeochemical processes. Quantifying the rates at which microbial activity in the subsurface occurs is a challenging endeavor, yet developing an understanding of these rates is essential to determine the impact of subsurface life on Earth's global biogeochemical cycles, and for understanding how microorganisms in these "extreme" environments survive (or even thrive). Here, we synthesize recent advances and discoveries pertaining to microbial activity in the marine deep subsurface, and we highlight topics about which there is still little understanding and suggest potential paths forward to address them. This publication is the result of a workshop held in August 2012 by the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) "theme team" on microbial activity (www.darkenergybiosphere.org).

  10. Microbial activity in the marine deep biosphere: progress and prospects

    PubMed Central

    Orcutt, Beth N.; LaRowe, Douglas E.; Biddle, Jennifer F.; Colwell, Frederick S.; Glazer, Brian T.; Reese, Brandi Kiel; Kirkpatrick, John B.; Lapham, Laura L.; Mills, Heath J.; Sylvan, Jason B.; Wankel, Scott D.; Wheat, C. Geoff

    2013-01-01

    The vast marine deep biosphere consists of microbial habitats within sediment, pore waters, upper basaltic crust and the fluids that circulate throughout it. A wide range of temperature, pressure, pH, and electron donor and acceptor conditions exists—all of which can combine to affect carbon and nutrient cycling and result in gradients on spatial scales ranging from millimeters to kilometers. Diverse and mostly uncharacterized microorganisms live in these habitats, and potentially play a role in mediating global scale biogeochemical processes. Quantifying the rates at which microbial activity in the subsurface occurs is a challenging endeavor, yet developing an understanding of these rates is essential to determine the impact of subsurface life on Earth's global biogeochemical cycles, and for understanding how microorganisms in these “extreme” environments survive (or even thrive). Here, we synthesize recent advances and discoveries pertaining to microbial activity in the marine deep subsurface, and we highlight topics about which there is still little understanding and suggest potential paths forward to address them. This publication is the result of a workshop held in August 2012 by the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) “theme team” on microbial activity (www.darkenergybiosphere.org). PMID:23874326

  11. [Effects of different straw recycling and tillage methods on soil respiration and microbial activity].

    PubMed

    Li, Xiao-sha; Wu, Ning; Liu, Ling; Feng, Yu-peng; Xu, Xu; Han, Hui-fang; Ning, Tang-yuan; Li, Zeng-jia

    2015-06-01

    To explore the effects of different tillage methods and straw recycling on soil respiration and microbial activity in summer maize field during the winter wheat and summer maize double cropping system, substrate induced respiration method and CO2 release method were used to determine soil microbial biomass carbon, microbial activity, soil respiration, and microbial respiratory quotient. The experiment included 3 tillage methods during the winter wheat growing season, i.e., no-tillage, subsoiling and conventional tillage. Each tillage method was companied with 2 straw management patterns, i.e., straw recycling and no straw. The results indicated that the conservation tillage methods and straw recycling mainly affected 0-10 cm soil layer. Straw recycling could significantly improve the microbial biomass carbon and microbial activity, while decrease microbial respiratory quotient. Straw recycling could improve the soil respiration at both seedling stage and anthesis, however, it could reduce the soil respiration at filling stage, wax ripeness, and harvest stage. Under the same straw application, compared with conventional tillage, the soil respiration and microbial respiratory quotient in both subsoiling and no-tillage were reduced, while the microbial biomass carbon and microbial activity were increased. During the summer maize growing season, soil microbial biomass carbon and microbial activity were increased in straw returning with conservation tillage, while the respiratory quotient was reduced. In 0-10 cm soil layer, compared with conventional tillage, straw recycling with subsoiling and no-tillage significantly increased soil microbial biomass carbon by 95.8% and 74.3%, and increased soil microbial activity by 97.1% and 74.2%, respectively.

  12. Metalliferous Biosignatures for Deep Subsurface Microbial Activity

    NASA Astrophysics Data System (ADS)

    Parnell, John; Brolly, Connor; Spinks, Sam; Bowden, Stephen

    2016-03-01

    The interaction of microbes and metals is widely assumed to have occurred in surface or very shallow subsurface environments. However new evidence suggests that much microbial activity occurs in the deep subsurface. Fluvial, lacustrine and aeolian `red beds' contain widespread centimetre-scale reduction spheroids in which a pale reduced spheroid in otherwise red rocks contains a metalliferous core. Most of the reduction of Fe (III) in sediments is caused by Fe (III) reducing bacteria. They have the potential to reduce a range of metals and metalloids, including V, Cu, Mo, U and Se, by substituting them for Fe (III) as electron acceptors, which are all elements common in reduction spheroids. The spheroidal morphology indicates that they were formed at depth, after compaction, which is consistent with a microbial formation. Given that the consequences of Fe (III) reduction have a visual expression, they are potential biosignatures during exploration of the terrestrial and extraterrestrial geological record. There is debate about the energy available from Fe (III) reduction on Mars, but the abundance of iron in Martian soils makes it one of the most valuable prospects for life there. Entrapment of the microbes themselves as fossils is possible, but a more realistic target during the exploration of Mars would be the colour contrasts reflecting selective reduction or oxidation. This can be achieved by analysing quartz grains across a reduction spheroid using Raman spectroscopy, which demonstrates its suitability for life detection in subsurface environments. Microbial action is the most suitable explanation for the formation of reduction spheroids and may act as metalliferous biosignatures for deep subsurface microbial activity.

  13. Metalliferous Biosignatures for Deep Subsurface Microbial Activity.

    PubMed

    Parnell, John; Brolly, Connor; Spinks, Sam; Bowden, Stephen

    2016-03-01

    The interaction of microbes and metals is widely assumed to have occurred in surface or very shallow subsurface environments. However new evidence suggests that much microbial activity occurs in the deep subsurface. Fluvial, lacustrine and aeolian 'red beds' contain widespread centimetre-scale reduction spheroids in which a pale reduced spheroid in otherwise red rocks contains a metalliferous core. Most of the reduction of Fe (III) in sediments is caused by Fe (III) reducing bacteria. They have the potential to reduce a range of metals and metalloids, including V, Cu, Mo, U and Se, by substituting them for Fe (III) as electron acceptors, which are all elements common in reduction spheroids. The spheroidal morphology indicates that they were formed at depth, after compaction, which is consistent with a microbial formation. Given that the consequences of Fe (III) reduction have a visual expression, they are potential biosignatures during exploration of the terrestrial and extraterrestrial geological record. There is debate about the energy available from Fe (III) reduction on Mars, but the abundance of iron in Martian soils makes it one of the most valuable prospects for life there. Entrapment of the microbes themselves as fossils is possible, but a more realistic target during the exploration of Mars would be the colour contrasts reflecting selective reduction or oxidation. This can be achieved by analysing quartz grains across a reduction spheroid using Raman spectroscopy, which demonstrates its suitability for life detection in subsurface environments. Microbial action is the most suitable explanation for the formation of reduction spheroids and may act as metalliferous biosignatures for deep subsurface microbial activity.

  14. Metalliferous Biosignatures for Deep Subsurface Microbial Activity.

    PubMed

    Parnell, John; Brolly, Connor; Spinks, Sam; Bowden, Stephen

    2016-03-01

    The interaction of microbes and metals is widely assumed to have occurred in surface or very shallow subsurface environments. However new evidence suggests that much microbial activity occurs in the deep subsurface. Fluvial, lacustrine and aeolian 'red beds' contain widespread centimetre-scale reduction spheroids in which a pale reduced spheroid in otherwise red rocks contains a metalliferous core. Most of the reduction of Fe (III) in sediments is caused by Fe (III) reducing bacteria. They have the potential to reduce a range of metals and metalloids, including V, Cu, Mo, U and Se, by substituting them for Fe (III) as electron acceptors, which are all elements common in reduction spheroids. The spheroidal morphology indicates that they were formed at depth, after compaction, which is consistent with a microbial formation. Given that the consequences of Fe (III) reduction have a visual expression, they are potential biosignatures during exploration of the terrestrial and extraterrestrial geological record. There is debate about the energy available from Fe (III) reduction on Mars, but the abundance of iron in Martian soils makes it one of the most valuable prospects for life there. Entrapment of the microbes themselves as fossils is possible, but a more realistic target during the exploration of Mars would be the colour contrasts reflecting selective reduction or oxidation. This can be achieved by analysing quartz grains across a reduction spheroid using Raman spectroscopy, which demonstrates its suitability for life detection in subsurface environments. Microbial action is the most suitable explanation for the formation of reduction spheroids and may act as metalliferous biosignatures for deep subsurface microbial activity. PMID:26376912

  15. Active laser tweezers microrheometry of microbial biofilms

    NASA Astrophysics Data System (ADS)

    Osterman, N.; Slapar, V.; Boric, M.; Stopar, D.; Babič, D.; Poberaj, I.

    2010-08-01

    Microbial biofilms are present on biotic and abiotic surfaces and have a significant impact on many fields in industry, health care and technology. Thus, a better understanding of processes that lead to development of biofilms and their chemical and mechanical properties is needed. In the following paper we report the results of active laser tweezers microrheology study of optically inhomogeneous extracellular matrix secreted by Visbrio sp. bacteria. One particle and two particle active microrheology were used in experiments. Both methods exhibited high enough sensitivity to detect viscosity changes at early stages of bacterial growth. We also showed that both methods can be used in mature samples where optical inhomogeneity becomes significant.

  16. Increasing concentrations of phenol progressively affect anaerobic digestion of cellulose and associated microbial communities.

    PubMed

    Chapleur, Olivier; Madigou, Céline; Civade, Raphaël; Rodolphe, Yohan; Mazéas, Laurent; Bouchez, Théodore

    2016-02-01

    Performance stability is a key issue when managing anaerobic digesters. However it can be affected by external disturbances caused by micropollutants. In this study the influence of phenol on the methanization of cellulose was evaluated through batch toxicity assays. Special attention was given to the dynamics of microbial communities by means of automated ribosomal intergenic spacer analysis. We observed that, as phenol concentrations increased, the different steps of anaerobic cellulose digestion were unevenly and progressively affected, methanogenesis being the most sensitive: specific methanogenic activity was half-inhibited at 1.40 g/L of phenol, whereas hydrolysis of cellulose and its fermentation to VFA were observed at up to 2.00 g/L. Depending on the level of phenol, microbial communities resisted either through physiological or structural adaptation. Thus, performances at 0.50 g/L were maintained in spite of the microbial community's shift. However, the communities' ability to adapt was limited and performances decreased drastically beyond 2.00 g/L of phenol. PMID:26614490

  17. Community history affects the predictability of microbial ecosystem development

    PubMed Central

    Pagaling, Eulyn; Strathdee, Fiona; Spears, Bryan M; Cates, Michael E; Allen, Rosalind J; Free, Andrew

    2014-01-01

    Microbial communities mediate crucial biogeochemical, biomedical and biotechnological processes, yet our understanding of their assembly, and our ability to control its outcome, remain poor. Existing evidence presents conflicting views on whether microbial ecosystem assembly is predictable, or inherently unpredictable. We address this issue using a well-controlled laboratory model system, in which source microbial communities colonize a pristine environment to form complex, nutrient-cycling ecosystems. When the source communities colonize a novel environment, final community composition and function (as measured by redox potential) are unpredictable, although a signature of the community's previous history is maintained. However, when the source communities are pre-conditioned to their new habitat, community development is more reproducible. This situation contrasts with some studies of communities of macro-organisms, where strong selection under novel environmental conditions leads to reproducible community structure, whereas communities under weaker selection show more variability. Our results suggest that the microbial rare biosphere may have an important role in the predictability of microbial community development, and that pre-conditioning may help to reduce unpredictability in the design of microbial communities for biotechnological applications. PMID:23985743

  18. Influence of interfaces on microbial activity.

    PubMed Central

    van Loosdrecht, M C; Lyklema, J; Norde, W; Zehnder, A J

    1990-01-01

    Bacterial adhesion in natural and artificial systems has been critically reviewed to investigate the influences exerted by the presence of interfaces. Numerous investigations have demonstrated that, in the presence of a solid phase, the activity of bacterial cultures is changed. Reviewing relevant literature, two problems were encountered. One is of an experimental nature. Due to lack of similarity in experimental conditions, disparate experiments often cannot be compared; their results may even appear conflicting. The other problem is of an interpretational nature: several hypothetical theories exist which try to explain the effect of surfaces on microbial activity. These theories often confuse changes in the medium and limitations in mass transfer which are due to the presence of solid surfaces (indirect influences) with changes in cell properties (direct influences). Whenever a surface is reported to influence the metabolism of bacteria, the action is found almost exclusively to be due to changes in the medium or environment and is therefore indirect. Based on data reported in the literature, and by using thermodynamic and kinetic considerations, it is concluded that so far neither experimental nor theoretical evidence exists for a direct influence of interfaces on microbial activity. PMID:2181260

  19. Seasonal Variability May Affect Microbial Decomposers and Leaf Decomposition More Than Warming in Streams.

    PubMed

    Duarte, Sofia; Cássio, Fernanda; Ferreira, Verónica; Canhoto, Cristina; Pascoal, Cláudia

    2016-08-01

    Ongoing climate change is expected to affect the diversity and activity of aquatic microbes, which play a key role in plant litter decomposition in forest streams. We used a before-after control-impact (BACI) design to study the effects of warming on a forest stream reach. The stream reach was divided by a longitudinal barrier, and during 1 year (ambient year) both stream halves were at ambient temperature, while in the second year (warmed year) the temperature in one stream half was increased by ca. 3 °C above ambient temperature (experimental half). Fine-mesh bags containing oak (Quercus robur L.) leaves were immersed in both stream halves for up to 60 days in spring and autumn of the ambient and warmed years. We assessed leaf-associated microbial diversity by denaturing gradient gel electrophoresis and identification of fungal conidial morphotypes and microbial activity by quantifying leaf mass loss and productivity of fungi and bacteria. In the ambient year, no differences were found in leaf decomposition rates and microbial productivities either between seasons or stream halves. In the warmed year, phosphorus concentration in the stream water, leaf decomposition rates, and productivity of bacteria were higher in spring than in autumn. They did not differ between stream halves, except for leaf decomposition, which was higher in the experimental half in spring. Fungal and bacterial communities differed between seasons in both years. Seasonal changes in stream water variables had a greater impact on the activity and diversity of microbial decomposers than a warming regime simulating a predicted global warming scenario.

  20. Activity assessment of microbial fibrinolytic enzymes.

    PubMed

    Kotb, Essam

    2013-08-01

    Conversion of fibrinogen to fibrin inside blood vessels results in thrombosis, leading to myocardial infarction and other cardiovascular diseases. In general, there are four therapy options: surgical operation, intake of antiplatelets, anticoagulants, or fibrinolytic enzymes. Microbial fibrinolytic enzymes have attracted much more attention than typical thrombolytic agents because of the expensive prices and the side effects of the latter. The fibrinolytic enzymes were successively discovered from different microorganisms, the most important among which is the genus Bacillus. Microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure thrombosis and other related diseases. There are several assay methods for these enzymes; this may due to the insolubility of substrate, fibrin. Existing assay methods can be divided into three major groups. The first group consists of assay of fibrinolytic activity with natural proteins as substrates, e.g., fibrin plate methods. The second and third groups of assays are suitable for kinetic studies and are based on the determination of hydrolysis of synthetic peptide esters. This review will deal primarily with the microorganisms that have been reported in literature to produce fibrinolytic enzymes and the first review discussing the methods used to assay the fibrinolytic activity.

  1. Direct Observations Of Microbial Activity At Extreme Pressures

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Scott, J. H.; Cody, G. D.; Fogel, M.; Hazen, R. M.; Hemley, R. J.; Huntress, W. T.

    2002-12-01

    Microbial communities adapt to a wide range of pressures, temperatures, salinities, pH, and oxidation states. Although, significant attention has been focused on the effects of high and low temperature on physiology, there is some evidence that elevated pressure may also manifest interesting effects on cellular physiology, such as enzyme inactivation, cell-membrane breach, and suppression of protein interactions with various substrates. However, exactly how these factors affect intact cells is not well understood. In this study, we have adapted diamond anvil cells to explore the effects of high pressure on microbial life. We used the rate of microbial formate oxidation as a probe of metabolic viability. The utilization of formate by microorganisms is a fundamental metabolic process in anaerobic environments. We monitored in-situ microbial formate oxidation via molecular spectroscopy for Shewanella oneidensis strain MR1 and Escherichia coli strain MG1655 at high pressures (68 to 1060 MPa). At pressures of 1200 to 1600 MPa, living bacteria resided in fluid inclusions in ice-VI crystals and continued to be viable upon subsequent release to ambient pressures (0.1 MPa). Furthermore, direct microscopic observations indicate that these cells maintain their ability for cellular division upon decompression from such high pressures. Evidence of microbial viability and activity at these extreme pressures expands by an order of magnitude the range of conditions representing the habitable zone in the solar system. These results imply that pressure may not be a significant impediment to life. The maximum pressure explored in this work is equivalent to a depth of ~ 50 km below Earth's crust, or ~ 160 km in a hypothetical ocean. The pressures encountered at the depths of thick ice caps and deep crustal subsurface may not be a limiting factor for the existence of life. This suggests that deep (water/ice) layers of Europa, Callisto, or Ganymede, subduction zones on Earth, and the

  2. Do long-lived ants affect soil microbial communities?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to test the hypothesis that desert ant species that build nests that remain viable at a particular point in space for more than a decade produce soil conditions that enhance microbial biomass and functional diversity. We studied the effects of a seed-harvester ant, Pogonomyrm...

  3. Energy and power limits for microbial activity

    NASA Astrophysics Data System (ADS)

    LaRowe, D.; Amend, J.

    2014-12-01

    The goal of this presentation is to describe a quantitative framework for determining how energy limits microbial activity, biomass and, ultimately, biogeochemical processes. Although this model can be applied to any environment, its utility is demonstrated in marine sediments, which are an attractive test habitat because they encompass a broad spectrum of energy levels, varying amounts of biomass and are ubiquitous. The potential number of active microbial cells in Arkonas Basin (Baltic Sea) sediments are estimated as a function of depth by quantifying the amount of energy that is available to them and the rate at which it is supplied: power. The amount of power supplied per cubic centimeter of sediment is determined by calculating the Gibbs energy of fermentation and sulfate reduction in combination with the rate of particulate organic carbon, POC, degradation. The Reactive Continuum Model (Boudreau and Ruddick, 1991), RCM, is used to determine the rate at which POC is made available for microbial consumption. The RCM represents POC as containing a range of different types of organic compounds whose ability to be consumed by microorganisms varies as a function of the age of the sediment and on the distribution of compound types that were initially deposited. The sediment age model and RCM parameters determined by (Mogollon et al., 2012) are used. The power available for fermentation and sulfate reduction coupled to H2 and acetate oxidation varies from 10-8 W cm-3 at the sediment water interface to between 10-11 - 10-12 W cm-3 at 3.5 meters below the seafloor, mbsf. Using values of maintenance powers for each of these catabolic activities taken from the literature, the total number of active cells in these sediments similarly decreases from just less than 108 cell cm-3 at the SWI to 4.6 x 104 cells cm-3 at 3.5 mbsf. The number of moles of POC decreases from 2.6 x 10-5 to 9.5 x 10-6, also becoming more recalcitrant with depth. Boudreau, B. P. and Ruddick, B. R

  4. Response of enzyme activities and microbial communities to soil amendment with sugar alcohols.

    PubMed

    Yu, Huili; Si, Peng; Shao, Wei; Qiao, Xiansheng; Yang, Xiaojing; Gao, Dengtao; Wang, Zhiqiang

    2016-08-01

    Changes in microbial community structure are widely known to occur after soil amendment with low-molecular-weight organic compounds; however, there is little information on concurrent changes in soil microbial functional diversity and enzyme activities, especially following sorbitol and mannitol amendment. Soil microbial functional diversity and enzyme activities can be impacted by sorbitol and mannitol, which in turn can alter soil fertility and quality. The objective of this study was to investigate the effects of sorbitol and mannitol addition on microbial functional diversity and enzyme activities. The results demonstrated that sorbitol and mannitol addition altered the soil microbial community structure and improved enzyme activities. Specifically, the addition of sorbitol enhanced the community-level physiological profile (CLPP) compared with the control, whereas the CLPP was significantly inhibited by the addition of mannitol. The results of a varimax rotated component matrix demonstrated that carbohydrates, polymers, and carboxylic acids affected the soil microbial functional structure. Additionally, we found that enzyme activities were affected by both the concentration and type of inputs. In the presence of high concentrations of sorbitol, the urease, catalase, alkaline phosphatase, β-glucosidase, and N-acetyl-β-d-glucosaminidase activities were significantly increased, while invertase activity was decreased. Similarly, this increase in invertase, catalase, and alkaline phosphatase and N-acetyl-β-d-glucosaminidase activities was especially evident after mannitol addition, and urease activity was only slightly affected. In contrast, β-glucosidase activity was suppressed at the highest concentration. These results indicate that microbial community diversity and enzyme activities are significantly affected by soil amendment with sorbitol and mannitol. PMID:27005019

  5. Limited recovery of soil microbial activity after transient exposure to gasoline vapors.

    PubMed

    Modrzyński, Jakub J; Christensen, Jan H; Mayer, Philipp; Brandt, Kristian K

    2016-09-01

    During gasoline spills complex mixtures of toxic volatile organic compounds (VOCs) are released to terrestrial environments. Gasoline VOCs exert baseline toxicity (narcosis) and may thus broadly affect soil biota. We assessed the functional resilience (i.e. resistance and recovery of microbial functions) in soil microbial communities transiently exposed to gasoline vapors by passive dosing via headspace for 40 days followed by a recovery phase of 84 days. Chemical exposure was characterized with GC-MS, whereas microbial activity was monitored as soil respiration (CO2 release) and soil bacterial growth ([(3)H]leucine incorporation). Microbial activity was strongly stimulated and inhibited at low and high exposure levels, respectively. Microbial growth efficiency decreased with increasing exposure, but rebounded during the recovery phase for low-dose treatments. Although benzene, toluene, ethylbenzene and xylene (BTEX) concentrations decreased by 83-97% during the recovery phase, microbial activity in high-dose treatments did not recover and numbers of viable bacteria were 3-4 orders of magnitude lower than in control soil. Re-inoculation with active soil microorganisms failed to restore microbial activity indicating residual soil toxicity, which could not be attributed to BTEX, but rather to mixture toxicity of more persistent gasoline constituents or degradation products. Our results indicate a limited potential for functional recovery of soil microbial communities after transient exposure to high, but environmentally relevant, levels of gasoline VOCs which therefore may compromise ecosystem services provided by microorganisms even after extensive soil VOC dissipation. PMID:27376993

  6. Effects of Alkaline Phosphatase Activity on Nucleotide Measurements in Aquatic Microbial Communities †

    PubMed Central

    Karl, D. M.; Craven, D. B.

    1980-01-01

    Alkaline phosphatase (APase) activity was detected in aquatic microbial assemblages from the subtropics to Antarctica. The occurrence of APase in environmental nucleotide extracts was shown to significantly affect the measured concentrations of cellular nucleotides (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, guanosine triphosphate, uridine triphosphate, and cytidine triphosphate), adenylate energy charge, and guanosine triphosphate/adenosine triphosphate ratios, when conventional methods of nucleotide extraction were employed. Under the reaction conditions specified in this report, the initial rate of hydrolysis of adenosine triphosphate was directly proportional to the activity of APase in the sample extracts and consequently can be used as a sensitive measure of APase activity. A method was devised for obtaining reliable nucleotide measurements in naturally occurring microbial populations containing elevated levels of APase activity. The metabolic significance of APase activity in microbial cells is discussed, and it is concluded that the occurrence and regulation of APase in nature is dependent upon microscale inorganic phosphate limitation of the autochthonous microbial communities. PMID:16345634

  7. Does microbial biomass affect pelagic ecosystem efficiency? An experimental study.

    PubMed

    Wehr, J D; Le, J; Campbell, L

    1994-01-01

    Bacteria and other microorganisms in the pelagic zone participate in the recycling of organic matter and nutrients within the water column. The microbial loop is thought to enhance ecosystem efficiency through rapid recycling and reduced sinking rates, thus reducing the loss of nutrients contained in organisms remaining within the photic zone. We conducted experiments with lake communities in 5400-liter mesocosms, and measured the flux of materials and nutrients out of the water column. A factorial design manipulated 8 nutrient treatments: 4 phosphorus levels × 2 nitrogen levels. Total sedimentation rates were greatest in high-N mesocosms; within N-surplus communities, [Symbol: see text]1 µM P resulted in 50% increase in total particulate losses. P additions without added N had small effects on nutrient losses from the photic zone; +2 µM P tanks received 334 mg P per tank, yet after 14 days lost only 69 mg more particulate-P than did control communities. Nutrient treatments resulted in marked differences in phytoplankton biomass (twofold N effect, fivefold P effect in +N mesocosms only), bacterioplankton densities (twofold N-effect, twofold P effects in -N and +N mesocosms), and the relative importance of autotrophic picoplankton (maximum in high NY mesocosms). Multiple regression analysis found that of 8 plankton and water chemistry variables, the ratio of autotrophic picoplankton to total phytoplankton (measured as chlorophyll α) explained the largest portion of the total variation in sedimentation loss rates (65% of P-flux, 57% of N-flux, 26% of total flux). In each case, systems with greater relative importance of autotrophic picoplankton had significantly reduced loss rates. In contrast, greater numbers of planktonic bacteria were associated with increased sedimentation rates and lower system efficiency. We suggest that different microbial components may have contrasting effects on the presumed enhanced efficiency provided by the microbial loop.

  8. Changes in enzymatic activities and microbial properties in vermicompost of water hyacinth as affected by pre-composting and fungal inoculation: a comparative study of ergosterol and chitin for estimating fungal biomass.

    PubMed

    Pramanik, P

    2010-01-01

    In this experiment, three different fungal species, viz. Trichoderma viridae, Aspergillus niger and Phanerochaete chrysosporium, were inoculated in 7 day and 15 day partially decomposed water hyacinth to study their effect on enzymatic activities, microbial respiration and fungal biomass of the final stabilized product. The results suggested that increasing the duration of pre-composting from 7 days to 15 days did not show any significant effect on the activities of hydrolytic enzymes. Inoculation of fungi significantly (P < or = 0.05) increased cellulase, protease and acid and alkaline phosphatase activities. The highest value of ergosterol was recorded in A. niger-inoculated vermicomposts. Inoculation of P. chrysosporium in initial organic waste registered the highest chitin content in vermicompost. A comparison of fungal biomass and chitin content revealed a conversion factor of 2.628 with a standard deviation of 0.318. Due to significant correlation (r = 0.864), this conversion factor allows for the calculation of fungal biomass from chitin, which is comparatively more stable than ergosterol.

  9. Biofuel intercropping effects on soil carbon and microbial activity.

    PubMed

    Strickland, Michael S; Leggett, Zakiya H; Sucre, Eric B; Bradford, Mark A

    2015-01-01

    Biofuels will help meet rising demands for energy and, ideally, limit climate change associated with carbon losses from the biosphere to atmosphere. Biofuel management must therefore maximize energy production and maintain ecosystem carbon stocks. Increasingly, there is interest in intercropping biofuels with other crops, partly because biofuel production on arable land might reduce availability and increase the price of food. One intercropping approach involves growing biofuel grasses in forest plantations. Grasses differ from trees in both their organic inputs to soils and microbial associations. These differences are associated with losses of soil carbon when grasses become abundant in forests. We investigated how intercropping switchgrass (Panicum virgalum), a major candidate for cellulosic biomass production, in loblolly pine (Pinus taeda) plantations affects soil carbon, nitrogen, and microbial dynamics. Our design involved four treatments: two pine management regimes where harvest residues (i.e., biomass) were left in place or removed, and two switchgrass regimes where the grass was grown with pine under the same two biomass scenarios (left or removed). Soil variables were measured in four 1-ha replicate plots in the first and second year following switchgrass planting. Under switchgrass intercropping, pools of mineralizable and particulate organic matter carbon were 42% and 33% lower, respectively. These declines translated into a 21% decrease in total soil carbon in the upper 15 cm of the soil profile, during early stand development. The switchgrass effect, however, was isolated to the interbed region where switchgrass is planted. In these regions, switchgrass-induced reductions in soil carbon pools with 29%, 43%, and 24% declines in mineralizable, particulate, and total soil carbon, respectively. Our results support the idea that grass inputs to forests can prime the activity of soil organic carbon degrading microbes, leading to net reductions in stocks

  10. Measurement of microbial biomass and activity in landfill soils.

    SciTech Connect

    Bogner, J. E.; Miller, R. M.; Spokas, K.; Environmental Research

    1995-01-01

    Two complementary techniques, which have been widely used to provide a general measure of microbial biomass or microbial activity in natural soils, were evaluated for their applicability to soils from the Mallard North and Mallard Lake Landfills, DuPage County, Illinois, U.S.A. Included were: (1) a potassium sulphate extraction technique with quantification of organic carbon for measurement of microbial biomass; and (2) an arginine ammonification technique for microbial activity. Four profiles consisting of replaced soils were sampled for this study; units included topsoil (mixed mollisol A and B horizons), compacted clay cover (local calcareous Wisconsinan age glacial till), and mixed soil/refuse samples. Internally consistent results across the four profiles and good correlations with other independent indicators of microbial activity (moisture, organic matter content, nitrogen, and phosphorus) suggest that, even though these techniques were developed mainly for natural mineral soils, they are also applicable to disturbed landfill soils.

  11. Ohmic resistance affects microbial community and electrochemical kinetics in a multi-anode microbial electrochemical cell

    NASA Astrophysics Data System (ADS)

    Dhar, Bipro Ranjan; Ryu, Hodon; Santo Domingo, Jorge W.; Lee, Hyung-Sool

    2016-11-01

    Multi-anode microbial electrochemical cells (MxCs) are considered as one of the most promising configurations for scale-up of MxCs, but understanding of anode kinetics in multiple anodes is limited in the MxCs. In this study we assessed microbial community and electrochemical kinetic parameters for biofilms on individual anodes in a multi-anode MxC to better comprehend anode fundamentals. Microbial community analysis targeting 16S rRNA Illumina sequencing showed that Geobacter genus was abundant (87%) only on the biofilm anode closest to a reference electrode (low ohmic energy loss) in which current density was the highest among three anodes. In comparison, Geobacter populations were less than 1% for biofilms on other two anodes distant from the reference electrode (high ohmic energy loss), generating small current density. Half-saturation anode potential (EKA) was the lowest at -0.251 to -0.242 V (vs. standard hydrogen electrode) for the closest biofilm anode to the reference electrode, while EKA was as high as -0.134 V for the farthest anode. Our study proves that electric potential of individual anodes changed by ohmic energy loss shifts biofilm communities on individual anodes and consequently influences electron transfer kinetics on each anode in the multi-anode MxC.

  12. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns

    USGS Publications Warehouse

    Haack, S.K.; Garchow, H.; Klug, M.J.; Forney, L.J.

    1995-01-01

    We determined factors that affect responses of bacterial isolates and model bacterial communities to the 95 carbon substrates in Biolog microliter plates. For isolates and communities of three to six bacterial strains, substrate oxidation rates were typically nonlinear and were delayed by dilution of the inoculum. When inoculum density was controlled, patterns of positive and negative responses exhibited by microbial communities to each of the carbon sources were reproducible. Rates and extents of substrate oxidation by the communities were also reproducible but were not simply the sum of those exhibited by community members when tested separately. Replicates of the same model community clustered when analyzed by principal- components analysis (PCA), and model communities with different compositions were clearly separated un the first PCA axis, which accounted for >60% of the dataset variation. PCA discrimination among different model communities depended on the extent to which specific substrates were oxidized. However, the substrates interpreted by PCA to be most significant in distinguishing the communities changed with reading time, reflecting the nonlinearity of substrate oxidation rates. Although whole-community substrate utilization profiles were reproducible signatures for a given community, the extent of oxidation of specific substrates and the numbers or activities of microorganisms using those substrates in a given community were not correlated. Replicate soil samples varied significantly in the rate and extent of oxidation of seven tested substrates, suggesting microscale heterogeneity in composition of the soil microbial community.

  13. Water level changes affect carbon turnover and microbial community composition in lake sediments.

    PubMed

    Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; Kayler, Zachary E; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin

    2016-05-01

    Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. (13)C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. PMID:26902802

  14. Water level changes affect carbon turnover and microbial community composition in lake sediments

    PubMed Central

    Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; E. Kayler, Zachary; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin

    2016-01-01

    Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. 13C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. PMID:26902802

  15. Representation of Dormant and Active Microbial Dynamics for Ecosystem Modeling

    SciTech Connect

    Wang, Gangsheng; Mayes, Melanie; Gu, Lianhong; Schadt, Christopher Warren

    2014-01-01

    Dormancy is an essential strategy for microorganisms to cope with environmental stress. However, global ecosystem models typically ignore microbial dormancy, resulting in notable model uncertainties. To facilitate the consideration of dormancy in these large-scale models, we propose a new microbial physiology component that works for a wide range of substrate availabilities. This new model is based on microbial physiological states and the major parameters are the maximum specific growth and maintenance rates of active microbes and the ratio of dormant to active maintenance rates. A major improvement of our model over extant models is that it can explain the low active microbial fractions commonly observed in undisturbed soils. Our new model shows that the exponentially-increasing respiration from substrate-induced respiration experiments can only be used to determine the maximum specific growth rate and initial active microbial biomass, while the respiration data representing both exponentially-increasing and non-exponentially-increasing phases can robustly determine a range of key parameters including the initial total live biomass, initial active fraction, the maximum specific growth and maintenance rates, and the half-saturation constant. Our new model can be incorporated into existing ecosystem models to account for dormancy in microbially-driven processes and to provide improved estimates of microbial activities.

  16. Effects of Potassium Permanganate Oxidation on Subsurface Microbial Activity

    NASA Technical Reports Server (NTRS)

    Rowland, Martin A.; Brubaker, Gaylen R.; Westray, Mark; Morris, Damon; Kohler, Keisha; McCool, Alex (Technical Monitor)

    2001-01-01

    In situ chemical oxidation has the potential for degrading large quantities of organic contaminants and can be more effective and timely than traditional ex situ treatment methods. However, there is a need to better characterize the potential effects of this treatment on natural processes. This study focuses on potential inhibition to anaerobic dechlorination of trichloroethene (TCE) in soils from a large manufacturing facility as a result of in situ oxidation using potassium permanganate (KMn04)Previous microcosm studies established that natural attenuation occurs on-site and that it is enhanced by the addition of ethanol to the system. A potential remediation scheme for the site involves the use of potassium permanganate to reduce levels of TCE in heavily contaminated areas, then to inject ethanol into the system to "neutralize" excess oxidant and enhance microbial degradation. However, it is currently unknown whether the exposure of indigenous microbial populations to potassium permanganate may adversely affect biological reductive dechlorination by these microorganisms. Consequently, additional microcosm studies were conducted to evaluate this remediation scheme and assess the effect of potassium permanganate addition on biological reductive dechlorination of TCE. Samples of subsurface soil and groundwater were collected from a TCE-impacted area of the site. A portion of the soil was pretreated with nutrients and ethanol to stimulate microbial activity, while the remainder of the soil was left unamended. Soil/groundwater microcosms were prepared in sealed vials using the nutrient-amended and unamended soils, and the effects of potassium permanganate addition were evaluated using two permanganate concentrations (0.8 and 2.4 percent) and two contact times (1 and 3 weeks). TCE was then re-added to each microcosm and TCE and dichloroethene (DCE) concentrations were monitored to determine the degree to which microbial dechlorination occurred following chemical

  17. Plant extracts affect in vitro rumen microbial fermentation.

    PubMed

    Busquet, M; Calsamiglia, S; Ferret, A; Kamel, C

    2006-02-01

    Different doses of 12 plant extracts and 6 secondary plant metabolites were incubated for 24 h in diluted ruminal fluid with a 50:50 forage:concentrate diet. Treatments were: control (no additive), plant extracts (anise oil, cade oil, capsicum oil, cinnamon oil, clove bud oil, dill oil, fenugreek, garlic oil, ginger oil, oregano oil, tea tree oil, and yucca), and secondary plant metabolites (anethol, benzyl salicylate, carvacrol, carvone, cinnamaldehyde, and eugenol). Each treatment was supplied at 3, 30, 300, and 3,000 mg/L of culture fluid. At 3,000 mg/L, most treatments decreased total volatile fatty acid concentration, but cade oil, capsicum oil, dill oil, fenugreek, ginger oil, and yucca had no effect. Different doses of anethol, anise oil, carvone, and tea tree oil decreased the proportion of acetate and propionate, which suggests that these compounds may not be nutritionally beneficial to dairy cattle. Garlic oil (300 and 3,000 mg/L) and benzyl salicylate (300 and 3,000 mg/L) reduced acetate and increased propionate and butyrate proportions, suggesting that methane production was inhibited. At 3,000 mg/L, capsicum oil, carvacrol, carvone, cinnamaldehyde, cinnamon oil, clove bud oil, eugenol, fenugreek, and oregano oil resulted in a 30 to 50% reduction in ammonia N concentration. Careful selection and combination of these extracts may allow the manipulation of rumen microbial fermentation.

  18. Spatial Variations of Soil Microbial Activities in Saline Groundwater-Irrigated Soil Ecosystem

    NASA Astrophysics Data System (ADS)

    Chen, Li-Juan; Feng, Qi; Li, Chang-Sheng; Song, You-Xi; Liu, Wei; Si, Jian-Hua; Zhang, Bao-Gui

    2016-05-01

    Spatial variations of soil microbial activities and its relationship with environmental factors are very important for estimating regional soil ecosystem function. Based on field samplings in a typical saline groundwater-irrigated region, spatial variations of soil microbial metabolic activities were investigated. Combined with groundwater quality analysis, the relationship between microbial activities and water salinity was also studied. The results demonstrated that moderate spatial heterogeneity of soil microbial activities presented under the total dissolved solids (TDS) of groundwater ranging from 0.23 to 12.24 g L-1. Groundwater salinity and microbial activities had almost opposite distribution characteristics: slight saline water was mainly distributed in west Baqu and south Quanshan, while severe saline and briny water were dominant in east Baqu and west Huqu; however, total AWCD was higher in the east-center and southwest of Baqu and east Huqu, while it was lower in east Baqu and northwest Huqu. The results of correlation analyses demonstrated that high-salinity groundwater irrigation had significantly adverse effects on soil microbial activities. Major ions Ca2+, Mg2+, Cl_, and SO4 2- in groundwater decisively influenced the results. Three carbon sources, carbohydrates, amines, and phenols, which had minor utilization rates in all irrigation districts, were extremely significantly affected by high-salinity groundwater irrigation. The results presented here offer an approach for diagnosing regional soil ecosystem function changes under saline water irrigation.

  19. Microbial community changes along the active seepage site of one cold seep in the Red Sea

    PubMed Central

    Cao, Huiluo; Zhang, Weipeng; Wang, Yong; Qian, Pei-Yuan

    2015-01-01

    The active seepage of the marine cold seeps could be a critical process for the exchange of energy between the submerged geosphere and the sea floor environment through organic-rich fluids, potentially even affecting surrounding microbial habitats. However, few studies have investigated the associated microbial community changes. In the present study, 16S rRNA genes were pyrosequenced to decipher changes in the microbial communities from the Thuwal seepage point in the Red Sea to nearby marine sediments in the brine pool, normal marine sediments and water, and benthic microbial mats. An unexpected number of reads from unclassified groups were detected in these habitats; however, the ecological functions of these groups remain unresolved. Furthermore, ammonia-oxidizing archaeal community structures were investigated using the ammonia monooxygenase subunit A (amoA) gene. Analysis of amoA showed that planktonic marine habitats, including seeps and marine water, hosted archaeal ammonia oxidizers that differed from those in microbial mats and marine sediments, suggesting modifications of the ammonia oxidizing archaeal (AOA) communities along the environmental gradient from active seepage sites to peripheral areas. Changes in the microbial community structure of AOA in different habitats (water vs. sediment) potentially correlated with changes in salinity and oxygen concentrations. Overall, the present results revealed for the first time unanticipated novel microbial groups and changes in the ammonia-oxidizing archaea in response to environmental gradients near the active seepages of a cold seep. PMID:26284035

  20. Water management history affects GHG kinetics and microbial communities composition of an Italian rice paddy

    NASA Astrophysics Data System (ADS)

    Lagomarsino, Alessandra; Agnelli, Allessandroelio; Pastorelli, Roberta; Pallara, Grazia; Rasse, Daniel; Silvennoinen, Hanna

    2015-04-01

    The water management system of cultivated soils is one of the most important factors affecting the respective magnitudes of CH4 and N2O emissions. We hypothesized an effect of past management on soil microbial communities and greenhouse gas (GHG) production potential The objective of this study were to i) assess the influence of water management history on GHG production potential and microbial community structure, ii) relate GHGs fluxes to the microbial communities involved in CH4 and N2O production inhabiting the different soils. Moreover, the influence of different soil conditioning procedures on GHG potential fluxes was determined. To reach this aim, four soils with different history of water management were compared, using dried and sieved, pre-incubated and fresh soils. Soil conditioning procedures strongly affected GHG emissions potential: drying and sieving determined the highest emission rates and the largest differences among soil types, probably through the release of labile substrates. Conversely, soil pre-incubation tended to homogenize and level out the differences among soils. Microbial communities composition drove GHG emissions potential and was affected by past management. The water management history strongly affected microbial communities structure and the specific microbial pattern of each soil was strictly linked to the gas (CH4 or N2O) emitted. Aerobic soil stimulated N2O peaks, given a possible major contribution of coupled nitrification/denitrification process. As expected, CH4 was lower in aerobic soil, which showed a less abundant archeal community. This work added evidences to support the hypothesis of an adaptation of microbial communities to past land management that reflected in the potential GHG fluxes.

  1. Microbial ecology of Thailand tsunami and non-tsunami affected terrestrials.

    PubMed

    Somboonna, Naraporn; Wilantho, Alisa; Jankaew, Kruawun; Assawamakin, Anunchai; Sangsrakru, Duangjai; Tangphatsornruang, Sithichoke; Tongsima, Sissades

    2014-01-01

    The effects of tsunamis on microbial ecologies have been ill-defined, especially in Phang Nga province, Thailand. This ecosystem was catastrophically impacted by the 2004 Indian Ocean tsunami as well as the 600 year-old tsunami in Phra Thong island, Phang Nga province. No study has been conducted to elucidate their effects on microbial ecology. This study represents the first to elucidate their effects on microbial ecology. We utilized metagenomics with 16S and 18S rDNA-barcoded pyrosequencing to obtain prokaryotic and eukaryotic profiles for this terrestrial site, tsunami affected (S1), as well as a parallel unaffected terrestrial site, non-tsunami affected (S2). S1 demonstrated unique microbial community patterns than S2. The dendrogram constructed using the prokaryotic profiles supported the unique S1 microbial communities. S1 contained more proportions of archaea and bacteria domains, specifically species belonging to Bacteroidetes became more frequent, in replacing of the other typical floras like Proteobacteria, Acidobacteria and Basidiomycota. Pathogenic microbes, including Acinetobacter haemolyticus, Flavobacterium spp. and Photobacterium spp., were also found frequently in S1. Furthermore, different metabolic potentials highlighted this microbial community change could impact the functional ecology of the site. Moreover, the habitat prediction based on percent of species indicators for marine, brackish, freshwater and terrestrial niches pointed the S1 to largely comprise marine habitat indicating-species.

  2. Microbial Ecology of Thailand Tsunami and Non-Tsunami Affected Terrestrials

    PubMed Central

    Somboonna, Naraporn; Wilantho, Alisa; Jankaew, Kruawun; Assawamakin, Anunchai; Sangsrakru, Duangjai; Tangphatsornruang, Sithichoke; Tongsima, Sissades

    2014-01-01

    The effects of tsunamis on microbial ecologies have been ill-defined, especially in Phang Nga province, Thailand. This ecosystem was catastrophically impacted by the 2004 Indian Ocean tsunami as well as the 600 year-old tsunami in Phra Thong island, Phang Nga province. No study has been conducted to elucidate their effects on microbial ecology. This study represents the first to elucidate their effects on microbial ecology. We utilized metagenomics with 16S and 18S rDNA-barcoded pyrosequencing to obtain prokaryotic and eukaryotic profiles for this terrestrial site, tsunami affected (S1), as well as a parallel unaffected terrestrial site, non-tsunami affected (S2). S1 demonstrated unique microbial community patterns than S2. The dendrogram constructed using the prokaryotic profiles supported the unique S1 microbial communities. S1 contained more proportions of archaea and bacteria domains, specifically species belonging to Bacteroidetes became more frequent, in replacing of the other typical floras like Proteobacteria, Acidobacteria and Basidiomycota. Pathogenic microbes, including Acinetobacter haemolyticus, Flavobacterium spp. and Photobacterium spp., were also found frequently in S1. Furthermore, different metabolic potentials highlighted this microbial community change could impact the functional ecology of the site. Moreover, the habitat prediction based on percent of species indicators for marine, brackish, freshwater and terrestrial niches pointed the S1 to largely comprise marine habitat indicating-species. PMID:24710002

  3. Microbial ecology of terrestrial Antarctica: Are microbial systems at risk from human activities?

    SciTech Connect

    White, G.J.

    1996-08-01

    Many of the ecological systems found in continental Antarctica are comprised entirely of microbial species. Concerns have arisen that these microbial systems might be at risk either directly through the actions of humans or indirectly through increased competition from introduced species. Although protection of native biota is covered by the Protocol on Environmental Protection to the Antarctic Treaty, strict measures for preventing the introduction on non-native species or for protecting microbial habitats may be impractical. This report summarizes the research conducted to date on microbial ecosystems in continental Antarctica and discusses the need for protecting these ecosystems. The focus is on communities inhabiting soil and rock surfaces in non-coastal areas of continental Antarctica. Although current polices regarding waste management and other operations in Antarctic research stations serve to reduce the introduction on non- native microbial species, importation cannot be eliminated entirely. Increased awareness of microbial habitats by field personnel and protection of certain unique habitats from physical destruction by humans may be necessary. At present, small-scale impacts from human activities are occurring in certain areas both in terms of introduced species and destruction of habitat. On a large scale, however, it is questionable whether the introduction of non-native microbial species to terrestrial Antarctica merits concern.

  4. Rapid successions affect microbial N-acetyl-glucosamine uptake patterns during a lacustrine spring phytoplankton bloom.

    PubMed

    Eckert, Ester M; Salcher, Michaela M; Posch, Thomas; Eugster, Bettina; Pernthaler, Jakob

    2012-03-01

    The vernal successions of phytoplankton, heterotrophic nanoflagellates (HNF) and viruses in temperate lakes result in alternating dominance of top-down and bottom-up factors on the bacterial community. This may lead to asynchronous blooms of bacteria with different life strategies and affect the channelling of particular components of the dissolved organic matter (DOM) through microbial food webs. We followed the dynamics of several bacterial populations and of other components of the microbial food web throughout the spring phytoplankton bloom period in a pre-alpine lake, and we assessed bacterial uptake patterns of two constituents of the labile DOM pool (N-acetyl-glucosamine [NAG] and leucine). There was a clear genotypic shift within the bacterial assemblage, from fast growing Cytophaga-Flavobacteria (CF) affiliated with Fluviicola and from Betaproteobacteria (BET) of the Limnohabitans cluster to more grazing resistant AcI Actinobacteria (ACT) and to filamentous morphotypes. This was paralleled by successive blooms of viruses and HNF. We also noted the transient rise of other CF (related to Cyclobacteriaceae and Sphingobacteriaceae) that are not detected by fluorescence in situ hybridization with the general CF probe. Both, the average uptake rates of leucine and the fractions of leucine incorporating bacteria were approximately five to sixfold higher than of NAG. However, the composition of the NAG-active community was much more prone to genotypic successions, in particular of bacteria with different life strategies: While 'opportunistically' growing BET and CF dominated NAG uptake in the initial period ruled by bottom-up factors, ACT constituted the major fraction of NAG active cells during the subsequent phase of high predation pressure. This indicates that some ACT could profit from a substrate that might in parts have originated from the grazing of protists on their bacterial competitors.

  5. Measurements of Microbial Community Activities in Individual Soil Macroaggregates

    SciTech Connect

    Bailey, Vanessa L.; Bilskis, Christina L.; Fansler, Sarah J.; McCue, Lee Ann; Smith, Jeff L.; Konopka, Allan

    2012-05-01

    The functional potential of single soil aggregates may provide insights into the localized distribution of microbial activities better than traditional assays conducted on bulk quantities of soil. Thus, we scaled down enzyme assays for {beta}-glucosidase, N-acetyl-{beta}-D-glucosaminidase, lipase, and leucine aminopeptidase to measure of the enzyme potential of individual aggregates (250-1000 {mu}m diameter). Across all enzymes, the smallest aggregates had the greatest activity and the range of enzyme activities observed in all aggregates supports the hypothesis that functional potential in soil may be distributed in a patchy fashion. Paired analyses of ATP as a surrogate for active microbial biomass and {beta}-glucosidase on the same aggregates suggest the presence of both extracellular {beta}-glucosidase functioning in aggregates with no detectable ATP and also of relatively active microbial communities (high ATP) that have low {beta}-glucosidase potentials. Studying function at a scale more consistent with microbial habitat presents greater opportunity to link microbial community structure to microbial community function.

  6. Microbial response following straw application in a soil affected by a wildfire

    NASA Astrophysics Data System (ADS)

    Barreiro, Ana; Lombao, Alba; Díaz-Raviña, Montserrat; Martin, Angela; Fontúrbel, Maria Teresa; Vega, Jose Antonio; Fernández, Cristina; Carballas, Tarsy

    2015-04-01

    Mulching treatment is often recommended to reduce post-fire erosion and sediments yields but information concerning their effects on soil microorganisms is scarce. In the present investigation the evolution of several parameters related with the mass and activity of soil microorganisms was examined in a hillslope shrubland located in Saviñao (Lugo, NW Spain) and susceptible to suffer post-fire erosion (38% slope). In this area, affected by a medium-high severity wildfire in September 2012, different treatments with wheat straw applied to the burnt soil in mulch strips (800 and 1000 kg ha-1) were established by quadruplicate (10 m x 40 m plots) and compared with the corresponding burnt untreated control. Soil samples were collected from the A horizon (0-2.5 cm depth) at different sampling times over one year after the wildfire and different soil biochemical properties (microbial biomass C, soil respiration, bacterial activity, -glucosidase, urease and phosphatase activities) were analyzed. The results showed large variation among the four field replicates of the same treatment (spatial variability), which makes difficult to evaluate the effect of mulch treatment. The evolution of the different biochemical properties in the post-fire stabilization treatments with the wheat straw applied in mulch strips were mainly related to the time passed after the fire (short- and medium- term changes in soil physical and chemical properties induced by both fire and climatic conditions) rather than to the straw mulching effects; in addition, a different temporal pattern was observed depending on the variable considered. The results pointed out the usefulness of examining intra-annual natural variability (spatial variation, seasonal fluctuations) when different indices of mass and activity of microorganisms were used as monitoring tools in soil ecosystems affected by fire. Acknowledgements. A. Barreiro and A. Lombao are recipients of FPU grants from Spanish Ministry of

  7. Denitrifying bacterial communities affect current production and nitrous oxide accumulation in a microbial fuel cell.

    PubMed

    Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M Dolors; Colprim, Jesús; Bañeras, Lluís

    2013-01-01

    The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A · m(-3) NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A · m(-3) NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation.

  8. Denitrifying Bacterial Communities Affect Current Production and Nitrous Oxide Accumulation in a Microbial Fuel Cell

    PubMed Central

    Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M. Dolors; Colprim, Jesús; Bañeras, Lluís

    2013-01-01

    The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A·m−3 NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A·m−3 NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation. PMID:23717427

  9. Riparian forest composition affects stream litter decomposition despite similar microbial and invertebrate communities.

    PubMed

    Kominoski, John S; Marczak, Laurie B; Richardson, John S

    2011-01-01

    Cross-boundary flows of energy and nutrients link biodiversity and functioning in adjacent ecosystems. The composition of forest tree species can affect the structure and functioning of stream ecosystems due to physical and chemical attributes, as well as changes in terrestrial resource subsidies. We examined how variation in riparian canopy composition (coniferous, deciduous, mixed) affects adjacent trophic levels (invertebrate and microbial consumers) and decomposition of organic matter in small, coastal rainforest streams in southwestern British Columbia. Breakdown rates of higher-quality red alder (Alnus rubra) litter were faster in streams with a greater percentage of deciduous than coniferous riparian canopy, whereas breakdown rates of lower-quality western hemlock (Tsuga heterophylla) litter were independent of riparian forest composition. When invertebrates were excluded using fine mesh, breakdown rates of both litter species were an order of magnitude less and were not significantly affected by riparian forest composition. Stream invertebrate and microbial communities were similar among riparian forest composition, with most variation attributed to leaf litter species. Invertebrate taxa richness and shredder biomass were higher in A. rubra litter; however, taxa evenness was greatest for T. heterophylla litter and both litter species in coniferous streams. Microbial community diversity (determined from terminal restriction fragment length polymorphisms) was unaffected by riparian forest or litter species. Fungal allele richness was higher than bacterial allele richness, and microbial communities associated with lower-quality T. heterophylla litter had higher diversity (allele uniqueness and richness) than those associated with higher-quality A. rubra litter. Percent variation in breakdown rates was mostly attributed to riparian forest composition in the presence of invertebrates and microbes; however, stream consumer biodiversity at adjacent trophic levels

  10. Primary succession of soil enzyme activity and heterotrophic microbial communities along the chronosequence of Tianshan Mountains No. 1 Glacier, China.

    PubMed

    Zeng, Jun; Wang, Xiao-Xia; Lou, Kai; Eusufzai, Moniruzzaman Khan; Zhang, Tao; Lin, Qing; Shi, Ying-Wu; Yang, Hong-Mei; Li, Zhong-Qing

    2015-02-01

    We investigated the primary successions of soil enzyme activity and heterotrophic microbial communities at the forefields of the Tianshan Mountains No. 1 Glacier by investigating soil microbial processes (microbial biomass and nitrogen mineralization), enzyme activity and community-level physiological profiling. Soils deglaciated between 1959 and 2008 (0, 5, 17, 31 and 44 years) were collected. Soils >1,500 years in age were used as a reference (alpine meadow soils). Soil enzyme activity and carbon-source utilization ability significantly increased with successional time. Amino-acid utilization rates were relatively higher in early, unvegetated soils (0 and 5 years), but carbohydrate utilization was higher in later stages (from 31 years to the reference soil). Discriminant analysis, including data on microbial processes and soil enzyme activities, revealed that newly exposed soils (0-5 years) and older soils (17-44 years) were well-separated from each other and obviously different from the reference soil. Correlation analysis revealed that soil organic carbon, was the primary factor influencing soil enzyme activity and heterotrophic microbial community succession. Redundancy analysis suggested that soil pH and available P were also affect microbial activity to a considerable degree. Our results indicated that glacier foreland soils have continued to develop over 44 years and soils were significantly affected by the geographic location of the glacier and the local topography. Soil enzyme activities and heterotrophic microbial communities were also significantly influenced by these variables. PMID:25472706

  11. Factors limiting microbial activity in volcanic tuff at Yucca Mountain

    SciTech Connect

    Kieft, T.L.; Kovacik, W.P.; Taylor, J.

    1996-09-01

    Samples of tuff aseptically collected from 10 locations in the Exploratory Shaft Facility at the site of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada Test Site were analyzed for microbiological populations, activities, and factors limiting microbial activity. Radiotracer assays ({sup 14}C-labeled organic substrate mineralization), direct microscopic counts, and plate counts were used. Radiolabeled substrates were glucose, acetate, and glutamate. Radiotracer experiments were carried out with and without moisture and inorganic nutrient amendments to determine factors limiting to microbial activities. Nearly all samples showed the presence of microorganisms with the potential to mineralize organic substrates. Addition of inorganic nutrients stimulated activities in a small number of samples. The presence of viable microbial communities within the tuff has implications for transport of contaminants.

  12. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    PubMed Central

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  13. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils.

    PubMed

    Sutton, Nora B; Langenhoff, Alette A M; Lasso, Daniel Hidalgo; van der Zaan, Bas; van Gaans, Pauline; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-03-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1-2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.

  14. Which Members of the Microbial Communities Are Active? Microarrays

    NASA Astrophysics Data System (ADS)

    Morris, Brandon E. L.

    only at the early stages of understanding the microbial processes that occur in petroliferous formations and the surrounding subterranean environment. Important first steps in characterising the microbiology of oilfield systems involve identifying the microbial community structure and determining how population diversity changes are affected by the overall geochemical and biological parameters of the system. This is relatively easy to do today by using general 16S rRNA primers for PCR and building clone libraries. For example, previous studies using molecular methods characterised many dominant prokaryotes in petroleum reservoirs (Orphan et al., 2000) and in two Alaskan North Slope oil facilities (Duncan et al., 2009; Pham et al., 2009). However, the problem is that more traditional molecular biology approaches, such as 16S clone libraries, fail to detect large portions of the community perhaps missing up to half of the biodiversity (see Hong et al., 2009) and require significant laboratory time to construct large libraries necessary to increase the probability of detecting the majority of even bacterial biodiversity. In the energy sector, the overarching desire would be to quickly assess the extent of in situ hydrocarbon biodegradation or to disrupt detrimental processes such as biofouling, and in these cases it may not be necessary to identify specific microbial species. Rather, it would be more critical to evaluate metabolic processes or monitor gene products that are implicated in the specific activity of interest. Research goals such as these are well suited for a tailored application of microarray technology.

  15. Effect of microbial activity on trace element release from sewage sludge.

    PubMed

    Qureshi, Shabnam; Richards, Brian K; Hay, Anthony G; Tsai, Christine C; McBride, Murray B; Baveye, Philippe; Steenhuis, Tammo S

    2003-08-01

    The microbial role in mobilization of trace elements from land-applied wastewater sludge is not well-defined. Our study examined the leachability of trace elements (Cd, Cr, Cu, Mo, Ni, P, Pb, S, and Zn) from dewatered sludge as affected by treatments designed to alter microbial activity. Different levels of microbial activity were achieved by incubating sludge columns at 4, 16, 28, and 37 degrees C and by the addition of AgNO3 biocide at each temperature. Columns (with inert glass bead support beds) were subjected to six consecutive incubation-leaching cycles, each consisting of 7.3-d incubation followed by 16-h leaching with synthetic acid rain. Glucose mineralization tests were used to assess overall microbial activity. Significant acidification and trace element leaching occurred when conditions favored microbial activity (16 and 28 degrees C). Extent of mobilization was element-specific with Zn, Ni, and Cu showing the greatest mobilization (99, 67, and 57%, respectively). Mobilization was reduced but still substantial at 4 degrees C. Conditions that best inhibited microbial activity (37 degrees C or biocide at any temperature) resulted in the least mobilization. Characterization of enrichments performed using thiosulfate as the sole energy source revealed the presence of both known and putative S-oxidizing bacteria in the sludge. The results suggest that microbial acidification via S oxidation can mobilize trace elements from sludge. Elemental mobility in field situations would also be governed by other factors, including the capacity of soil to buffer acidification and to adsorb mobilized elements.

  16. Soil Microbial Biomass, Basal Respiration and Enzyme Activity of Main Forest Types in the Qinling Mountains

    PubMed Central

    Cheng, Fei; Peng, Xiaobang; Zhao, Peng; Yuan, Jie; Zhong, Chonggao; Cheng, Yalong; Cui, Cui; Zhang, Shuoxin

    2013-01-01

    Different forest types exert essential impacts on soil physical-chemical characteristics by dominant tree species producing diverse litters and root exudates, thereby further regulating size and activity of soil microbial communities. However, the study accuracy is usually restricted by differences in climate, soil type and forest age. Our objective is to precisely quantify soil microbial biomass, basal respiration and enzyme activity of five natural secondary forest (NSF) types with the same stand age and soil type in a small climate region and to evaluate relationship between soil microbial and physical-chemical characters. We determined soil physical-chemical indices and used the chloroform fumigation-extraction method, alkali absorption method and titration or colorimetry to obtain the microbial data. Our results showed that soil physical-chemical characters remarkably differed among the NSFs. Microbial biomass carbon (Cmic) was the highest in wilson spruce soils, while microbial biomass nitrogen (Nmic) was the highest in sharptooth oak soils. Moreover, the highest basal respiration was found in the spruce soils, but mixed, Chinese pine and spruce stands exhibited a higher soil qCO2. The spruce soils had the highest Cmic/Nmic ratio, the greatest Nmic/TN and Cmic/Corg ratios were found in the oak soils. Additionally, the spruce soils had the maximum invertase activity and the minimum urease and catalase activities, but the maximum urease and catalase activities were found in the mixed stand. The Pearson correlation and principle component analyses revealed that the soils of spruce and oak stands obviously discriminated from other NSFs, whereas the others were similar. This suggested that the forest types affected soil microbial properties significantly due to differences in soil physical-chemical features. PMID:23840671

  17. Soil microbial biomass, basal respiration and enzyme activity of main forest types in the Qinling Mountains.

    PubMed

    Cheng, Fei; Peng, Xiaobang; Zhao, Peng; Yuan, Jie; Zhong, Chonggao; Cheng, Yalong; Cui, Cui; Zhang, Shuoxin

    2013-01-01

    Different forest types exert essential impacts on soil physical-chemical characteristics by dominant tree species producing diverse litters and root exudates, thereby further regulating size and activity of soil microbial communities. However, the study accuracy is usually restricted by differences in climate, soil type and forest age. Our objective is to precisely quantify soil microbial biomass, basal respiration and enzyme activity of five natural secondary forest (NSF) types with the same stand age and soil type in a small climate region and to evaluate relationship between soil microbial and physical-chemical characters. We determined soil physical-chemical indices and used the chloroform fumigation-extraction method, alkali absorption method and titration or colorimetry to obtain the microbial data. Our results showed that soil physical-chemical characters remarkably differed among the NSFs. Microbial biomass carbon (Cmic) was the highest in wilson spruce soils, while microbial biomass nitrogen (Nmic) was the highest in sharptooth oak soils. Moreover, the highest basal respiration was found in the spruce soils, but mixed, Chinese pine and spruce stands exhibited a higher soil qCO2. The spruce soils had the highest Cmic/Nmic ratio, the greatest Nmic/TN and Cmic/Corg ratios were found in the oak soils. Additionally, the spruce soils had the maximum invertase activity and the minimum urease and catalase activities, but the maximum urease and catalase activities were found in the mixed stand. The Pearson correlation and principle component analyses revealed that the soils of spruce and oak stands obviously discriminated from other NSFs, whereas the others were similar. This suggested that the forest types affected soil microbial properties significantly due to differences in soil physical-chemical features. PMID:23840671

  18. Using dispersants after oil spills: impacts on the composition and activity of microbial communities.

    PubMed

    Kleindienst, Sara; Paul, John H; Joye, Samantha B

    2015-06-01

    Dispersants are globally and routinely applied as an emergency response to oil spills in marine ecosystems with the goal of chemically enhancing the dissolution of oil into water, which is assumed to stimulate microbially mediated oil biodegradation. However, little is known about how dispersants affect the composition of microbial communities or their biodegradation activities. The published findings are controversial, probably owing to variations in laboratory methods, the selected model organisms and the chemistry of different dispersant-oil mixtures. Here, we argue that an in-depth assessment of the impacts of dispersants on microorganisms is needed to evaluate the planning and use of dispersants during future responses to oil spills. PMID:25944491

  19. Using dispersants after oil spills: impacts on the composition and activity of microbial communities.

    PubMed

    Kleindienst, Sara; Paul, John H; Joye, Samantha B

    2015-06-01

    Dispersants are globally and routinely applied as an emergency response to oil spills in marine ecosystems with the goal of chemically enhancing the dissolution of oil into water, which is assumed to stimulate microbially mediated oil biodegradation. However, little is known about how dispersants affect the composition of microbial communities or their biodegradation activities. The published findings are controversial, probably owing to variations in laboratory methods, the selected model organisms and the chemistry of different dispersant-oil mixtures. Here, we argue that an in-depth assessment of the impacts of dispersants on microorganisms is needed to evaluate the planning and use of dispersants during future responses to oil spills.

  20. Deep-Subterranean Microbial Habitats in the Hishikari Epithermal Gold Mine: Active Thermophilic Microbial Communities and Endolithic Ancient Microbial Relicts.

    NASA Astrophysics Data System (ADS)

    Hirayama, H.; Takai, K.; Inagaki, F.; Horikoshi, K.

    2001-12-01

    Deep subterranean microbial community structures in an epithermal gold-silver deposit, Hishikari gold mine, southern part of Kyusyu Japan, were evaluated through the combined use of enrichment culture methods and culture-independent molecular surveys. The geologic setting of the Hishikari deposit is composed of three lithologies; basement oceanic sediments of the Cretaceous Shimanto Supergroup, Quaternary andesites, and auriferous quartz vein. We studied the drilled core rock of these, and the geothermal hot waters from the basement aquifers collected by means of the dewatering system located at the deepest level in the mining sites. Culture-independent molecular phylogenetic analyses of PCR-amplified ribosomal DNA (rDNA) recovered from drilled cores suggested that the deep-sea oceanic microbial communities were present as ancient indigenous relicts confined in the Shimanto basement. On the other hand, genetic signals of active thermophilic microbial communities, mainly consisting of thermophilic hydrogen-oxidizer within Aquificales, thermophilic methanotroph within g-Proteobacteria and yet-uncultivated bacterium OPB37 within b-Proteobacteria, were detected with these of oceanic relicts from the subterranean geothermal hot aquifers (temp. 70-100ºC). Successful cultivation and FISH analyses strongly supported that these thermophilic lithotrophic microorganisms could be exactly active and they grew using geochemically produced hydrogen and methane gasses as nutrients. Based on these results, the deep-subsurface biosphere occurring in the Hishikari epithermal gold mine was delineated as endolithic ancient microbial relicts and modern habitats raising active lithotrophic thermophiles associated with the geological and geochemical features of the epithermal gold deposit.

  1. Factors affecting microbial 2,4,6-trinitrotoluene mineralization in contaminated soil

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    1995-01-01

    The influence of selected environmental factors on microbial TNT mineralization in soils collected from a TNT-contaminated site at Weldon Spring, MO, was examined using uniformly ring-labeled [14C]TNT. Microbial TNT mineralization was significantly inhibited by the addition of cellobiose and syringate. This response suggests that the indigenous microorganisms are capable of metabolizing TNT but preferentially utilize less recalcitrant substrates when available. The observed inhibition of TNT mineralization by TNT concentrations higher than 100 ??mol/kg of soil and by dry soil conditions suggests that toxic inhibition of microbial activity at high TNT concentrations and the periodic drying of these soils have contributed to the long-term persistence of TNT at Weldon Spring. In comparison to aerobic microcosms, mineralization was inhibited in anaerobic microcosms and in microcosms with a headspace of air amended with oxygen, suggesting that a mosaic of aerobic and anaerobic conditions may optimize TNT degradation at this site.

  2. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: focusing on impact of anodic biofilm on sensor applicability.

    PubMed

    Zhang, Yifeng; Angelidaki, Irini

    2011-10-01

    A sensor, based on a submersible microbial fuel cell (SUMFC), was developed for in situ monitoring of microbial activity and biochemical oxygen demand (BOD) in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Fresh anode was required for application of the sensor for microbial activity measurement, while biofilm-colonized anode was needed for utilizing the sensor for BOD content measurement. The current density of SUMFC sensor equipped with a biofilm-colonized anode showed linear relationship with BOD content, to up to 250 mg/L (∼233 ± 1 mA/m(2)), with a response time of <0.67 h. This sensor could, however, not measure microbial activity, as indicated by the indifferent current produced at varying active microorganisms concentration, which was expressed as microbial adenosine-triphosphate (ATP) concentration. On the contrary, the current density (0.6 ± 0.1 to 12.4 ± 0.1 mA/m(2)) of the SUMFC sensor equipped with a fresh anode showed linear relationship, with active microorganism concentrations from 0 to 6.52 nmol-ATP/L, while no correlation between the current and BOD was observed. It was found that temperature, pH, conductivity, and inorganic solid content were significantly affecting the sensitivity of the sensor. Lastly, the sensor was tested with real contaminated groundwater, where the microbial activity and BOD content could be detected in <3.1 h. The microbial activity and BOD concentration measured by SUMFC sensor fitted well with the one measured by the standard methods, with deviations ranging from 15% to 22% and 6% to 16%, respectively. The SUMFC sensor provides a new way for in situ and quantitative monitoring contaminants content and biological activity during bioremediation process in variety of anoxic aquifers.

  3. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: focusing on impact of anodic biofilm on sensor applicability.

    PubMed

    Zhang, Yifeng; Angelidaki, Irini

    2011-10-01

    A sensor, based on a submersible microbial fuel cell (SUMFC), was developed for in situ monitoring of microbial activity and biochemical oxygen demand (BOD) in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Fresh anode was required for application of the sensor for microbial activity measurement, while biofilm-colonized anode was needed for utilizing the sensor for BOD content measurement. The current density of SUMFC sensor equipped with a biofilm-colonized anode showed linear relationship with BOD content, to up to 250 mg/L (∼233 ± 1 mA/m(2)), with a response time of <0.67 h. This sensor could, however, not measure microbial activity, as indicated by the indifferent current produced at varying active microorganisms concentration, which was expressed as microbial adenosine-triphosphate (ATP) concentration. On the contrary, the current density (0.6 ± 0.1 to 12.4 ± 0.1 mA/m(2)) of the SUMFC sensor equipped with a fresh anode showed linear relationship, with active microorganism concentrations from 0 to 6.52 nmol-ATP/L, while no correlation between the current and BOD was observed. It was found that temperature, pH, conductivity, and inorganic solid content were significantly affecting the sensitivity of the sensor. Lastly, the sensor was tested with real contaminated groundwater, where the microbial activity and BOD content could be detected in <3.1 h. The microbial activity and BOD concentration measured by SUMFC sensor fitted well with the one measured by the standard methods, with deviations ranging from 15% to 22% and 6% to 16%, respectively. The SUMFC sensor provides a new way for in situ and quantitative monitoring contaminants content and biological activity during bioremediation process in variety of anoxic aquifers. PMID:21557205

  4. Biogeography of Metabolically Active Microbial Populations within the Subseafloor Biosphere

    NASA Astrophysics Data System (ADS)

    Reese, B. K.; Shepard, A.; St. Peter, C.; Mills, H. J.

    2011-12-01

    Microbial life in deep marine sediments is widespread, metabolically active and diverse. Evidence of prokaryotic communities in sediments as deep as 800 m below the seafloor (mbsf) have been found. By recycling carbon and nutrients through biological and geochemical processes, the deep subsurface has the potential to remain metabolically active over geologic time scales. While a vast majority of the subsurface biosphere remains under studied, recent advances in molecular techniques and an increased focus on microbiological sampling during IODP expeditions have provided the initial steps toward better characterizations of the microbial communities. Coupling of geochemistry and RNA-based molecular analysis is essential to the description of the active microbial populations within the subsurface biosphere. Studies based on DNA may describe the taxa and metabolic pathways from the total microbial community within the sediment, whether the cells sampled were metabolically active, quiescent or dead. Due to a short lifespan within a cell, only an RNA-based analysis can be used to identify linkages between active populations and observed geochemistry. This study will coalesce and compare RNA sequence and geochemical data from Expeditions 316 (Nankai Trough), 320 (Pacific Equatorial Age Transect), 325 (Great Barrier Reef) and 329 (South Pacific Gyre) to evaluate the biogeography of microbial lineages actively altering the deep subsurface. The grouping of sediments allows for a wide range of geochemical environments to be compared, including two environments limited in organic carbon. Significant to this study is the use of similar extraction, amplification and simultaneous 454 pyrosequencing on all sediment populations allowing for robust comparisons with similar protocol strengths and biases. Initial trends support previously described reduction of diversity with increasing depth. The co-localization of active reductive and oxidative lineages suggests a potential cryptic

  5. Effects of nutrient enrichment on the decomposition of wood and associated microbial activity in streams

    USGS Publications Warehouse

    Gulis, V.; Rosemond, A.D.; Suberkropp, K.; Weyers, H.S.; Benstead, J.P.

    2004-01-01

    1. We determined the effects of nutrient enrichment on wood decomposition rates and microbial activity during a 3-year study in two headwater streams at Coweeta Hydrologic Laboratory, NC, U.S.A. After a 1-year pretreatment period, one of the streams was continuously enriched with inorganic nutrients (nitrogen and phosphorus) for 2 years while the other stream served as a reference. We determined the effects of enrichment on both wood veneers and sticks, which have similar carbon quality but differ in physical characteristics (e.g. surface area to volume ratios, presence of bark) that potentially affect microbial colonisation and activity. 2. Oak wood veneers (0.5 mm thick) were placed in streams monthly and allowed to decompose for approximately 90 days. Nutrient addition stimulated ash-free dry mass loss and increased mean nitrogen content, fungal biomass and microbial respiration on veneers in the treatment stream compared with the reference. The magnitude of the response to enrichment was great, with mass loss 6.1 times, and per cent N, fungal biomass and microbial respiration approximately four times greater in the treatment versus reference stream. 3. Decomposition rate and nitrogen content of maple sticks (ca. 1-2 cm diameter) also increased; however, the effect was less pronounced than for veneers. Wood response overall was greater than that determined for leaves in a comparable study, supporting the hypothesis that response to enrichment may be greater for lower quality organic matter (high C:N) than for higher quality (low C:N) substrates. 4. Our results show that moderate nutrient enrichment can profoundly affect decomposition rate and microbial activity on wood in streams. Thus, the timing and availability of wood that provides retention, structure, attachment sites and food in stream ecosystems may be affected by nutrient concentrations raised by human activities.

  6. Soil disturbance increases soil microbial enzymatic activity in arid ecoregion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Functional diversity of the soil microbial community is commonly used in the assessment of soil health as it relates to the activity of soil microflora involved in carbon cycling. Soil microbes in different microenvironments will have varying responses to different substrates, thus catabolic fingerp...

  7. Measurements of microbial community activities in individual soil macroaggregates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The functional potential of single soil aggregates may provide insights into the localized distribution of microbial activities better than traditional assays conducted on bulk quantities of soil. Thus, we scaled down enzyme assays for ß-glucosidase, N-acetyl-ß-D-glucosaminidase, lipase, and leucine...

  8. Microbial Biomass and Activity in Geomorphic Features in Forested and Urban Restored and Degraded Streams

    EPA Science Inventory

    Geomorphic spatial heterogeneity affects sediment denitrification, an anaerobic microbial process that results in the loss of nitrogen (N), and other anaerobic microbial processes such as methanogenesis in urban streams. We measured sediment denitrification potential (DEA), metha...

  9. Organic matter mineralization in frozen boreal soils-environmental constraints on catabolic and anabolic microbial activity

    NASA Astrophysics Data System (ADS)

    Oquist, Mats G.; Sparrman, Tobias; Schleucher, Jürgen; Nilsson, Mats B.

    2014-05-01

    Heterotrophic microbial mineralization of soil organic matter (SOM) and associated production and emission of atmospheric trace gases proceed during the winter months in the frozen soils of high latitude ecosystems. However, in what ways this microbial activity is constrained by the environmental conditions prevailing in a frozen soil matrix is uncertain. This presentation will address how temperature, water availability and substrate availability combine to regulate rates of microbial activity at below freezing temperatures and the implications of this activity for SOM mineralization in the surface layers of boreal forest soils experiencing seasonal freezing. We show that the amount and availability of liquid water is an integral factor regulating rates of microbial activity in the frozen soil matrix and can also explain frequently observed deviations in the temperature responses of biogenic CO2 production in frozen soils, as compared to unfrozen soils. Using stable isotope labeling (13C) we also show that the partitioning of substrate carbon, in the form of monomeric sugar (glucose), for catabolic and anabolic metabolism remain constant in the temperature range of -4C to 9C. This confirms that microbial growth may proceed even when soils are frozen. In addition we present corresponding data for organisms metabolizing polymeric substrates (cellulose) requiring exoenzymatic activity prior to substrate uptake. We conclude that the metabolic response of soil microorganism to controlling factors may change substantially across the freezing point of soil water, and also the patterns of interaction among controlling factors are affected. Thus, it is evident that metabolic response functions derived from investigations of unfrozen soils cannot be superimposed on frozen soils. Nonetheless, the soil microbial population appear very adapted to seasonal freezing with respect to their metabolic performance.

  10. Microbial life in frozen boreal soils-environmental constraints on catabolic and anabolic activity

    NASA Astrophysics Data System (ADS)

    Oquist, M. G.; Sparrman, T.; Haei, M.; Segura, J.; Schleucher, J.; Nilsson, M. B.

    2013-12-01

    Microbial activity in frozen soils has recently gained increasing attention and the fact that soil microorganisms can perform significant metabolic activity at temperatures below freezing is apparent. However, to what extent microbial activity is constrained by the environmental conditions prevailing in a frozen soil matrix is still very uncertain. This presentation will address how the fundamental environmental factors of temperature, liquid water availability and substrate availability combine to regulate rates of catabolic and anabolic microbial processes in frozen soils. The presented results are gained from investigations of the surface layers of boreal forest soils with seasonal freezing. We show that the amount and availability of liquid water is an integral factor regulating rates of microbial activity in the frozen soil matrix and can also explain frequently observed deviations in the temperature responses of biogenic CO2 production in frozen soils, as compared to unfrozen soils. In turn, the capacity for a specific soil to retain liquid water at sub-zero temperatures is controlled by the structural composition of the soil, and especially the soil organic matter is of integral importance. We also show that the partitioning of substrate carbon, in the form of monomeric sugar (glucose), for catabolic and anabolic metabolism remain constant in the temperature range of -4C to 9C. This confirms that microbial growth may proceed even when soils are frozen. In addition we present corresponding data for organisms metabolizing polymeric substrates (cellulose) requiring exoenzymatic activity. We conclude that the metabolic response of soil microorganism to controlling factors may change substantially across the freezing point of soil water, and also the patterns of interaction among controlling factors are affected. Thus, it is evident that metabolic response functions derived from investigations of unfrozen soils cannot be superimposed on frozen soils. Nonetheless

  11. Variation in honey bee gut microbial diversity affected by ontogenetic stage, age and geographic location.

    PubMed

    Hroncova, Zuzana; Havlik, Jaroslav; Killer, Jiri; Doskocil, Ivo; Tyl, Jan; Kamler, Martin; Titera, Dalibor; Hakl, Josef; Mrazek, Jakub; Bunesova, Vera; Rada, Vojtech

    2015-01-01

    Social honey bees, Apis mellifera, host a set of distinct microbiota, which is similar across the continents and various honey bee species. Some of these bacteria, such as lactobacilli, have been linked to immunity and defence against pathogens. Pathogen defence is crucial, particularly in larval stages, as many pathogens affect the brood. However, information on larval microbiota is conflicting. Seven developmental stages and drones were sampled from 3 colonies at each of the 4 geographic locations of A. mellifera carnica, and the samples were maintained separately for analysis. We analysed the variation and abundance of important bacterial groups and taxa in the collected bees. Major bacterial groups were evaluated over the entire life of honey bee individuals, where digestive tracts of same aged bees were sampled in the course of time. The results showed that the microbial tract of 6-day-old 5th instar larvae were nearly equally rich in total microbial counts per total digestive tract weight as foraging bees, showing a high percentage of various lactobacilli (Firmicutes) and Gilliamella apicola (Gammaproteobacteria 1). However, during pupation, microbial counts were significantly reduced but recovered quickly by 6 days post-emergence. Between emergence and day 6, imago reached the highest counts of Firmicutes and Gammaproteobacteria, which then gradually declined with bee age. Redundancy analysis conducted using denaturing gradient gel electrophoresis identified bacterial species that were characteristic of each developmental stage. The results suggest that 3-day 4th instar larvae contain low microbial counts that increase 2-fold by day 6 and then decrease during pupation. Microbial succession of the imago begins soon after emergence. We found that bacterial counts do not show only yearly cycles within a colony, but vary on the individual level. Sampling and pooling adult bees or 6th day larvae may lead to high errors and variability, as both of these stages may

  12. Variation in Honey Bee Gut Microbial Diversity Affected by Ontogenetic Stage, Age and Geographic Location

    PubMed Central

    Hroncova, Zuzana; Havlik, Jaroslav; Killer, Jiri; Doskocil, Ivo; Tyl, Jan; Kamler, Martin; Titera, Dalibor; Hakl, Josef; Mrazek, Jakub; Bunesova, Vera; Rada, Vojtech

    2015-01-01

    Social honey bees, Apis mellifera, host a set of distinct microbiota, which is similar across the continents and various honey bee species. Some of these bacteria, such as lactobacilli, have been linked to immunity and defence against pathogens. Pathogen defence is crucial, particularly in larval stages, as many pathogens affect the brood. However, information on larval microbiota is conflicting. Seven developmental stages and drones were sampled from 3 colonies at each of the 4 geographic locations of A. mellifera carnica, and the samples were maintained separately for analysis. We analysed the variation and abundance of important bacterial groups and taxa in the collected bees. Major bacterial groups were evaluated over the entire life of honey bee individuals, where digestive tracts of same aged bees were sampled in the course of time. The results showed that the microbial tract of 6-day-old 5th instar larvae were nearly equally rich in total microbial counts per total digestive tract weight as foraging bees, showing a high percentage of various lactobacilli (Firmicutes) and Gilliamella apicola (Gammaproteobacteria 1). However, during pupation, microbial counts were significantly reduced but recovered quickly by 6 days post-emergence. Between emergence and day 6, imago reached the highest counts of Firmicutes and Gammaproteobacteria, which then gradually declined with bee age. Redundancy analysis conducted using denaturing gradient gel electrophoresis identified bacterial species that were characteristic of each developmental stage. The results suggest that 3-day 4th instar larvae contain low microbial counts that increase 2-fold by day 6 and then decrease during pupation. Microbial succession of the imago begins soon after emergence. We found that bacterial counts do not show only yearly cycles within a colony, but vary on the individual level. Sampling and pooling adult bees or 6th day larvae may lead to high errors and variability, as both of these stages may

  13. Variation in honey bee gut microbial diversity affected by ontogenetic stage, age and geographic location.

    PubMed

    Hroncova, Zuzana; Havlik, Jaroslav; Killer, Jiri; Doskocil, Ivo; Tyl, Jan; Kamler, Martin; Titera, Dalibor; Hakl, Josef; Mrazek, Jakub; Bunesova, Vera; Rada, Vojtech

    2015-01-01

    Social honey bees, Apis mellifera, host a set of distinct microbiota, which is similar across the continents and various honey bee species. Some of these bacteria, such as lactobacilli, have been linked to immunity and defence against pathogens. Pathogen defence is crucial, particularly in larval stages, as many pathogens affect the brood. However, information on larval microbiota is conflicting. Seven developmental stages and drones were sampled from 3 colonies at each of the 4 geographic locations of A. mellifera carnica, and the samples were maintained separately for analysis. We analysed the variation and abundance of important bacterial groups and taxa in the collected bees. Major bacterial groups were evaluated over the entire life of honey bee individuals, where digestive tracts of same aged bees were sampled in the course of time. The results showed that the microbial tract of 6-day-old 5th instar larvae were nearly equally rich in total microbial counts per total digestive tract weight as foraging bees, showing a high percentage of various lactobacilli (Firmicutes) and Gilliamella apicola (Gammaproteobacteria 1). However, during pupation, microbial counts were significantly reduced but recovered quickly by 6 days post-emergence. Between emergence and day 6, imago reached the highest counts of Firmicutes and Gammaproteobacteria, which then gradually declined with bee age. Redundancy analysis conducted using denaturing gradient gel electrophoresis identified bacterial species that were characteristic of each developmental stage. The results suggest that 3-day 4th instar larvae contain low microbial counts that increase 2-fold by day 6 and then decrease during pupation. Microbial succession of the imago begins soon after emergence. We found that bacterial counts do not show only yearly cycles within a colony, but vary on the individual level. Sampling and pooling adult bees or 6th day larvae may lead to high errors and variability, as both of these stages may

  14. The pinyon rhizosphere, plant stress, and herbivory affect the abundance of microbial decomposers in soils.

    PubMed

    Kuske, C R; Ticknor, L O; Busch, J D; Gehring, C A; Whitham, T G

    2003-05-01

    In terrestrial ecosystems, changes in environmental conditions that affect plant performance cause a cascade of effects through many trophic levels. In a 2-year field study, seasonal abundance measurements were conducted for fast-growing bacterial heterotrophs, humate-degrading actinomycetes, fungal heterotrophs, and fluorescent pseudomonads that represent the decomposers in soil. Links between plant health and soil microbiota abundance in pinyon rhizospheres were documented across two soil types: a dry, nutrient-poor volcanic cinder field and a sandy-loam soil. On the stressful cinder fields, we identified relationships between soil decomposer abundance, pinyon age, and stress due to insect herbivory. Across seasonal variation, consistent differences in microbial decomposer abundance were identified between the cinders and sandy-loam soil. Abundance of bacterial heterotrophs and humate-degrading actinomycetes was affected by both soil nutritional status and the pinyon rhizosphere. In contrast, abundance of the fungal heterotrophs and fluorescent pseudomonads was affected primarily by the pinyon rhizosphere. On the cinder field, the three bacterial groups were more abundant on 150-year-old trees than on 60-year-old trees, whereas fungal heterotrophs were unaffected by tree age. Fungal heterotrophs and actinomycetes were more abundant on insect-resistant trees than on susceptible trees, but the opposite was true for the fluorescent pseudomonads. Although all four groups were present in all the environments, the four microbial groups were affected differently by the pinyon rhizosphere, by tree age, and by tree stress caused by the cinder soil and insect herbivory.

  15. Microbial production of sensory-active miraculin.

    PubMed

    Ito, Keisuke; Asakura, Tomiko; Morita, Yuji; Nakajima, Ken-ichiro; Koizumi, Ayako; Shimizu-Ibuka, Akiko; Masuda, Katsuyoshi; Ishiguro, Masaji; Terada, Tohru; Maruyama, Jun-ichi; Kitamoto, Katsuhiko; Misaka, Takumi; Abe, Keiko

    2007-08-24

    Miraculin (MCL), a tropical fruit protein, is unique in that it has taste-modifying activity to convert sourness to sweetness, though flat in taste at neutral pH. To obtain a sufficient amount of MCL to examine the mechanism involved in this sensory event at the molecular level, we transformed Aspergillus oryzae by introducing the MCL gene. Transformants were expressed and secreted a sensory-active form of MCL yielding 2 mg/L. Recombinant MCL resembled native MCL in the secondary structure and the taste-modifying activity to generate sweetness at acidic pH. Since the observed pH-sweetness relation seemed to reflect the imidazole titration curve, suggesting that histidine residues might be involved in the taste-modifying activity. H30A and H30,60A mutants were generated using the A. oryzae-mediated expression system. Both mutants found to have lost the taste-modifying activity. The result suggests that the histidine-30 residue is important for the taste-modifying activity of MCL. PMID:17592723

  16. Promoting uranium immobilization by the activities of microbial phophatases

    SciTech Connect

    Sobecky, Patricia A.; Martial Taillefert

    2006-06-01

    The following is a summary of progress in our project ''Promoting uranium immobilization by the activities of microbial phosphatases'' during the second year of the project. (1). Assignment of microbial phosphatases to molecular classes. One objective of this project is to determine the relationship of phosphatase activity to metal resistance in subsurface strains and possible contributions of horizontal gene transfer (HGT) to the dissemination of nonspecific acid phosphatase genes. Non-specific acid phosphohydrolases are a broad group of secreted microbial phosphatases that function in acidic-to-neutral pH ranges and utilize a wide range of organophosphate substrates. To address this objective we have designed a collection of PCR primer sets based on known microbial acid phosphatase sequences. Genomic DNA is extracted from subsurface FRC isolates and amplicons of the expected sizes are sequenced and searched for conserved signature motifs. During this reporting period we have successfully designed and tested a suite of PCR primers for gram-positive and gram-negative groups of the following phosphatase classes: (1) Class A; (2) Class B; and (3) Class C (gram negative). We have obtained specific PCR products for each of the classes using the primers we have designed using control strains as well as with subsurface isolates.

  17. Microbial Community Structure and Enzyme Activities in Semiarid Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Acosta-Martinez, V. A.; Zobeck, T. M.; Gill, T. E.; Kennedy, A. C.

    2002-12-01

    The effect of agricultural management practices on the microbial community structure and enzyme activities of semiarid soils of different textures in the Southern High Plains of Texas were investigated. The soils (sandy clay loam, fine sandy loam and loam) were under continuous cotton (Gossypium hirsutum L.) or in rotations with peanut (Arachis hypogaea L.), sorghum (Sorghum bicolor L.) or wheat (Triticum aestivum L.), and had different water management (irrigated or dryland) and tillage (conservation or conventional). Microbial community structure was investigated using fatty acid methyl ester (FAME) analysis by gas chromatography and enzyme activities, involved in C, N, P and S cycling of soils, were measured (mg product released per kg soil per h). The activities of b-glucosidase, b-glucosaminidase, alkaline phosphatase, and arylsulfatase were significantly (P<0.05) increased in soils under cotton rotated with sorghum or wheat, and due to conservation tillage in comparison to continuous cotton under conventional tillage. Principal component analysis showed FAME profiles of these soils separated distinctly along PC1 (20 %) and PC2 (13 %) due to their differences in soil texture and management. No significant differences were detected in FAME profiles due to management practices for the same soils in this sampling period. Enzyme activities provide early indications of the benefits in microbial populations and activities and soil organic matter under crop rotations and conservation tillage in comparison to the typical practices in semiarid regions of continuous cotton and conventional tillage.

  18. Active Affective Learning for Accelerated Schools.

    ERIC Educational Resources Information Center

    Richardson, Robert B.

    This paper provides the groundwork for Active Affective Learning and teaching adapted to the needs of the disadvantaged, at-risk students served by the Accelerated Schools Movement. One of the "golden rules" for the practice of Accelerated Learning, according to psychiatrist Georgi Lozanov, has been to maintain an "up-beat" classroom presentation…

  19. Distributions of microbial activities in deep subseafloor sediments

    NASA Technical Reports Server (NTRS)

    D'Hondt, Steven; Jorgensen, Bo Barker; Miller, D. Jay; Batzke, Anja; Blake, Ruth; Cragg, Barry A.; Cypionka, Heribert; Dickens, Gerald R.; Ferdelman, Timothy; Hinrichs, Kai-Uwe; Holm, Nils G.; Mitterer, Richard; Spivack, Arthur; Wang, Guizhi; Bekins, Barbara; Engelen, Bert; Ford, Kathryn; Gettemy, Glen; Rutherford, Scott D.; Sass, Henrik; Skilbeck, C. Gregory; Aiello, Ivano W.; Guerin, Gilles; House, Christopher H.; Inagaki, Fumio

    2004-01-01

    Diverse microbial communities and numerous energy-yielding activities occur in deeply buried sediments of the eastern Pacific Ocean. Distributions of metabolic activities often deviate from the standard model. Rates of activities, cell concentrations, and populations of cultured bacteria vary consistently from one subseafloor environment to another. Net rates of major activities principally rely on electron acceptors and electron donors from the photosynthetic surface world. At open-ocean sites, nitrate and oxygen are supplied to the deepest sedimentary communities through the underlying basaltic aquifer. In turn, these sedimentary communities may supply dissolved electron donors and nutrients to the underlying crustal biosphere.

  20. Targeted Proteomics Approaches To Monitor Microbial Activity In Basalt Aquifer

    NASA Astrophysics Data System (ADS)

    Paszczynski, A. J.; Paidisetti, R.

    2007-12-01

    Microorganisms play a major role in biogeochemical cycles of the Earth. Information regarding microbial community composition can be very useful for environmental monitoring since the short generation times of microorganisms allows them to respond rapidly to changing environmental conditions. Microbial mediated attenuation of toxic chemicals offers great potential for the restoration of contaminated environments in an ecologically acceptable manner. Current knowledge regarding the structure and functional activities of microbial communities is limited, but more information is being acquired every day through many genomic- and proteomic- based methods. As of today, only a small fraction of the Earth's microorganisms has been cultured, and so most of the information regarding the biodegradation and therapeutic potentials of these uncultured microorganisms remains unknown. Sequence analysis of DNA and/or RNA has been used for identifying specific microorganisms, to study the community composition, and to monitor gene expression providing limited information about metabolic state of given microbial system. Proteomic studies can reveal information regarding the real-time metabolic state of the microbial communities thereby aiding in understanding their interaction with the environment. In research described here the involvement of microbial communities in the degradation of anthropogenic contaminants such as trichloroethylene (TCE) was studied using mass spectrometry-based proteomics. The co- metabolic degradation of TCE in the groundwater of the Snake River Plain Aquifer at the Test Area North (TAN) site of Idaho National Laboratory (INL) was monitored by the characterization of peptide sequences of enzymes such as methane monooxygenases (MMOs). MMOs, expressed by methanotrophic bacteria are involved in the oxidation of methane and non-specific co-metabolic oxidation of TCE. We developed a time- course cell lysis method to release proteins from complex microbial

  1. Power generation and oil sands process-affected water treatment in microbial fuel cells.

    PubMed

    Choi, Jeongdong; Liu, Yang

    2014-10-01

    Oil sands process-affected water (OSPW), a product of bitumen isolation in the oil sands industry, is a source of pollution if not properly treated. In present study, OSPW treatment and voltage generation were examined in a single chamber air-cathode microbial fuel cell (MFC) under the effect of inoculated carbon source and temperature. OSPW treatment with an anaerobic sludge-inoculated MFC (AS-MFC) generated 0.55 ± 0.025 V, whereas an MFC inoculated with mature-fine tailings (MFT-MFC) generated 0.41 ± 0.01 V. An additional carbon source (acetate) significantly improved generated voltage. The voltage detected increased to 20-23% in MFCs when the condition was switched from ambient to mesophilic. The mesophilic condition increased OSPW treatment efficiency in terms of lowering the chemical oxygen demand and acid-extractable organics. Pyrosequencing analysis of microbial consortia revealed that Proteobacteria were the most abundant in MFCs and microbial communities in the AS-MFC were more diverse than those in the MFT-MFC.

  2. Metals other than uranium affected microbial community composition in a historical uranium-mining site.

    PubMed

    Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten

    2015-12-01

    To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.

  3. Evaluating digestion efficiency in full-scale anaerobic digesters by identifying active microbial populations through the lens of microbial activity

    NASA Astrophysics Data System (ADS)

    Mei, Ran; Narihiro, Takashi; Nobu, Masaru K.; Kuroda, Kyohei; Liu, Wen-Tso

    2016-09-01

    Anaerobic digestion is a common technology to biologically stabilize wasted solids produced in municipal wastewater treatment. Its efficiency is usually evaluated by calculating the reduction in volatile solids, which assumes no biomass growth associated with digestion. To determine whether this assumption is valid and further evaluate digestion efficiency, this study sampled 35 digester sludge from different reactors at multiple time points together with the feed biomass in a full-scale water reclamation plant at Chicago, Illinois. The microbial communities were characterized using Illumina sequencing technology based on 16S rRNA and 16S rRNA gene (rDNA). 74 core microbial populations were identified and represented 58.7% of the entire digester community. Among them, active populations were first identified using the ratio of 16S rRNA and 16S rDNA (rRNA/rDNA) for individual populations, but this approach failed to generate consistent results. Subsequently, a recently proposed mass balance model was applied to calculate the specific growth rate (μ), and this approach successfully identified active microbial populations in digester (positive μ) that could play important roles than those with negative μ. It was further estimated that 82% of microbial populations in the feed sludge were digested in comparison with less than 50% calculated using current equations.

  4. Evaluating digestion efficiency in full-scale anaerobic digesters by identifying active microbial populations through the lens of microbial activity

    PubMed Central

    Mei, Ran; Narihiro, Takashi; Nobu, Masaru K.; Kuroda, Kyohei; Liu, Wen-Tso

    2016-01-01

    Anaerobic digestion is a common technology to biologically stabilize wasted solids produced in municipal wastewater treatment. Its efficiency is usually evaluated by calculating the reduction in volatile solids, which assumes no biomass growth associated with digestion. To determine whether this assumption is valid and further evaluate digestion efficiency, this study sampled 35 digester sludge from different reactors at multiple time points together with the feed biomass in a full-scale water reclamation plant at Chicago, Illinois. The microbial communities were characterized using Illumina sequencing technology based on 16S rRNA and 16S rRNA gene (rDNA). 74 core microbial populations were identified and represented 58.7% of the entire digester community. Among them, active populations were first identified using the ratio of 16S rRNA and 16S rDNA (rRNA/rDNA) for individual populations, but this approach failed to generate consistent results. Subsequently, a recently proposed mass balance model was applied to calculate the specific growth rate (μ), and this approach successfully identified active microbial populations in digester (positive μ) that could play important roles than those with negative μ. It was further estimated that 82% of microbial populations in the feed sludge were digested in comparison with less than 50% calculated using current equations. PMID:27666090

  5. Structure and Function of Subsurface Microbial Communities Affecting Radionuclide Transport and Bio-immobilization

    SciTech Connect

    Kerkhof, Lee

    2013-10-23

    The goal of this research project was to employ a multi-disciplinary team to investigate the DOE-ERSP Field Research Center at Oak Ridge, TN (ORFRC), which contains well-defined subsurface contaminant plumes with contrasting pH and redox conditions. Part of the team would pursue cultivation-independent characterization of the microbial groups catalyzing relevant biogeochemical reactions to gain an understanding of the physiological mechanisms controlling radionuclide immobilization. Other team members would focus on cultivation and physiological characterization of model microorganisms from the site using single cell sorting methods. In order to understand and predict the in situ function of microbial communities, the PIs hope to develop new strategies for cultivation and to couple phylogenetic structure with microbial community function. Specific objectives by the Rutgers group was to discern the active bacteria at the Oak Ridge Research Field Challenge Site: 1. by applying stable isotope probing techniques to enrichment cultures developed from Florida State University; 2. by fingerprinting intact rRNA from groundwater samples obtained along the various flow pathways at ORFRC; and 3. by identifying functional genes for N and S cycling along the flowpaths to aid in detection of active bacteria.

  6. Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface

    SciTech Connect

    Taillefert, Martial

    2015-04-01

    This project investigated the geochemical and microbial processes associated with the biomineralization of radionuclides in subsurface soils. During this study, it was determined that microbial communities from the Oak Ridge Field Research subsurface are able to express phosphatase activities that hydrolyze exogenous organophosphate compounds and result in the non-reductive bioimmobilization of U(VI) phosphate minerals in both aerobic and anaerobic conditions. The changes of the microbial community structure associated with the biomineralization of U(VI) was determined to identify the main organisms involved in the biomineralization process, and the complete genome of two isolates was sequenced. In addition, it was determined that both phytate, the main source of natural organophosphate compounds in natural environments, and polyphosphate accumulated in cells could also be hydrolyzed by native microbial population to liberate enough orthophosphate and precipitate uranium phosphate minerals. Finally, the minerals produced during this process are stable in low pH conditions or environments where the production of dissolved inorganic carbon is moderate. These findings suggest that the biomineralization of U(VI) phosphate minerals is an attractive bioremediation strategy to uranium bioreduction in low pH uranium-contaminated environments. These efforts support the goals of the SBR long-term performance measure by providing key information on "biological processes influencing the form and mobility of DOE contaminants in the subsurface".

  7. Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador.

    PubMed

    Tischer, Alexander; Potthast, Karin; Hamer, Ute

    2014-05-01

    Global change phenomena, such as forest disturbance and land-use change, significantly affect elemental balances as well as the structure and function of terrestrial ecosystems. However, the importance of shifts in soil nutrient stoichiometry for the regulation of belowground biota and soil food webs have not been intensively studied for tropical ecosystems. In the present account, we examine the effects of land-use change and soil depth on soil and microbial stoichiometry along a land-use sequence (natural forest, pastures of different ages, secondary succession) in the tropical mountain rainforest region of southern Ecuador. Furthermore, we analyzed (PLFA-method) whether shifts in the microbial community structure were related to alterations in soil and microbial stoichiometry. Soil and microbial stoichiometry were affected by both land-use change and soil depth. After forest disturbance, significant decreases of soil C:N:P ratios at the pastures were followed by increases during secondary succession. Microbial C:N ratios varied slightly in response to land-use change, whereas no fixed microbial C:P and N:P ratios were observed. Shifts in microbial community composition were associated with soil and microbial stoichiometry. Strong positive relationships between PLFA-markers 18:2n6,9c (saprotrophic fungi) and 20:4 (animals) and negative associations between 20:4 and microbial N:P point to land-use change affecting the structure of soil food webs. Significant deviations from global soil and microbial C:N:P ratios indicated a major force of land-use change to alter stoichiometric relationships and to structure biological systems. Our results support the idea that soil biotic communities are stoichiometrically flexible in order to adapt to alterations in resource stoichiometry.

  8. Direct Experimental Assessment of Microbial Activity in North Pond Sediments

    NASA Astrophysics Data System (ADS)

    Ferdelman, T. G.; Picard, A.; Morando, M.; Ziebis, W.

    2009-12-01

    North Pond, an isolated sediment pond located at 22°45’N on the western flank of the Mid-Atlantic Ridge, offered the opportunity to study microbial activities in deeply-buried low-activity sediments. About 8 x 15 km in size with sediment maximum thickness of about 300 m, North Pond is completely surrounded by exposed 7 Ma old basement. North Pond lies above the carbonate compensation depth at a water depth about 4500 m; hydrostatic pressure at the seafloor is about 45 MPa and the temperature is near 2°C. During the a R/V MS Merian cruise (MSM-11/1) in February -March 2009, 14 gravity cores of up to 9 m length were successfully obtained, from which samples were taken with 1-m resolution for experimental activity measurements. The goal of the experimental work was 1) to examine potential metabolic pathways in North Pond sediments and carbon assimilation pathways in this low-energy environment, and 2) explore the effects of pressure on microbial metabolic activities. As dissolved oxygen penetrated through all depths, sediments were aerobically sampled, processed and incubated at 4°C. Selected samples were immediately stored at in situ pressure until further use. The microbial uptake of both organic and inorganic carbon in selected North Pond sediment samples was investigated by following the fate of 14C in radio-labeled organic and organic compounds in North Pond sediment slurry incubations. Shipboard and on-shore experiments using 14C-leucine, 14C-glucose and 14C-bicarbonate were performed on selected cores. Day- to month- incubations were performed at 4°C. Parallel incubations were conducted at atmospheric pressure (0.1 MPa) and in situ pressure (~45 MPa). Either whole cell extraction (Kallmeyer et al., Limnol. Oceanogr.: Methods 6, 2008, 238-245) or protein-DNA extraction was carried on after various incubations to determine the fraction of 14C incorporated into cellular components. Formation of 14C-labeled CO2 was determined on samples incubated with 14C

  9. Microbial H2 cycling does not affect δ2H values of ground water

    USGS Publications Warehouse

    Landmeyer, J.E.; Chapelle, F.H.; Bradley, P.M.

    2000-01-01

    Stable hydrogen-isotope values of ground water (δ2H) and dissolved hydrogen concentrations (H(2(aq)) were quantified in a petroleum-hydrocarbon contaminated aquifer to determine whether the production/consumption of H2 by subsurface microorganisms affects ground water &delta2H values. The range of &delta2H observed in monitoring wells sampled (-27.8 ‰c to -15.5 ‰c) was best explained, however, by seasonal differences in recharge temperature as indicated using ground water δ18O values, rather than isotopic exchange reactions involving the microbial cycling of H2 during anaerobic petroleum-hydrocarbon biodegradation. The absence of a measurable hydrogen-isotope exchange between microbially cycled H2 and ground water reflects the fact that the amount of H2 available from the anaerobic decomposition of petroleum hydrocarbons is small relative to the amount of hydrogen present in water, even though milligram per liter concentrations of readily biodegradable contaminants are present at the study site. Additionally, isotopic fractionation calculations indicate that in order for H2 cycling processes to affect δ2H values of ground water, relatively high concentrations of H2 (>0.080 M) would have to be maintained, considerably higher than the 0.2 to 26 nM present at this site and characteristic of anaerobic conditions in general. These observations suggest that the conventional approach of using δ2H and δ18O values to determine recharge history is appropriate even for those ground water systems characterized by anaerobic conditions and extensive microbial H2 cycling.

  10. Do recreational activities affect coastal biodiversity?

    NASA Astrophysics Data System (ADS)

    Riera, Rodrigo; Menci, Cristiano; Sanabria-Fernández, José Antonio; Becerro, Mikel A.

    2016-09-01

    Human activities are largely affecting coastal communities worldwide. Recreational perturbations have been overlooked in comparison to other perturbations, yet they are potential threats to marine biodiversity. They affect coastal communities in different ways, underpinning consistent shifts in fish and invertebrates assemblages. Several sites were sampled subjected to varying effects by recreational fishermen (low and high pressure) and scuba divers (low and high) in an overpopulated Atlantic island. Non-consistent differences in ecological, trophic and functional diversity were found in coastal communities, considering both factors ("diving" and "fishing"). Multivariate analyses only showed significant differences in benthic invertebrates between intensively-dived and non-dived sites. The lack of clear trends may be explained by the depletion of coastal resources in the study area, an extensively-affected island by overfishing.

  11. Hydrocarbon contamination affects deep-sea benthic oxygen uptake and microbial community composition

    NASA Astrophysics Data System (ADS)

    Main, C. E.; Ruhl, H. A.; Jones, D. O. B.; Yool, A.; Thornton, B.; Mayor, D. J.

    2015-06-01

    Accidental oil well blowouts have the potential to introduce large quantities of hydrocarbons into the deep sea and disperse toxic contaminants to midwater and seafloor areas over ocean-basin scales. Our ability to assess the environmental impacts of these events is currently impaired by our limited understanding of how resident communities are affected. This study examined how two treatment levels of a water accommodated fraction of crude oil affected the oxygen consumption rate of a natural, deep-sea benthic community. We also investigated the resident microbial community's response to hydrocarbon contamination through quantification of phospholipid fatty acids (PLFAs) and their stable carbon isotope (δ13C) values. Sediment community oxygen consumption rates increased significantly in response to increasing levels of contamination in the overlying water of oil-treated microcosms, and bacterial biomass decreased significantly in the presence of oil. Multivariate ordination of PLFA compositional (mol%) data showed that the structure of the microbial community changed in response to hydrocarbon contamination. However, treatment effects on the δ13C values of individual PLFAs were not statistically significant. Our data demonstrate that deep-sea benthic microbes respond to hydrocarbon exposure within 36 h.

  12. Soil microbial activities beneath Stipa tenacissima L. and in surrounding bare soil

    NASA Astrophysics Data System (ADS)

    Novosadová, I.; Ruiz Sinoga, J. D.; Záhora, J.; Fišerová, H.

    2010-05-01

    Open steppes dominated by Stipa tenacissima L. constitute one of the most representative ecosystems of the semi-arid zones of Eastern Mediterranean Basin (Iberian Peninsula, North of Africa). These steppes show a higher degree of variability in composition and structure. Ecosystem functioning is strongly related to the spatial pattern of grass tussocks. Soils beneath S. tenacissima grass show higher fertility and improved microclimatic conditions, favouring the formation of "resource islands" (Maestre et al., 2007). On the other hand in "resource islands" and in surrounding bare soil exists the belowground zone of influence. The competition for water and resources between plants and microorganisms is strong and mediated trough an enormous variety of exudates and resource depletion intended to regulate soil microbial communities in the rhizosphere, control herbivory, encourage beneficial symbioses, and change chemical and physical properties in soil (Pugnaire et Armas, 2008). Secondary compounds and allelopathy restrict other species growth and contribute to patchy plant distribution. Active root segregation affects not only neighbourś growth but also soil microbial activities. The objective of this study was to assess the effect of Stipa tenacissima on the key soil microbial activities under controlled incubation conditions (basal and potential respiration; net nitrogen mineralization). The experimental plots were located in the province Almería in Sierra de los Filabres Mountains near the village Gérgal (southeast Spain) in the small catchment which is situated between 1090 - 1165 m a.s.l. The area with extent of 82 000 m2 is affected by soil degradation. The climate is semiarid Mediterranean. The mean annual rainfall is of about 240 mm mostly concentrated in autumn and spring. The mean annual temperature is 13.9° C. The studied soil has a loam to sandy clay texture and is classified as Lithosol (FAO-ISRIC and ISSS, 1998). The vegetation of these areas is an

  13. Benthic microbial abundance and activities in an intensively trawled ecosystem (Thermaikos Gulf, Aegean Sea)

    NASA Astrophysics Data System (ADS)

    Polymenakou, Paraskevi N.; Pusceddu, Antonio; Tselepides, Anastasios; Polychronaki, Thalia; Giannakourou, Antonia; Fiordelmondo, Carla; Hatziyanni, Eleni; Danovaro, Roberto

    2005-12-01

    Abundance of benthic bacteria, heterotrophic nanoflagellates and ciliates, extracellular enzymatic activities, bacterial C production, C mineralisation and sediment community oxygen consumption rates were measured in the Thermaikos Gulf (Northeastern Mediterranean), before (September 2001), and during intense trawling activities (October 2001 and February 2002). The biochemical composition of sedimentary organic matter has revealed that bottom trawling had an effect on the trophic state of Thermaikos Gulf. Changes on the benthic microbial food web were also recorded, during the three sampling seasons. Even though trawling-induced sediment resuspension did not alter significantly the abundance of the microbial components, with the exception of the most impacted station, it determined changes regarding their relative importance. Thus, the ratios of bacterium to nanoflagellates and ciliate to nanoflagellates abundance increased in the trawled stations, causing a sudden increase in bacterial C production, in comparison to the non-trawled station. Four months later, the effects of trawling on the microbial food web were less evident, masked possibly by the drastic decrease in the water temperature. The results of the present work suggest that bottom trawling induces alteration of the sedimentological variables and can be considered as a factor affecting the function of the microbial food web in marine coastal ecosystems. These alterations cause faster mobilisation of organic C buried in the sediment and increase nutrient concentrations and availability in the system, thus inducing an effect that could lead to coastal eutrophication.

  14. Assessing Microbial Activity in Marcellus Shale Hydraulic Fracturing Fluids

    NASA Astrophysics Data System (ADS)

    Wishart, J. R.; Morono, Y.; Itoh, M.; Ijiri, A.; Hoshino, T.; Inagaki, F.; Verba, C.; Torres, M. E.; Colwell, F. S.

    2014-12-01

    Hydraulic fracturing (HF) produces millions of gallons of waste fluid which contains a microbial community adapted to harsh conditions such as high temperatures, high salinities and the presence of heavy metals and radionuclides. Here we present evidence for microbial activity in HF production fluids. Fluids collected from a Marcellus shale HF well were supplemented with 13C-labeled carbon sources and 15N-labeled ammonium at 25°C under aerobic or anaerobic conditions. Samples were analyzed for 13C and 15N incorporation at sub-micrometer scale by ion imaging with the JAMSTEC NanoSIMS to determine percent carbon and nitrogen assimilation in individual cells. Headspace CO2 and CH4 were analyzed for 13C enrichment using irm-GC/MS. At 32 days incubation carbon assimilation was observed in samples containing 1 mM 13C-labeled glucose under aerobic and anaerobic conditions with a maximum of 10.4 and 6.5% total carbon, respectively. Nitrogen assimilation of 15N ammonium observed in these samples were 0.3 and 0.8% of total nitrogen, respectively. Head space gas analysis showed 13C enrichment in CH4 in anaerobic samples incubated with 1mM 13C-labeled bicarbonate (2227 ‰) or methanol (98943 ‰). Lesser 13C enrichment of CO2 was observed in anaerobic samples containing 1 mM 13C-labeled acetate (13.7 ‰), methanol (29.9 ‰) or glucose (85.4 ‰). These results indicate metabolic activity and diversity in microbial communities present in HF flowback fluids. The assimilation of 13C-labeled glucose demonstrates the production of biomass, a critical part of cell replication. The production of 13CO2 and 13CH4 demonstrate microbial metabolism in the forms of respiration and methanogenesis, respectively. Methanogenesis additionally indicates the presence of an active archaeal community. This research shows that HF production fluid chemistry does not entirely inhibit microbial activity or growth and encourages further research regarding biogeochemical processes occurring in

  15. Contribution of microbial activity to carbon chemistry in clouds.

    PubMed

    Vaïtilingom, Mickaël; Amato, Pierre; Sancelme, Martine; Laj, Paolo; Leriche, Maud; Delort, Anne-Marie

    2010-01-01

    The biodegradation of the most abundant atmospheric organic C1 to C4 compounds (formate, acetate, lactate, succinate) by five selected representative microbial strains (three Pseudomonas strains, one Sphingomonas strain, and one yeast strain) isolated from cloud water at the puy de Dôme has been studied. Experiments were first conducted under model conditions and consisted of a pure strain incubated in the presence of a single organic compound. Kinetics showed the ability of the isolates to degrade atmospheric compounds at temperatures representative of low-altitude clouds (5 degrees C and 17 degrees C). Then, to provide data that can be extrapolated to real situations, microcosm experiments were developed. A solution that chemically mimicked the composition of cloud water was used as an incubation medium for microbial strains. Under these conditions, we determined that microbial activity would significantly contribute to the degradation of formate, acetate, and succinate in cloud water at 5 degrees C and 17 degrees C, with lifetimes of 0.4 to 69.1 days. Compared with the reactivity involving free radicals, our results suggest that biological activity drives the oxidation of carbonaceous compounds during the night (90 to 99%), while its contribution accounts for 2 to 37% of the reactivity during the day, competing with photochemistry.

  16. Drought induced changes of plant belowground carbon allocation affect soil microbial community function in a subalpine meadow

    NASA Astrophysics Data System (ADS)

    Fuchslueger, L.; Bahn, M.; Fritz, K.; Hasibeder, R.; Richter, A.

    2012-12-01

    There is growing evidence that climate extremes may affect ecosystem carbon dynamics more strongly than gradual changes in temperatures or precipitation. Climate projections suggest more frequent heat waves accompanied by extreme drought periods in many parts of Europe, including the Alps. Drought is considered to decrease plant C uptake and turnover, which may in turn decrease belowground C allocation and potentially has significant consequences for microbial community composition and functioning. However, information on effects of drought on C dynamics at the plant-soil interface in real ecosystems is still scarce. Our study aimed at understanding how summer drought affects soil microbial community composition and the uptake of recently assimilated plant C by different microbial groups in grassland. We hypothesized that under drought 1) the microbial community shifts, fungi being less affected than bacteria, 2) plants decrease belowground C allocation, which further reduces C transfer to soil microbes and 3) the combined effects of belowground C allocation, reduced soil C transport due to reduced soil moisture and shift in microbial communities cause an accumulation of extractable organic C in the soil. Our study was conducted as part of a rain-exclusion experiment in a subalpine meadow in the Austrian Central Alps. After eight weeks of rain exclusion we pulse labelled drought and control plots with 13CO2 and traced C in plant biomass, extractable organic C (EOC) and soil microbial communities using phospholipid fatty acids (PLFA). Drought induced a shift of the microbial community composition: gram-positive bacteria became more dominant, whereas gram-negative bacteria were not affected by drought. Also the relative abundance of fungal biomass was not affected by drought. While total microbial biomass (as estimated by total microbial PLFA content) increased during drought, less 13C was taken up. This reduction was pronounced for bacterial biomarkers. It reflects

  17. Contribution of microbial activity to virus reduction in saturated soil.

    PubMed

    Nasser, A M; Glozman, R; Nitzan, Y

    2002-05-01

    Application of wastewater to soil may result in the contamination of groundwater and soil with pathogenic microorganisms and other biological and chemical agents. This study was performed to determine the antiviral microbial activity of soil saturated with secondary effluent. Low concentrations (0.05mg/ml) of protease pronase resulted in the inactivation of more than 90% of seeded Cox-A9 virus, whereas Poliovirus type 1, Hepatitis A virus (HAV) and MS2 bacteriophages were found to be insensitive to the enzyme activity. Exposure of Cox A9 virus to P. aeruginosa extracellular enzymes resulted in 99% inactivation of the seeded virus. Hepatitis A virus was found to be as sensitive as the Cox A9 virus, whereas Poliovirus 1 and MS2 were found to be insensitive to P. aeruginosa extracellular enzymatic activity. Furthermore, the time required for 99% reduction (T99) of Cox A9 and MS-2 Bacteriophage, at 15 degrees C, in soil saturated with secondary effluent was found to be 7 and 21 days, respectively. Faster inactivation was observed for MS2 and Cox A9 in soil saturated with secondary effluent incubated at 30 degrees C, T99 of 2 and 0.3 days, respectively. Although the concentration of the total bacterial count in the soil samples increased from 10(3) cfu/g to 10(5) cfu/g after 20 days of incubation at 30 degrees C, the proteolytic activity was below the detection level. The results of this study indicate that the virucidal effect of microbial activity is virus type dependent. Furthermore microbial activity in the soil material can be enhanced by the application of secondary effluent at higher temperature. The results also showed that MS2 bacteriophage can be used to predict viral contamination of soil and groundwater.

  18. Effect of Various Essential Oils Isolated from Douglas Fir Needles upon Sheep and Deer Rumen Microbial Activity

    PubMed Central

    Oh, Hi Kon; Sakai, T.; Jones, M. B.; Longhurst, W. M.

    1967-01-01

    The effects of essential oils isolated from Douglas fir needles on sheep and deer rumen microbial activity were tested by use of an anaerobic manometric technique. Rumen microorganisms were obtained from a sheep which had been fed mainly on alfalfa hay and dried range grass. One deer used in this study had access to Douglas fir trees the year around, whereas the other deer had no access to Douglas fir. All of the monoterpene hydrocarbons isolated from Douglas fir needles—α-pinene, β-pinene, limonene, myrcene, camphene, Δ3-carene, and terpinolene—promoted only slightly or had no effect on deer rumen microbial activity, whereas all of them promoted activity in sheep rumen microbes, except Δ3-carene and terpinolene, which inhibited activity. Of the oxygenated monoterpenes, all monoterpene alcohols—α-terpineol, terpinen-4-ol, linalool, citronellol, and fenchyl alcohol—strongly inhibited the rumen microbial activity of both sheep and deer. Monoterpene esters (bornyl acetate) produced mild inhibition for both sheep and deer microbes, and citronellyl acetate inhibited rumen microbial activity in sheep, whereas it promoted activity in both deer. Monoterpene aldehyde (citronellal) inhibited the activity of rumen microbes from both sheep and deer having no access to Douglas fir from the Hopland Field Station, whereas they produced no effect upon the deer having access to Douglas fir from the Masonite forest. Rumen microbial activity for sheep and deer was promoted slightly with aliphatic ester (ethyl-n-caproate). There was a marked difference between sheep and deer rumen microbes as affected by addition of the various essential oils. The monoterpene hydrocarbons promoted activity more on sheep rumen microbes than on deer, and the monoterpene alcohols inhibited sheep rumen microbial activity more than that of deer. Furthermore, the deer rumen microbes from Hopland Field Station were affected more than the deer from Masonite forest. Images Fig. 1 PMID:6049303

  19. Long-term effects of ZnO nanoparticles on nitrogen and phosphorus removal, microbial activity and microbial community of a sequencing batch reactor.

    PubMed

    Wang, Sen; Gao, Mengchun; She, Zonglian; Zheng, Dong; Jin, Chunji; Guo, Liang; Zhao, Yangguo; Li, Zhiwei; Wang, Xuejiao

    2016-09-01

    The performance, microbial activity, and microbial community of a sequencing batch reactor (SBR) were investigated under the long-term exposure of ZnO nanoparticles (ZnO NPs). Low ZnO NPs concentration (less than 5mg/L) had no obvious effect on the SBR performance, whereas the removals of COD, NH4(+)-N, and phosphorus were affected at 10-60mg/L ZnO NPs. The variation trend of nitrogen and phosphorus removal rate was similar to that of microbial enzymatic activity with the increase of ZnO NPs concentrations. The richness and diversity of microbial community showed obvious variations at different ZnO NPs concentrations. ZnO NPs appeared on the surface and cell interior of activated sludge, and the Zn contents in the effluent and activated sludge increased with the increase of ZnO NPS concentration. The present results provide use information to understand the effect of ZnO NPS on the performance of wastewater biological treatment systems. PMID:27262098

  20. From field barley to malt: detection and specification of microbial activity for quality aspects.

    PubMed

    Noots, I; Delcour, J A; Michiels, C W

    1999-01-01

    Barley grain carries a numerous, variable, and complex microbial population that mainly consists of bacteria, yeasts, and filamentous fungi and that can partly be detected and quantified using plating methods and microscopic and molecular techniques. The extent and the activity of this microflora are determined by the altering state of the grain and the environmental conditions in the malt production chain. Three ecological systems can be distinguished: the growing cereal in the field, the dry barley grain under storage, and the germinating barley kernel during actual malting. Microorganisms interact with the malting process both by their presence and by their metabolic activity. In this respect, interference with the oxygen uptake by the barley grain and secretion of enzymes, hormones, toxins, and acids that may affect the plant physiological processes have been studied. As a result of the interaction, microorganisms can cause important losses and influence malt quality as measured by brewhouse performance and beer quality. Of particular concern is the occurrence of mycotoxins that may affect the safety of malt. The development of the microflora during malt production can to a certain extent be controlled by the selection of appropriate process conditions. Physical and chemical treatments to inactivate the microbial population on the barley grain are suggested. Recent developments, however, aim to control the microbial activity during malt production by promoting the growth of desirable microbial cultures, selected either as biocontrol agents inhibiting mycotoxin-producing molds or as starter cultures actively contributing to malt modification. Such techniques may offer natural opportunities to improve the quality and safety of malt.

  1. Comparative resistance and resilience of soil microbial communities and enzyme activities in adjacent native forest and agricultural soils.

    PubMed

    Chaer, Guilherme; Fernandes, Marcelo; Myrold, David; Bottomley, Peter

    2009-08-01

    Degradation of soil properties following deforestation and long-term soil cultivation may lead to decreases in soil microbial diversity and functional stability. In this study, we investigated the differences in the stability (resistance and resilience) of microbial community composition and enzyme activities in adjacent soils under either native tropical forest (FST) or in agricultural cropping use for 14 years (AGR). Mineral soil samples (0 to 5 cm) from both areas were incubated at 40 degrees C, 50 degrees C, 60 degrees C, or 70 degrees C for 15 min in order to successively reduce the microbial biomass. Three and 30 days after the heat shocks, fluorescein diacetate (FDA) hydrolysis, cellulase and laccase activities, and phospholipid-derived fatty acids-based microbial community composition were measured. Microbial biomass was reduced up to 25% in both soils 3 days after the heat shocks. The higher initial values of microbial biomass, enzyme activity, total and particulate soil organic carbon, and aggregate stability in the FST soil coincided with higher enzymatic stability after heat shocks. FDA hydrolysis activity was less affected (more resistance) and cellulase and laccase activities recovered more rapidly (more resilience) in the FST soil relative to the AGR counterpart. In the AGR soil, laccase activity did not show resilience to any heat shock level up to 30 days after the disturbance. Within each soil type, the microbial community composition did not differ between heat shock and control samples at day 3. However, at day 30, FST soil samples treated at 60 degrees C and 70 degrees C contained a microbial community significantly different from the control and with lower biomass regardless of high enzyme resilience. Results of this study show that deforestation followed by long-term cultivation changed microbial community composition and had differential effects on microbial functional stability. Both soils displayed similar resilience to FDA hydrolysis, a

  2. Comparative resistance and resilience of soil microbial communities and enzyme activities in adjacent native forest and agricultural soils.

    PubMed

    Chaer, Guilherme; Fernandes, Marcelo; Myrold, David; Bottomley, Peter

    2009-08-01

    Degradation of soil properties following deforestation and long-term soil cultivation may lead to decreases in soil microbial diversity and functional stability. In this study, we investigated the differences in the stability (resistance and resilience) of microbial community composition and enzyme activities in adjacent soils under either native tropical forest (FST) or in agricultural cropping use for 14 years (AGR). Mineral soil samples (0 to 5 cm) from both areas were incubated at 40 degrees C, 50 degrees C, 60 degrees C, or 70 degrees C for 15 min in order to successively reduce the microbial biomass. Three and 30 days after the heat shocks, fluorescein diacetate (FDA) hydrolysis, cellulase and laccase activities, and phospholipid-derived fatty acids-based microbial community composition were measured. Microbial biomass was reduced up to 25% in both soils 3 days after the heat shocks. The higher initial values of microbial biomass, enzyme activity, total and particulate soil organic carbon, and aggregate stability in the FST soil coincided with higher enzymatic stability after heat shocks. FDA hydrolysis activity was less affected (more resistance) and cellulase and laccase activities recovered more rapidly (more resilience) in the FST soil relative to the AGR counterpart. In the AGR soil, laccase activity did not show resilience to any heat shock level up to 30 days after the disturbance. Within each soil type, the microbial community composition did not differ between heat shock and control samples at day 3. However, at day 30, FST soil samples treated at 60 degrees C and 70 degrees C contained a microbial community significantly different from the control and with lower biomass regardless of high enzyme resilience. Results of this study show that deforestation followed by long-term cultivation changed microbial community composition and had differential effects on microbial functional stability. Both soils displayed similar resilience to FDA hydrolysis, a

  3. Electrodermal activity analysis during affective haptic elicitation.

    PubMed

    Greco, Alberto; Valenza, Gaetano; Nardelli, Mimma; Bianchi, Matteo; Lanata, Antonio; Scilingo, Enzo Pasquale

    2015-08-01

    This paper investigates how the autonomic nervous system dynamics, quantified through the analysis of the electrodermal activity (EDA), is modulated according to affective haptic stimuli. Specifically, a haptic display able to convey caress-like stimuli is presented to 32 healthy subjects (16 female). Each stimulus is changed according to six combinations of three velocities and two forces levels of two motors stretching a strip of fabric. Subjects were also asked to score each stimulus in terms of arousal (high/low activation) and valence (pleasant/unpleasant), in agreement with the circumplex model of affect. EDA was processed using a deconvolutive method, separating tonic and phasic components. A statistical analysis was performed in order to identify significant differences in EDA features among force and velocity levels, as well as in their valence and arousal scores. Results show that the simulated caress induced by the haptic display significantly affects the EDA. In detail, the phasic component seems to be inversely related to the valence score. This finding is new and promising, since it can be used, e.g., as an additional cue for haptics design. PMID:26737605

  4. Does the preferential microbial colonisation of ferromagnesian minerals affect mineral weathering in soil?

    PubMed

    Wilson, Michael J; Certini, Giacomo; Campbell, Colin D; Anderson, Ian C; Hillier, Stephen

    2008-09-01

    Fungal activity is thought to play a direct and effective role in the breakdown and dissolution of primary minerals and in the synthesis of clay minerals in soil environments, with important consequences for plant growth and ecosystem functioning. We have studied primary mineral weathering in volcanic soils developed on trachydacite in southern Tuscany using a combination of qualitative and quantitative mineralogical and microbiological techniques. Specifically, we characterized the weathering and microbiological colonization of the magnetically separated ferromagnesian minerals (biotite and orthopyroxene) and non-ferromagnesian constituents (K-feldspar and volcanic glass) of the coarse sand fraction (250-1,000 microm). Our results show that in the basal horizons of the soils, the ferromagnesian minerals are much more intensively colonized by microorganisms than K-feldspar and glass, but that the composition of the microbial communities living on the two mineral fractions is similar. Moreover, X-ray diffraction, optical and scanning electron microscope observations show that although the ferromagnesian minerals are preferentially associated with an embryonic form of the clay mineral halloysite, they are still relatively fresh. We interpret our results as indicating that in this instance microbial activity, and particularly fungal activity, has not been an effective agent of mineral weathering, that the association with clay minerals is indirect, and that fungal weathering of primary minerals may not be as important a source of plant nutrients as previously claimed.

  5. Dissipation and effects of tricyclazole on soil microbial communities and rice growth as affected by amendment with alperujo compost.

    PubMed

    García-Jaramillo, M; Redondo-Gómez, S; Barcia-Piedras, J M; Aguilar, M; Jurado, V; Hermosín, M C; Cox, L

    2016-04-15

    The presence of pesticides in surface and groundwater has grown considerably in the last decades as a consequence of the intensive farming activity. Several studies have shown the benefits of using organic amendments to prevent losses of pesticides from runoff or leaching. A particular soil from the Guadalquivir valley was placed in open air ponds and amended at 1 or 2% (w/w) with alperujo compost (AC), a byproduct from the olive oil industry. Tricyclazole dissipation, rice growth and microbial diversity were monitored along an entire rice growing season. An increase in the net photosynthetic rate of Oryza sativa plants grown in the ponds with AC was observed. These plants produced between 1100 and 1300kgha(-1) more rice than plants from the unamended ponds. No significant differences were observed in tricyclazole dissipation, monitored for a month in soil, surface and drainage water, between the amended and unamended ponds. The structure and diversity of bacteria and fungi communities were also studied by the use of the polymerase chain reaction denaturing gel electrophoresis (PCR-DGGE) from DNA extracted directly from soil samples. The banding pattern was similar for all treatments, although the density of bands varied throughout the time. Apparently, tricyclazole did not affect the structure and diversity of bacteria and fungi communities, and this was attributed to its low bioavailability. Rice cultivation under paddy field conditions may be more efficient under the effects of this compost, due to its positive effects on soil properties, rice yield, and soil microbial diversity.

  6. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics.

    PubMed

    Brum, Jennifer R; Hurwitz, Bonnie L; Schofield, Oscar; Ducklow, Hugh W; Sullivan, Matthew B

    2016-02-01

    Rapid warming in the highly productive western Antarctic Peninsula (WAP) region of the Southern Ocean has affected multiple trophic levels, yet viral influences on microbial processes and ecosystem function remain understudied in the Southern Ocean. Here we use cultivation-independent quantitative ecological and metagenomic assays, combined with new comparative bioinformatic techniques, to investigate double-stranded DNA viruses during the WAP spring-summer transition. This study demonstrates that (i) temperate viruses dominate this region, switching from lysogeny to lytic replication as bacterial production increases, and (ii) Southern Ocean viral assemblages are genetically distinct from lower-latitude assemblages, primarily driven by this temperate viral dominance. This new information suggests fundamentally different virus-host interactions in polar environments, where intense seasonal changes in bacterial production select for temperate viruses because of increased fitness imparted by the ability to switch replication strategies in response to resource availability. Further, temperate viral dominance may provide mechanisms (for example, bacterial mortality resulting from prophage induction) that help explain observed temporal delays between, and lower ratios of, bacterial and primary production in polar versus lower-latitude marine ecosystems. Together these results suggest that temperate virus-host interactions are critical to predicting changes in microbial dynamics brought on by warming in polar marine systems.

  7. Early infancy microbial and metabolic alterations affect risk of childhood asthma.

    PubMed

    Arrieta, Marie-Claire; Stiemsma, Leah T; Dimitriu, Pedro A; Thorson, Lisa; Russell, Shannon; Yurist-Doutsch, Sophie; Kuzeljevic, Boris; Gold, Matthew J; Britton, Heidi M; Lefebvre, Diana L; Subbarao, Padmaja; Mandhane, Piush; Becker, Allan; McNagny, Kelly M; Sears, Malcolm R; Kollmann, Tobias; Mohn, William W; Turvey, Stuart E; Finlay, B Brett

    2015-09-30

    Asthma is the most prevalent pediatric chronic disease and affects more than 300 million people worldwide. Recent evidence in mice has identified a "critical window" early in life where gut microbial changes (dysbiosis) are most influential in experimental asthma. However, current research has yet to establish whether these changes precede or are involved in human asthma. We compared the gut microbiota of 319 subjects enrolled in the Canadian Healthy Infant Longitudinal Development (CHILD) Study, and show that infants at risk of asthma exhibited transient gut microbial dysbiosis during the first 100 days of life. The relative abundance of the bacterial genera Lachnospira, Veillonella, Faecalibacterium, and Rothia was significantly decreased in children at risk of asthma. This reduction in bacterial taxa was accompanied by reduced levels of fecal acetate and dysregulation of enterohepatic metabolites. Inoculation of germ-free mice with these four bacterial taxa ameliorated airway inflammation in their adult progeny, demonstrating a causal role of these bacterial taxa in averting asthma development. These results enhance the potential for future microbe-based diagnostics and therapies, potentially in the form of probiotics, to prevent the development of asthma and other related allergic diseases in children.

  8. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics

    PubMed Central

    Brum, Jennifer R; Hurwitz, Bonnie L; Schofield, Oscar; Ducklow, Hugh W; Sullivan, Matthew B

    2016-01-01

    Rapid warming in the highly productive western Antarctic Peninsula (WAP) region of the Southern Ocean has affected multiple trophic levels, yet viral influences on microbial processes and ecosystem function remain understudied in the Southern Ocean. Here we use cultivation-independent quantitative ecological and metagenomic assays, combined with new comparative bioinformatic techniques, to investigate double-stranded DNA viruses during the WAP spring–summer transition. This study demonstrates that (i) temperate viruses dominate this region, switching from lysogeny to lytic replication as bacterial production increases, and (ii) Southern Ocean viral assemblages are genetically distinct from lower-latitude assemblages, primarily driven by this temperate viral dominance. This new information suggests fundamentally different virus–host interactions in polar environments, where intense seasonal changes in bacterial production select for temperate viruses because of increased fitness imparted by the ability to switch replication strategies in response to resource availability. Further, temperate viral dominance may provide mechanisms (for example, bacterial mortality resulting from prophage induction) that help explain observed temporal delays between, and lower ratios of, bacterial and primary production in polar versus lower-latitude marine ecosystems. Together these results suggest that temperate virus–host interactions are critical to predicting changes in microbial dynamics brought on by warming in polar marine systems. PMID:26296067

  9. Lysozyme affects the microbial catabolism of free arginine in raw-milk hard cheeses.

    PubMed

    D'Incecco, P; Gatti, M; Hogenboom, J A; Bottari, B; Rosi, V; Neviani, E; Pellegrino, L

    2016-08-01

    Lysozyme (LZ) is used in several cheese varieties to prevent late blowing which results from fermentation of lactate by Clostridium tyrobutyricum. Side effects of LZ on lactic acid bacteria population and free amino acid pattern were studied in 16 raw-milk hard cheeses produced in eight parallel cheese makings conducted at four different dairies using the same milk with (LZ+) or without (LZ-) addition of LZ. The LZ-cheeses were characterized by higher numbers of cultivable microbial population and lower amount of DNA arising from lysed bacterial cells with respect to LZ + cheeses. At both 9 and 16 months of ripening, Lactobacillus delbrueckii and Lactobacillus fermentum proved to be the species mostly affected by LZ. The total content of free amino acids indicated the proteolysis extent to be characteristic of the dairy, regardless to the presence of LZ. In contrast, the relative patterns showed the microbial degradation of arginine to be promoted in LZ + cheeses. The data demonstrated that the arginine-deiminase pathway was only partially adopted since citrulline represented the main product and only trace levels of ornithine were found. Differences in arginine degradation were considered for starter and non-starter lactic acid bacteria, at different cheese ripening stages.

  10. Microbial interactions affecting the natural transformation of Bacillus subtilis in a model aquatic ecosystem.

    PubMed

    Matsui, Kazuaki; Ishii, Nobuyoshi; Kawabata, Zen'ichiro

    2003-08-01

    The involvement of microbial interactions in natural transformation of bacteria was evaluated using an aquatic model system. For this purpose, the naturally transformable Bacillus subtilis was used as the model bacterium which was co-cultivated with the protist Tetrahymena thermophila (a consumer) and/or the photosynthetic alga Euglena gracilis (a producer). Co-cultivation with as few as 10(2) individuals ml(-1) of T. thermophila lowered the number of transformants to less than the detectable level (<1x10(0) ml(-1)), while co-cultivation with E. gracilis did not. Metabolites from co-cultures of T. thermophila and B. subtilis also decreased the number of transformants to less than the detectable level, while metabolites from co-culture of T. thermophila and B. subtilis with E. gracilis did not. Thus, the introduction of transformation inhibitory factor(s) by the grazing of T. thermophila and the attenuation of this inhibitory factor(s) by E. gracilis is indicated. These observations suggest that biological components do affect the natural transformation of B. subtilis. The study described is the first to suggest that ecological interactions are responsible not only for the carbon and energy cycles, but also for the processes governing horizontal transfer of genes, in microbial ecosystems.

  11. Lysozyme affects the microbial catabolism of free arginine in raw-milk hard cheeses.

    PubMed

    D'Incecco, P; Gatti, M; Hogenboom, J A; Bottari, B; Rosi, V; Neviani, E; Pellegrino, L

    2016-08-01

    Lysozyme (LZ) is used in several cheese varieties to prevent late blowing which results from fermentation of lactate by Clostridium tyrobutyricum. Side effects of LZ on lactic acid bacteria population and free amino acid pattern were studied in 16 raw-milk hard cheeses produced in eight parallel cheese makings conducted at four different dairies using the same milk with (LZ+) or without (LZ-) addition of LZ. The LZ-cheeses were characterized by higher numbers of cultivable microbial population and lower amount of DNA arising from lysed bacterial cells with respect to LZ + cheeses. At both 9 and 16 months of ripening, Lactobacillus delbrueckii and Lactobacillus fermentum proved to be the species mostly affected by LZ. The total content of free amino acids indicated the proteolysis extent to be characteristic of the dairy, regardless to the presence of LZ. In contrast, the relative patterns showed the microbial degradation of arginine to be promoted in LZ + cheeses. The data demonstrated that the arginine-deiminase pathway was only partially adopted since citrulline represented the main product and only trace levels of ornithine were found. Differences in arginine degradation were considered for starter and non-starter lactic acid bacteria, at different cheese ripening stages. PMID:27052697

  12. Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale

    PubMed Central

    Cao, Haichuan; Chen, Ruirui; Wang, Libing; Jiang, Lanlan; Yang, Fen; Zheng, Shixue; Wang, Gejiao; Lin, Xiangui

    2016-01-01

    Considering the extensive functional redundancy in microbial communities and great difficulty in elucidating it based on taxonomic structure, studies on the biogeography of soil microbial activity at large spatial scale are as important as microbial community structure. Eighty-four soil samples were collected across a region from south to north China (about 1,000 km) to address the questions if microbial activity displays biogeographic patterns and what are driving forces. These samples represented different soil types, land use and climate. Redundancy analysis and nonmetric multidimensional scaling clearly revealed that soil microbial activities showed distinct differentiation at different sites over a regional spatial scale, which were strongly affected by soil pH, total P, rainfall, temperature, soil type and location. In addition, microbial community structure was greatly influenced by rainfall, location, temperature, soil pH and soil type and was correlated with microbial activity to some extent. Our results suggest that microbial activities display a clear geographic pattern that is greatly altered by geographic distance and reflected by climate, soil pH and total P over large spatial scales. There are common (distance, climate, pH and soil type) but differentiated aspects (TP, SOC and N) in the biogeography of soil microbial community structure and activity. PMID:27170469

  13. Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale.

    PubMed

    Cao, Haichuan; Chen, Ruirui; Wang, Libing; Jiang, Lanlan; Yang, Fen; Zheng, Shixue; Wang, Gejiao; Lin, Xiangui

    2016-05-12

    Considering the extensive functional redundancy in microbial communities and great difficulty in elucidating it based on taxonomic structure, studies on the biogeography of soil microbial activity at large spatial scale are as important as microbial community structure. Eighty-four soil samples were collected across a region from south to north China (about 1,000 km) to address the questions if microbial activity displays biogeographic patterns and what are driving forces. These samples represented different soil types, land use and climate. Redundancy analysis and nonmetric multidimensional scaling clearly revealed that soil microbial activities showed distinct differentiation at different sites over a regional spatial scale, which were strongly affected by soil pH, total P, rainfall, temperature, soil type and location. In addition, microbial community structure was greatly influenced by rainfall, location, temperature, soil pH and soil type and was correlated with microbial activity to some extent. Our results suggest that microbial activities display a clear geographic pattern that is greatly altered by geographic distance and reflected by climate, soil pH and total P over large spatial scales. There are common (distance, climate, pH and soil type) but differentiated aspects (TP, SOC and N) in the biogeography of soil microbial community structure and activity.

  14. No tillage combined with crop rotation improves soil microbial community composition and metabolic activity.

    PubMed

    Sun, Bingjie; Jia, Shuxia; Zhang, Shixiu; McLaughlin, Neil B; Liang, Aizhen; Chen, Xuewen; Liu, Siyi; Zhang, Xiaoping

    2016-04-01

    Soil microbial community can vary with different agricultural managements, which in turn can affect soil quality. The objective of this work was to evaluate the effects of long-term tillage practice (no tillage (NT) and conventional tillage (CT)) and crop rotation (maize-soybean (MS) rotation and monoculture maize (MM)) on soil microbial community composition and metabolic capacity in different soil layers. Long-term NT increased the soil organic carbon (SOC) and total nitrogen (TN) mainly at the 0-5 cm depth which was accompanied with a greater microbial abundance. The greater fungi-to-bacteria (F/B) ratio was found in NTMS at the 0-5 cm depth. Both tillage and crop rotation had a significant effect on the metabolic activity, with the greatest average well color development (AWCD) value in NTMS soil at all three soil depths. Redundancy analysis (RDA) showed that the shift in microbial community composition was accompanied with the changes in capacity of utilizing different carbon substrates. Therefore, no tillage combined with crop rotation could improve soil biological quality and make agricultural systems more sustainable.

  15. No tillage combined with crop rotation improves soil microbial community composition and metabolic activity.

    PubMed

    Sun, Bingjie; Jia, Shuxia; Zhang, Shixiu; McLaughlin, Neil B; Liang, Aizhen; Chen, Xuewen; Liu, Siyi; Zhang, Xiaoping

    2016-04-01

    Soil microbial community can vary with different agricultural managements, which in turn can affect soil quality. The objective of this work was to evaluate the effects of long-term tillage practice (no tillage (NT) and conventional tillage (CT)) and crop rotation (maize-soybean (MS) rotation and monoculture maize (MM)) on soil microbial community composition and metabolic capacity in different soil layers. Long-term NT increased the soil organic carbon (SOC) and total nitrogen (TN) mainly at the 0-5 cm depth which was accompanied with a greater microbial abundance. The greater fungi-to-bacteria (F/B) ratio was found in NTMS at the 0-5 cm depth. Both tillage and crop rotation had a significant effect on the metabolic activity, with the greatest average well color development (AWCD) value in NTMS soil at all three soil depths. Redundancy analysis (RDA) showed that the shift in microbial community composition was accompanied with the changes in capacity of utilizing different carbon substrates. Therefore, no tillage combined with crop rotation could improve soil biological quality and make agricultural systems more sustainable. PMID:26631020

  16. Internal Porosity of Mineral Coating Supports Microbial Activity in Rapid Sand Filters for Groundwater Treatment

    PubMed Central

    Gülay, Arda; Tatari, Karolina; Musovic, Sanin; Mateiu, Ramona V.; Albrechtsen, Hans-Jørgen

    2014-01-01

    A mineral coating develops on the filter grain surface when groundwater is treated via rapid sand filtration in drinking water production. The coating changes the physical and chemical properties of the filter material, but little is known about its effect on the activity, colonization, diversity, and abundance of microbiota. This study reveals that a mineral coating can positively affect the colonization and activity of microbial communities in rapid sand filters. To understand this effect, we investigated the abundance, spatial distribution, colonization, and diversity of all and of nitrifying prokaryotes in filter material with various degrees of mineral coating. We also examined the physical and chemical characteristics of the mineral coating. The amount of mineral coating correlated positively with the internal porosity, the packed bulk density, and the biologically available surface area of the filter material. The volumetric NH4+ removal rate also increased with the degree of mineral coating. Consistently, bacterial 16S rRNA and amoA abundances positively correlated with increased mineral coating levels. Microbial colonization could be visualized mainly within the outer periphery (60.6 ± 35.6 μm) of the mineral coating, which had a thickness of up to 600 ± 51 μm. Environmental scanning electron microscopic (E-SEM) observations suggested an extracellular polymeric substance-rich matrix and submicron-sized bacterial cells. Nitrifier diversity profiles were similar irrespective of the degree of mineral coating, as indicated by pyrosequencing analysis. Overall, our results demonstrate that mineral coating positively affects microbial colonization and activity in rapid sand filters, most likely due to increased volumetric cell abundances facilitated by the large surface area of internal mineral porosity accessible for microbial colonization. PMID:25192987

  17. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil.

    PubMed

    Chen, Junhui; He, Feng; Zhang, Xuhui; Sun, Xuan; Zheng, Jufeng; Zheng, Jinwei

    2014-01-01

    Chemical and microbial characterisations of particle-size fractions (PSFs) from a rice paddy soil subjected to long-term heavy metal pollution (P) and nonpolluted (NP) soil were performed to investigate whether the distribution of heavy metals (Cd, Cu, Pb and Zn) regulates microbial community activity, abundance and diversity at the microenvironment scale. The soils were physically fractionated into coarse sand, fine sand, silt and clay fractions. Long-term heavy metal pollution notably decreased soil basal respiration (a measurement of the total activity of the soil microbial community) and microbial biomass carbon (MBC) across the fractions by 3-45% and 21-53%, respectively. The coarse sand fraction was more affected by pollution than the clay fraction and displayed a significantly lower MBC content and respiration and dehydrogenase activity compared with the nonpolluted soils. The abundances and diversities of bacteria were less affected within the PSFs under pollution. However, significant decreases in the abundances and diversities of fungi were noted, which may have strongly contributed to the decrease in MBC. Sequencing of denaturing gradient gel electrophoresis bands revealed that the groups Acidobacteria, Ascomycota and Chytridiomycota were clearly inhibited under pollution. Our findings suggest that long-term heavy metal pollution decreased the microbial biomass, activity and diversity in PSFs, particularly in the large-size fractions.

  18. Does the microbial flora in the ejaculate affect the freezeability of stallion sperm?

    PubMed

    Ortega-Ferrusola, C; González-Fernández, L; Muriel, A; Macías-García, B; Rodríguez-Martínez, H; Tapia, J A; Alonso, J M; Peña, F J

    2009-06-01

    In an attempt to evaluate the possible relationship between the microbial flora in the stallion ejaculate and its ability to freeze,three ejaculates from five stallions were frozen using a standard protocol. Before freezing, an aliquot was removed for bacteriological analysis. Bacterial growth was observed in all the ejaculates studied. The isolated microorganisms were:Staphylococcus spp. and Micrococcus spp. (in all the stallions), beta-haemolytic Streptococcus (in stallions 3 and 4), Corynebacterium spp. (in stallions 1, 3-5), Rhodococcus spp. (in stallion number 2), Pseudomonas spp. (in stallion number 1) and Klebsiella spp. (in stallions 1, 3 and 5). The presence and richness of Klebsiella and beta-haemolytic Streptococcus in the ejaculate were related to two sperm variables post-thaw,namely the proportion of dead spermatozoa (ethidium+ cells; r = 0.55, p < 0.05) and the amplitude of lateral displacement of the sperm head (ALH, microm; r = -0.56, p < 0.05), respectively.The degree of growth of Corynebacterium spp. in the ejaculate was positively correlated with the percentage of spermatozoa showing high caspase activity post-thaw(r = 0.62, p < 0.05). The presence and number of colonies of beta-haemolytic Streptococcus were negatively correlated (r = -0.55, p < 0.05) with low sperm caspase activity. It is concluded that the microbial flora of the equine ejaculate maybe responsible for some of the sublethal damage experimented by the spermatozoa during cryopreservation.

  19. Factors affecting the performance of microbial fuel cells for sulfide and vanadium (V) treatment.

    PubMed

    Zhang, Bao-Gang; Zhou, Shun-Gui; Zhao, Hua-Zhang; Shi, Chun-Hong; Kong, Ling-Cai; Sun, Juan-Juan; Yang, Yang; Ni, Jin-Ren

    2010-02-01

    Sulfide and vanadium (V) are pollutants commonly found in wastewaters. A novel approach has been investigated using microbial fuel cell (MFC) technologies by employing sulfide and V(V) as electron donor and acceptor, respectively. This results in oxidizing sulfide and deoxidizing V(V) simultaneously. A series of operating parameters as initial concentration, conductivity, pH, external resistance were carefully examined. The results showed that these factors greatly affected the performance of the MFCs. The average removal rates of about 82.2 and 26.1% were achieved within 72 h operation for sulfide and V(V), respectively, which were accompanied by the maximum power density of about 614.1 mW m(-2) under all tested conditions. The products generated during MFC operation could be deposited, resulting in removing sulfide and V(V) from wastewaters thoroughly.

  20. Energy balance affected by electrolyte recirculation and operating modes in microbial fuel cells.

    PubMed

    Jacobson, Kyle S; Kelly, Patrick T; He, Zhen

    2015-03-01

    Energy recovery and consumption in a microbial fuel cell (MFC) can be significantly affected by the operating conditions. This study investigated the effects of electrolyte recirculation and operation mode (continuous vs sequence batch reactor) on the energy balance in a tubular MFC. It was found that decreasing the anolyte recirculation also decreased the energy recovery. Because of the open environment of the cathode electrode, the catholyte recirculation consumed 10 to 50 times more energy than the anolyte recirculation, and resulted in negative energy balances despite the reduction of the anolyte recirculation. Reducing the catholyte recirculation to 20% led to a positive energy balance of 0.0288 kWh m(-3). The MFC operated as a sequence batch reactor generated less energy and had a lower energy balance than the one with continuous operation. Those results encourage the further development of MFC technology to achieve neutral or even positive energy output.

  1. Effects of pesticides on community composition and activity of sediment microbes--responses at various levels of microbial community organization.

    PubMed

    Widenfalk, Anneli; Bertilsson, Stefan; Sundh, Ingvar; Goedkoop, Willem

    2008-04-01

    A freshwater sediment was exposed to the pesticides captan, glyphosate, isoproturon, and pirimicarb at environmentally relevant and high concentrations. Effects on sediment microorganisms were studied by measuring bacterial activity, fungal and total microbial biomass as community-level endpoints. At the sub-community level, microbial community structure was analysed (PLFA composition and bacterial 16S rRNA genotyping, T-RFLP). Community-level endpoints were not affected by pesticide exposure. At lower levels of microbial community organization, however, molecular methods revealed treatment-induced changes in community composition. Captan and glyphosate exposure caused significant shifts in bacterial community composition (as T-RFLP) at environmentally relevant concentrations. Furthermore, differences in microbial community composition among pesticide treatments were found, indicating that test compounds and exposure concentrations induced multidirectional shifts. Our study showed that community-level end points failed to detect these changes, underpinning the need for application of molecular techniques in aquatic ecotoxicology.

  2. Evaluation of Potential Impacts of Microbial Activity on Drift Chemistry

    SciTech Connect

    Y. Wang

    2004-11-18

    ''Evaluation of Potential Impacts of Microbial Activity on Drift Chemistry'' focuses on the potential for microbial communities that could be active in repository emplacement drifts to influence the in-drift bulk chemical environment. This report feeds analyses to support the inclusion or exclusion of features, events, and processes (FEPs) in the total system performance assessment (TSPA) for the license application (LA), but this work is not expected to generate direct feeds to the TSPA-LA. The purpose was specified by, and the evaluation was performed and is documented in accordance with, ''Technical Work Plan For: Near-Field Environment and Transport In-Drift Geochemistry Analyses'' (BSC 2004 [DIRS 172402], Section 2.1). This report addresses all of the FEPs assigned by the technical work plan (TWP), including the development of exclusion arguments for FEPs that are not carried forward to the TSPA-LA. Except for an editorial correction noted in Section 6.2, there were no other deviations from the TWP. This report documents the completion of all assigned tasks, as follows (BSC 2004 DIRS 172402, Section 1.2.1): (1) Perform analyses to evaluate the potential for microbial activity in the waste emplacement drift under the constraints of anticipated physical and chemical conditions. (2) Evaluate uncertainties associated with these analyses. (3) Determine whether the potential for microbes warrants a feed to TSPA-LA to account for predicted effects on repository performance. (4) Provide information to address the ''Yucca Mountain Review Plan, Final Report'' (NUREG-1804) (NRC 2003 [DIRS 163274]) and Key Technical Issues and agreements, as appropriate. (5) Develop information for inclusion or exclusion of FEPs.

  3. Representing Microbial Dormancy in Soil Decomposition Models Improves Model Performance and Reveals Key Ecosystem Controls on Microbial Activity

    NASA Astrophysics Data System (ADS)

    He, Y.; Yang, J.; Zhuang, Q.; Wang, G.; Liu, Y.

    2014-12-01

    Climate feedbacks from soils can result from environmental change and subsequent responses of plant and microbial communities and nutrient cycling. Explicit consideration of microbial life history traits and strategy may be necessary to predict climate feedbacks due to microbial physiology and community changes and their associated effect on carbon cycling. In this study, we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of dormancy at six temperate forest sites with observed soil efflux ranged from 4 to 10 years across different forest types. We then extrapolated the model to all temperate forests in the Northern Hemisphere (25-50°N) to investigate spatial controls on microbial and soil C dynamics. Both models captured the observed soil heterotrophic respiration (RH), yet no-dormancy model consistently exhibited large seasonal amplitude and overestimation in microbial biomass. Spatially, the total RH from temperate forests based on dormancy model amounts to 6.88PgC/yr, and 7.99PgC/yr based on no-dormancy model. However, no-dormancy model notably overestimated the ratio of microbial biomass to SOC. Spatial correlation analysis revealed key controls of soil C:N ratio on the active proportion of microbial biomass, whereas local dormancy is primarily controlled by soil moisture and temperature, indicating scale-dependent environmental and biotic controls on microbial and SOC dynamics. These developments should provide essential support to modeling future soil carbon dynamics and enhance the avenue for collaboration between empirical soil experiment and modeling in the sense that more microbial physiological measurements are needed to better constrain and evaluate the models.

  4. Effects of Picoxystrobin and 4-n-Nonylphenol on Soil Microbial Community Structure and Respiration Activity

    PubMed Central

    Stenrød, Marianne; Klemsdal, Sonja S.; Norli, Hans Ragnar; Eklo, Ole Martin

    2013-01-01

    There is widespread use of chemical amendments to meet the demands for increased productivity in agriculture. Potentially toxic compounds, single or in mixtures, are added to the soil medium on a regular basis, while the ecotoxicological risk assessment procedures mainly follow a chemical by chemical approach. Picoxystrobin is a fungicide that has caused concern due to studies showing potentially detrimental effects to soil fauna (earthworms), while negative effects on soil microbial activities (nitrification, respiration) are shown to be transient. Potential mixture situations with nonylphenol, a chemical frequently occurring as a contaminant in sewage sludge used for land application, infer a need to explore whether these chemicals in mixture could alter the potential effects of picoxystrobin on the soil microflora. The main objective of this study was to assess the effects of picoxystrobin and nonylphenol, as single chemicals and mixtures, on soil microbial community structure and respiration activity in an agricultural sandy loam. Effects of the chemicals were assessed through measurements of soil microbial respiration activity and soil bacterial and fungal community structure fingerprints, together with a degradation study of the chemicals, through a 70 d incubation period. Picoxystrobin caused a decrease in the respiration activity, while 4-n-nonylphenol caused an increase in respiration activity concurring with a rapid degradation of the substance. Community structure fingerprints were also affected, but these results could not be directly interpreted in terms of positive or negative effects, and were indicated to be transient. Treatment with the chemicals in mixture caused less evident changes and indicated antagonistic effects between the chemicals in soil. In conclusion, the results imply that the application of the fungicide picoxystrobin and nonylphenol from sewage sludge application to agricultural soil in environmentally relevant concentrations, as

  5. Chromium Isotope Behaviour During Aerobic Microbial Reduction Activities

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Amor, K.; Porcelli, D.; Thompson, I.

    2014-12-01

    Microbial activity is a very important, and possibly even the dominant, reduction mechanism for many metals in natural water systems. Isotope fractionations during microbial metal reduction can reflect one major mechanism in metal cycling in the environment, and isotopic signatures can be used to identify and quantify reduction processes during biogeochemical cycling in the present environment as well as in the past. There are many Cr (VI)-reducing bacteria that have been discovered and isolated from the environment, and Cr isotopes were found to be fractionated during microbial reduction processes. In this study, Cr reduction experiments have been undertaken to determine the conditions under which Cr is reduced and the corresponding isotope signals that are generated. The experiments have been done with a facultative bacteria Pseudomonas fluorescens LB 300, and several parameters that have potential impact on reduction mechanisms have been investigated. Electron donors are important for bacteria growth and metabolism. One factor that can control the rate of Cr reduction is the nature of the electron donor. The results show that using citrate as an electron donor can stimulate bacteria reduction activity to a large extent; the reduction rate is much higher (15.10 mgˑL-1hour-1) compared with experiments using glucose (6.65 mgˑL-1ˑhour-1), acetate (4.88 mgˑL-1hour-1) or propionate (4.85 mgˑL-1hour-1) as electron donors. Groups with higher electron donor concentrations have higher reduction rates. Chromium is toxic, and when increasing Cr concentrations in the medium, the bacteria reduction rate is also higher, which reflects bacteria adapting to the toxic environment. In the natural environment, under different pH conditions, bacteria may metabolise in different ways. In our experiments with pH, bacteria performed better in reducing Cr (VI) when pH = 8, and there are no significant differences between groups with pH = 4 or pH = 6. To investigate this further, Cr

  6. Phosphate oxygen isotope ratio proxy for specific microbial activity in marine sediments (Peru Margin)

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Blake, R. E.

    2005-12-01

    Oxygen (O) isotope ratios of biogenic apatites have been widely used as paleotemperature and environmental geochemical proxies. With improved knowledge of the phosphate O isotope effects of different P cycling pathways, the δ18O value of inorganic phosphate (δ18OP) has been proposed as a useful proxy and tracer of biological reactions and P cycling in natural environments[1,2,3,4]. Being the only way of removing P from oceanic water, sedimentary P burial is one of the most important processes during biogeochemical cycling of P. The high concentrations of organic matter and pronounced microbial activity at ODP Site 1230 along the Peru Margin result in unusually high interstitial water phosphate concentrations, which provides a unique opportunity to use δ18OP to investigate inorganic phosphate (Pi) regeneration and P cycling pathways in marine sediments. The isotopic measurements of both dissolved inorganic phosphate (DIP) and bulk sediment Pi show that DIP δ18OP values are affected by three different processes, which are all induced by specific microbial activities present in the sediments. In sediments at ~ 65 to 120 mbsf, porewater DIP is derived from dissolved organophosphorus compounds (DOP) through enzymatic degradation pathways, evidenced by both DIP δ18OP values and interstitial water chemistry. Measured porewater DIP δ18OP values also suggest that 4 to 8% of interstitial water DIP reflects regeneration of Pi from Porg by microbially-synthesized enzymes. Throughout the sediment column and especially at ~ 120 to 150 mbsf, DIP is released from the sediments by microbially-induced reductive dissolution of Fe-oxides, which contributes to the overall high DIP concentrations at Site 1230. The third and dominant process controlling measured DIP δ18OP values is microbial turnover of regenerated Pi. The presence of high microbial activities in organic-rich Site 1230 sediments promotes the remobilization of P and affects marine P cycling by potentially enhancing

  7. Metaproteomic analysis reveals microbial metabolic activities in the deep ocean

    NASA Astrophysics Data System (ADS)

    Wang, Da-Zhi; Xie, Zhang-Xian; Zhang, Shu-Feng; Wang, Ming-Hua; Zhang, Hao; Kong, Ling-Fen; Lin, Lin

    2016-04-01

    The deep sea is the largest habitat on earth and holds many and varied microbial life forms. However, little is known about their metabolic activities in the deep ocean. Here, we characterized protein profiles of particulate (>0.22 μm) and dissolved (between 10 kDa and 0.22 μm) fractions collected from the deep South China Sea using a shotgun proteomic approach. SAR324, Alteromonadales and SAR11 were the most abundant groups, while Prasinophyte contributed most to eukaryotes and cyanophage to viruses. The dominant heterotrophic activity was evidenced by the abundant transporters (33%). Proteins participating in nitrification, methanogenesis, methyltrophy and CO2 fixation were detected. Notably, the predominance of unique cellular proteins in dissolved fraction suggested the presence of membrane structures. Moreover, the detection of translation proteins related to phytoplankton indicated that other process rather than sinking particles might be the downward export of living cells. Our study implied that novel extracellular activities and the interaction of deep water with its overlying water could be crucial to the microbial world of deep sea.

  8. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    SciTech Connect

    Sobecky, Patricia A.

    2015-04-06

    In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Area 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.

  9. A Relationship Between Microbial Activity in Soils and Phosphate Levels in Tributaries to Lake Champlain

    NASA Astrophysics Data System (ADS)

    Larose, R.; Lee, S.; Lane, T.

    2015-12-01

    Lake Champlain is a large natural freshwater lake. It forms the western boundary of Vermont and drains over half of the state. It is bordered by the state of New York on its western side and drains to the north into Quebec, Canada. Lake Champlain is the source of fresh drinking water for over quarter of a million people and provides for the livelihoods and recreational opportunities of many well beyond its borders. The health of this lake is important. During the summer month's algae blooms plague the lake. These unsightly growths, which affect other aquatic organisms, are the result of excess phosphate flowing into the lake from many sources. Examining whether there is a relationship between microbial activity in the soils bordering tributaries to Lake Champlain and phosphate levels in those tributaries sheds insight into the origins and paths by which phosphate moves into Lake Champlain. Understanding the how phosphate moves into the water system may assist in mitigation efforts.Total Phosphate levels and Total Suspended Solids were measured in second and third order streams in the Lake Champlain Basin over a three-year period. In addition microbial activity was measured within the toe, bank and upland riparian zone areas of these streams during the summer months. In general in areas showing greater microbial activity in the soil(s) there were increased levels of phosphate in the streams.

  10. Microbial biomass and activity in subsurface sediments from Vejen, Denmark.

    PubMed

    Albrechtsen, H J; Winding, A

    1992-05-01

    Subsurface sediment samples were collected from 4 to 31 m below landsurface in glacio-fluvial sediments from the Quaternary period. The samples were described in terms of pH, electrical conductivity, chloride concentration, organic matter content, and grain size distribution. Viable counts of bacteria varied from 0.5 to 1,203 x 103 colony forming units/g dry weight (gdw); total numbers of bacteria acridine orange direct counts (AODC) varied from 1.7 to 147 × 10(7) cells/gdw; growth rates (incorporation of [(3)H]-thymidine) varied from 1.4 to 60.7 × 10(4) cells/(gdw · day); and rate constants for mineralization of (14)C-labelled compounds varied from 0.2 to 2.3 × 10(-3) ml/(dpm · day) for acetate, and from 0 to 2.0 × 10(-3) ml/(dpm · day) for phenol. Sediment texture influenced the total number of bacteria and potential for mineralization; with increasing content of clay and silt and decreasing content of sand, AODC increased and the mineralization rate declined. Intrinsic permeability calculated from grain size correlated positively with mineralization rate for acetate. Statistical correlation analysis showed high correlations between some of the abiotic parameters, but it was not possible to point out a single abiotic parameter that could explain the variation of size and activity of the microbial population. The microbial data obtained in these geologically young sediments were compared to literature data from older sediments, and this comparison showed that age and type of geological formation might be important for the size and activity of the microbial populations. PMID:24192937

  11. Effects of butachlor on microbial enzyme activities in paddy soil.

    PubMed

    Min, Hang; Ye, Yang-Fang; Chen, Zhong-Yun; Wu, Wei-Xiang; Du, Yu-Feng

    2002-07-01

    This paper reports the influences of the herbicide butachlor (n-butoxymethl-chloro-2', 6'-diethylacetnilide) on microbial respiration, nitrogen fixation and nitrification, and on the activities of dehydrogenase and hydrogen peroxidase in paddy soil. The results showed that after application of butachlor with concentrations of 5.5 micrograms/g dried soil, 11.0 micrograms/g dried soil and 22.0 micrograms/g dried soil, the application of butachlor enhanced the activity of dehydrogenase at increasing concentrations. The soil dehydrogenase showed the highest activity on the 16th day after application of 22.0 micrograms/g dried soil of butachlor. The hydrogen peroxidase could be stimulated by butachlor. The soil respiration was depressed within a period from several days to more than 20 days, depending on concentrations of butachlor applied. Both the nitrogen fixation and nitrification were stimulated in the beginning but reduced greatly afterwards in paddy soil.

  12. Biogas digestates affect crop P uptake and soil microbial community composition.

    PubMed

    Hupfauf, Sebastian; Bachmann, Silvia; Fernández-Delgado Juárez, Marina; Insam, Heribert; Eichler-Löbermann, Bettina

    2016-01-15

    Fermentation residues from biogas production are known as valuable organic fertilisers. This study deals with the effect of cattle slurry, co-digested cattle slurry, co-digested energy crops and mineral fertilisers on the activity and composition of soil microbiota. Furthermore, the effect of solid-liquid separation as a common pre-treatment of digestate was tested. The fertilising effects were analysed in an 8-week pot experiment on loamy sand using two crops, Amaranthus cruentus and Sorghum bicolor. Amaranth, as a crop with significantly higher P uptake, triggered stress for occurring soil microbes and thereby caused a reduction of microbial biomass C in the soil. Irrespective of the crop, microbial basal respiration and metabolic quotient were higher with the digestates than with the untreated slurry or the mineral treatments. Community level physiological profiles with MicroResp showed considerable differences among the treatments, with particularly strong effects of solid-liquid separation. Similar results were also found on a structural level (PCR-DGGE). Alkaline phosphatase gene analyses revealed high sensitivity to different fertilisation regimes.

  13. Biogas digestates affect crop P uptake and soil microbial community composition.

    PubMed

    Hupfauf, Sebastian; Bachmann, Silvia; Fernández-Delgado Juárez, Marina; Insam, Heribert; Eichler-Löbermann, Bettina

    2016-01-15

    Fermentation residues from biogas production are known as valuable organic fertilisers. This study deals with the effect of cattle slurry, co-digested cattle slurry, co-digested energy crops and mineral fertilisers on the activity and composition of soil microbiota. Furthermore, the effect of solid-liquid separation as a common pre-treatment of digestate was tested. The fertilising effects were analysed in an 8-week pot experiment on loamy sand using two crops, Amaranthus cruentus and Sorghum bicolor. Amaranth, as a crop with significantly higher P uptake, triggered stress for occurring soil microbes and thereby caused a reduction of microbial biomass C in the soil. Irrespective of the crop, microbial basal respiration and metabolic quotient were higher with the digestates than with the untreated slurry or the mineral treatments. Community level physiological profiles with MicroResp showed considerable differences among the treatments, with particularly strong effects of solid-liquid separation. Similar results were also found on a structural level (PCR-DGGE). Alkaline phosphatase gene analyses revealed high sensitivity to different fertilisation regimes. PMID:26410342

  14. Changes in the Size of the Active Microbial Pool Explain Short-Term Soil Respiratory Responses to Temperature and Moisture.

    PubMed

    Salazar-Villegas, Alejandro; Blagodatskaya, Evgenia; Dukes, Jeffrey S

    2016-01-01

    Heterotrophic respiration contributes a substantial fraction of the carbon flux from soil to atmosphere, and responds strongly to environmental conditions. However, the mechanisms through which short-term changes in environmental conditions affect microbial respiration still remain unclear. Microorganisms cope with adverse environmental conditions by transitioning into and out of dormancy, a state in which they minimize rates of metabolism and respiration. These transitions are poorly characterized in soil and are generally omitted from decomposition models. Most current approaches to model microbial control over soil CO2 production relate responses to total microbial biomass (TMB) and do not differentiate between microorganisms in active and dormant physiological states. Indeed, few data for active microbial biomass (AMB) exist with which to compare model output. Here, we tested the hypothesis that differences in soil microbial respiration rates across various environmental conditions are more closely related to differences in AMB (e.g., due to activation of dormant microorganisms) than in TMB. We measured basal respiration (SBR) of soil incubated for a week at two temperatures (24 and 33°C) and two moisture levels (10 and 20% soil dry weight [SDW]), and then determined TMB, AMB, microbial specific growth rate, and the lag time before microbial growth (t lag ) using the Substrate-Induced Growth Response (SIGR) method. As expected, SBR was more strongly correlated with AMB than with TMB. This relationship indicated that each g active biomass C contributed ~0.04 g CO2-C h(-1) of SBR. TMB responded very little to short-term changes in temperature and soil moisture and did not explain differences in SBR among the treatments. Maximum specific growth rate did not respond to environmental conditions, suggesting that the dominant microbial populations remained similar. However, warmer temperatures and increased soil moisture both reduced t lag , indicating that favorable

  15. Changes in the Size of the Active Microbial Pool Explain Short-Term Soil Respiratory Responses to Temperature and Moisture

    PubMed Central

    Salazar-Villegas, Alejandro; Blagodatskaya, Evgenia; Dukes, Jeffrey S.

    2016-01-01

    Heterotrophic respiration contributes a substantial fraction of the carbon flux from soil to atmosphere, and responds strongly to environmental conditions. However, the mechanisms through which short-term changes in environmental conditions affect microbial respiration still remain unclear. Microorganisms cope with adverse environmental conditions by transitioning into and out of dormancy, a state in which they minimize rates of metabolism and respiration. These transitions are poorly characterized in soil and are generally omitted from decomposition models. Most current approaches to model microbial control over soil CO2 production relate responses to total microbial biomass (TMB) and do not differentiate between microorganisms in active and dormant physiological states. Indeed, few data for active microbial biomass (AMB) exist with which to compare model output. Here, we tested the hypothesis that differences in soil microbial respiration rates across various environmental conditions are more closely related to differences in AMB (e.g., due to activation of dormant microorganisms) than in TMB. We measured basal respiration (SBR) of soil incubated for a week at two temperatures (24 and 33°C) and two moisture levels (10 and 20% soil dry weight [SDW]), and then determined TMB, AMB, microbial specific growth rate, and the lag time before microbial growth (tlag) using the Substrate-Induced Growth Response (SIGR) method. As expected, SBR was more strongly correlated with AMB than with TMB. This relationship indicated that each g active biomass C contributed ~0.04 g CO2-C h−1 of SBR. TMB responded very little to short-term changes in temperature and soil moisture and did not explain differences in SBR among the treatments. Maximum specific growth rate did not respond to environmental conditions, suggesting that the dominant microbial populations remained similar. However, warmer temperatures and increased soil moisture both reduced tlag, indicating that favorable

  16. Changes in the Size of the Active Microbial Pool Explain Short-Term Soil Respiratory Responses to Temperature and Moisture.

    PubMed

    Salazar-Villegas, Alejandro; Blagodatskaya, Evgenia; Dukes, Jeffrey S

    2016-01-01

    Heterotrophic respiration contributes a substantial fraction of the carbon flux from soil to atmosphere, and responds strongly to environmental conditions. However, the mechanisms through which short-term changes in environmental conditions affect microbial respiration still remain unclear. Microorganisms cope with adverse environmental conditions by transitioning into and out of dormancy, a state in which they minimize rates of metabolism and respiration. These transitions are poorly characterized in soil and are generally omitted from decomposition models. Most current approaches to model microbial control over soil CO2 production relate responses to total microbial biomass (TMB) and do not differentiate between microorganisms in active and dormant physiological states. Indeed, few data for active microbial biomass (AMB) exist with which to compare model output. Here, we tested the hypothesis that differences in soil microbial respiration rates across various environmental conditions are more closely related to differences in AMB (e.g., due to activation of dormant microorganisms) than in TMB. We measured basal respiration (SBR) of soil incubated for a week at two temperatures (24 and 33°C) and two moisture levels (10 and 20% soil dry weight [SDW]), and then determined TMB, AMB, microbial specific growth rate, and the lag time before microbial growth (t lag ) using the Substrate-Induced Growth Response (SIGR) method. As expected, SBR was more strongly correlated with AMB than with TMB. This relationship indicated that each g active biomass C contributed ~0.04 g CO2-C h(-1) of SBR. TMB responded very little to short-term changes in temperature and soil moisture and did not explain differences in SBR among the treatments. Maximum specific growth rate did not respond to environmental conditions, suggesting that the dominant microbial populations remained similar. However, warmer temperatures and increased soil moisture both reduced t lag , indicating that favorable

  17. [Comparisons of Microbial Numbers, Biomasses and Soil Enzyme Activities Between Paddy Field and Drvland Origins in Karst Cave Wetland].

    PubMed

    Jin, Zhen-jiang; Zeng, Hong-hu; Li, Qiang; Cheng, Ya-ping; Tang, Hua-feng; Li, Min; Huang, Bing-fu

    2016-01-15

    The purpose of this study is to compare microbial number, microbial biomass as well as soil enzyme activity between paddy field and dryland originated karst wetland ecosystems. The soil samples (0-20 cm) of uncultivated wetland, paddy field and dryland were collected in Huixian karst cave wetland, Guilin, China. Microbial numbers and biomass were detected using dilute plate incubation counting and chloroform fumigation-extraction, respectively. Microbial DNA was extracted according to the manufacturer's instructions of the kit. Microbial activity was examined using soil enzyme assays as well. The result showed that the bacteria number in paddy filed was (4.36 +/- 2.25) x 10(7) CFU x g(-1), which was significantly higher than those in wetland and dryland. Fungi numbers were (6.41 +/- 2.16) x 10(4) CFU x g(-1) in rice paddy and (6.52 +/- 1.55) x 10(4) CFU x g(-1) in wetland, which were higher than that in dryland. Actinomycetes number was (2.65 +/- 0.72) x 10(6) CFU x g(-1) in dryland, which was higher than that in wetland. Microbial DNA concentration in rice paddy was (11.92 +/- 3.69) microg x g(-1), which was higher than that in dryland. Invertase activity was (66.87 +/- 18.61) mg x (g x 24 h)(-1) in rice paddy and alkaline phosphatase activity was (2.07 +/- 0.99) mg x (g x 2 h)(-1) in wetland, both of which were higher than those in dryland. Statistical analysis showed there was a significant positive correlation of microbial DNA content, alkaline phosphatase activity and microbial carbon with soil pH, soil organic carbon (SOC), total nitrogen, alkali-hydrolyzable nitrogen, soil moisture, exchangeable Ca2+ and exchangeable Mg2+, as well as a significant positive correlation of intervase activity with the former three microbial factors. The above results indicated that microbial biomass and function responded much more sensitively to land-use change than microbial number in karst cave wetland system. Soil moisture, SOC and some factors induced by land-use change

  18. [Comparisons of Microbial Numbers, Biomasses and Soil Enzyme Activities Between Paddy Field and Drvland Origins in Karst Cave Wetland].

    PubMed

    Jin, Zhen-jiang; Zeng, Hong-hu; Li, Qiang; Cheng, Ya-ping; Tang, Hua-feng; Li, Min; Huang, Bing-fu

    2016-01-15

    The purpose of this study is to compare microbial number, microbial biomass as well as soil enzyme activity between paddy field and dryland originated karst wetland ecosystems. The soil samples (0-20 cm) of uncultivated wetland, paddy field and dryland were collected in Huixian karst cave wetland, Guilin, China. Microbial numbers and biomass were detected using dilute plate incubation counting and chloroform fumigation-extraction, respectively. Microbial DNA was extracted according to the manufacturer's instructions of the kit. Microbial activity was examined using soil enzyme assays as well. The result showed that the bacteria number in paddy filed was (4.36 +/- 2.25) x 10(7) CFU x g(-1), which was significantly higher than those in wetland and dryland. Fungi numbers were (6.41 +/- 2.16) x 10(4) CFU x g(-1) in rice paddy and (6.52 +/- 1.55) x 10(4) CFU x g(-1) in wetland, which were higher than that in dryland. Actinomycetes number was (2.65 +/- 0.72) x 10(6) CFU x g(-1) in dryland, which was higher than that in wetland. Microbial DNA concentration in rice paddy was (11.92 +/- 3.69) microg x g(-1), which was higher than that in dryland. Invertase activity was (66.87 +/- 18.61) mg x (g x 24 h)(-1) in rice paddy and alkaline phosphatase activity was (2.07 +/- 0.99) mg x (g x 2 h)(-1) in wetland, both of which were higher than those in dryland. Statistical analysis showed there was a significant positive correlation of microbial DNA content, alkaline phosphatase activity and microbial carbon with soil pH, soil organic carbon (SOC), total nitrogen, alkali-hydrolyzable nitrogen, soil moisture, exchangeable Ca2+ and exchangeable Mg2+, as well as a significant positive correlation of intervase activity with the former three microbial factors. The above results indicated that microbial biomass and function responded much more sensitively to land-use change than microbial number in karst cave wetland system. Soil moisture, SOC and some factors induced by land-use change

  19. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection

    PubMed Central

    Tatituri, Raju V.V.; Watts, Gerald F.M.; Bhowruth, Veemal; Leadbetter, Elizabeth A.; Barton, Nathaniel; Cohen, Nadia R.; Hsu, Fong-Fu; Besra, Gurdyal S.

    2011-01-01

    Invariant natural killer T cells (iNKT cells) are critical for host defense against a variety of microbial pathogens. However, the central question of how iNKT cells are activated by microbes has not been fully explained. The example of adaptive MHC-restricted T cells, studies using synthetic pharmacological α-galactosylceramides, and the recent discovery of microbial iNKT cell ligands have all suggested that recognition of foreign lipid antigens is the main driver for iNKT cell activation during infection. However, when we compared the role of microbial antigens versus innate cytokine-driven mechanisms, we found that iNKT cell interferon-γ production after in vitro stimulation or infection with diverse bacteria overwhelmingly depended on toll-like receptor–driven IL-12. Importantly, activation of iNKT cells in vivo during infection with Sphingomonas yanoikuyae or Streptococcus pneumoniae, pathogens which are known to express iNKT cell antigens and which require iNKT cells for effective protection, also predominantly depended on IL-12. Constitutive expression of high levels of IL-12 receptor by iNKT cells enabled instant IL-12–induced STAT4 activation, demonstrating that among T cells, iNKT cells are uniquely equipped for immediate, cytokine-driven activation. These findings reveal that innate and cytokine-driven signals, rather than cognate microbial antigen, dominate in iNKT cell activation during microbial infections. PMID:21555485

  20. Uncharted Microbial World: Microbes and Their Activities in the Environment

    SciTech Connect

    Harwood, Caroline; Buckley, Merry.

    2007-12-31

    Microbes are the foundation for all of life. From the air we breathe to the soil we rely on for farming to the water we drink, everything humans need to survive is intimately coupled with the activities of microbes. Major advances have been made in the understanding of disease and the use of microorganisms in the industrial production of drugs, food products and wastewater treatment. However, our understanding of many complicated microbial environments (the gut and teeth), soil fertility, and biogeochemical cycles of the elements is lagging behind due to their enormous complexity. Inadequate technology and limited resources have stymied many lines of investigation. Today, most environmental microorganisms have yet to be isolated and identified, let alone rigorously studied. The American Academy of Microbiology convened a colloquium in Seattle, Washington, in February 2007, to deliberate the way forward in the study of microorganisms and microbial activities in the environment. Researchers in microbiology, marine science, pathobiology, evolutionary biology, medicine, engineering, and other fields discussed ways to build on and extend recent successes in microbiology. The participants made specific recommendations for targeting future research, improving methodologies and techniques, and enhancing training and collaboration in the field. Microbiology has made a great deal of progress in the past 100 years, and the useful applications for these new discoveries are numerous. Microorganisms and microbial products are now used in industrial capacities ranging from bioremediation of toxic chemicals to probiotic therapies for humans and livestock. On the medical front, studies of microbial communities have revealed, among other things, new ways for controlling human pathogens. The immediate future for research in this field is extremely promising. In order to optimize the effectiveness of community research efforts in the future, scientists should include manageable

  1. Brain Activity, Personality Traits and Affect: Electrocortical Activity in Reaction to Affective Film Stimuli

    NASA Astrophysics Data System (ADS)

    Makvand Hosseini, Sh.; Azad Fallah, P.; Rasoolzadeh Tabatabaei, S. K.; Ghannadyan Ladani, S. H.; Heise, C.

    We studied the patterns of activation over the cerebral cortex in reaction to affective film stimuli in four groups of extroverts, introverts, neurotics and emotionally stables. Measures of extraversion and neuroticism were collected and resting EEG was recorded from 40 right handed undergraduate female students (19-23) on one occasion for five 30s periods in baseline condition and in affective states. Mean log-transformed absolute alpha power was extracted from 12 electrode sites and analyzed. Patterns of activation were different in personality groups. Different patterns of asymmetries were observed in personality groups in reaction to affective stimuli. Results were partly consistent with approach and withdrawal model and provided supportive evidence for the role of right frontal asymmetry in negative affects in two groups (introverts and emotionally stables) as well as the role of right central asymmetry (increase on right and decrease on left) in active affective states (anxiety and happiness) in all personality groups. Results were also emphasized on the role of decrease activity relative to baseline in cortical regions (bilaterally in frontal and unilaterally in left parietal and temporal regions) in moderating of positive and negative emotion.

  2. Physicochemical properties influencing denitrification rate and microbial activity in denitrification bioreactors

    NASA Astrophysics Data System (ADS)

    Schmidt, C. A.

    2012-12-01

    The use of N-based fertilizer will need to increase to meet future demands, yet existing applications have been implicated as the main source of coastal eutrophication and hypoxic zones. Producing sufficient crops to feed a growing planet will require efficient production in combination with sustainable treatment solutions. The long-term success of denitrification bioreactors to effectively remove nitrate (NO¬3), indicates this technology is a feasible treatment option. Assessing and quantifying the media properties that affect NO¬3 removal rate and microbial activity can improve predictions on bioreactor performance. It was hypothesized that denitrification rates and microbial biomass would be correlated with total C, NO¬3 concentration, metrics of organic matter quality, media surface area and laboratory measures of potential denitrification rate. NO¬3 removal rates and microbial biomass were evaluated in mesocosms filled with different wood treatments and the unique influence of these predictor variables was determined using a multiple linear regression analysis. NO3 reduction rates were independent of NO¬3 concentration indicating zero order reaction kinetics. Temperature was strongly correlated with denitrification rate (r2=0.87; Q10=4.7), indicating the variability of bioreactor performance in differing climates. Fiber quality, and media surface area were strong (R>0.50), unique predictors of rates and microbial biomass, although C:N ratio and potential denitrification rate did not predict actual denitrification rate or microbial biomass. Utilizing a stepwise multiple linear regression, indicates that the denitrification rate can be effectively (r2=0.56;p<0.0001) predicted if the groundwater temperature, neutral detergent fiber and surface area alone are quantified. These results will assist with the widespread implementation of denitrification bioreactors to achieve significant N load reductions in large watersheds. The nitrate reduction rate as a

  3. Rumen microbial and fermentation characteristics are affected differently by bacterial probiotic supplementation during induced lactic and subacute acidosis in sheep

    PubMed Central

    2012-01-01

    Background Ruminal disbiosis induced by feeding is the cause of ruminal acidosis, a digestive disorder prevalent in high-producing ruminants. Because probiotic microorganisms can modulate the gastrointestinal microbiota, propionibacteria- and lactobacilli-based probiotics were tested for their effectiveness in preventing different forms of acidosis. Results Lactic acidosis, butyric and propionic subacute ruminal acidosis (SARA) were induced by feed chalenges in three groups of four wethers intraruminally dosed with wheat, corn or beet pulp. In each group, wethers were either not supplemented (C) or supplemented with Propionibacterium P63 alone (P) or combined with L. plantarum (Lp + P) or L. rhamnosus (Lr + P). Compared with C, all the probiotics stimulated lactobacilli proliferation, which reached up to 25% of total bacteria during wheat-induced lactic acidosis. This induced a large increase in lactate concentration, which decreased ruminal pH. During the corn-induced butyric SARA, Lp + P decreased Prevotella spp. proportion with a concomitant decrease in microbial amylase activity and total volatile fatty acids concentration, and an increase in xylanase activity and pH. Relative to the beet pulp-induced propionic SARA, P and Lr + P improved ruminal pH without affecting the microbial or fermentation characteristics. Regardless of acidosis type, denaturing gradient gel electrophoresis revealed that probiotic supplementations modified the bacterial community structure. Conclusion This work showed that the effectiveness of the bacterial probiotics tested depended on the acidosis type. Although these probiotics were ineffective in lactic acidosis because of a deeply disturbed rumen microbiota, some of the probiotics tested may be useful to minimize the occurrence of butyric and propionic SARA in sheep. However, their modes of action need to be further investigated. PMID:22812531

  4. Geophysical Monitoring of Microbial Activity within a Wetland Soil

    NASA Astrophysics Data System (ADS)

    O'Brien, M.; Zhang, C.; Ntarlagiannis, D.; Slater, L.; Yee, N.

    2007-05-01

    We performed Induced Polarization (IP) and Self Potential (SP) measurements to record the geoelectrical signatures of microbial activity within a wetland soil. The experiment was conducted in laboratory, utilizing an open flow column set up. Soil samples from Kearny Marsh (KM), a shallow water wetland, were collected and stored at 4o Celsius prior to the start of the experiment. Two columns were dry packed with a mix of KM soil and sterile Ottawa sand (50% by weight). One column was sterilized and used as a control while the other column retained the biologically active soil sample. Both columns were saturated with a minimal salts medium capable of supporting microbial life; after saturation, a steady flow rate of one pore volume per day was maintained throughout the experiment. Ambient temperature and pressure changes (at the inflow and outflow of each column) were continuously monitored throughout the experiment. Common geochemical parameters, such as Eh, pH, and fluid conductivity were measured at the inflow and outflow of each column at regular intervals. IP and SP responses were continuously recorded on both columns utilizing a series of electrodes along the column length; additionally for the SP measurements we used a reference electrode at the inflow tube. Strong SP anomalies were observed for all the locations along the active column. Black visible mineral precipitant also formed in the active column. The observed precipitation coincided with the times that SP anomalies developed at each electrode position. These responses are associated with microbial induced sulfide mineralization. We interpret the SP signal as the result of redox processes associated with this mineralization driven by gradients in ionic concentration and mobility within the column, similar to a galvanic cell mechanism. IP measurements show no correlation with these visual and SP responses. Destructive analysis of the samples followed the termination of the experiment. Scanning electron

  5. Compositional Changes and Baking Performance of Rye Dough As Affected by Microbial Transglutaminase and Xylanase.

    PubMed

    Grossmann, Isabel; Döring, Clemens; Jekle, Mario; Becker, Thomas; Koehler, Peter

    2016-07-20

    Doughs supplemented with endoxylanase (XYL) and varying amounts of microbial transglutaminase (TG) were analyzed by sequential protein extraction, quantitation of protein fractions and protein types, and determination of water-extractable arabinoxylans. With increasing TG activity, the concentration of prolamins and glutelins decreased and increased, respectively, and the prolamin-to-glutelin ratio strongly declined. The overall amount of extractable protein decreased with increasing TG level showing that cross-linking by TG provided high-molecular-weight protein aggregates. The decrease of the high-molecular-weight arabinoxylan fraction and the concurrent increase of the medium-molecular-weight fraction confirmed the degradation of arabinoxylans by XYL. However, XYL addition did not lead to significant improved cross-linking of rye proteins by TG. Volume and crumb hardness measurements of bread showed increased protein connectivity induced by XYL and TG. Significant positive effects on the final bread quality were especially obtained by XYL addition. PMID:27349134

  6. Compositional Changes and Baking Performance of Rye Dough As Affected by Microbial Transglutaminase and Xylanase.

    PubMed

    Grossmann, Isabel; Döring, Clemens; Jekle, Mario; Becker, Thomas; Koehler, Peter

    2016-07-20

    Doughs supplemented with endoxylanase (XYL) and varying amounts of microbial transglutaminase (TG) were analyzed by sequential protein extraction, quantitation of protein fractions and protein types, and determination of water-extractable arabinoxylans. With increasing TG activity, the concentration of prolamins and glutelins decreased and increased, respectively, and the prolamin-to-glutelin ratio strongly declined. The overall amount of extractable protein decreased with increasing TG level showing that cross-linking by TG provided high-molecular-weight protein aggregates. The decrease of the high-molecular-weight arabinoxylan fraction and the concurrent increase of the medium-molecular-weight fraction confirmed the degradation of arabinoxylans by XYL. However, XYL addition did not lead to significant improved cross-linking of rye proteins by TG. Volume and crumb hardness measurements of bread showed increased protein connectivity induced by XYL and TG. Significant positive effects on the final bread quality were especially obtained by XYL addition.

  7. Modification of soil microbial activity and several hydrolases in a forest soil artificially contaminated with copper

    NASA Astrophysics Data System (ADS)

    Bellas, Rosa; Leirós, Mā Carmen; Gil-Sotres, Fernando; Trasar-Cepeda, Carmen

    2010-05-01

    Soils have long been exposed to the adverse effects of human activities, which negatively affect soil biological activity. As a result of their functions and ubiquitous presence microorganisms can serve as environmental indicators of soil pollution. Some features of soil microorganisms, such as the microbial biomass size, respiration rate, and enzyme activity are often used as bioindicators of the ecotoxicity of heavy metals. Although copper is essential for microorganisms, excessive concentrations have a negative influence on processes mediated by microorganisms. In this study we measured the response of some microbial indicators to Cu pollution in a forest soil, with the aim of evaluating their potential for predicting Cu contamination. Samples of an Ah horizon from a forest soil under oakwood vegetation (Quercus robur L.) were contaminated in the laboratory with copper added at different doses (0, 120, 360, 1080 and 3240 mg kg-1) as CuCl2×2H2O. The soil samples were kept for 7 days at 25 °C and at a moisture content corresponding to the water holding capacity, and thereafter were analysed for carbon and nitrogen mineralization capacity, microbial biomass C, seed germination and root elongation tests, and for urease, phosphomonoesterase, catalase and ß-glucosidase activities. In addition, carbon mineralization kinetics were studied, by plotting the log of residual C against incubation time, and the metabolic coefficient, qCO2, was estimated. Both organic carbon and nitrogen mineralization were lower in polluted samples, with the greatest decrease observed in the sample contaminated with 1080 mg kg-1. In all samples carbon mineralization followed first order kinetics; the C mineralization constant was lower in contaminated than in uncontaminated samples and, in general, decreased with increasing doses of copper. Moreover, it appears that copper contamination not only reduced the N mineralization capacity, but also modified the N mineralization process, since in

  8. Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov

    2010-05-01

    Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivumaffected microbial growth rates directly (N limitation) and indirectly (changing the quantity of fine roots). So, 50% decrease in N fertilization caused the overall increase or decrease of microbial growth rates depending on plant species. The μ-value increase was lower for microorganisms growing on yeast extract then for those growing on glucose, i.e. the effect of elevated CO2 was smoothed on rich vs. simple substrate. So, the r/K strategies ratio can be better revealed by studying growth on simple (glucose) than on rich substrate mixtures (yeast extract). After adding glucose, enzyme activities under elevated CO2 were

  9. Combined effects of cadmium and butachlor on soil enzyme activities and microbial community structure

    NASA Astrophysics Data System (ADS)

    Wang, Jinhua; Lu, Yitong; Shen, Guoqing

    2007-02-01

    The combined effects of cadmium (Cd, 10 mg/kg of soil) and butachlor (5, 10 and 50 mg/kg of soil) on enzyme activities and microbial community structure were assessed in phaeozem soil. The result showed that phosphatase activities were decreased in soils with Cd (10 mg/kg of soil) alone whereas urease acitivities were unaffected by Cd. Urease and phosphatase activities were significantly reduced by high butachlor concentration (50 mg/kg of soil). When Cd and butachlor concentrations in soils were added at milligram ratio of 2:1 or 1:2, urease and phosphatase activities were decreased, while enzyme activities were greatly improved at the ratio of 1:5. This study indicates that the combined effects of Cd and butachlor on soil urease and phosphatase activities depend largely on the addition concentration ratios to soils. The random amplified polymorphic DNA (RAPD) analysis showed that the changes occurring in RAPD profiles of different treated samples included variation in loss of normal bands and appearance of new bands compared with the control soil. The RAPD fingerprints showed substantial differences between the control and treated soil samples, with apparent changes in the number and size of amplified DNA fragments. The results showed that the addition of high concentration butachlor and the combined applied Cd and butachlor significantly affected the diversity of microbial community. The present results suggest that RAPD analysis in conjunction with other biomarkers such as soil enzyme parameter etc. would prove a powerful ecotoxicological tool.

  10. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    NASA Astrophysics Data System (ADS)

    Martinez, R.; Wu, C. H.; Beazley, M. J.; Andersen, G. L.; Hazen, T. C.; Taillefert, M.; Sobecky, P. A.

    2011-12-01

    Soils and groundwater contaminated with heavy metals and radionuclides remain a legacy of Cold War nuclear weapons development. Due to the scale of environmental contamination, in situ sequestration of heavy metals and radionuclides remain the most cost-effective strategy for remediation. We are currently investigating a remediation approach that utilizes periplasmic and extracellular microbial phosphatase activity of soil bacteria capable promoting in situ uranium phosphate sequestration. Our studies focus on the contaminated soils from the DOE Field Research Center (ORFRC) in Oak Ridge, TN. We have previously demonstrated that ORFRC strains with phosphatase-positive phenotypes were capable of promoting the precpitation of >95% U(VI) as a low solubility phosphate mineral during growth on glycerol phosphate as a sole carbon and phosphorus source. Here we present culture-independent soil slurry studies aimed at understanding microbial community dynamics resulting from exogenous organophosphate additions. Soil slurries containing glycerol-2-phosphate (G2P) or glycerol-3-phosphate (G3P) and nitrate as the sole C, P and N sources were incubated under oxic growth conditions at pH 5.5 or pH 6.8. Following treatments, total DNA was extracted and prokaryotic diversity was assessed using high-density 16S oligonucleotide microarray (PhyloChip) analysis. Treatments at pH 5.5 and pH 6.8 amended with G2P required 36 days to accumulate 4.8mM and 2.2 mM phosphate, respectively. In contrast, treatments at pH 5.5 and pH 6.8 amended with G3P accumulated 8.9 mM and 8.7 mM phosphate, respectively, after 20 days. A total of 2120 unique taxa representing 46 phyla, 66 classes, 110 orders, and 186 families were detected among all treatment conditions. The phyla that significantly (P<0.05) increased in abundance relative to incubations lacking organophosphate amendments included: Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria. Members from the classes Bacteroidetes

  11. Geophysical monitoring of microbial activity during stimulated subsurface bioremediation

    NASA Astrophysics Data System (ADS)

    Williams, K. H.; Kemna, A.; Wilkins, M.; Druhan, J.; Arntzen, E.; N'guessan, L.; Long, P.; Hubbard, S.; Banfield, J.

    2007-12-01

    Understanding how microorganisms alter their physical and chemical environment during bioremediation is hindered by our inability to resolve subsurface microbial activity with high spatial resolution. Here we demonstrate the use of a minimally invasive geophysical technique to monitor microbe-mediated iron and sulfate reduction during acetate amendment of a uranium-contaminated aquifer near Rifle, CO. During induced polarization (IP) measurements, spatiotemporal variations in the phase response between applied and measured voltages correlated with changes in groundwater geochemistry indicative of microbial iron and sulfate reduction and sulfide mineral precipitation. The enhanced sensitivity of the high and low frequency phase responses to accumulated aqueous iron and sulfide, respectively, provide the ability to discriminate the dominant subsurface biogeochemical process. The spectral effect was verified and calibrated using a biostimulated column experiment containing Rifle sediments and groundwater. Sediments and fluids recovered from regions of the field site exhibiting an anomalous phase response were enriched in sorbed Fe(II) and cell-associated 2-4 nm diameter FeS nanoparticles. These mineral precipitates and accumulated electroactive ions altered the ability of pore fluids to conduct electrical charge, accounting for the IP response. The results reveal the usefulness of multi-frequency IP measurements for discriminating mineralogical and geochemical changes during stimulated subsurface bioremediation.

  12. Roots shaping their microbiome: global hotspots for microbial activity.

    PubMed

    Reinhold-Hurek, Barbara; Bünger, Wiebke; Burbano, Claudia Sofía; Sabale, Mugdha; Hurek, Thomas

    2015-01-01

    Land plants interact with microbes primarily at roots. Despite the importance of root microbial communities for health and nutrient uptake, the current understanding of the complex plant-microbe interactions in the rhizosphere is still in its infancy. Roots provide different microhabitats at the soil-root interface: rhizosphere soil, rhizoplane, and endorhizosphere. We discuss technical aspects of their differentiation that are relevant for the functional analysis of their different microbiomes, and we assess PCR (polymerase chain reaction)-based methods to analyze plant-associated bacterial communities. Development of novel primers will allow a less biased and more quantitative view of these global hotspots of microbial activity. Based on comparison of microbiome data for the different root-soil compartments and on knowledge of bacterial functions, a three-step enrichment model for shifts in community structure from bulk soil toward roots is presented. To unravel how plants shape their microbiome, a major research field is likely to be the coupling of reductionist and molecular ecological approaches, particularly for specific plant genotypes and mutants, to clarify causal relationships in complex root communities. PMID:26243728

  13. [The influence of Acinetobacter calcoaceticus K-4 surface-active substances on the efficiency of microbial destruction of oil pollutants].

    PubMed

    Pyroh, T P; Antoniuk, S I; Sorokina, A I

    2009-01-01

    The possibility of the use of Acinetobacter calcoaceticus K-4 surface-active substances (SAS) for water purification from oil was shown. The efficiency of oil degradation (2.6 g/l) in the presence of SAS preparations (5-15 %) in the form of postfermentation of cultural liquid or its supernatant was established to be 81-95 %. Intensification of oil destruction was determined by SAS affecting the activity of oil-oxidizing microbial population.

  14. Single-walled carbon nanotube release affects the microbial enzyme-catalyzed oxidation processes of organic pollutants and lignin model compounds in nature.

    PubMed

    Chen, Ming; Qin, Xiaosheng; Zeng, Guangming

    2016-11-01

    The question how microbial enzyme-catalyzed oxidation processes of organic pollutants and lignin model compounds (LMCs) are affected by the release of single-walled carbon nanotube (SWCNT) into the environment remains to be addressed at the molecular level. We have, therefore concentrated the effects of SWCNT on some important properties associated with enzyme activity and function during microbial oxidation of polycyclic aromatic hydrocarbons (benzo(a)pyrene, acenaphthene and anthracene), LMCs (2,6-dimethoxyphenol, guaiacol and veratryl alcohol) and β-hexachlorocyclohexane, including the behaviour of water molecules, hydrogen bonds (HBs) and hydrophobic interactions (HYs) between ligand and the enzyme, and conformational dynamics in N- and C-terminus. Our study revealed that SWCNT significantly affected the behaviour of water molecules within 5 Å of both these substrates and their respective enzymes during oxidation (p < 0.01), by increasing or decreasing the water number near them. SWCNT tended to significantly enhance or reduce the stability of atom pairs that formed the HBs and HYs (p < 0.01). N- and C-terminus conformations underwent transitions between positive and negative states or between positive state or between negative state in all analyzed complexes. Significant conformational transitions were found for all C-terminus, but only for a part of N-terminus after the inclusion of the SWCNT. These results showed that SWCNT release would significantly affect the microbial enzyme-catalyzed processes of organic pollutants and LMCs in nature. PMID:27529386

  15. Single-walled carbon nanotube release affects the microbial enzyme-catalyzed oxidation processes of organic pollutants and lignin model compounds in nature.

    PubMed

    Chen, Ming; Qin, Xiaosheng; Zeng, Guangming

    2016-11-01

    The question how microbial enzyme-catalyzed oxidation processes of organic pollutants and lignin model compounds (LMCs) are affected by the release of single-walled carbon nanotube (SWCNT) into the environment remains to be addressed at the molecular level. We have, therefore concentrated the effects of SWCNT on some important properties associated with enzyme activity and function during microbial oxidation of polycyclic aromatic hydrocarbons (benzo(a)pyrene, acenaphthene and anthracene), LMCs (2,6-dimethoxyphenol, guaiacol and veratryl alcohol) and β-hexachlorocyclohexane, including the behaviour of water molecules, hydrogen bonds (HBs) and hydrophobic interactions (HYs) between ligand and the enzyme, and conformational dynamics in N- and C-terminus. Our study revealed that SWCNT significantly affected the behaviour of water molecules within 5 Å of both these substrates and their respective enzymes during oxidation (p < 0.01), by increasing or decreasing the water number near them. SWCNT tended to significantly enhance or reduce the stability of atom pairs that formed the HBs and HYs (p < 0.01). N- and C-terminus conformations underwent transitions between positive and negative states or between positive state or between negative state in all analyzed complexes. Significant conformational transitions were found for all C-terminus, but only for a part of N-terminus after the inclusion of the SWCNT. These results showed that SWCNT release would significantly affect the microbial enzyme-catalyzed processes of organic pollutants and LMCs in nature.

  16. Effect of oxygen on the microbial activities of thermophilic anaerobic biomass.

    PubMed

    Pedizzi, C; Regueiro, L; Rodriguez-Verde, I; Lema, J M; Carballa, M

    2016-07-01

    Low oxygen levels (μgO2L(-1)) in anaerobic reactors are quite common and no relevant consequences are expected. On the contrary, higher concentrations could affect the process. This work aimed to study the influence of oxygen (4.3 and 8.8mgO2L(-1), respectively) on the different microbial activities (hydrolytic, acidogenic and methanogenic) of thermophilic anaerobic biomass and on the methanogenic community structure. Batch tests in presence of oxygen were conducted using specific substrates for each biological activity and a blank (with minimum oxygen) was included. No effect of oxygen was observed on the hydrolytic and acidogenic activities. In contrast, the methane production rate decreased by 40% in all oxygenated batches and the development of active archaeal community was slower in presence of 8.8mgO2L(-1). However, despite this sensitivity of methanogens to oxygen at saturation levels, the inhibition was reversible. PMID:27020398

  17. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning

    USGS Publications Warehouse

    Wallenstein, Matthew D.; Hall, Edward K.

    2012-01-01

    As the earth system changes in response to human activities, a critical objective is to predict how biogeochemical process rates (e.g. nitrification, decomposition) and ecosystem function (e.g. net ecosystem productivity) will change under future conditions. A particular challenge is that the microbial communities that drive many of these processes are capable of adapting to environmental change in ways that alter ecosystem functioning. Despite evidence that microbes can adapt to temperature, precipitation regimes, and redox fluctuations, microbial communities are typically not optimally adapted to their local environment. For example, temperature optima for growth and enzyme activity are often greater than in situ temperatures in their environment. Here we discuss fundamental constraints on microbial adaptation and suggest specific environments where microbial adaptation to climate change (or lack thereof) is most likely to alter ecosystem functioning. Our framework is based on two principal assumptions. First, there are fundamental ecological trade-offs in microbial community traits that occur across environmental gradients (in time and space). These trade-offs result in shifting of microbial function (e.g. ability to take up resources at low temperature) in response to adaptation of another trait (e.g. limiting maintenance respiration at high temperature). Second, the mechanism and level of microbial community adaptation to changing environmental parameters is a function of the potential rate of change in community composition relative to the rate of environmental change. Together, this framework provides a basis for developing testable predictions about how the rate and degree of microbial adaptation to climate change will alter biogeochemical processes in aquatic and terrestrial ecosystems across the planet.

  18. Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers

    PubMed Central

    Simonin, Marie; Richaume, Agnès; Guyonnet, Julien P.; Dubost, Audrey; Martins, Jean M. F.; Pommier, Thomas

    2016-01-01

    Soils are facing new environmental stressors, such as titanium dioxide nanoparticles (TiO2-NPs). While these emerging pollutants are increasingly released into most ecosystems, including agricultural fields, their potential impacts on soil and its function remain to be investigated. Here we report the response of the microbial community of an agricultural soil exposed over 90 days to TiO2-NPs (1 and 500 mg kg−1 dry soil). To assess their impact on soil function, we focused on the nitrogen cycle and measured nitrification and denitrification enzymatic activities and by quantifying specific representative genes (amoA for ammonia-oxidizers, nirK and nirS for denitrifiers). Additionally, diversity shifts were examined in bacteria, archaea, and the ammonia-oxidizing clades of each domain. With strong negative impacts on nitrification enzyme activities and the abundances of ammonia-oxidizing microorganism, TiO2-NPs triggered cascading negative effects on denitrification enzyme activity and a deep modification of the bacterial community structure after just 90 days of exposure to even the lowest, realistic concentration of NPs. These results appeal further research to assess how these emerging pollutants modify the soil health and broader ecosystem function. PMID:27659196

  19. Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers

    NASA Astrophysics Data System (ADS)

    Simonin, Marie; Richaume, Agnès; Guyonnet, Julien P.; Dubost, Audrey; Martins, Jean M. F.; Pommier, Thomas

    2016-09-01

    Soils are facing new environmental stressors, such as titanium dioxide nanoparticles (TiO2-NPs). While these emerging pollutants are increasingly released into most ecosystems, including agricultural fields, their potential impacts on soil and its function remain to be investigated. Here we report the response of the microbial community of an agricultural soil exposed over 90 days to TiO2-NPs (1 and 500 mg kg‑1 dry soil). To assess their impact on soil function, we focused on the nitrogen cycle and measured nitrification and denitrification enzymatic activities and by quantifying specific representative genes (amoA for ammonia-oxidizers, nirK and nirS for denitrifiers). Additionally, diversity shifts were examined in bacteria, archaea, and the ammonia-oxidizing clades of each domain. With strong negative impacts on nitrification enzyme activities and the abundances of ammonia-oxidizing microorganism, TiO2-NPs triggered cascading negative effects on denitrification enzyme activity and a deep modification of the bacterial community structure after just 90 days of exposure to even the lowest, realistic concentration of NPs. These results appeal further research to assess how these emerging pollutants modify the soil health and broader ecosystem function.

  20. Effect of monospecific and mixed sea-buckthorn (Hippophae rhamnoides) plantations on the structure and activity of soil microbial communities.

    PubMed

    Yu, Xuan; Liu, Xu; Zhao, Zhong; Liu, Jinliang; Zhang, Shunxiang

    2015-01-01

    This study aims to evaluate the effect of different afforestation models on soil microbial composition in the Loess Plateau in China. In particular, we determined soil physicochemical properties, enzyme activities, and microbial community structures in the top 0 cm to 10 cm soil underneath a pure Hippophae rhamnoides (SS) stand and three mixed stands, namely, H. rhamnoides and Robinia pseucdoacacia (SC), H. rhamnoides and Pinus tabulaeformis (SY), and H. rhamnoides and Platycladus orientalis (SB). Results showed that total organic carbon (TOC), total nitrogen, and ammonium (NH4(+)) contents were higher in SY and SB than in SS. The total microbial biomass, bacterial biomass, and Gram+ biomass of the three mixed stands were significantly higher than those of the pure stand. However, no significant difference was found in fungal biomass. Correlation analysis suggested that soil microbial communities are significantly and positively correlated with some chemical parameters of soil, such as TOC, total phosphorus, total potassium, available phosphorus, NH4(+) content, nitrate content (NH3(-)), and the enzyme activities of urease, peroxidase, and phosphatase. Principal component analysis showed that the microbial community structures of SB and SS could clearly be discriminated from each other and from the others, whereas SY and SC were similar. In conclusion, tree species indirectly but significantly affect soil microbial communities and enzyme activities through soil physicochemical properties. In addition, mixing P. tabulaeformis or P. orientalis in H. rhamnoides plantations is a suitable afforestation model in the Loess Plateau, because of significant positive effects on soil nutrient conditions, microbial community, and enzyme activities over pure plantations.

  1. A combination method to study the effects of petroleum on soil microbial activity.

    PubMed

    She, Wen Wen; Yao, Jun; Wang, Fei; Cai, Min Min; Wang, Jing Wei; Song, Chang Shun

    2013-01-01

    TAM III multi-channel calorimetry was applied to study the effect of different concentrations petroleum on soil microbial activity and community. The microbial activities of the soil samples were recorded as power-time curves. The thermokinetic parameters such as microbial growth rate constant k, total heat evolution Q(T), metabolic enthalpy ∆H (met) and mass specific heat rate J(Q/S) were calculated. Results showed that petroleum had a certain extent effects to soil microorganisms. The results indicate that the soil microbial activity was promoted with a petroleum concentration lower than 0.52 % ± 0.24 %, but inhibited with further increase in petroleum.

  2. Impact of Nano-Silver Exposure on Microbial Activity

    NASA Astrophysics Data System (ADS)

    Morales, V. L.; Braga, R. A., Jr.; Spiers, A. J.

    2012-04-01

    A key gap in environmental impact assessments of emerging contaminants is the change in biological activity of microorganisms exposed to toxic substances. Silver-nanoparticles are among the top cytotoxic nanomaterials suspected to threaten microbial functions of natural and engineered systems. In this study, a novel light-interference technique termed 'bio-speckle' is employed to determine real-time biological activity of monocultures and biologically complex samples. Bio-speckle uses laser illumination of biological samples to create interference patterns of the scattered light that can be used to quantify intracellular organelle movement as a measurement of biological activity. To test the potential of bio-speckle technique for toxicity assays, filter paper microcosms of the model environmental bacterium Pseudomonas fluorescens strain SBW25 were exposed to uncoated nano-silver suspensions for 2, 24, 48, and 72 hours. At the end of each exposure period, biological activity was quantitatively determined as the dynamic speckle pattern's moment of inertia. Results suggest that the biological activity of bacteria decreases exponentially with the time of exposure of the colonies to the silver nanoparticles.

  3. Hydrogeology, chemical and microbial activity measurement through deep permafrost.

    PubMed

    Stotler, Randy L; Frape, Shaun K; Freifeld, Barry M; Holden, Brian; Onstott, Tullis C; Ruskeeniemi, Timo; Chan, Eric

    2011-01-01

    Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with δ(18) O values ∼5‰ lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH(4) was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH(4) is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination.

  4. Hydrogeology, chemical and microbial activity measurement through deep permafrost

    SciTech Connect

    Stotler, R.L.; Frape, S.K.; Freifeld, B.M.; Holden, B.; Onstott, T.C.; Ruskeeniemi, T.; Chan, E.

    2010-04-01

    Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with {delta}{sup 18}O values {approx}5{per_thousand} lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH{sub 4} was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH{sub 4} is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination.

  5. Hydrogeology, Chemical and Microbial Activity Measurement Through Deep Permafrost

    USGS Publications Warehouse

    Stotler, R.L.; Frape, S.K.; Freifeld, B.M.; Holden, B.; Onstott, T.C.; Ruskeeniemi, T.; Chan, E.

    2011-01-01

    Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with ??18O values ???5??? lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH4 was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH4 is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination. ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  6. Impact of Fungicides Chlorothalonil and Propiconazole on Microbial Activities in Groundnut (Arachis hypogaea L.) Soils

    PubMed Central

    Ramudu, A. C.; Mohiddin, G. Jaffer; Srinivasulu, M.; Madakka, M.; Rangaswamy, V.

    2011-01-01

    Introduction of agrochemicals (fungicides) into soil may have lasting effects on soil microbial activities and thus affect soil health. In order to determine the changes in microbial activity in a black clay and red sandy loam soils of groundnut (Arachis hypogaea L.) cultivated fields, a case study was conducted with propiconazole and chlorothalonil to evaluate its effects on soil enzymes (cellulase and invertase) throughout 40 days of incubation under laboratory conditions with different concentrations (1.0, 2.5, 5.0, 7.5, and 10.0 kg ha−1). Individual application of the two fungicides at 1.0, 2.5, and 5.0 kg ha−1 to the soil distinctly enhanced the activities of cellulase and invertase but at higher concentrations of 7.5 and 10 kg ha−1 was toxic or innocuous to both cellulase and invertase activities. In soil samples receiving 2.5–5.0 kg ha−1 of the fungicides, the accumulation of reducing sugar was pronounced more at 20 days, and the activity of the cellulase and invertase was drastically decreased with increasing period of incubation up to 30 and 40 days. PMID:23724306

  7. Impact of Fungicides Chlorothalonil and Propiconazole on Microbial Activities in Groundnut (Arachis hypogaea L.) Soils.

    PubMed

    Ramudu, A C; Mohiddin, G Jaffer; Srinivasulu, M; Madakka, M; Rangaswamy, V

    2011-01-01

    Introduction of agrochemicals (fungicides) into soil may have lasting effects on soil microbial activities and thus affect soil health. In order to determine the changes in microbial activity in a black clay and red sandy loam soils of groundnut (Arachis hypogaea L.) cultivated fields, a case study was conducted with propiconazole and chlorothalonil to evaluate its effects on soil enzymes (cellulase and invertase) throughout 40 days of incubation under laboratory conditions with different concentrations (1.0, 2.5, 5.0, 7.5, and 10.0 kg ha(-1)). Individual application of the two fungicides at 1.0, 2.5, and 5.0 kg ha(-1) to the soil distinctly enhanced the activities of cellulase and invertase but at higher concentrations of 7.5 and 10 kg ha(-1) was toxic or innocuous to both cellulase and invertase activities. In soil samples receiving 2.5-5.0 kg ha(-1) of the fungicides, the accumulation of reducing sugar was pronounced more at 20 days, and the activity of the cellulase and invertase was drastically decreased with increasing period of incubation up to 30 and 40 days.

  8. Promoting uranium immobilization by the activities of microbial phophatases

    SciTech Connect

    Sobecky, Patricia A.

    2005-06-01

    The first objective of this project is to determine the relationship of phosphatase activity to metal resistance in subsurface strains and the role of lateral gene transfer (LGT) in dissemination of nonspecific acid phosphatase genes. Nonspecific acid phosphohydrolases are a broad group of secreted microbial phosphatases that function in acidic-to-neutral pH ranges and utilize a wide range of organophosphate substrates. We have previously shown that PO43- accumulation during growth on a model organophosphorus compound was attributable to the overproduction of alkaline phosphatase by genetically modified subsurface pseudomonads [Powers et al. (2002) FEMS Microbiol. Ecol. 41:115-123]. During this report period, we have extended these results to include indigenous metal resistant subsurface microorganisms cultivated from the Field Research Center (FRC), in Oak Ridge Tennessee.

  9. Transient concentrations of NaCl affect the PHA accumulation in mixed microbial culture.

    PubMed

    Palmeiro-Sánchez, T; Fra-Vázquez, A; Rey-Martínez, N; Campos, J L; Mosquera-Corral, A

    2016-04-01

    The present study explores the feasibility of the accumulation of polyhydroxyalkanoates (PHAs) under the presence of transient concentrations of added sodium chloride, by means of a mixed microbial culture (MMC). This culture was enriched on a mixture of volatile fatty acids (VFAs) containing 0.8g Na(+)/L as NaOH. This MMC presented a maximum PHA accumulation capacity of 53wt% with 27Cmol% HV. Accumulation experiments performed with added NaCl at concentrations of 7, 13 and 20g/L shown that this salt provoked a decrease of the biomass PHA production rate, with an IC50 value close to 7gNaCl/L. The accumulated PHA was lower than the corresponding value of the assay without the addition of salt. Furthermore, the composition of the biopolymer, in terms of HB:HV ratio, changed from 2.71 to 6.37Cmol/Cmol, which means a HV decrease between 27 and 14Cmol%. Summarizing, the PHA accumulation by a MMC non-adapted to saline conditions affected the polymer composition and lead to lower production yields and rates than in absence of added NaCl. PMID:26780589

  10. Citrate and malonate increase microbial activity and alter microbial community composition in uncontaminated and diesel-contaminated soil microcosms

    NASA Astrophysics Data System (ADS)

    Martin, Belinda C.; George, Suman J.; Price, Charles A.; Shahsavari, Esmaeil; Ball, Andrew S.; Tibbett, Mark; Ryan, Megan H.

    2016-09-01

    Petroleum hydrocarbons (PHCs) are among the most prevalent sources of environmental contamination. It has been hypothesized that plant root exudation of low molecular weight organic acid anions (carboxylates) may aid degradation of PHCs by stimulating heterotrophic microbial activity. To test their potential implication for bioremediation, we applied two commonly exuded carboxylates (citrate and malonate) to uncontaminated and diesel-contaminated microcosms (10 000 mg kg-1; aged 40 days) and determined their impact on the microbial community and PHC degradation. Every 48 h for 18 days, soil received 5 µmol g-1 of (i) citrate, (ii) malonate, (iii) citrate + malonate or (iv) water. Microbial activity was measured daily as the flux of CO2. After 18 days, changes in the microbial community were assessed by a community-level physiological profile (CLPP) and 16S rRNA bacterial community profiles determined by denaturing gradient gel electrophoresis (DGGE). Saturated PHCs remaining in the soil were assessed by gas chromatography-mass spectrometry (GC-MS). Cumulative soil respiration increased 4- to 6-fold with the addition of carboxylates, while diesel contamination resulted in a small, but similar, increase across all carboxylate treatments. The addition of carboxylates resulted in distinct changes to the microbial community in both contaminated and uncontaminated soils but only a small increase in the biodegradation of saturated PHCs as measured by the n-C17 : pristane biomarker. We conclude that while the addition of citrate and malonate had little direct effect on the biodegradation of saturated hydrocarbons present in diesel, their effect on the microbial community leads us to suggest further studies using a variety of soils and organic acids, and linked to in situ studies of plants, to investigate the role of carboxylates in microbial community dynamics.

  11. Antibiotic Treatment Affects Intestinal Permeability and Gut Microbial Composition in Wistar Rats Dependent on Antibiotic Class

    PubMed Central

    Tulstrup, Monica Vera-Lise; Christensen, Ellen Gerd; Carvalho, Vera; Linninge, Caroline; Ahrné, Siv; Højberg, Ole; Licht, Tine Rask; Bahl, Martin Iain

    2015-01-01

    Antibiotics are frequently administered orally to treat bacterial infections not necessarily related to the gastrointestinal system. This has adverse effects on the commensal gut microbial community, as it disrupts the intricate balance between specific bacterial groups within this ecosystem, potentially leading to dysbiosis. We hypothesized that modulation of community composition and function induced by antibiotics affects intestinal integrity depending on the antibiotic administered. To address this a total of 60 Wistar rats (housed in pairs with 6 cages per group) were dosed by oral gavage with either amoxicillin (AMX), cefotaxime (CTX), vancomycin (VAN), metronidazole (MTZ), or water (CON) daily for 10–11 days. Bacterial composition, alpha diversity and caecum short chain fatty acid levels were significantly affected by AMX, CTX and VAN, and varied among antibiotic treatments. A general decrease in diversity and an increase in the relative abundance of Proteobacteria was observed for all three antibiotics. Additionally, the relative abundance of Bifidobacteriaceae was increased in the CTX group and both Lactobacillaceae and Verrucomicrobiaceae were increased in the VAN group compared to the CON group. No changes in microbiota composition or function were observed following MTZ treatment. Intestinal permeability to 4 kDa FITC-dextran decreased after CTX and VAN treatment and increased following MTZ treatment. Plasma haptoglobin levels were increased by both AMX and CTX but no changes in expression of host tight junction genes were found in any treatment group. A strong correlation between the level of caecal succinate, the relative abundance of Clostridiaceae 1 family in the caecum, and the level of acute phase protein haptoglobin in blood plasma was observed. In conclusion, antibiotic-induced changes in microbiota may be linked to alterations in intestinal permeability, although the specific interactions remain to be elucidated as changes in permeability did

  12. n-3 Fatty acids uniquely affect anti-microbial resistance and immune cell plasma membrane organization

    PubMed Central

    McMurray, David N.; Bonilla, Diana L.; Chapkin, Robert S.

    2011-01-01

    It is now well established that dietary lipids are incorporated into macrophage and T-cell membrane microdomains, altering their structure and function. Within cell membranes, there are specific detergent-resistant domains in which key signal transduction proteins are localized. These regions are classified as “lipid rafts”. Rafts are composed mostly of cholesterol and sphingolipids and therefore do not integrate well into the fluid phospholipid bilayers causing them to form microdomains. Upon cell activation, rafts compartmentalize signal-transducing molecules, thus providing an environment conducive to signal transduction. In this review, we discuss recent novel data describing the effects of n-3 PUFA on alterations in the activation and functions of macrophages and T-cells. We believe that the modifications in these two disparate immune cell types are linked by fundamentally similar changes in membrane lipid composition and transmembrane signaling functions. We conclude that the outcomes of n-3 PUFA-mediated immune cell alterations may be beneficial (e.g., anti-inflammatory) or detrimental (e.g., loss of microbial immunity) depending upon the cell type interrogated. PMID:21798252

  13. Effect of activated carbon on microbial bioavailability of phenanthrene in soils

    SciTech Connect

    Yang, Y.; Hunter, W.; Tao, S.; Crowley, D.; Gan, J.

    2009-11-15

    Bioavailability is a governing factor that controls the rate of biological degradation of hydrophobic organic contaminants in soil. Among the solid phases that can adsorb hydrophobic organic contaminants in soil, black carbon (BC) exerts a particularly significant effect on phase distribution. However, knowledge on the effect of BC on the microbial availability of polycyclic aromatic hydrocarbons in soil is still limited. In the present study, the effect of a coal-derived activated carbon on the bioavailability of phenanthrene (PHE) during its degradation by Mycobacterium vanbaalenii PYR-1 was measured in three soils. The freely dissolved concentration of PHE was concurrently determined in soil solutions using disposable polydimethylsiloxane fibers. The results showed that PHE mineralization was significantly inhibited after addition of activated carbon in all test soils. After 216 h, only 5.20, 5.83, and 6.85% of PHE was degraded in the 0.5% BC-amended soils initially containing organic carbon at 0.23, 2.1, and 7.1%, respectively. Significant correlation was found between PHE degradability and freely dissolved concentration, suggesting that BC affected PHE bioavailability by decreasing chemical activity. The effect of activated carbon in the amended soils was attributed to its enhancement of soil surface areas and pore volumes. Results from the present study clearly highlighted the importance of BC for influencing the microbial availability of polycyclic aromatic hydrocarbons in soils.

  14. Effects of Carbon in Flooded Paddy Soils: Implications for Microbial Activity and Arsenic Mobilization

    NASA Astrophysics Data System (ADS)

    Avancha, S.; Boye, K.

    2014-12-01

    In the Mekong delta in Cambodia, naturally occurring arsenic (originating from erosion in the Himalaya Mountains) in paddy soils is mobilized during the seasonal flooding. As a consequence, rice grown on the flooded soils may take up arsenic and expose people eating the rice to this carcinogenic substance. Microbial activity will enhance or decrease the mobilization of arsenic depending on their metabolic pathways. Among the microbes naturally residing in the soil are denitrifying bacteria, sulfate reducers, metal reducers (Fe, Mn), arsenic reducers, methanogens, and fermenters, whose activity varies based on the presence of oxygen. The purpose of the experiment was to assess how different amendments affect the microbial activity and the arsenic mobilization during the transition from aerobic to anaerobic metabolism after flooding of naturally contaminated Cambodian soil. In a batch experiment, we investigated how the relative metabolic rate of naturally occurring microbes could vary with different types of organic carbon. The experiment was designed to measure the effects of various sources of carbon (dried rice straw, charred rice straw, manure, and glucose) on the microbial activity and arsenic release in an arsenic-contaminated paddy soil from Cambodia under flooded conditions. All amendments were added based on the carbon content in order to add 0.036 g of carbon per vial. The soil was flooded with a 10mM TRIS buffer solution at pH 7.04 in airtight 25mL serum vials and kept at 25 °C. We prepared 14 replicates per treatment to sample both gas and solution. On each sampling point, the solution replicates were sampled destructively. The gas replicates continued on and were sampled for both gas and solution on the final day of the experiment. We measured pH, total arsenic, methane, carbon dioxide, and nitrous oxide at 8 hours, 1.5 days, 3.33 days, and 6.33 days from the start of the experiment.

  15. Perspectives for microbial community composition in anaerobic digestion: from abundance and activity to connectivity.

    PubMed

    De Vrieze, Jo; Verstraete, Willy

    2016-09-01

    Microbial management in anaerobic digestion is mainly focused on physically present and metabolically active species. Because of its complexity and operation near the thermodynamic equilibria, it is equally important to address functional regulation, based on spatial organisation and interspecies communication. Further establishment of the knowledge on microbial communication in anaerobic digestion through quorum sensing and nanowires is needed. Methods to detect centres of concentrated activity, related to the presence of highly active and well-connected species that take a central role in the anaerobic digestion process, have to be optimized. Bioaugmentation could serve as a crucial tool to introduce keystone species that may create or sustain such centres. Functional stability can be maintained by keeping the microbial community active. This results in a clear trade-off between functionally active and redundant microorganisms as primary basis for microbial community organization. Finally, a microbial community based prediction strategy for advanced process control is formulated. PMID:27376701

  16. Spreading Topsoil Encourages Ecological Restoration on Embankments: Soil Fertility, Microbial Activity and Vegetation Cover

    PubMed Central

    Rivera, Desirée; Mejías, Violeta; Jáuregui, Berta M.; López-Archilla, Ana Isabel; Peco, Begoña

    2014-01-01

    The construction of linear transport infrastructure has severe effects on ecosystem functions and properties, and the restoration of the associated roadslopes contributes to reduce its impact. This restoration is usually approached from the perspective of plant cover regeneration, ignoring plant-soil interactions and the consequences for plant growth. The addition of a 30 cm layer of topsoil is a common practice in roadslope restoration projects to increase vegetation recovery. However topsoil is a scarce resource. This study assesses the effects of topsoil spreading and its depth (10 to 30 cm) on two surrogates of microbial activity (β-glucosidase and phosphatase enzymes activity and soil respiration), and on plant cover, plant species richness and floristic composition of embankment vegetation. The study also evaluates the differences in selected physic-chemical properties related to soil fertility between topsoil and the original embankment substrate. Topsoil was found to have higher values of organic matter (11%), nitrogen (44%), assimilable phosphorous (50%) and silt content (54%) than the original embankment substrate. The topsoil spreading treatment increased microbial activity, and its application increased β-glucosidase activity (45%), phosphatase activity (57%) and soil respiration (60%). Depth seemed to affect soil respiration, β-glucosidase and phosphatase activity. Topsoil application also enhanced the species richness of restored embankments in relation to controls. Nevertheless, the depth of the spread topsoil did not significantly affect the resulting plant cover, species richness or floristic composition, suggesting that both depths could have similar effects on short-term recovery of the vegetation cover. A significant implication of these results is that it permits the application of thinner topsoil layers, with major savings in this scarce resource during the subsequent slope restoration work, but the quality of topsoil relative to the

  17. Spreading topsoil encourages ecological restoration on embankments: soil fertility, microbial activity and vegetation cover.

    PubMed

    Rivera, Desirée; Mejías, Violeta; Jáuregui, Berta M; Costa-Tenorio, Marga; López-Archilla, Ana Isabel; Peco, Begoña

    2014-01-01

    The construction of linear transport infrastructure has severe effects on ecosystem functions and properties, and the restoration of the associated roadslopes contributes to reduce its impact. This restoration is usually approached from the perspective of plant cover regeneration, ignoring plant-soil interactions and the consequences for plant growth. The addition of a 30 cm layer of topsoil is a common practice in roadslope restoration projects to increase vegetation recovery. However topsoil is a scarce resource. This study assesses the effects of topsoil spreading and its depth (10 to 30 cm) on two surrogates of microbial activity (β-glucosidase and phosphatase enzymes activity and soil respiration), and on plant cover, plant species richness and floristic composition of embankment vegetation. The study also evaluates the differences in selected physic-chemical properties related to soil fertility between topsoil and the original embankment substrate. Topsoil was found to have higher values of organic matter (11%), nitrogen (44%), assimilable phosphorous (50%) and silt content (54%) than the original embankment substrate. The topsoil spreading treatment increased microbial activity, and its application increased β-glucosidase activity (45%), phosphatase activity (57%) and soil respiration (60%). Depth seemed to affect soil respiration, β-glucosidase and phosphatase activity. Topsoil application also enhanced the species richness of restored embankments in relation to controls. Nevertheless, the depth of the spread topsoil did not significantly affect the resulting plant cover, species richness or floristic composition, suggesting that both depths could have similar effects on short-term recovery of the vegetation cover. A significant implication of these results is that it permits the application of thinner topsoil layers, with major savings in this scarce resource during the subsequent slope restoration work, but the quality of topsoil relative to the

  18. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively...

  19. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively...

  20. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively...

  1. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively...

  2. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively...

  3. Impact of Faba Bean-Seed Rhizobial Inoculation on Microbial Activity in the Rhizosphere Soil during Growing Season.

    PubMed

    Siczek, Anna; Lipiec, Jerzy

    2016-01-01

    Inoculation of legume seeds with Rhizobium affects soil microbial community and processes, especially in the rhizosphere. This study aimed at assessing the effect of Rhizobium inoculation on microbial activity in the faba bean rhizosphere during the growing season in a field experiment on a Haplic Luvisol derived from loess. Faba bean (Vicia faba L.) seeds were non-inoculated (NI) or inoculated (I) with Rhizobium leguminosarum bv. viciae and sown. The rhizosphere soil was analyzed for the enzymatic activities of dehydrogenases, urease, protease and acid phosphomonoesterase, and functional diversity (catabolic potential) using the Average Well Color Development, Shannon-Weaver, and Richness indices following the community level physiological profiling from Biolog EcoPlate™. The analyses were done on three occasions corresponding to the growth stages of: 5-6 leaf, flowering, and pod formation. The enzymatic activities were higher in I than NI (p < 0.05) throughout the growing season. However, none of the functional diversity indices differed significantly under both treatments, regardless of the growth stage. This work showed that the functional diversity of the microbial communities was a less sensitive tool than enzyme activities in assessment of rhizobial inoculation effects on rhizosphere microbial activity. PMID:27213363

  4. Impact of Faba Bean-Seed Rhizobial Inoculation on Microbial Activity in the Rhizosphere Soil during Growing Season

    PubMed Central

    Siczek, Anna; Lipiec, Jerzy

    2016-01-01

    Inoculation of legume seeds with Rhizobium affects soil microbial community and processes, especially in the rhizosphere. This study aimed at assessing the effect of Rhizobium inoculation on microbial activity in the faba bean rhizosphere during the growing season in a field experiment on a Haplic Luvisol derived from loess. Faba bean (Vicia faba L.) seeds were non-inoculated (NI) or inoculated (I) with Rhizobium leguminosarum bv. viciae and sown. The rhizosphere soil was analyzed for the enzymatic activities of dehydrogenases, urease, protease and acid phosphomonoesterase, and functional diversity (catabolic potential) using the Average Well Color Development, Shannon-Weaver, and Richness indices following the community level physiological profiling from Biolog EcoPlate™. The analyses were done on three occasions corresponding to the growth stages of: 5–6 leaf, flowering, and pod formation. The enzymatic activities were higher in I than NI (p < 0.05) throughout the growing season. However, none of the functional diversity indices differed significantly under both treatments, regardless of the growth stage. This work showed that the functional diversity of the microbial communities was a less sensitive tool than enzyme activities in assessment of rhizobial inoculation effects on rhizosphere microbial activity. PMID:27213363

  5. Bioenhanced DNAPL Dissolution: Understanding how Microbial Competition, Biostimulation, and Bioaugmentation Affect Source Zone Longevity

    NASA Astrophysics Data System (ADS)

    Becker, J. G.; Seagren, E. A.

    2006-12-01

    The presence of dense non-aqueous phase liquids (DNAPLs) at many chlorinated ethene-contaminated sites can greatly extend the time frames needed to reduce dissolved contaminants to regulatory levels using bioremediation. However, it has been demonstrated that mass removal from chlorinated ethene DNAPLs can potentially be enhanced through dehalorespiration of dissolved contaminants near the NAPL-water interface. Although promising, the amount of "bioenhancement" that can be achieved under optimal conditions is currently not known, and the real significance and engineering potential of this phenomenon currently are not well understood, in part because it can be influenced by a complex set of factors, including DNAPL properties, hydrodynamics, substrate concentrations, and microbial competition for growth substrates. In this study it is hypothesized that: (1) different chlorinated ethene-respiring strains may dominate within different zones of a contaminant plume emanating from a DNAPL source zone due to variations in substrate availability, and microbial competition for chlorinated ethenes and/or electron donors; and (2) the outcome of competitive interactions near the DNAPL source zone will affect the longevity of DNAPL source zones by influencing the degree of dissolution bioenhancement, while the outcome of competitive interactions further downgradient will determine the extent of contaminant dechlorination. To demonstrate the validity of the proposed hypothesis, a series of simple, "proof-of-concept," mathematical simulations evaluating the effects of competitive interactions on the distribution of dehalorespirers at the DNAPL-water interface, the dissolution of tetrachloroethene (PCE), and extent of PCE detoxification were performed in a model competition scenario, in which Dehalococcoides ethenogenes and another dehalorespirer (Desulfuromonas michiganensis) compete for the electron acceptor (PCE) and/or electron donor. The model domain for this evaluation

  6. Effect of elevated CO2 on degradation of azoxystrobin and soil microbial activity in rice soil.

    PubMed

    Manna, Suman; Singh, Neera; Singh, V P

    2013-04-01

    An experiment was conducted in open-top chambers (OTC) to study the effect of elevated CO2 (580 ± 20 μmol mol(-1)) on azoxystrobin degradation and soil microbial activities. Results indicated that elevated CO2 did not have any significant effect on the persistence of azoxystrobin in rice-planted soil. The half-life values for the azoxystrobin in rice soils were 20.3 days in control (rice grown at ambient CO2 outdoors), 19.3 days in rice grown under ambient CO2 atmosphere in OTC, and 17.5 days in rice grown under elevated CO2 atmosphere in OTC. Azoxystrobin acid was recovered as the only metabolite of azoxystrobin, but it did not accumulate in the soil/water and was further metabolized. Elevated CO2 enhanced soil microbial biomass (MBC) and alkaline phosphatase activity of soil. Compared with rice grown at ambient CO2 (both outdoors and in OTC), the soil MBC at elevated CO2 increased by twofold. Elevated CO2 did not affect dehydrogenase, fluorescein diacetate, and acid phosphatase activity. Azoxystrobin application to soils, both ambient and elevated CO2, inhibited alkaline phosphates activity, while no effect was observed on other enzymes. Slight increase (1.8-2 °C) in temperature inside OTC did not affect microbial parameters, as similar activities were recorded in rice grown outdoors and in OTC at ambient CO2. Higher MBC in soil at elevated CO2 could be attributed to increased carbon availability in the rhizosphere via plant metabolism and root secretion; however, it did not significantly increase azoxystrobin degradation, suggesting that pesticide degradation was not the result of soil MBC alone. Study suggested that increased CO2 levels following global warming might not adversely affect azoxystrobin degradation. However, global warming is a continuous and cumulative process, therefore, long-term studies are necessary to get more realistic assessment of global warming on fate of pesticide. PMID:22773147

  7. Genetic Diversity Affects the Daily Transcriptional Oscillations of Marine Microbial Populations.

    PubMed

    Shilova, Irina N; Robidart, Julie C; DeLong, Edward F; Zehr, Jonathan P

    2016-01-01

    Marine microbial communities are genetically diverse but have robust synchronized daily transcriptional patterns at the genus level that are similar across a wide variety of oceanic regions. We developed a microarray-inspired gene-centric approach to resolve transcription of closely-related but distinct strains/ecotypes in high-throughput sequence data. Applying this approach to the existing metatranscriptomics datasets collected from two different oceanic regions, we found unique and variable patterns of transcription by individual taxa within the abundant picocyanobacteria Prochlorococcus and Synechococcus, the alpha Proteobacterium Pelagibacter and the eukaryotic picophytoplankton Ostreococcus. The results demonstrate that marine microbial taxa respond differentially to variability in space and time in the ocean. These intra-genus individual transcriptional patterns underlie whole microbial community responses, and the approach developed here facilitates deeper insights into microbial population dynamics.

  8. Genetic Diversity Affects the Daily Transcriptional Oscillations of Marine Microbial Populations

    PubMed Central

    Shilova, Irina N.; Robidart, Julie C.; DeLong, Edward F.; Zehr, Jonathan P.

    2016-01-01

    Marine microbial communities are genetically diverse but have robust synchronized daily transcriptional patterns at the genus level that are similar across a wide variety of oceanic regions. We developed a microarray-inspired gene-centric approach to resolve transcription of closely-related but distinct strains/ecotypes in high-throughput sequence data. Applying this approach to the existing metatranscriptomics datasets collected from two different oceanic regions, we found unique and variable patterns of transcription by individual taxa within the abundant picocyanobacteria Prochlorococcus and Synechococcus, the alpha Proteobacterium Pelagibacter and the eukaryotic picophytoplankton Ostreococcus. The results demonstrate that marine microbial taxa respond differentially to variability in space and time in the ocean. These intra-genus individual transcriptional patterns underlie whole microbial community responses, and the approach developed here facilitates deeper insights into microbial population dynamics. PMID:26751368

  9. Genetic Diversity Affects the Daily Transcriptional Oscillations of Marine Microbial Populations.

    PubMed

    Shilova, Irina N; Robidart, Julie C; DeLong, Edward F; Zehr, Jonathan P

    2016-01-01

    Marine microbial communities are genetically diverse but have robust synchronized daily transcriptional patterns at the genus level that are similar across a wide variety of oceanic regions. We developed a microarray-inspired gene-centric approach to resolve transcription of closely-related but distinct strains/ecotypes in high-throughput sequence data. Applying this approach to the existing metatranscriptomics datasets collected from two different oceanic regions, we found unique and variable patterns of transcription by individual taxa within the abundant picocyanobacteria Prochlorococcus and Synechococcus, the alpha Proteobacterium Pelagibacter and the eukaryotic picophytoplankton Ostreococcus. The results demonstrate that marine microbial taxa respond differentially to variability in space and time in the ocean. These intra-genus individual transcriptional patterns underlie whole microbial community responses, and the approach developed here facilitates deeper insights into microbial population dynamics. PMID:26751368

  10. Soil biological activity as affected by tillage intensity

    NASA Astrophysics Data System (ADS)

    Gajda, A. M.; Przewłoka, B.

    2012-02-01

    The effect of tillage intensity on changes of microbiological activity and content of particulate organic matter in soil under winter wheat duirng 3 years was studied. Microbial response related to the tillage-induced changes in soil determined on the content of biomass C and N, the rate of CO2 evolution, B/F ratio, the activity of dehydrogenases, acid and alkaline phosphatases, soil C/N ratio and microbial biomass C/N ratio confirmed the high sensitivity of soil microbial populations to the tillage system applied. After three year studies, the direct sowing system enhanced the increase of labile fraction of organic matter content in soil. There were no significant changes in the labile fraction quantity observed in soil under conventional tillage. Similar response related to the tillage intensity was observed in particulate organic matter quantities expressed as a percentage of total organic matter in soil. A high correlation coefficients calculated between contents of soil microbial biomass C and N, particulate organic matter and potentially mineralizable N, and the obtained yields of winter wheat grown on experimental fields indicated on a high importance of biological quality of status of soil for agricultural crop production.

  11. Active microbial soil communities in different agricultural managements

    NASA Astrophysics Data System (ADS)

    Landi, S.; Pastorelli, R.

    2009-04-01

    We studied the composition of active eubacterial microflora by RNA extraction from soil (bulk and rhizosphere) under different environmental impact managements, in a hilly basin in Gallura (Sardinia). We contrasted grassy vineyard, in which the soil had been in continuous contact with plant roots for a long period of time, with traditional tilled vineyard. Moreover, we examined permanent grassland, in which plants had been present for some years, with temporary grassland, in which varying plants had been present only during the respective growing seasons. Molecular analysis of total population was carried out by electrophoretic separation by Denaturing Gradient Gel Electrophoresis (DGGE) of amplified cDNA fragments obtained from 16S rRNA. In vineyards UPGMA (Unweighted Pair Group Mathematical Average) analysis made up separate clusters depending on soil management. In spring both clusters showed similarity over 70%, while in autumn the similarity increased, 84% and 90% for grassy and conventional tilled vineyard respectively. Permanent and temporary grassland joined in a single cluster in spring, while in autumn a partial separation was evidenced. The grassy vineyard, permanent and temporary grassland showed higher richness and diversity Shannon-Weiner index values than vineyard with conventional tillage although no significant. In conclusion the expected effect of the rhizosphere was visible: the grass cover influenced positively the diversity of active microbial population.

  12. Microbial fuel cells with highly active aerobic biocathodes

    NASA Astrophysics Data System (ADS)

    Milner, Edward M.; Popescu, Dorin; Curtis, Tom; Head, Ian M.; Scott, Keith; Yu, Eileen H.

    2016-08-01

    Microbial fuel cells (MFCs), which convert organic waste to electricity, could be used to make the wastewater infrastructure more energy efficient and sustainable. However, platinum and other non-platinum chemical catalysts used for the oxygen reduction reaction (ORR) at the cathode of MFCs are unsustainable due to their high cost and long-term degradation. Aerobic biocathodes, which use microorganisms as the biocatalysts for cathode ORR, are a good alternative to chemical catalysts. In the current work, high-performing aerobic biocathodes with an onset potential for the ORR of +0.4 V vs. Ag/AgCl were enriched from activated sludge in electrochemical half-cells poised at -0.1 and + 0.2 V vs. Ag/AgCl. Gammaproteobacteria, distantly related to any known cultivated gammaproteobacterial lineage, were identified as dominant in these working electrode biofilms (23.3-44.3% of reads in 16S rRNA gene Ion Torrent libraries), and were in very low abundance in non-polarised control working electrode biofilms (0.5-0.7%). These Gammaproteobacteria were therefore most likely responsible for the high activity of biologically catalysed ORR. In MFC tests, a high-performing aerobic biocathode increased peak power 9-fold from 7 to 62 μW cm-2 in comparison to an unmodified carbon cathode, which was similar to peak power with a platinum-doped cathode at 70 μW cm-2.

  13. Microbial fuel cells with highly active aerobic biocathodes

    NASA Astrophysics Data System (ADS)

    Milner, Edward M.; Popescu, Dorin; Curtis, Tom; Head, Ian M.; Scott, Keith; Yu, Eileen H.

    2016-08-01

    Microbial fuel cells (MFCs), which convert organic waste to electricity, could be used to make the wastewater infrastructure more energy efficient and sustainable. However, platinum and other non-platinum chemical catalysts used for the oxygen reduction reaction (ORR) at the cathode of MFCs are unsustainable due to their high cost and long-term degradation. Aerobic biocathodes, which use microorganisms as the biocatalysts for cathode ORR, are a good alternative to chemical catalysts. In the current work, high-performing aerobic biocathodes with an onset potential for the ORR of +0.4 V vs. Ag/AgCl were enriched from activated sludge in electrochemical half-cells poised at -0.1 and + 0.2 V vs. Ag/AgCl. Gammaproteobacteria, distantly related to any known cultivated gammaproteobacterial lineage, were identified as dominant in these working electrode biofilms (23.3-44.3% of reads in 16S rRNA gene Ion Torrent libraries), and were in very low abundance in non-polarised control working electrode biofilms (0.5-0.7%). These Gammaproteobacteria were therefore most likely responsible for the high activity of biologically catalysed ORR. In MFC tests, a high-performing aerobic biocathode increased peak power 9-fold from 7 to 62 μW cm-2 in comparison to an unmodified carbon cathode, which was similar to peak power with a platinum-doped cathode at 70 μW cm-2.

  14. Climate change and human activities altered the diversity and composition of soil microbial community in alpine grasslands of the Qinghai-Tibetan Plateau.

    PubMed

    Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Zhou, Huakun; Ganjurjav, Hasbagan; Wang, Xuexia

    2016-08-15

    Alpine ecosystems are known to be sensitive to climate change and human disturbances. However, the knowledge about the changes of their underground microbial communities is inadequate. We explored the diversity and structure of soil bacterial and fungal communities using Ilumina MiSeq sequencing in native alpine grasslands (i.e. the alpine meadow, alpine steppe) and cultivated grassland of the Qinghai-Tibetan Plateau (QTP) under three-year treatments of overgrazing, warming and enhanced rainfall. Enhanced rainfall rather than warming significantly reduced soil microbial diversity in native alpine grasslands. Variable warming significantly reduced it in the cultivated grassland. Over 20% and 40% variations of microbial diversity could be explained by soil nutrients and moisture in the alpine meadow and cultivated grassland, separately. Soil microbial communities could be clustered into different groups according to different treatments in the alpine meadow and cultivated grassland. For the alpine steppe, with the lowest soil nutrients and moistures, <10% variations of microbial diversity was explained by soil properties; and the soil microbial communities among different treatments were similar. The soil microbial community in the cultivated grassland was varied from it in native grasslands. Over 50% variations of soil microbial communities among different treatments were explained by soil nutrients and moisture in each grassland type. Our results suggest that climate change and human activities strongly affected soil microbial communities by changing soil nutrients and moistures in alpine grassland ecosystems. PMID:27100015

  15. Climate change and human activities altered the diversity and composition of soil microbial community in alpine grasslands of the Qinghai-Tibetan Plateau.

    PubMed

    Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Zhou, Huakun; Ganjurjav, Hasbagan; Wang, Xuexia

    2016-08-15

    Alpine ecosystems are known to be sensitive to climate change and human disturbances. However, the knowledge about the changes of their underground microbial communities is inadequate. We explored the diversity and structure of soil bacterial and fungal communities using Ilumina MiSeq sequencing in native alpine grasslands (i.e. the alpine meadow, alpine steppe) and cultivated grassland of the Qinghai-Tibetan Plateau (QTP) under three-year treatments of overgrazing, warming and enhanced rainfall. Enhanced rainfall rather than warming significantly reduced soil microbial diversity in native alpine grasslands. Variable warming significantly reduced it in the cultivated grassland. Over 20% and 40% variations of microbial diversity could be explained by soil nutrients and moisture in the alpine meadow and cultivated grassland, separately. Soil microbial communities could be clustered into different groups according to different treatments in the alpine meadow and cultivated grassland. For the alpine steppe, with the lowest soil nutrients and moistures, <10% variations of microbial diversity was explained by soil properties; and the soil microbial communities among different treatments were similar. The soil microbial community in the cultivated grassland was varied from it in native grasslands. Over 50% variations of soil microbial communities among different treatments were explained by soil nutrients and moisture in each grassland type. Our results suggest that climate change and human activities strongly affected soil microbial communities by changing soil nutrients and moistures in alpine grassland ecosystems.

  16. [Changes of Microbial Community Structure in Activated Sludge Bulking at Low Temperature].

    PubMed

    Duan, Zheng-hua; Pan, Liu-ming; Chen, Xiao-ou; Wang, Xiu-duo; Zhao, Le-jun; Tian, Le-qi

    2016-03-15

    The mechanism of activated sludge bulking in Zhengzhou wastewater treatment plant was studied by measurement of water quality parameters and high-throughput sequencing technology. The change of SVI value was significantly negatively correlated with the seasonal temperature variation, and sludge bulking was easy to occur during December to the next April, but the water quality was not affected. The result verified by high-throughput sequencing technology analysis showed that the microbial community structure of bulking sludge was significantly different from that of the non-bulking one. The dominant filamentous bacteria in the bulking sludge in this plant were Saprospiraceae and Flavobacterium. Therefore, the activated sludge bulking in this wastewater treatment plant was caused by the propagation of filamentous bacteria at low temperature. PMID:27337902

  17. [Changes of Microbial Community Structure in Activated Sludge Bulking at Low Temperature].

    PubMed

    Duan, Zheng-hua; Pan, Liu-ming; Chen, Xiao-ou; Wang, Xiu-duo; Zhao, Le-jun; Tian, Le-qi

    2016-03-15

    The mechanism of activated sludge bulking in Zhengzhou wastewater treatment plant was studied by measurement of water quality parameters and high-throughput sequencing technology. The change of SVI value was significantly negatively correlated with the seasonal temperature variation, and sludge bulking was easy to occur during December to the next April, but the water quality was not affected. The result verified by high-throughput sequencing technology analysis showed that the microbial community structure of bulking sludge was significantly different from that of the non-bulking one. The dominant filamentous bacteria in the bulking sludge in this plant were Saprospiraceae and Flavobacterium. Therefore, the activated sludge bulking in this wastewater treatment plant was caused by the propagation of filamentous bacteria at low temperature.

  18. [Carbon source metabolic diversity of soil microbial community under different climate types in the area affected by Wenchuan earthquake].

    PubMed

    Zhang, Guang-Shuai; Lin, Yong-Ming; Ma, Rui-Feng; Deng, Hao-Jun; Du, Kun; Wu, Cheng-Zhen; Hong, Wei

    2015-02-01

    The MS8.0 Wenchuan earthquake in 2008 led to huge damage to land covers in northwest Sichuan, one of the critical fragile eco-regions in China which can be divided into Semi-arid dry hot climate zone (SDHC) and Subtropical humid monsoon climate zone (SHMC). Using the method of Bilog-ECO-microplate technique, this paper aimed to determine the functional diversity of soil microbial community in the earthquake-affected areas which can be divided into undamaged area (U), recover area (R) and damaged area without recovery (D) under different climate types, in order to provide scientific basis for ecological recovery. The results indicated that the average-well-color-development (AWCD) in undamaged area and recovery area showed SDHC > SHMC, which was contrary to the AWCD in the damaged area without recovery. The AWCD of damaged area without recovery was the lowest in both climate zones. The number of carbon source utilization types of soil microbial in SHMC zone was significantly higher than that in SDHC zone. The carbon source utilization types in both climate zones presented a trend of recover area > undamaged area > damaged area without recovery. The carbon source metabolic diversity characteristic of soil microbial community was significantly different in different climate zones. The diversity index and evenness index both showed a ranking of undamaged area > recover area > damaged area without recovery. In addition, the recovery area had the highest richness index. The soil microbial carbon sources metabolism characteristic was affected by soil nutrient, aboveground vegetation biomass and vegetation coverage to some extent. In conclusion, earthquake and its secondary disasters influenced the carbon source metabolic diversity characteristic of soil microbial community mainly through the change of aboveground vegetation and soil environmental factors.

  19. Community Analysis of Dynamic Microbial Mat Communities from Actively Erupting Seamounts (Invited)

    NASA Astrophysics Data System (ADS)

    Davis, R.; Tebo, B.; Moyer, C. L.

    2009-12-01

    The actively erupting deep-sea volcanoes NW Rota-1 and W Mata have multiple diffuse low-temperature (Tmax= 20-30 degrees) vent sites which harbor dense populations of microbial mat communities driven by chemoautotrophy. These microbial mats were often composed of white filamentous bacteria growing in close proximity to focused hydrothermal flow. Eight microbial mats were sampled from discrete hydrothermal vents on NW Rota-1 and W Mata volcanoes in 2009. The microbial mat communities were analyzed with quantitative PCR (Q-PCR) and terminal-restriction fragment length polymorphism (T-RFLP) community fingerprinting. All of the sampled microbial mats were dominated by the class Epsilonproteobacteria. The microbial mat at Iceberg Vent contained 13.5% Archaea, while all other microbial mats contained less than 1% Archaea. Bacterial community fingerprints from NW Rota-1 and W Mata formed distinct clusters that were well separated from clusters formed by hydrothermal communities from Axial and Eifuku Seamounts that were also dominated by Epsilonproteobacteria. Iceberg vent communities from NW Rota-1 have transitioned from being dominated by Caminibacter phylotypes to Sulfuimonas group phylotypes since 2004. These data suggest that microbial communities found on actively erupting volcanoes are geographically distinct and provide a natural laboratory to study microbial colonization and community succession at hydrothermal systems.

  20. Sediment Microbial Enzyme Activity as an Indicator of Nutrient Limitation in Great Lakes Coastal Wetlands

    EPA Science Inventory

    This study, the first to link microbial enzyme activities to regional-scale anthropogenic stressors, suggests that microbial enzyme regulation of carbon and nutrient dynamics may be sensitive indicators of nutrient dynamics in aquatic ecosystems, but further work is needed to elu...

  1. Microbial Survey of a Full-Scale, Biologically Active Filter for Treatment of Drinking Water

    PubMed Central

    DeBry, Ronald W.; Lytle, Darren A.

    2012-01-01

    The microbial community of a full-scale, biologically active drinking water filter was surveyed using molecular techniques. Nitrosomonas, Nitrospira, Sphingomonadales, and Rhizobiales dominated the clone libraries. The results elucidate the microbial ecology of biological filters and demonstrate that biological treatment of drinking water should be considered a viable alternative to physicochemical methods. PMID:22752177

  2. Microbial diversity and activity in seafloor brine lake sediments (Alaminos Canyon block 601, Gulf of Mexico).

    PubMed

    Crespo-Medina, M; Bowles, M W; Samarkin, V A; Hunter, K S; Joye, S B

    2016-09-01

    The microbial communities thriving in deep-sea brines are sustained largely by energy rich substrates supplied through active seepage. Geochemical, microbial activity, and microbial community composition data from different habitats at a Gulf of Mexico brine lake in Alaminos Canyon revealed habitat-linked variability in geochemistry that in turn drove patterns in microbial community composition and activity. The bottom of the brine lake was the most geochemically extreme (highest salinity and nutrient concentrations) habitat and its microbial community exhibited the highest diversity and richness indices. The habitat at the upper halocline of the lake hosted the highest rates of sulfate reduction and methane oxidation, and the largest inventories of dissolved inorganic carbon, particulate organic carbon, and hydrogen sulfide. Statistical analyses indicated a significant positive correlation between the bacterial and archaeal diversity in the bottom brine sample and NH4+ inventories. Other environmental factors with positive correlation with microbial diversity indices were DOC, H2 S, and DIC concentrations. The geochemical regime of different sites within this deep seafloor extreme environment exerts a clear selective force on microbial communities and on patterns of microbial activity. PMID:27444236

  3. Lipid hydrolysis products affect the composition of infant gut microbial communities in vitro.

    PubMed

    Nejrup, Rikke G; Bahl, Martin I; Vigsnæs, Louise K; Heerup, Christine; Licht, Tine R; Hellgren, Lars I

    2015-07-14

    Some lipid hydrolysis products such as medium-chained NEFA (MC-NEFA), sphingosine and monoacylglycerols (MAG) possess antibacterial activity, while others, including oleic acid, are essential for the optimal growth of Lactobacillus species. Thus, changes in the concentrations of NEFA and MAG in the distal ileum and colon can potentially selectively modulate the composition of the gut microbiota, especially in early life when lipid absorption efficacy is reduced. As medium-chained fatty acids are enriched in mothers' milk, such effects may be highly relevant during gut colonisation. In the present study, we examined the effect of selected NEFA, MAG and sphingosine on the composition of faecal microbial communities derived from infants aged 2-5 months during a 24 h anaerobic in vitro fermentation. We tested lipid mixtures in the concentration range of 0-200 μm, either based on MC-NEFA (10 : 0 to 14 : 0 and MAG 12 : 0) or long-chained NEFA (LC-NEFA; 16 : 0 to 18 : 1 and MAG 16 : 0) with and without sphingosine, representing lipid hydrolysis products characteristic for intestinal hydrolysis of breast milk lipids. Ion Torrent sequencing of the bacterial 16S ribosomal RNA gene revealed that the relative abundance of lactic acid-producing genera, including Lactobacillus and Bifidobacterium, was generally increased in the presence of 50 μm or higher concentrations of MC-NEFA. For Bifidobacterium, the same effect was also observed in the presence of a mixture containing LC-NEFA with sphingosine. On the contrary, the relative abundance of Enterobacteriaceae was significantly decreased in the presence of both lipid mixtures. Our findings suggest that the high concentration of medium-chained fatty acids in breast milk might have functional effects on the establishment of the gut microbiota in early life.

  4. Microbial Community Analysis of a Coastal Salt Marsh Affected by the Deepwater Horizon Oil Spill

    PubMed Central

    Beazley, Melanie J.; Martinez, Robert J.; Rajan, Suja; Powell, Jessica; Piceno, Yvette M.; Tom, Lauren M.; Andersen, Gary L.; Hazen, Terry C.; Van Nostrand, Joy D.; Zhou, Jizhong; Mortazavi, Behzad; Sobecky, Patricia A.

    2012-01-01

    Coastal salt marshes are highly sensitive wetland ecosystems that can sustain long-term impacts from anthropogenic events such as oil spills. In this study, we examined the microbial communities of a Gulf of Mexico coastal salt marsh during and after the influx of petroleum hydrocarbons following the Deepwater Horizon oil spill. Total hydrocarbon concentrations in salt marsh sediments were highest in June and July 2010 and decreased in September 2010. Coupled PhyloChip and GeoChip microarray analyses demonstrated that the microbial community structure and function of the extant salt marsh hydrocarbon-degrading microbial populations changed significantly during the study. The relative richness and abundance of phyla containing previously described hydrocarbon-degrading bacteria (Proteobacteria, Bacteroidetes, and Actinobacteria) increased in hydrocarbon-contaminated sediments and then decreased once hydrocarbons were below detection. Firmicutes, however, continued to increase in relative richness and abundance after hydrocarbon concentrations were below detection. Functional genes involved in hydrocarbon degradation were enriched in hydrocarbon-contaminated sediments then declined significantly (p<0.05) once hydrocarbon concentrations decreased. A greater decrease in hydrocarbon concentrations among marsh grass sediments compared to inlet sediments (lacking marsh grass) suggests that the marsh rhizosphere microbial communities could also be contributing to hydrocarbon degradation. The results of this study provide a comprehensive view of microbial community structural and functional dynamics within perturbed salt marsh ecosystems. PMID:22815990

  5. Chemical and microbial components of urban air PM cause seasonal variation of toxicological activity.

    PubMed

    Jalava, Pasi I; Happo, Mikko S; Huttunen, Kati; Sillanpää, Markus; Hillamo, Risto; Salonen, Raimo O; Hirvonen, Maija-Riitta

    2015-09-01

    The chemical and microbial composition of urban air particulate matter (PM) displays seasonal variation that may affect its harmfulness on human health. We studied the in vitro inflammatory and cellular metabolic activity/cytotoxicity of urban air particulate samples collected in four size-ranges (PM10-2.5, PM2.5-1, PM1-0.2, PM0.2) during four seasons in relatively clean urban environment in Helsinki, Finland. The composition of the same samples were analyzed, including ions, elements, PAH compounds and endotoxins. In addition, microbial contribution on the detected responses was studied by inhibiting the endotoxin-induced responses with Polymyxin B both in the PM samples and by two different bacterial strains representing Gram-positive and -negative bacteria. Macrophage cell line (RAW 264.7) was exposed to the size segregated particulate samples as well as to microbe samples for 24h and markers of inflammation and cytotoxicity were analyzed. The toxicological responses were dependent on the dose as well as size range of the particles, PM10-2.5 being the most potent and smaller size ranges having significantly smaller responses. Samples collected during spring and autumn had in most cases the highest inflammatory activity. Soil components and other non-exhaust particulate emissions from road traffic correlated with inflammatory responses in coarse particles. Instead, PAH-compounds and K(+) had negative associations with the particle-induced inflammatory responses in fine particles, suggesting the role of incomplete biomass combustion. Endotoxin content was the highest in PM10-2.5 samples and correspondingly, the largest decrease in the responses by Polymyxin B was seen with the very same samples. We found also that inhibitory effect of Polymyxin B was not completely specific for Gram-negative bacteria. Thus, in addition to endotoxin, also other microbial components may have a significant effect on the toxicological responses by ambient particulate matter.

  6. Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen.

    PubMed

    Lesaulnier, Celine; Papamichail, Dimitris; McCorkle, Sean; Ollivier, Bernard; Skiena, Steven; Taghavi, Safiyh; Zak, Donald; van der Lelie, Daniel

    2008-04-01

    The effects of elevated atmospheric CO(2) (560 p.p.m.) and subsequent plant responses on the soil microbial community composition associated with trembling aspen was assessed through the classification of 6996 complete ribosomal DNA sequences amplified from the Rhinelander WI free-air CO(2) and O(3) enrichment (FACE) experiments microbial community metagenome. This in-depth comparative analysis provides an unprecedented, detailed and deep branching profile of population changes incurred as a response to this environmental perturbation. Total bacterial and eukaryotic abundance does not change; however, an increase in heterotrophic decomposers and ectomycorrhizal fungi is observed. Nitrate reducers of the domain bacteria and archaea, of the phylum Crenarchaea, potentially implicated in ammonium oxidation, significantly decreased with elevated CO(2). These changes in soil biota are evidence for altered interactions between trembling aspen and the microorganisms in its surrounding soil, and support the theory that greater plant detritus production under elevated CO(2) significantly alters soil microbial community composition.

  7. Microbial respiration and kinetics of extracellular enzymes activities through rhizosphere and detritusphere at agricultural site

    NASA Astrophysics Data System (ADS)

    Löppmann, Sebastian; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2014-05-01

    Rhizosphere and detritusphere are soil microsites with very high resource availability for microorganisms affecting their biomass, composition and functions. In the rhizosphere low molecular compounds occur with root exudates and low available polymeric compounds, as belowground plant senescence. In detritusphere the substrate for decomposition is mainly a polymeric material of low availability. We hypothesized that microorganisms adapted to contrasting quality and availability of substrates in the rhizosphere and detritusphere are strongly different in affinity of hydrolytic enzymes responsible for decomposition of organic compounds. According to common ecological principles easily available substrates are quickly consumed by microorganisms with enzymes of low substrate affinity (i.e. r-strategists). The slow-growing K-strategists with enzymes of high substrate affinity are better adapted for growth on substrates of low availability. Estimation of affinity of enzyme systems to the substrate is based on Michaelis-Menten kinetics, reflecting the dependency of decomposition rates on substrate amount. As enzymes-mediated reactions are substrate-dependent, we further hypothesized that the largest differences in hydrolytic activity between the rhizosphere and detritusphere occur at substrate saturation and that these differences are smoothed with increasing limitation of substrate. Affected by substrate limitation, microbial species follow a certain adaptation strategy. To achieve different depth gradients of substrate availability 12 plots on an agricultural field were established in the north-west of Göttingen, Germany: 1) 4 plots planted with maize, reflecting lower substrate availability with depth; 2) 4 unplanted plots with maize litter input (0.8 kg m-2 dry maize residues), corresponding to detritusphere; 3) 4 bare fallow plots as control. Maize litter was grubbed homogenously into the soil at the first 5 cm to ensure comparable conditions for the herbivore and

  8. Soil Microbial Activity Provides Insight to Carbon Cycling in Shrub Ecotones of Sub-Arctic Sweden

    NASA Astrophysics Data System (ADS)

    Marek, E.; Kashi, N. N.; Chen, J.; Hobbie, E. A.; Schwan, M. R.; Varner, R. K.

    2015-12-01

    Shrubs are expanding in Arctic and sub-Arctic regions due to rising atmospheric temperatures. Microbial activity increases as growing temperatures cause permafrost warming and subsequent thaw, leading to a greater resource of soil nutrients enabling shrub growth. Increased carbon inputs from shrubs is predicted to result in faster carbon turnover by microbial decomposition. Further understanding of microbial activity underneath shrubs could uncover how microbes and soil processes interact to promote shrub expansion and carbon cycling. To address how higher soil carbon input from shrubs influences decomposition, soil samples were taken across a heath, shrub, and forest ecotone gradient at two sites near Abikso, Sweden. Samples were analyzed for soluble carbon and nitrogen, microbial abundance, and microbial activity of chitinase, glucosidase, and phosphatase to reflect organic matter decomposition and availability of nitrogen, carbon, and phosphate respectively. Chitinase activity positively correlated with shrub cover, suggesting microbial demands for nitrogen increase with higher shrub cover. Glucosidase activity negatively correlated with shrub cover and soluble carbon, suggesting decreased microbial demand for carbon as shrub cover and carbon stores increase. Lower glucosidase activity in areas with high carbon input from shrubs implies that microbes are decomposing carbon less readily than carbon is being put into the soil. Increasing soil carbon stores in shrub covered areas can lead to shrubs becoming a net carbon sink and a negative feedback to changing climate.

  9. Assessing microbial activities in metal contaminated agricultural volcanic soils--An integrative approach.

    PubMed

    Parelho, C; Rodrigues, A S; Barreto, M C; Ferreira, N G C; Garcia, P

    2016-07-01

    Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals. Trace metal contaminated soils have significant effects on soil microbial activities and hence on soil quality. The aim of this study is to determine the soil microbial responses to metal contamination in volcanic soils under different agricultural land use practices (conventional, traditional and organic), based on a three-tier approach: Tier 1 - assess soil microbial activities, Tier 2 - link the microbial activity to soil trace metal contamination and, Tier 3 - integrate the microbial activity in an effect-based soil index (Integrative Biological Response) to score soil health status in metal contaminated agricultural soils. Our results showed that microbial biomass C levels and soil enzymes activities were decreased in all agricultural soils. Dehydrogenase and β-glucosidase activities, soil basal respiration and microbial biomass C were the most sensitive responses to trace metal soil contamination. The Integrative Biological Response value indicated that soil health was ranked as: organic>traditional>conventional, highlighting the importance of integrative biomarker-based strategies for the development of the trace metal "footprint" in Andosols. PMID:27057992

  10. Biological soil crusts: a microenvironment characterized by complex microbial interrelations affected by the presence of the exopolysaccharidic matrix.

    NASA Astrophysics Data System (ADS)

    De Philippis, Roberto

    2015-04-01

    Biological Soil Crusts (BSCs) are complex microbial communities, commonly found in arid and semiarid areas of the world. The capability of the microorganisms residing in BSCs to withstand the harsh environmental conditions typical of these habitats, namely drought and high solar irradiation, is related with the presence of a matrix constituted by microbial-produced extracellular polysaccharides (EPSs), which also accomplish for a wide array of key ecological roles. EPSs represent a huge carbon source directly available to heterotrophic organisms, affect soil characteristics, water regimes, and establish complex interactions with plants. The induction of BSCs on degraded soils is considered a feasible approach to amend and maintain land fertility, as it was reported in a number of recent studies. It was recently shown that BSC induction is beneficial in enhancing SOC (Soil Organic Carbon) and in increasing the abundance of phototrophic organisms and vegetation cover. This lecture will describe the results of a study showing that cyanobacterial-EPS resulted advantageous to the growth and metabolism of seedlings of Caragana korshinskii, a desert sub-shrub widely diffused in the area under study, also contributing a defensive effect against the damaging effects of reactive oxygen species (ROS), generated under UV-irradiation, salt stress and desiccation. A study aimed at investigating the possible correlation between the chemical composition and the macromolecular features of the EPS matrix of induced BSCs of different age, collected in the hyper-arid plateau of Hobq desert, Inner Mongolia, China, will be also presented. The results of this study showed that the characteristics of the EPS of the matrix of the investigated IBSCs cannot be put only in relation with the age of the crusts and the activity of phototrophic microorganisms but, more properly, it has to be taken into account the biotic interactions ongoing between EPS producers (cyanobacteria, green microalgae

  11. Microbial activities and phosphorus cycling: An application of oxygen isotope ratios in phosphate

    NASA Astrophysics Data System (ADS)

    Stout, Lisa M.; Joshi, Sunendra R.; Kana, Todd M.; Jaisi, Deb P.

    2014-08-01

    Microorganisms carry out biochemical transformations of nutrients that make up their cells. Therefore, understanding how these nutrients are transformed or cycled in natural environments requires knowledge of microbial activity. Commonly used indicators for microbial activity typically include determining microbial respiration by O2/CO2 measurements, cell counts, and measurement of enzyme activities. However, coupled studies on nutrient cycling and microbial activity are not given enough emphasis. Here we apply phosphate oxygen isotope ratios (δ18OP) as a tool for measurement of microbial activity and compare the rate of isotope exchange with methods of measuring microbial activities that are more commonly applied in environmental studies including respiration, dehydrogenase activity, alkaline phosphatase activity, and cell counts. Our results show that different bacteria may have different strategies for P uptake, storage and release, their respiration and consequently expression of DHA and APase activities, but in general the trend of their enzyme activities are comparable. Phosphate δ18OP values correlated well with these other parameters used to measure microbial activity with the strongest linear relationships between δ18OP and CO2 evolution (r = -0.99). Even though the rate of isotope exchange for each microorganism used in this study is different, the rate per unit CO2 respiration showed one general trend, where δ18OP values move towards equilibrium while CO2 is generated. While this suggests that P cycling among microorganisms used in this study can be generalized, further research is needed to determine whether the microorganism-specific isotope exchange trend may occur in natural environments. In summary, phosphate oxygen isotope measurements may offer an alternative for use as a tracer to measure microbial activity in soils, sediments, and many other natural environments.

  12. Microbial and enzymatic activity of soil contaminated with azoxystrobin.

    PubMed

    Baćmaga, Małgorzata; Kucharski, Jan; Wyszkowska, Jadwiga

    2015-10-01

    The use of fungicides in crop protection still effectively eliminates fungal pathogens of plants. However, fungicides may dissipate to various elements of the environment and cause irreversible changes. Considering this problem, the aim of the presented study was to evaluate changes in soil biological activity in response to contamination with azoxystrobin. The study was carried out in the laboratory on samples of sandy loam with a pH of 7.0 in 1 Mol KCl dm(-3). Soil samples were treated with azoxystrobin in one of four doses: 0.075 (dose recommended by the manufacturer), 2.250, 11.25 and 22.50 mg kg(-1) soil DM (dry matter of soil). The control soil sample did not contain fungicide. Bacteria were identified based on 16S rRNA gene sequencing, and fungi were identified by internal transcribed spacer (ITS) region sequencing. The study revealed that increased doses of azoxystrobin inhibited the growth of organotrophic bacteria, actinomycetes and fungi. The fungicide also caused changes in microbial biodiversity. The lowest values of the colony development (CD) index were recorded for fungi and the ecophysiological (EP) index for organotrophic bacteria. Azoxystrobin had an inhibitory effect on the activity of dehydrogenases, catalase, urease, acid phosphatase and alkaline phosphatase. Dehydrogenases were found to be most resistant to the effects of the fungicide, while alkaline phosphatase in the soil recovered the balance in the shortest time. Four species of bacteria from the genus Bacillus and two species of fungi from the genus Aphanoascus were isolated from the soil contaminated with the highest dose of azoxystrobin (22.50 mg kg(-1)). PMID:26343782

  13. Temperature Effects on Microbial CH4 and CO2 Production in Permafrost-Affected Soils From the Barrow Environmental Observatory

    NASA Astrophysics Data System (ADS)

    Graham, D. E.; Roy Chowdhury, T.; Zheng, J.; Moon, J. W.; Yang, Z.; Gu, B.; Wullschleger, S. D.

    2015-12-01

    Warmer Arctic temperatures are increasing the annual soil thaw depth and prolonging the thaw season in Alaskan permafrost zones. This change exposes organic matter buried in the soils and permafrost to microbial degradation and mineralization to form CO2 and CH4. The proportion and fluxes of these greenhouse gases released into the atmosphere control the global feedback on warming. To improve representations of these biogeochemical processes in terrestrial ecosystem models we compared soil properties and microbial activities in core samples of polygonal tundra from the Barrow Environmental Observatory. Measurements of soil water potential through the soil column characterized water binding to the organic and mineral components. This suction combines with temperature to control freezing, gas diffusion and microbial activity. The temperature-dependence of CO2 and CH4 production from anoxic soil incubations at -2, +4 or +8 °C identified a significant lag in methanogenesis relative to CO2 production by anaerobic respiration and fermentation. Changes in the abundance of methanogen signature genes during incubations indicate that microbial population shifts caused by thawing and warmer temperatures drive changes in the mixtures of soil carbon degradation products. Comparisons of samples collected across the microtopographic features of ice-wedge polygons address the impacts of water saturation, iron reduction and organic matter content on CH4 production and oxidation. These combined measurements build process understanding that can be applied across scales to constrain key response factors in models that address Arctic soil warming.

  14. Organic matter quantity and source affects microbial community structure and function following volcanic eruption on Kasatochi Island, Alaska

    USGS Publications Warehouse

    Zeglin, Lydia H.; Wang, Bronwen; Waythomas, Christopher F.; Rainey, Frederick; Talbot, Sandra

    2016-01-01

    In August 2008, Kasatochi volcano erupted and buried a small island in pyroclastic deposits and fine ash; since then, microbes, plants and birds have begun to re-colonize the initially sterile surface. Five years post-eruption, bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) copy numbers and extracellular enzyme activity (EEA) potentials were one to two orders of magnitude greater in pyroclastic materials with organic matter (OM) inputs relative to those without, despite minimal accumulation of OM (< 0.2%C). When normalized by OM levels, post-eruptive surfaces with OM inputs had the highest β-glucosidase, phosphatase, NAGase and cellobiohydrolase activities, and had microbial population sizes approaching those in reference soils. In contrast, the strongest factor determining bacterial community composition was the dominance of plants versus birds as OM input vectors. Although soil pH ranged from 3.9 to 7.0, and %C ranged 100×, differentiation between plant- and bird-associated microbial communities suggested that cell dispersal or nutrient availability are more likely drivers of assembly than pH or OM content. This study exemplifies the complex relationship between microbial cell dispersal, soil geochemistry, and microbial structure and function; and illustrates the potential for soil microbiota to be resilient to disturbance.

  15. Organic matter quantity and source affects microbial community structure and function following volcanic eruption on Kasatochi Island, Alaska.

    PubMed

    Zeglin, Lydia H; Wang, Bronwen; Waythomas, Christopher; Rainey, Frederick; Talbot, Sandra L

    2016-01-01

    In August 2008, Kasatochi volcano erupted and buried a small island in pyroclastic deposits and fine ash; since then, microbes, plants and birds have begun to re-colonize the initially sterile surface. Five years post-eruption, bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) copy numbers and extracellular enzyme activity (EEA) potentials were one to two orders of magnitude greater in pyroclastic materials with organic matter (OM) inputs relative to those without, despite minimal accumulation of OM (< 0.2%C). When normalized by OM levels, post-eruptive surfaces with OM inputs had the highest β-glucosidase, phosphatase, NAGase and cellobiohydrolase activities, and had microbial population sizes approaching those in reference soils. In contrast, the strongest factor determining bacterial community composition was the dominance of plants versus birds as OM input vectors. Although soil pH ranged from 3.9 to 7.0, and %C ranged 100×, differentiation between plant- and bird-associated microbial communities suggested that cell dispersal or nutrient availability are more likely drivers of assembly than pH or OM content. This study exemplifies the complex relationship between microbial cell dispersal, soil geochemistry, and microbial structure and function; and illustrates the potential for soil microbiota to be resilient to disturbance. PMID:26032670

  16. Effect of altitude and season on microbial activity, abundance and community structure in Alpine forest soils.

    PubMed

    Siles, José A; Cajthaml, Tomas; Minerbi, Stefano; Margesin, Rosa

    2016-03-01

    In the current context of climate change, the study of microbial communities along altitudinal gradients is especially useful. Only few studies considered altitude and season at the same time. We characterized four forest sites located in the Italian Alps, along an altitude gradient (545-2000 m a.s.l.), to evaluate the effect of altitude in spring and autumn on soil microbial properties. Each site in each season was characterized with regard to soil temperature, physicochemical properties, microbial activities (respiration, enzymes), community level physiological profiles (CLPP), microbial abundance and community structure (PLFA). Increased levels of soil organic matter (SOM) and nutrients were found at higher altitudes and in autumn, resulting in a significant increase of (soil dry-mass related) microbial activities and abundance at higher altitudes. Significant site- and season-specific effects were found for enzyme production. The significant interaction of the factors site and incubation temperature for soil microbial activities indicated differences in microbial communities and their responses to temperature among sites. CLPP revealed site-specific effects. Microbial community structure was influenced by altitudinal, seasonal and/or site-specific effects. Correlations demonstrated that altitude, and not season, was the main factor determining the changes in abiotic and biotic characteristics at the sites investigated.

  17. STRUCTURE AND FUNCTION OF SUBSURFACE MICROBIAL COMMUNITIES AFFECTING RADIONUCLIDE TRANSPORT AND BIOIMMOBILIZATION

    SciTech Connect

    Joel E. Kostka; Lee Kerkhof; Kuk-Jeong Chin; Martin Keller; Joseph W. Stucki

    2011-06-15

    to science all show high sequence identity to sequences retrieved from ORFRC subsurface. (2) Based on physiological and phylogenetic characterization, two new species of subsurface bacteria were described: the metal-reducer Geobacter daltonii, and the denitrifier Rhodanobacter denitrificans. (3) Strains isolated from the ORFRC show that Rhodanobacter species are well adapted to the contaminated subsurface. Strains 2APBS1 and 116-2 grow at high salt (3% NaCl), low pH (3.5) and tolerate high concentrations of nitrate (400mM) and nitrite (100mM). Strain 2APBS1 was demonstrated to grow at in situ acidic pHs down to 2.5. (4) R. denitrificans strain 2APBS1 is the first described Rhodanobacter species shown to denitrify. Nitrate is almost entirely converted to N2O, which may account for the large accumulation of N2O in the ORFRC subsurface. (5) G. daltonii, isolated from uranium- and hydrocarbon-contaminated subsurface sediments of the ORFRC, is the first organism from the subsurface clade of the genus Geobacter that is capable of growth on aromatic hydrocarbons. (6) High quality draft genome sequences and a complete eco-physiological description are completed for R. denitrificans strain 2APBS1 and G. daltonii strain FRC-32. (7) Given their demonstrated relevance to DOE remediation efforts and the availability of detailed genotypic/phenotypic characterization, Rhodanobacter denitrificans strain 2APBS1 and Geobacter daltonii strain FRC-32 represent ideal model organisms to provide a predictive understanding of subsurface microbial activity through metabolic modeling. Tasks II and III-Diversity and distribution of active anaerobes and Mechanisms linking electron transport and the fate of radionuclides: (1) Our study showed that members of genus Rhodanobacter and Geobacter are abundant and active in the uranium and nitrate contaminated subsurface. In the contaminant source zone of the Oak Ridge site, Rhodanobacter spp. are the predominant, active organisms detected (comprising

  18. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau.

    PubMed

    Zhang, Xinfang; Xu, Shijian; Li, Changming; Zhao, Lin; Feng, Huyuan; Yue, Guangyang; Ren, Zhengwei; Cheng, Guogdong

    2014-01-01

    In the Tibetan permafrost region, vegetation types and soil properties have been affected by permafrost degradation, but little is known about the corresponding patterns of their soil microbial communities. Thus, we analyzed the effects of vegetation types and their covariant soil properties on bacterial and fungal community structure and membership and bacterial community-level physiological patterns. Pyrosequencing and Biolog EcoPlates were used to analyze 19 permafrost-affected soil samples from four principal vegetation types: swamp meadow (SM), meadow (M), steppe (S) and desert steppe (DS). Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria dominated bacterial communities and the main fungal phyla were Ascomycota, Basidiomycota and Mucoromycotina. The ratios of Proteobacteria/Acidobacteria decreased in the order: SM>M>S>DS, whereas the Ascomycota/Basidiomycota ratios increased. The distributions of carbon and nitrogen cycling bacterial genera detected were related to soil properties. The bacterial communities in SM/M soils degraded amines/amino acids very rapidly, while polymers were degraded rapidly by S/DS communities. UniFrac analysis of bacterial communities detected differences among vegetation types. The fungal UniFrac community patterns of SM differed from the others. Redundancy analysis showed that the carbon/nitrogen ratio had the main effect on bacteria community structures and their diversity in alkaline soil, whereas soil moisture was mainly responsible for structuring fungal communities. Thus, microbial communities and their functioning are probably affected by soil environmental change in response to permafrost degradation.

  19. Metatranscriptome analysis of active microbial communities in produced water samples from the Marcellus Shale.

    PubMed

    Vikram, Amit; Lipus, Daniel; Bibby, Kyle

    2016-10-01

    Controlling microbial activity is a primary concern during the management of the large volumes of wastewater (produced water) generated during high-volume hydraulic fracturing. In this study we analyzed the transcriptional activity (metatranscriptomes) of three produced water samples from the Marcellus Shale. The goal of this study was to describe active metabolic pathways of industrial concern for produced water management and reuse, and to improve understanding of produced water microbial activity. Metatranscriptome analysis revealed active biofilm formation, sulfide production, and stress management mechanisms of the produced water microbial communities. Biofilm-formation and sulfate-reduction pathways were identified in all samples. Genes related to a diverse array of stress response mechanisms were also identified with implications for biocide efficacy. Additionally, active expression of a methanogenesis pathway was identified in a sample of produced water collected prior to holding pond storage. The active microbial community identified by metatranscriptome analysis was markedly different than the community composition as identified by 16S rRNA sequencing, highlighting the value of evaluating the active microbial fraction during assessments of produced water biofouling potential and evaluation of biocide application strategies. These results indicate biofouling and corrosive microbial processes are active in produced water and should be taken into consideration while designing produced water reuse strategies. PMID:27457653

  20. Microbial Community-Level Physiological Profiles (CLPP) and herbicide mineralization potential in groundwater affected by agricultural land use

    NASA Astrophysics Data System (ADS)

    Janniche, Gry Sander; Spliid, Henrik; Albrechtsen, Hans-Jørgen

    2012-10-01

    Diffuse groundwater pollution from agricultural land use may impact the microbial groundwater community, which was investigated as Community-Level Physiological Profiles (CLPP) using EcoPlate™. Water was sampled from seven piezometers and a spring in a small agricultural catchment with diffuse herbicide and nitrate pollution. Based on the Shannon-Wiener and Simpson's diversity indices the diversity in the microbial communities was high. The response from the EcoPlates™ showed which substrates support groundwater bacteria, and all 31 carbon sources were utilized by organisms from at least one water sample. However, only nine carbon sources were utilized by all water samples: D-Mannitol, N-acetyl-D-glucosamine, putrescine, D-galacturonic acid, itaconic acid, 4-hydroxy benzoic acid, tween 40, tween 80, and L-asparagine. In all water samples the microorganisms preferred D-mannitol, D-galacturonic acid, tween 40, and 4-hydroxy benzoic acid as substrates, whereas none preferred 2-hydroxy benzoic acid, α-D-lactose, D,L-α-glycerol phosphate, α-ketobutyric acid, L-threonine and glycyl-L-glutamic acid. Principal Component Analysis of the CLPP's clustered the most agriculturally affected groundwater samples, indicating that the agricultural land use affects the groundwater microbial communities. Furthermore, the ability to mineralize atrazine and isoproturon, which have been used in the catchment, was also associated with this cluster.

  1. (A)synchronous Availabilities of N and P Regulate the Activity and Structure of the Microbial Decomposer Community.

    PubMed

    Fanin, Nicolas; Hättenschwiler, Stephan; Chavez Soria, Paola F; Fromin, Nathalie

    2015-01-01

    Nitrogen (N) and phosphorus (P) availability both control microbial decomposers and litter decomposition. However, these two key nutrients show distinct release patterns from decomposing litter and are unlikely available at the same time in most ecosystems. Little is known about how temporal differences in N and P availability affect decomposers and litter decomposition, which may be particularly critical for tropical rainforests growing on old and nutrient-impoverished soils. Here we used three chemically contrasted leaf litter substrates and cellulose paper as a widely accessible substrate containing no nutrients to test the effects of temporal differences in N and P availability in a microcosm experiment under fully controlled conditions. We measured substrate mass loss, microbial activity (by substrate induced respiration, SIR) as well as microbial community structure (using phospholipid fatty acids, PLFAs) in the litter and the underlying soil throughout the initial stages of decomposition. We generally found a stronger stimulation of substrate mass loss and microbial respiration, especially for cellulose, with simultaneous NP addition compared to a temporally separated N and P addition. However, litter types with a relatively high N to P availability responded more to initial P than N addition and vice versa. A third litter species showed no response to fertilization regardless of the sequence of addition, likely due to strong C limitation. Microbial community structure in the litter was strongly influenced by the fertilization sequence. In particular, the fungi to bacteria ratio increased following N addition alone, a shift that was reversed with complementary P addition. Opposite to the litter layer microorganisms, the soil microbial community structure was more strongly influenced by the identity of the decomposing substrate than by fertilization treatments, reinforcing the idea that C availability can strongly constrain decomposer communities

  2. Mutations affecting enzymatic activity in liver arginase

    SciTech Connect

    Vockley, J.G.; Tabor, D.E.; Goodman, B.K.

    1994-09-01

    The hydrolysis of arginine to ornithine and urea is catalyzed by arginase in the last step of the urea cycle. We examined a group of arginase deficient patients by PCR-SSCP analysis to characterize the molecular basis of this disorder. A heterogeneous population of nonsense mutations, microdeletions, and missense mutations has been identified in our cohort. Microdeletions which introduce premature stop codons downstream of the deletion and nonsense mutations result in no arginase activity. These mutations occur randomly along the gene. The majority of missense mutations identified appear to occur in regions of high cross-species homology. To test the effect of these missense mutations on arginase activity, site-directed mutagenesis was used to re-create the patient mutations for in vivo expression studies in a prokaryotic fusion-protein expression system. Of 4 different missense mutations identified in 6 individuals, only one was located outside of a conserved region. The three substitution mutations within the conserved regions had a significant effect on enzymatic activity (0-3.1 nmole/30min, normal is 1300-1400 nmoles/30min, as determined by in vitro arginase assay), while the fourth mutation, a T to S substitution, did not. In addition, site-directed mutagenesis was utilized to create mutations not in residues postulated to play a significant role in the enzymatic function or active site formation in manganese-binding proteins such as arginase. We have determined that the substitution of glycine for a histidine residue, located in a very highly conserved region of exon 3, and the substitution of a histidine and an aspartic acid residue within a similarly conserved region in exon 4, totally abolishes enzymatic activity. Mutations substituting glycine for an additional histidine and aspartic acid residue in exon 4 and two aspartic acid residues in exon 7 have also been created. We are currently in the process of characterizing these mutations.

  3. Yeast culture supplement during nursing and transport affects immunity and intestinal microbial ecology of weanling pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weaning and transport stress can have a negative impact on the piglet's immune system and intestinal microbiota. The objective of this study was to determine the influence of a yeast product on innate immunity and microbial ecology of the gastrointestinal tract following stress of weaning and trans...

  4. Microbial concentrations on fresh produce are affected by postharvest processing, importation, and season.

    PubMed

    Ailes, Elizabeth C; Leon, Juan S; Jaykus, Lee-Ann; Johnston, Lynette M; Clayton, Haley A; Blanding, Sarah; Kleinbaum, David G; Backer, Lorraine C; Moe, Christine L

    2008-12-01

    In the United States, the proportion of foodborne illness outbreaks associated with consumption of contaminated domestic and imported fresh fruits and vegetables (produce) has increased over the past several decades. To address this public health concern, the goal of this work was to identify and quantify factors associated with microbial contamination of produce in pre- and postharvest phases of the farm-to-fork continuum. From 2000 to 2003, we collected 923 samples of 14 types of produce (grown in the southern United States or in the northern border states of Mexico) from 15 farms and eight packing sheds located in the southern United States. To assess microbial quality, samples were enumerated for Escherichia coli, total aerobic bacteria, total coliforms, and total Enterococcus. Most produce types had significantly higher microbial concentrations when sampled at the packing shed than when sampled at the farm. In addition, we observed seasonal differences in the microbial concentrations on samples grown in the United States, with higher mean indicator concentrations detected in the fall (September, October, and November). We developed a predictive, multivariate logistic regression model to identify and quantify factors that were associated with detectable concentrations of E. coli contamination on produce. These factors included produce type (specifically, cabbage or cantaloupe), season of collection (harvested in the fall), and packing step (bin, box, conveyor belt, or turntable). These results can be used to identify specific mechanisms of produce contamination and propose interventions that may decrease the likelihood of produce-associated illness.

  5. CO2 gradient affects on deep subsurface microbial ecology during carbon sequestration

    NASA Astrophysics Data System (ADS)

    Gulliver, D.; Gregory, K.

    2011-12-01

    Geological carbon sequestration is likely to be part of a comprehensive strategy to minimize the release of greenhouse gasses into the atmosphere. Reservoir storage capacities and long-term security of these deposits will be dependent on the trapping mechanisms and mineral transformation in the deep subsurface. Therefore, a critical need exists to understand the evolution of microbial populations that may influence the biogeochemistry in the reservoirs. As the CO2 front moves through the storage aquifer, microbial communities may preside in residual brine left behind in cracks, dead flow zones, and upstream to the front; this brine will have a gradient of dissolved CO2 in which microbial interaction may behave differently, depending on the distance from the CO2 front. The evolution of microbial ecology along this CO2 gradient was investigated using fluid-slurry samples obtained from the prospective carbon sequestration site, the Arbuckle saline aquifer at the Wellington oil field, KS. The native species of these samples were investigated with a series of batch reactors under constant temperature of 40 °C, constant total pressure of 2,000 psi, and varying CO2 partial pressures of 0 psi, 20 psi, 200 psi, and 2,000 psi. After 1 day, 7 days, and 56 days of exposure in the batch reactors, fluid samples were centrifuged and the resulting pellet was biologically analyzed. Clone libraries and quantitative PCR determined that the bacterial diversity and population of the native microbial community was dependant on both the duration of exposure and the CO2 partial pressure. For example, the microbial community of 0 psi CO2 and 20 psi CO2 was predominantly related to the families halomonadaceae and marinilabiaceae while at 2,000 psi CO2 the community was predominantly in the family psychromonadaceae. The population size at 2,000 psi CO2 was also found to decrease by 3 orders of magnitude after only 7 days of CO2 exposure. Although these experiments were relatively short

  6. Microbial extracellular enzyme activities in HUMEX Lake Skjervatjern

    SciTech Connect

    Muenster, U. )

    1992-01-01

    Two microbial extracellular enzyme activities (MEEA) were studied in HUMEX Lake Skjervatjern: acid phosphatase (APHA) and leucine aminopeptidase (LeuAMPA). Both enzyme activities varied in the vertical and horizontal scale in both lake sites. APHA varied in the acidfied Basin A between 945-1706 nmol L[sup [minus]1] h[sup [minus]1] and LeuAMPA between 3.7-25 nmol L[sup [minus]1] h[sup [minus]1]. Both MEEA reached maxima in 0.5 m depth. In the control site (Basin B), APHA was lower by a factor of two, and varied between 156-669 nmol L[sup [minus]1] h[sup [minus]1]. LeuAMPA reached similar values as in Basin A and varied between 7.8-34.8 nmol L[sup [minus]1] h[sup [minus]1]. Maxima of APHA were found in the upper layer (0-2 m), while LeuAMPA had only one distinct maxima at 2-2.5 m depth. The number of bacteria (AFDC) varied between 4.4-8.8 10[sup 6] cells mL[sup [minus]1] and was not significantly different in either side, but both had maxima in the thermocline. Highest specific LeuAMPA activities were found in the thermocline (3.2-4.5 fmol L[sup [minus]1] h[sup [minus]1] cell[sup [minus]1]) in both sides and varied between 0.4-4.5 fmol L[sup [minus]1] h[sup [minus]1] cell[sup [minus]1] in both water columns. The main contributor (60-70%) to LeuAMPA was found in the microplankton fraction, retained on Nuclepore filters with pore sizes between 2.0-0.2 [mu]m. APHA was retained less even on a filter with pore size smaller than 0.2 [mu]m. About 50-70% of APHA passed through 0.2 [mu]m-0.1 [mu]m Nuclepore filters and could be found in the dissolved organic matter (DOM) fraction. APHA and bacteria counts (AFDC) showed a distinct gradient from the littoral zone to the pelagial in the surface water samples (0.2 m depth). APHA and LeuAMPA are regarded as important regulators for nutrient availabilty to microplankton. 40 refs., 6 figs.

  7. Molecular Signatures of Microbial Metabolism in an Actively Growing, Silicified, Microbial Structure from Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Ferreira, M.; Creveling, J.; Hilburn, I.; Karlsson, E.; Pepe-Ranney, C.; Spear, J.; Dawson, S.; Geobio2008, I.

    2008-12-01

    Silicified structures that exhibit a putative biologic component in their formation permeate the rock record as stromatolites. We have studied a silicified microbial structure from a hot spring in Yellowstone National Park using phenotypic, phylogenetic, and metagenomic analyses to determine microbial carbon metabolic pathways and the phylogenetic affiliations of microbes present in this unique structure. In this multi-faceted approach, dominant physiologies, specifically with regards to anaerobic and aerobic metabolisms, were inferred from 16S rRNA gene sequences and 454 sequencing data from bulk DNA samples of the structure. Carbon utilization as indicated by ECO Biolog plates showed abundant heterotrophy and heterotrophic diversity throughout the microbial structure. Microbes within the structure are able to utilize all tested sources of carbohydrates, lipids/fatty acids, and protein/amino acids as carbon sources. ECO plate testing of the hot spring water yielded considerable less carbohydrate consumption (only 4 out of 13 tested carbohydrates) and similar lipids/fatty acids and protein/amino acids consumption (2 out of 3 and 5 out of 5 tested sources respectively). Full length 16S rRNA gene sequences and metagenomic 454 pyrosequencing of community DNA showed limited diversity among primary producers. From the 16S data, the majority of the autotrophs are inferred to utilize the Calvin cycle for CO2 fixation, followed by 3-hydroxypropionate/4- hydroxybutyrate CO2 fixation. However, an analysis of the metagenomic data compared to the KEGG database does not show genes directly involved with Calvin cycle carbon fixation. Further BLAST searches of our data failed to find significant matches within our 6514 metagenomic sequences to known RuBisCo sequences taken from the NCBI database. This is likely due to a far under-sampled dataset of metagenomic sequences, and the low number (958) that had matches to the KEGG pathways database. Anaerobic versus aerobic physiology

  8. Microbial enzyme activities of peatland soils in south central Alaska lowlands

    EPA Science Inventory

    Microbial enzyme activities related to carbon and nutrient acquisition were measured on Alaskan peatland soils as indicators of nutrient limitation and biochemical sustainability. Peat decomposition is mediated by microorganisms and enzymes that in turn are limited by various ph...

  9. 13C-DEPLETED MICROBIAL LIPIDS INDICATE SEASONAL METHANOTROPHIC ACTIVITY IN SHALLOW ESTUARINE SEDIMENTS

    EPA Science Inventory

    Compound specific isotope analysis was combined with phospholipid fatty acid (PLFA) analysis to identify methanotrophic activity in members of the sedimentary microbial community in the Altamaha and Savannah River estuaries in Georgia. 13C-depleted PLFAs indicate methane utilizat...

  10. Impacts of Human Activity on the Microbial Communities of Devon Island, Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Bywaters, K. B.; Burton, A. S.; Wallace, S. L.; Glass, B. J.

    2016-09-01

    The impacts of human activities on microbial communities in arctic environments are poorly understood. This project compares the distribution of microbes at the HMP Mars analog site prior to and after human settlement.

  11. Effects of Fertilization and Clipping on Carbon, Nitrogen Storage, and Soil Microbial Activity in a Natural Grassland in Southern China

    PubMed Central

    Du, Zhimin; Xie, Yan; Hu, Liqun; Hu, Longxing; Xu, Shendong; Li, Daoxin; Wang, Gongfang; Fu, Jinmin

    2014-01-01

    Grassland managements can affect carbon (C) and nitrogen (N) storage in grassland ecosystems with consequent feedbacks to climate change. We investigated the impacts of compound fertilization and clipping on grass biomass, plant and soil (0–20 cm depth) C, N storage, plant and soil C: N ratios, soil microbial activity and diversity, and C, N sequestration rates in grassland in situ in the National Dalaoling Forest Park of China beginning July, 2011. In July, 2012, the fertilization increased total biomass by 30.1%, plant C by 34.5%, plant N by 79.8%, soil C by 18.8% and soil N by 23.8% compared with the control, respectively. Whereas the clipping decreased total biomass, plant C and N, soil C and N by 24.9%, 30.3%, 39.3%, 18.5%, and 19.4%, respectively, when compared to the control. The plant C: N ratio was lower for the fertilization than for the control and the clipping treatments. The soil microbial activity and diversity indices were higher for the fertilization than for the control. The clipping generally exhibited a lower level of soil microbial activity and diversity compared to the control. The principal component analysis indicated that the soil microbial communities of the control, fertilization and clipping treatments formed three distinct groups. The plant C and N sequestration rates of the fertilization were significantly higher than the clipping treatment. Our results suggest that fertilization is an efficient management practice in improving the C and N storage of the grassland ecosystem via increasing the grass biomass and soil microbial activity and diversity. PMID:24914540

  12. Effects of fertilization and clipping on carbon, nitrogen storage, and soil microbial activity in a natural grassland in southern China.

    PubMed

    Du, Zhimin; Xie, Yan; Hu, Liqun; Hu, Longxing; Xu, Shendong; Li, Daoxin; Wang, Gongfang; Fu, Jinmin

    2014-01-01

    Grassland managements can affect carbon (C) and nitrogen (N) storage in grassland ecosystems with consequent feedbacks to climate change. We investigated the impacts of compound fertilization and clipping on grass biomass, plant and soil (0-20 cm depth) C, N storage, plant and soil C: N ratios, soil microbial activity and diversity, and C, N sequestration rates in grassland in situ in the National Dalaoling Forest Park of China beginning July, 2011. In July, 2012, the fertilization increased total biomass by 30.1%, plant C by 34.5%, plant N by 79.8%, soil C by 18.8% and soil N by 23.8% compared with the control, respectively. Whereas the clipping decreased total biomass, plant C and N, soil C and N by 24.9%, 30.3%, 39.3%, 18.5%, and 19.4%, respectively, when compared to the control. The plant C: N ratio was lower for the fertilization than for the control and the clipping treatments. The soil microbial activity and diversity indices were higher for the fertilization than for the control. The clipping generally exhibited a lower level of soil microbial activity and diversity compared to the control. The principal component analysis indicated that the soil microbial communities of the control, fertilization and clipping treatments formed three distinct groups. The plant C and N sequestration rates of the fertilization were significantly higher than the clipping treatment. Our results suggest that fertilization is an efficient management practice in improving the C and N storage of the grassland ecosystem via increasing the grass biomass and soil microbial activity and diversity.

  13. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter.

    PubMed

    Wang, YuanPeng; Shi, JiYan; Wang, Hui; Lin, Qi; Chen, XinCai; Chen, YingXu

    2007-05-01

    The environmental risk of heavy metal pollution is pronounced in soils adjacent to large industrial complexes. It is important to investigate the functioning of soil microorganisms in ecosystems exposed to long-term contamination by heavy metals. We studied the potential effects of heavy metals on microbial biomass, activity, and community composition in soil near a copper smelter in China. The results showed that microbial biomass C was negatively affected by the elevated metal levels and was closely correlated with heavy metal stress. Enzyme activity was greatly depressed by conditions in the heavy metal-contaminated sites. Good correlation was observed between enzyme activity and the distance from the smelter. Elevated metal loadings resulted in changes in the activity of the soil microbe, as indicated by changes in their metabolic profiles from correlation analysis. Significant decrease of soil phosphatase activities was found in the soils 200 m away from the smelter. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis demonstrated that heavy metals pollution had a significant impact on bacterial and actinomycetic community structure. There were negative correlations between soil microbial biomass, phosphatase activity, and NH(4)NO(3) extractable heavy metals. The soil microorganism activity and community composition could be predicted significantly using the availability of Cu and Zn. By combining different monitoring approaches from different viewpoints, the set of methods applied in this study were sensitive to site differences and contributed to a better understanding of heavy metals effects on the structure, size and activity of microbial communities in soils. The data presented demonstrate the role of heavy metals pollution in understanding the heavy metal toxicity to soil microorganism near a copper smelter in China. PMID:16828162

  14. Microbial environment affects innate immunity in two closely related earthworm species Eisenia andrei and Eisenia fetida.

    PubMed

    Dvořák, Jiří; Mančíková, Veronika; Pižl, Václav; Elhottová, Dana; Silerová, Marcela; Roubalová, Radka; Skanta, František; Procházková, Petra; Bilej, Martin

    2013-01-01

    Survival of earthworms in the environment depends on their ability to recognize and eliminate potential pathogens. This work is aimed to compare the innate defense mechanisms of two closely related earthworm species, Eisenia andrei and Eisenia fetida, that inhabit substantially different ecological niches. While E. andrei lives in a compost and manure, E. fetida can be found in the litter layer in forests. Therefore, the influence of environment-specific microbiota on the immune response of both species was followed. Firstly, a reliable method to discern between E. andrei and E. fetida based on species-specific primers for cytochrome c oxidase I (COI) and stringent PCR conditions was developed. Secondly, to analyze the immunological profile in both earthworm species, the activity and expression of lysozyme, pattern recognition protein CCF, and antimicrobial proteins with hemolytic function, fetidin and lysenins, have been assessed. Whereas, CCF and lysozyme showed only slight differences in the expression and activity, fetidin/lysenins expression as well as the hemolytic activity was considerably higher in E. andrei as compared to E. fetida. The expression of fetidin/lysenins in E. fetida was not affected upon the challenge with compost microbiota, suggesting more substantial changes in the regulation of the gene expression. Genomic DNA analyses revealed significantly higher level of fetidin/lysenins (determined using universal primer pairs) in E. andrei compared to E. fetida. It can be hypothesized that E. andrei colonizing compost as a new habitat acquired an evolutionary selection advantage resulting in a higher expression of antimicrobial proteins.

  15. Microbial Environment Affects Innate Immunity in Two Closely Related Earthworm Species Eisenia andrei and Eisenia fetida

    PubMed Central

    Dvořák, Jiří; Mančíková, Veronika; Pižl, Václav; Elhottová, Dana; Šilerová, Marcela; Roubalová, Radka; Škanta, František; Procházková, Petra; Bilej, Martin

    2013-01-01

    Survival of earthworms in the environment depends on their ability to recognize and eliminate potential pathogens. This work is aimed to compare the innate defense mechanisms of two closely related earthworm species, Eisenia andrei and Eisenia fetida, that inhabit substantially different ecological niches. While E. andrei lives in a compost and manure, E. fetida can be found in the litter layer in forests. Therefore, the influence of environment-specific microbiota on the immune response of both species was followed. Firstly, a reliable method to discern between E. andrei and E. fetida based on species-specific primers for cytochrome c oxidase I (COI) and stringent PCR conditions was developed. Secondly, to analyze the immunological profile in both earthworm species, the activity and expression of lysozyme, pattern recognition protein CCF, and antimicrobial proteins with hemolytic function, fetidin and lysenins, have been assessed. Whereas, CCF and lysozyme showed only slight differences in the expression and activity, fetidin/lysenins expression as well as the hemolytic activity was considerably higher in E. andrei as compared to E. fetida. The expression of fetidin/lysenins in E. fetida was not affected upon the challenge with compost microbiota, suggesting more substantial changes in the regulation of the gene expression. Genomic DNA analyses revealed significantly higher level of fetidin/lysenins (determined using universal primer pairs) in E. andrei compared to E. fetida. It can be hypothesized that E. andrei colonizing compost as a new habitat acquired an evolutionary selection advantage resulting in a higher expression of antimicrobial proteins. PMID:24223917

  16. Biologically active extracts with kidney affections applications

    NASA Astrophysics Data System (ADS)

    Pascu (Neagu), Mihaela; Pascu, Daniela-Elena; Cozea, Andreea; Bunaciu, Andrei A.; Miron, Alexandra Raluca; Nechifor, Cristina Aurelia

    2015-12-01

    This paper is aimed to select plant materials rich in bioflavonoid compounds, made from herbs known for their application performances in the prevention and therapy of renal diseases, namely kidney stones and urinary infections (renal lithiasis, nephritis, urethritis, cystitis, etc.). This paper presents a comparative study of the medicinal plant extracts composition belonging to Ericaceae-Cranberry (fruit and leaves) - Vaccinium vitis-idaea L. and Bilberry (fruit) - Vaccinium myrtillus L. Concentrated extracts obtained from medicinal plants used in this work were analyzed from structural, morphological and compositional points of view using different techniques: chromatographic methods (HPLC), scanning electronic microscopy, infrared, and UV spectrophotometry, also by using kinetic model. Liquid chromatography was able to identify the specific compounds of the Ericaceae family, present in all three extracts, arbutosid, as well as specific components of each species, mostly from the class of polyphenols. The identification and quantitative determination of the active ingredients from these extracts can give information related to their therapeutic effects.

  17. Rumen degradable protein supply affects microbial efficiency in continuous culture and growth in steers.

    PubMed

    Brooks, M A; Harvey, R M; Johnson, N F; Kerley, M S

    2012-12-01

    We hypothesized that microbial efficiency and output from fermentation in the rumen would be optimized when peptide supply was balanced with peptide requirement of ruminal microflora. This study was conducted to measure response of varying rumen degradable peptide (RDPep) supply on ruminal fermentation characteristics and steer growth. A continuous culture experiment was conducted with diets formulated to achieve a predicted RDPep balance (RDPep supplied above RDPep required) of -0.30 to 1.45% CP with rumen degradable N (RDN) balance (RDN supplied above RDN required) above dietary ammonia-N requirement of microbes. Two additional treatments had RDPep balances of -0.30 and 0.78% CP with insufficient ammonia-N supply to meet microbial requirements. Single-flow fermenters (N = 24; n = 6) were inoculated with rumen fluid and maintained anaerobically at 39°C with a 0.06 h(-1) dilution rate. Inadequate RDN decreased OM digestion and microbial N flow, and increased rumen undegradable N (P < 0.01). Microbial efficiency decreased in RDN-deficient diets and was greatest when RDPep balance did not excessively exceed microbial requirement of RDPep predicted (P < 0.01). A growth study was conducted with 49 yearling, crossbred, Angus steers (initial BW 370 ± 34 kg). Animals were assigned to 1 of 4 treatment groups by BW and further divided into 3 pens with 4 steers per pen to achieve similar initial pen weights. Treatments consisted of 4 isonitrogenous diets balanced for RDN but varying in predicted RDPep balance (0.55%, -0.02%, -0.25%, and -0.65% CP). Animals were maintained on treatment for 70 d with individual BW taken on d 0, 1, 21, 42, 70, and 71. Final BW decreased linearly with decreasing RDPep (P = 0.05). Average daily gain and G:F displayed a quadratic effect with greater ADG and G:F at greater and lesser RDPep levels (P = 0.02). We concluded that balancing RDPep supply to predicted requirement improved fermentation efficiency and microbial output, which in turn

  18. Main factors controlling microbial community structure, growth and activity after reclamation of a tailing pond with aided phytostabilization

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Acosta, José A.; Martínez-Martínez, Silvia; Faz, Ángel; Bååth, Erland

    2015-04-01

    Reclamation on bare tailing ponds has the potential to represent soil genesis in Technosols favoring the understanding of the changes of microbial communities and function. In this study we used phytostabilization aided with calcium carbonate and pig slurry/manure to reclaim an acidic bare tailing pond with the aim of investigating the effect of amending and different species on microbial community structure and function. We sampled after two years of amending and planting: unamended tailing soil (UTS), non-rhizospheric amended tailing soil (ATS), rhizospheric soil from four species, and non-rhizospheric native forest soil (NS), which acted as reference. The application of amendments increased pH up to neutrality, organic carbon (Corg), C/N and aggregate stability, while decreased salinity and heavy metals availability. No effect of rhizosphere was observed on physicochemical properties, metals immobilization and microbial community structure and function. To account for confounding effects due to soil organic matter, microbial properties were expressed per Corg. The high increments in pH and Corg have been the main factors driving changes in microbial community structure and function. Bacterial biomass was higher in UTS, without significant differences among the rest of soils. Fungal biomass followed the trend UTS < ATS = rhizospheric soils < NS. Bacterial growth increased and fungal growth decreased with increasing pH, despite the high availability of metals at low pH. Enzyme activities were lower in UTS, being β-glucosidase and β-glucosaminidase activities highly correlated with bacterial growth. Microbial activities were not correlated with the exchangeable fraction of heavy metals, indicating that microbial function is not strongly affected by these metals, likely due to the efficiency of the reclamation procedure to reduce metals toxicity. Changes in microbial community composition were largely explained by changes in pH, heavy metals availability and Corg

  19. Effect of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil.

    PubMed

    Kim, Seong-Hye; Han, Hyo-Yeol; Lee, You-Jin; Kim, Chul Woong; Yang, Ji-Won

    2010-07-15

    Electrokinetic remediation has been successfully used to remove organic contaminants and heavy metals within soil. The electrokinetic process changes basic soil properties, but little is known about the impact of this remediation technology on indigenous soil microbial activities. This study reports on the effects of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil. The main removal mechanism of diesel was electroosmosis and most of the bacteria were transported by electroosmosis. After 25 days of electrokinetic remediation (0.63 mA cm(-2)), soil pH developed from pH 3.5 near the anode to pH 10.8 near the cathode. The soil pH change by electrokinetics reduced microbial cell number and microbial diversity. Especially the number of culturable bacteria decreased significantly and only Bacillus and strains in Bacillales were found as culturable bacteria. The use of EDTA as an electrolyte seemed to have detrimental effects on the soil microbial activity, particularly in the soil near the cathode. On the other hand, the soil dehydrogenase activity was enhanced close to the anode and the analysis of microbial community structure showed the increase of several microbial populations after electrokinetics. It is thought that the main causes of changes in microbial activities were soil pH and direct electric current. The results described here suggest that the application of electrokinetics can be a promising soil remediation technology if soil parameters, electric current, and electrolyte are suitably controlled based on the understanding of interaction between electrokinetics, contaminants, and indigenous microbial community. PMID:20452646

  20. Promoting Uranium Immobilization by the Activities of Microbial Phosphatases

    SciTech Connect

    Robert J. Martinez; Melanie J. Beazley; Samuel M. Webb; Martial Taillefert; and Patricia A. Sobecky

    2007-04-19

    The overall objective of this project is to examine the activity of nonspecific phosphohydrolases present in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of radionuclides through the production of uranium [U(VI)] phosphate precipitates. Specifically, we hypothesize that the precipitation of U(VI) phosphate minerals may be promoted through the microbial release and/or accumulation of PO4 3- as a means to detoxify radionuclides and heavy metals. An experimental approach was designed to determine the extent of phosphatase activity in bacteria previously isolated from contaminated subsurface soils collected at the ERSP Field Research Center (FRC) in Oak Ridge, TN. Screening of 135 metal resistant isolates for phosphatase activity indicated the majority (75 of 135) exhibited a phosphatase-positive phenotype. During this phase of the project, a PCR based approach has also been designed to assay FRC isolates for the presence of one or more classes of the characterized non-specific acid phophastase (NSAP) genes likely to be involved in promoting U(VI) precipitation. Testing of a subset of Pb resistant (Pbr) Arthrobacter, Bacillus and Rahnella strains indicated 4 of the 9 Pbr isolates exhibited phosphatase phenotypes suggestive of the ability to bioprecipitate U(VI). Two FRC strains, a Rahnella sp. strain Y9602 and a Bacillus sp. strain Y9-2, were further characterized. The Rahnella sp. exhibited enhanced phosphatase activity relative to the Bacillus sp. Whole-cell enzyme assays identified a pH optimum of 5.5, and inorganic phosphate accumulated in pH 5.5 synthetic groundwater (designed to mimic FRC conditions) incubations of both strains in the presence of a model organophosphorus substrate provided as the sole C and P source. Kinetic experiments showed that these two organisms can grow in the presence of 200 μM dissolved uranium and that Rahnella is much more efficient in precipitating U(VI) than Bacillus sp. The

  1. Quantitative assessment of in situ microbial communities affecting nuclear waste disposal

    SciTech Connect

    White, D.C. |

    1996-05-01

    Microbes in the environments surrounding nuclear waste depositories pose several questions regarding the protection of the surrounding communities. microbes can facilitate microbially influenced corrosion (MIC), mobilize and facilitate the transport of nuclides as well as produce gaseous emissions which can compromise containment. We have developed an analysis of the extant microbiota that is independent of quantitative recovery and subsequent growth, based on signature biomarkers analysis (SBA).

  2. Factors affecting the microbial and chemical composition of silage. IV. Effect of wilting on maize silage.

    PubMed

    Mahmoud, S A; Abdel-Hafez, A; Zaki, M M; Saleh, E A

    1979-01-01

    The effect of wilting on the microbial and chemical composition of ensiled maize plants was studied. Wilting stimulated high densities of lactic acid bacteria, with the decrease in counts of undesirable flora, i.e., yeasts, moulds, proteolytic and saccharolytic anaerobes, causing spoilage of silage. Moreover, wilting decreased the losses of dry matter, total acidity, and butyric acid content of silage. Accordingly, wilting proved to be a favourable treatment for the production of good quality silage from maize plants. PMID:38606

  3. Mild salinization stimulated glyphosate degradation and microbial activities in a riparian soil from Chongming Island, China.

    PubMed

    Yang, Changming; Shen, Shuo; Wang, Mengmeng; Li, Jianhua

    2013-04-01

    An incubation experiment was conducted to investigate the effects of simulated saltwater treatment with different percentages of artificial seawater on degradation dynamics of herbicide glyphosate and microbial activities in a riparian soil in Chongming Island, China. The results showed that 10% seawater treatment showed significantly enhancing effects on degradation efficiency of glyphosate with the lowest residual concentration among all the treatments. However, glyphosate degradation was markedly decreased in the riparian soil with 20% and 50% seawater treatments. The half-lives for 20% and 50% seawater treatments were prolonged by 12.1 and 39.0%, respectively, as compared to control. Microbial investigation indicated that 10% seawater treatment significantly stimulated microbial activities in the glyphosate-spiked riparian soil throughout the incubation period. At 42 day of incubation experiment, flourescein diacetate (FDA) hydrolysis rate, microbial adenosine triphosphate (ATP), and basal soil respiration (BSR) in the glyphosate-spiked riparian soil with 10% seawater were 59.2, 42.5 and 31.8% higher than those with no saltwater treatment, respectively. In contrast, saltwater treatment with 50% seawater significantly inhibited microbial activities. Especially, FDA hydrolysis rate, microbial ATP and BSR were decreased by 66.4, 58.6 and 66.8%, respectively, as compared to control. The results indicate that levels of simulated saltwater can exert variable effects on herbicide degradation dynamics and microbial parameters in the riparian soil.

  4. [Effect of straw pretreatment on soil microbial biomass and respiration activity].

    PubMed

    Li, Guitong; Zhang, Baogui; Li, Baoguo

    2003-12-01

    Winter wheat straw particles (0.5 ~ 2.0mm) were soaked with 8.0 g.L-1 H202(pH11.0), 12.5 g.L-1 Na0H or H2S04 solution for 8 h and dried at 80 degreeC. Soils amended with the pretreated straw and inorganic N were incubated aerobically at 25 degreeC for 60 days. The C02 emission rate and soil microbial biomass C and N were measured at different time. The results showed that during the earlier stage of incubation, the pretreatments of straw increased soil microbial biomass C by 1.0 ~ 1.4 folds, but decreased soil microbial respiration activity. During the later stage of incubation, the Na0H and H2S04 pretreated straw decreased soil microbial biomass carbon by 28% and 42%, respectively, while increased the soil microbial respiration activity. The straw pretreated by H202 increased soil microbial biomass nitrogen by 90% after the 15th day of incubation. The pretreatments of straw increased the fungi/bacteria ratio at different special time. It could be concluded that soil microbial biomass and respiration activity could be changed after the pretreated straw was added into the soil.

  5. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil.

    PubMed

    Kaiser, Christina; Koranda, Marianne; Kitzler, Barbara; Fuchslueger, Lucia; Schnecker, Jörg; Schweiger, Peter; Rasche, Frank; Zechmeister-Boltenstern, Sophie; Sessitsch, Angela; Richter, Andreas

    2010-08-01

    *Plant seasonal cycles alter carbon (C) and nitrogen (N) availability for soil microbes, which may affect microbial community composition and thus feed back on microbial decomposition of soil organic material and plant N availability. The temporal dynamics of these plant-soil interactions are, however, unclear. *Here, we experimentally manipulated the C and N availability in a beech forest through N fertilization or tree girdling and conducted a detailed analysis of the seasonal pattern of microbial community composition and decomposition processes over 2 yr. *We found a strong relationship between microbial community composition and enzyme activities over the seasonal course. Phenoloxidase and peroxidase activities were highest during late summer, whereas cellulase and protease peaked in late autumn. Girdling, and thus loss of mycorrhiza, resulted in an increase in soil organic matter-degrading enzymes and a decrease in cellulase and protease activity. *Temporal changes in enzyme activities suggest a switch of the main substrate for decomposition between summer (soil organic matter) and autumn (plant litter). Our results indicate that ectomycorrhizal fungi are possibly involved in autumn cellulase and protease activity. Our study shows that, through belowground C allocation, trees significantly alter soil microbial communities, which may affect seasonal patterns of decomposition processes.

  6. The impact of metal pollution on soil faunal and microbial activity in two grassland ecosystems.

    PubMed

    Boshoff, Magdalena; De Jonge, Maarten; Dardenne, Freddy; Blust, Ronny; Bervoets, Lieven

    2014-10-01

    In this study the influence of metal pollution on soil functional activity was evaluated by means of Bait lamina and BIOLOG(®) EcoPlates™ assays. The in situ bait lamina assay investigates the feeding activity of macrofauna, mesofauna and microarthropods while the BIOLOG(®) EcoPlate™ assay measures the metabolic fingerprint of a selectively extracted microbial community. Both assays proved sensitive enough to reveal changes in the soil community between the plots nearest to and further away from a metal pollution source. Feeding activity (FA) at the less polluted plots reached percentages of 90% while plots nearer to the source of pollution reached percentages as low as 10%. After 2 and 6 days of incubation average well color development (AWCD) and functional richness (R') were significantly lower at the plots closest to the source of pollution. While the Shannon Wiener diversity index (H') decreased significantly at sites nearer to the source of pollution after 2 days but not after 6 days of incubation. Arsenic, Cu and Pb correlated significantly and negatively with feeding activity and functional indices while the role of changing environmental factors such as moisture percentage could not be ruled out completely. Compared to the Bait lamina method that is used in situ and which is therefore more affected by site specific variation, the BIOLOG assay, which excludes confounding factors such as low moisture percentage, may be a more reliable assay to measure soil functional activity.

  7. Production of microbial glycolipid biosurfactants and their antimicrobial activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial glycolipids produced by bacteria or yeast as secondary metabolites, such as sophorolipids (SLs), rhamnolipids (RLs) and mannosylerythritol lipids (MELs) are “green” biosurfactants desirable in a bioeconomy. High cost of production is a major hurdle toward widespread commercial use of bios...

  8. Microbial dynamics and enzyme activities in tropical Andosols depending on land use and nutrient inputs

    NASA Astrophysics Data System (ADS)

    Mganga, Kevin; Razavi, Bahar; Kuzyakov, Yakov

    2015-04-01

    Microbial decomposition of soil organic matter is mediated by enzymes and is a key source of terrestrial CO2 emissions. Microbial and enzyme activities are necessary to understand soil biochemical functioning and identify changes in soil quality. However, little is known about land use and nutrients availability effects on enzyme activities and microbial processes, especially in tropical soils of Africa. This study was conducted to examine how microbial and enzyme activities differ between different land uses and nutrient availability. As Andosols of Mt. Kilimanjaro are limited by nutrient concentrations, we hypothesize that N and P additions will stimulate enzyme activity. N and P were added to soil samples (0-20 cm) representing common land use types in East Africa: (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) traditional Chagga homegardens. Total CO2 efflux from soil, microbial biomass and activities of β-glucosidase, cellobiohydrolase, chitinase and phosphatase involved in C, N and P cycling, respectively was monitored for 60 days. Total CO2 production, microbial biomass and enzyme activities varied in the order forest soils > grassland soils > arable soils. Increased β-glucosidase and cellobiohydrolase activities after N addition of grassland soils suggest that microorganisms increased N uptake and utilization to produce C-acquiring enzymes. Low N concentration in all soils inhibited chitinase activity. Depending on land use, N and P addition had an inhibitory or neutral effect on phosphatase activity. We attribute this to the high P retention of Andosols and low impact of N and P on the labile P fractions. Enhanced CO2 production after P addition suggests that increased P availability could stimulate soil organic matter biodegradation in Andosols. In conclusion, land use and nutrients influenced soil enzyme activities and microbial dynamics and demonstrated the decline in soil quality after landuse

  9. Environmental parameters controlling microbial activities in terrestrial subsurface environments

    SciTech Connect

    Kieft, T.L.

    1990-01-01

    This project was begun in July 1988 as part of Phase I of the Deep Microbiology Subprogram. At this time, the Subprogram was preparing for sampling near the Savannah River Site (SRS) from what was being termed the Investigator's Hole.'' This was the fourth hole drilled for sampling in the coastal plain sediments at a site near the SRS. Since there was a possibility of sampling from the saline Triassic basin in the deeper regions in this fourth hole, there was particular interest in quantifying halotolerant microorganisms from these samples and in determining the responses of subsurface microbes to a range of soft concentrations. Further interest in the soft tolerances of microbes from these coastal sediments arose from the fact that all of these sediments were deposited under marine conditions. It was also anticipated that samples would be available from the shallow unsaturated (vadose) zone at this site, so there was interest in quantifying microbial responses to matric water potential as well as solute water potential. The initial objectives of this research project were to: characterize microbial communities in a saline aquifer; determine the potential for microbial metabolism of selected organic compounds in a saline aquifers; characterize microbial communities in unsaturated subsurface materials (vadose zones); and determine the potential for microbial metabolism of selected organic compounds in unsaturated subsurface materials (vadose zones). Samples were collected from the borehole during a period extending from August to October 1988. A total of nine samples were express shipped to New Mexico Tech for analyses. These were all saturated zone samples from six different geological formations. Water contents and water potentials were measured at the time of sample arrival.

  10. Effects of plastic film residues on occurrence of phthalates and microbial activity in soils.

    PubMed

    Wang, Jun; Lv, Shenghong; Zhang, Manyun; Chen, Gangcai; Zhu, Tongbin; Zhang, Shen; Teng, Ying; Christie, Peter; Luo, Yongming

    2016-05-01

    Plastic film mulching has played an important role in Chinese agriculture, especially in vegetable production, but large amounts of film residues can accumulate in the soil. The present study investigated the effects of plastic film residues on the occurrence of soil PAEs and microbial activities using a batch pot experiment. PAE concentrations increased with increasing plastic film residues but the soil microbial carbon and nitrogen, enzyme activities and microbial diversity decreased significantly. At the end of the experiment the PAE concentrations were 0-2.02 mg kg(-1) in the different treatments. Soil microbial C and N, enzyme activities, AWCD value, and Shannon-Weaver and Simpson indices declined by about 28.9-76.2%, 14.9-59.0%, 4.9-22.7%, 23.0-42.0% and 1.8-18.7%, respectively. Soil microbial activity was positively correlated with soil PAE concentration, and soil PAE concentrations were impacted by plastic color and residue volume. Correlations among, and molecular mechanisms of, plastic film residues, PAE occurrence and microbial activity require further study.

  11. Effects of plastic film residues on occurrence of phthalates and microbial activity in soils.

    PubMed

    Wang, Jun; Lv, Shenghong; Zhang, Manyun; Chen, Gangcai; Zhu, Tongbin; Zhang, Shen; Teng, Ying; Christie, Peter; Luo, Yongming

    2016-05-01

    Plastic film mulching has played an important role in Chinese agriculture, especially in vegetable production, but large amounts of film residues can accumulate in the soil. The present study investigated the effects of plastic film residues on the occurrence of soil PAEs and microbial activities using a batch pot experiment. PAE concentrations increased with increasing plastic film residues but the soil microbial carbon and nitrogen, enzyme activities and microbial diversity decreased significantly. At the end of the experiment the PAE concentrations were 0-2.02 mg kg(-1) in the different treatments. Soil microbial C and N, enzyme activities, AWCD value, and Shannon-Weaver and Simpson indices declined by about 28.9-76.2%, 14.9-59.0%, 4.9-22.7%, 23.0-42.0% and 1.8-18.7%, respectively. Soil microbial activity was positively correlated with soil PAE concentration, and soil PAE concentrations were impacted by plastic color and residue volume. Correlations among, and molecular mechanisms of, plastic film residues, PAE occurrence and microbial activity require further study. PMID:26938679

  12. Chronic impact of tetracycline on nitrification kinetics and the activity of enriched nitrifying microbial culture.

    PubMed

    Katipoglu-Yazan, Tugce; Merlin, Christophe; Pons, Marie-Noëlle; Ubay-Cokgor, Emine; Orhon, Derin

    2015-04-01

    This study evaluated the chronic impact of tetracycline on biomass with enriched nitrifying community sustained in a lab-scale activated sludge system. For this purpose, a fill and draw reactor fed with 100 mg COD/L of peptone mixture and 50 mg N/L of ammonia was sustained at a sludge age of 15 days. At steady-state, the reactor operation was continued with a daily tetracycline dosing of 50 mg/L for more than 40 days, with periodic monitoring of the microbial composition, the nitrifying bacteria abundance, as well as the amoA and 16S rRNA gene activity, using molecular techniques. Changes in the kinetics of nitrification were quantified by modelling concentration profiles of major nitrogen fractions and oxygen uptake rate profiles derived from parallel batch experiments. Activated sludge modeling results indicated inhibitory impact of tetracycline on the growth of nitrifiers with a significant increase of the half saturation coefficients in corresponding rate equations. Tetracycline also inactivated biomass components of the enriched culture at a gradually increasing rate with time of exposure, leading to total collapse of nitrification. Molecular analyses revealed significant changes in the composition of the microbial community throughout the observation period. They also showed that continuous exposure to tetracycline inflicted significant reduction in amoA mRNA and 16S rRNA levels directly affecting nitrification. The chronic impact was much more pronounced on the ammonia oxidizing bacteria (AOB) community. These observations explained the basis of numerical changes identified in the growth kinetics of nitrifiers under stress conditions.

  13. Chronic impact of tetracycline on nitrification kinetics and the activity of enriched nitrifying microbial culture.

    PubMed

    Katipoglu-Yazan, Tugce; Merlin, Christophe; Pons, Marie-Noëlle; Ubay-Cokgor, Emine; Orhon, Derin

    2015-04-01

    This study evaluated the chronic impact of tetracycline on biomass with enriched nitrifying community sustained in a lab-scale activated sludge system. For this purpose, a fill and draw reactor fed with 100 mg COD/L of peptone mixture and 50 mg N/L of ammonia was sustained at a sludge age of 15 days. At steady-state, the reactor operation was continued with a daily tetracycline dosing of 50 mg/L for more than 40 days, with periodic monitoring of the microbial composition, the nitrifying bacteria abundance, as well as the amoA and 16S rRNA gene activity, using molecular techniques. Changes in the kinetics of nitrification were quantified by modelling concentration profiles of major nitrogen fractions and oxygen uptake rate profiles derived from parallel batch experiments. Activated sludge modeling results indicated inhibitory impact of tetracycline on the growth of nitrifiers with a significant increase of the half saturation coefficients in corresponding rate equations. Tetracycline also inactivated biomass components of the enriched culture at a gradually increasing rate with time of exposure, leading to total collapse of nitrification. Molecular analyses revealed significant changes in the composition of the microbial community throughout the observation period. They also showed that continuous exposure to tetracycline inflicted significant reduction in amoA mRNA and 16S rRNA levels directly affecting nitrification. The chronic impact was much more pronounced on the ammonia oxidizing bacteria (AOB) community. These observations explained the basis of numerical changes identified in the growth kinetics of nitrifiers under stress conditions. PMID:25616640

  14. Soil microbial biomass nitrogen and Beta-Glucosaminidase activity response to compaction, poultry litter application and cropping in a claypan soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Compaction-induced changes in soil physical properties may significantly affect soil microbial activity, especially nitrogen-cycling processes, in many agroecosystems. The objective of this study was to determine the effect of soil compaction on soil microbiological properties related to N in a clay...

  15. Copper speciation and microbial activity in long-term contaminated soils.

    PubMed

    Dumestre, A; Sauvé, S; McBride, M; Baveye, P; Berthelin, J

    1999-02-01

    Most soil quality guidelines do not distinguish among the various forms of metals in soils; insoluble, nonreactive, and nonbioavailable forms are deemed as hazardous as highly soluble, reactive, and toxic forms. The objective of this study was to better understand the long-term effects of copper on microorganisms in relation to its chemical speciation in the soil environment. Carbon mineralization processes and the global structure of different microbial communities (fungi, eubacteria, actinomycetes) are still affected after more than 50 years of copper contamination in 20 soils sampled from two different agricultural sites. The microbial respiration lag period (LP) preceding the beginning of mineralization process increases with the level of soil copper contamination and is not significantly affected by other environmental factors such as soil pH and soil organic matter (SOM) content. The total copper concentration showed the best correlation with the LP when each site is considered separately. However, when considering the whole set of data, soil solution free Cu2+ activity (pCu2+) is the best predictor of Cu toxicity determined by LP (quite likely because pCu2+ integrates the soil physicochemical variability). The maximum mineralization rate (MMR), even if well correlated with the pCu2+, appears not to be a good biomonitor of copper contamination in soils since it is highly sensitive to soil characteristics such as SOM content. This study emphasizes the importance of the physicochemical properties of the environment on soil heavy metal toxicity and on soil toxicological measurements. These properties must be characterized in soil toxicological studies with respect to (1) their interactions with heavy metals, and (2) their direct impact on the selected biological test. The measurement of pCu2+ to characterize the level of soil contamination and of lag period as a bioindicator of metal effects in the soil are recognized as useful tools for the evaluation of the

  16. Evaluation of microbial activity for long-term performance assessments of deep geologic nuclear waste repositories.

    SciTech Connect

    Francis, Arokiasamy J.; Wang, Yifeng

    2005-06-01

    Microorganisms are ubiquitous in subsurface environments and play a major role in the biogeochemical recycling of various elements. In this paper, we have developed a general approach for a systematic evaluation of microbial impact on the long-term performance of the repository. We have demonstrated that data on microbial population alone are not sufficient for the evaluation of microbial impact on repository performance and a sensible approach for such evaluation must be based on the consideration of environmental constraints on microbial reaction pathways. We have applied our approach to both the Yucca Mountain (YM) repository and the Waste Isolation Pilot Plant (WIPP). We have demonstrated that the effect of microbial activity on the near-field chemistry in the Yucca Mountain repository is negligible because of limited nutrient supply and harsh environmental conditions created by waste emplacement. Whereas for the WIPP, we have shown that, due to the presence of a large quantity of organic materials and nutrients in the wastes, a significant microbial activity can potentially be stimulated and its impact on repository performance can be evaluated with carefully designed incubation experiments coupled with performance assessment calculations. The impact of microbial gas generation on disposal room chemistry in the WIPP can be mitigated by introducing MgO as a backfill material.

  17. Soil moisture variations affect short-term plant-microbial competition for ammonium, glycine, and glutamate.

    PubMed

    Månsson, Katarina F; Olsson, Magnus O; Falkengren-Grerup, Ursula; Bengtsson, Göran

    2014-04-01

    We tested whether the presence of plant roots would impair the uptake of ammonium ([Formula: see text]), glycine, and glutamate by microorganisms in a deciduous forest soil exposed to constant or variable moisture in a short-term (24-h) experiment. The uptake of (15)NH4 and dual labeled amino acids by the grass Festuca gigantea L. and soil microorganisms was determined in planted and unplanted soils maintained at 60% WHC (water holding capacity) or subject to drying and rewetting. The experiment used a design by which competition was tested in soils that were primed by plant roots to the same extent in the planted and unplanted treatments. Festuca gigantea had no effect on microbial N uptake in the constant moist soil, but its presence doubled the microbial [Formula: see text] uptake in the dried and rewetted soil compared with the constant moist. The drying and rewetting reduced by half or more the [Formula: see text] uptake by F. gigantea, despite more than 60% increase in the soil concentration of [Formula: see text]. At the same time, the amino acid and [Formula: see text]-N became equally valued in the plant uptake, suggesting that plants used amino acids to compensate for the lower [Formula: see text] acquisition. Our results demonstrate the flexibility in plant-microbial use of different N sources in response to soil moisture fluctuations and emphasize the importance of including transient soil conditions in experiments on resource competition between plants and soil microorganisms. Competition between plants and microorganisms for N is demonstrated by a combination of removal of one of the potential competitors, the plant, and subsequent observations of the uptake of N in the organisms in soils that differ only in the physical presence and absence of the plant during a short assay. Those conditions are necessary to unequivocally test for competition.

  18. Metaproteomics: extracting and mining proteome information to characterize metabolic activities in microbial communities.

    PubMed

    Abraham, Paul E; Giannone, Richard J; Xiong, Weili; Hettich, Robert L

    2014-01-01

    Contemporary microbial ecology studies usually employ one or more "omics" approaches to investigate the structure and function of microbial communities. Among these, metaproteomics aims to characterize the metabolic activities of the microbial membership, providing a direct link between the genetic potential and functional metabolism. The successful deployment of metaproteomics research depends on the integration of high-quality experimental and bioinformatic techniques for uncovering the metabolic activities of a microbial community in a way that is complementary to other "meta-omic" approaches. The essential, quality-defining informatics steps in metaproteomics investigations are: (1) construction of the metagenome, (2) functional annotation of predicted protein-coding genes, (3) protein database searching, (4) protein inference, and (5) extraction of metabolic information. In this article, we provide an overview of current bioinformatic approaches and software implementations in metaproteome studies in order to highlight the key considerations needed for successful implementation of this powerful community-biology tool.

  19. Metaproteomics: extracting and mining proteome information to characterize metabolic activities in microbial communities.

    PubMed

    Abraham, Paul E; Giannone, Richard J; Xiong, Weili; Hettich, Robert L

    2014-01-01

    Contemporary microbial ecology studies usually employ one or more "omics" approaches to investigate the structure and function of microbial communities. Among these, metaproteomics aims to characterize the metabolic activities of the microbial membership, providing a direct link between the genetic potential and functional metabolism. The successful deployment of metaproteomics research depends on the integration of high-quality experimental and bioinformatic techniques for uncovering the metabolic activities of a microbial community in a way that is complementary to other "meta-omic" approaches. The essential, quality-defining informatics steps in metaproteomics investigations are: (1) construction of the metagenome, (2) functional annotation of predicted protein-coding genes, (3) protein database searching, (4) protein inference, and (5) extraction of metabolic information. In this article, we provide an overview of current bioinformatic approaches and software implementations in metaproteome studies in order to highlight the key considerations needed for successful implementation of this powerful community-biology tool. PMID:24939130

  20. Metaproteomics: extracting and mining proteome information to characterize metabolic activities in microbial communities

    SciTech Connect

    Abraham, Paul E; Giannone, Richard J; Xiong, Weili; Hettich, Robert {Bob} L

    2014-01-01

    Contemporary microbial ecology studies usually employ one or more omics approaches to investigate the structure and function of microbial communities. Among these, metaproteomics aims to characterize the metabolic activities of the microbial membership, providing a direct link between the genetic potential and functional metabolism. The successful deployment of metaproteomics research depends on the integration of high-quality experimental and bioinformatic techniques for uncovering the metabolic activities of a microbial community in a way that is complementary to other meta-omic approaches. The essential, quality-defining informatics steps in metaproteomics investigations are: (1) construction of the metagenome, (2) functional annotation of predicted protein-coding genes, (3) protein database searching, (4) protein inference, and (5) extraction of metabolic information. In this article, we provide an overview of current bioinformatic approaches and software implementations in metaproteome studies in order to highlight the key considerations needed for successful implementation of this powerful community-biology tool.

  1. Activated sludge microbial community responses to single-walled carbon nanotubes: community structure does matter.

    PubMed

    Ma, Qiao; Qu, Yuanyuan; Shen, Wenli; Wang, Jingwei; Zhang, Zhaojing; Zhang, Xuwang; Zhou, Hao; Zhou, Jiti

    2015-01-01

    The ecological effects of carbon nanotubes (CNTs) have been a worldwide research focus due to their extensive release and accumulation in environment. Activated sludge acting as an important gathering place will inevitably encounter and interact with CNTs, while the microbial responses have been rarely investigated. Herein, the activated sludges from six wastewater treatment plants were acclimated and treated with single-walled carbon nanotubes (SWCNTs) under identical conditions. Illumina high-throughput sequencing was applied to in-depth analyze microbial changes and results showed SWCNTs differently perturbed the alpha diversity of the six groups (one increase, two decrease, three no change). Furthermore, the microbial community structures were shifted, and specific bacterial performance in each group was different. Since the environmental and operational factors were identical in each group, it could be concluded that microbial responses to SWCNTs were highly depended on the original community structures. PMID:25909735

  2. Biomineral formation as a biosignature for microbial activities Precambrian cherts

    NASA Astrophysics Data System (ADS)

    Rincón Tomás, Blanca; Mühlen, Dominik; Hoppert, Michael; Reitner, Joachim

    2015-04-01

    In recent anoxic sediments manganese(II)carbonate minerals (e.g., rhodochrosite, kutnohorite) derive mainly from the reduction of manganese(IV) compounds by microbial anaerobic respiration. Small particles of rhodochrosite in stromatolite-like features in the Dresser chert Fm (Pilbara supergroup, W-Australia), associated with small flakes of kerogen, account for biogenic formation of the mineral in this early Archaean setting. Contrastingly, the formation of huge manganese-rich (carbonate) deposits requires effective manganese redox cycling, also conducted by various microbial processes, mainly requiring conditions of the early and late Proterozoic (Kirschvink et al., 2000; Nealson and Saffrani 1994). However, putative anaerobic pathways like microbial nitrate-dependent manganese oxidation (Hulth et al., 1999), anoxygenic photosynthesis (Johnson et al., 2013) and oxidation in UV light may facilitate manganese cycling even in a reducing atmosphere. Thus manganese redox cycling might have been possible even before the onset of oxygenic photosynthesis. Hence, there are several ways how manganese carbonates could have been formed biogenically and deposited in Precambrian sediments. Thus, the minerals may be suitable biosignatures for microbial redox processes in many respects. The hyperthermophilic archaeon Pyrobaculum islandicum produces rhodochrosite during growth on hydrogen and organic compounds and may be a putative model organism for the reduction of Mn(IV). References Hulth S, Aller RC, Gilbert F. (1999) Geochim Cosmochim Acta, 63, 49-66. Johnson JE, Webb SM, Thomas K, Ono S, Kirschvink JL, Fischer WW. (2013) Proc Natl Acad Sci USA, 110, 11238-11243. Kirschvink JL, Gaidos EJ, Bertani LE, Beukes NJ, Gutzmer J, Maepa LN, Steinberger LE. (2000) Proc Natl Acad Sci USA, 97, 1400-1405. Nealson KH, Saffarini D. (1994). Annu Rev Microbiol, 48, 311-343.

  3. Multiple microbial activities for volatile organic compounds reduction by biofiltration.

    PubMed

    Civilini, Marcello

    2006-07-01

    In the northeast of Italy, high volatile organic carbon (VOC) emissions originate from small-medium companies producing furniture. In these conditions it is difficult to propose a single, efficient, and economic system to reduce pollution. Among the various choices, the biofiltration method could be a good solution, because microbial populations possess multiple VOC degradation potentials used to oxidize these compounds to CO2. Starting from the air emissions of a typical industrial wood-painting plant, a series of experiments studied in vitro microbial degradation of each individual VOC. Isolated strains were then added to a laboratory-scale biofiltration apparatus filled with an organic matrix, and the different VOC behavior demonstrated the potential of single and/or synergic microbial removal actions. When a single substrate was fed, the removal efficiency of a Pseudomonas aeruginosa inoculated reactor was 1.1, 1.17, and 0.33 g m(-3) hr(-1), respectively, for xylene, toluene, and ethoxy propyl acetate. A VOC mixture composed of butyl acetate, ethyl acetate, diacetin alcohol, ethoxy propanol acetate, methyl ethyl ketone, methyl isobutyl ketone, toluene, and xylene was then fed into a 2-m(3) reactor treating 100 m3 hr(-1) of contaminated air. The reactor was filled with the same mixture of organic matrix, enriched with all of the isolated strains together. During reactor study, different VOC loading rates were used, and the behavior was evaluated continuously. After a short acclimation period, the removal efficiency was > 65% at VOC load of 150-200 g m(-3) hr(-1). Quantification of removal efficiencies and VOC speciation confirmed the relationship among removal efficiencies, compound biodegradability, and the dynamic transport of each mixture component within the organic matrix. Samples of the fixed bed were withdrawn at different intervals and the heterogeneous microbial community evaluated for both total and differential compound counts. PMID:16878585

  4. Soil Enzyme Activities, Microbial Communities and Carbon and Nitrogen Availability in Organic Agroecosystems Across an Intensively-Managed Agricultural Landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variability in the activity and composition of soil microbial communities may have important implications for the suite of microbially-derived ecosystem functions upon which agricultural systems rely, particularly organic agriculture. An on-farm approach was used to investigate microbial communitie...

  5. Soil properties affecting toxicity of zinc to soil microbial properties in laboratory-spiked and field-contaminated soils.

    PubMed

    Smolders, Erik; Buekers, Jurgen; Oliver, Ian; McLaughlin, Mike J

    2004-11-01

    The effects of soil properties and zinc (Zn) availability on the toxicity of Zn to soil microbial processes are poorly understood. Three soil microbial processes--potential nitrification rate (PNR), substrate (glucose)-induced respiration (SIR), and a maize residue respiration (MRR)--were measured in 15 European topsoils (pH 3.0-7.5; total Zn 7-191 mg/kg) that were freshly spiked with ZnCl2. The Zn toxicity thresholds of 20 to 50% effective concentrations (EC20s and EC50s) based on total concentrations of Zn in soil varied between 5- and 26-fold among soils, depending on the assay. The Zn toxicity thresholds based on Zn concentrations in soil solution varied at least 10-fold more than corresponding total metal thresholds. Soil pH had no significant effect on soil total Zn toxicity thresholds, whereas significant positive correlations were found between these thresholds and background Zn for the PNR and SIR test (r = 0.74 and 0.71, respectively; log-log correlations). No such trend was found for the MRR test. Soil solution-based thresholds showed highly significant negative correlations with soil pH for all assays that might be explained by competition of H+ for binding sites, as demonstrated for aquatic species. The microbial assays were also applied to soils collected under galvanized pylons (three sites) where concentrations of total Zn were up to 2,100 to 3,700 mg Zn/kg. Correlations between concentrations of total Zn and microbial responses were insignificant at all sites even though spiking reference samples to equivalent concentrations reduced microbial activities up to more than 10-fold. Differences in response between spiked and field soils are partly but not completely attributed to the large differences in concentrations of Zn in soil solution. We conclude that soil pH has no significant effect on Zn toxicity to soil microbial processes in laboratory-spiked soils, and we suggest that community tolerance takes place at both background and elevated Zn

  6. Coarse Woody Debris Increases Microbial Community Functional Diversity but not Enzyme Activities in Reclaimed Oil Sands Soils

    PubMed Central

    Kwak, Jin-Hyeob; Chang, Scott X.; Naeth, M. Anne; Schaaf, Wolfgang

    2015-01-01

    Forest floor mineral soil mix (FMM) and peat mineral soil mix (PMM) are cover soils commonly used for upland reclamation post open-pit oil sands mining in northern Alberta, Canada. Coarse woody debris (CWD) can be used to regulate soil temperature and water content, to increase organic matter content, and to create microsites for the establishment of microorganisms and vegetation in upland reclamation. We studied the effects of CWD on soil microbial community level physiological profile (CLPP) and soil enzyme activities in FMM and PMM in a reclaimed landscape in the oil sands. This experiment was conducted with a 2 (FMM vs PMM) × 2 (near CWD vs away from CWD) factorial design with 6 replications. The study plots were established with Populus tremuloides (trembling aspen) CWD placed on each plot between November 2007 and February 2008. Soil samples were collected within 5 cm from CWD and more than 100 cm away from CWD in July, August and September 2013 and 2014. Microbial biomass was greater (p<0.05) in FMM than in PMM, in July, and August 2013 and July 2014, and greater (p<0.05) near CWD than away from CWD in FMM in July and August samplings. Soil microbial CLPP differed between FMM and PMM (p<0.01) according to a principal component analysis and CWD changed microbial CLPP in FMM (p<0.05) but not in PMM. Coarse woody debris increased microbial community functional diversity (average well color development in Biolog Ecoplates) in both cover soils (p<0.05) in August and September 2014. Carbon degrading soil enzyme activities were greater in FMM than in PMM (p<0.05) regardless of distance from CWD but were not affected by CWD. Greater microbial biomass and enzyme activities in FMM than in PMM will increase organic matter decomposition and nutrient cycling, improving plant growth. Enhanced microbial community functional diversity by CWD application in upland reclamation has implications for accelerating upland reclamation after oil sands mining. PMID:26618605

  7. Coarse Woody Debris Increases Microbial Community Functional Diversity but not Enzyme Activities in Reclaimed Oil Sands Soils.

    PubMed

    Kwak, Jin-Hyeob; Chang, Scott X; Naeth, M Anne; Schaaf, Wolfgang

    2015-01-01

    Forest floor mineral soil mix (FMM) and peat mineral soil mix (PMM) are cover soils commonly used for upland reclamation post open-pit oil sands mining in northern Alberta, Canada. Coarse woody debris (CWD) can be used to regulate soil temperature and water content, to increase organic matter content, and to create microsites for the establishment of microorganisms and vegetation in upland reclamation. We studied the effects of CWD on soil microbial community level physiological profile (CLPP) and soil enzyme activities in FMM and PMM in a reclaimed landscape in the oil sands. This experiment was conducted with a 2 (FMM vs PMM) × 2 (near CWD vs away from CWD) factorial design with 6 replications. The study plots were established with Populus tremuloides (trembling aspen) CWD placed on each plot between November 2007 and February 2008. Soil samples were collected within 5 cm from CWD and more than 100 cm away from CWD in July, August and September 2013 and 2014. Microbial biomass was greater (p<0.05) in FMM than in PMM, in July, and August 2013 and July 2014, and greater (p<0.05) near CWD than away from CWD in FMM in July and August samplings. Soil microbial CLPP differed between FMM and PMM (p<0.01) according to a principal component analysis and CWD changed microbial CLPP in FMM (p<0.05) but not in PMM. Coarse woody debris increased microbial community functional diversity (average well color development in Biolog Ecoplates) in both cover soils (p<0.05) in August and September 2014. Carbon degrading soil enzyme activities were greater in FMM than in PMM (p<0.05) regardless of distance from CWD but were not affected by CWD. Greater microbial biomass and enzyme activities in FMM than in PMM will increase organic matter decomposition and nutrient cycling, improving plant growth. Enhanced microbial community functional diversity by CWD application in upland reclamation has implications for accelerating upland reclamation after oil sands mining. PMID:26618605

  8. Persistently Active Microbial Molecules Prolong Innate Immune Tolerance In Vivo

    PubMed Central

    Lu, Mingfang; Varley, Alan W.; Munford, Robert S.

    2013-01-01

    Measures that bolster the resolution phase of infectious diseases may offer new opportunities for improving outcome. Here we show that inactivation of microbial lipopolysaccharides (LPS) can be required for animals to recover from the innate immune tolerance that follows exposure to Gram-negative bacteria. When wildtype mice are exposed to small parenteral doses of LPS or Gram-negative bacteria, their macrophages become reprogrammed (tolerant) for a few days before they resume normal function. Mice that are unable to inactivate LPS, in contrast, remain tolerant for several months; during this time they respond sluggishly to Gram-negative bacterial challenge, with high mortality. We show here that prolonged macrophage reprogramming is maintained in vivo by the persistence of stimulatory LPS molecules within the cells' in vivo environment, where naïve cells can acquire LPS via cell-cell contact or from the extracellular fluid. The findings provide strong evidence that inactivation of a stimulatory microbial molecule can be required for animals to regain immune homeostasis following parenteral exposure to bacteria. Measures that disable microbial molecules might enhance resolution of tissue inflammation and help restore innate defenses in individuals recovering from many different infectious diseases. PMID:23675296

  9. Experimental factors affecting PCR-based estimates of microbial species richness and evenness

    SciTech Connect

    Engelbrektson, Anna; Kunin, Victor; Wrighton, Kelly C.; Zvenigorodsky, Natasha; Chen, Feng; Ochman, Howard; Hugenholtz, Philip

    2009-12-01

    Pyrosequencing of 16S rRNA gene amplicons for microbial community profiling can, for equivalent costs, yield greater than two orders of magnitude more sensitivity than traditional PCR-cloning and Sanger sequencing. With this increased sensitivity and the ability to analyze multiple samples in parallel, it has become possible to evaluate several technical aspects of PCRbased community structure profiling methods. We tested the effect of amplicon length and primer pair on estimates of species richness number of species and evenness relative abundance of species by assessing the potentially tractable microbial community residing in the termite hindgut. Two regions of the 16S rRNA gene were sequenced from one of two common priming sites, spanning the V1-V2 or V8 regions, using amplicons ranging n length from 352 to 1443 bp. Our results demonstrate that both amplicon length and primer pair markedly influence estimates of richness and evenness. However, estimates of species evenness are consistent among different primer pairs targeting the same region. These results highlight the importance of experimental methodology when comparing diversity estimates across communities.

  10. Changes in microbial activity of soils during the natural restoration of abandoned lands in central Russia

    NASA Astrophysics Data System (ADS)

    Ovsepyan, Lilit; Mostovaya, Anna; Lopes de Gerenyu, Valentin; Kurganova, Irina

    2015-04-01

    Most changes in land use affect significantly the amount of soil organic carbon (SOC) and alter the nutrition status of soil microbial community. The arable lands withdrawal induced usually the carbon sequestration in soil, the significant shifts in quality of soil organic matter and structure of microbial community. This study was aimed to determine the microbial activity of the abandoned lands in Central Russia due to the process of natural self-restoration. For the study, two representative chronosequences were selected in Central Russia: (1) deciduous forest area, DFA (Moscow region, 54o49N'; 37o34'E; Haplic Luvisols) and (2) forest steppe area, FSA (Belgorod region 50o36'N, 36o01'E Luvic Phaeozems). Each chronosequence included current arable, abandoned lands of different age, and forest plots. The total soil organic carbon (Corg, automatic CHNS analyzer), carbon immobilized in microbial biomass (Cmic, SIR method), and respiratory activity (RA) were determined in the topsoil (0-5, 5-10, 10-20 and 20-30 cm layers) for each plots. Relationships between Corg, Cmic, and RA were determined by liner regression method. Our results showed that the conversion of croplands to the permanent forest induced the progressive accumulation Corg, Cmic and acceleration of RA in the top 10-cm layer for both chronosequences. Carbon stock increased from 24.1 Mg C ha-1 in arable to 45.3 Mg C ha-1 in forest soil (Luvic Phaeozems, Belgorod region). In Haplic Luvisols (Moscow region), SOC build up was 2 time less: from 13.5 Mg C ha-1 in arable to 27.9 Mg C ha-1 in secondary forest. During post-agrogenic evolution, Cmic also increased significantly: from 0.34 to 1.43 g C kg-1 soil in Belgorod region and from 0.34 to 0.64 g C kg-1 soil in Moscow region. RA values varied widely in soils studied: from 0.54-0.63 mg C kg-1h-1 in arable plots to 2.02-3.4 mg C kg-1h-1 in forest ones. The close correlations between Cmic, RA and Corg in the top 0-5cm layer (R2 = 0.81-0.90; P<0.01-0.05) were

  11. Effect of fire on soil microbial composition and activity in a Pinus canariensis forest and over time recovery

    NASA Astrophysics Data System (ADS)

    Ramírez Rojas, Irene; Fernández Lugo, Silvia; Arévalo Sierra, Jose Ramon; Pérez Fernández, María

    2016-04-01

    Wildfires are recurrent disturbances to forest ecosystems of Pinus canariensis, but their effects on soil microbial communities are not well characterized and have not previously been compared directly. Effects of fires on soil biotic properties are strongly dependent on the intensity of the fire, as well as on the type of soil and vegetation cover. This study aims at developing a comprehensive picture of the soil and vegetation dynamics to natural fries in an experiment comprising prescribed burning. The study was conducted at sites with similar soil, climatic, and other properties in a Canary pine forest in the Canary Islands, Spain. Soil microbial communities were assessed following four treatments: control, burnt soil the day after the fire, burnt soil three months after the fire and burnt soil six months after the. Burn treatments were conducted by the stuff from Cabildo de Canarias (Spain) on the 4th and 5th of June 2014. As a general rule, the organic carbon and the microbial biomass tend to decrease in the surface horizon after the fire, but the system responds increasing microbial activities and restoring soil variables in the subsequent months after the burning. Microbial biomass carbon significantly decreased in the burnt soils with their maximum negative effect immediately after the fire and during autumn, six months after the fire. Microbial biomass nitrogen also decreased in the burnt site immediately after the fire but increased in the following months, probably because of microbial assimilation of the increased amounts of available NH4+ and NO3‑ due to burning. Bacterial community composition was analyzed by metagenomics analyses Illumina showing strong variations amongst horizons and burning treatment both in total numbers and their composition. Changes in plant community were also monitored at the level of germination and plant recovery. Although fire negatively affects germination, seedling survival improves by increased growth rates of

  12. Effect of fire on soil microbial composition and activity in a Pinus canariensis forest and over time recovery

    NASA Astrophysics Data System (ADS)

    Ramírez Rojas, Irene; Fernández Lugo, Silvia; Arévalo Sierra, Jose Ramon; Pérez Fernández, María

    2016-04-01

    Wildfires are recurrent disturbances to forest ecosystems of Pinus canariensis, but their effects on soil microbial communities are not well characterized and have not previously been compared directly. Effects of fires on soil biotic properties are strongly dependent on the intensity of the fire, as well as on the type of soil and vegetation cover. This study aims at developing a comprehensive picture of the soil and vegetation dynamics to natural fries in an experiment comprising prescribed burning. The study was conducted at sites with similar soil, climatic, and other properties in a Canary pine forest in the Canary Islands, Spain. Soil microbial communities were assessed following four treatments: control, burnt soil the day after the fire, burnt soil three months after the fire and burnt soil six months after the. Burn treatments were conducted by the stuff from Cabildo de Canarias (Spain) on the 4th and 5th of June 2014. As a general rule, the organic carbon and the microbial biomass tend to decrease in the surface horizon after the fire, but the system responds increasing microbial activities and restoring soil variables in the subsequent months after the burning. Microbial biomass carbon significantly decreased in the burnt soils with their maximum negative effect immediately after the fire and during autumn, six months after the fire. Microbial biomass nitrogen also decreased in the burnt site immediately after the fire but increased in the following months, probably because of microbial assimilation of the increased amounts of available NH4+ and NO3- due to burning. Bacterial community composition was analyzed by metagenomics analyses Illumina showing strong variations amongst horizons and burning treatment both in total numbers and their composition. Changes in plant community were also monitored at the level of germination and plant recovery. Although fire negatively affects germination, seedling survival improves by increased growth rates of seedlings

  13. Litter supply as a driver of microbial activity and community structure on decomposing leaves: a test in experimental streams.

    PubMed

    Frossard, Aline; Gerull, Linda; Mutz, Michael; Gessner, Mark O

    2013-08-01

    Succession of newly created landscapes induces profound changes in plant litter supplied to streams. Grasses dominate inputs into open-land streams, whereas tree litter is predominant in forested streams. We set out to elucidate whether the activity and structure of microbial communities on decomposing leaves are determined by litter quality (i.e., grass or tree leaves colonized) or whether changes during riparian succession affecting litter standing stocks on the stream bed play an overriding role. We used 15 outdoor experimental streams to simulate changes in litter supplies reflecting five stages of riparian succession: (i) a biofilm stage with no litter, (ii) an open-land stage characterized by grass litter inputs, (iii) a transitional stage with a mix of grass and tree litter, (iv) an early forested stage with tree litter, and (v) an advanced forested stage with 2.5 times the amount of tree litter. Microbial activities on tree (Betula pendula) and grass (Calamagrostis epigejos) litter were unaffected by either the quantity or type of litter supplied to the experimental streams (i.e., litter standing stock) but differed between the two litter types. This was in stark contrast with bacterial and fungal community structure, which markedly differed on grass and tree litter and, to a lesser extent, also among streams receiving different litter inputs. These patterns reveal distinct responses of microbial community structure and activity to the bulk litter available in streams but consistent responses to the litter type colonized.

  14. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter.

    PubMed

    Žifčáková, Lucia; Větrovský, Tomáš; Howe, Adina; Baldrian, Petr

    2016-01-01

    Understanding the ecology of coniferous forests is very important because these environments represent globally largest carbon sinks. Metatranscriptomics, microbial community and enzyme analyses were combined to describe the detailed role of microbial taxa in the functioning of the Picea abies-dominated coniferous forest soil in two contrasting seasons. These seasons were the summer, representing the peak of plant photosynthetic activity, and late winter, after an extended period with no photosynthate input. The results show that microbial communities were characterized by a high activity of fungi especially in litter where their contribution to microbial transcription was over 50%. Differences in abundance between summer and winter were recorded for 26-33% of bacterial genera and < 15% of fungal genera, but the transcript profiles of fungi, archaea and most bacterial phyla were significantly different among seasons. Further, the seasonal differences were larger in soil than in litter. Most importantly, fungal contribution to total microbial transcription in soil decreased from 33% in summer to 16% in winter. In particular, the activity of the abundant ectomycorrhizal fungi was reduced in winter, which indicates that plant photosynthetic production was likely one of the major drivers of changes in the functioning of microbial communities in this coniferous forest.

  15. Quantifying microbial activity in deep subsurface sediments using a tritium based hydrognease enzyme assay

    NASA Astrophysics Data System (ADS)

    Adhikari, R.; Nickel, J.; Kallmeyer, J.

    2012-12-01

    Microbial life is widespread in Earth's subsurface and estimated to represent a significant fraction of Earth's total living biomass. However, very little is known about subsurface microbial activity and its fundamental role in biogeochemical cycles of carbon and other biologically important elements. Hydrogen is one of the most important elements in subsurface anaerobic microbial metabolism. Heterotrophic and chemoautotrophic microorganisms use hydrogen in their metabolic pathways. They either consume or produce protons for ATP synthesis. Hydrogenase (H2ase) is a ubiquitous intracellular enzyme that catalyzes the interconversion of molecular hydrogen and/or water into protons and electrons. The protons are used for the synthesis of ATP, thereby coupling energy generating metabolic processes to electron acceptors such as CO2 or sulfate. H2ase enzyme targets a key metabolic compound in cellular metabolism therefore the assay can be used as a measure for total microbial activity without the need to identify any specific metabolic process. Using the highly sensitive tritium assay we measured H2ase enzyme activity in the organic-rich sediments of Lake Van, a saline, alkaline lake in eastern Turkey, in marine sediments of the Barents Sea and in deep subseafloor sediments from the Nankai Trough. H2ase activity could be quantified at all depths of all sites but the activity distribution varied widely with depth and between sites. At the Lake Van sites H2ase activity ranged from ca. 20 mmol H2 cm-3d-1 close to the sediment-water interface to 0.5 mmol H2 cm-3d-1 at a depth of 0.8 m. In samples from the Barents Sea H2ase activity ranged between 0.1 to 2.5 mmol H2 cm-3d-1 down to a depth of 1.60 m. At all sites the sulfate reduction rate profile followed the upper part of the H2ase activity profile until sulfate reduction reached the minimum detection limit (ca. 10 pmol cm-3d-1). H2ase activity could still be quantified after the decline of sulfate reduction, indicating that

  16. Microbial provinces in the subseafloor.

    PubMed

    Schrenk, Matthew O; Huber, Julie A; Edwards, Katrina J

    2010-01-01

    The rocks and sediments of the oceanic subsurface represent a diverse mosaic of environments potentially inhabited by microorganisms. Understanding microbial ecosystems in subseafloor environments confounds standard ecological descriptions in part because we have difficulty elucidating and describing the scale of relevant processes. Habitat characteristics impact microbial activities and growth, which in turn affect microbial diversity, net production, and global biogeochemical cycles. Herein we provide descriptions of subseafloor microbial provinces, broadly defined as geologically and geographically coherent regions of the subseafloor that may serve as potential microbial habitats. The purpose of this review is to summarize and refine criteria for the definition and delineation of distinct subseafloor microbial habitats to aid in their exploration. This review and the criteria we outline aim to develop a unified framework to improve our understanding of subseafloor microbial ecology, enable quantification of geomicrobial processes, and facilitate their accurate assimilation into biogeochemical models. PMID:21141666

  17. Factors affecting the microbial populations at full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants in The Netherlands.

    PubMed

    López-Vázquez, Carlos M; Hooijmans, Christine M; Brdjanovic, Damir; Gijzen, Huub J; van Loosdrecht, Mark C M

    2008-05-01

    The influence of operating and environmental conditions on the microbial populations of the enhanced biological phosphorus removal (EBPR) process at seven full-scale municipal activated sludge wastewater treatment plants (WWTPs) in The Netherlands was studied. Data from the selected WWTPs concerning process configuration, operating and environmental conditions were compiled. The EBPR activity from each plant was determined by execution of anaerobic-anoxic-aerobic batch tests using fresh activated sludge. Fractions of Accumulibacter as potential phosphorus accumulating organisms (PAO), and Competibacter, Defluviicoccus-related microorganisms and Sphingomonas as potential glycogen accumulating organisms (GAO) were quantified using fluorescence in situ hybridization (FISH). The relationships among plant process configurations, operating parameters, environmental conditions, EBPR activity and microbial populations fractions were evaluated using a statistical approach. A well-defined and operated denitrification stage and a higher mixed liquor pH value in the anaerobic stage were positively correlated with the occurrence of Accumulibacter. A well-defined denitrification stage also stimulated the development of denitrifying PAO (DPAO). A positive correlation was observed between Competibacter fractions and organic matter concentrations in the influent. Nevertheless, Competibacter did not cause a major effect on the EBPR performance. The observed Competibacter fractions were not in the range that would have led to EBPR deterioration. Likely, the low average sewerage temperature (12+/-2 degrees C) limited their proliferation. Defluviicoccus-related microorganisms were seen only in negligible fractions in a few plants (<0.1% as EUB), whereas Sphingomonas were not observed.

  18. Charcoal produced by prescribed fire increases dissolved organic carbon and soil microbial activity

    NASA Astrophysics Data System (ADS)

    Poon, Cheryl; Jenkins, Meaghan; Bell, Tina; Adams, Mark

    2014-05-01

    In Australian forests fire is an important driver of carbon (C) storage. When biomass C is combusted it is transformed into vegetation residue (charcoal) and deposited in varying amounts and forms onto soil surfaces. The C content of charcoal is high but is largely in a chemically stable form of C, which is highly resistance to microbial decomposition. We conducted two laboratory incubations to examine the influence of charcoal on soil microbial activity as indicated by microbial respiration. Seven sites were chosen in mixed species eucalypt forest in Victoria, Australia. Soil was sampled prior to burning to minimise the effects of heating or addition of charcoal during the prescribed burn. Charcoal samples were collected from each site after the burn, homogenised and divided into two size fractions. Prior to incubation, soils were amended with the two size fractions (<1 and 1-4.75 mm) and at two rates of amount (2.5 and 5% by soil dry weight). Charcoal-amended soils were incubated in the laboratory for 86 d, microbial respiration was measured nine times at day 1, 3, 8, 15, 23, 30, 45, 59 and 86 d. We found that addition of charcoal resulted in faster rates of microbial respiration compared to unamended soil. Fastest rates of microbial respiration in all four treatments were measured 1 d after addition of charcoal (up to 12 times greater than unamended soil). From 3 to 8 d, respiration rates in all four treatments decreased and only treatments with greater charcoal addition (5%) remained significantly faster than unamended soil. From 15 d to 86 d, all treatments had respiration rates similar to unamended soil. Overall, adding greater amount of charcoal (5%) resulted in a larger cumulative amount of CO2 released over the incubation period when compared to unamended soil. The second laboratory incubation focused on the initial changes in soil nutrient and microbial respiration after addition of charcoal over a 72 h period. Charcoal (<2 mm) was added at rate of 5% to

  19. Analytical applications of microbial fuel cells. Part II: Toxicity, microbial activity and quantification, single analyte detection and other uses.

    PubMed

    Abrevaya, Ximena C; Sacco, Natalia J; Bonetto, Maria C; Hilding-Ohlsson, Astrid; Cortón, Eduardo

    2015-01-15

    Microbial fuel cells were rediscovered twenty years ago and now are a very active research area. The reasons behind this new activity are the relatively recent discovery of electrogenic or electroactive bacteria and the vision of two important practical applications, as wastewater treatment coupled with clean energy production and power supply systems for isolated low-power sensor devices. Although some analytical applications of MFCs were proposed earlier (as biochemical oxygen demand sensing) only lately a myriad of new uses of this technology are being presented by research groups around the world, which combine both biological-microbiological and electroanalytical expertises. This is the second part of a review of MFC applications in the area of analytical sciences. In Part I a general introduction to biological-based analytical methods including bioassays, biosensors, MFCs design, operating principles, as well as, perhaps the main and earlier presented application, the use as a BOD sensor was reviewed. In Part II, other proposed uses are presented and discussed. As other microbially based analytical systems, MFCs are satisfactory systems to measure and integrate complex parameters that are difficult or impossible to measure otherwise, such as water toxicity (where the toxic effect to aquatic organisms needed to be integrated). We explore here the methods proposed to measure toxicity, microbial metabolism, and, being of special interest to space exploration, life sensors. Also, some methods with higher specificity, proposed to detect a single analyte, are presented. Different possibilities to increase selectivity and sensitivity, by using molecular biology or other modern techniques are also discussed here.

  20. Evaluation of normalized energy recovery (NER) in microbial fuel cells affected by reactor dimensions and substrates.

    PubMed

    Xiao, Li; Ge, Zheng; Kelly, Patrick; Zhang, Fei; He, Zhen

    2014-04-01

    The objective of this study is to provide an initial evaluation of normalized energy recovery (NER - a new parameter for presenting energy performance) in microbial fuel cells (MFCs) through investigation of the effects of reactor dimensions and anode substrates. Although the larger-size MFCs generally have lower maximum power densities, their maximum NER is comparable to that of the smaller MFCs at the same anolyte flow rate. The mixed messages obtained from the MFC size tests suggest that MFCs can be further scaled up without decreasing energy recovery under certain conditions. The low-strength substrates seem to be more suitable for MFC treatment of wastewater, in terms of both energy recovery and organic removal. However, because the MFCs could not achieve the maximum NER and the maximum organic removal efficiency at the same time, one must determine a major goal for MFCs treating wastewater between energy recovery and contaminant removal.

  1. Does the essential oil of Lippia sidoides Cham. (pepper-rosmarin) affect its endophytic microbial community?

    PubMed Central

    2013-01-01

    Background Lippia sidoides Cham., also known as pepper-rosmarin, produces an essential oil in its leaves that is currently used by the pharmaceutical, perfumery and cosmetic industries for its antimicrobial and aromatic properties. Because of the antimicrobial compounds (mainly thymol and carvacrol) found in the essential oil, we believe that the endophytic microorganisms found in L. sidoides are selected to live in different parts of the plant. Results In this study, the endophytic microbial communities from the stems and leaves of four L. sidoides genotypes were determined using cultivation-dependent and cultivation-independent approaches. In total, 145 endophytic bacterial strains were isolated and further grouped using either ERIC-PCR or BOX-PCR, resulting in 76 groups composed of different genera predominantly belonging to the Gammaproteobacteria. The endophytic microbial diversity was also analyzed by PCR-DGGE using 16S rRNA-based universal and group-specific primers for total bacteria, Alphaproteobacteria, Betaproteobacteria and Actinobacteria and 18S rRNA-based primers for fungi. PCR-DGGE profile analysis and principal component analysis showed that the total bacteria, Alphaproteobacteria, Betaproteobacteria and fungi were influenced not only by the location within the plant (leaf vs. stem) but also by the presence of the main components of the L. sidoides essential oil (thymol and/or carvacrol) in the leaves. However, the same could not be observed within the Actinobacteria. Conclusion The data presented here are the first step to begin shedding light on the impact of the essential oil in the endophytic microorganisms in pepper-rosmarin. PMID:23387945

  2. Increased nitrogen deposition did not affect the composition and turnover of plant and microbial biomarkers in forest soil density fractions

    NASA Astrophysics Data System (ADS)

    Griepentrog, Marco; Bodé, Samuel; Boeckx, Pascal; Hagedorn, Frank; Wiesenberg, Guido L. B.; Schmidt, Michael W. I.

    2013-04-01

    Increased atmospheric nitrogen (N) deposition and elevated CO2 concentrations affect many forests and their ecosystem functions, including organic matter cycling in soils, the largest carbon pool of terrestrial ecosystems. However, it is still not clear how, and what the underlying mechanisms are. Specific molecules of plant and microbial origin (biomarkers) might respond differently to N deposition, depending on their internal N content. Microbial cell-wall-constituents with high-N content like amino sugars are reliable biomarkers to distinguish between fungal- and bacterial-derived organic residues. Individual lipids are plant-specific biomarkers that lack N in their molecular structure. Here, we tested the effects of elevated CO2 and increased N deposition on the dynamics of plant and microbial biomarkers by studying their composition and turnover in forest soil density fractions. Furthermore, we tested the hypothesis that these biomarkers respond differently to increased N deposition, depending on their internal N content. We used soil samples from a 4-year elevated CO2 and N deposition experiment in model forest ecosystems (open-top chambers), that were fumigated with ambient and 13C-depleted CO2 and treated with two levels of 15N-labeled fertilizer. Bulk soil was separated into free light fraction, occluded light fraction and heavy fraction by density fractionation and ultrasonic dispersion. The heavy fraction was further particle-size fractionated with 20 μm as a cut-off. We determined carbon and N concentrations and their isotopic compositions (δ13C, δ15N) within bulk soil and density fractions. Therein, we extracted and quantified individual amino sugars and lipids and conducted compound-specific stable-isotope-analysis using GC- and LC-IRMS. Results show that amino sugars were mainly stabilized in association with soil minerals. Especially bacterial amino sugars were preferentially associated with soil minerals, exemplified by a consistent decrease

  3. Natural oil slicks fuel surface water microbial activities in the northern Gulf of Mexico.

    PubMed

    Ziervogel, Kai; D'Souza, Nigel; Sweet, Julia; Yan, Beizhan; Passow, Uta

    2014-01-01

    We conducted a series of roller tank incubations with surface seawater from the Green Canyon oil reservoir, northern Gulf of Mexico, amended with either a natural oil slick (GCS-oil) or pristine oil. The goal was to test whether bacterial activities of natural surface water communities facilitate the formation of oil-rich marine snow (oil snow). Although oil snow did not form during any of our experiments, we found specific bacterial metabolic responses to the addition of GCS-oil that profoundly affected carbon cycling within our 4-days incubations. Peptidase and β-glucosidase activities indicative of bacterial enzymatic hydrolysis of peptides and carbohydrates, respectively, were suppressed upon the addition of GCS-oil relative to the non-oil treatment, suggesting that ascending oil and gas initially inhibits bacterial metabolism in surface water. Biodegradation of physically dispersed GCS-oil components, indicated by the degradation of lower molecular weight n-alkanes as well as the rapid transformation of particulate oil-carbon (C: N >40) into the DOC pool, led to the production of carbohydrate- and peptide-rich degradation byproducts and bacterial metabolites such as transparent exopolymer particles (TEP). TEP formation was highest at day 4 in the presence of GCS-oil; in contrast, TEP levels in the non-oil treatment already peaked at day 2. Cell-specific enzymatic activities closely followed TEP concentrations in the presence and absence of GCS-oil. These results demonstrate that the formation of oil slicks and activities of oil-degrading bacteria result in a temporal offset of microbial cycling of organic matter, affecting food web interactions and carbon cycling in surface waters over cold seeps.

  4. Natural oil slicks fuel surface water microbial activities in the northern Gulf of Mexico

    PubMed Central

    Ziervogel, Kai; D'souza, Nigel; Sweet, Julia; Yan, Beizhan; Passow, Uta

    2014-01-01

    We conducted a series of roller tank incubations with surface seawater from the Green Canyon oil reservoir, northern Gulf of Mexico, amended with either a natural oil slick (GCS-oil) or pristine oil. The goal was to test whether bacterial activities of natural surface water communities facilitate the formation of oil-rich marine snow (oil snow). Although oil snow did not form during any of our experiments, we found specific bacterial metabolic responses to the addition of GCS-oil that profoundly affected carbon cycling within our 4-days incubations. Peptidase and β-glucosidase activities indicative of bacterial enzymatic hydrolysis of peptides and carbohydrates, respectively, were suppressed upon the addition of GCS-oil relative to the non-oil treatment, suggesting that ascending oil and gas initially inhibits bacterial metabolism in surface water. Biodegradation of physically dispersed GCS-oil components, indicated by the degradation of lower molecular weight n-alkanes as well as the rapid transformation of particulate oil-carbon (C: N >40) into the DOC pool, led to the production of carbohydrate- and peptide-rich degradation byproducts and bacterial metabolites such as transparent exopolymer particles (TEP). TEP formation was highest at day 4 in the presence of GCS-oil; in contrast, TEP levels in the non-oil treatment already peaked at day 2. Cell-specific enzymatic activities closely followed TEP concentrations in the presence and absence of GCS-oil. These results demonstrate that the formation of oil slicks and activities of oil-degrading bacteria result in a temporal offset of microbial cycling of organic matter, affecting food web interactions and carbon cycling in surface waters over cold seeps. PMID:24847314

  5. Microbial activities for the bioremediation of mercury contamination

    SciTech Connect

    Barkay, T.; Saouter, E.; Turner, R.R.

    1995-12-31

    Methylmercury (MeHg) accumulation by aquatic biota could be reduced by stimulating bacterial degradation of MeHg and the reduction of Hg(II) to volatile Hg{sup 0}. Reduction of HG(II) affects MeHg production by substrate limitation. The potential of bacterial reduction of Hg(II) to reduce MeHg production was investigated using a contaminated pond, Reality Lake, in Oak Ridge, TN, as a model system. A HG(II) resistant isolate, strain Aeromonas hydrophila KT20 originally isolated from RL, stimulated (p<0.05) the rate of HG(II) removal from pond water as compared to an uninoculated control in shake flask experiments. Inoculation of a microcosm simulating the geochemical cycling of mercury in the pond, with strain KT20 (at 10{sup 5} cells/ml), resulted in a 4- to 5-fold increase in the flux of Hg{sup 0} through the water-air boundary. However, the evolved Hg{sup 0} accounted for only 5% of total mercury in the microcosm, too little to significantly influence MeHg production, However, shake flask experiments suggested that in situ HG(II) reduction could be further stimulated by increasing the number of active bacteria. Thus, enhancing bacterial reduction of HG(II) is a serious possibility that warrants additional investigation.

  6. Minimum Energy Requirements for Sustained Microbial Activity in Anoxic Sediments

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christoper S.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Currently understood mechanisms of biochemical energy conservation dictate that, in order to be biologically useful, energy must be available to organisms in "quanta" equal to, at minimum one-third to one-fifth of the energy required to synthesize ATP in vivo. The existence of this biological energy quantum means that a significant fraction of the chemical amp on Earth cannot be used to drive biological productivity, and places a fundamental thermodynamic constraint on the origins, evolution, and distribution of life. We examined the energy requirements of intact microbial assemblages in anoxic sediments from Cape Lookout Bight, NC, USA, using dissolved hydrogen concentrations as a non-invasive probe. In this system, the thermodynamics of metabolic processes occurring inside microbial cells is reflected quantitatively by H2 concentrations measured outside those cells. We find that methanogenic archaea are supported by energy yields as small as 10 kJ per mol, about half the quantity calculated from studies of microorganisms in culture. This finding implies that a significantly broader range of geologic and chemical niches might be exploited by microorganisms than would otherwise be expected.

  7. Response of microbial activities and diversity to PAHs contamination at coal tar contaminated land

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaohui; Sun, Yujiao; Ding, Aizhong; Zhang, Dan; Zhang, Dayi

    2015-04-01

    Coal tar is one of the most hazardous and concerned organic pollutants and the main hazards are polycyclic aromatic hydrocarbons (PAHs). The indigenous microorganisms in soils are capable to degrade PAHs, with essential roles in biochemical process for PAHs natural attenuation. This study investigated 48 soil samples (from 8 depths of 6 boreholes) in Beijing coking and chemistry plant (China) and revealed the correlation between PAHs contamination, soil enzyme activities and microbial community structure, by 16S rRNA denaturing gradient gel electrophoresis (DGGE). At the site, the key contaminants were identified as naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene and anthracene, and the total PAHs concentration ranged from 0.1 to 923.9 mg/kg dry soil. The total PAHs contamination level was positively correlated (p<0.05) with the bacteria count (0.9×107-14.2×107 CFU/mL), catalase activities (0.554-6.230 mL 0.02 M KMnO4/g•h) and dehydrogenase activities (1.9-30.4 TF μg/g•h soil), showing the significant response of microbial population and degrading functions to the organic contamination in soils. The PAHs contamination stimulated the PAHs degrading microbes and promoted their biochemical roles in situ. The positive relationship between bacteria count and dehydrogenase activities (p<0.05) suggested the dominancy of PAHs degrading bacteria in the microbial community. More interestingly, the microbial community deterioration was uncovered via the decline of microbial biodiversity (richness from 16S rRNA DGGE) against total PAHs concentration (p<0.05). Our research described the spatial profiles of PAHs contamination and soil microbial functions at the PAHs heavily contaminated sites, offering deeper understanding on the roles of indigenous microbial community in natural attenuation process.

  8. Gamma irradiation of sorghum flour: Effects on microbial inactivation, amylase activity, fermentability, viscosity and starch granule structure

    NASA Astrophysics Data System (ADS)

    Mukisa, Ivan M.; Muyanja, Charles M. B. K.; Byaruhanga, Yusuf B.; Schüller, Reidar B.; Langsrud, Thor; Narvhus, Judith A.

    2012-03-01

    Malted and un-malted sorghum ( Sorghum bicolor (L.) Moench) flour was gamma irradiated with a dose of 10 kGy and then re-irradiated with 25 kGy. The effects of irradiation on microbial decontamination, amylase activity, fermentability (using an amylolytic L. plantarum MNC 21 strain), starch granule structure and viscosity were determined. Standard methods were used during determinations. The 10 kGy dose had no effect on microbial load of un-malted flour but reduced that of malted flour by 3 log cycles. Re-irradiation resulted in complete decontamination. Irradiation of malt caused a significant ( p<0.05) reduction in alpha and beta amylase activity (22% and 32%, respectively). Irradiation of un-malted flour increased the rates of utilization of glucose and maltose by 53% and 100%, respectively, during fermentation. However, microbial growth, rate of lactic acid production, final lactic acid concentration and pH were not affected. Starch granules appeared normal externally even after re-irradiation, however, granules ruptured and dissolved easily after hydration and gelatinization. Production of high dry matter density porridge (200 g dry matter/L) with a viscosity of 3500 cP was achieved by irradiation of un-malted flout at 10 kGy. Gamma irradiation can be used to decontaminate flours and could be utilized to produce weaning porridge from sorghum.

  9. Monitoring the Perturbation of Soil and Groundwater Microbial Communities Due to Pig Production Activities

    PubMed Central

    Hong, Pei-Ying; Yannarell, Anthony C.; Dai, Qinghua; Ekizoglu, Melike

    2013-01-01

    This study aimed to determine if biotic contaminants originating from pig production farms are disseminated into soil and groundwater microbial communities. A spatial and temporal sampling of soil and groundwater in proximity to pig production farms was conducted, and quantitative PCR (Q-PCR) was utilized to determine the abundances of tetracycline resistance genes (i.e., tetQ and tetZ) and integrase genes (i.e., intI1 and intI2). We observed that the abundances of tetZ, tetQ, intI1, and intI2 in the soils increased at least 6-fold after manure application, and their abundances remained elevated above the background for up to 16 months. Q-PCR further determined total abundances of up to 5.88 × 109 copies/ng DNA for tetZ, tetQ, intI1, and intI2 in some of the groundwater wells that were situated next to the manure lagoon and in the facility well used to supply water for one of the farms. We further utilized 16S rRNA-based pyrosequencing to assess the microbial communities, and our comparative analyses suggest that most of the soil samples collected before and after manure application did not change significantly, sharing a high Bray-Curtis similarity of 78.5%. In contrast, an increase in Bacteroidetes and sulfur-oxidizing bacterial populations was observed in the groundwaters collected from lagoon-associated groundwater wells. Genera associated with opportunistic human and animal pathogens, such as Acinetobacter, Arcobacter, Yersinia, and Coxiella, were detected in some of the manure-treated soils and affected groundwater wells. Feces-associated bacteria such as Streptococcus, Erysipelothrix, and Bacteroides were detected in the manure, soil, and groundwater ecosystems, suggesting a perturbation of the soil and groundwater environments by invader species from pig production activities. PMID:23396341

  10. Synthetic fuel oil effects on microbial activity and nitrogen transformations in soil

    SciTech Connect

    Ward, M.H.; Saylor, G.S.; Luxmoore, R.J.

    1984-12-01

    The effects of a solvent refined coal oil (SRC-II) on microbial processes in a Captina silt loam soil were examined. The soil samples were maintained under environmental conditions favorable for most aerobic microbial activities. Soil was treated with four oil concentrations ranging from 0.2 to 8.6% (wt/wt). Oxygen uptake rates, total viable cell counts, numbers of nitrifying bacteria, and inorganic nitrogen concentrations were monitored before oil addition and at regular intervals for three months thereafter. Organic carbon, total nitrogen, and soil pH were also measured before and after application of the oil. The SRC-II coal oil effected soil processes at all treatment levels. The lowest oil concentration (0.2%) decreased numbers of nitrifying bacteria while increasing total viable cell numbers and net nitrogen mineralization. The higher oil concentrations reduced oxygen uptake rates and total viable cells as well as nitrifier numbers. Soil treated with a 1.7% oil concentration showed significant increases in respiration rates and cell densities after two months, while no significant increases were observed at oil levels of 3.4 and 8.6%. The application of the coal oil to soil samples raised the carbon to nitrogen ratio of the soil. The sum of nitrate and ammonium nitrogen in the oil-treated soils was never significantly lower than the control soil levels, indicating that nitrogen was not limiting to decomposition. However, the toxicity of the oil toward the nitrifying bacteria resulted in an accumulation of ammonium in treated soils. This may affect plant establishment on soils contaminated with a synthetic fuel oil. 104 references, 7 figures, 15 tables.

  11. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells.

    PubMed

    Berry, David; Mader, Esther; Lee, Tae Kwon; Woebken, Dagmar; Wang, Yun; Zhu, Di; Palatinszky, Marton; Schintlmeister, Arno; Schmid, Markus C; Hanson, Buck T; Shterzer, Naama; Mizrahi, Itzhak; Rauch, Isabella; Decker, Thomas; Bocklitz, Thomas; Popp, Jürgen; Gibson, Christopher M; Fowler, Patrick W; Huang, Wei E; Wagner, Michael

    2015-01-13

    Microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. In this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D2O) combined with Raman microspectroscopy. Incorporation of D2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labeling pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics.

  12. The Dynamic Arctic Snow Pack: An Unexplored Environment for Microbial Diversity and Activity

    PubMed Central

    Larose, Catherine; Dommergue, Aurélien; Vogel, Timothy M.

    2013-01-01

    The Arctic environment is undergoing changes due to climate shifts, receiving contaminants from distant sources and experiencing increased human activity. Climate change may alter microbial functioning by increasing growth rates and substrate use due to increased temperature. This may lead to changes of process rates and shifts in the structure of microbial communities. Biodiversity may increase as the Arctic warms and population shifts occur as psychrophilic/psychrotolerant species disappear in favor of more mesophylic ones. In order to predict how ecological processes will evolve as a function of global change, it is essential to identify which populations participate in each process, how they vary physiologically, and how the relative abundance, activity and community structure will change under altered environmental conditions. This review covers aspects of the importance and implication of snowpack in microbial ecology emphasizing the diversity and activity of these critical members of cold zone ecosystems. PMID:24832663

  13. Effect of membrane bioreactor configurations on sludge structure and microbial activity.

    PubMed

    Clouzot, L; Roche, N; Marrot, B

    2011-01-01

    The aim of this paper was to determine the effect of two different membrane bioreactor (MBR) configurations (external/immersed) on sludge structure and microbial activity. Sludge structure was deduced from rheological measurements. The high shear stress induced by the recirculation pump in the external MBR was shown to result in decreasing viscosity due to activated sludge (AS) deflocculation. Besides, soluble microbial products (SMP) release was higher in the external MBR (5 mgCOD gMLVSS(-1)) than in the immersed configuration (2 mgCOD gMLVSS(-1)). Microbial activity was followed from respirometry tests by focusing on the distinction between heterotrophs and autotrophs. An easier autotrophic microbe development was then observed in the immersed MBR compared to the external one. However, the external MBR was shown to allow better heterotrophic microbe development. PMID:20947340

  14. Microbial Community Dynamics and Activity Link to Indigo Production from Indole in Bioaugmented Activated Sludge Systems

    PubMed Central

    Deng, Jie; Deng, Ye; Van Nostrand, Joy D.; Wu, Liyou; He, Zhili; Qin, Yujia; Zhou, Jiti; Zhou, Jizhong

    2015-01-01

    Biosynthesis of the popular dyestuff indigo from indole has been comprehensively studied using pure cultures, but less has been done to characterize the indigo production by microbial communities. In our previous studies, a wild strain Comamonas sp. MQ was isolated from activated sludge and the recombinant Escherichia coli nagAc carrying the naphthalene dioxygenase gene (nag) from strain MQ was constructed, both of which were capable of producing indigo from indole. Herein, three activated sludge systems, G1 (non-augmented control), G2 (augmented with Comamonas sp. MQ), and G3 (augmented with recombinant E. coli nagAc), were constructed to investigate indigo production. After 132-day operation, G3 produced the highest yields of indigo (99.5 ± 3.0 mg/l), followed by G2 (27.3 ± 1.3 mg/l) and G1 (19.2 ± 1.2 mg/l). The microbial community dynamics and activities associated with indigo production were analyzed by Illumina Miseq sequencing of 16S rRNA gene amplicons. The inoculated strain MQ survived for at least 30 days, whereas E. coli nagAc was undetectable shortly after inoculation. Quantitative real-time PCR analysis suggested the abundance of naphthalene dioxygenase gene (nagAc) from both inoculated strains was strongly correlated with indigo yields in early stages (0–30 days) (P < 0.001) but not in later stages (30–132 days) (P > 0.10) of operation. Based on detrended correspondence analysis (DCA) and dissimilarity test results, the communities underwent a noticeable shift during the operation. Among the four major genera (> 1% on average), the commonly reported indigo-producing populations Comamonas and Pseudomonas showed no positive relationship with indigo yields (P > 0.05) based on Pearson correlation test, while Alcaligenes and Aquamicrobium, rarely reported for indigo production, were positively correlated with indigo yields (P < 0.05). This study should provide new insights into our understanding of indigo bio-production by microbial communities

  15. Microbial colonization affects the efficiency of photovoltaic panels in a tropical environment.

    PubMed

    Shirakawa, Marcia A; Zilles, Roberto; Mocelin, Andre; Gaylarde, Christine C; Gorbushina, Anna; Heidrich, Gabriele; Giudice, Mauro C; Del Negro, Gilda M B; John, Vanderley M

    2015-07-01

    Sub-aerial biofilm (SAB) development on solar panels was studied in São Paulo. After 6, 12 and 18 months' exposure, photovoltaic panels were covered by increasing proportions of organic matter (42%, 53% and 58%, respectively). Fungi were an important component of these biofilms; very few phototrophs were found. Major microorganisms detected were melanised meristematic ascomycetes and pigmented bacterial genera Arthrobacter and Tetracoccus. While diverse algae, cyanobacteria and bacteria were identified in biofilms at 6 and 12 months, diversity at a later stage was reduced to that typical for SAB: the only fungal group detected in 18 month biofilm was the meristematic Dothideomycetes and the only phototrophs Ulothrix and Chlorella. Photovoltaic modules showed significant power reductions after 6, 12 (both 7%) and 18 (11%) months. The lack of difference in power reduction between 6 and 12 months reflects the dual nature of soiling, which can result from the deposition of particulates as well as from SAB fouling. Although 12-month old SAB demonstrated an almost 10-fold increase in fungal colonization and a higher organic content, the larger non-microbial particles (above 10 μm), which were important for efficiency reduction of lightly-biofilmed panels, were removed by high rainfall just before the 12-month sampling.

  16. Microbial colonization affects the efficiency of photovoltaic panels in a tropical environment.

    PubMed

    Shirakawa, Marcia A; Zilles, Roberto; Mocelin, Andre; Gaylarde, Christine C; Gorbushina, Anna; Heidrich, Gabriele; Giudice, Mauro C; Del Negro, Gilda M B; John, Vanderley M

    2015-07-01

    Sub-aerial biofilm (SAB) development on solar panels was studied in São Paulo. After 6, 12 and 18 months' exposure, photovoltaic panels were covered by increasing proportions of organic matter (42%, 53% and 58%, respectively). Fungi were an important component of these biofilms; very few phototrophs were found. Major microorganisms detected were melanised meristematic ascomycetes and pigmented bacterial genera Arthrobacter and Tetracoccus. While diverse algae, cyanobacteria and bacteria were identified in biofilms at 6 and 12 months, diversity at a later stage was reduced to that typical for SAB: the only fungal group detected in 18 month biofilm was the meristematic Dothideomycetes and the only phototrophs Ulothrix and Chlorella. Photovoltaic modules showed significant power reductions after 6, 12 (both 7%) and 18 (11%) months. The lack of difference in power reduction between 6 and 12 months reflects the dual nature of soiling, which can result from the deposition of particulates as well as from SAB fouling. Although 12-month old SAB demonstrated an almost 10-fold increase in fungal colonization and a higher organic content, the larger non-microbial particles (above 10 μm), which were important for efficiency reduction of lightly-biofilmed panels, were removed by high rainfall just before the 12-month sampling. PMID:25909440

  17. [Electrode configuration as a factor affecting electricity generation in air-cathode microbial fuel cell].

    PubMed

    You, Shi-Jie; Zhao, Qing-Liang; Jiang, Jun-Qiu

    2006-11-01

    In air-cathode microbial fuel cell (ACMFC), oxygen diffused into the reactor from cathode without PEM can be reduced as electron acceptor via aerobic respiration by facultative microorganisms, resulting in either a decreasing of power generation or electron loss. In this study, ACMFC1 and ACMFC2 with different electrode configuration were compared to examine power density and electron recovery from glucose. The results showed that ACMFC1 generated a maximum power density of 3 070mW/m3 with internal resistance of 302.141 and anode potential of -323mV; while maximum power density of 9 800mW/m3 for ACMFC2 was obtained with internal resistance of 107.79omega and anode potential of -442mV. ACMFC2 could sustain generating electricity for nearly 220 h (ERE of 30.1%), comparing with ACMFC1 of less than 50 h (ERE of 9.78%) under batch operation. Therefore, an improved design for electrode configuration of ACMFC can be performed to generate higher power with low internal resistance, meanwhile, achieve increasing electron recovery simultaneously.

  18. Key design factors affecting microbial community composition and pathogenic organism removal in horizontal subsurface flow constructed wetlands.

    PubMed

    Morató, Jordi; Codony, Francesc; Sánchez, Olga; Pérez, Leonardo Martín; García, Joan; Mas, Jordi

    2014-05-15

    Constructed wetlands constitute an interesting option for wastewater reuse since high concentrations of contaminants and pathogenic microorganisms can be removed with these natural treatment systems. In this work, the role of key design factors which could affect microbial removal and wetland performance, such as granular media, water depth and season effect was evaluated in a pilot system consisting of eight parallel horizontal subsurface flow (HSSF) constructed wetlands treating urban wastewater from Les Franqueses del Vallès (Barcelona, Spain). Gravel biofilm as well as influent and effluent water samples of these systems were taken in order to detect the presence of bacterial indicators such as total coliforms (TC), Escherichia coli, fecal enterococci (FE), Clostridium perfringens, and other microbial groups such as Pseudomonas and Aeromonas. The overall microbial inactivation ratio ranged between 1.4 and 2.9 log-units for heterotrophic plate counts (HPC), from 1.2 to 2.2 log units for total coliforms (TC) and from 1.4 to 2.3 log units for E. coli. The presence of fine granulometry strongly influenced the removal of all the bacterial groups analyzed. This effect was significant for TC (p=0.009), E. coli (p=0.004), and FE (p=0.012). Shallow HSSF constructed wetlands were more effective for removing Clostridium spores (p=0.039), and were also more efficient for removing TC (p=0.011) and E. coli (p=0.013) when fine granulometry was used. On the other hand, changes in the total bacterial community from gravel biofilm were examined by using denaturing gradient gel electrophoresis (DGGE) and sequencing of polymerase chain reaction (PCR)-amplified fragments of the 16S rRNA gene recovered from DGGE bands. Cluster analysis of the DGGE banding pattern from the different wetlands showed that microbial assemblages separated according to water depth, and sequences of different phylogenetic groups, such as Alpha, Beta and Delta-Proteobacteria, Nitrospirae, Bacteroidetes

  19. Soluble microbial products (SMPs) release in activated sludge systems: a review

    PubMed Central

    2012-01-01

    This review discusses the characterization, production and implications of soluble microbial products (SMPs) in biological wastewater treatment. The precise definition of SMPs is open to talk about, but is currently regarded as “the pool of organic compounds that are released into solution from substrate metabolism and biomass decay”'. Some of the SMPs have been identified as humic acids, polysaccharides, proteins, amino acids, antibiotics, extracellular enzymes and structural components of cells and products of energy metabolism. They adversely affect the kinetic activity, flocculating and settling properties of sludge. This review outlines some important findings with regard to biodegradability and treatability of SMPs and also the effect of process parameters on their production. As SMPs are produced during biological treatment process, their trace amounts normally remain in the effluent that defines the highest COD removal efficiency. Their presence in effluent represents a high potential risk of toxic by-product formation during chlorine disinfection. Studies have indicated that among all wastewater post-treatment processes, the adsorption by granular activated carbon combined with biologically induced degradation is the most effective method for removal of SMPs. However, it may be concludes that the knowledge regarding SMPs is still under progress and more work is required to fully understand their contribution to the treatment process. PMID:23369231

  20. Promoting Uranium Immobilization by the Activities of Microbial Phosphatases

    SciTech Connect

    Martinez, Robert J.; Beazley, Melanie J.; Wilson, Jarad J.; Taillefert, Martial; Sobecky, Patricia A.

    2005-04-05

    The overall goal of this project is to examine the role of nonspecific phosphohydrolases present in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of radionuclides through the production of uranium [U(VI)] phosphate precipitates. Specifically, we hypothesize that the precipitation of U(VI) phosphate minerals may be promoted through the microbial release and/or accumulation of PO{sub 4}{sup 3-}. During this phase of the project we have been conducting assays to determine the effects of pH, inorganic anions and organic ligands on U(VI) mineral formation and precipitation when FRC bacterial isolates were grown in simulated groundwater medium. The molecular characterization of FRC isolates has also been undertaken during this phase of the project. Analysis of a subset of gram-positive FRC isolates cultured from FRC soils (Areas 1, 2 and 3) and background sediments have indicated a higher percentage of isolates exhibiting phosphatase phenotypes (i.e., in particular those surmised to be PO{sub 4}{sup 3-}-irrepressible) relative to isolates from the reference site. A high percentage of strains that exhibited such putatively PO{sub 4}{sup 3-}-irrepressible phosphatase phenotypes were also resistant to the heavy metals lead and cadmium. Previous work on FRC strains, including Arthrobacter, Bacillus and Rahnella spp., has demonstrated differences in tolerance to U(VI) toxicity (200 {micro}M) in the absence of organophosphate substrates. For example, Arthrobacter spp. exhibited the greatest tolerance to U(VI) while the Rahnella spp. have been shown to facilitate the precipitation of U(VI) from solution and the Bacillus spp. demonstrate the greatest sensitivity to acidic conditions and high concentrations of U(VI). PCR-based detection of FRC strains are being conducted to determine if non-specific acid phosphatases of the known molecular classes [i.e., classes A, B and C] are present in these FRC isolates. Additionally, these

  1. Influence of Deep Ocean Sewage Outfalls on the Microbial Activity of the Surrounding Sediment

    PubMed Central

    Novitsky, James A.; Karl, David M.

    1985-01-01

    The microbial activity near two deep ocean sewage outfalls off the coast of the island of Oahu, Hawaii, was characterized. Water samples and sediment samples to a depth of 4.5 cm were analyzed from an area of approximately 4.5 × 104 m2 surrounding the outfalls. Although the effluent water at both sites exhibited heterotrophic activity that was 2 orders of magnitude greater than water from a control site, ambient water samples taken within 1 m of the discharge ports exhibited activity only twice that of the control water. The heterotrophic activity of the outfall sediment was only elevated above that of the control site for surface samples collected within 10 m of the outfall. Likewise, the rates of microbial nucleic acid synthesis and carbon production in the sediment were only elevated immediately adjacent to the outfalls. Total microbial biomass, as determined by the ATP content of the sediment, varied spatially but was generally elevated at the outfall sites. The specific growth rates calculated for the sediment microbial populations, however, were not greater at the outfall sites. At one site the rocks surrounding the diffuser pipe were covered with copious amounts of slime that appeared to be composed entirely of microbial cells and filaments. This microbial mat was extremely active with respect to heterotrophic activity and biomass production. Overall, it appears that the impact of the sewage discharge on the ambient seawater microbiota is slight and that the effect on the sediment microbiota is confined to an area immediately adjacent to the diffuser ports. In the sand itself, the effect is limited to the upper 2 cm at most. PMID:16346944

  2. Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol.

    PubMed

    Elzobair, Khalid A; Stromberger, Mary E; Ippolito, James A; Lentz, Rodrick D

    2016-01-01

    Biochar can increase microbial activity, alter microbial community structure, and increase soil fertility in arid and semi-arid soils, but at relatively high rates that may be impractical for large-scale field studies. This contrasts with organic amendments such as manure, which can be abundant and inexpensive if locally available, and thus can be applied to fields at greater rates than biochar. In a field study comparing biochar and manure, a fast pyrolysis hardwood biochar (22.4 Mg ha(-1)), dairy manure (42 Mg ha(-1) dry wt), a combination of biochar and manure at the aforementioned rates, or no amendment (control) was applied to an Aridisol (n=3) in fall 2008. Plots were annually cropped to corn (Zea maize L.). Surface soils (0-30 cm) were sampled directly under corn plants in late June 2009 and early August 2012, and assayed for microbial community fatty acid methyl ester (FAME) profiles and six extracellular enzyme activities involved in soil C, N, and P cycling. Arbuscular mycorrhizal (AM) fungal colonization was assayed in corn roots in 2012. Biochar had no effect on microbial biomass, community structure, extracellular enzyme activities, or AM fungi root colonization of corn. In the short-term, manure amendment increased microbial biomass, altered microbial community structure, and significantly reduced the relative concentration of the AM fungal biomass in soil. Manure also reduced the percent root colonization of corn by AM fungi in the longer-term. Thus, biochar and manure had contrasting short-term effects on soil microbial communities, perhaps because of the relatively low application rate of biochar. PMID:26138708

  3. Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol.

    PubMed

    Elzobair, Khalid A; Stromberger, Mary E; Ippolito, James A; Lentz, Rodrick D

    2016-01-01

    Biochar can increase microbial activity, alter microbial community structure, and increase soil fertility in arid and semi-arid soils, but at relatively high rates that may be impractical for large-scale field studies. This contrasts with organic amendments such as manure, which can be abundant and inexpensive if locally available, and thus can be applied to fields at greater rates than biochar. In a field study comparing biochar and manure, a fast pyrolysis hardwood biochar (22.4 Mg ha(-1)), dairy manure (42 Mg ha(-1) dry wt), a combination of biochar and manure at the aforementioned rates, or no amendment (control) was applied to an Aridisol (n=3) in fall 2008. Plots were annually cropped to corn (Zea maize L.). Surface soils (0-30 cm) were sampled directly under corn plants in late June 2009 and early August 2012, and assayed for microbial community fatty acid methyl ester (FAME) profiles and six extracellular enzyme activities involved in soil C, N, and P cycling. Arbuscular mycorrhizal (AM) fungal colonization was assayed in corn roots in 2012. Biochar had no effect on microbial biomass, community structure, extracellular enzyme activities, or AM fungi root colonization of corn. In the short-term, manure amendment increased microbial biomass, altered microbial community structure, and significantly reduced the relative concentration of the AM fungal biomass in soil. Manure also reduced the percent root colonization of corn by AM fungi in the longer-term. Thus, biochar and manure had contrasting short-term effects on soil microbial communities, perhaps because of the relatively low application rate of biochar.

  4. Methods for determining the abundance, diversity and activity of soil microbial communities

    NASA Astrophysics Data System (ADS)

    Pereg, Lily

    2014-05-01

    The diversity and abundance of soil microbial communities play important roles in determining soil structure, quality and productivity. The past decade has seen an increase in the number and efficiency of methods for determining microbial diversity, abundance and function. Recognising that only a very small proportion of the soil microbial community can be cultured, most current studies use molecular techniques based on the 16S and 18S rRNA encoding sequences (DGGE, TRFLP, OFRG, ARISA, SSCP) as well as techniques based on the cellular composition of the microbes (PLFA composition). Recent developments include high-throughput sequencing and microarrays, representing major advances in microbial community analysis. While the diversity of microbes can be determined using DNA-based techniques, microbial activity changes under various conditions. Therefore, the analysis of soil function at any given time requires the analysis of gene expression using RNA-based techniques. Molecular techniques have tremendously advanced our knowledge in the field of soil microbiology, however, the limitations should not be underestimated. This presentation will critically review both the advantages and the limitations of techniques used in soil microbial analysis.

  5. Effects of soil type and farm management on soil ecological functional genes and microbial activities

    SciTech Connect

    Reeve, Jennifer; Schadt, Christopher Warren; Carpenter-Boggs, Lynne; Kang, S.; Zhou, Jizhong; Reganold, John P.

    2010-01-01

    Relationships between soil microbial diversity and soil function are the subject of much debate. Process-level analyses have shown that microbial function varies with soil type and responds to soil management. However, such measurements cannot determine the role of community structure and diversity in soil function. The goal of this study was to investigate the role of gene frequency and diversity, measured by microarray analysis, on soil processes. The study was conducted in an agro-ecosystem characterized by contrasting management practices and soil types. Eight pairs of adjacent commercial organic and conventional strawberry fields were matched for soil type, strawberry variety, and all other environmental conditions. Soil physical, chemical and biological analyses were conducted including functional gene microarrays (FGA). Soil physical and chemical characteristics were primarily determined by soil textural type (coarse vs fine-textured), but biological and FGA measures were more influenced by management (organic vs conventional). Organically managed soils consistently showed greater functional activity as well as FGA signal intensity (SI) and diversity. Overall FGA SI and diversity were correlated to total soil microbial biomass. Functional gene group SI and/or diversity were correlated to related soil chemical and biological measures such as microbial biomass, cellulose, dehydrogenase, ammonium and sulfur. Management was the dominant determinant of soil biology as measured by microbial gene frequency and diversity, which paralleled measured microbial processes.

  6. Nematicidal activity of microbial pigment from Serratia marcescens.

    PubMed

    Rahul, Suryawanshi; Chandrashekhar, Patil; Hemant, Borase; Chandrakant, Narkhede; Laxmikant, Shinde; Satish, Patil

    2014-01-01

    Ineffectiveness of available nematicides and the high damage caused by plant-parasitic nematodes result in the urgent need to find some natural remedy for their control. Bioactivity of the pigment extracted from Serratia marcescens was screened for controlling nematodes at their juvenile stage. Test pigment was found effective against juvenile stages of Radopholus similis and Meloidogyne javanica at low concentrations (LC50 values, 83 and 79 μg/mL, respectively) as compared with positive control of copper sulphate (LC50 values, 380 and 280 μg/mL, respectively). The pigment also exhibited inhibition on nematode egg-hatching ability. Characterisation of extracted pigment with TLC, FTIR, HPLC, HPTLC and spectroscopic analysis confirmed the presence of prodigiosin as a bioactive metabolite. Considering the sensory mechanism of pathogen recognition by nematodes, the use of microbial secondary metabolites can be effective for nematode control rather than using whole organism.

  7. Experimental evidence that microbial activity lowers the albedo of glacier surfaces: the cryoconite casserole experiment.

    NASA Astrophysics Data System (ADS)

    Musilova, M.; Tranter, M.; Takeuchi, N.; Anesio, A. M.

    2014-12-01

    Darkened glacier and ice sheet surfaces have lower albedos, absorb more solar radiation and consequently melt more rapidly. The increase in glacier surface darkening is an important positive feedback to warming global temperatures, leading to ever growing world-wide ice mass loss. Most studies focus primarily on glacial albedo darkening caused by the physical properties of snow and ice surfaces, and the deposition of dark impurities on glaciers. To date, however, the important effects of biological activity have not been included in most albedo reduction models. This study provides the first experimental evidence that microbial activity can significantly decrease the albedo of glacier surfaces. An original laboratory experiment, the cryoconite casserole, was designed to test the microbial darkening of glacier surface debris (cryoconite) under simulated Greenlandic summer conditions. It was found that minor fertilisation of the cryoconite (at nutrient concentrations typical of glacial ice melt) stimulated extensive microbial activity. Microbes intensified their organic carbon fixation and even mined phosphorous out of the glacier surface sediment. Furthermore, the microbial organic carbon production, accumulation and transformation caused the glacial debris to darken further by 17.3% reflectivity (albedo analogue). These experiments are consistent with the hypothesis that enhanced fertilisation by anthropogenic inputs results in substantial amounts of organic carbon fixation, debris darkening and ultimately to a considerable decrease in the ice albedo of glacier surfaces on global scales. The sizeable amounts of microbially produced glacier surface organic matter and nutrients can thus be a vital source of bioavailable nutrients for subglacial and downstream environments.

  8. Extracellular polymeric substances, microbial activity and microbial community of biofilm and suspended sludge at different divalent cadmium concentrations.

    PubMed

    Wang, Zichao; Gao, Mengchun; Wei, Junfeng; Ma, Kedong; Zhang, Jing; Yang, Yusuo; Yu, Shuping

    2016-04-01

    The differences between biofilm and suspended sludge (S-sludge) in extracellular polymeric substances (EPS), microbial activity, and microbial community in an anoxic-aerobic sequencing batch biofilm reactor (SBBR) at different concentrations of divalent cadmium (Cd(II)) were investigated. As the increase of Cd(II) concentration from 0 to 50mgL(-1), the specific ammonium oxidation rate (SAOR), specific nitrite oxidation rate (SNOR), and specific nitrate reduction rate (SNRR) of biofilm decreased from 4.85, 5.22 and 45mgNg(-1) VSSh(-1) to 1.54, 2.38 and 26mgNg(-1)VSSh(-1), respectively, and the SAOR, SNOR and SNRR of S-sludge decreased from 4.80, 5.02 and 34mgNg(-1)VSSh(-1) to 1.46, 2.20 and 17mgNg(-1)VSSh(-1), respectively. Biofilm had higher protein (PN) content in EPS than S-sludge. Contrast to S-sludge, biofilm could provide Nitrobacter vulgaris, beta proteobacterium INBAF015, and Pseudoxanthomonas mexicana with the favorable conditions of growth and reproduction. PMID:26829529

  9. Carbonate Precipitation through Microbial Activities in Natural Environment, and Their Potential in Biotechnology: A Review

    PubMed Central

    Zhu, Tingting; Dittrich, Maria

    2016-01-01

    Calcium carbonate represents a large portion of carbon reservoir and is used commercially for a variety of applications. Microbial carbonate precipitation, a by-product of microbial activities, plays an important metal coprecipitation and cementation role in natural systems. This natural process occurring in various geological settings can be mimicked and used for a number of biotechnologies, such as metal remediation, carbon sequestration, enhanced oil recovery, and construction restoration. In this study, different metabolic activities leading to calcium carbonate precipitation, their native environment, and potential applications and challenges are reviewed. PMID:26835451

  10. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon

    USGS Publications Warehouse

    Waldrop, M.P.; Zak, D.R.

    2006-01-01

    Recent evidence suggests that atmospheric nitrate (NO3- ) deposition can alter soil carbon (C) storage by directly affecting the activity of lignin-degrading soil fungi. In a laboratory experiment, we studied the direct influence of increasing soil NO 3- concentration on microbial C cycling in three different ecosystems: black oak-white oak (BOWO), sugar maple-red oak (SMRO), and sugar maple-basswood (SMBW). These ecosystems span a broad range of litter biochemistry and recalcitrance; the BOWO ecosystem contains the highest litter lignin content, SMRO had intermediate lignin content, and SMBW leaf litter has the lowest lignin content. We hypothesized that increasing soil solution NO 3- would reduce lignolytic activity in the BOWO ecosystem, due to a high abundance of white-rot fungi and lignin-rich leaf litter. Due to the low lignin content of litter in the SMBW, we further reasoned that the NO3- repression of lignolytic activity would be less dramatic due to a lower relative abundance of white-rot basidiomycetes; the response in the SMRO ecosystem should be intermediate. We increased soil solution NO3- concentrations in a 73-day laboratory incubation and measured microbial respiration and soil solution dissolved organic carbon (DOC) and phenolics concentrations. At the end of the incubation, we measured the activity of ??-glucosidase, N-acetyl-glucosaminidase, phenol oxidase, and peroxidase, which are extracellular enzymes involved with cellulose and lignin degradation. We quantified the fungal biomass, and we also used fungal ribosomal intergenic spacer analysis (RISA) to gain insight into fungal community composition. In the BOWO ecosystem, increasing NO 3- significantly decreased oxidative enzyme activities (-30% to -54%) and increased DOC (+32% upper limit) and phenolic (+77% upper limit) concentrations. In the SMRO ecosystem, we observed a significant decrease in phenol oxidase activity (-73% lower limit) and an increase in soluble phenolic concentrations

  11. Arctic Gypsum Endoliths: a biogeochemical characterization of a viable and active microbial community

    NASA Astrophysics Data System (ADS)

    Ziolkowski, L. A.; Mykytczuk, N. C. S.; Omelon, C. R.; Johnson, H.; Whyte, L. G.; Slater, G. F.

    2013-02-01

    evidence of microbial-mineral interaction, an alternative hypothesis is that the soluble and friable nature of the gypsum and harsh conditions lead to elevated erosion rates, limiting microbial residence times in this habitat. Regardless, this endolithic community represents a microbial system that does not rely on a nutrient pool from the host gypsum cap rock, instead receiving these elements from allochthonous debris to maintain a more diverse and active community than might have been predicted in the polar desert of the Canadian high Arctic.

  12. [Microbial activity and functional diversity in rhizosphere of cucumber under different subsurface drip irrigation scheduling].

    PubMed

    Li, Hua; He, Hong-Jun; Li, Teng-Fei; Zhang, Zi-Kun

    2014-08-01

    The effects of subsurface drip irrigation scheduling on microbial activity and functional diversity in rhizosphere of cucumber in solar greenhouse were studied in this paper. The results showed that the soil microbial biomass C and N, basal respiration, metabolic quotient and values of AWCD, Shannon and McIntosh indexes were increased at first and then decreased with the increase of irrigation water amount. The values of microbial C and N, basal respiration and metabolic quotient in I2 treatments were significantly higher than those in I1 treatments at the 0.8E(p) irrigation level. The numbers of bacteria, actinomyces and nitrogen-fixing bacteria, and the activities of urease, phosphatase, sucrase, catalase and polyhenoloxidase were significantly higher in the 0.8E(p) treatment than in the other treatments. The numbers of bacteria and nitrogen-fixing bacteria, the activities of urease, phosphatase and sucrase in I2 treatments were significantly higher than in I1 treatment, the actinomyces number and activities of catalase and polyhenoloxidase had no significant difference between I1 and I2 treatments, however, the fungi number in I2 treatments were significantly lower than in I2 treaments at the 0.8E(p) irrigation level. The microbial activity and functional diversity in rhizosphere of cucumber were strengthened in the I20.8E(p) treatment, meanwhile, the soil microflora was improved and the soil enzymes activities were enhanced, therefore, the cucumber growth was promoted as well.

  13. Characterizing drought-induced changes in active microbial communities and recently assimilated carbon transferred belowground in a forest understory

    NASA Astrophysics Data System (ADS)

    von Rein, Isabell; Kayler, Zachary; Gessler, Arthur

    2013-04-01

    Greenhouse gas induced global warming is expected to result in droughts of longer duration and higher intensity. Since droughts can disturb ecosystem interconnections, the investigation of ecosystem responses is crucial. Nonetheless, little is known about how changes in water availability affect ecosystem interconnections, e.g. the plant-microorganism response towards a drought event. We hypothesize that there is a shift in the microbial community structure and activity under drought when compared to a well-watered control. Moreover, we assume that changes seen at the microbial level are linked to plant carbon (C) assimilation and transport. We expect reduced C assimilation in plants under drought and a subsequent weakening in the coupling between the plant and belowground processes. How do microbial communities that depend on the rhizodeposited C provided by plants react to a reduction in exudate availability? To answer this question, three intact soil monoliths (70x70x20cm) with their natural understory vegetation were taken from a spruce forest in Hainich, Germany and transferred to a climate chamber. Half of the monoliths are exposed to drought whereas the other half is kept well-watered. The monoliths are pulse labeled with 13CO2 and the label is traced through the plant-soil system. Plants, roots and soil are sampled after labeling and analyzed for their isotopic composition. Pyrosequencing and PLFA-SIP (Phospholipid fatty acids stable isotope probing) are performed to detect changes in the microbial community structure and in the composition of the metabolically active microorganisms, respectively. We will discuss our first results concerning the effects of drought on understory carbon partitioning and the impact of drought on carbon availability to soil microorganisms.

  14. Corrugator activity confirms immediate negative affect in surprise.

    PubMed

    Topolinski, Sascha; Strack, Fritz

    2015-01-01

    The emotion of surprise entails a complex of immediate responses, such as cognitive interruption, attention allocation to, and more systematic processing of the surprising stimulus. All these processes serve the ultimate function to increase processing depth and thus cognitively master the surprising stimulus. The present account introduces phasic negative affect as the underlying mechanism responsible for this switch in operating mode. Surprising stimuli are schema-discrepant and thus entail cognitive disfluency, which elicits immediate negative affect. This affect in turn works like a phasic cognitive tuning switching the current processing mode from more automatic and heuristic to more systematic and reflective processing. Directly testing the initial elicitation of negative affect by surprising events, the present experiment presented high and low surprising neutral trivia statements to N = 28 participants while assessing their spontaneous facial expressions via facial electromyography. High compared to low surprising trivia elicited higher corrugator activity, indicative of negative affect and mental effort, while leaving zygomaticus (positive affect) and frontalis (cultural surprise expression) activity unaffected. Future research shall investigate the mediating role of negative affect in eliciting surprise-related outcomes.

  15. Corrugator activity confirms immediate negative affect in surprise

    PubMed Central

    Topolinski, Sascha; Strack, Fritz

    2015-01-01

    The emotion of surprise entails a complex of immediate responses, such as cognitive interruption, attention allocation to, and more systematic processing of the surprising stimulus. All these processes serve the ultimate function to increase processing depth and thus cognitively master the surprising stimulus. The present account introduces phasic negative affect as the underlying mechanism responsible for this switch in operating mode. Surprising stimuli are schema-discrepant and thus entail cognitive disfluency, which elicits immediate negative affect. This affect in turn works like a phasic cognitive tuning switching the current processing mode from more automatic and heuristic to more systematic and reflective processing. Directly testing the initial elicitation of negative affect by surprising events, the present experiment presented high and low surprising neutral trivia statements to N = 28 participants while assessing their spontaneous facial expressions via facial electromyography. High compared to low surprising trivia elicited higher corrugator activity, indicative of negative affect and mental effort, while leaving zygomaticus (positive affect) and frontalis (cultural surprise expression) activity unaffected. Future research shall investigate the mediating role of negative affect in eliciting surprise-related outcomes. PMID:25762956

  16. The effect of malathion on the activity, performance, and microbial ecology of activated sludge.

    PubMed

    Rauglas, Erik; Martin, Seth; Bailey, Kandace; Magnuson, Matthew; Phillips, Rebecca; Harper, Willie F

    2016-12-01

    This study evaluated the effect of a VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) surrogate (malathion) on the activity, performance, and ecology of activated sludge bioreactors. In the presence of malathion, the maximum observed respiration rates varied between 43 and 53 μg/O2 min, generally similar to the 49 μg O2/min rates observed in controls. Malathion did not alter the respiration ratio of O2 consumed-to-CO2 produced nor did it impact the shape of the oxygen consumption curves during respirometry. Shorter term (12 h) batch tests showed that both chemical oxygen demand (COD) and ammonia removal were not negatively impacted by the presence of 0.1-3 mg/L malathion. Longer term continuous addition (i.e. 40 days) of 0.1 mg/L of malathion also had no effect on COD and ammonia removal. In contrast to shorter term exposures, longer term continuous addition of 3 mg/L of malathion negatively impacted both COD and nitrogen removal and was associated with shifts in the abundance of species that are common to activated sludge. These results illustrate the impact that chemicals like malathion may have on COD removal, and nitrification, as well as the robustness of activated sludge microbial communities.

  17. The effect of malathion on the activity, performance, and microbial ecology of activated sludge.

    PubMed

    Rauglas, Erik; Martin, Seth; Bailey, Kandace; Magnuson, Matthew; Phillips, Rebecca; Harper, Willie F

    2016-12-01

    This study evaluated the effect of a VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) surrogate (malathion) on the activity, performance, and ecology of activated sludge bioreactors. In the presence of malathion, the maximum observed respiration rates varied between 43 and 53 μg/O2 min, generally similar to the 49 μg O2/min rates observed in controls. Malathion did not alter the respiration ratio of O2 consumed-to-CO2 produced nor did it impact the shape of the oxygen consumption curves during respirometry. Shorter term (12 h) batch tests showed that both chemical oxygen demand (COD) and ammonia removal were not negatively impacted by the presence of 0.1-3 mg/L malathion. Longer term continuous addition (i.e. 40 days) of 0.1 mg/L of malathion also had no effect on COD and ammonia removal. In contrast to shorter term exposures, longer term continuous addition of 3 mg/L of malathion negatively impacted both COD and nitrogen removal and was associated with shifts in the abundance of species that are common to activated sludge. These results illustrate the impact that chemicals like malathion may have on COD removal, and nitrification, as well as the robustness of activated sludge microbial communities. PMID:27594690

  18. Sub-soil microbial activity under rotational cotton crops in Australia

    NASA Astrophysics Data System (ADS)

    Polain, Katherine; Knox, Oliver; Wilson, Brian; Pereg, Lily

    2016-04-01

    Soil microbial communities contribute significantly to soil organic matter formation, stabilisation and destabilisation, through nutrient cycling and biodegradation. The majority of soil microbial research examines the processes occurring in the top 0 cm to 30 cm of the soil, where organic nutrients are easily accessible. In soils such as Vertosols, the high clay content causes swelling and cracking. When soil cracking is coupled with rain or an irrigation event, a flush of organic nutrients can move down the soil profile, becoming available for subsoil microbial community use and potentially making a significant contribution to nutrient cycling and biodegradation in soils. At present, the mechanisms and rates of soil nutrient turnover (such as carbon and nitrogen) at depth under cotton rotations are mostly speculative and the process-response relationships remain unclear, although they are undoubtedly underpinned by microbial activity. Our research aims to determine the contribution and role of soil microbiota to the accumulation, cycling and mineralisation of carbon and nitrogen through the whole root profile under continuous cotton (Gossypium hirsutum) and cotton-maize rotations in regional New South Wales, Australia. Through seasonal work, we have established both baseline and potential microbial activity rates from 0 cm to 100 cm down the Vertosol profile, using respiration and colourimetric methods. Further whole soil profile analyses will include determination of microbial biomass and isotopic carbon signatures using phospholipid fatty acid (PLFA) methodology, identification of microbial communities (sequencing) and novel experiments to investigate potential rates of nitrogen mineralisation and quantification of associated genes. Our preliminary observations and the hypotheses tested in this three-year study will be presented.

  19. Earthworms facilitate the stabilization of pelletized dewatered sludge through shaping microbial biomass and activity and community.

    PubMed

    Fu, Xiaoyong; Cui, Guangyu; Huang, Kui; Chen, Xuemin; Li, Fusheng; Zhang, Xiaoyu; Li, Fei

    2016-03-01

    In this study, the effect of earthworms on microbial features during vermicomposting of pelletized dewatered sludge (PDS) was investigated through comparing two degradation systems with and without earthworm E isenia fetida involvement. After 60 days of experimentation, a relatively stable product with low organic matter and high nitrate and phosphorous was harvested when the earthworms were involved. During the process, earthworms could enhance microbial activity and biomass at the initial stage and thus accelerating the rapid decomposition of PDS. The end products of vermicomposting allowed the lower values of bacterial and eukaryotic densities comparison with those of no earthworm addition. In addition, the presence of earthworms modified the bacterial and fungal diversity, making the disappearances of some pathogens and specific decomposing bacteria of recalcitrant substrates in the vermicomposting process. This study evidences that earthworms can facilitate the stabilization of PDS through modifying microbial activity and number and community during vermicomposting.

  20. Soil microbial activities in Mediterranean environment as desertification indicators along a pluviometric gradient.

    NASA Astrophysics Data System (ADS)

    Novosadova, I.; Zahora, J.; Ruiz Sinoga, J. D.

    2009-04-01

    In the Mediterranean areas of Southern Spain, unsuitable agricultural practices with adverse environmental conditions (López Bermúdez and Albaladejo, 1990), have led to a permanent degradation and loss of soil fertility. This includes deterioration of the natural plant cover, which protects against erosion by contributing organic matter, the main prerequisite of ecosystem sustainability (Grace et al., 1994). Physico-chemical, microbiological and biochemical soil properties are very responsive and provide immediate and precise information on small changes occurring in soil (Dick and Tabatabai, 1993). There is increasing evidence that such parameters are also sensitive indicators of ecology stress suffered by a soil and its recovery, since microbial activity has a direct influence on the stability and fertility of ecosystems (Smith and Papendick, 1993). One method for recovering degraded soils of such semiarid regions, with their low organic matter content, is to enhance primary productivity and carbon sequestration without any additional nitrogen fertilization and preferably without incorporation of leguminous plants (Martinez Mena et al., 2008). Carbon rich materials can sustain microbial activity and growth, thus enhancing biogeochemical nutrient cycles (Pascual et al., 1997). The present study is focused in the role of physico-chemical and microbial soil properties in Mediterranean environment, in terms of in situ and ex situ microbial transformation of soil carbon and nitrogen, in order to characterise the key soil microbial activities which could strongly affect carbon and nitrogen turnover in soil and hereby soil fertility and soil organic matter "quality". These microbial activities could at unsuitable agricultural practices with adverse environmental conditions induce unfavourable hydrologycal tempo-spatial response. The final results shown modifications in the soil properties studied with the increasing of the aridity. Such changes suppose the soil

  1. [Effects of Different Altitudes on Soil Microbial PLFA and Enzyme Activity in Two Kinds of Forests].

    PubMed

    Zeng, Qing-ping; He, Bing-hui; Mao, Qiao-zhi; Wu, Yao-peng; Huang, Qi; Li, Yuan

    2015-12-01

    The soil microbial community is an important part in soil ecosystem, and it is sensitive to the ecological environment. Phospholipid-derived fatty acids ( PLFA ) analysis was used to examine variations in soil microbial community diversity and its influencing factors. The results showed that: there existed 48 PLFAs that were significant in the soil samples from six altitudes. The PLFAs of six altitudes with the highest contents were i16:0, 10Me17:0, 10Me18:0 TBSA. The citrus forest exhibited richer soil PLFAs distribution both in type and amount than those in masson pine. The microbial activity and functional diversity of masson pine were increased with increasing altitudes, and citrus forest gradually decreased, the PLFA content of different microbial groups in each altitude were significantly different. The richness index, Shannon-Wiener index and Pielou evenness index of masson pine in low elevation were holistically higher than those in high elevation. However, the highest richness index of citrus forest was in low altitude, the highest Shannon-Wiener index and Pielou evenness index were in high altitude. The PLFAs content of different microbial groups were closely correlated to the soil enzyme activities and environmental factors. The PLFAs of bacteria, actinomycetes, G⁻ (Gram- positive), G⁺ (Gram-negative) were positively correlated with Ure(urease) , Ive(invertase) , CAT( catalase activity) and forest type, the PLFAs of fungi was significantly correlated with Ure, Ive, CAT, the PLFAs of bacteria, fungi, actinomycetes, G⁻ , G⁺ were significantly negatively or less correlated with elevation. Ure, Ive, CAT, forest type and elevation are the pivotal factors controlling the soil microbial biomass and activities.

  2. [Effects of Different Altitudes on Soil Microbial PLFA and Enzyme Activity in Two Kinds of Forests].

    PubMed

    Zeng, Qing-ping; He, Bing-hui; Mao, Qiao-zhi; Wu, Yao-peng; Huang, Qi; Li, Yuan

    2015-12-01

    The soil microbial community is an important part in soil ecosystem, and it is sensitive to the ecological environment. Phospholipid-derived fatty acids ( PLFA ) analysis was used to examine variations in soil microbial community diversity and its influencing factors. The results showed that: there existed 48 PLFAs that were significant in the soil samples from six altitudes. The PLFAs of six altitudes with the highest contents were i16:0, 10Me17:0, 10Me18:0 TBSA. The citrus forest exhibited richer soil PLFAs distribution both in type and amount than those in masson pine. The microbial activity and functional diversity of masson pine were increased with increasing altitudes, and citrus forest gradually decreased, the PLFA content of different microbial groups in each altitude were significantly different. The richness index, Shannon-Wiener index and Pielou evenness index of masson pine in low elevation were holistically higher than those in high elevation. However, the highest richness index of citrus forest was in low altitude, the highest Shannon-Wiener index and Pielou evenness index were in high altitude. The PLFAs content of different microbial groups were closely correlated to the soil enzyme activities and environmental factors. The PLFAs of bacteria, actinomycetes, G⁻ (Gram- positive), G⁺ (Gram-negative) were positively correlated with Ure(urease) , Ive(invertase) , CAT( catalase activity) and forest type, the PLFAs of fungi was significantly correlated with Ure, Ive, CAT, the PLFAs of bacteria, fungi, actinomycetes, G⁻ , G⁺ were significantly negatively or less correlated with elevation. Ure, Ive, CAT, forest type and elevation are the pivotal factors controlling the soil microbial biomass and activities. PMID:27012007

  3. Effect of land use on microbial biomass and enzyme activities in tropical soil

    NASA Astrophysics Data System (ADS)

    Maharjan, Menuka; Sanaullah, Muhammad; Kuzyakov, Yakov

    2016-04-01

    Land use change especially from forest to intensive agriculture for sustaining livelihood causing severe consequence on soil quality. Soil microbial biomass and enzyme activities are very sensitive to change in environment. The objective was to assess effects of three land uses i.e. forest, organic and conventional farming on microbial biomass C and N and enzymes involved in C-cycle (β-glucosidase), N-cycle (leucine-aminopeptidase), P-cycle (Phosphatase) and S-cycle (Sulphatase) at different depth (0-100 cm with 10 cm in interval) of soil in Chitwan, Nepal. The result showed that both carbon and nitrogen content (%) was significantly higher in organic farming than conventional farming and forest. However, the trend decreased in lower depth. Significantly high microbial biomass C and N (μg C and N g-1 soil) were found in organic farming than conventional farming and forest at 0-10 cm but the trend was inconsistent in lower depth. β-glucosidase, leucine-aminopeptidase and sulphatase (nmol g-1 soil) activities were higher in organic and conventional farming compared to forest at 0-20 cm. Phosphatase activity was higher in conventional farming than forest and organic farming at 0-20cm. The activities were inconsistent below 20 cm. Application of farmyard manure and organic matter from the vegetation contributes the higher microbial biomass and enzyme activities in organic farming.

  4. Effects of graphene oxides on soil enzyme activity and microbial biomass.

    PubMed

    Chung, Haegeun; Kim, Min Ji; Ko, Kwanyoung; Kim, Jae Hyeuk; Kwon, Hyun-Ah; Hong, Inpyo; Park, Nari; Lee, Seung-Wook; Kim, Woong

    2015-05-01

    Due to recent developments in nanotechnology, nanomaterials (NMs) such as graphene oxide (GO) may enter the soil environment with mostly unknown consequences. We investigated the effects of GO on soil microbial activity in a 59-day soil incubation study. For this, high-purity GO was prepared and characterized. Soils were treated with up to 1 mg GO g(-1) soil, and the changes in the activities of 1,4-β-glucosidase, cellobiohydrolase, xylosidase, 1,4-β-N-acetyl glucosaminidase, and phosphatase and microbial biomass were determined. 0.5-1 mg GO g(-1) soil lowered the activity of xylosidase, 1,4-β-N-acetyl glucosaminidase, and phosphatase by up to 50% when compared to that in the control soils up to 21 days of incubation. Microbial biomass in soils treated with GO was not significantly different from that in control soils throughout the incubation period, and the soil enzyme activity and microbial biomass were not significantly correlated in this study. Our results indicate that soil enzyme activity can be lowered by the entry of GO into soils in short term but it can be recovered afterwards. PMID:25668283

  5. Effect of cassava mill effluent on biological activity of soil microbial community.

    PubMed

    Igbinosa, Etinosa O

    2015-07-01

    This study assessed the effect of cassava effluent on soil microbiological characteristics and enzymatic activities were investigated in soil samples. Soil properties and heavy metal concentrations were evaluated using standard soil analytical and spectroscopic methods, respectively. The microbiological parameters measured include microbial biomass carbon, basal soil respiration, catalase, urease, dehydrogenase activities and number of culturable aerobic bacteria, fungi and actinomycetes. The pH and temperature regime vary significantly (p < 0.05) throughout the study period. All other physicochemical parameters studied were significantly different (p < 0.05) higher than the control site. Soil organic carbon content gave significant positive correlations with microbial biomass carbon, basal soil respiration, catalase activity and dehydrogenase activity (r = 0.450, 0.461, 0.574 and 0.591 at p < 0.01), respectively. The quantitative analysis of soil microbial density demonstrates a marked decrease in total culturable numbers of the different microbial groups of the polluted soil samples. Soil contamination decreased catalase, urease and dehydrogenase activities. The findings revealed that soil enzymes can be used as indices of soil contamination and bio-indicator of soil quality.

  6. Effect of cassava mill effluent on biological activity of soil microbial community.

    PubMed

    Igbinosa, Etinosa O

    2015-07-01

    This study assessed the effect of cassava effluent on soil microbiological characteristics and enzymatic activities were investigated in soil samples. Soil properties and heavy metal concentrations were evaluated using standard soil analytical and spectroscopic methods, respectively. The microbiological parameters measured include microbial biomass carbon, basal soil respiration, catalase, urease, dehydrogenase activities and number of culturable aerobic bacteria, fungi and actinomycetes. The pH and temperature regime vary significantly (p < 0.05) throughout the study period. All other physicochemical parameters studied were significantly different (p < 0.05) higher than the control site. Soil organic carbon content gave significant positive correlations with microbial biomass carbon, basal soil respiration, catalase activity and dehydrogenase activity (r = 0.450, 0.461, 0.574 and 0.591 at p < 0.01), respectively. The quantitative analysis of soil microbial density demonstrates a marked decrease in total culturable numbers of the different microbial groups of the polluted soil samples. Soil contamination decreased catalase, urease and dehydrogenase activities. The findings revealed that soil enzymes can be used as indices of soil contamination and bio-indicator of soil quality. PMID:26055654

  7. Factors affecting the performance of a single-chamber microbial fuel cell-type biological oxygen demand sensor.

    PubMed

    Yang, Gai-Xiu; Sun, Yong-Ming; Kong, Xiao-Ying; Zhen, Feng; Li, Ying; Li, Lian-Hua; Lei, Ting-Zhou; Yuan, Zhen-Hong; Chen, Guan-Yi

    2013-01-01

    Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to degrade organic matter or sludge present in wastewater (WW), and thereby generate electricity. We developed a simple, low-cost single-chamber microbial fuel cell (SCMFC)-type biochemical oxygen demand (BOD) sensor using carbon felt (anode) and activated sludge, and demonstrated its feasibility in the construction of a real-time BOD measurement system. Further, the effects of anodic pH and organic concentration on SCMFC performance were examined, and the correlation between BOD concentration and its response time was analyzed. Our results demonstrated that the SCMFC exhibited a stable voltage after 132 min following the addition of synthetic WW (BOD concentration: 200 mg/L). Notably, the response signal increased with an increase in BOD concentration (range: 5-200 mg/L) and was found to be directly proportional to the substrate concentration. However, at higher BOD concentrations (>120 mg/L) the response signal remained unaltered. Furthermore, we optimized the SCMFC using synthetic WW, and tested it with real WW. Upon feeding real WW, the BOD values exhibited a standard deviation from 2.08 to 8.3% when compared to the standard BOD5 method, thus demonstrating the practical applicability of the developed system to real treatment effluents.

  8. Comparison of microbial communities of activated sludge and membrane biofilm in 10 full-scale membrane bioreactors.

    PubMed

    Jo, Sung Jun; Kwon, Hyeokpil; Jeong, So-Yeon; Lee, Chung-Hak; Kim, Tae Gwan

    2016-09-15

    Operation of membrane bioreactors (MBRs) for wastewater treatment is hampered by the membrane biofouling resulting from microbial activities. However, the knowledge of the microbial ecology of both biofilm and activated sludge in MBRs has not been sufficient. In this study, we scrutinized microbial communities of biofilm and activated sludge from 10 full-scale MBR plants. Overall, Flavobacterium, Dechloromonas and Nitrospira were abundant in order of abundance in biofilm, whereas Dechloromonas, Flavobacterium and Haliscomenobacter in activated sludge. Community structure was analyzed in either biofilm or activated sludge. Among MBRs, as expected, not only diversity of microbial community but also its composition was different from one another (p < 0.05). Between the biofilm and activated sludge, community composition made significant difference, but its diversity measures (i.e., alpha diversity, e.g., richness, diversity and evenness) did not (p > 0.05). Effects of ten environmental factors on community change were investigated using Spearman correlation. MLSS, HRT, F/M ratio and SADm explained the variation of microbial composition in the biofilm, whereas only MLSS did in the activated sludge. Microbial networks were constructed with the 10 environmental factors. The network results revealed that there were different topological characteristics between the biofilm and activated sludge networks, in which each of the 4 factors had different associations with microbial nodes. These results indicated that the different microbial associations were responsible for the variation of community composition between the biofilm and activated sludge.

  9. Alteration of rare earth element distribution as a result of microbial activity and empirical methane injection

    NASA Astrophysics Data System (ADS)

    Castillo, D. J.; Davies, N. W.; Thurber, A. R.; Haley, B. A.; Colwell, F. S.

    2014-12-01

    As a result of warming, methane is being released into the marine environment in areas that have not historically experienced methane input. While methane is a potent greenhouse gas, microbial oxidation of methane within the sediment greatly limits the role of marine methane sources on atmospheric forcing. However, in these areas of new methane release, consumption of methane prior to its release into the atmosphere is a result of the response of the microbial community to this new input of methane. Further, rare earth elements (REEs) are not currently thought to be involved with microbial activity, but this assumption has not been rigorously tested. Here we test that: (1) microbial communities will rapidly respond to the onset of methane emission, and (2) the microbial response to this methane input will impact the distribution of REEs within the sediment. Undisturbed cores sampled from a tidal flat at Yaquina Bay, OR, were brought back to a lab and injected with anoxic seawater (as a control) or anoxic sea water saturated with methane gas for a total of 2 weeks. Aerobic methanotrophs proliferated over this short time period, becoming an abundant member of the microbial community as identified using fatty acid biomarkers. Excitingly, the experimental injection of methane also shifted the distribution of REEs within the sediment, a trend that appeared to follow the microbial response and that was different from the control cores. Further, the lightest REEs appeared to be used more than the heavier ones, supporting that the REEs are being actively used by the microbes. While we focused on identifying the response of those microbes responsible in methane-cycling, we also identified how the entire microbial community shifts as a result of methane input, and correlating with shifts in REE distribution. Here we have empirically demonstrated the rapid response of methanotrophs to the onset of methane emission and that REE distribution within the sediment is likely

  10. Changes of soil organic matter and microbial activity in irrigated and non irrigated olive groves

    NASA Astrophysics Data System (ADS)

    Kavvadias, Victor; Papadopoulou, Maria; Theocharopoulos, Sideris; Vavoulidou, Evagelia; Doula, Maria; Reppas, Spiros

    2014-05-01

    The implementation of olive cultivation techniques in Greece has not been systematically tested under the prevailing Mediterranean conditions. A LIFE+ project was initiated (oLIVE-CLIMA; LIFE 11/ENV/000942) aiming to introduce new management practices in olive tree crops that lead to increased carbon dioxide uptake by plants as well as carbon sequestration from the atmosphere and reverse the trend of soil organic matter decline, erosion and desertification. This paper presents data on soil organic matter and microbial activity from a soil campaign in a pilot region in Greece, and particularly in the area of Chora, prefecture of Messinia, South west Peloponnese. The soil campaign took place during the period December 2012-February 2013. Twelve soil parcels of olive groves were selected (6 irrigated and 6 rainfed) and in each soil parcel six composite soil samples were taken from 0-10 cm depth at equal intervals along a straight line of the trunk of the tree to the middle of the distance from the nearest tree of the next tree series. The first three samples were under olive tree canopy. An additional composite sample was taken at depth of 10-40 cm. Soil samples were analyzed for soil physicochemical and biological properties. In this study results for total organic carbon (TOC), soil basal microbial respiration (BR), microbial biomass C (MB-C) from the region of Messinia, are presented. Organic matter was determined by dichromate oxidation. The microbial activity was measured by the amount of CO2 evolution, while microbial biomass C was determined by substrate-induced respiration, after the addition of glucose. The results showed considerable differences in TOC, BR and MB-C associated with the sampling position and soil depth. The higher TOC, BR and MB-C values, in most cases, were determined in samples taken from points under the canopy, but not close to the tree trunk compared to the sampling points outside the canopy. This indicates the positive effect of

  11. Arctic gypsum endoliths: a biogeochemical characterization of a viable and active microbial community

    NASA Astrophysics Data System (ADS)

    Ziolkowski, L. A.; Mykytczuk, N. C. S.; Omelon, C. R.; Johnson, H.; Whyte, L. G.; Slater, G. F.

    2013-11-01

    , which contrasts with other endolithic habitats. While it is possible that these communities turn over carbon quickly and leave little evidence of microbe-mineral interaction, an alternative hypothesis is that the soluble and friable nature of gypsum and harsh conditions lead to elevated erosion rates, limiting microbial residence times in this habitat. Regardless, this endolithic community represents a microbial system that does not rely on a nutrient pool from the host gypsum cap rock, instead receiving these elements from allochthonous debris to maintain a more diverse and active community than might have been predicted in the polar desert of the Canadian high Arctic.

  12. The effect of D123 wheat as a companion crop on soil enzyme activities, microbial biomass and microbial communities in the rhizosphere of watermelon

    PubMed Central

    Xu, Weihui; Wang, Zhigang; Wu, Fengzhi

    2015-01-01

    The growth of watermelon is often threatened by Fusarium oxysporum f. sp. niveum (Fon) in successively monocultured soil, which results in economic loss. The objective of this study was to investigate the effect of D123 wheat as a companion crop on soil enzyme activities, microbial biomass and microbial communities in the rhizosphere of watermelon and to explore the relationship between the effect and the incidence of wilt caused by Fon. The results showed that the activities of soil polyphenol oxidase, urease and invertase were increased, the microbial biomass nitrogen (MBN) and microbial biomass phosphorus (MBP) were significantly increased, and the ratio of MBC/MBN was decreased (P < 0.05). Real-time PCR analysis showed that the Fon population declined significantly in the watermelon/wheat companion system compared with the monoculture system (P < 0.05). The analysis of microbial communities showed that the relative abundance of microbial communities was changed in the rhizosphere of watermelon. Compared with the monoculture system, the relative abundances of Alphaproteobacteria, Actinobacteria, Gemmatimonadetes and Sordariomycetes were increased, and the relative abundances of Gammaproteobacteria, Sphingobacteria, Cytophagia, Pezizomycetes, and Eurotiomycetes were decreased in the rhizosphere of watermelon in the watermelon/wheat companion system; importantly, the incidence of Fusarium wilt was also decreased in the watermelon/wheat companion system. In conclusion, this study indicated that D123 wheat as a companion crop increased soil enzyme activities and microbial biomass, decreased the Fon population, and changed the relative abundance of microbial communities in the rhizosphere of watermelon, which may be related to the reduction of Fusarium wilt in the watermelon/wheat companion system. PMID:26388851

  13. The effect of D123 wheat as a companion crop on soil enzyme activities, microbial biomass and microbial communities in the rhizosphere of watermelon.

    PubMed

    Xu, Weihui; Wang, Zhigang; Wu, Fengzhi

    2015-01-01

    The growth of watermelon is often threatened by Fusarium oxysporum f. sp. niveum (Fon) in successively monocultured soil, which results in economic loss. The objective of this study was to investigate the effect of D123 wheat as a companion crop on soil enzyme activities, microbial biomass and microbial communities in the rhizosphere of watermelon and to explore the relationship between the effect and the incidence of wilt caused by Fon. The results showed that the activities of soil polyphenol oxidase, urease and invertase were increased, the microbial biomass nitrogen (MBN) and microbial biomass phosphorus (MBP) were significantly increased, and the ratio of MBC/MBN was decreased (P < 0.05). Real-time PCR analysis showed that the Fon population declined significantly in the watermelon/wheat companion system compared with the monoculture system (P < 0.05). The analysis of microbial communities showed that the relative abundance of microbial communities was changed in the rhizosphere of watermelon. Compared with the monoculture system, the relative abundances of Alphaproteobacteria, Actinobacteria, Gemmatimonadetes and Sordariomycetes were increased, and the relative abundances of Gammaproteobacteria, Sphingobacteria, Cytophagia, Pezizomycetes, and Eurotiomycetes were decreased in the rhizosphere of watermelon in the watermelon/wheat companion system; importantly, the incidence of Fusarium wilt was also decreased in the watermelon/wheat companion system. In conclusion, this study indicated that D123 wheat as a companion crop increased soil enzyme activities and microbial biomass, decreased the Fon population, and changed the relative abundance of microbial communities in the rhizosphere of watermelon, which may be related to the reduction of Fusarium wilt in the watermelon/wheat companion system. PMID:26388851

  14. Assessment of total bacterial cells in extended aeration activated sludge plants using flow cytometry as a microbial monitoring tool.

    PubMed

    Abzazou, Tarik; Salvadó, Humbert; Bruguera-Casamada, Carmina; Simón, Pedro; Lardín, Carlos; Araujo, Rosa M

    2015-08-01

    The extended aeration activated sludge (EAAS) process is one of the most applied biological processes in small towns. Here, we study the abundance and viability of total bacterial cells in two wastewater treatment plants (WWTPs) operating with an EAAS process. We use flow cytometry (FCM) combined with SYTO13 and propidium iodide (PI) dyes as a rapid, easy, reliable and accurate microbial monitoring tool. A disaggregation procedure with an ultrasonic bath was designed to detach total bacterial cells from activated sludge flocs for subsequent FCM analysis. This procedure permitted the recovery of total bacterial cells from sludge flocs without affecting bacterial viability, as indicated by bacterial strain controls. Since FCM is a multi-parameter technique, it was possible to determine total bacterial abundance and their viability in the activated sludge. As a comparative method, epifluorescence microscopy was also used to quantify total bacterial cells; both methods produced similar results. The FCM analysis revealed relative microbial stability in both the WWTPs. The total bacterial abundance quantified by FCM in the two plants studied was 1.02-6.23 × 10(11) cells L(-1) with 70-72% viability, one logarithm less than that reported in the literature for WWTPs using the conventional activated sludge process. This can be explained by the difference in the operational parameters between the conventional plant and EAAS, mainly the organic loading rate.

  15. Soil microbial activity and structure in mineralized terranes of the Western US

    NASA Astrophysics Data System (ADS)

    Blecker, S. W.; Stillings, L. L.; Decrappeo, N.; Ippolito, J.

    2009-12-01

    Mineralized terranes (areas enriched in metal-bearing minerals) occur throughout the Western US, and are characterized by highly variable soil trace metal concentrations across small spatial scales. Assuming that non-lithologic (extrinsic) soil forming factors are relatively constant between mineralized and unmineralized zones, these mineralized areas allowed us to evaluate the effect of lithology on soil microbial activity. We established the following study sites: 1) sage-grassland on a Mo/Cu deposit (Battle Mountain, NV); 2) pine-chaparral on Ni/Cr bearing rocks (Chinese Camp, CA); and 3) two pine woodland sites on acid-sulfate altered rocks (Reno, NV; Bridgeport, CA). Microbial, physical and chemical measurements were performed on soils from undisturbed mineralized areas and adjacent unmineralized areas to determine baseline conditions for comparison to sites disturbed by mining. A host of abiotic soil parameters, along with bioavailable (diethylenetriaminepentaacetic acid (DTPA)-extractable) and total metals, were measured to examine their correlation with the following measures of microbial activity: enzyme assays (arylsulfatase, phosphatase, fluorescein diacetate hydrolysis), C/N mineralization potential, C substrate utilization (Biolog Ecoplate), and microbial biomass and community structure (phospholipid fatty acid analysis). Within the Battle Mountain study area, both microbial activity and structure were statistically similar between mineralized and unmineralized soils. Nutrient and metal concentrations were also similar; the only differences being higher Cu and lower P in the mineralized soils. Within the Chinese Camp study area, soil organic carbon and total nitrogen concentrations were similar between the serpentine (Ni/Cr bearing) and adjacent andesite soils, while differences were noted for other nutrients (S, P, Ca, Mg). For the serpentine soils, Co, Fe, Mn, and Ni showed the strongest correlations with microbial activity, where Cr, Mn showed the

  16. Effects of Environmental Toxicants on Metabolic Activity of Natural Microbial Communities

    PubMed Central

    Barnhart, Carole L. H.; Vestal, J. Robie

    1983-01-01

    Two methods of measuring microbial activity were used to study the effects of toxicants on natural microbial communities. The methods were compared for suitability for toxicity testing, sensitivity, and adaptability to field applications. This study included measurements of the incorporation of 14C-labeled acetate into microbial lipids and microbial glucosidase activity. Activities were measured per unit biomass, determined as lipid phosphate. The effects of various organic and inorganic toxicants on various natural microbial communities were studied. Both methods were useful in detecting toxicity, and their comparative sensitivities varied with the system studied. In one system, the methods showed approximately the same sensitivities in testing the effects of metals, but the acetate incorporation method was more sensitive in detecting the toxicity of organic compounds. The incorporation method was used to study the effects of a point source of pollution on the microbiota of a receiving stream. Toxic doses were found to be two orders of magnitude higher in sediments than in water taken from the same site, indicating chelation or adsorption of the toxicant by the sediment. The microbiota taken from below a point source outfall was 2 to 100 times more resistant to the toxicants tested than was that taken from above the outfall. Downstream filtrates in most cases had an inhibitory effect on the natural microbiota taken from above the pollution source. The microbial methods were compared with commonly used bioassay methods, using higher organisms, and were found to be similar in ability to detect comparative toxicities of compounds, but were less sensitive than methods which use standard media because of the influences of environmental factors. PMID:16346432

  17. A Qualitative Experiment to Analyze Microbial Activity in Topsoil Using Paper and a Handmade Reflection Photometer

    ERIC Educational Resources Information Center

    Agbeko, Julius Kofi; Kita, Masakazu

    2007-01-01

    This article describes a novel, hands-on method to qualitatively determine the extent of microbial activity in topsoil using ordinary blank paper. Appropriate and scalable for the high school and college level, these experiments expose students to some of the challenges facing environmental researchers and also contribute to curriculum development…

  18. Effect of Municipal Wastewater as a Wetland Water Source on Soil Microbial Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial activity, as determined by CO2 evolution, was compared between two soils irrigated with either municipal wastewater effluent or Missouri River water. Irrigation of soils was conducted in greenhouse microcosms with irrigation timing and quantity designed to simulate wetland moist-soil mana...

  19. Reconstructing ecosystem functions of the active microbial community of the Baltic Sea oxygen depleted sediments

    PubMed Central

    Franzetti, Andrea; Lundin, Daniel; Sjöling, Sara

    2016-01-01

    Baltic Sea deep water and sediments hold one of the largest anthropogenically induced hypoxic areas in the world. High nutrient input and low water exchange result in eutrophication and oxygen depletion below the halocline. As a consequence at Landsort Deep, the deepest point of the Baltic Sea, anoxia in the sediments has been a persistent condition over the past decades. Given that microbial communities are drivers of essential ecosystem functions we investigated the microbial community metabolisms and functions of oxygen depleted Landsort Deep sediments by metatranscriptomics. Results show substantial expression of genes involved in protein metabolism demonstrating that the Landsort Deep sediment microbial community is active. Identified expressed gene suites of metabolic pathways with importance for carbon transformation including fermentation, dissimilatory sulphate reduction and methanogenesis were identified. The presence of transcripts for these metabolic processes suggests a potential for heterotrophic-autotrophic community synergism and indicates active mineralisation of the organic matter deposited at the sediment as a consequence of the eutrophication process. Furthermore, cyanobacteria, probably deposited from the water column, are transcriptionally active in the anoxic sediment at this depth. Results also reveal high abundance of transcripts encoding integron integrases. These results provide insight into the activity of the microbial community of the anoxic sediment at the deepest point of the Baltic Sea and its possible role in ecosystem functioning. PMID:26823996

  20. Imidazolium tagged acridines: Synthesis, characterization and applications in DNA binding and anti-microbial activities

    NASA Astrophysics Data System (ADS)

    Raju, Gembali; Vishwanath, S.; Prasad, Archana; Patel, Basant K.; Prabusankar, Ganesan

    2016-03-01

    New water soluble 4,5-bis imidazolium tagged acridines have been synthesized and structurally characterized by multinuclear NMR and single crystal X-ray diffraction techniques. The DNA binding and anti-microbial activities of these acridine derivatives were investigated by fluorescence and far-UV circular dichroism studies.

  1. Microbial respiration and extracellular enzyme activity in sediments from the Gulf of Mexico hypoxic zone

    EPA Science Inventory

    This study explores the relationship between sediment chemistry (TC, TN, TP) and microbial respiration (DHA) and extracellular enzyme activity (EEA) across the Gulf of Mexico (GOM) hypoxic zone. TC, TN, and TP were all positively correlated with each other (r=0.19-0.68). DHA was ...

  2. Reconstructing ecosystem functions of the active microbial community of the Baltic Sea oxygen depleted sediments.

    PubMed

    Thureborn, Petter; Franzetti, Andrea; Lundin, Daniel; Sjöling, Sara

    2016-01-01

    Baltic Sea deep water and sediments hold one of the largest anthropogenically induced hypoxic areas in the world. High nutrient input and low water exchange result in eutrophication and oxygen depletion below the halocline. As a consequence at Landsort Deep, the deepest point of the Baltic Sea, anoxia in the sediments has been a persistent condition over the past decades. Given that microbial communities are drivers of essential ecosystem functions we investigated the microbial community metabolisms and functions of oxygen depleted Landsort Deep sediments by metatranscriptomics. Results show substantial expression of genes involved in protein metabolism demonstrating that the Landsort Deep sediment microbial community is active. Identified expressed gene suites of metabolic pathways with importance for carbon transformation including fermentation, dissimilatory sulphate reduction and methanogenesis were identified. The presence of transcripts for these metabolic processes suggests a potential for heterotrophic-autotrophic community synergism and indicates active mineralisation of the organic matter deposited at the sediment as a consequence of the eutrophication process. Furthermore, cyanobacteria, probably deposited from the water column, are transcriptionally active in the anoxic sediment at this depth. Results also reveal high abundance of transcripts encoding integron integrases. These results provide insight into the activity of the microbial community of the anoxic sediment at the deepest point of the Baltic Sea and its possible role in ecosystem functioning. PMID:26823996

  3. Rumen microorganisms, methane production, and microbial protein synthesis affected by mangosteen peel powder supplement in lactating dairy cows.

    PubMed

    Polyorach, Sineenart; Wanapat, Metha; Cherdthong, Anusorn; Kang, Sungchhang

    2016-03-01

    Four crossbred dairy cows (50 % Holstein-Friesian × 50 % Thai native), 404 ± 50.0 kg of body weight (4 years old) and 90 ± 5 day in milk with daily milk production of 9 ± 2.0 kg/day, were randomly assigned according to a 4 × 4 Latin square design to study the effect of mangosteen (Garcinia mangostana) peel powder (MSP) supplementation on rumen microorganisms, methane production, and microbial protein synthesis fed concentrate containing yeast fermented cassava chip protein (YEFECAP). The treatments were different levels of MSP supplementation at 0, 100, 200, and 300 g/head/day. Rice straw was used as a roughage source fed ad libitum, and concentrate containing YEFECAP at 200 g/kg concentrate was offered corresponding to concentrate-to-milk-yield ratio at 1:2. A quantitative real-time PCR approach was used to determine the population densities of ruminal microorganisms. The results revealed that supplementation of MSP did not affect on Fibrobactor succinogenes, Ruminococcus flavefaciens, and Ruminococcus albus (P > 0.05). However, total bacteria was linearly increased (P < 0.01) while methanogens and protozoal population were linearly decreased (P < 0.01) with increasing level of MSP supplementation. Increasing level of MSP supplement could decrease rumen methane production from 27.5 to 23.7 mmol/100 ml(3). Furthermore, cows that received MSP at 300 g/head/day had the highest microbial crude protein and efficiency of rumen microbial N synthesis (416.8 g/day and 16.2 g/kg organic matter truly digested in the rumen (OMDR), respectively). In conclusion, supplementation of MSP at 300 g/head/day with YEFECAP as a protein source in the concentrate mixture revealed an enhancement of rumen fermentation and methane reduction in lactating dairy cows.

  4. 16 CFR 801.3 - Activities in or affecting commerce.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.3 Activities... affecting commerce. Examples: 1. A foreign subsidiary of a U.S. corporation seeks to acquire a foreign business. The acquiring person includes the U.S. parent corporation. If the U.S. corporation, or...

  5. 16 CFR 801.3 - Activities in or affecting commerce.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.3 Activities... affecting commerce. Examples: 1. A foreign subsidiary of a U.S. corporation seeks to acquire a foreign business. The acquiring person includes the U.S. parent corporation. If the U.S. corporation, or...

  6. Monitoring Affect States during Effortful Problem Solving Activities

    ERIC Educational Resources Information Center

    D'Mello, Sidney K.; Lehman, Blair; Person, Natalie

    2010-01-01

    We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…

  7. MICROBIAL ACTIVITIES FOR THE REMEDIATION OF MERCURY CONTAMINATION

    EPA Science Inventory

    Methylmercury (MeHg) accumulation by aquatic biota could be reduced by stimulating bacterial degradation of MeHg and the reduction of Hg(II) to volatile Hg to zero power. Reduction of Hg(II) affects MeHg production by substrate limitation. The potential of bacterial reduction of ...

  8. Microbial Content of Nonsterile Therapeutic Agents Containing Natural or Seminatural Active Ingredients

    PubMed Central

    Schiller, I.; Kuntscher, H.; Wolff, A.; Nekola, M.

    1968-01-01

    The relationship was investigated between various chemical or pharmaceutical production processes and the extent of microbial contamination, of natural origin, of the resulting products. The products contained active ingredients of vegetable, enzymatic, or animal origin. It was concluded that (i) vegetable products practically free from microbes can be produced if the proper manufacturing steps are taken; (ii) sterilization of the media used to manufacture antibiotics, etc., produces products with little contamination; and (iii) products containing extracts of animal organs require careful refrigeration and addition of preservatives to produce acceptable levels of microbial contamination. PMID:5726165

  9. The antimicrobial activity of embalming chemicals and topical disinfectants on the microbial flora of human remains.

    PubMed

    Burke, P A; Sheffner, A L

    1976-10-01

    The antimicrobial activity of embalming chemicals an topical disinfectants was evaluated to determine the degree of disinfection achieved during the embalming of human remains. The administration of arterial and cavity embalming chemicals resulted in a 99% reduction of the postmortem microbial population after 2 hours of contact. This level of disinfection was maintained for the 24 hours test period. Topical disinfection of the body orifices was also observed. Therefore, it is probable that present embalming practices reduce the hazard from transmission of potentially infectious microbial agents within the immediate environment of embalmed human remains.

  10. Microbial Activity in Aquatic Environments Measured by Dimethyl Sulfoxide Reduction and Intercomparison with Commonly Used Methods

    PubMed Central

    Griebler, Christian; Slezak, Doris

    2001-01-01

    A new method to determine microbial (bacterial and fungal) activity in various freshwater habitats is described. Based on microbial reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS), our DMSO reduction method allows measurement of the respiratory activity in interstitial water, as well as in the water column. DMSO is added to water samples at a concentration (0.75% [vol/vol] or 106 mM) high enough to compete with other naturally occurring electron acceptors, as determined with oxygen and nitrate, without stimulating or inhibiting microbial activity. Addition of NaN3, KCN, and formaldehyde, as well as autoclaving, inhibited the production of DMS, which proves that the reduction of DMSO is a biotic process. DMSO reduction is readily detectable via the formation of DMS even at low microbial activities. All water samples showed significant DMSO reduction over several hours. Microbially reduced DMSO is recovered in the form of DMS from water samples by a purge and trap system and is quantified by gas chromatography and detection with a flame photometric detector. The DMSO reduction method was compared with other methods commonly used for assessment of microbial activity. DMSO reduction activity correlated well with bacterial production in predator-free batch cultures. Cell-production-specific DMSO reduction rates did not differ significantly in batch cultures with different nutrient regimes but were different in different growth phases. Overall, a cell-production-specific DMSO reduction rate of 1.26 × 10−17 ± 0.12 × 10−17 mol of DMS per produced cell (mean ± standard error; R2 = 0.78) was calculated. We suggest that the relationship of DMSO reduction rates to thymidine and leucine incorporation is linear (the R2 values ranged from 0.783 to 0.944), whereas there is an exponential relationship between DMSO reduction rates and glucose uptake, as well as incorporation (the R2 values ranged from 0.821 to 0.931). Based on our results, we conclude that

  11. Microbial Community Composition, Functions, and Activities in the Gulf of Mexico 1 Year after the Deepwater Horizon Accident.

    PubMed

    Yergeau, Etienne; Maynard, Christine; Sanschagrin, Sylvie; Champagne, Julie; Juck, David; Lee, Kenneth; Greer, Charles W

    2015-09-01

    Several studies have assessed the effects of the released oil on microbes, either during or immediately after the Deepwater Horizon accident. However, little is known about the potential longer-term persistent effects on microbial communities and their functions. In this study, one water column station near the wellhead (3.78 km southwest of the wellhead), one water column reference station outside the affected area (37.77 km southeast of the wellhead), and deep-sea sediments near the wellhead (3.66 km southeast of the wellhead) were sampled 1 year after the capping of the well. In order to analyze microbial community composition, function, and activity, we used metagenomics, metatranscriptomics, and mineralization assays. Mineralization of hexadecane was significantly higher at the wellhead station at a depth of ∼1,200 m than at the reference station. Community composition based on taxonomical or functional data showed that the samples taken at a depth of ∼1,200 m were significantly more dissimilar between the stations than at other depths (surface, 100 m, 750 m, and >1,500 m). Both Bacteria and Archaea showed reduced activity at depths of ∼1,200 m when the wellhead station was compared to the reference station, and their activity was significantly higher in surficial sediments than in 10-cm sediments. Surficial sediments also harbored significantly different active genera than did 5- and 10-cm sediments. For the remaining microbial parameters assessed, no significant differences could be observed between the wellhead and reference stations and between surface and 5- to 10-cm-deep sediments.

  12. Microbial Community Composition, Functions, and Activities in the Gulf of Mexico 1 Year after the Deepwater Horizon Accident

    PubMed Central

    Yergeau, Etienne; Maynard, Christine; Sanschagrin, Sylvie; Champagne, Julie; Juck, David; Lee, Kenneth

    2015-01-01

    Several studies have assessed the effects of the released oil on microbes, either during or immediately after the Deepwater Horizon accident. However, little is known about the potential longer-term persistent effects on microbial communities and their functions. In this study, one water column station near the wellhead (3.78 km southwest of the wellhead), one water column reference station outside the affected area (37.77 km southeast of the wellhead), and deep-sea sediments near the wellhead (3.66 km southeast of the wellhead) were sampled 1 year after the capping of the well. In order to analyze microbial community composition, function, and activity, we used metagenomics, metatranscriptomics, and mineralization assays. Mineralization of hexadecane was significantly higher at the wellhead station at a depth of ∼1,200 m than at the reference station. Community composition based on taxonomical or functional data showed that the samples taken at a depth of ∼1,200 m were significantly more dissimilar between the stations than at other depths (surface, 100 m, 750 m, and >1,500 m). Both Bacteria and Archaea showed reduced activity at depths of ∼1,200 m when the wellhead station was compared to the reference station, and their activity was significantly higher in surficial sediments than in 10-cm sediments. Surficial sediments also harbored significantly different active genera than did 5- and 10-cm sediments. For the remaining microbial parameters assessed, no significant differences could be observed between the wellhead and reference stations and between surface and 5- to 10-cm-deep sediments. PMID:26092461

  13. Response to shock load of engineered nanoparticles in an activated sludge treatment system: Insight into microbial community succession.

    PubMed

    Zhang, Jing; Dong, Qian; Liu, Yanchen; Zhou, Xiaohong; Shi, Hanchang

    2016-02-01

    The environmental impacts of the use of engineered nanoparticles (NPs) remain unclear and have attracted increasing concern worldwide. Considering that NPs eventually end up in wastewater treatment systems, the potential impact of ZnO and TiO2 NPs on the activated sludge was investigated using laboratory-scale sequencing batch reactors (SBRs). Short-term (24 h) exposure to 1, 10 and 100 mg/L shock loads of NPs reduced the oxygen uptake rate of the activated sludge by 3.55%-12.51% compared with the controls. In our experiment, the toxicities of TiO2 NPs were higher than those of ZnO NPs as reflected in the inhibition of oxygen utilization in the activated sludge. However, both the short-term (24 h) and long-term (21 days) exposure to ZnO and TiO2 NPs did not adversely affect the pollutant removal of the SBRs. Furthermore, the polymerase chain reaction-denaturing gel gradient electrophoresis revealed that the microbial community did not significantly vary after the short-term exposure (24 h) to 1, 10 and 100 mg/L shock loads of NPs; however, the cluster analysis in our experiment revealed that the slight difference caused by the NPs largely depended on exposure time rather than on NP type and NP concentration. The long-term exposure (13 days) to 10 mg/L shock load of ZnO or TiO2 NPs caused no substantial microbial community shifts in the activated sludge. The microbial diversity also showed no significant change when exposed to NPs as revealed by the Shannon-Wiener index. PMID:26539708

  14. Microbial Community Composition, Functions, and Activities in the Gulf of Mexico 1 Year after the Deepwater Horizon Accident.

    PubMed

    Yergeau, Etienne; Maynard, Christine; Sanschagrin, Sylvie; Champagne, Julie; Juck, David; Lee, Kenneth; Greer, Charles W

    2015-09-01

    Several studies have assessed the effects of the released oil on microbes, either during or immediately after the Deepwater Horizon accident. However, little is known about the potential longer-term persistent effects on microbial communities and their functions. In this study, one water column station near the wellhead (3.78 km southwest of the wellhead), one water column reference station outside the affected area (37.77 km southeast of the wellhead), and deep-sea sediments near the wellhead (3.66 km southeast of the wellhead) were sampled 1 year after the capping of the well. In order to analyze microbial community composition, function, and activity, we used metagenomics, metatranscriptomics, and mineralization assays. Mineralization of hexadecane was significantly higher at the wellhead station at a depth of ∼1,200 m than at the reference station. Community composition based on taxonomical or functional data showed that the samples taken at a depth of ∼1,200 m were significantly more dissimilar between the stations than at other depths (surface, 100 m, 750 m, and >1,500 m). Both Bacteria and Archaea showed reduced activity at depths of ∼1,200 m when the wellhead station was compared to the reference station, and their activity was significantly higher in surficial sediments than in 10-cm sediments. Surficial sediments also harbored significantly different active genera than did 5- and 10-cm sediments. For the remaining microbial parameters assessed, no significant differences could be observed between the wellhead and reference stations and between surface and 5- to 10-cm-deep sediments. PMID:26092461

  15. Impacts of Activated Carbon Amendment on Hg Methylation, Demethylation and Microbial Activity in Marsh Soils

    NASA Astrophysics Data System (ADS)

    Gilmour, C. C.; Ghosh, U.; Santillan, E. F. U.; Soren, A.; Bell, J. T.; Butera, D.; McBurney, A. W.; Brown, S.; Henry, E.; Vlassopoulos, D.

    2015-12-01

    In-situ sorbent amendments are a low-impact approach for remediation of contaminants in sediments, particular in habitats like wetlands that provide important ecosystem services. Laboratory microcosm trials (Gilmour et al. 2013) and early field trials show that activated carbon (AC) can effectively increase partitioning of both inorganic Hg and methylmercury to the solid phase. Sediment-water partitioning can serve as a proxy for Hg and MeHg bioavailability in soils. One consideration in using AC in remediation is its potential impact on organisms. For mercury, a critical consideration is the potential impact on net MeHg accumulation and bioavailability. In this study, we specifically evaluated the impact of AC on rates of methylmercury production and degradation, and on overall microbial activity, in 4 different Hg-contaminated salt marsh soils. The study was done over 28 days in anaerobic, sulfate-reducing slurries. A double label of enriched mercury isotopes (Me199Hg and inorganic 201Hg) was used to separately follow de novo Me201Hg production and Me199Hg degradation. AC amendments decreased both methylation and demethylation rate constants relative to un-amended controls, but the impact on demethylation was stronger. The addition of 5% (dry weight) regenerated AC to soil slurries drove demethylation rate constants to nearly zero; i.e. MeHg sorption to AC almost totally blocked its degradation. The net impact was increased solid phase MeHg concentrations in some of the soil slurries with the highest methylation rate constants. However, the net impact of AC amendments was to increase MeHg (and inorganic Hg) partitioning to the soil phase and decrease concentrations in the aqueous phase. AC significantly decreased aqueous phase inorganic Hg and MeHg concentrations after 28 days. Overall, the efficacy of AC in reducing aqueous MeHg was highest in the soils with the highest MeHg concentrations. The AC addition did not significantly impact microbial activity, as

  16. Effects of butachlor on microbial populations and enzyme activities in paddy soil.

    PubMed

    Min, H; Ye, Y F; Chen, Z Y; Wu, W X; Yufeng, D

    2001-09-01

    This paper reports the influences of the herbicide butachlor (n-butoxymethlchloro -2', 6'-diethylacetnilide) on microbial populations, respiration, nitrogen fixation and nitrification, and on the activities of dehydrogenase and hydrogen peroxidase in paddy soil. The results showed that the number of actinomycetes declined significantly after the application of butachlor at different concentrations ranging from 5.5 microg g(-1) to 22.0 microg g(-1) dried soil, while that of bacteria and fungi increased. Fungi were easily affected by butachlor compared to the bacteria. The growth of fungi was retarded by butachlor at higher concentrations. Butachlor however, stimulated the growth of anaerobic hydrolytic fermentative bacteria, sulfate-reducing bacteria (SRB) and denitrifying bacteria. The increased concentration of butachlor applied resulted in the higher number of SRB. Butachlor inhibited the growth of hydrogen-producing acetogenic bacteria. The effect of butachlor varied on methane-producing bacteria (MPB) at different concentrations. Butachlor at the concentration of 1.0 microg g(-1) dried soil or less than this concentration accelerated the growth of MPB, while at 22.0 microg g(-1) dried soil showed an inhibition. Butachlor enhanced the activity of dehydrogenase at increasing concentrations. The soil dehydrogenase showed the highest activity on the 16th day after application of 22.0 microg g(-1) dried soil of butachlor. The hydrogen peroxidase could be stimulated by butachlor. The soil respiration was depressed during the period from several days to more than 20 days, depending on concentrations of butachlor applied. Both the nitrogen fixation and nitrification were stimulated in the beginning but reduced greatly afterwards in paddy soil.

  17. Growth-inhibitory activity of natural and synthetic isothiocyanates against representative human microbial pathogens

    PubMed Central

    Kurepina, Natalia; Kreiswirth, Barry N.; Mustaev, Arkady

    2013-01-01

    Aims The aim of this study was to test the growth inhibition activity of isothiocyanates (ITC), defense compounds of plants, against common human microbial pathogens. Methods and Results In this study we have tested the growth inhibitory activity of a diverse collection of new and previously known representative ITC of various structural classes against pathogenic bacteria, fungi and molds by a serial dilution method. Generally, the compounds were more active against Gram-positive bacteria and fungi exhibiting species-specific bacteriostatic or bactericidal effect. The most active compounds inhibited the growth of both drug-susceptible and multi drug resistant (MDR) pathogens at micromolar concentrations. In the case of Mycobacterium tuberculosis some compounds were more active against MDR, rather than against susceptible strains. The average anti-microbial activity for some of new derivatives was significantly higher than previously reported for the most active ITC compounds. The structure-activity relationship (SAR) established for various classes of ITC with Bacillus cereus (model organism for B. anthracis) followed a distinct pattern, thereby enabling prediction of new more efficient inhibitors. Remarkably, tested bacteria failed to develop resistance to ITC. While effectively inhibiting microbial growth, ITCs displayed moderate toxicity towards eukaryotic cells. Conclusions High antimicrobial activity coupled with moderate toxicity grants further thorough studies of the ITC compounds aimed at elucidation of their cellular targets and inhibitory mechanism. Significance and impact of the study This systematic study identified new ITC compounds highly active against common human microbial pathogens at the concentrations comparable with those for currently used antimicrobial drugs (e.g. rifampicin, fluconazole). Tested representative pathogens do not develop resistance to the inhibitors. These properties justify further evaluation of ITC compounds as potential

  18. Response of soil microbial activity and biodiversity in soils polluted with different concentrations of cypermethrin insecticide.

    PubMed

    Tejada, Manuel; García, Carlos; Hernández, Teresa; Gómez, Isidoro

    2015-07-01

    We performed a laboratory study into the effect of cypermethrin insecticide applied to different concentrations on biological properties in two soils [Typic Xerofluvent (soil A) and Xerollic Calciorthid (soil B)]. Two kg of each soil were polluted with cypermethrin at a rate of 60, 300, 600, and 1,200 g ha(-1) (C1, C2, C3, and C4 treatments). A nonpolluted soil was used as a control (C0 treatment). For all treatments and each experimental soil, soil dehydrogenase, urease, β-glucosidase, phosphatase, and arylsulphatase activities and soil microbial community were analysed by phospholipid fatty acids, which were measured at six incubation times (3, 7, 15, 30, 60, and 90 days). The behavior of the enzymatic activities and microbial population were dependent on the dose of insecticide applied to the soil. Compared with the C0 treatment, in soil A, the maximum inhibition of the enzymatic activities was at 15, 30, 45, and 90 days for the C1, C2, C3, and C4 treatments, respectively. However, in soil B, the maximum inhibition occurred at 7, 15, 30, and 45 days for the C1, C2, C3, and C4 treatments, respectively. These results suggest that the cypermethrin insecticide caused a negative effect on soil enzymatic activities and microbial diversity. This negative impact was greater when a greater dose of insecticide was used; this impact was also greater in soil with lower organic matter content. For both soils, and from these respective days onward, the enzymatic activities and microbial populations progressively increased by the end of the experimental period. This is possibly due to the fact that the insecticide or its breakdown products and killed microbial cells, subsequently killed by the insecticide, are being used as a source of energy or as a carbon source for the surviving microorganisms for cell proliferation.

  19. [Effects of growing time on Panax ginseng rhizosphere soil microbial activity and biomass].

    PubMed

    Xiao, Chun-ping; Yang, Li-min; Ma, Feng-min

    2014-12-01

    Using the field sampling and indoor soil cultivation methods, the dynamic of ginseng rhizosphere soil microbial activity and biomass with three cultivated ages was studied to provide a theory basis for illustrating mechanism of continuous cropping obstacles of ginseng. The results showed that ginseng rhizosphere soil microbial activity and biomass accumulation were inhibited observably by growing time. The soil respiration, soil cellulose decomposition and soil nitrification of ginseng rhizosphere soil microorganism were inhibited significantly (P <0.05), in contrast to the control soil uncultivated ginseng (R0). And the inhibition was gradual augmentation with the number of growing years. The soil microbial activity of 3a ginseng soil (R3) was the lowest, and its activity of soil respiration, soil cellulose decomposition, soil ammonification and soil nitrification was lower than that in R0 with 56.31%, 86.71% and 90. 53% , respectively. The soil ammonification of ginseng rhizosphere soil microbial was significantly promoted compared with R0. The promotion was improved during the early growing time, while the promotion was decreased with the number of growing years. The soil ammonification of R1, R2 and R3 were lower than that in R0 with 32.43%, 80.54% and 66.64% separately. The SMB-C and SMB-N in ginseng rhizosphere soil had a decreased tendency with the number of growing years. The SMB-C difference among 3 cultivated ages was significant, while the SMB-N was not. The SMB of R3 was the lowest. Compared with R0, the SMB-C and the SMB-N were significantly reduced 77.30% and 69.36%. It was considered by integrated analysis that the leading factor of continuous cropping obstacle in ginseng was the changes of the rhizosphere soil microbial species, number and activity as well as the micro-ecological imbalance of rhizosphere soil caused by the accumulation of ginseng rhizosphere secretions.

  20. Metaproteogenomics reveals the soil microbial communities active in nutrient cycling processes under different tree species

    NASA Astrophysics Data System (ADS)

    Keiblinger, Katharina Maria; Masse, Jacynthe; Zühlke, Daniela; Riedel, Katharina; Zechmeister-Boltenstern, Sophie; Prescott, Cindy E.; Grayston, Sue

    2016-04-01

    Tree species exert strong effects on microbial communities in litter and soil and may alter rates of soil processes fundamental to nutrient cycling and carbon fluxes (Prescott and Grayston 2013). However, the influence of tree species on decomposition processes are still contradictory and poorly understood. An understanding of the mechanisms underlying plant influences on soil processes is important for our ability to predict ecosystem response to altered global/environmental conditions. In order to link microbial community structure and function to forest-floor nutrient cycling processes, we sampled forest floors under western redcedar (Thuja plicata), Douglas-fir (Pseudotsuga menziesii) and Sitka spruce (Picea sitchensis) grown in nutrient-poor sites in common garden experiments on Vancouver island (Canada). We measured forest-floor total N, total C, initial NH4+ and NO3‑ concentrations, DOC, Cmic and Nmic. Gross rates of ammonification and NH4+ consumption were measured using the 15N pool-dilution method. Organic carbon quality was assessed through FTIR analyses. Microbial community structure was analysed by a metaproteogenomic approach using 16S and ITS amplification and sequencing with MiSeq platform. Proteins were extracted and peptides characterized via LC-MS/MS on a Velos Orbitrap to assess the active microbial community. Different microbial communities were active under the three tree species and variation in process rates were observed and will be discussed. This research provides new insights on microbial processes during organic matter decomposition. The metaproteogenomic approach enables us to investigate these changes with respect to possible effects on soil C-storage at even finer taxonomic resolution.

  1. Metaproteogenomics reveals the soil microbial communities active in nutrient cycling processes under different tree species

    NASA Astrophysics Data System (ADS)

    Keiblinger, Katharina Maria; Masse, Jacynthe; Zühlke, Daniela; Riedel, Katharina; Zechmeister-Boltenstern, Sophie; Prescott, Cindy E.; Grayston, Sue

    2016-04-01

    Tree species exert strong effects on microbial communities in litter and soil and may alter rates of soil processes fundamental to nutrient cycling and carbon fluxes (Prescott and Grayston 2013). However, the influence of tree species on decomposition processes are still contradictory and poorly understood. An understanding of the mechanisms underlying plant influences on soil processes is important for our ability to predict ecosystem response to altered global/environmental conditions. In order to link microbial community structure and function to forest-floor nutrient cycling processes, we sampled forest floors under western redcedar (Thuja plicata), Douglas-fir (Pseudotsuga menziesii) and Sitka spruce (Picea sitchensis) grown in nutrient-poor sites in common garden experiments on Vancouver island (Canada). We measured forest-floor total N, total C, initial NH4+ and NO3- concentrations, DOC, Cmic and Nmic. Gross rates of ammonification and NH4+ consumption were measured using the 15N pool-dilution method. Organic carbon quality was assessed through FTIR analyses. Microbial community structure was analysed by a metaproteogenomic approach using 16S and ITS amplification and sequencing with MiSeq platform. Proteins were extracted and peptides characterized via LC-MS/MS on a Velos Orbitrap to assess the active microbial community. Different microbial communities were active under the three tree species and variation in process rates were observed and will be discussed. This research provides new insights on microbial processes during organic matter decomposition. The metaproteogenomic approach enables us to investigate these changes with respect to possible effects on soil C-storage at even finer taxonomic resolution.

  2. Influence of combined pollution of antimony and arsenic on culturable soil microbial populations and enzyme activities.

    PubMed

    Wang, Qiongshan; He, Mengchang; Wang, Ying

    2011-01-01

    The effects of both combined and single pollution of antimony (Sb) and arsenic (As) in different concentrations on culturable soil microbial populations and enzyme activities were studied under laboratory conditions. Joint effects of both Sb and As were different from that of Sb or As alone. The inhibition rate of culturable soil microbial populations under Sb and As pollution followed the order: bacterial > fungi > actinomycetes. There existed antagonistic inhibiting effect on urease and acid phophatase and synergistic inhibiting effect on protease under the combined pollution of Sb (III) and As (III). Only urease appeared to be the most sensitive indicator under Sb (V) and As (V) pollution, and there existed antagonistic inhibiting effect on acid phophatase and synergistic inhibiting effect on urease and protease under Sb (V) and As (V) combined pollution at most time. In this study, we also confirmed that the trivalent states of Sb and As were more toxic to all the microbes tested and more inhibitory on microbial enzyme activities then their pentavalent counterparts. The results also suggest that not only the application rate of the two metalloids but also the chemical form of metalloids should be considered while assessing the effect of metalloid on culturable microbial populations and enzyme activities. Urease and acid phosphatase can be used as potential biomarkers to evaluate the intensity of Sb (III) and As (III) stress.

  3. Microbial Activity and Volatile Fluxes in Seafloor Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Corrigan, R. S.; Lowell, R. P.

    2013-12-01

    Understanding geographically and biologically the production or utilization of volatile chemical species such as CO2, CH4, and H2 is crucial not only for understanding hydrothermal processes but also for understanding life processes in the oceanic crust. To estimate the microbial effect on the transport of these volatiles, we consider a double-loop single pass model as shown in Figure 1 to estimate the mass fluxes shown. We then use a simple mixing formulation: C4Q4 = C3 (Q1 -Q3)+ C2Q2, where C2 is the concentration of the chemical in seawater, C3 is the average concentration of the chemical in high temperature focused flow, C4 is the expected concentration of the chemical as a result of mixing, and the relevant mass flows are as shown in Figure 1. Finally, we compare the calculated values of CO2, CH4, and H2 in diffuse flow fluids to those observed. The required data are available for both the Main Endeavour Field on the Juan de Fuca Ridge and the East Pacific Rise 9°50' N systems. In both cases we find that, although individual diffuse flow sites have observed concentrations of some elements that are greater than average, the average concentration of these volatiles is smaller in all cases than the concentration that would be expected from simple mixing. This indicates that subsurface microbes are net utilizers of these chemical constituents at the Main Endeavour Field and at EPR 9°50' N on the vent field scale. Figure 1. Schematic of a 'double-loop' single-pass model above a convecting, crystallizing, replenished AMC (not to scale). Heat transfer from the vigorously convecting, cooling, and replenished AMC across the conductive boundary layer δ drives the overlying hydrothermal system. The deep circulation represented by mass flux Q1 and black smoker temperature T3 induces shallow circulation noted by Q2. Some black smoker fluid mixes with seawater resulting in diffuse discharge Q4, T4, while the direct black smoker mass flux with temperature T3 is reduced

  4. Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico.

    PubMed

    Martinez, Robert J; Mills, Heath J; Story, Sandra; Sobecky, Patricia A

    2006-10-01

    In this study, ribosomes and genomic DNA were extracted from three sediment depths (0-2, 6-8 and 10-12 cm) to determine the vertical changes in the microbial community composition and identify metabolically active microbial populations in sediments obtained from an active seafloor mud volcano site in the northern Gulf of Mexico. Domain-specific Bacteria and Archaea 16S polymerase chain reaction primers were used to amplify 16S rDNA gene sequences from extracted DNA. Complementary 16S ribosomal DNA (crDNA) was obtained from rRNA extracted from each sediment depth that had been subjected to reverse transcription polymerase chain reaction amplification. Twelve different 16S clone libraries, representing the three sediment depths, were constructed and a total of 154 rDNA (DNA-derived) and 142 crDNA (RNA-derived) Bacteria clones and 134 rDNA and 146 crDNA Archaea clones obtained. Analyses of the 576 clones revealed distinct differences in the composition and patterns of metabolically active microbial phylotypes relative to sediment depth. For example, epsilon-Proteobacteria rDNA clones dominated the 0-2 cm clone library whereas gamma-Proteobacteria dominated the 0-2 cm crDNA library suggesting gamma to be among the most active in situ populations detected at 0-2 cm. Some microbial lineages, although detected at a frequency as high as 9% or greater in the total DNA library (i.e. Actinobacteria, alpha-Proteobacteria), were markedly absent from the RNA-derived libraries suggesting a lack of in situ activity at any depth in the mud volcano sediments. This study is one of the first to report the composition of the microbial assemblages and physiologically active members of archaeal and bacterial populations extant in a Gulf of Mexico submarine mud volcano. PMID:16958759

  5. Effect of dietary sodium phytate and microbial phytase on the lipase activity and lipid metabolism of broiler chickens.

    PubMed

    Liu, Ning; Ru, Yingjun; Wang, Jianping; Xu, Tingsheng

    2010-03-01

    The objective of the present study was to investigate the effect of dietary phytate and microbial phytase on the lipase activity, lipid metabolism and mRNA expressions of fatty acid synthase (FASN) and leptin in broiler chickens. The study was conducted as a 2 x 3 factorial arrangement of treatments with phytate phosphorus at 0.20 and 0.40 % (added as the sodium phytate) and supplemental microbial phytase at 0, 500, or 1000 phytase units/kg. The results showed that phytase improved (P < 0.05) the growth performance and ileal digestibility of nutrients of broilers, but phytate had no effect (P>0.05) on these parameters, except the decrease (P < 0.01) in the digestibility of Ca. Phytate decreased (P < 0.05) the lipase activity, serum total cholesterol (T-CHO) and hepatic TAG, and elevated (P < 0.01) serum NEFA and HDL cholesterol. Phytase decreased (P < 0.05) serum NEFA, but increased (P < 0.01) serum T-CHO and hepatic TAG. Phytate and phytase also influenced (P < 0.01) the mRNA expressions of leptin in the liver. There were significant (P < 0.05) interactions of phytate and phytase on the concentrations of serum TAG and LDL cholesterol, hepatic NEFA and T-CHO, and the mRNA expressions of FASN. The results suggest that phytate and phytase can affect lipase activity and lipid metabolism of broiler chickens.

  6. Microbial hydrolytic enzyme activities in deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Boetius, A.

    1995-03-01

    The potential hydrolysis rates of five different hydrolytic enzymes were determined in deep-sea sediments from the northeast Atlantic (BIOTRANS area) in March 1992. Fluorogenic substrates were used to assay extracellular α- and β-glucosidase, chitobiase, lipase and aminopeptidase. The potential activity of most of the enzymes investigated decreased to a minimum within the upper two centimetre range, whereas aminopeptidase was high over the upper five centimetre range. Exceptions were found when macrofaunal burrows occurred in the cores, always increasing the activities of some hydrolases, and therefore indicating the impact of bioturbation on degradation rates. The most striking feature of the investigated enzyme spectrum was the 50 2000 times higher specific activity of the aminopeptidase, compared with the other hydrolases. The activity of hydrolytic enzymes most likely reflects the availability of their respective substrates and is not a function of bacterial biomass.

  7. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells

    PubMed Central

    Berry, David; Mader, Esther; Lee, Tae Kwon; Woebken, Dagmar; Wang, Yun; Zhu, Di; Palatinszky, Marton; Schintlmeister, Arno; Schmid, Markus C.; Hanson, Buck T.; Shterzer, Naama; Mizrahi, Itzhak; Rauch, Isabella; Decker, Thomas; Bocklitz, Thomas; Popp, Jürgen; Gibson, Christopher M.; Fowler, Patrick W.; Huang, Wei E.; Wagner, Michael

    2015-01-01

    Microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. In this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D2O) combined with Raman microspectroscopy. Incorporation of D2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labeling pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics. PMID:25550518

  8. Response of soil microbial activity and community structure to land use changes in a mountain rainforest region of Southern Ecuador

    NASA Astrophysics Data System (ADS)

    Potthast, Karin; Hamer, Ute; Makeschin, Franz

    2010-05-01

    (DOC_KCl) and nitrogen (TDN_KCl). Thereby, the highest amounts of DOC_KCl and TDN_KCl were associated with high carbon and nitrogen mineralization rates which resulted from the supply of fresh organic substrate from the litter in the forest as well as from easily degradable organic substrate from root exudates of the dense fine-root system of the Setaria grass. Comparing 0 to 5 cm depth, the active pasture showed the highest carbon mineralization, gross N mineralization and ammonium consumption rates which corresponded to the lowest net N mineralization rates indicating an active microbial immobilization of inorganic N. Furthermore, this was associated with the lowest Cmic:Nmic ratio compared to the other land uses. The metabolic quotient of 0 to 5 cm depth increased from 1.1 (forest) to 1.8 (pasture) to 2.7 mg CO2-C g-1 Cmic h-1 (abandoned pasture) indicating the lowest substrate use efficiency after the invasion of bracken due to a higher C:N ratio and lignin content of the bracken residues (Potthast et al., 2010). Mineralization rates of all three land use types were affected by the amount of organic matter susceptible to decomposition. Thereby, the land use change from an active to an abandoned pasture showed an impact on nutrient transfer and on the amount of soil N supplied to plants. Potthast, K., Hamer, U., Makeschin, F., 2010. Impact of litter quality on mineralization processes in managed and abandoned pasture soils in Southern Ecuador. Soil Biology and Biochemistry 42, 56-64.

  9. Climate change in winter versus the growing-season leads to different effects on soil microbial activity in northern hardwood forests

    NASA Astrophysics Data System (ADS)

    Sorensen, P. O.; Templer, P. H.; Finzi, A.

    2014-12-01

    Mean winter air temperatures have risen by approximately 2.5˚ C per decade over the last fifty years in the northeastern U.S., reducing the maximum depth of winter snowpack by approximately 26 cm over this period and the duration of winter snow cover by 3.6 to 4.2 days per decade. Forest soils in this region are projected to experience a greater number of freeze-thaw cycles and lower minimum winter soil temperatures as the depth and duration of winter snow cover declines in the next century. Climate change is likely to result not only in lower soil temperatures during winter, but also higher soil temperatures during the growing-season. We conducted two complementary experiments to determine how colder soils in winter and warmer soils in the growing-season affect microbial activity in hardwood forests at Harvard Forest, MA and Hubbard Brook Experimental Forest, NH. A combination of removing snow via shoveling and buried heating cables were used to induce freeze-thaw events during winter and to warm soils 5˚C above ambient temperatures during the growing-season. Increasing the depth and duration of soil frost via snow-removal resulted in short-term reductions in soil nitrogen (N) production via microbial proteolytic enzyme activity and net N mineralization following snowmelt, prior to tree leaf-out. Declining mass specific rates of carbon (C) and N mineralization associated with five years of snow removal at Hubbard Brook Experimental Forest may be an indication of microbial physiological adaptation to winter climate change. Freeze-thaw cycles during winter reduced microbial extracellular enzyme activity and the temperature sensitivity of microbial C and N mineralization during the growing-season, potentially offsetting nutrient and soil C losses due to soil warming in the growing-season. Our multiple experimental approaches show that winter climate change is likely to contribute to reduced microbial activity in northern hardwood forests.

  10. Rhizosphere bacterial community composition responds to arbuscular mycorrhiza, but not to reductions in microbial activity induced by foliar cutting.

    PubMed

    Vestergård, Mette; Henry, Frédéric; Rangel-Castro, Juan Ignacio; Michelsen, Anders; Prosser, James I; Christensen, Søren

    2008-04-01

    Differences in bacterial community composition (BCC) between bulk and rhizosphere soil and between rhizospheres of different plant species are assumed to be strongly governed by quantitative and qualitative rhizodeposit differences. However, data on the relationship between rhizodeposit amounts and BCC are lacking. Other soil microorganisms, e.g. arbuscular mycorrhizal fungi (AMF), may also influence BCC. We simulated foliar herbivory (cutting) to reduce belowground carbon allocation and rhizodeposition of pea plants grown either with or without AMF. This reduced soil respiration, rhizosphere microbial biomass and bacteriovorous protozoan abundance, whereas none of these were affected by AMF. After labelling plants with (13)CO(2), root and rhizosphere soil (13)C enrichment of cut plants were reduced to a higher extent (24-46%) than shoot (13)C enrichment (10-24%). AMF did not affect (13)C enrichment. Despite these clear indications of reduced rhizosphere carbon-input, denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes PCR-amplified targeting DNA and RNA from rhizosphere soil did not reveal any effects of cutting on banding patterns. In contrast, AMF induced consistent differences in both DNA- and RNA-based DGGE profiles. These results show that a reduction in rhizosphere microbial activity is not necessarily accompanied by changes in BCC, whereas AMF presence inhibits proliferation of some bacterial taxa while stimulating others.

  11. Microbial metabolic activity in soil as measured by dehydrogenase determinations

    NASA Technical Reports Server (NTRS)

    Casida, L. E., Jr.

    1977-01-01

    The dehydrogenase technique for measuring the metabolic activity of microorganisms in soil was modified to use a 6-h, 37 C incubation with either glucose or yeast extract as the electron-donating substrate. The rate of formazan production remained constant during this time interval, and cellular multiplication apparently did not occur. The technique was used to follow changes in the overall metabolic activities of microorganisms in soil undergoing incubation with a limiting concentration of added nutrient. The sequence of events was similar to that obtained by using the Warburg respirometer to measure O2 consumption. However, the major peaks of activity occurred earlier with the respirometer. This possibly is due to the lack of atmospheric CO2 during the O2 consumption measurements.

  12. Quantifying the metabolic activities of human-associated microbial communities across multiple ecological scales

    PubMed Central

    Maurice, Corinne Ferrier; Turnbaugh, Peter James

    2013-01-01

    Humans are home to complex microbial communities, whose aggregate genomes and their encoded metabolic activities are referred to as the human microbiome. Recently, researchers have begun to appreciate that different human body habitats and the activities of their resident microorganisms can be better understood in ecological terms, as a range of spatial scales encompassing single cells, guilds of microorganisms responsive to a similar substrate, microbial communities, body habitats, and host populations. However, the bulk of the work to date has focused on studies of culturable microorganisms in isolation or on DNA sequencing-based surveys of microbial diversity in small to moderately sized cohorts of individuals. Here, we discuss recent work that highlights the potential for assessing the human microbiome at a range of spatial scales, and for developing novel techniques that bridge multiple levels: for example, through the combination of single cell methods and metagenomic sequencing. These studies promise to not only provide a much-needed epidemiological and ecological context for mechanistic studies of culturable and genetically tractable microorganisms, but may also lead to the discovery of fundamental rules that govern the assembly and function of host-associated microbial communities. PMID:23550823

  13. Microbial Activation of Wooden Vats Used for Traditional Cheese Production and Evolution of Neoformed Biofilms.

    PubMed

    Gaglio, Raimondo; Cruciata, Margherita; Di Gerlando, Rosalia; Scatassa, Maria Luisa; Cardamone, Cinzia; Mancuso, Isabella; Sardina, Maria Teresa; Moschetti, Giancarlo; Portolano, Baldassare; Settanni, Luca

    2015-11-06

    Three Lactococcus lactis subsp. cremoris strains were used to develop ad hoc biofilms on the surfaces of virgin wooden vats used for cheese production. Two vats (TZ) were tested under controlled conditions (pilot plant), and two vats (TA) were tested under uncontrolled conditions (industrial plant). In each plant, one vat (TA1 and TZ1) was used for the control, traditional production of PDO Vastedda della Valle del Belìce (Vastedda) cheese, and one (TA2 and TZ2) was used for experimental production performed after lactococcal biofilm activation and the daily addition of a natural whey starter culture (NWSC). Microbiological and scanning electron microscopy analyses showed differences in terms of microbial levels and composition of the neoformed biofilms. The levels of the microbial groups investigated during cheese production showed significant differences between the control trials and between the control and experimental trials, but the differences were not particularly marked between the TA2 and TZ2 productions, which showed the largest numbers of mesophilic lactic acid bacterium (LAB) cocci. LAB populations were characterized phenotypically and genotypically, and 44 dominant strains belonging to 10 species were identified. Direct comparison of the polymorphic profiles of the LAB collected during cheese making showed that the addition of the NWSC reduced their biodiversity. Sensory evaluation showed that the microbial activation of the wooden vats with the multistrain Lactococcus culture generated cheeses with sensory attributes comparable to those of commercial cheese. Thus, neoformed biofilms enable a reduction of microbial variability and stabilize the sensorial attributes of Vastedda cheese.

  14. [Influence of Microbial Metabolites of Phenolic Nature on the Activity of Mitochondrial Enzymes].

    PubMed

    Fedotcheva, N I; Litvinova, E G; Osipov, A Aa; Olenin, A Yu; Moroz, V V; Beloborodova, N V

    2015-01-01

    The aim of this work was to study the effect of microbial metabolites of phenolic nature on the activity of enzymes of the tricarboxylic acid cycle in isolated mitochondria, and determine metabolites of the tricarboxylic acid cycle as potential biomarkers of mitochondrial dysfunction in the blood of patients with sepsis. It is shown that microbial metabolites of phenolic nature have an inhibitory effect on the activity of dehydrogenases, determined by the reduction of dichlorophenolindophenol and nitroblue tetrazolium in liver mitochondria and liver homogenates. This effect is more pronounced in oxidation of the NAD-dependent substrates than succinate oxidation, and at lower concentrations of microbial metabolites than inhibition of respiration. By gas chromatography-mass spectrometry it was found that the content of the tricarboxylic acid cycle metabolites in the blood of patients with sepsis decreased compared to healthy donors. The data obtained show that the microbial phenolic acids can contribute significantly to the dysfunction of mitochondria and suppression of general metabolism, characteristic of these pathologies. PMID:26841505

  15. Tracking Dynamics of Plant Biomass Composting by Changes in Substrate Structure, Microbial Community, and Enzyme Activity

    SciTech Connect

    Wei, H.; Tucker, M. P.; Baker, J. O.; Harris, M.; Luo, Y. H.; Xu, Q.; Himmel, M. E.; Ding, S. Y.

    2012-04-01

    Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera) wood-chips and mown lawn grass clippings (85:15 in dry-weight) and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP) and solid-state fermentation for the production of cellulolytic enzymes and biofuels.

  16. Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity

    PubMed Central

    2012-01-01

    Background Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. Results In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera) wood-chips and mown lawn grass clippings (85:15 in dry-weight) and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. Conclusion The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP) and solid-state fermentation for the production of cellulolytic enzymes and biofuels. PMID:22490508

  17. Formation of recent Pb-Ag-Au mineralization by potential sub-surface microbial activity.

    PubMed

    Tornos, Fernando; Velasco, Francisco; Menor-Salván, César; Delgado, Antonio; Slack, John F; Escobar, Juan Manuel

    2014-08-06

    Las Cruces is a base-metal deposit in the Iberian Pyrite Belt, one of the world's best-known ore provinces. Here we report the occurrence of major Pb-Ag-Au mineralization resulting from recent sub-surface replacement of supergene oxyhydroxides by carbonate and sulphide minerals. This is probably the largest documented occurrence of recent microbial activity producing an ore assemblage previously unknown in supergene mineralizing environments. The presence of microbial features in the sulphides suggests that these may be the first-described natural bacteriomorphs of galena. The low δ(13)C values of the carbonate minerals indicate formation by deep anaerobic microbial processes. Sulphur isotope values of sulphides are interpreted here as reflecting microbial reduction in a system impoverished in sulphate. We suggest that biogenic activity has produced around 3.1 × 10(9) moles of reduced sulphur and 10(10) moles of CO2, promoting the formation of ca. 1.19 Mt of carbonates, 114,000 t of galena, 638 t of silver sulphides and 6.5 t of gold.

  18. Discovery of New Compounds Active against Plasmodium falciparum by High Throughput Screening of Microbial Natural Products

    PubMed Central

    Pérez-Moreno, Guiomar; Cantizani, Juan; Sánchez-Carrasco, Paula; Ruiz-Pérez, Luis Miguel; Martín, Jesús; el Aouad, Noureddine; Pérez-Victoria, Ignacio; Tormo, José Rubén; González-Menendez, Víctor; González, Ignacio; de Pedro, Nuria; Reyes, Fernando; Genilloud, Olga; Vicente, Francisca; González-Pacanowska, Dolores

    2016-01-01

    Due to the low structural diversity within the set of antimalarial drugs currently available in the clinic and the increasing number of cases of resistance, there is an urgent need to find new compounds with novel modes of action to treat the disease. Microbial natural products are characterized by their large diversity provided in terms of the chemical complexity of the compounds and the novelty of structures. Microbial natural products extracts have been underexplored in the search for new antiparasitic drugs and even more so in the discovery of new antimalarials. Our objective was to find new druggable natural products with antimalarial properties from the MEDINA natural products collection, one of the largest natural product libraries harboring more than 130,000 microbial extracts. In this work, we describe the optimization process and the results of a phenotypic high throughput screen (HTS) based on measurements of Plasmodium lactate dehydrogenase. A subset of more than 20,000 extracts from the MEDINA microbial products collection has been explored, leading to the discovery of 3 new compounds with antimalarial activity. In addition, we report on the novel antiplasmodial activity of 4 previously described natural products. PMID:26735308

  19. Formation of recent Pb-Ag-Au mineralization by potential sub-surface microbial activity

    NASA Astrophysics Data System (ADS)

    Tornos, Fernando; Velasco, Francisco; Menor-Salván, César; Delgado, Antonio; Slack, John F.; Escobar, Juan Manuel

    2014-08-01

    Las Cruces is a base-metal deposit in the Iberian Pyrite Belt, one of the world’s best-known ore provinces. Here we report the occurrence of major Pb-Ag-Au mineralization resulting from recent sub-surface replacement of supergene oxyhydroxides by carbonate and sulphide minerals. This is probably the largest documented occurrence of recent microbial activity producing an ore assemblage previously unknown in supergene mineralizing environments. The presence of microbial features in the sulphides suggests that these may be the first-described natural bacteriomorphs of galena. The low δ13C values of the carbonate minerals indicate formation by deep anaerobic microbial processes. Sulphur isotope values of sulphides are interpreted here as reflecting microbial reduction in a system impoverished in sulphate. We suggest that biogenic activity has produced around 3.1 × 109 moles of reduced sulphur and 1010 moles of CO2, promoting the formation of ca. 1.19 Mt of carbonates, 114,000 t of galena, 638 t of silver sulphides and 6.5 t of gold.

  20. Seasonal Variation in Soil Microbial Biomass, Bacterial Community Composition and Extracellular Enzyme Activity in Relation to Soil Respiration in a Northern Great Plains Grassland

    NASA Astrophysics Data System (ADS)

    Wilton, E.; Flanagan, L. B.

    2014-12-01

    Soil respiration rate is affected by seasonal changes in temperature and moisture, but is this a direct effect on soil metabolism or an indirect effect caused by changes in microbial biomass, bacterial community composition and substrate availability? In order to address this question, we compared continuous measurements of soil and plant CO2 exchange made with an automatic chamber system to analyses conducted on replicate soil samples collected on four dates during June-August. Microbial biomass was estimated from substrate-induced respiration rate, bacterial community composition was determined by 16S rRNA amplicon pyrosequencing, and β-1,4-N-acetylglucosaminidase (NAGase) and phenol oxidase enzyme activities were assayed fluorometrically or by absorbance measurements, respectively. Soil microbial biomass declined from June to August in strong correlation with a progressive decline in soil moisture during this time period. Soil bacterial species richness and alpha diversity showed no significant seasonal change. However, bacterial community composition showed a progressive shift over time as measured by Bray-Curtis dissimilarity. In particular, the change in community composition was associated with increasing relative abundance in the alpha and delta classes, and declining abundance of the beta and gamma classes of the Proteobacteria phylum during June-August. NAGase showed a progressive seasonal decline in potential activity that was correlated with microbial biomass and seasonal changes in soil moisture. In contrast, phenol oxidase showed highest potential activity in mid-July near the time of peak soil respiration and ecosystem photosynthesis, which may represent a time of high input of carbon exudates into the soil from plant roots. This input of exudates may stimulate the activity of phenol oxidase, a lignolytic enzyme involved in the breakdown of soil organic matter. These analyses indicated that seasonal change in soil respiration is a complex

  1. How does the anthropogenic activity affect the spring discharge?

    NASA Astrophysics Data System (ADS)

    Hao, Yonghong; Zhang, Juan; Wang, Jiaojiao; Li, Ruifang; Hao, Pengmei; Zhan, Hongbin

    2016-09-01

    Karst hydrological process has largely been altered by climate change and human activity. In many places throughout the world, human activity (e.g. groundwater pumping and dewatering from mining) has intensified and surpassed climate change, where human activity becomes the primary factor that affects groundwater system. But it is still largely unclear how the human activity affects spring discharge in magnitude and periodicity. This study investigates the effects of anthropogenic activity on spring discharge, using the Xin'an Springs of China as an example. The Xin'an Spring discharge were divided into two time periods: the pre-development period from 1956 to 1971 and the post-development period from 1972 to 2013. We confirm the dividing time (i.e. 1971) of these two periods using the Wilcoxon rank-sum test. Then the wavelet transform and wavelet coherence were used to analyze the karst hydrological processes for the two periods respectively. We analyze the correlations of precipitation and the Xin'an spring discharge with the monsoons including the Indian Summer Monsoon (ISM) and the West North Pacific Monsoon (WNPM) and the climate teleconnections including El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO), respectively. The results indicated that the spring discharge was attenuated about 19.63% under the influence of human activity in the Xin'an Springs basin. However, human activity did not alter the size of the resonance frequencies between the spring discharge and the monsoons. In contrast, it reinforced the periodicities of the monsoons-driven spring discharge. It suggested that human has adapted to the major climate periodicities, and human activity had the same rhyme with the primary climate periodicity. In return, human activity enhances the correlation between the monsoons and the spring discharge.

  2. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  3. Soil Rhizosphere Microbial Communities and Enzyme Activities under Organic Farming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the activities of ß-glucosidase (C cycling, ß-glucosaminidase (C and N cycling), acid phosphatase (P cycling) and arylsulfatase (S cycling) under lettuce (Lactuca sativa), potato (Solanum Tuberosum), onion (Allium cepa L), broccoli (Brassica oleracea var. botrytis) and Tall f...

  4. Molecular Mechanisms of Inflammasome Activation during Microbial Infections

    PubMed Central

    Broz, Petr; Monack, Denise M.

    2011-01-01

    Summary The innate immune system plays a crucial role in the rapid recognition and elimination of invading microbes. Detection of microbes relies on germ-line encoded pattern recognition receptors (PRRs) that recognize essential bacterial molecules, so-called pathogen-associated molecular patterns (PAMPs). A subset of PRRs, belonging to the NOD-like receptor (NLR) and the PYHIN protein families, detects viral and bacterial pathogens in the cytosol of host cells and induces the assembly of a multi-protein signaling platform called the inflammasome. The inflammasome serves as an activation platform for the mammalian cysteine protease caspase-1, a central mediator of innate immunity. Active caspase-1 promotes the maturation and release of interleukin-1β (IL-1β) and IL-18 as well as protein involved in cytoprotection and tissue repair. In addition, caspase-1 initiates a novel form of cell death called pyroptosis. Here we discuss latest advances and our insights on inflammasome stimulation by two model intracellular pathogens, Francisella tularensis and Salmonella typhimurium. Recent studies on these pathogens have significantly shaped our understanding of the molecular mechanisms of inflammasome activation and how microbes can evade or manipulate inflammasome activity. In addition, we review the role of the inflammasome adapter ASC in the caspase-1 autoproteolysis and new insights into the structure of the inflammasome complex. PMID:21884176

  5. Effects of selected surfactants on soil microbial activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surfactants (surface-active agents) facilitate and accentuate the emulsifying, dispersing, spreading, and wetting properties of liquids. Surfactants are used in industry to reduce the surface tension of liquid and to solubilize compounds. For agricultural pest management, surfactants are an import...

  6. Krill excretion boosts microbial activity in the Southern Ocean.

    PubMed

    Arístegui, Javier; Duarte, Carlos M; Reche, Isabel; Gómez-Pinchetti, Juan L

    2014-01-01

    Antarctic krill are known to release large amounts of inorganic and organic nutrients to the water column. Here we test the role of krill excretion of dissolved products in stimulating heterotrophic bacteria on the basis of three experiments where ammonium and organic excretory products released by krill were added to bacterial assemblages, free of grazers. Our results demonstrate that the addition of krill excretion products (but not of ammonium alone), at levels expected in krill swarms, greatly stimulates bacteria resulting in an order-of-magnitude increase in growth and production. Furthermore, they suggest that bacterial growth rate in the Southern Ocean is suppressed well below their potential by resource limitation. Enhanced bacterial activity in the presence of krill, which are major sources of DOC in the Southern Ocean, would further increase recycling processes associated with krill activity, resulting in highly efficient krill-bacterial recycling that should be conducive to stimulating periods of high primary productivity in the Southern Ocean.

  7. Milk kefir: composition, microbial cultures, biological activities, and related products.

    PubMed

    Prado, Maria R; Blandón, Lina Marcela; Vandenberghe, Luciana P S; Rodrigues, Cristine; Castro, Guillermo R; Thomaz-Soccol, Vanete; Soccol, Carlos R

    2015-01-01

    In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir's exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir's microflora and the importance of kefiran as a beneficial health substance.

  8. Milk kefir: composition, microbial cultures, biological activities, and related products

    PubMed Central

    Prado, Maria R.; Blandón, Lina Marcela; Vandenberghe, Luciana P. S.; Rodrigues, Cristine; Castro, Guillermo R.; Thomaz-Soccol, Vanete; Soccol, Carlos R.

    2015-01-01

    In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir’s exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir’s microflora and the importance of kefiran as a beneficial health substance. PMID:26579086

  9. High Ozone (O3) Affects the Fitness Associated with the Microbial Composition and Abundance of Q Biotype Bemisia tabaci

    PubMed Central

    Hong, Yanyun; Yi, Tuyong; Tan, Xiaoling; Zhao, Zihua; Ge, Feng

    2016-01-01

    Ozone (O3) affects the fitness of an insect, such as its development, reproduction and protection against fungal pathogens, but the mechanism by which it does so remains unclear. Here, we compared the fitness (i.e., the growth and development time, reproduction and protection against Beauveria bassiana (B. bassiana) of Q biotype whiteflies fumigated under hO3 (280 ± 20 ppb) and control O3 (50 ± 10 ppb) concentrations. Moreover, we determined that gene expression was related to development, reproduction and immunity to B. bassiana and examined the abundance and composition of bacteria and fungi inside of the body and on the surface of the Q biotype whitefly. We observed a significantly enhanced number of eggs that were laid by a female, shortened developmental time, prolonged adult lifespan, decreased weight of one eclosion, and reduced immunity to B. bassiana in whiteflies under hO3, but hO3 did not significantly affect the expression of genes related to development, reproduction and immunity. However, hO3 obviously changed the composition of the bacterial communities inside of the body and on the surface of the whiteflies, significantly reducing Rickettsia and enhancing Candidatus_Cardinium. Similarly, hO3 significantly enhanced Thysanophora penicillioides from the Trichocomaceae family and reduced Dothideomycetes (at the class level) inside of the body. Furthermore, positive correlations were found between the abundance of Candidatus_Cardinium and the female whitefly ratio and the fecundity of a single female, and positive correlations were found between the abundance of Rickettsia and the weight of adult whiteflies just after eclosion and immunity to B. bassiana. We conclude that hO3 enhances whitefly development and reproduction but impairs immunity to B. bassiana, and our results also suggest that the changes to the microbial environments inside of the body and on the surface could be crucial factors that alter whitefly fitness under hO3. PMID:27799921

  10. Analysis of matrix effects critical to microbial transport in organic waste-affected soils across laboratory and field scales

    NASA Astrophysics Data System (ADS)

    Unc, Adrian; Goss, Michael J.; Cook, Simon; Li, Xunde; Atwill, Edward R.; Harter, Thomas

    2012-06-01

    Organic waste applications to soil (manure, various wastewaters, and biosolids) are among the most significant sources of bacterial contamination in surface and groundwater. Transport of bacteria through the vadose zone depends on flow path geometry and stability and is mitigated by interaction between soil, soil solution, air-water interfaces, and characteristics of microbial surfaces. After initial entry, the transport through soil depends on continued entrainment of bacteria and resuspension of those retained in the porous structure. We evaluated the retention of bacteria-sized artificial microspheres, varying in diameter and surface charge and applied in different suspending solutions, by a range of sieved soils contained in minicolumns, the transport of hydrophobic bacteria-sized microspheres through undisturbed soil columns as affected by waste type under simulated rainfall, and the field-scale transport of Enterococcus spp. to an unconfined sandy aquifer after the application of liquid manure. Microsphere retention reflected microsphere properties. The soil type and suspending solution affected retention of hydrophilic but not hydrophobic particles. Retention was not necessarily facilitated by manure-microsphere-soil interactions but by manure-soil interactions. Undisturbed column studies confirmed the governing role of waste type on vadose-zone microsphere transport. Filtration theory applied as an integrated analysis of transport across length scales showed that effective collision efficiency depended on the distance of travel. It followed a power law behavior with the power coefficient varying from ˜0.4 over short distances to >0.9 over 1 m (i.e., very little filtration for a finite fraction of biocolloids), consistent with reduced influence of soil solution and biocolloid properties at longer travel distances.

  11. Short-term parasite-infection alters already the biomass, activity and functional diversity of soil microbial communities

    NASA Astrophysics Data System (ADS)

    Li, Jun-Min; Jin, Ze-Xin; Hagedorn, Frank; Li, Mai-He

    2014-11-01

    Native parasitic plants may be used to infect and control invasive plants. We established microcosms with invasive Mikania micrantha and native Coix lacryma-jobi growing in mixture on native soils, with M. micrantha being infected by parasitic Cuscuta campestris at four intensity levels for seven weeks to estimate the top-down effects of plant parasitism on the biomass and functional diversity of soil microbial communities. Parasitism significantly decreased root biomass and altered soil microbial communities. Soil microbial biomass decreased, but soil respiration increased at the two higher infection levels, indicating a strong stimulation of soil microbial metabolic activity (+180%). Moreover, a Biolog assay showed that the infection resulted in a significant change in the functional diversity indices of soil microbial communities. Pearson correlation analysis indicated that microbial biomass declined significantly with decreasing root biomass, particularly of the invasive M. micrantha. Also, the functional diversity indices of soil microbial communities were positively correlated with soil microbial biomass. Therefore, the negative effects on the biomass, activity and functional diversity of soil microbial community by the seven week long plant parasitism was very likely caused by decreased root biomass and root exudation of the invasive M. micrantha.

  12. Microbial Activity in Active and Upper Permafrost Layers in Axel Heiberg Island

    NASA Astrophysics Data System (ADS)

    Vishnivetskaya, T. A.; Allan, J.; Cheng, K.; Chourey, K.; Hettich, R. L.; Layton, A.; Liu, X.; Murphy, J.; Mykytczuk, N. C.; Phelps, T. J.; Pfiffner, S. M.; Saarunya, G.; Stackhouse, B. T.; Whyte, L.; Onstott, T. C.

    2011-12-01

    Data on microbial communities and their metabolic activity in Arctic wetlands and underlying permafrost sediments is lacking. Samples were collected from different depths of a cryosol (D1, D2) and upper permafrost (D3) at the Axel Heiberg Island in July 2009. Upper cryosol has lower H2O but higher C and N content when compared to deeper horizons including upper permafrost layer. Deep cryosol and upper permafrost contained SO42- (155 and 132 ppm) and NO3- (0.12 and 0.10 ppm), respectively. The phylogenetic analyses of the environmental 16S rRNA genes showed the putative SRB were more abundant in permafrost (8%) than in cryosols, D1 (0.2%) and D2 (1.1%). Putative denitrifying bacteria varied along depth with near 0.1% in D1 and a significant increase in D2 (2.7%) and D3 (2.2%). Methanogens were not detected; methanotrophs were present at low levels in D3 (1%). Two sets of microcosms were set up. Firstly, anaerobic microcosms, amended with 10 mM glucose, sulfate or nitrate, were cultivated at varying temperatures (15o, 6o, and 0o C) for 10 months. Metabolic activity was monitored by measuring CO2 and CH4 every 3 months. A total of 89.5% of the D3-originated microcosms showed higher activity in comparison to cryosols in first 3 months. CH4 was not detected in these microcosms, whereas CO2 production was higher at 15o C or with glucose. Metaproteomics analyses of microcosms with higher levels of CO2 production indicated the presence of stress responsive proteins (e.g. DnaK, GroEL) and proteins essential for energy production and survival under carbon starvation (e.g. F0F1 ATP synthase, acyl-CoA dehydrogenase). These proteins have been previously shown to be up-regulated at low temperatures by permafrost bacteria. Metaproteomics data based on the draft sequences indicated the presence of proteins from the genera Bradyrhizobium, Sphingomonas, Lysinibacillus and Methylophilaceae and these bacteria were also detected by pyrosequencing. Secondly, a duplicate set of anaerobic

  13. Effects of soil organic matter properties and microbial community composition on enzyme activities in cryoturbated arctic soils.

    PubMed

    Schnecker, Jörg; Wild, Birgit; Hofhansl, Florian; Eloy Alves, Ricardo J; Bárta, Jiří; Capek, Petr; Fuchslueger, Lucia; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Hofer, Angelika; Kienzl, Sandra; Knoltsch, Anna; Lashchinskiy, Nikolay; Mikutta, Robert; Santrůčková, Hana; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Weltin, Georg; Richter, Andreas

    2014-01-01

    Enzyme-mediated decomposition of soil organic matter (SOM) is controlled, amongst other factors, by organic matter properties and by the microbial decomposer community present. Since microbial community composition and SOM properties are often interrelated and both change with soil depth, the drivers of enzymatic decomposition are hard to dissect. We investigated soils from three regions in the Siberian Arctic, where carbon rich topsoil material has been incorporated into the subsoil (cryoturbation). We took advantage of this subduction to test if SOM properties shape microbial community composition, and to identify controls of both on enzyme activities. We found that microbial community composition (estimated by phospholipid fatty acid analysis), was similar in cryoturbated material and in surrounding subsoil, although carbon and nitrogen contents were similar in cryoturbated material and topsoils. This suggests that the microbial community in cryoturbated material was not well adapted to SOM properties. We also measured three potential enzyme activities (cellobiohydrolase, leucine-amino-peptidase and phenoloxidase) and used structural equation models (SEMs) to identify direct and indirect drivers of the three enzyme activities. The models included microbial community composition, carbon and nitrogen contents, clay content, water content, and pH. Models for regular horizons, excluding cryoturbated material, showed that all enzyme activities were mainly controlled by carbon or nitrogen. Microbial community composition had no effect. In contrast, models for cryoturbated material showed that enzyme activities were also related to microbial community composition. The additional control of microbial community composition could have restrained enzyme activities and furthermore decomposition in general. The functional decoupling of SOM properties and microbial community composition might thus be one of the reasons for low decomposition rates and the persistence of 400 Gt

  14. Effects of soil organic matter properties and microbial community composition on enzyme activities in cryoturbated arctic soils.

    PubMed

    Schnecker, Jörg; Wild, Birgit; Hofhansl, Florian; Eloy Alves, Ricardo J; Bárta, Jiří; Capek, Petr; Fuchslueger, Lucia; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Hofer, Angelika; Kienzl, Sandra; Knoltsch, Anna; Lashchinskiy, Nikolay; Mikutta, Robert; Santrůčková, Hana; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Weltin, Georg; Richter, Andreas

    2014-01-01

    Enzyme-mediated decomposition of soil organic matter (SOM) is controlled, amongst other factors, by organic matter properties and by the microbial decomposer community present. Since microbial community composition and SOM properties are often interrelated and both change with soil depth, the drivers of enzymatic decomposition are hard to dissect. We investigated soils from three regions in the Siberian Arctic, where carbon rich topsoil material has been incorporated into the subsoil (cryoturbation). We took advantage of this subduction to test if SOM properties shape microbial community composition, and to identify co